ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

DICAM – Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali Ingegneria Civile, curriculum Strutture

TESI DI LAUREA

in

Progetto di Ponti

Valutazione degli effetti del ritiro del calcestruzzo in un impalcato da ponte a sezione mista con modelli analitici e numerici

CANDIDATO:

Francesco Cavallini

RELATORE:

Chiar.mo Prof. Ing. Stefano Silvestri

CORRELATORE:

Dott. Ing. Michele Bianchini

Anno Accademico 2014/15

III Sessione

Indice

1.1 Background 25 1.2 Obiettivo del lavoro 25 1.3 Organizzazione del lavoro 26 PARTE I – Modelli analitici e numeri per la definizione degli sforzi dovuti al 29 2 Definizione del fenomeno del ritiro del calcestruzzo 29 2.1 Il ritiro: il fenomeno fisico 29 2.2 Considerazioni generali sugli effetti della viscosità e del ritiro 31 3 Calcolo dell'effetto del ritiro secondo le Normative vigenti 35 3.1 Approcci suggeriti dal D.M. 14/01/2008 e dal EC2-1-1:2005 35 3.2 Esempio numerico di calcolo del ritiro applicando le normative D.M. 14/01/2008 ed EC2 - pare2 3.3 Analisi di sensitività dei parametri che concorrono alla definizione di cess47 4 Casi fondamentali 4.1 Ipotesi per lo sviluppo dei casi fondamentali 52 4.3 Elemento di solo calcestruzzo 55 4.3.1 Schema di vincolamento isostatico (esternamente) 60 4.3.2.1 Modello numerico di raffronto 57 4.3.2 Schema di vincolamento iperstatico (esternamente) nello stato fessurato. 5.4.1 Modello numerico di raffronto 61 4.3.2.1 Modello numerico di raffronto 61 4.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato. 65 4.4.	1 Premessa	25
1.2 Obiettivo del lavoro 25 1.3 Organizzazione del lavoro 26 PARTE I – Modelli analitici e numeri per la definizione degli sforzi dovuti al ritro del calcestruzzo 29 2 Definizione del fenomeno del ritiro del calcestruzzo 29 2 Definizione del fenomeno fisico 29 2.1 Il ritiro: il fenomeno fisico 29 2.2 Considerazioni generali sugli effetti della viscosità e del ritiro 31 3 Calcolo dell'effetto del ritiro secondo le Normative vigenti 35 3.1 Approcci suggeriti dal D.M. 14/01/2008 e dal EC2-1-1:2005 35 3.2 Esempio numerico di calcolo del ritiro applicando le normative D.M. 14/01/2008 ed EC2 - parte2 3.3 Analisi di sensitività dei parametri che concorrono alla definizione di ecs47 4 Casi fondamentali 4.1 Ipotesi per lo sviluppo dei casi fondamentali 52 4.2 Metodo per lo sviluppo analitico dei casi fondamentali 54 4.3.1 Schema di vincolamento isostatico (esternamente) 60 4.3.2.1 Modello numerico di raffronto 61 4.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.65 4.3.1 Modello analitico 65 4.4.1 Elemento appoggiato su un piano ideale in assenza di attrito nello stato fessurato.65 4.4.1.1 Modello numerico di raffronto	1.1 Background	25
1.3 Organizzazione del lavoro. 26 PARTE I – Modelli analitici e numeri per la definizione degli sforzi dovuti al ritiro del calcestruzzo. 29 2 Definizione del fenomeno del ritiro del calcestruzzo. 29 2 Definizione del fenomeno fisico. 29 2.1 Il ritiro: il fenomeno fisico. 29 2.2 Considerazioni generali sugli effetti della viscosità e del ritiro. 31 3 Calcolo dell'effetto del ritiro secondo le Normative vigenti. 35 3.1 Approcci suggeriti dal D.M. 14/01/2008 e dal EC2-1-1:2005. 35 3.2 Esempio numerico di calcolo del ritiro applicando le normative D.M. 14/01/2008 ed EC2 - parte2. 4.3 Analisi di sensitività dei parametri che concorrono alla definizione di ecs. 47 4 Casi fondamentali 51 4.1 Ipotesi per lo sviluppo dei casi fondamentali. 52 4.2 Metodo per lo sviluppo analitico dei casi fondamentali. 54 4.3 Elemento di solo calcestruzzo. 55 4.3.1 Modello analitico. 56 4.3.2.1 Modello numerico di raffronto 57 4.3.2 I Modello numerico di raffronto 61 4.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato. 55 4.3.1 Modello analitico. 65 4.4.1 Elemento app	1.2 Obiettivo del lavoro	25
PARTE I – Modelli analitici e numeri per la definizione degli sforzi dovuti al ritiro del calcestruzzo 29 2 Definizione del fenomeno del ritiro del calcestruzzo 29 2.1 Il ritiro: il fenomeno fisico 29 2.2 Considerazioni generali sugli effetti della viscosità e del ritiro 31 3 Calcolo dell'effetto del ritiro secondo le Normative vigenti 35 3.1 Approcci suggeriti dal D.M. 14/01/2008 e dal EC2-1-1:2005 35 3.2 Esempio numerico di calcolo del ritiro applicando le normative D.M. 14/01/2008 ed EC2 - parte2 3.3 Analisi di sensitività dei parametri che concorrono alla definizione di c _{cs}	1.3 Organizzazione del lavoro	
2 Definizione del fenomeno del ritiro del calcestruzzo	PARTE I – Modelli analitici e numeri per la definizione degli sforzi a ritiro del calcestruzzo	lovuti al 29
2.1 II ritiro: il fenomeno fisico	2 Definizione del fenomeno del ritiro del calcestruzzo	29
2.2 Considerazioni generali sugli effetti della viscosità e del ritiro	2.1 Il ritiro: il fenomeno fisico	
3 Calcolo dell'effetto del ritiro secondo le Normative vigenti	2.2 Considerazioni generali sugli effetti della viscosità e del ritiro	31
3.1 Approcci suggeriti dal D.M. 14/01/2008 e dal EC2-1-1:2005	3 Calcolo dell'effetto del ritiro secondo le Normative vigenti	35
3.2 Esempio numerico di calcolo del ritiro applicando le normative D.M. 14/01/2008 ed EC2 - parte2	3.1 Approcci suggeriti dal D.M. 14/01/2008 e dal EC2-1-1:2005	
3.3 Analisi di sensitività dei parametri che concorrono alla definizione di ecs47 4 Casi fondamentali	3.2 Esempio numerico di calcolo del ritiro applicando le normative D. 14/01/2008 ed EC2 - parte2	M. 42
4 Casi fondamentali 51 4.1 Ipotesi per lo sviluppo dei casi fondamentali 52 4.2 Metodo per lo sviluppo analitico dei casi fondamentali. 54 4.3 Elemento di solo calcestruzzo. 55 4.3.1 Schema di vincolamento isostatico (esternamente). 56 4.3.1.1 Modello analitico. 56 4.3.2 Schema di vincolamento iperstatico (esternamente). 60 4.3.2.1 Modello analitico. 60 4.3.2.1 Modello numerico di raffronto 61 4.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato. 65 4.4 Elemento di calcestruzzo con armatura centrata 67 4.4.1 Elemento appoggiato su un piano ideale in assenza di attrito 69 4.4.1.2 Modello numerico di raffronto 77 4.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato fessurato. 63 4.4.1.1 Modello analitico. 69 4.4.2.1 Modello numerico di raffronto 77 4.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato fessurato. 83	3.3 Analisi di sensitività dei parametri che concorrono alla definizione	di $\varepsilon_{cs}47$
