
Alma Mater Studiorum · Università di Bologna
Campus di Cesena

Scuola di Ingegneria e Architettura

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

Aggregate Programming in Scala:

a Core Library and Actor-Based

Platform for Distributed

Computational Fields

Tesi in

Ingegneria dei Sistemi Software Adattativi Complessi

Relatore:
Prof. MIRKO VIROLI

Presentata da:
ROBERTO CASADEI

Anno Accademico 2014-2015
Sessione III

Contents

Abstract (italiano) i

Abstract iii

Introduction v

I Background: Scala for Library Development 1

1 Advanced Scala Features 3

1.1 The Scala programming language 3

1.2 On object-oriented programming and traits 4

1.2.1 OOP in Scala: a quick tour of the basics 4

1.2.2 Traits . 7

1.2.3 Class construction and linearisation 9

1.2.4 Traits: member overriding and super resolution 10

1.2.5 Trait instantiation, refinement, early definitions 11

1.3 The Scala type system . 12

1.3.1 Some preparatory definitions 12

1.3.2 Advanced types . 13

1.4 Generic programming in Scala . 16

1.4.1 Type parameters . 17

1.4.2 Type bounds (bounded quantification) 17

1.4.3 Type variance . 18

1.4.4 Abstract types vs. type parameters 20

1.5 Implicits . 21

1.5.1 Implicit scope . 22

CONTENTS

1.5.2 Implicit classes . 24

1.5.3 More on implicits . 25

2 Advanced Scala Techniques 29

2.1 “Pimp my library” pattern . 29

2.2 Type classes . 31

2.3 Component modelling and implementation 32

2.4 Cake Pattern . 35

2.5 Family polymorphism . 38

2.6 Internal DSL development . 41

2.6.1 On syntactic sugar . 41

2.6.2 On associativity and precedence 43

2.6.3 ”Dynamic” features . 44

2.6.4 Examples . 44

II Background: Aggregate Programming 47

3 Space-Time Programming and Spatial Computing 49

3.1 Motivation: context and issues . 49

3.1.1 Distributed computing scenarios 50

3.1.2 Key issues and unsuitableness of traditional approaches . . . 51

3.2 Spatial computing . 54

3.2.1 Space-oriented computation 54

3.2.2 Defining spatial computing (as space-time programming) . . 55

3.2.3 Analytical framework . 56

3.2.4 Discrete vs. continuous space-time 57

4 Field Calculus 59

4.1 Computational fields . 59

4.2 Field calculus . 60

4.2.1 Basis set of operators . 60

4.2.2 Higher-Order Field Calculus (HOFC) 61

CONTENTS

4.2.3 Operational semantics . 61

4.2.4 Case study: Protelis . 67

5 Aggregate Programming 69

5.1 From device to aggregate view . 69

5.2 The aggregate programming stack 70

5.2.1 Composable self-organisation 71

III scafi: Development 75

6 Analysis 77

6.1 Requirements . 77

6.1.1 Field calculus . 78

6.1.2 Aggregate programming platform 78

6.2 Requirement analysis . 79

6.2.1 Field calculus – DSL and VM 79

6.2.2 Aggregate programming systems 80

6.3 Problem analysis . 83

6.3.1 Field calculus DSL: embedding within Scala 83

6.4 Abstraction gap . 85

6.4.1 Distributed Platform . 85

7 Design 87

7.1 Design architecture . 88

7.1.1 scafi DSL and VM . 88

7.1.2 Spatial abstraction . 89

7.1.3 Simulator . 91

7.1.4 Distributed platform . 92

7.2 Actor platform design . 94

7.2.1 System design . 94

7.2.2 Server-based actor platform 96

7.2.3 Peer-to-peer actor platform 97

CONTENTS

7.2.4 API design . 98

8 Implementation and testing 101

8.1 Project organisation . 101

8.2 scafi DSL and VM implementation 102

8.2.1 Operational semantics of the field calculus 102

8.2.2 Spatial abstraction implementation 111

8.3 Distributed platform implementation 113

8.3.1 Actors and reactive behavior 113

8.3.2 Code mobility: proof-of-concept 114

8.4 Testing . 116

8.4.1 An excerpt of functional tests 117

IV Evaluation 121

9 Evaluation 123

9.1 Requirement verification . 123

9.1.1 Field calculus DSL and VM 123

9.1.2 Aggregate programming platform 124

9.2 Demos: the framework in action . 125

9.2.1 Demo 0 – Peer-to-peer, ad-hoc network 126

9.2.2 Demo 1 – Server-based, ad-hoc network 129

9.2.3 Demo 2 – Server-based, spatial network 130

9.2.4 Demo 3 – Server-based, mobile spatial network 131

9.3 Evaluation results . 132

9.3.1 On internal quality: guidelines for improvement 133

10 Conclusion and Perspectives 135

10.1 Final thoughts . 135

10.2 Agenda . 135

References 136

List of Figures

3.1 Amorphous medium abstraction . 57

4.1 Field calculus – [E-D-APP] rule . 64

4.2 Field calculus – [E-NBR] rule . 66

5.1 Aggregate Programming Stack . 72

7.1 Design architecture for scafi DSL and VM 88

7.2 Design architecture for the spatial abstraction 90

7.3 Design architecture for the scafi simulator 91

7.4 Design architecture for scafi actor-based platform 93

7.5 Elements of an actor-based aggregate application 94

7.6 Structure and interface of device actors 95

7.7 Server-based actor platform . 97

7.8 Peer-to-peer actor platform . 98

7.9 API façades for the distributed platform 99

8.1 Structure diagram for scafi DSL and VM 103

8.2 Implementation of aggregate program execution 106

8.3 Structure diagram for the spatial abstraction 112

Abstract (italiano)

La programmazione aggregata è un paradigma che supporta la programmazione

di sistemi di dispositivi, adattativi ed eventualmente a larga scala, nel loro insieme

– come aggregati. L’approccio prevalente in questo contesto è basato sul field

calculus, un calcolo formale che consente di definire programmi aggregati attraverso

la composizione funzionale di campi computazionali, creando i presupposti per la

specifica di pattern di auto-organizzazione robusti.

La programmazione aggregata è attualmente supportata, in modo più o meno

parziale e principalmente per la simulazione, da DSL dedicati (cf., Protelis), ma

non esistono framework per linguaggi mainstream finalizzati allo sviluppo di appli-

cazioni. Eppure, un simile supporto sarebbe auspicabile per ridurre tempi e sforzi

d’adozione e per semplificare l’accesso al paradigma nella costruzione di sistemi

reali, nonché per favorire la ricerca stessa nel campo.

Il presente lavoro consiste nello sviluppo, a partire da un prototipo della se-

mantica operazionale del field calculus, di un framework per la programmazione

aggregata in Scala.

La scelta di Scala come linguaggio host nasce da motivi tecnici e pratici. Scala

è un linguaggio moderno, interoperabile con Java, che ben integra i paradigmi

ad oggetti e funzionale, ha un sistema di tipi espressivo, e fornisce funzionalità

avanzate per lo sviluppo di librerie e DSL. Inoltre, la possibilità di appoggiarsi,

su Scala, ad un framework ad attori solido come Akka, costituisce un altro fattore

trainante, data la necessità di colmare l’abstraction gap inerente allo sviluppo di

un middleware distribuito.

Nell’elaborato di tesi si presenta un framework che raggiunge il triplice obiet-

tivo: la costruzione di una libreria Scala che realizza la semantica del field calculus

i

in modo corretto e completo, la realizzazione di una piattaforma distribuita Akka-

based su cui sviluppare applicazioni, e l’esposizione di un’API generale e flessibile

in grado di supportare diversi scenari.

Keywords – aggregate programming, field calculus, distributed framework, self-

organisation, actors, scala

ii

Abstract

Aggregate programming is a paradigm that addresses the development of large-

scale, adaptative systems in their totality – as aggregates. One prominent aggre-

gate programming approach is based on the field calculus, a formal calculus that

allows the definition of aggregate programs by the functional composition of com-

putational fields, enabling the specification of robust self-organisation patterns.

Currently, aggregate programming is supported, at varying degrees, by ad-

hoc DSLs (cf., Protelis) which are mainly devoted to simulation, but there are

no frameworks for mainstream languages aimed at the construction of real-world

systems. Still, such a technology would be highly desirable in its role of promoting

the use and adoption of the paradigm in practice as well as for boosting research

in the field.

The work described in this thesis consists in the development of an aggregate

programming framework in Scala, starting from an existing prototype implement-

ing the operational semantics of the field calculus.

The choice of Scala as the host language is motivated by both technical and

practical reasons. Scala is a modern language for the JVM which integrates the

object-oriented and functional paradigms in a seamless way, has an expressive type

system, and provides advanced features for the development of software libraries.

Moreover, the possibility to employ a sound, Scala-based actor framework such

as Akka is another leading factor for this commitment to Scala, given the critical

abstraction gap inherent to the development of a distributed middleware.

In this dissertation, I present a framework achieving the threefold goal: i)

the construction of a Scala library that implements the field calculus semantics

in a correct and complete way, ii) the development of an Akka-based distributed

iii

platform for aggregate applications, and iii) the creation and exposition of an

general, flexible API able to support various distributed computing scenarios.

Keywords – aggregate programming, field calculus, distributed framework, self-

organisation, actors, scala

iv

Introduction

Aggregate programming is a paradigm that supports the programming of large-

scale, adaptative systems in their totality, by focussing on the behavior of the whole

– an aggregate of devices – rather than on the behaviors of the parts. This pro-

gramming model represents a depart from the traditional device-centric approaches

and is intended to overcome challenges commonly found in the development of per-

vasive computing applications.

One prominent aggregate programming approach is based on the field calculus,

a formal calculus that allows the definition of aggregate programs by the functional

composition of computational fields , enabling the specification of robust self-

organisation patterns. Founding the model on a minimal, formal calculus at the

foundation allows to formally verify interesting properties (e.g., self-stabilisation)

and guarantee that certain feed-forward compositions of operators maintain such

properties. Given this premise, it is possible to envision a set of building blocks

for the development of resilient, adaptative systems.

In the past few years, a number of computing models and languages falling more

or less within the umbrella of aggregate programming have emerged. However,

existing aggregate programming initiatives are often very specific – addressing a

well-defined niche of applications –, built on ad-hoc Domain-Specific Languages

or DSLs (cf., MIT Proto or Protelis), and mainly devoted to simulations. Still, a

general-purpose framework for aggregate programming, aimed at the construction

of real-world applications and possibly embedded in a mainstream language so as

to lower the learning curve of the framework itself, would be highly desirable. In

fact, such a technology would have a twofold impact: first, it would fill a gap in the

pervasive computing technology landscape; secondly, it would be useful in order

v

to promote the use and adoption of the paradigm as well as for boosting research

in the field.

The work described in this thesis consists in the development of an aggregate

programming framework in Scala, starting from an existing prototype implement-

ing the operational semantics of the field calculus.

The choice of Scala as the host language is motivated by both technical and

practical reasons. Scala is a modern language for the JVM which integrates the

object-oriented and functional paradigms in a seamless way, has an expressive type

system, and provides advanced features for the development of software libraries.

Moreover, the possibility to employ a sound, Scala-based actor framework such

as Akka is another leading factor for this commitment to Scala, given the critical

abstraction gap inherent to the development of a distributed middleware.

In this dissertation, I present a framework achieving the threefold goal:

1. the construction of a Scala library that implements the field calculus seman-

tics in a correct and complete way,

2. the development of an Akka-based distributed platform for aggregate appli-

cations, and

3. the creation and exposition of an general, flexible API able to support various

distributed computing scenarios,

where it must also be noted that the initial design of the interpreter at the core

of the proposed framework is authored by prof. Viroli.

This dissertation is organised into four parts. Part I, Background: Scala for

Library Development, presents a subset of Scala features and techniques that are

relevant to the construction of libraries, APIs, and DSLs. Chapter 1 addresses

Scala as a language, focussing on four main portions: the use of traits, the type

system, the support for generic programming, and the implicit system. On this

foundation, Chapter 2 covers a set of techniques: the “Pimp my library” pattern

for extending existing types; approaches to component-based design; dependency

injection with the Cake pattern; the design of sets of mutually recursive types with

family polymorphism; and basic techniques for internal DSL development.

Part II, Background: Aggregate Programming, is intended to provide a high-

vi

level description of the scientific foundation of aggregate programming. Chapter 3

provides an outline of the key issues arising from current trends in pervasive com-

puting and introduces spatial computing as a promising response to these chal-

lenges. Then, a specific space-time programming approach based on the notion of

the computational field is portrayed in Chapter 4, Field Calculus. Finally, Chap-

ter 5 introduces the idea of programming aggregates of device as a whole and

describes an aggregate programming stack based on field calculus and resilient

coordination patterns.

After this background, Part III covers the main work of this thesis, the devel-

opment of scafi, which is both a library for computational fields and an aggregate

programming framework for distributed applications. Chapter 6, Analysis, illus-

trates the requirements, the problem, and what has to be done. Then, Chapter 7

describes the architecture and the key elements of the design of scafi, while a

more detailed view of the solution is provided in Chapter 8, Implementation.

Finally, the evaluation of the work is carried out in Part IV. Chapter 9 provides

an assessment of scafi with respect to the requirements, together with some

general, retrospective considerations, whereas the conclusive thoughts are relegated

to Chapter 10.

vii

Part I

Background: Scala for Library

Development

Chapter 1

Advanced Scala Features

This chapter describes a set of Scala features that are particularly relevant to

library developers. General references for this chapter and Chapter 2 include [1],

[2], [3], [4], [5], [6].

Outline:

1. OOP and traits: some recap, class linearisation, super resolution, member

overriding, early definitions

2. Advanced types: structural types, compound types, existential types, self

types, abstract types

3. Generic programming: type parameters, type bounds, F-bounded polymor-

phism, type variance

4. Implicits: implicit parameters, implicit conversions/views, implicit resolu-

tion

1.1 The Scala programming language

Scala is a general-purpose programming language with the following main char-

acteristics:

• runs on the JVM and integrates with the Java ecosystem in a seamless

way,

3

CHAPTER 1. ADVANCED SCALA FEATURES

• is a pure OOPL, i.e., every value is an object and every operation is a

method call,

• provides a smooth integration of the object-oriented and functional

paradigms,

• is designed to be a ”scalable” language, by keeping things simple while

accomodating growing complexity,

• has a powerful, expressive static type system with type inference.

1.2 On object-oriented programming and traits

1.2.1 OOP in Scala: a quick tour of the basics

Let’s start with an abstract example that summarises many features in one

place:

package __root.__org
package parentpackage // org.parentpackage

package otherpkg1 { class SomeBaseClass }
package otherpkg2 { trait SomeTrait }

package mypackage { // org.parentpackage.mypackage
import otherpkg1.{SomeBaseClass => MyBase} // Selective + rename
import otherpkg2._ // Import all

class A(val x: Int, private var y: Char, arg: Double)
extends MyBase with Serializable with SomeTrait {
private[mypackage] var _z = arg
def z = _z
def z_=(newZ: Double) { _z = newZ }

private[this] var foo: Boolean = _

@scala.beans.BeanProperty var bar: Int = _

def this() { // Auxiliary constructor
this(0, ’a’, 0.0)
this.bar = 2
this.setBar(1)

}

def update(flip: Boolean, foo: Boolean) = this.foo = foo ^ flip

4

CHAPTER 1. ADVANCED SCALA FEATURES

override val toString = s"A($x,$y,$z,$foo)"

class Inner { val myFoo = A.this.foo }
var inner: A#Inner = new Inner

}

object A {
def apply(c: Char) = new A(0, c, 0)

def sortOfStaticMethod() = { true }
}

package object mypackage {
val obj = new A() // Use auxiliary constructor
obj._z // Field ’_z’ is package private
obj.z = 7.7 // Actually a method call: obj.z=(7.7)
print(obj.toString) // toString was overridden as a val!
obj(true) = false // Rewritten as: obj.update(true,false)
val inner = new obj.Inner // Nested classes are object-specific
val obj2 = A(’z’) // Rewritten as: A.apply(’z’)
A.sortOfStaticMethod // Calls method on companion object
obj2.inner = obj.inner // Ok thanks to type projection

}
}

Packages

• Packages can contain definitions for classes, objects, and traits.

• A package can also have an associated package object with the same name,

where you can put function, value, and variable definitions.

• In Scala, packages can be used in a more flexible way than in Java. For

example, in Scala you don’t need to specify the package at the top of the

file, and you could contribute to more than one package in the same file.

• Scala supports flexible forms of import (all, selective, aliased). Moreover,

you can use import anywhere, even inside methods.

Objects Scala allows the definition of singleton objects with the object key-

word. An object declaration is very similar to a class declaration, except that

objects cannot obviously have abstract or undefined members. An object can ex-

tend a class and multiple traits, can have fields, methods, inner classes, and a

primary constructor. Also, note that objects are constructed lazily:

5

CHAPTER 1. ADVANCED SCALA FEATURES

var x = 0

object obj { x+=1 }

print(x) // 0
obj // Constructor is evaluated the 1st time ’obj’ is dereferenced.
print(x) // 1

Classes

• A class can inherit by at most one class (single-class inheritance scheme),

but it can implement multiple traits.

• Each class has a primary constructor which consists of the class body

itself; this means that the class body can contain also statements, not only

definitions.

• The primary constructor can specify parameters. These parameters can be

normal parameters as in function calls, or they can be marked by val or var

(possibly with visibility modifiers) to make them become fields.

• A class can have auxiliary constructors which are named this and must

start with a call to a previously defined auxiliary constructor or the primary

constructor .

• Scala supports fields with automatically generated getters and setters.

• Each class can have a companion object with the same name as the class.

• For what concerns visibility, a class and its companion object can access each

other’s private entities.

• There are no static methods in Scala, but they can be implemented as

methods on the class’ companion object.

• Class declarations can include nested classes, but it is essential to note

that an inner class is tied to the object, not to the class. However, you can

express a type such as ”a Inner of any A” via type projection A#Inner (see

Section 1.3.1).

6

CHAPTER 1. ADVANCED SCALA FEATURES

Fields and Visibility Fields are introduced with val and var declarations

within the class body or as constructor parameters. The logic of method gen-

eration for fields is coherent with the concept of im/mutability; that is, a val field

is only given a getter, while a var field is given a getter and a setter.

Access modifiers are more sophisticated as in Java. In particular, you can

restrict visibility to a package, class, or object using the syntax private[X] or

protected[X]. For example, you have the expressibility to state:

• public: public access – It is the default access-level (note it is different from

Java’s package-private default).

• protected: inheritance access – It means that any subclass can access the

member, which can also be accessed from other objects of any subclass.

• private: class-private access – Tt means that the member can only be

accessed from the same class as well as from other objects of the same class.

• protected[package]: package-private and inheritance access – It means

the member is accessible everywhere in the package and from any subclass

(possibly located in a different package).

• private[package]: package-private (without inheritance access).

• protected[this], private[this]: object-protected/private access.

1.2.2 Traits

Traits are similar to abstract classes, in that they can include both abstract and

concrete methods/fields. As a difference, traits can only have a parameterless pri-

mary constructor. Another difference is that, while traits can be used everywhere

abstract classes can be used, only traits can be used as mixins.

Traits as interfaces By defining abstract fields and methods, traits work as

interfaces. That is, all concrete classes (or objects) implementing the trait are

required implement the trait’s abstract entities.

trait Logger {
def log(msg: String): Unit

}

7

CHAPTER 1. ADVANCED SCALA FEATURES

class ConsoleLogger extends Logger {
def log(msg: String) = println(msg)

}

Traits as mixins When a trait defines concrete fields and methods, it works as

a mixin, meaning that its functionality can be mixed into other classes, object,

or traits:

trait Comparable[T] {
def compareTo(other: T): Int

def >(other: T) = compareTo(other) > 0
def <(other: T) = compareTo(other) < 0
def ===(other: T) = compareTo(other) == 0

}

class Box[T <: Comparable[T]](val value: T) extends Comparable[Box[T]] {
def compareTo(b2: Box[T]): Int = value.compareTo(b2.value)

}

class NumWrapper(val x: Int) extends Comparable[NumWrapper] {
def compareTo(other: NumWrapper): Int =
if(x==other.x) 0 else if(x > other.x) 1 else -1

}

val box1 = new Box(new NumWrapper(1))
val box2 = new Box(new NumWrapper(5))
box1 === box1 // true
box1 === box2 // false
box1 < box2 // true
box1 > box2 // false

This example makes use of some generic programming features that will be

described later. For now, what should be noted is that the classes NumWrapper

and Box acquire the concrete methods <,>,=== of trait Comparable. The above

example also shows that traits can effectively work as interfaces and mixins at the

same time.

The interesting thing of using traits as mixins is that they compose (i.e., you

can provide multiple mixins at the same time) and they are stackable (see the

Logger example in Section 1.2.4). For the “compose” part:

8

CHAPTER 1. ADVANCED SCALA FEATURES

trait X
trait Y
trait Z

class C extends X with Y with Z

1.2.3 Class construction and linearisation

In Scala, a class may inherit from a base class and mix-in multiple traits at

the same time. A comprehension of the construction process is important to

understand some interesting aspects of traits.

Class construction works by recursively calling constructors in the following

order:

1. Superclass’ constructor

2. Traits’ constructors, from left to right, with parents constructed first (and

not constructed a second time)

3. Class constructor

The process is exemplified in the next listing:

class A { print("A") }
trait R { print("R") }
trait S extends R { print("S") }
trait T { print("T") }
trait U extends T with R { print("U") }
class B extends A with U with S { print("B") }

new B // A T R U S B

The working is intuitive: elements specified on the left of the “extension list”

come first and thus are constructed first, and each element needs to construct its

parents before itself.

The relevant fact is that the construction order is strictly related to the lin-

earisation of a class, that is, the process that determines the linear hierarchy of

parents of a class. For the example above, class B has the following linearisation:

9

CHAPTER 1. ADVANCED SCALA FEATURES

lin(B) = B � lin(S) � lin(U) � lin(A)

= B � (S � ��@@R) � (U � R � T) � A

= B � S � U � R � T � A

Two things should be noted: i) the first occurrence of R is elided because the

second occurrence wins (R must be constructed at a higher point in the hierarchy),

and ii) the construction order is the reverse of the linearisation order. This is also

intuitive: when defining a class, the elements of the extension list that are specified

next (on the right) are down the hierarchy, thus they need to be constructed after

the elements located at higher levels in the hierarchy and, as they come later, they

can also override previous definitions.

1.2.4 Traits: member overriding and super resolution

With a basic understanding of class linearisation, it is worth to consider two

interesting points about traits:

1. If multiple traits override the same member, the trait that wins is the one

constructed last, i.e., the trait that is “closer” to the defining class/object in

the class linearisation.

2. In a trait, the method calls on super are resolved depending on the order in

which traits are added. That is, the method implementation to be dispatched

is the one of the first subsequent trait (implementing the method) in the class

linearisation order.

Let’s exemplify these two aspects:

trait Logger {
def log(msg: String)

}

trait ShortLogger extends Logger {
val maxLength: Int
val ellipsis = "..."

abstract override def log(msg: String) {
super.log(msg.take(maxLength)+ellipsis)

10

CHAPTER 1. ADVANCED SCALA FEATURES

}
}

trait WrapLogger extends Logger {
val wrapStr = "|"
abstract override def log(msg: String) {
super.log(wrapStr + msg + wrapStr)

}
}

trait ConsoleLogger extends Logger {
override def log(msg: String) = println(msg)

}

val obj = new {
val maxLength = 6
override val ellipsis = ",,,"

} with ConsoleLogger with WrapLogger with ShortLogger

obj.log("linearisation") // |linear,,,|

Some points should be underlined:

• First, note how the different behaviors are composed at instantiation time.

• In ShortLogger and WrapLogger, the log method is decorated with

abstract override, because you are – at the same time – overriding the

method and calling some super implementation.

• Note how the mixin order is relevant to the final result: if you switch

WrapLogger and ShortLogger, you’ll have the last occurrence of the wrap-

ping string stripped.

• Note how the chain of log calls flow from right to left in the trait list (or,

equivalently, from bottom to top in the hierarchy as given by the linearisa-

tion).

• The new {...} part is an early-definition which is needed to concretise the

maxLength abstract field before the ShortLogger can be constructed.

1.2.5 Trait instantiation, refinement, early definitions

Scala provides a mechanism to instantiate traits and abstract classes once they

have no abstract members.

11

CHAPTER 1. ADVANCED SCALA FEATURES

trait A
trait B

new A with B {
println("This is a refinement")
def foo: String = "bar"

}

The block following A is a refinement (empty, in this case). A refinement is

a mechanism to provide a delta (i.e., overrides or additional members) to a type.

This actually defines a structural type (see Section 1.3.2).

trait A {
val x: Int
require(x > 0)

}

val a = new A {
val x = 10

} // java.lang.IllegalArgumentException: requirement failed

The problem here is that A is constructed before being refined. To solve this

issue, we have to provide an early definition:

trait A {
val x: Int
require(x > 0)

}

val a = new { val x = 10 } with A

This works because, according to the rules for method overriding[4], an abstract

member cannot override a concrete member.

1.3 The Scala type system

1.3.1 Some preparatory definitions

• A (static) type is a set of information hold by the compiler about program

entities.

12

CHAPTER 1. ADVANCED SCALA FEATURES

• A binding is a name used to refer to an entity.

• Types can be located at certain paths, where a path, according to the Scala

Language Specification [1], is one of the following:

1. The empty path ε.

2. C.this – where C refers to a class.

3. C.super.x – where x is a stable member of the superclass of the class

referenced by C.

4. p.x – where p is a path and x is a stable member of p; a stable member

is a package or a member introduced by (non-volatile) object or value

definitions.

• A singleton type has form p.type where path p points to a value conform-

ing to AnyRef.

• A type projection T#x refers to the type member x of type T.

• A type designator refers to a named value type. A type designator can be:

– Qualified : has form p.t where p is a path and t is a named type; it is

equivalent to p.type#t.

– Unqualified and bound to a package or class or object C : t is a shorthand

for C.this.type#t.

– Unqualified and NOT bound to a package/class/object : t is a shorthand

for ε.type#t.

1.3.2 Advanced types

Parameterised types A parameterised type consists of a type designator T and

n type parameters Ui:

T[U1,U2,...,Un]

Infix types Any type which accepts two type parameters can be used as an infix

type. Consider the following example with the standard map Map[K,V]:

13

CHAPTER 1. ADVANCED SCALA FEATURES

val m: String Map Int = Map("a" -> 1, "b" -> 2) // m: Map[String,Int]

Structural types A structural type can be defined through refinement. In the

refinement, you can add declarations or type definitions. You can also use refine-

ment alone, without any explicit refined type; in that case, {...} is equivalent to

AnyRef{...}.

def f(x: { def foo: Int }) = x.foo // f: (x: AnyRef{def foo: Int})Int

f(new { def foo = 7 }) // Int = 7

Structural types enable a form of duck typing, where you can specify require-

ments on objects in terms of an exhaustive specification of methods and fields to

be supported. However, this feature is implemented via reflection, so it comes with

a cost.

Compound types A compound type is one of the form

T1 with T2 ... with Tn { R }

where the Ts are types and R is an optional refinement. A compound type C

without any refinement is equivalent to C {}. Consider the following:

trait A; trait B
new A // Error: trait A is abstract; cannot be instantiated
new A { } // Ok
new A with B // Ok

Compound types are also known as intersection types because a value, in order

to belong to the compound type, must belong to all the individual types.

Existential types An existential type has the form

T forSome { Q }

14

CHAPTER 1. ADVANCED SCALA FEATURES

where Q is a sequence of type declarations (which may also be constrained, see

Section 1.4.2).

The underscore has many uses in Scala. One of them consists in providing a

syntactic sugar for existential types:

val m1: Map[_,_<:List[_]] =
Map(1 -> List(’a’,’b’), "k" -> List(true,true))

val m2: Map[A,B] forSome {
type A;
type B <: List[C] forSome { type C }

} = m1

Note that such a use of existential types is related to the notion of variance

(see Section 1.4.3). The connection between generic type variance and existential

types has been pointed out in [7].

Self-types Self types are used to constrain a trait or class to be used necessarily

within a compound type that includes a type conforming to the self type. In other

words, a trait or class can be used only when mixed in (together) with the self

type.

trait A {
def foo { }

}

trait B { self: A =>
def bar = foo

}

new B { } // Error: illegal inheritance; self-type B
// does not conform to B’s selftype B with A

new B with A // OK
new A with B // OK

One can read the self-type as a dependency (“B depends on A”), although it

is more precise to say that “a concrete B will also be an A”.

Abstract type members Just like it is possible to declare abstract fields and

methods, a class or trait can declare abstract types.

15

CHAPTER 1. ADVANCED SCALA FEATURES

trait Box {
type TValue
def peek: TValue

}

class StringBox(s: String) extends Box {
override type TValue = String
val peek = s

}

val sbox = new StringBox("xxx")
sbox.peek // String = xxx

Note that the previous example can be rewritten using type parameters in place

of abstract type members.

1.4 Generic programming in Scala

Generic programming is all about defining generic entities and algorithms. In

common sense, the term generic means ”belonging to a large group of objects”

(source: etymonline.com). Thus, we may say that an entity or algorithm is generic

when it or its properties can be found in many other entities or algorithms; the

other way round works as well, i.e., an entity or algorithm is generic if many other

entities or algorithms “can be generated” from it.

Genericity involves some form of abstraction as a fully-specified entity is not

generic by definition. The way to achieve genericity is by delaying the specification

of certain details until a later time. When it comes to programming languages,

three main forms of abstraction are given by:

1. types,

2. parameters,

3. abstract members.

A type abstracts from the specific values belonging to that type. A parame-

ter allows to abstract from specific parts of an entity or algorithm. An abstract

member formalises the promise that the member will be concretised in future.

16

etymonline.com

CHAPTER 1. ADVANCED SCALA FEATURES

Scala’s abstract type members (see Section 1.3.2) and type parameters combine

the abstraction provided by types with the abstraction provided by parameters and

abstract members, respectively.

Next, I cover some basic and advanced aspects of generic programming in Scala.

I’ll be quick as many of these features are mainstream.

1.4.1 Type parameters

Classes, traits, methods, and type constructors can accept type parameters.

// Generic method
def headOption[T](lst: List[T]): Option[T] =
lst match { case h :: _ => Some(h); case _ => None }

headOption(List[Int]()) // None
headOption((3 to 7).toList) // Some(3)

// Generic trait
trait TBox[+T] {
def value: T

}

// Generic class
class Box[+T](val value: T) extends TBox[T]

// Type constructor
type Cellar[T] = Map[String, TBox[T]]

val secretbox = new Box("xxx")
val cellar: Cellar[Any] = Map("secretbox" -> secretbox)
cellar("secretbox").value // Any = "xxx"

Note that, thanks to type inference, often you will not need to specify the type

parameter.

1.4.2 Type bounds (bounded quantification)

Scala allows you to specify constraints to type variables:

• Upper bound : T<:UB: T must be a subtype of UB.

• Lower bound : T>:LB: T must be a supertype of LB.

Other bounds exist but we’ll see them when talking about implicits.

Now let’s see an example of upper and lower bounds:

17

CHAPTER 1. ADVANCED SCALA FEATURES

trait A
trait B extends A
trait C extends B

class Pair[T1 >: B, T2 <: B](val _1: T1, val _2: T2)

new Pair(new A{}, new C{}) // Pair[A,C]
new Pair(new B{}, new B{}) // Pair[B,B]
new Pair(new C{}, new C{}) // Pair[B,C] !!!!
new Pair[C,B](new C{}, new C{}) // Error: do not conform with constraint

Note that, in Scala, all types have a maximum upper-bound (Any) and a min-

imum lower-bound (Nothing).

Self-recursive types and F-bounded polymorphism A self-recursive type is

a type that is defined in terms of itself, for example:

case class Point(x: Double, y: Double) {
// Positive recursion
def move(x: Double, y: Double): Point

// Negative recursion
def isEqual(pt: Point): Boolean

}

Type parameters can be defined in a self-recursive way as well. In fact, Scala

supports F-bounded quantification[8] (also known as F-bounded polymorphism),

which means that a type parameter can be used in its own type constraint, such

as in T<:U[T].

1.4.3 Type variance

Type variance is a feature that integrates parametric and subtype polymor-

phism in OOPLs [9][7].

Given a type T with type components Ui (i.e., type parameters or type mem-

bers), variance refers to the relation between the subtyping of T and the subtyping

of its type components Ui. For example: is List[Rect] a subtype of List[Shape]?

Or viceversa? Or are they unrelated?

Here are the possibilities:

18

CHAPTER 1. ADVANCED SCALA FEATURES

• T[A]: T is invariant in A; i.e., T does not vary with respect to A.

So, for example: given List[T], if A and B are different types (possibly in a

subtyping relationship), then List[A] and List[B] are unrelated.

• T[+A]: T is covariant in A; i.e., T varies in the same direction as the sub-

typing relationship on A.

So, for example: given List[+T], if Rect is a subtype of Shape, then

List[Rect] is a subtype of List[Shape].

• T[-A]: T is contravariant in A; i.e., T varies in the opposite direction to the

subtyping relationship on A.

So, for example: given List[-T], if Rect is a subtype of Shape, then

List[Rect] is a supertype of List[Shape].

Now, let’s consider a 1-ary function type Function1[-T,+R]: it is covariant in

its return type and contravariant in its input type. Functions should conform to

such a variance scheme to support safe substitutability. In fact, we ask: when is

it safe to substitute a function f:A=>B with a function g:C=>D?

• val a: A = ...; f(a)

The parameters provided by the users of f must be accepted by g as well,

thus C>:A (contravariance as C >: A⇒ g <: f).

• val b: B = f(..)

The value returned to the users of f must support at least the interface of

B, thus D<:B (covariance as D <: B ⇒ g <: f).

So, it is common to refer to function parameters as contravariant positions and

to return types as covariant positions. The use of variance annotations allows the

compiler to check that generic types are used in a manner which is consistent to

these rules.

trait A[+T] { def f(t: T) }
// Error: covariant type T occurs in contravariant position

However, note that Scala, in method overriding, for some reason only allows

covariant specialisation of the return types, while contravariant generalisation of

method parameters is not allowed:

19

CHAPTER 1. ADVANCED SCALA FEATURES

trait A { def a(a: A): A }

// Covariant specialisation of method return type: OK
class B extends A { def a(a: A): B = ??? }

// Contravariant generalisation of method parameters: ERROR
class C extends A { def a(a: Any): A = ??? }

Last but not least, it is important to remark that mutability makes covari-

ance unsound. Let’s assume that scala.collection.mutable.ListBuffer were

covariant; in this case, the following listing shows a potential issue:

import scala.collection.mutable.ListBuffer
val lstrings = ListBuffer("a","b") // Type: ListBuffer[String]
val lst: ListBuffer[Any] = lstring // Would fail, but suppose it’s OK
lst += 1 // Legal to add an Int to a ListBuffer[Any]

// But ’lst’ actually points to a list of strings!!!!!

1.4.4 Abstract types vs. type parameters

In many cases, code that uses type parameters can be rewritten with abstract

types, and viceversa. This is another situation where object-oriented programming

and functional programming merge nicely in Scala.

The encoding from type parameters to type members, in the case of a param-

eterised class C, is described in [4]. Here are a few points on the similarity and

difference between abstract types and type parameters:

• Usually, type parameters are used when the concrete types are to be provided

when the class is instantiated, and abstract types are used when the types

are to be supplied in a subclass.

• The use of type parameters is not very scalable: if you have a lot of type

parameters, code tends to clutter, while abstract types help to keep the code

clean.

• The previous point is particularly true when type parameters are subject to

(possibly verbose) type constraints.

• At the time of type instantiation, in the case of type parameters you do

20

CHAPTER 1. ADVANCED SCALA FEATURES

not see the name of the instantiating parameter, thus you may lose some

readability.

1.5 Implicits

The Scala implicit system is a static feature that allows programmers to write

concise programs by leaving the compiler with the duty of inferring some missing

information in code. This is achieved through the arrangement of code providing

that missing data (according to a set of scoping rules) and a well-defined lookup

mechanism.

An implicit lookup is triggered in two cases, when the compiler spots:

1. a missing parameter list in a method call or constructor (if that parameter

list is declared as implicit), or

2. a missing conversion from a type to another which is necessary for the pro-

gram to type-check – this happens automatically in three situations (unless

an implicit conversion has already been performed):

(a) when the type of an expression differs from the expected type,

(b) in obj.m if member m does not exist,

(c) when a function is invoked with parameters of the wrong type.

Using the implicit keyword, you can provide implicit data and implicit con-

versions. A note on terminology: an implicit conversion function T=>U from type

T to type U is often called an implicit view (because it allows to view a T as a U).

The following listing exemplifies the different situations where the implicit

mechanism triggers:

// A) MISSING PARAMETER LIST

def m(implicit s: String, i: Int) = s+i

m("a", 0) // "a0" (You can still explicitly provide them)
m // Error: could not find implicit value for ’s’
implicit val myString = "x"
m // Error: could not find implicit value for ’i’
implicit val myInt = 7

21

CHAPTER 1. ADVANCED SCALA FEATURES

m // "x7"

// B) MISSING CONVERSION

// B1) Expression of unexpected type

case class IntWrapper(x: Int) {
def ^^(p: Int): Int = math.pow(x,p).toInt

}
implicit def fromIntToIntWrapper(x: Int) = IntWrapper(x)
val iw: IntWrapper = 8 // iw: IntWrapper = IntWrapper(8)

// B2) Non-existing member access

2^^5 // 32 (there is no ^^ method in Int)

// B3) Function call with wrong param types

def pow(iw: IntWrapper, power: Int) = iw^^power

pow(3, 4) // 81 (pow accepts an IntWrapper, not an Int)

1.5.1 Implicit scope

Scala defines well-defined rules for what concerns implicit lookup. First of all,

ambiguity in implicit resolution results in a compilation error.

implicit def x = ’x’
implicit val y = ’y’

def f(implicit c: Char) { }

f // Error: ambiguous implicit values:
// both method x of type => Char
// and value y of type => Char
// match expected type Char

Secondly, when the compiler looks for implicit data or views from a certain

lookup site, then:

1. It first looks if there is a conforming implicit entity among the unqualified

bindings.

E.g., if there is an object o in scope and that object has an implicit field

member o.i, that value is not considered because the implicit entity must

22

CHAPTER 1. ADVANCED SCALA FEATURES

be accessible as a single identifier.

2. Then, it looks:

i) in case of implicit parameter lookup, at the implicit scope of the implicit

parameter type, and

ii) in case of an implicit conversion, at the implicit scope of the target type

of the conversion.

The implicit scope of a type is the set of companion objects of its associated

types. For a type, its associated types include the base classes of its parts. The

parts of a type T are (according to the SLS[1]):

• if it is a parameterised type, its type parameters;

• if it is a compound type, its component types;

• if it is a singleton type p.type, the parts of p (e.g., the enclosing singleton

object);

• if it is a type projection, i.e., T = A#B, the parts of A (e.g., the enclosing

class or trait);

• otherwise, just T.

Let’s verify these rules:

// A) Companion objects of the type parameters
trait A; object A { implicit def itoa(i: Int) = Map[A,A]() }

def f[X,Y](m: Map[X,Y]) = m

f[A,A](1) // OK. Converts the Int value to a Map[A,A]

// B) Companion objects of types in an intersection type

trait B
trait C; object C {
implicit def conv(i: Int) = new B with C { def foo { } }

}

def g(arg: C with B) = arg

g(1) // OK. Converts the Int value to a B with C { def foo:Unit }

// C) Parts of the object of the singleton type

abstract class Provider[T](_x: T) { implicit val x = _x }

23

CHAPTER 1. ADVANCED SCALA FEATURES

object P extends Provider(this)

def f(implicit p: P.type) = { p }
f(P) // OK.

// D) Parts of the type projecting from

object x {
case class Y(i: Int)

implicit val defaultY = Y(0)
}

implicitly[x.Y] // x.Y = Y(0)
implicitly[x.type#Y] // x.Y = Y(0)
// In this case, the type projecting from is a singleton type

// Another example for D), with package objects

package a.b.c { class C }
package a.b {
package object c {
implicit val defaultC: C = new C

}
}

implicitly[a.b.c.C] // OK

Where implicitly[T](implicit e:T) = e is defined in scala.Predef.

In general, it is best not to abuse the flexibility of the implicit scoping. As

a rule of thumb, implicits should be put on the package object or in a singleton

object with name XxxImplicits.

1.5.2 Implicit classes

Implicit classes1 are classes declared with the implicit keyword. They must

have a primary constructor that takes exactly one parameter. When an implicit

class is in scope, its primary constructor is available for implicit conversions.

implicit class Y { } // ERROR: needs one primary constructor param

implicit class X(val n: Int) {
def times(f: Int => Unit) = (1 to n).foreach(f(_))

1Reference: http://docs.scala-lang.org/overviews/core/implicit-classes.html

24

http://docs.scala-lang.org/overviews/core/implicit-classes.html

CHAPTER 1. ADVANCED SCALA FEATURES

}

5 times { print(_) } // 12345

It is interesting to note that an implicit class can be generic in its primary

constructor parameter:

implicit class Showable[T](v: T) { val show = v.toString }

Set(4,7) show // String = Set(4, 7)
false show // String = false

1.5.3 More on implicits

Context bound A type parameter T can have a context bound T:M, which re-

quires the availability (at lookup site, not at the definition site) of an implicit value

of type M[T].