4.1 Ipotesi per lo sviluppo dei casi fondamentali 52 4.2 Metodo per lo sviluppo analitico dei casi fondamentali. 54 4.3 Elemento di solo calcestruzzo. 55 4.3.1 Schema di vincolamento isostatico (esternamente) 56 4.3.1.1 Modello analitico. 56 4.3.1.2 Modello numerico di raffronto 57 4.3.2 Schema di vincolamento iperstatico (esternamente) 60 4.3.2.1 Modello analitico 60 4.3.2.1 Modello numerico di raffronto 61 4.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.65 63 4.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.65 63 4.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.65 64 4.3.3 I Modello analitico 65 4.4 Elemento di calcestruzzo con armatura centrata 67 4.4.1 Elemento appoggiato su un piano ideale in assenza di attrito 69 4.4.1.2 Modello numerico di raffronto 77 4.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato 69 4.4.2.1 Modello analitico 83	4 Casi fondamentali	51
4.2 Metodo per lo sviluppo analitico dei casi fondamentali	4.1 Ipotesi per lo sviluppo dei casi fondamentali	
4.3 Elemento di solo calcestruzzo554.3.1 Schema di vincolamento isostatico (esternamente)564.3.1.1 Modello analitico564.3.1.2 Modello numerico di raffronto574.3.2 Schema di vincolamento iperstatico (esternamente)604.3.2.1 Modello analitico604.3.2.1 Modello numerico di raffronto614.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.654.3.1 Modello analitico614.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.654.4 Elemento di calcestruzzo con armatura centrata674.4.1 Elemento appoggiato su un piano ideale in assenza di attrito694.4.1.2 Modello numerico di raffronto774.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato834.4.2.1 Modello analitico83	4.2 Metodo per lo sviluppo analitico dei casi fondamentali	54
4.3.1 Schema di vincolamento isostatico (esternamente)564.3.1.1 Modello analitico564.3.1.2 Modello numerico di raffronto574.3.2 Schema di vincolamento iperstatico (esternamente)604.3.2.1 Modello analitico604.3.2.1 Modello numerico di raffronto614.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.654.3.1 Modello analitico654.4 Elemento di calcestruzzo con armatura centrata674.4.1 Elemento appoggiato su un piano ideale in assenza di attrito694.4.1.2 Modello numerico di raffronto774.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato834.4.2.1 Modello analitico83	4.3 Elemento di solo calcestruzzo	55
4.3.1.1 Modello analitico564.3.1.2 Modello numerico di raffronto574.3.2 Schema di vincolamento iperstatico (esternamente)604.3.2.1 Modello analitico604.3.2.1 Modello numerico di raffronto614.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.654.3.1 Modello analitico654.3.2 I Modello analitico654.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.654.3.1 Modello analitico654.4 Elemento di calcestruzzo con armatura centrata674.4.1 Elemento appoggiato su un piano ideale in assenza di attrito694.4.1.2 Modello numerico di raffronto774.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato834.4.2.1 Modello analitico83	4.3.1 Schema di vincolamento isostatico (esternamente)	56
4.3.1.2 Modello numerico di raffronto574.3.2 Schema di vincolamento iperstatico (esternamente)604.3.2.1 Modello analitico604.3.2.1 Modello numerico di raffronto614.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.654.3.3.1 Modello analitico654.4 Elemento di calcestruzzo con armatura centrata674.4.1 Elemento appoggiato su un piano ideale in assenza di attrito694.4.1.2 Modello numerico di raffronto774.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato834.4.2.1 Modello analitico83	4.3.1.1 Modello analitico	56
4.3.2 Schema di vincolamento iperstatico (esternamente)604.3.2.1 Modello analitico604.3.2.1 Modello numerico di raffronto614.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.654.3.1 Modello analitico654.4 Elemento di calcestruzzo con armatura centrata674.4.1 Elemento appoggiato su un piano ideale in assenza di attrito694.4.1.2 Modello numerico di raffronto774.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato834.4.2.1 Modello analitico83	4.3.1.2 Modello numerico di raffronto	57
4.3.2.1 Modello analitico	4.3.2 Schema di vincolamento iperstatico (esternamente)	60
4.3.2.1 Modello numerico di raffronto614.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.654.3.3.1 Modello analitico654.4 Elemento di calcestruzzo con armatura centrata674.4.1 Elemento appoggiato su un piano ideale in assenza di attrito694.4.1.1 Modello analitico694.4.1.2 Modello numerico di raffronto774.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello statofessurato834.4.2.1 Modello analitico83	4.3.2.1 Modello analitico	60
4.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato.654.3.3.1 Modello analitico	4.3.2.1 Modello numerico di raffronto	61
4.3.3.1 Modello analitico	4.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fe	ssurato.65
4.4 Elemento di calcestruzzo con armatura centrata674.4.1 Elemento appoggiato su un piano ideale in assenza di attrito694.4.1.1 Modello analitico694.4.1.2 Modello numerico di raffronto774.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato fessurato834.4.2.1 Modello analitico83	4.3.3.1 Modello analitico	65
4.4.1 Elemento appoggiato su un piano ideale in assenza di attrito	4.4 Elemento di calcestruzzo con armatura centrata	67
4.4.1.1 Modello analitico694.4.1.2 Modello numerico di raffronto774.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato fessurato834.4.2.1 Modello analitico83	4.4.1 Elemento appoggiato su un piano ideale in assenza di attrito	69
4.4.1.2 Modello numerico di raffronto774.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato fessurato834.4.2.1 Modello analitico83	4.4.1.1 Modello analitico	69
 4.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato fessurato	4.4.1.2 Modello numerico di raffronto	77
4.4.2.1 Modello analitico	4.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nell fessurato	o stato
	4.4.2.1 Modello analitico	