Let’s consider an example. Scala provides a trait scala.math.Ordering[T]

which has an abstract method compare(x:T, y:T):Int and provides a set of

methods built on that method, such as min, max, gt, lt and so on. Moreover,

implicit values for the most common data types are defined in the Ordering com-

panion object. Then, we may want to define a function that requires to work on

types for which some notion of ordering is defined. For example, let’s define a

function the returns the shortest and longest string in a collection:

implicitly[Ordering[String]] // Predefined ordering:
// Ordering[String] = scala.math.Ordering$String$@65c5fae6
// Let’s override it with a custom ordering for strings

implicit val strOrdering = new Ordering[String]{
def compare(s1: String, s2: String) = {
val size1 = s1.length;
val size2 = s2.length;
if(size1<size2) -1 else if(size1 > size2) 1 else 0

}
}

def minAndMax[T : Ordering](lst: Iterable[T]) = (lst.min, lst.max)

minAndMax(List("hello","x","aaa")) // (String, String) = (x, hello)
minAndMax(List("hello","x","aaa"))(Ordering.String)

25

CHAPTER 1. ADVANCED SCALA FEATURES

// (String, String) = (aaa,x)

Note that the minAndMax method can still be called with an explicit

Ordering[T] instance. This reveals that context bounds are actually a syntac-

tic sugar; in fact, minAndMax is rewritten as follows:

def minAndMax[T](lst: Iterable[T])
(implicit ord: Ordering[T]) = (lst.min, lst.max)

Generalised type constraints Generalised type constraints are objects that

provide evidence that a constraint hold for two types. As it is stated in the Scala

API documentation [2]:

• sealed abstract class =:=[-From,+To] extends (From)=>To

An instance of A =:= B witnesses that type A is equal to type B.

• sealed abstract class <:<[-From,+To] extends (From)=>To

An instance of A <:< B witnesses that A is a subtype of B.

Note that the type constructor =:=[A,B] can be used with the infix notation

A=:=B.

In practice, these constraints are used through an implicit evidence parame-

ter. This allows, for example, to enable a method in a class only under certain

circumstances:

case class Pair[T](val fst:T, val snd:T){
def smaller(implicit ev: T <:< Ordered[T]) = if(fst < snd) fst else snd

}

class A

case class B(n: Int) extends Ordered[B] {
def compare(b2: B) = this.n - b2.n

}

val pa = Pair(new A, new A)
pa.smaller // Error: Cannot prove that A <:< Ordered[A].

val pb = Pair(B(3), B(6))
pb.smaller // B = B(3)

26

CHAPTER 1. ADVANCED SCALA FEATURES

In this case, the instance method pair.smaller can be invoked only for pairs

of a type A that is a subtype of Ordered[A]. The implicit parameter is said to be

an evidence parameter in the sense that the resolution of the implicit value repre-

sents a proof that the constraint is satisfied. These are also known as reified type

constraints because the objects that are implicitly looked up represent reifications

of the constraints.

TypeTags and reified types The Java compiler uses type erasure in the imple-

mentation of generics. This means that, at runtime, there is no information about

the type parameters of generic classes. Scala also implements type erasure to ease

integration with Java.

import scala.reflect.runtime.universe._

def f[T](lst: List[T]) = lst match {
case _:List[Int] => "list of ints";
case _:List[String] => "list of strs";

}
// warning: non-variable type argument Int in type pattern List[Int]
// (the underlying of List[Int]) is unchecked since it is eliminated
// by erasure: case _:List[Int] => "list of ints";
// ^

f(List("a","b")) // "list of ints"

Note that the ability to work with generic types at runtime has been a subject

of research for some time, also due to performance implications, as explained in

[10].

To solve this issue, Scala provides TypeTags (which replaced Manifests in Scala

2.10), which are used together with the implicit mechanism to provide at runtime

the type information that would otherwise be available only at compile-time.

import scala.reflect.runtime.universe.{TypeTag, typeOf}

def f[T : TypeTag](lst: List[T]) = lst match {
case _ if typeOf[T] <:< typeOf[Int] => "list of ints"
case _ if typeOf[T] <:< typeOf[String] => "list of strings"

}

f(List(1,2,3)) // "list of ints"
f(List("a","b")) // "list of strings"

27

CHAPTER 1. ADVANCED SCALA FEATURES

Note the use of context bound. When an implicit value of type TypeTag[T] is

required, the compiler provides it automatically.

28

Chapter 2

Advanced Scala Techniques

Chapter 1 provides an overview of some intermediate-level features of the Scala

programming language. This chapter builds on such features and presents a hand-

ful of techniques that may be useful for library development. Many of these tech-

niques have been extensively used for implementing scafi.

Outline:

• “Pimp my library” pattern

• Type classes

• Components and dependency injection

• Cake pattern

• Family polymorphism

• Development of internal domain-specific languages

2.1 “Pimp my library” pattern

The Pimp my library pattern is a common technique, based on implicits, aimed

at extending existing types with additional methods and fields.

Let’s consider an example in the Scala standard library. By default, you have

access to a facility for generating a Range from an Int:

val range = 5 to 10 // Range.Inclusive = Range(5,6,7,8,9,10)

29

CHAPTER 2. ADVANCED SCALA TECHNIQUES

This works because object Predef (which is implicitly imported in all Scala

compilation units) inherits from trait LowPriorityImplicits, which defines

many implicit conversion methods and, in particular, a conversion method from

Int to RichInt. Then, RichInt defines a few utility methods, including

to(end:Int):Inclusive to produce an inclusive range.

The pattern is clear; when we need to extend some existing type, we can:

1. define a type with the ”extension methods” that express the new intended

behavior;

2. define an implicit conversion function from the original type to the newly

defined type, together with some policy for the import of these implicit

views.

This approach is particularly useful when the original type cannot be instanti-

ated (e.g., because the class is final or sealed).

In summary, this simple idiom allows you to adapt (cf. Adapter design pattern),

decorate (cf. Decorator design pattern), or extend existing classes in a transparent

way (thanks to implicit views which are applied by the compiler at compile-time).

As an example, let’s extend ints with a times method which repeats an action

for the provided number of times.

implicit class MyRichInt(private val n: Int) extends AnyVal {
def times(f: =>Unit) = new Range.Inclusive(1,n,1).foreach{_=>f}

}

5 times { print(’a’) } // aaaaa

The implicit class (see Section 1.5.2) MyRichInt has been defined as an implicit

view from Ints to instances of itself. As a side note, it is also a value class (as

it extends AnyVal), so it wins some efficiency by avoiding object allocation at

runtime.

30

CHAPTER 2. ADVANCED SCALA TECHNIQUES

2.2 Type classes

Type classes are a feature popularised in the Haskell programming language.

A type class provides an abstract interface for which it is possible to define many

type-specific implementations.

In Scala, the type class idiom consists in[3]:

1. A trait that defines the abstract interface.

2. A companion object for the type class trait that provides a set of default

implementations.

3. Methods using the typeclass, declared with a context bound.

As an example, let’s try to implement the Ordering[T] type class (similar to

the one in the Scala standard library):

// Type class
trait Ordering[T] {
// Abstract interface
def compare(t1: T, t2: T): Int

// Concrete members
def ===(t1: T, t2: T) = compare(t1,t2) == 0
def <(t1: T, t2: T) = compare(t1,t2) < 0
def >(t1: T, t2: T) = compare(t1,t2) > 0
def <=(t1: T, t2: T) = <(t1,t2) || ===(t1,t2)
def >=(t1: T, t2: T) = >(t1,t2) || ===(t1,t2)

def max(t1: T, t2: T): T = if(>=(t1,t2)) t1 else t2
def min(t1: T, t2: T): T = if(<=(t1,t2)) t1 else t2

}

// Companion object with implicit, default implementations
object Ordering {
implicit val intOrdering = new Ordering[Int]{
def compare(i1: Int, i2: Int) = i1-i2

}
}

// Usage
def min[T : Ordering](lst: List[T]): T = {
if(lst.isEmpty) throw new Exception("List is empty")

val ord = implicitly[Ordering[T]]
var minVal = lst.head
for(e <- lst.tail) {
if(ord.<(e,minVal)) minVal = e

31

CHAPTER 2. ADVANCED SCALA TECHNIQUES

}
minVal

}

min(List(5,1,4,7,-3)) // Int = -3

Note the use of the context bound constraint on the type parameter for min

and how we need to perform an implicit lookup to to get the Ordering[T] instance

on which we can invoke the methods of the typeclass interface.

It is clear that we could have achieved a similar result by using inheritance.

However, type classes have some benefits:

• You can provide many implementations of the type class interface for the

same type.

• Type classes separate the implementation of an abstract interface from the

definition of a class. Thanks to this separation of concerns, you can easily

adapt existing types to the type class interface.

• By playing on the scoping rules for implicits, you can override the default

type class implementation.

• A type may implement multiple type classes without cluttering its class def-

inition. Moreover, you can specify multiple type bounds on a type variable

T:CB1:CB2:..., requiring type T to provide an implicit implementation ob-

ject for multiple type classes.

2.3 Component modelling and implementation

In computer science, the notion of component and component-oriented software

development have been interpreted in many different ways, i.e., according to many

different (and possibly not formalised) component models. A component model

defines:

1. components – telling things such as what is a component, how to specify a

component, how to implement a component, what a component’s runtime

lifecycle consists in, and

32

CHAPTER 2. ADVANCED SCALA TECHNIQUES

2. connectors – i.e., mechanisms for component composition and component

interaction.

Generally, for our purpose, a component can be abstractly defined as a reusable

software entity with well-defined boundaries, as defined by a software interface.

An interface is a means of specifying both provided services and required services

(i.e., dependencies).

The paper [4] supports the idea that for building reusable components in a

scalable way, three features or abstractions are key:

1. abstract type members (see Section 1.3.2),

2. explicit self-types (see Section 1.3.2),

3. modular mixin composition.

Thus, according to such a proposed service-oriented component model, the

following mappings emerge:

• Concrete classes ⇐⇒ components.

• Abstract classes or traits ⇐⇒ component interfaces.

• Abstract members ⇐⇒ required services.

• Concrete members ⇐⇒ provided services.

In this context, we can interpret abstract member overriding as a mechanism

for providing required services. As concrete members always override abstract

member, we get recursively pluggable components where component services do not

have to be wired explicitly [4]. In this sense, mixin composition turns out to be a

flexible approach for the assembly of component-based systems.

And where do self-types fit into this frame? Well, self-types are a more concise

alternative to abstract members (read ”required services”), with some differences.

Self-types can be seen as an effective way to specify component dependencies as

they ensure that, when a component is being instantiated, it must be connected

with the specified dependency. Note that while the self-type is one, thanks to

compound types (see Section 1.3.2) you can provide for multiple dependencies.

Let’s visualise these concepts with an example:

33

CHAPTER 2. ADVANCED SCALA TECHNIQUES

// *******************
// *** DATA MODELS ***
// *******************
class Account(val id: String, var total: Double = 0)

trait AbstractItem {
def name: String
def price: Double

}
case class Item(name: String, price: Double) extends AbstractItem

// ****************************
// *** COMPONENT: Inventory ***
// ****************************
trait Inventory {
type TItem <: AbstractItem

def availability(item: TItem): Int
...

}

trait InventoryImpl extends Inventory {
private var _items = Map[TItem,Int]()
...

}

// ***********************
// *** COMPONENT: Cart ***
// ***********************
// Depends on the Inventory component
trait Cart { self: Inventory =>

def changeCartItem(item: TItem, num: Int): Unit
...

}
trait CartImpl extends Cart { inv: Inventory =>
private var _items = Map[TItem,Int]()
...

}

// ******************************
// *** COMPONENT: Application ***
// ******************************
// Depends on the Cart and Inventory components
trait ShoppingSystem { this: Cart with Inventory => }

// **
// *** Application with component instances ***
// **
object Shopping extends ShoppingSystem with CartImpl with InventoryImpl {
type TItem = Item

}

34

CHAPTER 2. ADVANCED SCALA TECHNIQUES

This is a toy example, but it points out an approach to service-oriented compo-

nent development. Note that the implementations of the components are traits;

if they were classes, they could not be mixed in. Also, note how the concrete

type of TItem is specified at the last moment when composing the application,

Shopping. Then, it is interesting to see how the application logic component

(ShoppingSystem) is defined as dependent on the other components (via com-

pound self-type). As a result, the application façade object can be used as a cart

or as an inventory in a inheritance-like (is-a) fashion. It is quite weird and not

very effective for what concerns conceptual integrity: it would be better to have

the application object delegate these functionalities to its components, rather than

assimilating the application to a monolithic component object. We should apply

the GOF’s principle favor object composition over class inheritance[11]; by doing

so, we come up with the Cake pattern.

2.4 Cake Pattern

The previous section pointed out that a better way to satisfy component de-

pendencies is via composition (rather than inheritance). Let’s adjust that example

according to the Cake pattern. In this pattern [5]:

• You define components as traits, specifying dependencies via self-types.

• Then, each component includes:

– a trait that defines the service interface,

– an abstract val that will contain an instance of the service,

– optionally, implementations of the service interface.

Thus:

// ****************************
// *** COMPONENT: Inventory ***
// ****************************
trait InventoryComponent {
val inventory: Inventory

35

CHAPTER 2. ADVANCED SCALA TECHNIQUES

type TItem <: AbstractItem

trait Inventory { ... }

trait InventoryImpl extends Inventory { ... }
}

// ***********************
// *** COMPONENT: Cart ***
// ***********************
trait CartComponent { invComp: InventoryComponent =>
val cart: Cart

trait Cart { ... }

trait CartImpl extends Cart {
val inv = invComp.inventory // NOTE: ACCESS TO ANOTHER COMPONENT’S IMPL
private var _items = Map[TItem,Int]()

def changeCartItem(it: TItem, n: Int) = {
inv.changeItems(Map(it -> (-n)))
_items += (it -> n)

}
...

}
}

// ******************************
// *** COMPONENT: Application ***
// ******************************
trait ShoppingComponent { this: CartComponent with InventoryComponent => }

// **
// *** Application with component instances ***
// **
object Shopping extends ShoppingComponent with
InventoryComponent with CartComponent {
type TItem = Item
val inventory = new InventoryImpl { }
val cart = new CartImpl { }

}

val inv = Shopping.inventory
val cart = Shopping.cart

Notes:

• The Shopping object centralises the wiring of components by implementing

the components’ abstract vals (inventory and cart).

36

CHAPTER 2. ADVANCED SCALA TECHNIQUES

• Note how the component implementations “receive” their dependencies (i.e.,

the instances of other components’ implementations) through the (abstract)

val fields.

• As the component implementation instances do not need dependency injec-

tion via constructor parameters, we can instantiate them directly (without

manual wiring). In other words, we just have to choose an implementation

and we do not need to do any wiring as these components have already been

wired.

• The component instance vals can be declared lazy to deal with initialisation

issues.

As design patterns should not be confused with their implementations, we

note that the previous example just shows one particular realisation of some more

general pattern which is a design response to the following issues (or forces):

• how to flexibly build systems out of modular components,

• how to declaratively specify the dependencies among components, and

• how to wire components together to satisfy the dependencies.

Thus, the Cake pattern can be described more precisely as a Scala-specific

pattern for dependency injection and component composition.

We could play with Scala features to morph this pattern into multiple variations

and possibly communicate better our intents:

trait ComponentA { val a: A; class A }

trait ComponentB { val b: B; class B }

object ComponentC { type Dependencies = ComponentB with ComponentC }
trait ComponentC { self: ComponentC.Dependencies =>
val c: C

class C { /* uses ’a’ and ’b’ internally */ }
}

trait ABCWiring1 extends ComponentA with ComponentB with ComponentC {
lazy val a = new A; lazy val b = new B; lazy val c = new C

}

trait ApplicationWiring extends ABCWiring1

37

CHAPTER 2. ADVANCED SCALA TECHNIQUES

trait ApplicationComponents extends ComponentA with ComponentB with ComponentC

object Application extends ApplicationComponents with ApplicationWiring {
println(s"$a $b $c")

}

The name of the ”Cake pattern” brings to mind some notion of layering which

may refer to the way in which the components are stacked to compose a full

application, or a notion of component stuffing where a component trait includes

interfaces, implementations, and wiring plugs.

2.5 Family polymorphism

As it is a challenge to model families of types that vary together, share common

code, and preserve type safety [5], family polymorphism has been proposed for

OOPLs as a solution to supporting reusable yet type-safe mutually recursive classes

[12].

To contextualise the problem, let’s consider an example of graph modelling as

in the original paper by Ernst [13]. We would like to implement classes for:

• a basic Graph with Nodes and Edges, and

• a ColorWeightGraph where Nodes are colored (ColoredNode) and Edges are

weighted (WeightedEdge),

but we would like to do so in a way that:

• we can reuse base behaviors, and

• it is not possible to mix elements by different kinds of graphs.

Let’s attempt a solution without family polymorphism:

// ABSTRACT GRAPH
trait Graph {
var nodes: Set[Node] = Set()
def addNode(n: Node) = nodes += n

}
trait Node
abstract class Edge(val from: Node, val to: Node)

38

CHAPTER 2. ADVANCED SCALA TECHNIQUES

// BASIC GRAPH
class BasicGraph extends Graph
class BasicNode extends Node
class BasicEdge(from:BasicNode, to:BasicNode) extends Edge(from,to)

// GRAPH WITH COLORED NODES AND WEIGHTED EDGES
class ColorWeightGraph extends Graph {
override def addNode(n: Node) = n match {
case cn: ColoredNode => nodes += n
case _ => throw new Exception("Invalid")

}
}
class ColoredNode extends Node
class WeightedEdge(from: ColoredNode,

to: ColoredNode, val d: Double) extends Edge(from,to)

val bg = new BasicGraph
val cg = new ColorWeightGraph
val n = new BasicNode
val cn = new ColoredNode
// cg.addNode(n) // Exception at runtime
bg.addNode(cn) // Ok (type-correct),

// but we didn’t want ColoredNodes in a BasicGraph

There are two problems here:

• There is no static constraint that restricts users to not mix up the two

families.

• In ColorWeightGraph, we cannot define addNode as accepting a

ColoredNode, because covariant change of method parameter types is not

allowed (it is a contravariant position).

These issues can be solved via family polymorphism:

trait Graph {
type TNode <: Node; type TEdge <: Edge; type ThisType <: Graph

trait Node { }

trait Edge {
var from: TNode = _; var to: TNode = _
var fromWF: ThisType#TNode = _; var toWF: ThisType#TNode = _;
def connect(n1: TNode, n2: TNode){ from = n1; to = n2 }
def connectAcrossGraphs(n1: ThisType#TNode, n2: ThisType#TNode){

fromWF = n1; toWF = n2
}

}

39

CHAPTER 2. ADVANCED SCALA TECHNIQUES

def createNode: TNode; def createEdge: TEdge
}

class BasicGraph extends Graph {
override type TNode = BasicNode
override type TEdge = BasicEdge
override type ThisType = BasicGraph

class BasicNode extends Node { }; class BasicEdge extends Edge { }

def createNode = new BasicNode; def createEdge = new BasicEdge
}

class ColorWeightGraph extends Graph {
override type TNode = ColoredNode
override type TEdge = WeighedEdge
override type ThisType = ColorWeightGraph

class ColoredNode(val color: String="BLACK") extends Node { }
class WeighedEdge(val weight: Double=1.0) extends Edge { }

def createNode = new ColoredNode;
def createEdge = new WeighedEdge

}

val (g1, g2) = (new BasicGraph, new BasicGraph)
val (e1, n11, n12) = (g1.createEdge, g1.createNode, g1.createNode)
val (e2, n21, n22) = (g2.createEdge, g2.createNode, g2.createNode)

val cwg = new ColorWeightGraph
val (cwe, cwn1, cwn2) = (cwg.createEdge, cwg.createNode, cwg.createNode)

e1.connect(n11,n12) // Ok, within same graph (of same family)
cwe.connect(cwn1, cwn2) // Ok, within same graph (of same family)
//e.connect(n11,cwn2) // ERROR!!! Cannot mix families

// e1.connect(n21,n22)
// ERROR: cannot connect an edge of a graph to nodes
// of another graph, even if the graphs are of the same type

e1.connectAcrossGraphs(n11,n22) // Ok. Within same family
// and across graph instances

// e.connectAcrossGraphs(n1,cwn1) // Of course, cannot mix families

Notes:

• Graph represents the schema of the family of graphs.

• BasicGraph and ColorWeightGraph extend the Graph trait and represent

two distinct families of graphs.

40

CHAPTER 2. ADVANCED SCALA TECHNIQUES

• Families have type members introduced by type definitions.

• Remember that when a class is defined inside a class, a different class is

reified for each different instance of the outer class. Then, note how type

projection has beeen used to allow the mixing of graphs (within the same

family).

In this case, the family traits also provide factory methods. An alternative

approach would be to define BasicGraph and ColorWeightGraph as singleton

objects, and then import their type members into the current scope.

object BasicGraph extends Graph {
override type TNode = BasicNode
override type TEdge = BasicEdge
override type ThisType = BasicGraph

class BasicNode extends Node { }
class BasicEdge extends Edge { }

}

import BasicGraph._

val n = new BasicNode

2.6 Internal DSL development

The combination of Scala’s features makes it a discrete tool for building (in-

ternal) domain specific languages (DSLs). The features that support this kind of

development include Scala’s:

• implicits system,

• expressive type system,

• syntactic sugar,

• functional programming features (e.g., lambdas).

2.6.1 On syntactic sugar

Let’s recap a few places where Scala provides syntactic sugar:

41

CHAPTER 2. ADVANCED SCALA TECHNIQUES

// Tuples
val tu1 = Tuple5(’a’, "s", 7, true, 8.8)
val tu2 = (’a’, "s", 7, true, 8.8)

// 2-elements tuples
val t1 = Tuple2[String,Double]("xxx", 7.5)
val t2 = "xxx" -> 7.5

// Anonymous functions
val add1: (Int,Int)=>Int = (x,y) => x+y
val add2: (Int,Int)=>Int = _+_

// apply()
add2.apply(7,3)
add2(7,3)

// update()
val m = scala.collection.mutable.Map[Int,String]()
m.update(1, "xxx")
m(1, "aaa")

// Leaving out "." for member access
List(5,3,2) map { _%2 == 0 } reverse

// Leaving out () for parameterless methods
def f() { }
f

// Using braces { } for arg lists
def f(a: Int)(b: Char)(c: Boolean){ }
f { 7 } (’z’) { false }

// Methods with name ending in ":" are right-associative
// A right-assoc binary op is a method of its 2nd arg
Nil.::(2).::(1)
1 :: 2 :: Nil

case class X(x: Int = 0) { def ‘set:‘(y: Int) = X(y) }
4 ‘set:‘ 7 ‘set:‘ X(3) // X = X(4)
(4 ‘set:‘ (7 ‘set:‘ (X(3)))) // X = X(4)

// Setters
m.+=(7 -> "a")
m += 7 -> "a"

// Varargs
def sum(xs: Int*) = xs.foldLeft(0)(_+_)
sum(1,4,3,2) // 10

// Call-by-name parameters
def f(s: => String) = println(s)

42

CHAPTER 2. ADVANCED SCALA TECHNIQUES

f { (1 to 9).foldRight("")(_+_) }

2.6.2 On associativity and precedence

This material is taken from the Scala Language Specification [1].

Prefix operations op e The prefix operator op must be one of the following: +,

-, !, ~. Prefix operations are equivalent to a postfix method call e.unary op .

!false // true
true.unary_! // false
4.unary_- // -4

object a { def unary_~ = b }; object b { def unary_~ = a }
~(~(~a)) // b.type = b$@6c421123

Postfix operations e op These are equivalent to the method call e.op

Infix operations e1 op e2 The first character of an infix operator determines

the operator precedence. From lower to higher:

(All letters) ≺ | ≺ ^ ≺ & ≺ < > ≺ = ! ≺ : ≺ + - ≺ * / % ≺ (All others)

Associativity depends on the operator’s last character. All operators are left-

associative except those with name ending in ’:’ that are right-associative.

Precedence and associativity determine how parts of an expression are grouped:

• Consecutive infix operators (which must have the same associativity) asso-

ciate according to the operator’s associativity.

• Postfix operators always have lower precedence than infix operators: e1 op1

e2 op2 == (e1 op1 e2) op2.

Infix operations are rewritten as method calls: a left associative binary op-

erator e1 op e2 is translated to e1.op(e2), whereas if the operator has arity

greater than 1, it must be used as e1 op (e2,...,en), which is translated to

e1.op(e2,...,en).

43

CHAPTER 2. ADVANCED SCALA TECHNIQUES

Here are some examples:

obj m1 p1 m2 p2 m3 p3 == ((obj m1 p1) m2 p2) m3 p3)
== obj.m1(p1).m2(p2).m3(p3)

2.6.3 ”Dynamic” features

Scala (since v2.9) has a feature similar to Ruby’s method missing:

class X
def method_missing(name, *args)
"you called ’%s’" % [name.to_s]

end
end

X.new.hello // => "you called ’hello’"

Scala provides a marker trait, Dynamic, that tells the compiler to rewrite ac-

cesses to non-existing members as calls to the following methods:

• selectDynamic(fieldName) – for field reading.

• updateDynamic(fieldName)(args) – for field writing.

• applyDynamic(methodName)(args) – for method calls.

• applyDynamicNamed(methodName)(namedArgs) – for method calls with

named arguments.

To use this feature, you need to set the compiler option -language:dynamics

or import scala.language.dynamics.

2.6.4 Examples

A DSL for writing URIs Source:

case class Uri(scheme: String = "http",
path: List[String] = List(),
querystring: Map[String,Any] = Map()) {

def /(s: String) =
this.copy(path = s :: path)

def /?(t: (String,Any)) =

44

CHAPTER 2. ADVANCED SCALA TECHNIQUES

this.copy(querystring = querystring + t)

def &(t: (String,Any)) = this./?(t)

override def toString = scheme + "://" +
path.reverse.mkString("/") +
(if(querystring.isEmpty) "" else "?" +

querystring.keys.map(k => k+"="+querystring(k)).mkString("&"))
}

object UriDsl {
def http = Uri("http")
def https = Uri("https")
def ftp = Uri("ftp")

implicit def strToUrl(s: String): Uri = Uri(s)
}

import UriDsl._

http / "www.site.org" / "index.php" /? ("a"->7) & ("b"->true)
// Uri = http://www.site.org/index.php?a=7&b=true

"file" / "usr" / "bin" / "javac"
// Uri = file://usr/bin/javac

The idea behind the previous example is simple: methods in object UriDsl

work as entry points by building an Uri instance, then we chain method calls by

having methods return a new object of the same kind.

A DSL for math operations Source:

trait MathOperation

implicit class IntMathOperation(val n: Int) extends MathOperation {
def \(d: Int) = Fraction(n,d)

}
trait MeanOperation extends MathOperation {

def of(ns: Double*) = ns.foldLeft(0.0)(_+_) / ns.length
}
case class PowerOperation(base: Double) extends MathOperation {
def by(exp: Double) = math.pow(base,exp)

}

case class Fraction(num: Int, den: Int) {
def +(f2: Fraction) = {
val m = Fraction.mcm(den, f2.den)
Fraction((m/den)*num + (m/f2.den*f2.num), m)

}

45

CHAPTER 2. ADVANCED SCALA TECHNIQUES

}

object Fraction {
def simplify(f: Fraction): Fraction = {

val d = gcd(f.num, f.den)
Fraction(f.num/d, f.den/d)

}

def gcd(x: Int, y: Int): Int = // Euclid’s algorithm
if(x == y) x
else if(x > y) gcd(x-y,y)
else gcd(x, y-x)

def mcm(x: Int, y: Int): Int = (x / gcd(x,y)) * y
}

object MathDsl {
def mean = new MeanOperation { }
def power(n: Double) = PowerOperation(n)
def simplify(f: Fraction) = Fraction.simplify(f)

}
import MathDsl._

mean of (6, 10, 7, 9) // Double = 8.0
power(2) by (mean of (4,6)) // Double = 32.0
1\2 + 4\3 + 1\6 // Fraction = Fraction(12,6)
simplify { 1\2 + 4\3 + 1\6 } // Fraction = Fraction(2,1)

46

Part II

Background: Aggregate

Programming

Chapter 3

Space-Time Programming and

Spatial Computing

This chapter discusses the main challenges of recent distributed computing

scenarios and introduces space-time programming as a promising approach for

building large-scale, decentralised, adaptative systems.

Outline:

• Why spatial computing – to understand the forces that have dictated the

need for a new approach to distributed computing

• What is spatial computing – to understand the key concepts and character-

istics defining spatial computing

• How is spatial computing in practice – approaches and technologies

3.1 Motivation: context and issues

The last century have witnessed tremendous technological advances with rev-

olutionary repercussions. Computers have extended human’s intelligence with

precise, high-speed processing of symbols, supporting instantaneous calculations

and algorithmic power. Telecommunications have opened the doors to low-

latency, global communication by interconnecting distant places and allowing fast

information flows between them.

49

CHAPTER 3. SPACE-TIME PROGRAMMING AND SPATIAL COMPUTING

More recently, the physical limits to Moore’s law for what concerns processing

rate have switched research into transistor scaling and multi-core architectures to

keep the pace. Then, the decrease of the cost and size of hardware has allowed for

a mass production of miniaturised devices, which is leading to the spread

of computational abilities in our environments and a tighter interaction between

artificial systems and natural systems.

Some advances not only increase the efficiency of what we already do, but also

enable us to make new things, possibly things we did not even imagine. That

is, innovations push forward our needs and imagination. The progressive decen-

tralisation fostered by the low-cost production of computational devices and the

embeddability resulting from the miniaturisation process make it possible to ap-

proach existing problems in novel ways (e.g., swarm robotics) and to think at new

applications (e.g., ambient intelligence).

3.1.1 Distributed computing scenarios

These enabling conditions have led to the development of a variety of scientific

and engineering trends sharing common ideas. Often these threads overlap and

are referred to with different terms to account for peculiarities of applications or

nuances in the interpretation or vision. A few examples:

• Internet of Things (IoT) – emphasises the interconnection between everyday

life’s objects.

• Pervasive Computing, Ubiquitous Computing, Everyware – refer to the dif-

fusion, permeation of computation in all the places and aspects of life, fos-

tering a vision where computational abilities are available everywhere they

are needed.

• Wireless Sensor Networks (WSN) – deal with the engineering of networks

of sensors that capture, move and possibly process environmental data; the

term focuses on the technological infrastructure.

• Smart things (cities, buildings, homes, dust), Ambient Intelligence – refer

to the embedding of “intelligence” in our environments as a set of context-

50

CHAPTER 3. SPACE-TIME PROGRAMMING AND SPATIAL COMPUTING

sensitive services; here, the emphasis is on the functionalisation of the plain

old artificial environment with features perceived useful and somehow unex-

pectedly smart from traditionally idle structures

• Swarm robotics – considers systems composed of many simple robots that

interact and coordinate on a local basis.

All these scenarios deal with a large number of computational devices that

interact with one another and with their environment. Typically, applications

exhibit common traits:

• Context-sensitiveness/awareness – services have to provide responses that

are highly-sensitive to contextual information.

• Global-to-local correlation – services are expected to provide summarised

information in specific places or to specific individuals.

• Collective behavior – tasks may not be practically feasible by only few system

participants; in other words, a large number of components may be not only

useful for precision or efficiency, but also functional to the service itself.

A tension between the global and local viewpoints is emerging.

3.1.2 Key issues and unsuitableness of traditional ap-

proaches

In general, the design and development of distributed systems is hard, as one

have to deal with consistency and replication, failure and recovery, communication

and synchronisation, as well as the problems resulting from autonomy, heterogene-

ity, openness, and many other aspects. In particular, coordination becomes key –

the design effort usually turns from the computation dimension to the interaction

dimension.

The aforementioned scenarios such as pervasive computing stress classical prob-

lems of distributed systems and also add new ones. In such cases, designers have

to deal with the following issues:

• Unpredictability – the environmental dynamics may leave room only for few

51

CHAPTER 3. SPACE-TIME PROGRAMMING AND SPATIAL COMPUTING

assumptions, requiring applications to deal with the inherent randomness

and complexity of their surroundings.

• Network complexity – networks may consist of many nodes with possibly

highly dynamic connections.

• Situatedness – the environment has to be considered in the design process.

Such scale and unpredictable dynamics make traditional distributed computing

approaches based on men-in-the-loop or centralised control inadequate [14]. In

fact, given the large number of elements composing such systems, centralisations

can easily become bottlenecks, whereas for what concerns the unforeseeable of the

environment and network dynamics, it may be advantageous to relax the corpus

of assumptions and rely on some form of self-organisation.

Problems with centralisations Decentralisation is actually demanded in light

of typical constraints and characteristics found in many pervasive computing sce-

narios:

• Energy constraints and communication – Often, the cost of communication

compared with the cost of computation, combined with relevant energetic

limitations, suggests to trade the former for the latter.

• Communication latency – As communication is costly and takes significant

time, it is convenient to keep information close to its use (locality principle).

In addition, in the case of network nodes equipped with actuators, it would

be even more wasteful to have round-trip communications with a central

server/coordinator.

• Big Data – The global data generated by networks may be impressive in

regard to volume, velocity, and variety.

• Network scalability – The density of nodes in a network is related to the

level of spatial detail provided by the network and may affect the quality

of application results. However, a WSN application may be started small

while at the same time keeping the ability to scale in order to increase the

accuracy of spatial sampling in a second moment.

52

CHAPTER 3. SPACE-TIME PROGRAMMING AND SPATIAL COMPUTING

Problems with transparency Another traditional feature that does not work

for these scenarios is distribution transparency. First of all, transparency poses

limitations for what concerns scalability. In fact, location transparency (based on

logical identifiers) requires a logically centralised naming service which, in general,

has to deal with mobility as well. Secondly, it does not support the typical open-

ness requirements where devices may frequently join and leave a network. Third,

transparency does not account for situatedness.

The opposite approach to transparency is to make distribution explicit. In the

so-called network-aware computing models, a node can communicate with another

node in the network only if it knows that node’s location (address) in the network.

Here, the drawback lies in the abstraction gap: the model is too low-level and

complex, and there is the need for environmental abstractions.

In [14], the distinction is clearly shown by expressing the different information

requirements for communicative acts in the three cases:

• Transparent location models – “I know who you are, but I don’t know where

you are.”

• Network-aware models – “I know who you are and I know where you are.”

• Spatial-computing – “I don’t know who you are, but I know where you are.”

(see Section 3.2)

Need for self-* As the complexity and scale of the systems grow, the open-loop

structure where maintenance and recovery require human intervention becomes

more and more costly and unsustainable. Additionally, it might be crucial to

perform these activities without stopping the system operation, and doing so in

a timely manner. This suggests to move towards self-adaptive systems[15] which

are able, to some extent at least, to autonomously face the contingencies of an

ever-changing context and self. In other words, the trend is about increasing the

autonomy of artificial systems and the way seems to consist in endowing them

with self-* properties such as self-configuration, self-healing, or – more generally –

self-adaptativeness.

53

CHAPTER 3. SPACE-TIME PROGRAMMING AND SPATIAL COMPUTING

3.2 Spatial computing

Spatial Computing is, in a broad sense, an umbrella term for approaches to

computation based on spatial features. In more precise terms, a spatial computer

can be defined, as in [16], as a “network of interacting devices such that the diffi-

culty of moving information between devices is strongly correlated with the physical

distance between them”.

While there is no unanimous agreement on what spatial computing is exactly,

it is important to understand the different contexts in which the term can be used.

3.2.1 Space-oriented computation

In [17], spatial computing is characterised as the paradigm of computing some-

where, namely, computing simultaneously in and about geographic space, and is

distinguished from other space-related approaches by means of a taxonomy based

on two axes:

1. Information – may be related or unrelated to location

2. Communication constraints – may be spatial or non-spatial

which results in four kinds of systems:

1. “Computing somewhere” (location-related information, spatial constraints)

In these systems, the location strongly affects the stored information and,

in turn, the computation based on such information, and communication

depends on the spatial distribution of the system. Examples include WSNs

and many pervasive computing applications.

2. “Computing everywhere” (location-related information, non-spatial con-

straints)

This class of systems consists in the so-called Location-Based Services (LBS),

e.g., applications showing nearby friends (possibly with notifications) or ap-

plications supporting navigation to Points Of Interest (POI).

3. “Computing anywhere” (location-unrelated information, spatial constraints)

A paradigmatic example is given by Mobile Ad-Hoc Networks (MANET).

54

CHAPTER 3. SPACE-TIME PROGRAMMING AND SPATIAL COMPUTING

Here, communication is limited in space, but information may be totally

location-unrelated.

4. “Computing nowhere” (location-unrelated information, non-spatial con-

straints)

The systems belonging to this class – such as, for instance, the Internet –

support remote interactions, and information is independent from the site

where it is processed.

Another contribute to the categorisation of space-oriented approaches has been

provided during the seminal Dagstuhl seminar on Computing Media and Languages

for Space-Oriented Computation, where “three thematic areas have been identified:

intensive computing where space is used as a mean and as a resource, com-

putation embedded in space where location is important for the problem and

space computation where space is fundamental to the problem and is a result of

a computation”1.

3.2.2 Defining spatial computing (as space-time program-

ming)

In the context of this work, spatial computing is an approach to computing

based on the use of spatial abstractions for system definition and coordination.

The key ideas are delineated in [14].

A system, essentially a network of interacting devices situated in a physical en-

vironment, is logically represented as a virtual space. This correspondence between

the actual situation and the logical representation creates a mapping between the

physical space and the virtual one (cf., the amorphous medium in Section 3.2.4).

The system elements fill portions of the space and interact between one another

according to a notion of temporal and spatial locality expressed by the concept of

neighbourhood. As communication is driven by location in space, there is no need

to know the name of the recipient.

The devices are space-aware: they can sense the surrounding, proximal envi-

1http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=06361

55

http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=06361

CHAPTER 3. SPACE-TIME PROGRAMMING AND SPATIAL COMPUTING

ronment through sensors and can change that by means of actuators.

Due to the variability of the term spatial computing, it may be better to use

the more recent term space-time programming to better identify the acceptation

described in this section.

3.2.3 Analytical framework

A survey of spatial computing DSLs have been presented in [18] together with

an analytical framework, summarised next.

Generic Aggregate Programming Architecture A Generic Aggregate Pro-

gramming Architecture is sketched to account for the different levels of abstractions

that a spatial computing platform may have to deal with. It is comprised of five

layers (from lower to upper):

1. Physical platform

2. System management

3. Abstract device

4. Spatial computing

5. Users and applications

General classes of operations By considering the space-time and informational

duality of spatial computers, namely, the simultaneous situatedness in related

physical and informational worlds, four classes of operations are derived:

1. Physical Evolution – refers to operations from space-time to space-time.

2. Measure Space-Time – refers to operations from space-time to information.

3. Manipulate Space-Time – refers to operations from information to space-

time.

4. Compute Pattern – refers to operations from information to information.

56

CHAPTER 3. SPACE-TIME PROGRAMMING AND SPATIAL COMPUTING

3.2.4 Discrete vs. continuous space-time

Spatial computing is a matter of computation and coordination over space-

time[19]. The devices are situated both in space and in time; the device state and

position may change over time; and possible interactions depend on the network

topology at a given instant. However, while real-world space-time is assumed to

be continuous, spatial computers are composed of a discrete number of devices

which work at discrete rounds as triggered by their clocks.

The amorphous abstraction[20] According to this abstraction, a system com-

posed of a discrete set of interconnected devices (i.e., a network) can be seen as

a discrete approximation of the continuous space in which it is distributed (see

Figure 3.1). The more the density of devices increases, the more the network

approximates the physical space. At the limit, the result is a “continuous space

filled with continuously computing devices and continuously propagating ’waves’ of

communication” where “the output of computation in each point can be viewed as

a property of the space at that point”[19].

Figure 3.1: The amorphous medium abstraction creates a correspondence between

a discrete network and a continuous space.

57

Chapter 4

Field Calculus

This chapter introduces a theoretical model for spatial computing (see Chap-

ter 3) that provides a solid foundation for the aggregate programming approach

described in Chapter 5.

Outline:

• The notion of computational field

• Field Calculus: basic constructs, operational semantics

• Higher-Order Field Calculus and code mobility

• Protelis

4.1 Computational fields

A computational field is a function that maps the points in some discrete or

continuous space-time domain to some computational value [21][22]. The metaphor

brings in computational terms the notions of scalar and vector fields found in math

and physics. In the case of a network of devices, a field maps each device with a

value. It should be stressed that fields are functions that may and typically will

evolve over time.

Operations on fields are defined as functions taking input fields and producing

output fields. Then, the key idea is to express the global behavior of a spatial com-

puting system as a functional composition of operators that manipulate (evolve,

59

CHAPTER 4. FIELD CALCULUS

combine, restrict) computational fields.

4.2 Field calculus

4.2.1 Basis set of operators

Field Calculus is a minimal calculus for manipulating fields. The original set

of constructs consists in:

1. Built-in function application – (b e1 e2 ... en)

The built-in function b is applied to the input fields e1 to en. The output

field is given by the point-wise evaluation of the operator to the input fields;

in other words, each device is mapped to the result obtained by applying the

operator to its local values of the input fields.

2. Function definition and function call

(def f(x) eB) – The function f is defined with a list of arguments x and

a body consisting in the expression eB.

(f e1 ... en) – The function f is applied to the input expressions e1 to en.

The function call expression is equivalent to the function body eB after the

substitution of formal parameters xi with their respective actual parameters

ei.

3. Time evolution – (rep x w e)

The rep construct supports dynamically evolving fields by having an expres-

sion e depend on its previous value w (with x being the initial state).

4. Interaction – (nbr e)

The nbr construct maps each device δ with a field consisting of the neigh-

bours’ most recent value resulting from the evaluation of e. Thus, it implies

a communication from each device to its neighbors. The result is a field of

fields.

5. Domain restriction – (if e0 e1 e2)

It ensures that the evaluation of e1 occurs only in the network subset where e0

evaluates to true, and that e2 is evaluated only in the points (devices) where

60

CHAPTER 4. FIELD CALCULUS

the condition e0 turns out to be false. Note it is different from first evaluating

e0, e1, e2 and then returning the appropriate value, which wouldn’t perform

any distributed branching.