4.4.2.2 Modello numerico di raffronto	86
4.4.3 Schema di vincolamento isostatico (esternamente)	90
4.4.3.1 Modello analitico	90
4.4.3.2 Modello numerico di raffronto	94
4.4.4 Schema di vincolamento isostatico (esternamente) nello stato fes	surato.100
4.4.4.1 Modello analitico	100
4.4.4.2 Modello numerico di raffronto	102
4.4.5 Schema di vincolamento iperstatico (esternamente)	105
4.4.5.1 Modello analitico	105
4.4.5.2 Modello numerico di raffronto	115
4.4.6 Schema di vincolamento iperstatico (esternamente) nello stato fe	ssurato121
4.4.6.1 Modello analitico	121
4.4.6.2 Modello numerico di raffronto	123
4.5 Elemento di calcestruzzo con armatura eccentrica	127
4.5.1 Elemento appoggiato su un piano ideale in assenza di attrito	130
4.5.1.1 Modello analitico	130
4.5.1.2 Modello numerico di raffronto	136
4.5.2 Schema di vincolamento isostatico (esternamente)	143
4.5.2.1 Modello analitico	143
4.5.2.2 Modello numerico di raffronto	146
4.5.3 Schema di vincolamento iperstatico (esternamente)	153
4.5.3.1 Modello analitico	153
4.5.3.2 Modello numerico di raffronto	158
4.6 Elemento di calcestruzzo con armatura doppiamente eccentrica	163
4.6.1 Schema di vincolamento isostatico (esternamente)	166
4.6.1.1 Modello analitico	166
4.6.1.2 Modello numerico di raffronto	171
4.6.2 Schema di vincolamento iperstatico (esternamente)	176
4.6.2.1 Modello analitico	176
4.6.2.2 Modello numerico di raffronto	180
4.7 Elemento di calcestruzzo con armatura centrata tesa	184
4.7.1 Elemento appoggiato su un piano ideale in assenza di attrito	186
4.7.1.1 Modello analitico	186
4.7.1.2 Modello numerico di raffronto	