Note that these constructs are subject to a twofold interpretation. Within the

local, device-centric interpretation, any field calculus expression represents a locally

computed value in a device at a given instant. Conversely, the same expression

represents a computational field within the global interpretation. More on these

different viewpoints can be found in Section 5.1

4.2.2 Higher-Order Field Calculus (HOFC)

The field falculus has been extended in a higher-order variant (HOFC) with

first-class functions in [23]. The updated syntax follows:

e = x | v | (e e) | (f e) | (rep x w e) | (nbr e) | (if e e e)

v = ` | φ

` = b | n | 〈`, `〉 | o | f | (fun (x) e)

w = x | `

F = (def f(x) e)

P = F e

Differences from basic field calculus syntax are highlighted in grey. Essentially,

the syntactic extension accounts for the possibility to refer to built-in (o) and

user-defined functions (f) as local values (`) as well as defining new anonymous

functions on-the-fly (lambdas) with the syntax (fun args body). Then, these

values (v), which could also be referred to by variables x (these may be arguments

in higher-order functions, or the evolving value in a rep), can be used in function

position for application.

4.2.3 Operational semantics

The following description is based on the big-step operational semantics pre-

sented in [23].

61

CHAPTER 4. FIELD CALCULUS

Preliminary definitions and notation.

• Devices – represented by δ.

• Fields – represented by φ ::= δ 7→ ` = δ1 7→ θ1, ..., δn 7→ θn.

• Value tree – ordered tree of values represented by θ ::= v(θ).

– Root of the value tree: ρ(v(θ)) = v.

– k-th subtree of the value tree: π(v(θ1, ..., θn)) = θk 1 ≤ k ≤ n.

• Value tree environment – represented by Θ ::= δ 7→ θ.

Rule [E-LOC] – Evaluation of local values.

δ; Θ ` ` ⇓ `()
A local value evaluates to a value tree with the value itself as the root and an

empty subtree.

Rule [E-FLD] – Evaluation of field values.

φ′ = φ |dom(Θ)∪{δ}

δ; Θ ` φ ⇓ φ′()
A field value evaluates to a value tree with the field value itself as the root,

adequately restricted to take into account domain alignment. Namely, the domain

of a field value is given by the current device (on which the computation is running)

and all the aligned neighbours, i.e., the neighbours whose most recent value tree

is structurally compatible with the value tree being evaluated.

Rule [E-B-APP] – Built-in function application.

δ; π1(Θ) ` e1 ⇓ θ1 ... δ; πn+1(Θ) ` en+1 ⇓ θn+1

ρ(θn+1) = o v = εoδ;Θ(ρ(θ1), ..., ρ(θn))

δ; Θ ` en+1(e1, ..., en) ⇓ v(θ1, ..., θn+1)

62

CHAPTER 4. FIELD CALCULUS

where the auxiliary function εoδ;Θ(v) represents the application of the built-in

function o to input values v in the environment Θ on device δ.

The inference rule is read as follows:

• The expressions ei of the function application en+1(e1, ..., en) evaluate to

value trees θi.

• The built-in function o to be executed is given by the root of the value tree

θn+1, while the function arguments correspond to the root of value trees θ1

to θn.

• The application of o to its arguments on the device δ with tree environment

Θ results in a local value v.

The built-in function application expression evaluates, in a device δ with envi-

ronment Θ, to a value tree of the form v(θ1, ..., θn+1).

Rule [E-D-APP] – Application of user-defined or anonymous functions.

δ; π1(Θ) ` e1 ⇓ θ1 ... δ; πn+1(Θ) ` en+1 ⇓ θn+1

ρ(θn+1) = ` args(`) = x1, ..., xn body(`) = e

δ; π`,n(Θ) ` e[x1 := ρ(θ1) ... xn := ρ(θn)] ⇓ θn+2 v = ρ(θn+2)

δ; Θ ` en+1(e1, ..., en) ⇓ v(θ1, ..., θn+2)

where the auxiliary function π`,n(θ) extracts the (n + 2)-th subtree of θ if

the root of θn+1 equals to `; the same function is defined to work with value tree

environments as well, by mapping each element (δi 7→ θi) to (δi 7→ π`,n(θi)), leaving

out the mappings of non-aligned neighbours. The auxiliary functions args and

body, as the name implies, extract the arguments and the body from the function

definition (which may be a user-defined function or an anonymous function).

This rule is similar to the previous one, but the resulting value tree has an ad-

ditional subtree corresponding to the evaluation of the function body with respect

to an environment – repetita iuvant – containing only the value trees of the neigh-

bours executing the same function `. Figure 4.1 provides a visual representation

of the rule.

63

CHAPTER 4. FIELD CALCULUS

Figure 4.1: Visualisation of the evaluation of a function application according to

rule [E-D-APP].

Rule [E-REP] – rep construct.

`0 =

ρ(Θ(δ)) if Θ 6= ∅

` otherwise

δ; π1(Θ) ` e[x := `0] ⇓ θ1 `1 = ρ(θ1)

δ; Θ ` (rep x ` e) ⇓ `1(θ1)

As described previously, the rep construct models evolution over time, where

an expression e is evaluated with reference to a state variable x, which is initially set

64

CHAPTER 4. FIELD CALCULUS

to ` and then updated by the result of the rep expression. In this rule, particularly

relevant is the part devoted to the reuse of the previously computed state (if any).

In the rep expression, the state variable x is substituted by `0, which is set to the

previous state by accessing to the root of the value tree for the current device δ in

the device itself’s environment, or the initial state ` if no previous state is found

in the value tree environment.

Given the body expression for the rep evaluates to a value tree θ1, the value

tree resulting from the evaluation of the entire rep expression consists in a root

value equals to the root of θ1 and a single subtree equals to θ1 itself.

Rule [E-NBR] – nbr construct.

Θ1 = π1(Θ) δ; Θ1 ` e ⇓ θ1 φ = ρ(Θ1)[δ 7→ ρ(θ1)]

δ; Θ ` (nbr e) ⇓ φ(θ1)

where the auxiliary function πn(θ), also extended to operate on value tree

environments, extracts the n-th subtree of the value tree θ. By “entering” the

expression e, according to the expected value tree format for nbr, the auxiliary

function pi models structural alignment.

As can be seen from the inference rule, the nbr body expression, evaluated with

respect to an environment Θ1 of aligned devices, result into a value tree θ1. Then,

the result of the whole nbr expression is given by a field mapping each device in

the environment with the corresponding root value for θ1, where for the current

device δ any previous value is overwritten by the newly computed value; then, the

single subtree is given by θ1 itself. Figure 4.2 shows the rule in graphical form.

65

CHAPTER 4. FIELD CALCULUS

Figure 4.2: Visualisation of the evaluation of a nbr expression according to rule

[E-NBR].

Rules [E-THEN] and [E-ELSE] – if branching construct.

δ; π1(Θ) ` e ⇓ θ1 ρ(θ1) = true

δ; πtrue,0(Θ) ` e′ ⇓ θ2 ` = ρ(θ2)

δ; Θ ` (if e e′ e′′) ⇓ `(θ1, θ2)

δ; π1(Θ) ` e ⇓ θ1 ρ(θ1) = false

δ; πfalse,0(Θ) ` e′′ ⇓ θ2 ` = ρ(θ2)

δ; Θ ` (if e e′ e′′) ⇓ `(θ1, θ2)

Here, the crucial part is domain restriction: πtrue,0(Θ) restricts the environment

to the pairs di 7→ `i(θi1, θi2) where ρ(θi1) is equal to true and maps them to di 7→ θi2.

The whole if expression is evaluated to a value tree with the local result as the

root value and two subtrees: one is the value tree for the condition, and the other

66

CHAPTER 4. FIELD CALCULUS

is the value tree for the then or else part (depending whether the local condition

result ρ(θ1) is true or false, respectively).

4.2.4 Case study: Protelis

Protelis[24] is a functional language for expressing field-based computations.

More precisely, it is an external DSL developed with the Xtext language work-

bench. Protelis is inspired by Proto but, with respect to Proto, provides the

following improvements:

• novel, Java-like syntax (rather than LISP-like),

• integration with the Java ecosystem – Protelis is hosted in Java, and Protelis

programs can import and use Java code, and

• support for code mobility via first-class distributed functions (see about

higher-order field calculus in Section 4.2.2).

In Protelis, a program consists of three parts:

1. a set of Java imports,

2. a set of function definitions, and

3. a set of statements – which can be variable declarations, assignments, ex-

pressions.

and the program result is given by the last statement.

As an example, consider the hop-gradient:

import com.example.Node.sourceSensor

def hopGradient(source) {
rep(hops <- Infinity){
mux(source) { 0 }
else { 1 + minHood(nbr{hops}) }

}
}

let isSrc = sourceSensor.read();
hopGradient(isSrc)

67

CHAPTER 4. FIELD CALCULUS

Two prominent uses of Protelis include the development of a Protelis module for

the Alchemist simulator[25], and the implementation of a distributed management

system for the automation of the recovery of a set of interdependent enterprise

services[26].

68

Chapter 5

Aggregate Programming

This chapter introduces the aggregate programming paradigm as a way of

programming aggregates of devices in a top-down way, and presents a multi-layered

architecture based on field calculus (see Chapter 4) and reusable building blocks.

Outline:

• From single-device-view to aggregate-view

• The aggregate programming stack

• Composable self-organisation via self-stabilising building block operators

5.1 From device to aggregate view

Aggregate Programming is a paradigm which has to do with the programming of

aggregates, where an aggregate can be generally defined as a moltitude of elements.

This paradigm represents a departure from traditional device-centric approaches

where the single device is considered the programmable unit and the different

system elements have to be designed so that they produce, by interaction, some

desired global behavior.

Software systems have been so far designed with a bottom-up approach to

system behavior specification. This reflects the natural view in which the system

behavior emerges out of the behaviors of the parts.

However, sometimes it may be easier or more effective to specify the global

69

CHAPTER 5. AGGREGATE PROGRAMMING

system behavior in a top-down way. Of course, the system elements remain the

ultimate vehicle for the whole, and they have to be programmed, so it is not

possible to completely exclude the details of how the dynamics unfolds from the

bottom-up. So, a balance of bottom-up and top-down reasoning is important to

raise the abstraction level and seems essential to instill self-organising properties

to systems.

Therefore, the key idea of aggregate programming is to let local behaviors be

deduced from the high-level, global specification. This requires the presence of a

transformation logic that we may refer to as a global-to-local mapping.

Such an attempt to capture emergent abstractions also means that, when pro-

gramming aggregates, two distinct points of view may be embraced by program-

mers:

1. Local viewpoint (device-centric view) – refers to the interpretation of the

aggregate computation when executed by a single-device; this is the tradi-

tional view, where the programmer reasons about the local computations

performed by a device and about how the device interacts with the other

elements of the system.

2. Global viewpoint (aggregate view) – refers to the overall computation per-

formed by the system as a whole; in this view, the programmer is more

concerned about what the system should perform rather than about how to

program the system elements to achieve the desired behavior.

For example, a rep expression in the field calculus may be interpreted accord-

ing to the first or second viewpoint: locally, a device repeatedly builds a new

state depending on the current state; globally, the computation may be seen as a

computational field dynamically evolving over time.

5.2 The aggregate programming stack

A practical aggregate programming platform is one that reduces the abstrac-

tion gap by providing developers with user-friendly APIs. This raising of the

abstraction level is likely to require multiple layers so as to manage complexity

70

CHAPTER 5. AGGREGATE PROGRAMMING

and foster a logically-incremental architecture.

An aggregate programming stack built upon field calculus and aimed at the

development of Internet of Things applications have been depicted in [27]. Figure

5.1 shows the layers in such an architecture.

The significance of founding the aggregate programming support on a minimal

calculus is that it allows for formal proving of properties of interest. Thus, on top

of it, it is possible to define building block operators with provable characteristics

and, more importantly, ensure that any or some compositions of these building

blocks retain the same properties.

5.2.1 Composable self-organisation

Self-stabilisation A system is said to be self-stabilising if, independently of the

current state, it is able to reach a stable state within finite time. In other words,

such a system is guaranteed to recover from perturbations, more or less promptly.

The paper [28], by considering a restriction of the field calculus, shows that self-

stabilisation is “proved for all fields inductively obtained by functional composition

of fixed fields (sensors, values) and by a gradient-inspired spreading process.”

Classes of building blocks Upon this foundation, a set of general, self-

stabilising building block operators is presented in [29], together with a related

categorisation (reported in Table 5.2.1). The classes of functions in the taxon-

omy have been extracted by considering the key “moves” performed in a general

aggregate computation cycle:

1. Sensing – This input phase consists in the acquisition of information, mostly

associated to the space-time structure of the system. The building blocks

related to structure can be modelled as functions that query environamental

sensors for values (computational fields).

2. Detection of situations of interest – The collected information has to be

analysed in order to determine the context and thus be able to set the system

goals. This typically involves the production of summary information by

means of aggregation.

71

CHAPTER 5. AGGREGATE PROGRAMMING

Figure 5.1: Aggregate Programming Stack

72

CHAPTER 5. AGGREGATE PROGRAMMING

3. Moving information where needed – The information has to be moved or

spread to the elements responsible for action. This may involve the identifi-

cation of a sparse subset of devices (simmetry breaking) so as to to limit the

information flow (and thus the action) to specific portions of the system.

4. Acting based on context information – In this output phase, the system gen-

erates a response to the realised situation. In particular, the response will

typically depend on the result of some computations, which may be restricted

to specific locations of the space-time fabric.

Function Space Time

Structure nbr-range, ... dt, ...

Aggregation C

Spreading G
T

Symmetry breaking S random

Restriction if

Compute local functions, random

Table 5.1: Taxonomy for some building block operators.

Building block operators The building blocks identified in [29] are, for all

intents and purposes, generalised coordination operators that could be used to

cover several coordination patterns. These operators also include the if construct

of the field calculus, which is effectively able to restrict computations in space

within particular regions, thus being extremely valuable for composition. The

other four operators are:

1. Gradient-cast : G(source, init, metric, accumulate).

It simultaneously performs two tasks: builds a distance-gradient from the

source according to metric, and builds accumulated values along the gra-

dient starting from init at the source.

2. Converge-cast : C(potential, accumulate, local, null).

It allows to collect information distributed across space by accumulating

values down the gradient of a potential field. In a sense, C is the dual of G.

73

CHAPTER 5. AGGREGATE PROGRAMMING

3. Time-decay : T(initial, decay).

This operator can be used to summarise information across time by decreas-

ing the initial field according to a decay function.

4. Sparse-choice: S(grain, metric).

This operator can be useful for creating partitions and for selecting sparse

subsets of devices in space.

These can be composed into new operators that will maintain the same prop-

erties of robustness. For example, C and G can be combined to originate a self-

stabilising summarise operator that first collects information across the space and

then propagates back the computed summary.

74

Part III

scafi: Development

Chapter 6

Analysis

This chapter is intended to provide a summary of the results of the analysis

phase in the scafi development cycle. Despite of the organisation of this part, it

should be noted that the development of scafi has been carried out in an iterative,

incremental process where even the requirements have been discovered and refined

progressively.

Outline:

1. Requirements

2. Requirement analysis

3. Problem analysis

4. Evaluation of the abstraction gap

6.1 Requirements

scafi has no explicitly stated requirements, and many requirements are also

not well-defined or immutable. However, as engineering is nothing without re-

quirements, I try to make a subset of them explicit, so that analysis has material

to work on and evaluation can be carried out against something.

77

CHAPTER 6. ANALYSIS

6.1.1 Field calculus

1. scafi must provide a language for field calculus (scafi DSL) that allows

for the specification of aggregate computations.

(a) That language must be typed and embedded within Scala – i.e., it must

be an internal DSL (and not an external DSL).

(b) The DSL should be concise, easy-to-use, and modular.

(c) The DSL must be complete – i.e., it must expose all the basic field-

calculus constructs.

(d) The DSL should support the higher-order version of field calculus.

2. scafi must provide a Virtual Machine (VM) for the scafi DSL.

(a) The semantics of the scafi DSL must be correct – i.e., it must imple-

ment the Field Calculus semantics in a proper way, without any errors.

(b) The scafi VM should be reasonably performant.

3. The scafi VM must be tested – i.e., it is required to provide:

(a) unit tests, at least for the most critical parts of the implementation;

(b) functional tests, ensuring that both individual constructs and aggregate

programs work as expected.

4. scafi must also come with a basic simulator that allows for aggregate com-

putations to be executed and controlled locally.

6.1.2 Aggregate programming platform

1. scafi must provide a platform which supports both the definition and the

execution of distributed systems that implement aggregate computing appli-

cations.

2. Due to the variety of scenarios that aggregate computing potentially targets,

the platform should be quite general, providing flexibility for what concerns

system design, deployment, and execution.

78

CHAPTER 6. ANALYSIS

3. The platform should come with some pre-defined configurations to unburden

the users from the hassle of defining setups for the most common scenarios.

4. The platform should provide support for code mobility, i.e., the ability of

shipping code from a node to another.

(a) Code mobility should be supported in a user-transparent way, at the

infrastructure-level.

5. The platform should support a form of spatial computing by providing a set

of spatial abstractions.

6.2 Requirement analysis

6.2.1 Field calculus – DSL and VM

A (programming) language consists of syntax and semantics. Moreover, the ex-

ecution of programs written in a language requires a virtual machine implementing

the semantics by mapping program elements to some underlying platform.

scafi must provide an internal domain-specific language for the field calculus

and a virtual machine for the execution of DSL programs. The platform underlying

the scafi VM is represented by Scala itself. Another consequence of having Scala

as the host language, is that the scafi DSL somehow inherits the typing from

Scala.

The field calculus constructs have been described in Section 4.2.1 together with

their operational semantics in Section 4.2.3. This defines what has to be provided

to scafi users.

The requirement of completeness for the DSL states that all the basic constructs

of the field calculus must be provided, namely:

• built-in operator call,

• function definition and function call,

• interaction (nbr),

• time evolution (rep),

79

CHAPTER 6. ANALYSIS

• domain restriction (if).

Moreover, the field calculus version to be implemented should be the higher-

order one (see Section 4.2.2). Note that, in such a case, the if construct would

not be primitive.

6.2.2 Aggregate programming systems

Let’s analyse a general aggregate computing system by following a top-down

approach, with the goal of exploring the conceptual space.

By a structural point of view, the system consists of a network of interacting

devices (or nodes), immersed in some kind of environment. Its behavior is given by

the global aggregate computation running over the network of devices. For what

concerns the dimension of interaction the system boundary may be closed or open

(which is not an on-off property, but a degree of closure); while in the former case

the system does not interact with its environment, in the latter case it may allow

some information to flow inside-out or outside-in (porosity).

Some entities are emerging from this prose:

• Network

• Device

• Global aggregate computation

• Environment

• System boundary

Now let’s focus on a single device:

• Structure – The device may have sensors and actuators.

• Behavior – The device runs its (current) local aggregate computation by

rounds, with a certain (possibly varying) frequency.

• Interaction

– The device broadcasts its state to its neighbourhood and is suitable to

receive, in turn, messages from its neighbours.

– The device can sense and act on its surrounding environment.

80

CHAPTER 6. ANALYSIS

Note that such a modelling is conceptual and may be implemented in different

ways to accomodate real-world scenarios: for example, the device may not run its

local computation itself, for it may delegate its computation to (some part of) the

system. We may say that a device essentially represents, at a given time instant,

solely a context for the execution of a local-view aggregate computation.

The concepts arising from such a zooming on the device include:

• Sensor, sensing

• Actuator, acting

• (Surrounding) environment

• Broadcast, message

• Neighbourhood, neighbour

• Local aggregate computation

• Round, frequency of operation

Field calculus The aggregate programming approach in scafi is founded on

the field calculus. This reduces the conceptual and design spaces; nevertheless,

generalisations are welcome.

Device firing Typically, the devices of a network undergo computation in asyn-

chronous rounds. Actually, this is just a general problem of scheduling and different

strategies may be chosen.

Communication Communication can be conceptually represented as a message

broadcast from a device to the devices belonging to its neighbourhood.

Neighbours discovery A device does not necessarily need to know its neigh-

bours, for example because the broadcast mechanism might rely on another entity.

However, if it is the case, how can a device know its neighbourhood? In general,

such information can be obtained in three ways:

1. The information is innate (genetic) or internally inferred.

81

CHAPTER 6. ANALYSIS

2. The information comes from the outside, in two ways:

(a) (Push-based) The device is externally given the information by some-

body.

(b) (Pull-based) The device asks somebody for that information.

The neighbourhood may also change over time, so the knowledge has to be

updated, possibly with low latency.

Communication in spatial computing In the spatial computing approach,

according to [14], it is not important to know who the neighbors are as far as

communication is based on location (“I don’t know who you are, but I know where

you are”).

In this case, the problem of communication could be solved via spatial aware-

ness, in two distinct ways:

• the communication mechanism is a spatial broadcast, or

• the device can discover its neighbours via spatial perception (which could be

modelled as a sensor providing a set of locations).

Sensors A sensor is a value provider. The value to be provided may be any trans-

formation of analogical or digital quantities, according to a logic that is internal

to the sensor itself.

A sensor can work according to two different models:

1. Pull-based: the device asks a value (possibly the most recent one) from the

sensor.

2. Push-based: the sensor notifies newly produced values to the device (with

some possibly varying frequency that may be independent of the actual

source sampling).

Actuators An actuator is any mechanism performing side-effects based on the

state of the device in which it is deployed.

82

CHAPTER 6. ANALYSIS

6.3 Problem analysis

6.3.1 Field calculus DSL: embedding within Scala

Implementing the field calculus language as an internal DSL means that it is

constrained by the host language, which is Scala (by requirement).

Scala is an object-oriented language with extensive functional-programming

support. Note that, though Scala does provide first-class functions at the lan-

guage level, these are ultimately implemented as method calls on objects. Scala is

also well-known for its rich type system. These characteristics and the expressive

power that has been investigated in Part I constitute promising premises for the

endeavour of embedding the field calculus into Scala.

In particular, two prominent issues can be glimpsed:

1. Implementation of field calculus constructs as method calls – How can oper-

ators such as rep or nbr be implemented as method calls?

2. Integration with the Scala type system – How can we conciliate the Scala

type system so as to support the manipulation of computational fields?

From operational semantics to method call Let’s consider a Protelis pro-

gram for the hop-gradient:

rep(hops <- Infinity){
mux(source) { 0 }
else { 1 + minHood(nbr{hops}) }

}

The same program might be represented in Scala as follows:

rep(Double.PositiveInfinity){
hops => { mux(source) { 0.0 } { 1 + minHood(nbr{ hops }) } }

}

where the rep body has been represented as a 1-ary function from the current

state to the new state. Now, let’s suppose that rep, mux, minHood, and nbr

are method calls. The above syntax is valid because Scala allows methods to be

83

CHAPTER 6. ANALYSIS

defined as accepting multiple parameter lists, which can be enclosed by parenthesis

or braces at the call site.

At this point, two key questions arise:

1. How would these methods be implemented internally?

2. How should the evaluation of the program proceed?

For what regards the second question, let’s consider the IF construct for domain

restriction (capitalised as if is a reserved keyword in Scala):

IF(cond){ then_body } { else_body }

Depending on whether the condition evaluates to true or false, either then body

or else body must be evaluated: this means that the evaluation of these two

expressions must be delayed. For such a need, Scala supports a convenient syntax

– call-by name parameters – which spares programmers from wrapping expressions

into functions (which would result in a syntax a bit clumsy).

Integration with the Scala type system Here, the goal is to “reuse” the Scala

type system to retain the advantages of static type checking for the aggregate

programs expressed in scafi. Therefore, the methods implementing the field

calculus constructs should be generic. For example, a rep expression may return

an Int or a String; we also know that the type of the initial value and the type

of the state-transforming function must be coherent.

Another issue concerns the nbr construct which, according to its denotational

semantics, would return a field of fields, which in turn would appear as a field of

local values in the context of a certain executing device. The problem is that the

introduction of a type Field[T] would require the same type to implement all the

operators supported by its element type T, with a point-wise evaluation semantics,

or to lift existing types to work with fields:

minHood(1 + nbr { sense("") }) }

Before a *hood operation is used to turn a field to a local value, the operations

on the result of nbr would be field operations.

84

CHAPTER 6. ANALYSIS

6.4 Abstraction gap

6.4.1 Distributed Platform

Building a distributed platform from scratch is hard. Many issues have to be

considered and many pitfalls are to be avoided. The big themes to be faced include

but are not limited to:

• Communication – It should be supported by reliable, high-level, flexible

mechanisms.

• Fault-tolerance – Systems should be resilient (i.e., by reducing the impact

of failure) and able to recovery from failure. That is, they should deal with

partial failure.

• Naming – It may be useful to associate names with computational entities

and resolve. names to addresses. However, how to deal with openness,

mobility, failure?

• Concurrency – Concurrent activities must be properly coordinated.

As scafi is Scala-based, this need of raising the abstraction level and reusing

existing, robust solutions leads to consider the Akka actor framework1 as the basis

for the development of the aggregate distributed platform.

1http://akka.io/

85

http://akka.io/

Chapter 7

Design

The design phase is responsible of a first elaboration of the what into the how.

At this point, the information produced during analysis has to be used to envisage

a solution, in order to reduce the gap between concepts and implementation.

This chapter is intended to describe the main elements of the design of scafi,

which consists of two parts: the core library implementing the field calculus and

the actor-based platform addressing the development of distributed “aggregate

applications.”

Outline:

• Architecture of the core library

• Architecture of the distributed platform

• Distributed platform design

• API design

It must also be noted that the initial design of the interpreter at the core of

the proposed framework is authored by prof. Viroli.

87

CHAPTER 7. DESIGN

7.1 Design architecture

7.1.1 scafi DSL and VM

Figure 7.1: Design architecture for the language and virtual machine.

88

CHAPTER 7. DESIGN

Figure 7.1 represents the key components of the scafi core library. The Core

component defines the basic abstractions and architectural elements, which are to

be refined by child components. The Language component, based on the abstrac-

tions defined in Core, defines the fundamental Constructs of the DSL. Upon these

primitives, derivate operators (Builtins) can be provided to make the language

more expressive (RichLanguage). The Semantics component extends the (syn-

tactical and structural part of) Language, refines core abstractions and provides a

semantics for the language Constructs, which is then made executable by Engine.

7.1.2 Spatial abstraction

The idea of the architecture depicted by Figure 7.2 is to model a space and

the notions of neighbouring relation and situation in such a space by means of a

SpatialAbstraction component. A space is characterised by a position type P,

whereas the situation of elements of type E in the space is achieved via a spatial

container Space[E], which also must also define a notion of neighbourhood.

Now, it may be useful to consider a graph (ad-hoc network) as a particular

case of spatial abstraction where each node of the network is located at a different

position in the space and the neighbouring relation is a function from a position

to an arbitrary set of positions.

Another fundamental type of spatial abstraction is given by metric spaces. The

MetricSpatialAbstraction component introduces a distance type D and a way of

expressing how distances between positions are calculated (DistanceStrategy).

Finally, a BasicSpatialAbstraction is defined as a 3-dimensional space with the

Euclidean metric.

89

CHAPTER 7. DESIGN

Figure 7.2: Design architecture for the spatial abstraction.

90

CHAPTER 7. DESIGN

7.1.3 Simulator

Figure 7.3: Design architecture for what concerns simulation.

A structural representation of how the simulators relate with the core archi-

tecture is given by Figure 7.3. A Simulation extends a Platform, as it should

provide a platform-view of the running system, and requires the interface pro-

vided by Engine in order to put aggregate programs into execution. A simulator

91

CHAPTER 7. DESIGN

must also provide the means (SimulatorFactory) for building the systems to

be simulated (which, in this case, are networks of devices). In particular, two

kinds of systems are supported: ad-hoc networks (graphs) and spatial networks

(SpatialSimulation).

7.1.4 Distributed platform

The distributed platform, as other parts of scafi, is defined by means of

progressive refinements and extensions of more basic components.

At this level, the components are split into multiple subcomponents. In fact,

building a distributed platform requires to handle multiple concerns and to manage

significant complexity.

By the point of view of design, the actor-based platform is a specific kind of

distributed platform. This level of indirection is intended to favor reuse and leave

the opportunity to create additional platform designs. In turn, the actor-based

platform splits into a dichotomy:

1. actor-based, peer-to-peer platform (decentralised),

2. actor-based, server-based platform (with a centralisation point for system

coordination).

Then, the server-based platform has been specialised into a SpatialPlatform

which depends on a MetricSpatialAbstraction in order to provide a space-aware

device management service.

92

CHAPTER 7. DESIGN

Figure 7.4: Design architecture for the actor-based platform.93

CHAPTER 7. DESIGN

7.2 Actor platform design

7.2.1 System design

A simplified view of the elements participating in an actor-based aggregate

computing application is provided by Figure 7.5.

Figure 7.5: Structure diagram of the main entities of an aggregate computing

system.

Essentially, the key types of elements are:

• AggregateApplication – It represents, in any subsystem, a particular ag-

gregate application, as specified by some Settings. Also, it works as a

supervisor for all the other application-specific actors.

• Scheduler – Optionally, a scheduler may be used to centralise system exe-

cution at a system- or subsystem-level.

94

CHAPTER 7. DESIGN

Figure 7.6: Structure and interface of device actors.

• ComputationDevice – It is a device which is able to carry out some local

computation. It communicates with other devices and interacts with Sensors

and Actuators (which may be actors as well or not).

Also, note how all these entities are specific to a particular platform incarnation.

Devices Figure 7.6 shows how devices are modelled. A first key distinction is

between actors and behaviors. In fact, one design goal is to split a big, articulated

behavior into many small, reusable, composable behaviors.

The convention in the diagram is to express message-based interfaces by means

of incoming and outcoming messages which are represented as arrows with a filled

arrowhead.

95

CHAPTER 7. DESIGN

By a conceptual point of view, a device must, at minimum, manage its sensors

and actuators. Then, in the context of aggregate programming, a device must also

interact with its neighbours (BaseNbrManagementBehavior); such interaction has

not been detailed yet, as it may be somehow different in the p2p and server-based

cases. Also, a computation device executes some program with a certain frequency

(here represented by a tick message called GoOn).

7.2.2 Server-based actor platform

This particular kind of platform follows the client/server architectural style.

The devices are clients of a central server that owns the information about the

topology and is responsable for the propagation of the states of the devices.

Figure 7.7 statically describes the message interfaces of device and server:

• Each device registers itself with the server at startup (Registration).

• After a computation, a device communicates its newly computed state to

the server (Export).

• Each device asks the server (GetNeighbourhoodExports) for the most recent

states of its neighbours (NeighbourhoodExports), with some frequency.

96

CHAPTER 7. DESIGN

Figure 7.7: Key elements and relationships in a server-based actor platform.

7.2.3 Peer-to-peer actor platform

This platform follows a peer-to-peer architectural style. Each device, at the end

of each computation, propagates its newly computed state (MsgExport) directly to

all its neighbours. Here, the critical point concerns how a device gets acquainted

with its neighbours; for now, let’s just suppose that a device is able to receive

information about a neighbour (NbrInfo).

97

CHAPTER 7. DESIGN

Figure 7.8: Key elements and relationships in a peer-to-peer actor platform.

7.2.4 API design

The general platform API that can be used to create distributed applications

is visualised in Figure 7.9.

A PlatformConfigurator works as the entry point for the process of construc-

tion of a system. It is used to setup a PlatformFacade, which in turn allows to

create one or more aggregate applications. The user can control an aggregate ap-

plication via the corresponding SystemFacade, which supports operations such as

the creation of devices, the specification of neighbouring relations, or the actual

start of the system (e.g., by activating a scheduler). Then, the control interface

for devices is given by their DeviceManagers, which can be used to attach sensors

or actuators.

98

CHAPTER 7. DESIGN

Figure 7.9: API façades for the distributed platform.

99

Chapter 8

Implementation and testing

Based on the architectural invariants and the design models delineated in Chap-

ter 7, this chapter provides a more in-depth tour of the implementation of the

scafi DSL and platform. As is the source code the ultimate representative of an

implementation, here the focus will be on the key insights and the rationale.

Outline:

• Project organisation

• Architecture implementation

• Field calculus implementation

• Distributed platform implementation

• Testing

8.1 Project organisation

The project has been split into multiple subprojects for better management:

• scafi-core – implements the core functionality, namely, the field calculus

language and virtual machine, a basic simulator, and spatial abstractions.

• scafi-tests – includes unit and acceptance tests for scafi-core

• scafi-distributed – implements the distributed platform.

• scafi-demos – provides examples and demonstration programs.

101

CHAPTER 8. IMPLEMENTATION AND TESTING

• scafi-docs – includes the latex files for the tutorial and reference manual.

Each subproject is versioned and has its own dependencies and build configu-

ration.

More technically, the project is versioned with Git and uses sbt (the Scala

Build Tool) for project and build automation.

8.2 scafi DSL and VM implementation

The implementation of the component-based architecture presented in Chap-

ter 7 has been implemented in Scala using a few features and techniques described

in Chapter 1 and 2.

Briefly, components are represented by traits defining (abstract) types, traits,

classes, objects and so on. This allows to create families of mutually recursive

types (cf., family polymorphism in Section 2.5) that can be refined incrementally.

For what concerns the implementation of the scafi DSL and virtual machine,

Figure 8.1 highlights the key classes and traits:

• The Constructs trait exposes the field calculus primitives as methods.

• The Context trait is used to represent an execution context for an aggregate

computation round.

• An Export is a data structure for the result of a (local) aggregate computa-

tion; a typical operation on an export is the extraction of the root value.

• ExecutionTemplate is where the semantics is actually implemented. Inter-

nally, the state of the computation is traced by a Status object, which works

as an immutable stack and keeps track of the branches in the computation

tree.

8.2.1 Operational semantics of the field calculus

The operational semantics of the field calculus (briefly described in Sec-

tion 4.2.3) has been implemented in the class ExecutionTemplate within the

component Semantics.

102

CHAPTER 8. IMPLEMENTATION AND TESTING

Figure 8.1: Structure diagram for the DSL and VM.

103

CHAPTER 8. IMPLEMENTATION AND TESTING

The execution of an aggregate program begins in method round, which accepts

a context (instance of type CONTEXT), the expression to be evaluated, and returns

an export (instance of type EXPORT).

The export is equivalent to the notion of value tree that was introduced when

presenting the semantics for the HOFC, i.e., a tree-like data structure with a root

value and an ordered-list of subtrees. The current implementation is as follows:

• The export is implemented (ExportImpl) as a map from Paths to Any values.

• A Path is a data structure that keeps track of the nodes of the value tree,

implemented (PathImpl) as a list of Slots.

• A Slot is a generic element that can be a node in the value tree.

• There are four concrete slots: Nbr, Rep, If, FunCall. All these case

classes accept an index because there may be multiple uses of the same

construct at the same level of the tree.

During the computation, the interpreter must keep track of the current position

in the value tree so as to implement structural alignment. For the purpose, a stack-

like data structure has been defined (trait Status); more precisely, it is a stack

of triples of the form (p:Path, index:Int, nbr: Option[ID]), where the 3-rd

component is used for the foldhood, which will be described in a while.

The execution context must provide access to the following information:

• The device (identifier) that is performing the computation.

• The set of neighbours and their respective exports, i.e., the value tree envi-

ronment.

• Local sensors.

• Environmental sensors, which return fields mapping the device itself and its

neighbours to values.

Specification and execution of aggregate programs As previously said, the

field calculus logics is implemented by class ExecutionTemplate:

trait AggregateProgramSpecification extends Constructs {
type MainResult

104

CHAPTER 8. IMPLEMENTATION AND TESTING

def main(): MainResult
}

trait ExecutionTemplate extends (CONTEXT=>EXPORT) with
AggregateProgramSpecification {
// ... impl of FC operational semantics ...

}

In order to use the field calculus operators, expressions must refer to the meth-

ods declared in Constructs and, ultimately, these method calls will resolve to

the implementations defined in ExecutionTemplate, which essentially works as

an interpreter. This means that any executable aggregate program is necessar-

ily an instance of ExecutionTemplate. However, it is possible to separate the

specification of a program from its executable embodiment:

trait MyProgram extends AggregateProgramSpecification with Builtins {
type MainResult = Double

def hopGradient(source: Boolean): Double = {
rep(Double.PositiveInfinity){

hops => { mux(source) { 0.0 } { 1+minHood(nbr{ hops }) } }
}

}

def main() = hopGradient(sense("source"))
}

object MyExecutableProgram extends ExecutionTemplate with MyProgram

val ctx: Context = _ // some context
val result = MyExecutableProgram(ctx)

Note how the object MyExecutableProgram is invoked in function notation

with the context argument.

105

CHAPTER 8. IMPLEMENTATION AND TESTING

Figure 8.2: Informal diagram of the elements involved in the execution of aggregate

programs in scafi.

The beginning of an aggregate computation The round method is the entry

point for the evaluation of aggregate expressions:

trait ExecutionTemplate extends (CONTEXT=>EXPORT) with
AggregateProgramSpecification {
private var ctx: CONTEXT = _
private var exp: EXPORT = _
private var status: Status = _

def apply(c: CONTEXT): EXPORT = {
round(c,main())

}

def round(c: CONTEXT, e: => Any = main()): EXPORT = {

106

CHAPTER 8. IMPLEMENTATION AND TESTING

ctx = c
exp = factory.emptyExport
status = Status()
exp.put(factory.emptyPath, e) // Reference to ’e’ triggers the

evaluation.
this.exp

}

Given a CONTEXT instance and an expression e to evaluate (note that e is a call-

by-name argument, i.e., it is passed unevaluated), the method round returns one

export value. The root of this export will be equal to the result of the evaluation

of the expression itself. Potential subtrees may be added to the export as long as

the evaluation of e proceeds.

Before starting the evaluation of the program expression, the machine state

is initialised: the current execution context is set to the input context, the cur-

rent export is initialised to an empty export, and the auxiliary status object is

constructed anew.

Construct: rep The rep construct accepts an initial value (of a generic type A)

and a state-transforming function (endofunction). The implementation code for

the operator follows:

def rep[A](init: A)(fun: (A) => A): A = {
ensure(status.neighbour.isEmpty, "can’t nest rep into fold")

nest(Rep[A](status.index)) { // 1.
val in = ctx.readSlot(ctx.selfId, status.path).getOrElse(init) // 2.
fun(in) // 3.

}
}

The evaluation consists in three steps:

1. The nest function is called with a slot (a Rep at the current index, which

initially is zero) and an unevaluated block of code. Effectively, nest wraps

the expression around state-management code in order to progressively “nav-

igate”, back and forth, the value tree.

def nest[A](slot: Slot)(expr: => A): A = {
try {

107

CHAPTER 8. IMPLEMENTATION AND TESTING

status = status.push().nest(slot) // i) Prepare nested call
exp.put(status.path, expr) // ii) Function return value is

result of expr
} finally {
status = status.pop().incIndex(); // iii) Restore the status

}
}

First, the current status triple (path,index,nbrOpt) is pushed on the stack,

and a new status is built by extending the path with slot. Secondly, expr

is evaluated, the result is returned after being used to add an export for

the current path. Thirdly, before leaving the method, the original status is

restored (the popped triple becomes the current status), and the index is

increased to take into account the possibility of having multiple occurrences

of the same slot at the same level.

2. The state value for the rep is set to either the export of the current device

at the current value tree path (if available) or the initial value.

3. The body of the rep is invoked with the state value, continuing the descent

of this branch of the value tree.

Constructs: foldhood and nbr The following listing reports the implementa-

tion code for these two constructs:

def foldhood[A](init: => A)(aggr: (A, A) => A)(expr: => A): A = {
ensure(status.neighbour.isEmpty, "can’t nest fold constructs")

try {
val v = aligned()
val res = v.map { i =>

handling(classOf[OutOfDomainException]) by (_ => init) apply {
frozen { status = status.foldInto(i); expr }

}
}
res.fold(init)(aggr)

} finally {
status = status.foldOut()
status = status.incIndex()

}
}

def nbr[A](expr: => A): A = {
ensure(status.isFolding, "nbr should be nested into fold")

108

CHAPTER 8. IMPLEMENTATION AND TESTING

nest(Nbr[A](status.index)) {
if (status.neighbour.get == ctx.selfId){
status = status.foldOut(); expr

} else {
ctx.readSlot[A](status.neighbour.get, status.path)
.getOrElse(throw new OutOfDomainException(

ctx.selfId, status.neighbour.get, status.path))
}

}
}

Note that foldhood is not one of the original constructs of the field calculus

(see Section 4.2.1). In fact, it has been introduced for a technical reason which I

am about to explain.

According to natural semantics of the field calculus, the nbr construct evaluates

to a field of fields, where each device of the system is mapped to a field which in turn

maps the device’s neighbours to some computational objects. Thus, in the context

of a device (local viewpoint), a nbr would produce a neighbourhood field. Now,

the issue is that as long as such a field is not be condensed to a local value (e.g., by

means of *-hood operators such as minhood), operations are performed on entire

fields and this would require to lift any operator to work with fields. However,

given the constraints of the Scala type system, the feasibility and effectiveness of

such a lifting are questionable.

In scafi, the solution to this problem consists in the introduction of a con-

struct, foldhood, which is responsible to the evaluation of an nbr expression

against all the aligned neighbours of the currently executing device.

More in detail, the implementation of foldhood works by retrieving the aligned

neighbours and mapping them to their local expression expr (which will typically

include a nbr or nbrvar expression), unevaluated. Then, the resulting structure

if folded (reduced) with the given aggregation function and initial accumulation

value. The aligned function returns all the neighbours for which the context

contains an export at the current value tree node (path), and appends the current

device at the end of the list (this is necessary in this implementation because of

how nest works).

For what concerns the implementation of nbr, note that the operations depends

109

CHAPTER 8. IMPLEMENTATION AND TESTING

on the currently folding device: if it is the device that is performing the aggregate

computation, then the body expression for the nbr is evaluated; otherwise, this

involves a neighbour and the value to be returned is the neighbour’s export value

at the current path.

Construct: if This construct, renamed as branch because the if keyword is

reserved in Scala, implements domain restriction:

def branch[A](cond: => Boolean)(th: => A)(el: => A): A = { // 1
val b = cond // 2a
nest(If[A](status.index, b)){ // 2b
if (b) th else el // 3

}
}

The important details are the following ones:

1. The condition, then, and else expressions are passed unevaluated (as thunks).

2. The condition is evaluated first, and the result is used for the nesting in the

value tree – this means that the devices for which the condition is true are

in a different domain with respect to those for which the condition turns out

to be false.