4.7.2 Elemento appoggiato su un piano ideale in assenza di attrito nello sta fessurato	to 199
4.7.2.1 Modello analitico	199
4.7.2.2 Modello numerico di raffronto	200
4.8 Elemento a T di solo calcestruzzo con due calcestruzzi diversi per anim	a e
soletta	204
4.8.1 Schema di vincolamento isostatico (esternamente)	207
4.8.1.1 Modello analitico	207
4.8.1.2 Modello numerico di raffronto	221
4.8.2 Schema di vincolamento iperstatico (esternamente)	236
4.8.2.1 Modello analitico	236
4.8.2.2 Modello numerico di raffronto	241
4.8.3 Schema di vincolamento iperstatico (esternamente) nello stato fessuro	uto252
4.8.3.1 Modello analitico	252
4.9 Sezione mista a T (anima in acciaio, soletta in calcestruzzo)	253
4.9.1 Schema di vincolamento isostatico (esternamente)	256
4.9.1.1 Modello analitico	256
4.9.1.2 Modello numerico di raffronto	259
4.9.2 Schema di vincolamento iperstatico (esternamente)	273
4.9.2.1 Modello analitico	273
4.9.2.2 Modello numerico di raffronto	276
4.10 Sintesi dei casi studiati	287
5 Considerazioni sul comportamento del calcestruzzo a lungo termine	291
6 Richiami di viscoelasticità lineare	297
7 I metodi algebrizzati per la stima del modulo elastico ridotto per la visco	osità299
7.1 Metodo del modulo efficace (EM)	299
7.2 Metodo della tensione media (MS)	301
7.3 Metodo del modulo efficace aggiustato (AAEM)	303
8 Applicazione del metodo AAEM al caso di una sezione mista acciao- calcestruzzo	305
9 Metodi semplificati per l'analisi viscoelastica degli impalcati da ponte a composta	sezione 315
9.1 Ritiro della soletta	316
10 Modello analitico e numerico per una sezione mista a T (anima in acc soletta in calcestruzzo) con armature in soletta	iaio, 319