3. Based on the result of the condition, either the then or the else expression

is evaluated, so that domain restriction is respected.

Construct: aggregate This construct has been added to support first-class

aggregate functions (see Section 4.2.2 about Higher-Order Field Calculus). The

key aspect in the implementation is the nesting based on the function identifier

which accomplishes domain restriction via alignment:

def aggregate[T](f: => T): T = {
var funId = Thread.currentThread().getStackTrace()(3)

nest(FunCall[T](status.index, funId)) { f }
}

110

CHAPTER 8. IMPLEMENTATION AND TESTING

Sensors Access to local sensors and environmental sensors is provided by the

execution context:

def sense[A](name: LSNS): A =
ctx.sense[A](name).getOrElse(throw new SensorUnknownException(ctx.selfId,
name))

def nbrvar[A](name: NSNS): A = {
val nbr = status.neighbour.get
ctx.nbrSense(name)(nbr)

.getOrElse(throw new NbrSensorUnknownException(ctx.selfId, name, nbr))
}

Some words of explanation about nbrvar are needed. An environmental sensor

conceptually returns a field mapping devices to values. As a consequence, it is

subject to the same technical issues as the nbr operator and the solution is the

same: nbrvar must be nested in a foldhood, so that it is possible to query the

sensor for the device of the current “fold”.

8.2.2 Spatial abstraction implementation

As shown in Figure 8.3, any SpatialAbstraction has a type P for representing

positions in the space and a type SPACE[E] that abstractly defines a spatial con-

tainer of elements of type E. Basically, a spatial container contains some elements

and relates them to positions, thus realising a notion of situatedness ; moreover, it

implements a NeighbouringRelation to specify when two positions are considered

nearby.

An AdHocSpatialAbstraction constrains spatial containers to be ad-hoc

spaces, i.e., spaces where elements are in a one-to-one relationship with the posi-

tions, and where the notion of neighbourhood is specific to each element.

By contrast, a MetricSpatialAbstraction introduces a type D for distances

and requires spatial containers to implement some DistanceStrategy that, given

two positions, returns the distance between them (getDistance method).

111

CHAPTER 8. IMPLEMENTATION AND TESTING

Figure 8.3: Structure diagram for the spatial abstraction.

112

CHAPTER 8. IMPLEMENTATION AND TESTING

8.3 Distributed platform implementation

The high-level design architecture for the distributed middleware and a more

detailed tour of the design of the actor-based platform are provided in Sections

7.1.4 and 7.2, respectively.

The implementation of the platform components follows the same pattern as in

the core library, where family polymorphism is used to define a set of related types

that can be refined incrementally in more specialised components. Moreover, for

a more effective organisation of code, the self-type feature has been used to split a

big component into multiple sub-components located at different source code files.

8.3.1 Actors and reactive behavior

The actor platform has been implemented using the Akka framework. In Akka,

actors are defined by extending the akka.actor.Actor trait and implementing the

receive method, of type Receive=PartialFunction[Any,Unit], that associates

reactions to incoming messages.

An interesting implication of having (reactive) behaviors expressed by

PartialFunctions is that they compose. This composability feature has been

extensively used to promote separation of concerns. For example, the device

behavior related to the management of sensors can be kept separated from the

behavior aimed at handling actuators:

def SensorManagementBehavior: Receive = {
case MsgAddPushSensor(ref) => { ref ! MsgAddObserver(self); ref ! GoOn }
case MsgAddSensor(name, provider) => setLocalSensor(name, provider)

}

def ActuatorManagementBehavior: Receive = {
case MsgAddActuator(name, consumer) => setActuator(name, consumer)

}

def CompositeBehavior: Receive =
SensorManagementBehavior
.orElse(ActuatorManagementBehavior)

113

CHAPTER 8. IMPLEMENTATION AND TESTING

Moreover, it is also possible to leverage on trait stacking to automatically

extend some behavior by mixing in behavior traits:

trait BasicActorBehavior { selfActor: Actor =>

def receive: Receive =
workingBehavior
.orElse(inputManagementBehavior)
.orElse(queryManagementBehavior)
.orElse(commandManagementBehavior)

def inputManagementBehavior: Receive = Map.empty
def queryManagementBehavior: Receive = Map.empty
def commandManagementBehavior: Receive = Map.empty
def workingBehavior: Receive = Map.empty

}

trait SensorManagementBehavior extends BasicActorBehavior { selfActor: Actor =>
def SensorManagementBehavior: Receive = { ... }

override def inputManagementBehavior: Receive =
super.inputManagementBehavior.orElse(SensorManagementBehavior)

// ...
}

trait ActuatorManagementBehavior extends BasicActorBehavior { selfActor: Actor
=>

def ActuatorManagementBehavior: Receive = { ... }

override def inputManagementBehavior: Receive =
super.inputManagementBehavior.orElse(ActuatorManagementBehavior)

// ...
}

class DeviceActor extends Actor
with SensorManagementBehavior
with ActuatorManagementBehavior { ... }

8.3.2 Code mobility: proof-of-concept

Section 4.2.2 has presented the higher-order field calculus, an extension to field

calculus with distributed first-class functions.

In the context of scafi, the “code” to be shipped is represented by func-

tions (which can be closures) or, more generally, by objects. Note that, in Scala,

114

CHAPTER 8. IMPLEMENTATION AND TESTING

functions are represented by objects of one of the function traits Function0[R]

to Function22[-T1,-T2,...,-T22,+R], and a lambda expressions is nothing but

syntactic sugar over an anonymous class definition refining a function class.

val f1 = () => "foo"
val f2 = new Function0[String] { def apply = "foo" }

The problem inherent in transferring objects, by an implementation point of

view, lies in the fact that the destination machine may not have the class for the

incoming object. In fact, a class may be local to a specific subsystem.

When a communication across the network is initiated, the message (object)

undergoes a serialisation (also known as marshalling) process on the sending side;

that is, the object is converted into a stream of bytes for delivery through the

wire. On the receiving side, the stream of bytes is deserialised to reconstruct the

message.

However, if the message contains objects of classes which are not available

at the recipient site, the unmarshalling cannot be performed; when using Java

Serialization, the result is typically an exception of type ClassNotFoundException

or NoClassDefFound.

How to deal with such a situation? The idea is to prevent or recover from the

failure and let the receiver load the missing classes. This could be implemented in

different ways. What is important is to handle such scenarios at the infrastructure-

level.

The currently implemented solution, which is perfectible, works by intercepting

deserialisation exceptions due to missing classes. This is achieved with a custom

Akka (de)serialiser configured to be used for specific kinds of messages. When

an error is caught, the deserialisation process returns a special message with the

responsible class name to the defined recipient. At this point, the receiver B can

ask the original sender A for the missing classes.

When A receives a request for a class c, it has to obtain the code of c as

well as its dependencies. For the purpose, frameworks such as Apache ByteCode

Engineering Library (BCEL) or OW2 ASM can be used; these usually provide

visitors for navigating through classes. The result of such a lookup procedure is

115

CHAPTER 8. IMPLEMENTATION AND TESTING

something like a map from class names to the corresponding Array[Byte] objects.

This bundle has to be sent to side B which will operate to register the provided

classes to the local classloader.

This process essentially works (as a proof-of-concept), though there is some

urgent work to do:

• Decontamination – The current major flaw is that the high-level actors are

aware of the class loading, while it would be far better to keep the process

confined at the infrastructure level.

• Soundness – The protocol should be tested for correctness.

• Efficiency – The protocol should avoid the retrieval of unnecessary depen-

dencies and the transmission of unnecessary classes.

• Object and closure cleaning – According to SI-14191, “named inner

classes always contain a reference to their enclosing object, regardless of

whether it is use or not”; it is important to remove unnecessary pointers2

both for performance and to avoid references to non-serializable objects.

• Security – The entire code mobility process should be evaluated with respect

to security.

8.4 Testing

It is well-known that testing represents an important activity in software en-

gineering. For what concerns this first stage of development of scafi, the testing

of the field calculus VM has been considered an essential requirement. In fact,

the virtual machine is the core of the library, what ultimately executes aggregate

computations; so, it must work properly and once it works, just as importantly,

it should continue to operate in a correct way after refactoring activities and new

developments. For this reason, a good-coverage safety net of automated regres-

sion tests have been prepared.

1https://issues.scala-lang.org/browse/SI-1419
2See Spark’s ClosureCleaner: https://github.com/apache/spark/blob/master/core/

src/main/scala/org/apache/spark/util/ClosureCleaner.scala

116

https://issues.scala-lang.org/browse/SI-1419
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/util/ClosureCleaner.scala
https://github.com/apache/spark/blob/master/core/src/main/scala/org/apache/spark/util/ClosureCleaner.scala

CHAPTER 8. IMPLEMENTATION AND TESTING

When I refer to tests, I will use the following terminology:

• A unit test checks the correctness of an small, individual software unit, which

typically corresponds to a class.

• A functional test verifies a software component against a specification.

• An integration test checks the correctness of a set of interacting software

components where the emphasis is on the mutual interactions.

• An acceptance test validates a software component against user requirements.

Concerning the scafi VM, the implementations of the following interfaces have

been unit tested: Status, Context, Export, Path.

Functional tests are defined at two distinct levels:

1. Round-level – A round of an aggregate program is executed with a controlled

context, and the resulting export is checked against an expected form.

2. Network-level – By means of a simulator, an aggregate program is executed

on an input network and, after a certain number of rounds, the output net-

work’s values are checked against expected values.

Note that the network-level test represents a test for the simulator as well.

Moreover, it is also an integration test as it verifies that the simulator and the

interpret properly work together.

8.4.1 An excerpt of functional tests

The test cases are implemented with ScalaTest3, a popular testing framework

for Scala.

Alignment semantics. The check consists in verifying that operations build on

a neighbourhood field take into account aligned neighbours only.

Alignment("should support interaction only between structurally compatible devices") {
// ARRANGE
val ctx1 = ctx(selfId = 0, nbs = Set(0,1,2))
// ACT + ASSERT (no neighbor is aligned)
round(ctx1, { rep(0)(foldhood(_)(_+_)(1)) }).root[Int]() shouldBe 1

3http://www.scalatest.org/

117

http://www.scalatest.org/

CHAPTER 8. IMPLEMENTATION AND TESTING

// ARRANGE
val exp = Map(1 -> export(path(Rep(0)) -> 1))
val ctx2 = ctx(selfId = 0, nbs = Set(0,1,2), exports = exp)
// ACT + ASSERT (one neighbor is aligned)
round(ctx2, { rep(0)(foldhood(_)(_+_)(1)) }).root[Int]() shouldBe 2

}

rep semantics. For the rep construct, three aspects should be tested:

1. The use of the initial state at the first execution.

2. The registration of a new state after the computation.

3. The reuse of an existing state.

REP("should support dynamic evolution of fields") {
// ARRANGE
val ctx1 = ctx(selfId = 0, nbs = Set(0,1,2))
// ACT
val exp1 = round(ctx1, { rep(9)(_*2) })
// ASSERT (use initial value)
exp1.root[Int]() shouldBe 18
exp1.get(path(Rep(0))) shouldBe Some(18)

// ARRANGE
val exp = Map(0 -> export(path(Rep(0)) -> 7))
val ctx2 = ctx(selfId = 0, nbs = Set(0,1,2), exports = exp)
// ACT
val exp2 = round(ctx2, { rep(9)(_*2) })
// ASSERT (build upon previous state)
exp2.root[Int]() shouldBe 14
exp2.get(path(Rep(0))) shouldBe Some(14)

}

Sensors. The context comprehends the sensor values. Thus, the result of reading

the value of a sensor should be coherent with the context.

SENSE("should simply evaluate to the last value read by sensor") {
// ARRANGE
val ctx1 = ctx(0, Set(0), Map(), Map("a" -> 7, "b" -> "high"))
// ACT + ASSERT (failure as no sensor ’c’ is found)
round(ctx1, { sense[Any]("a") }).root[Int]() shouldBe 7
round(ctx1, { sense[Any]("b") }).root[String]() shouldBe "high"

}

SENSE("should fail if the sensor is not available") {
// ARRANGE
val ctx1 = ctx(0, Set(0), Map(), Map("a" -> 1, "b" -> 2))
// ACT + ASSERT (failure as no sensor ’c’ is found)
intercept[Exception] { round(ctx1, { sense[Any]("c") }) }
// ACT + ASSERT (failure if an existing sensor does not provide desired kind of data)
intercept[Exception] { round(ctx1, { sense[Boolean]("a") }) }

}

118

CHAPTER 8. IMPLEMENTATION AND TESTING

aggregate construct. It has to be verified that the construct supports domain

restriction, i.e., when a device executes an aggregate function, its neighbourhood

should only consists of aligned devices executing the same function.

class TestFunctionCall extends FlatSpec with Matchers {
import ScafiAssertions._
import ScafiTestUtils._

val AggregateFunctionCall = new ItWord

private[this] trait SimulationContextFixture {
implicit val node = new Node
val net: Network with SimulatorOps =

simulatorFactory.gridLike(n = 6, m = 6, stepx = 1, stepy = 1, eps = 0, rng = 1.1)
net.addSensor(name = "source", value = false)
net.chgSensorValue(name = "source", ids = Set(2), value = true)
net.addSensor(name = "obstacle", value = false)
net.chgSensorValue(name = "obstacle", ids = Set(21,22,27,28,33), value = true)

}
// NETWORK (devices by their ids)
// 0 1 2 3 4 5
// 6 7 8 9 10 11
// 12 13 14 15 16 17
// 18 19 20 21 22 23
// 24 25 26 27 28 29
// 30 31 32 33 34 35
// For each device, its neighbors are the direct devices at the top/bottom/left/right

private[this] class Node extends Execution {
def isObstacle = sense[Boolean]("obstacle")
def isSource = sense[Boolean]("source")

def hopGradient(source: Boolean): Int = {
rep(Double.PositiveInfinity){

hops => {
mux(source){ 0.0 } { 1+minHood(nbr{ hops }) }

}
}.toInt
// NOTE 1: Double.PositiveInfinity + 1 = Double.PositiveInfinity
// NOTE 2: Double.PositiveInfinity.toInt = Int.MaxValue

}

def numOfNeighbors: Int = foldhood(0)(_+_)(nbr { 1 })
}

AggregateFunctionCall should "support restriction, e.g., while counting neighbors" in new
SimulationContextFixture {
// ARRANGE
import node._
// ACT
implicit val endNet = runProgram({

mux(isObstacle)(() => aggregate { -numOfNeighbors })(() => aggregate { numOfNeighbors })()
}, ntimes = 1000)(net)
// ASSERT
assertNetworkValues((0 to 35).zip(List(

3, 4, 4, 4, 4, 3,
4, 5, 5, 5, 5, 4,
4, 5, 5, 4, 4, 4,
4, 5, 4, -3, -3, 3,
4, 5, 4, -4, -3, 3,

119

CHAPTER 8. IMPLEMENTATION AND TESTING

3, 4, 3, -2, 2, 3
)).toMap)
// NOTE how the number of neighbors for "obstacle" devices are restricted

}

AggregateFunctionCall should "work, e.g., when calculating hop gradient" in new
SimulationContextFixture {
// ARRANGE
import node._
val max = Int.MaxValue
// ACT
implicit val endNet = runProgram({

mux(isObstacle)(() => aggregate { max })(() => aggregate { hopGradient(isSource) })()
}, ntimes = 1000)(net)
// ASSERT
assertNetworkValues((0 to 35).zip(List(

2, 1, 0, 1, 2, 3,
3, 2, 1, 2, 3, 4,
4, 3, 2, 3, 4, 5,
5, 4, 3, max, max, 6,
6, 5, 4, max, max, 7,
7, 6, 5, max, 9, 8

)).toMap)
}

}

120

Part IV

Evaluation

Chapter 9

Evaluation

This chapter is intended to correlate the initial goals with the final results.

Does scafi fulfill its original expectations?

Outline

1. Requirement verification

2. Demonstrative programs

3. Evaluation results

9.1 Requirement verification

A set of requirements has been defined in Section 6.1.

9.1.1 Field calculus DSL and VM

scafi provides a language for field calculus, embedded within Scala, i.e., as an

internal DSL. The language is typed: its typing leverages on the typing of Scala as

operations resolve to generic method invocations. By a syntactic point of view, it

feels less awkward than MIT Proto[30], and no additional syntactic structures are

introduced other than those available in Scala (cf., external DSLs such as Protelis).

Complete field calculus support All the basic constructs (see Section 6.2.1)

are supported.

123

CHAPTER 9. EVALUATION

Correctness and testing Functional tests have been defined to check the cor-

rectness of the semantics of the field calculus primitives and built-in operators.

Tests have been written for both single-rounds and network simulations.

Higher-order field calculus support scafi supports distributed first-class

functions. However, as there is no direct way to transparently lift Scala functions

in order to adapt them to the desired domain-restriction semantics, it has been

necessary to introduce a new explicit construct (aggregate).

9.1.2 Aggregate programming platform

Distributed system specification and execution As described in Sec-

tion 7.2.4, scafi provides an API for the setup and execution of distributed ag-

gregate systems.

Configurability and support for different profiles In scafi, there are two

levels of system configuration. The first level is given by incarnations, where

the programmer creates a platform embodiment by choosing a certain kind of

architecture (profile) and defining the set of types to work with. scafi provides a

set of predefined platforms:

• Local simulation

• Local, spatial simulation

• Peer-to-peer, actor-based platform

• Actor-based platform with central server

• Actor-based platform with spatial central server

The second level of configuration is based on a structure of settings, which

comes with defaults, so that the programmer is required to set up only a subset

of the settings.

Code mobility A basic support for code mobility in distributed aggregate sys-

tems has been implemented as described in Section 8.3.2.

124

CHAPTER 9. EVALUATION

Nevertheless, the current implementation should be tested and improved. In

particular, it would be important to encapsulate the code shipping facility within

a well-defined, testable, infrastructure-level service.

Spatial computing A SpatialAbstraction component has been defined to sup-

port the definition of spaces (see Sections 7.1.2 and 8.2.2). Such spatial features

can be used both in simulations (cf., SpatialSimulation component) and in the

costruction of distributed systems (cf., actor.server.SpatialPlatform).

Non-functional requirements The next section, by means of demonstrative

programs, will show how the non-functional requirements such as simplicity of use

and flexibility can be considered satisfied.

9.2 Demos: the framework in action

A few demonstrative programs have been written in order to show how the

framework can be used to develop distributed applications. Here, I am going to

present them as an evidence for the accomplishment of the goals of this thesis.

In this presentation, the following dimensions of variability are considered:

• Architectural style

– Peer-to-peer (P2P)

– Server-based

• Neighbourhood management

– Ad-hoc network (graph)

– Use of spatial abstractions, with devices situated in a metric space

• Mobility

– Fixed network

– Mobile network

• Use of sensors

125

CHAPTER 9. EVALUATION

• Kind of configuration

– Programmatic

– File-based

– Command-line

• Use of graphical user-interfaces (GUI)

9.2.1 Demo 0 – Peer-to-peer, ad-hoc network

In the peer-to-peer architectural style, there is no centralisation point, and

the devices directly interact with one another. An ad-hoc network is a graph of

devices and is specified by providing the nodes and the links (edges) of the network,

explicitly.

A. Programmatic configuration Source code:

import scala.concurrent.duration.DurationInt

// STEP 1: CHOOSE INCARNATION
import it.unibo.scafi.incarnations.{ BasicActorP2P => Platform }

object Demo0A_Inputs {
// STEP 2: DEFINE AGGREGATE PROGRAM SCHEMA
trait Demo0A_AggregateProgram extends Platform.AggregateProgram {
override def main(): Any = foldhood(0){_ + _}(1)

}

// STEP 3: DEFINE SETTINGS
val aggregateAppSettings = Platform.AggregateApplicationSettings(
name = "demo0A",
program = () => Some(new Demo0A_AggregateProgram {})

)
val deploymentSubsys1 =
Platform.DeploymentSettings(host = "127.0.0.1", port = 9000)

val deploymentSubsys2 =
Platform.DeploymentSettings(host = "127.0.0.1", port = 9500)

val settings1 = Platform.settingsFactory.defaultSettings().copy(
aggregate = aggregateAppSettings,
platform = Platform.PlatformSettings(
subsystemDeployment = deploymentSubsys1,
otherSubsystems = Set(Platform.SubsystemSettings(

subsystemDeployment = deploymentSubsys2,
ids = Set(4,5)

126

CHAPTER 9. EVALUATION

))
),
deviceConfig = Platform.DeviceConfigurationSettings(

ids = Set(1,2,3),
nbs = Map(1 -> Set(2,4), 2 -> Set(), 3 -> Set())

)
)

val settings2 = settings1.copy(
platform = Platform.PlatformSettings(

subsystemDeployment = deploymentSubsys2
),
deviceConfig = Platform.DeviceConfigurationSettings(

ids = Set(4,5), nbs = Map()
)

)
}

// STEP 4: DEFINE MAIN PROGRAMS
object Demo0A_MainProgram_Subsys1
extends Platform.BasicMain(Demo0A_Inputs.settings1)

object Demo0A_MainProgram_Subsys2
extends Platform.BasicMain(Demo0A_Inputs.settings2)

Note how the incarnation – which in this case is BasicActorP2P, aliased to

Platform – works as a container for types and classes.

With this configuration approach, the great majority of the code is devoted

to the programmatic construction of the settings. In any case, the key steps are

clear:

1. Choice of a platform incarnation

2. Definition of the aggregate computation program

3. System configuration

4. Definition of the “main” programs for launching subsystems

In this example, the system consists of two subsystems: the first with devices

1, 2, 3; the second with devices 4, 5. Also, the neighbourhood of device 1 is set to

include devices 2 and 4. The aggregate program simply computes, in each device,

the number of neighbours (plus the device itself).

B. File-based configuration Source code:

127

CHAPTER 9. EVALUATION

// STEP 1: CHOOSE INCARNATION
import it.unibo.scafi.incarnations.{ BasicActorP2P => Platform }

// STEP 2: DEFINE AGGREGATE PROGRAM SCHEMA
class Demo0B_AggregateProgram extends Platform.AggregateProgram {
override def main(): Any = foldhood(0){_ + _}(1)

}

// STEP 3: DEFINE MAIN PROGRAM
object Demo0B_MainProgram_Subsys1 extends
Platform.FileMain("demos/src/main/scala/demos/Demo0B_Subsys1.conf")

object Demo0B_MainProgram_Subsys2 extends
Platform.FileMain("demos/src/main/scala/demos/Demo0B_Subsys2.conf")

With this configuration approach, the system source code is not cluttered with

configuration code, which is relegated to files. The following listing reports the

content of Demo0B Subsys1.conf:

aggregate {
application.name = "demo0B"
application.program-class = "demos.Demo0B_AggregateProgram"
deployment {

host = "127.0.0.1"
port = 9000

}
subsystems = [${subsys2}]
execution {

scope {
type = "device" // Alternatives: device, global, subsystem
strategy = "delayed"
initial-delay = 1000
interval = 1000

}
}
devices {

ids = [1,2,3]
nbrs = {1:[2,4]}

}
}

subsys2 {
deployment {

host = "127.0.0.1"

128

CHAPTER 9. EVALUATION

port = 9500
}
ids = [4,5]

}

C. Command-line configuration Source code:

// STEP 1: CHOOSE INCARNATION
import it.unibo.scafi.incarnations.{ BasicActorP2P => Platform }

// STEP 2: DEFINE AGGREGATE PROGRAM SCHEMA
class Demo0C_AggregateProgram extends Platform.AggregateProgram {
override def main(): Any = foldhood(0){_ + _}(1)

}

// STEP 3: DEFINE MAIN PROGRAM
object Demo0C_MainProgram extends Platform.CmdLineMain

In this case, there is no need to differentiate the main programs as the subsys-

tems are configured by command-line arguments.

Two run configurations might be:

1. --program "demos.Demo0C_AggregateProgram" -h 127.0.0.1 -p 9000 -e

1:2,4;2;3 --subsystems 127.0.0.1:9500:4:5

2. --program "demos.Demo0C_AggregateProgram" -h 127.0.0.1 -p 9500 -e 4;5

9.2.2 Demo 1 – Server-based, ad-hoc network

In the server-based architectural style there is a central server that is responsi-

ble of the propagation of the device exports according to the implemented notion

of neighbourhood.

// STEP 1: CHOOSE INCARNATION
import it.unibo.scafi.incarnations.{ BasicActorServerBased => Platform }

// STEP 2: DEFINE AGGREGATE PROGRAM SCHEMA
class Demo1_AggregateProgram extends Platform.AggregateProgram {
override def main(): Any = foldhood(0){_ + _}(1)

}

// STEP 3: DEFINE MAIN PROGRAM

129

CHAPTER 9. EVALUATION

object Demo1_MainProgram extends Platform.CmdLineMain

object Server_MainProgram extends Platform.ServerCmdLineMain

Note that, with respect to Demo 0, the only differences are i) the choice of

the platform incarnation, and ii) the definition of a separate main program for the

server (actually, this is just for clarity).

9.2.3 Demo 2 – Server-based, spatial network

In this case, spatial abstractions are used: the server holds the information

about the location of the devices in a 3-dimensional space (situation), and the

neighbouring relation is based on the euclidean distance and a threshold value.

The devices retrieve their spatial position by a sensor and notify the server with

each new value (in this demo, the position is set once, so the network is fixed).

// STEP 1a: CHOOSE BASE INCARNATION
import it.unibo.scafi.distrib.actor.server.{SpatialPlatform =>

SpatialServerBasedActorPlatform}

// STEP 1b: REFINE AND INSTANTIATE INCARNATION
object Demo2_Platform
extends BasicAbstractDistributedIncarnation
with SpatialServerBasedActorPlatform
with BasicSpatialAbstraction with Serializable {
override val LocationSensorName: String = "LOCATION_SENSOR"
override type P = Point2D

override def buildNewSpace[E](elems: Iterable[(E,P)]): SPACE[E] =
new Basic3DSpace(elems.toMap) {
override val proximityThreshold = 2.5

}
}

// STEP 2: DEFINE AGGREGATE PROGRAM SCHEMA
class Demo2_AggregateProgram extends Demo2_Platform.AggregateProgram {
override def main(): Any = foldhood(0){_ + _}(1)

}

// STEP 3: DEFINE MAIN PROGRAM
object Demo2_MainProgram extends Demo2_Platform.CmdLineMain {
override def onDeviceStarted(dm: Demo2_Platform.DeviceManager,

sys: Demo2_Platform.SystemFacade) = {
dm.addSensorValue(Demo2_Platform.LocationSensorName,

Point2D(dm.selfId,0))
}

130

CHAPTER 9. EVALUATION

}

object Demo2_Server extends Demo2_Platform.ServerCmdLineMain

Here, the crucial points are the refinement of the spatial incarnation (in par-

ticular, the overriding of the factory method for the spatial container, and the

definition of the position type P to Point2D) and the specification of the device

location via addSensorValue.

9.2.4 Demo 3 – Server-based, mobile spatial network

In this demo, the devices are equipped with a location sensor that is let to

randomly vary its value (for some time). The aggregate program computes the

hop-distance from a “source” device.

import it.unibo.scafi.incarnations.BasicAbstractActorIncarnation
import it.unibo.scafi.space.{Point2D, BasicSpatialAbstraction}

// STEP 1a: CHOOSE BASE INCARNATION
import it.unibo.scafi.distrib.actor.server.{SpatialPlatform =>

SpatialServerBasedActorPlatform}

// STEP 1b: REFINE AND INSTANTIATE INCARNATION
object Demo3_Platform extends BasicAbstractActorIncarnation
with SpatialServerBasedActorPlatform
with BasicSpatialAbstraction with Serializable {
override val LocationSensorName: String = "LOCATION_SENSOR"
override type P = Point2D

override def buildNewSpace[E](elems: Iterable[(E,P)]): SPACE[E] =
new Basic3DSpace(elems.toMap) {

override val proximityThreshold = 1.5
}

}

// STEP 2: DEFINE AGGREGATE PROGRAM SCHEMA
class Demo3_AggregateProgram extends Demo3_Platform.AggregateProgram {
def hopGradient(source: Boolean): Double = {
rep(Double.PositiveInfinity){

hops => { mux(source) { 0.0 } { 1+minHood(nbr{ hops }) } }
}

}

def main() = hopGradient(sense("source"))
}

131

CHAPTER 9. EVALUATION

// STEP 3: DEFINE MAIN PROGRAMS
object Demo3_MainProgram extends Demo3_Platform.CmdLineMain {
override def onDeviceStarted(dm: Demo3_Platform.DeviceManager,

sys: Demo3_Platform.SystemFacade) = {
val random = new scala.util.Random(System.currentTimeMillis())
var k = 0
var positions = (1 to 5).map(_ => random.nextInt(10))
dm.addSensor(Demo3_Platform.LocationSensorName, () => {
k += 1
Point2D(if(k>=positions.size) positions.last else positions(k), 0)

})
dm.addSensorValue("source", dm.selfId==4)

}
}

object Demo3_ServerMain extends Demo3_Platform.ServerCmdLineMain

9.3 Evaluation results

A concise exposure of how functional requirements for scafi can be considered

verified is provided in Section 9.1. The demo programs presented in Section 9.2

are intended to provide some evidence also for what concerns non-functional re-

quirements, whereas some insights on the internal quality of the project can be

found in Chapters 7 and 8.

In particular, the demo programs clearly show how distributed, aggregate sys-

tems can be set up in scafi with just a few lines of code. This is coherent with

the framework’s goal of ease of use.

The goal of flexibility is also important, because of the variability of scenarios

that may take advantage of aggregate programming techniques. For example, as

shown in [26], even ad-hoc networks consisting of a small number of nodes may

employ aggregate programming techniques to implement distributed adaptative

algorithms. As shown in the demos, scafi supports both peer-to-peer and server-

based architectural styles, and allows for the definition of both ad-hoc networks

and networks overlaying some space-time fabric.

132

CHAPTER 9. EVALUATION

9.3.1 On internal quality: guidelines for improvement

scafi has been developed in limited time and, in part, as an explorative en-

deavour; so, in general, analysis and design activities should continue, accompanied

by extensive refactoring.

To be more precise, the following elements should require some attention.

Implementation of the component architecture The current implementa-

tion based on family-polymorphism should be investigated in detail in order to

gain a better understanding on the limitations of the approach. Real-world usage

of the framework may provide some advice in this direction. In particular:

• How must different incarnations be allowed to interact? For example,

presently, actors use instance-level message types – this means that a de-

vice actor built from an incarnation i1 is unable to interact with a devide

actor built from an incarnation i2. If this is not the intended behavior, it is

possible to implement a different semantics by avoiding extractors in pattern

matching and using type projection instead.

• The incarnation instances appear as huge objects containing a lot of mem-

bers. However, when exposing an incarnation to users, it would be better to

fine-tune the visibility of members so that only significant types and objects

(from the user-perspective) are visible.

Code mobility implementation As pointed out at the end of Section 8.3.2,

the implementation of the code shipping facility has room for improvement.

Serialisation of inner classess According to [31], the serialisation of in-

stances of inner classes is error prone and should be avoided. Unfortunately, the

component-based approach used in scafi makes use of component traits that

work as containers for many inner classes. This creates significant problems for

the implementation of the actor-based distributed platform, where serialisation is

used extensively. Currently, the problem has been naively solved by making in-

ner members of these components Serializable. A better solution would be to

133

CHAPTER 9. EVALUATION

(transparently) remove, from instances of inner classes, the reference to the object

of the containing class (when this is not used).

Testing Currently, the actor-based platform is totally untested. Given the com-

plexity of this module, some extent of automated tests would be very valuable.

Akka provides a dedicated module, akka-testkit, for testing actor systems at

different levels.

134

Chapter 10

Conclusion and Perspectives

This chapter includes a few brief, general considerations about this thesis’ work,

as well as some references to future developments.

10.1 Final thoughts

The aggregate programming approach synthesised in Part II and implemented

in scafi, based on computational fields and building blocks for robust coordination

as described in [27], seems promising. However, this potential should be tested

against the development of (real-world) applications, so as to let application forces

stress the approach to its limits and make practice reinforce current understanding.

For this reason, a framework such as scafi, which is aimed at simplifying the

development of aggregate applications, may be particularly valuable.

10.2 Agenda

scafi is by no means complete. In particular, the following aspects would be

very important for making scafi desirable in practice:

• Integration with the Alchemist simulator [25] – scafi comes with a very

basic simulator which can be used to setup simple networks of devices and

run aggregate computations on them. However, the goal was not to build

135

CHAPTER 10. CONCLUSION AND PERSPECTIVES

a fully-featured simulator, and it would not be savvy to reinvent the wheel,

unless strong motivations urged to do so.

• Android integration – The possibility of running scafi on Android smart-

phones would be greatly valuable for the development and testing of aggre-

gate applications.

• Cloud services – In some scenarios, it may be highly beneficial to take ad-

vantage of the cloud for executing aggregate computations. In these cases,

devices would be mainly devoted to sensing and acting on the environment,

with limited in-site processing.

In parallel to this thesis, activities working in these directions have already

been started (for example, see [32]), with preliminary results supporting the idea

that a complete toolchain might be available in reasonable time.

136

Bibliography

[1] The Scala language specification – version 2.9. http://www.scala-lang.

org/docu/files/ScalaReference.pdf. Accessed: 2015-11-29.

[2] The scala api documentation – version 2.11.0. http://www.scala-lang.org/

files/archive/api/2.11.0/. Accessed: 2015-11-29.

[3] Joshua D. Suereth. Scala in Depth. Manning Publications Co., Greenwich,

CT, USA, 2012.

[4] Martin Odersky and Matthias Zenger. Scalable component abstractions. ACM

SIGPLAN Notices, 40(10):41, October 2005.

[5] Cay S. Horstmann. Scala for the Impatient. Addison-Wesley Professional, 1st

edition, 2012.

[6] Paul Chiusano and Rnar Bjarnason. Functional Programming in Scala. Man-

ning Publications Co., Greenwich, CT, USA, 1st edition, 2014.

[7] Atsushi Igarashi and Mirko Viroli. On variance-based subtyping for paramet-

ric types. In Proceedings of the 16th European Conference on Object-Oriented

Programming, ECOOP ’02, pages 441–469, London, UK, UK, 2002. Springer-

Verlag.

[8] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C.

Mitchell. F-bounded polymorphism for object-oriented programming. In Pro-

ceedings of the Fourth International Conference on Functional Programming

Languages and Computer Architecture, FPCA ’89, pages 273–280, New York,

NY, USA, 1989. ACM.

137

http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/files/archive/api/2.11.0/
http://www.scala-lang.org/files/archive/api/2.11.0/

BIBLIOGRAPHY

[9] Atsushi Igarashi and Mirko Viroli. Variant parametric types: A flexible sub-

typing scheme for generics. ACM Transactions on Programming Languages

and Systems, 28(5):795–847, September 2006.

[10] Mirko Viroli and Antonio Natali. Parametric polymorphism in Java: An ap-

proach to translation based on reflective features. SIGPLAN Not., 35(10):146–

165, October 2000.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[12] Chiari Saito, Atsushi Igarashi, and Mirko Viroli. Lightweight family polymor-

phism. Journal of Functional Programming, 18:285–331, 2008.

[13] Erik Ernst. Family polymorphism. In Jørgen Lindskov Knudsen, editor,

Proceedings ECOOP 2001, LNCS 2072, pages 303–326, Heidelberg, Germany,

2001. Springer-Verlag.

[14] Franco Zambonelli and Marco Mamei. Spatial computing: An emerging

paradigm for autonomic computing and communication. In Autonomic com-

munication, pages 44–57. Springer, 2005.

[15] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape

and research challenges. ACM Transactions on Autonomous and Adaptive

Systems (TAAS), 4(2):14, 2009.

[16] Jacob Beal, Olivier Michel, and Ulrik Pagh Schultz. Spatial computing: Dis-

tributed systems that take advantage of our geometric world. ACM Trans.

Auton. Adapt. Syst., 6(2):11:1–11:3, June 2011.

[17] Matt Duckham. Decentralized Spatial Computing - Foundations of Geosensor

Networks. Springer, 2013.

[18] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll.

Organizing the Aggregate: Languages for Spatial Computing. page 60, feb

2012.

138

BIBLIOGRAPHY

[19] Jacob Beal and Mirko Viroli. Space–Time Programming. Philosophical Trans-

actions of the Royal Society of London A: Mathematical, Physical and Engi-

neering Sciences, 373(2046), 2015.

[20] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy,

Thomas F Knight Jr, Radhika Nagpal, Erik Rauch, Gerald Jay Sussman, and

Ron Weiss. Amorphous computing. Communications of the ACM, 43(5):74–

82, 2000.

[21] Ferruccio Damiani, Mirko Viroli, and Jacob Beal. A type-sound calculus of

computational fields. Science of Computer Programming, 117:17 – 44, 2016.

[22] Mirko Viroli, Ferruccio Damiani, and Jacob Beal. A calculus of computational

fields. In Carlos Canal and Massimo Villari, editors, ESOCC Workshops,

volume 393 of Communications in Computer and Information Science, pages

114–128. Springer, 2013.

[23] Ferruccio Damiani, Mirko Viroli, Danilo Pianini, and Jacob Beal. Code mobil-

ity meets self-organisation: A higher-order calculus of computational fields.

In Susanne Graf and Mahesh Viswanathan, editors, Formal Techniques for

Distributed Objects, Components, and Systems, volume 9039 of Lecture Notes

in Computer Science, pages 113–128. Springer International Publishing, 2015.

[24] Danilo Pianini, Mirko Viroli, and Jacob Beal. Protelis: Practical aggregate

programming. In Proceedings of the 30th Annual ACM Symposium on Applied

Computing, SAC ’15, pages 1846–1853, New York, NY, USA, 2015. ACM.

[25] Danilo Pianini, Sara Montagna, and Mirko Viroli. Chemical-oriented simula-

tion of computational systems with Alchemist. Journal of Simulation, 2013.

[26] Shane S. Clark, Jacob Beal, and Partha Pal. Distributed recovery for enter-

prise services. In SASO, pages 111–120. IEEE Computer Society, 2015.

[27] Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate Programming for

the Internet of Things. IEEE Computer, 48(9):22–30, 2015.

139

BIBLIOGRAPHY

[28] Mirko Viroli and Ferruccio Damiani. A calculus of self-stabilising computa-

tional fields. In eva Kühn and Rosario Pugliese, editors, Coordination Lan-

guages and Models, volume 8459 of LNCS, pages 163–178. Springer-Verlag,

June 2014. Proceedings of the 16th Conference on Coordination Models and

Languages (Coordination 2014), Berlin (Germany), 3-5 June.

[29] Jacob Beal and Mirko Viroli. Building blocks for aggregate programming of

self-organising applications. In Proceedings of the 2014 IEEE Eighth Interna-

tional Conference on Self-Adaptive and Self-Organizing Systems Workshops,

SASOW ’14, pages 8–13, Washington, DC, USA, 2014. IEEE Computer So-

ciety.

[30] MIT Proto. Mit Proto. Software available at http://proto. bbn. com, 2012.

[31] Fred Long, Dhruv Mohindra, Robert C. Seacord, Dean F. Sutherland, and

David Svoboda. The CERT Oracle secure coding standard for Java. The SEI

series in software engineering. Addison-Wesley, Upper Saddle River, NJ, 2012.

[32] Simone Costanzi. Integrazione di piattaforme d’esecuzione e simulazione in

una toolchain Scala per aggregate programming.

140

	Abstract (italiano)
	Abstract
	Introduction
	I Background: Scala for Library Development
	Advanced Scala Features
	The Scala programming language
	On object-oriented programming and traits
	OOP in Scala: a quick tour of the basics
	Traits
	Class construction and linearisation
	Traits: member overriding and super resolution
	Trait instantiation, refinement, early definitions

	The Scala type system
	Some preparatory definitions
	Advanced types

	Generic programming in Scala
	Type parameters
	Type bounds (bounded quantification)
	Type variance
	Abstract types vs. type parameters

	Implicits
	Implicit scope
	Implicit classes
	More on implicits

	Advanced Scala Techniques
	``Pimp my library'' pattern
	Type classes
	Component modelling and implementation
	Cake Pattern
	Family polymorphism
	Internal DSL development
	On syntactic sugar
	On associativity and precedence
	"Dynamic" features
	Examples

	II Background: Aggregate Programming
	Space-Time Programming and Spatial Computing
	Motivation: context and issues
	Distributed computing scenarios
	Key issues and unsuitableness of traditional approaches

	Spatial computing
	Space-oriented computation
	Defining spatial computing (as space-time programming)
	Analytical framework
	Discrete vs. continuous space-time

	Field Calculus
	Computational fields
	Field calculus
	Basis set of operators
	Higher-Order Field Calculus (HOFC)
	Operational semantics
	Case study: Protelis

	Aggregate Programming
	From device to aggregate view
	The aggregate programming stack
	Composable self-organisation

	III scafi: Development
	Analysis
	Requirements
	Field calculus
	Aggregate programming platform

	Requirement analysis
	Field calculus – DSL and VM
	Aggregate programming systems

	Problem analysis
	Field calculus DSL: embedding within Scala

	Abstraction gap
	Distributed Platform

	Design
	Design architecture
	scafi DSL and VM
	Spatial abstraction
	Simulator
	Distributed platform

	Actor platform design
	System design
	Server-based actor platform
	Peer-to-peer actor platform
	API design

	Implementation and testing
	Project organisation
	scafi DSL and VM implementation
	Operational semantics of the field calculus
	Spatial abstraction implementation

	Distributed platform implementation
	Actors and reactive behavior
	Code mobility: proof-of-concept

	Testing
	An excerpt of functional tests

	IV Evaluation
	Evaluation
	Requirement verification
	Field calculus DSL and VM
	Aggregate programming platform

	Demos: the framework in action
	Demo 0 – Peer-to-peer, ad-hoc network
	Demo 1 – Server-based, ad-hoc network
	Demo 2 – Server-based, spatial network
	Demo 3 – Server-based, mobile spatial network

	Evaluation results
	On internal quality: guidelines for improvement

	Conclusion and Perspectives
	Final thoughts
	Agenda

	References