10.1 Analisi a breve termine (modulo elastico istantaneo)	320
10.2 Analisi a lungo termine (modulo elastico a lungo termine)	327
PARTE II – Studio di un caso reale	335
11 Applicazione ad un caso reale: impalcato tri-trave a sezione mista	335
11.1 Descrizione dell'opera	335
11.2 Analisi strutturale	336
11.2.1 Fasi di calcolo	336
11.2.2 Materiali	338
11.2.2 Analisi dei carichi	340
11.3 Modello di calcolo	357
11.3.1 Modelli FEM	357
11.4 Calcolo delle sollecitazioni	364
11.4.1 Diagrammi delle sollecitazioni principali	367
11.4.2 Attrito dei vincoli	388
11.5 Applicazione formule semplificate per la valutazione degli effetti del	ritiro391
11.5.1 Direzione trasversale	391
11.5.2 Direzione longitudinale	396
11.6 Azioni di verifica	401
11.6.1 Combinazioni di carico	401
11.7 Verifiche	404
11.7.1 Definizione della larghezza efficace della soletta	404
11.7.2 Verifiche di resistenza allo Stato Limite Ultimo	405
11.7.2.1 Verifiche di resistenza allo Stato Limite Ultimo per tensioni norma	ali 405
11.7.2.2 Verifica di resistenza della connessione a pioli soletta-trave meta	llica421
12 Principali innovazioni nella costruzione dei ponti composti	427
12.1 Nuovi tipi di acciaio e di prodotti	427
12.1.1 Acciai ad alta resistenza saldabili	427
12.1.2 Piatti a spessore variabile	427
12.2 Tecniche costruttive della soletta	428
12.2.1 Getto in opera ai tratti non consecutivi su casseri mobili	429
12.2.2 Realizzazione di tratti consecutivi con posa in opera "a spinta"	429
12.2.3 Prefabbricazione di conci	430
12.2.4 Applicazione della tecnica costruttiva a getti frazionati della soletta dell'impalcato oggetto di studio	430

Ringraziamenti	451
Bibliografia	449
13.3 Sviluppi futuri	448
13.2 Risultati ottenuti	447
13.1 Analisi condotte	447
13 Conclusioni	447
12.2.5.2 Valutazione economica delle tecniche costruttive studiate	445
12.2.5.1 Stato limite di fessurazione	436
12.2.5 Stati limite di esercizio	

Indice delle Figure:

FIGURA 1 - COMPONENTI DELLA DEFORMAZIONE DIFFERITA
FIGURA 2 – GEOMETRIA DELL'ELEMENTO CONSIDERATO
FIGURA 3 - GEOMETRIA DELL'ELEMENTO CONSIDERATO
FIGURA 4 - DEFORMAZIONE DA RITIRO IN FUNZIONE DELLA CLASSE DI CALCESTRUZZO E H_0
FIGURA 5 - DEFORMAZIONE DA RITIRO IN FUNZIONE DELLO SPESSORE EFFICACE $H_0 \in F_{CK}$
FIGURA 6 - DEFORMAZIONE DA RITIRO IN FUNZIONE DELL'ETÀ DEL CALCESTRUZZO AL MOMENTO
CONSIDERATO, PER DIVERSE CLASSI DI CALCESTRUZZO
FIGURA 7 - DEFORMAZIONE DA RITIRO IN FUNZIONE DELL'ETÀ DEL CALCESTRUZZO AL MOMENTO
CONSIDERATO, PER DIVERSI VALORI DELLO SPESSORE EFFICACE H ₀
FIGURA 8 - DEFORMAZIONE DA RITIRO IN FUNZIONE DELL'UMIDITÀ RELATIVA DELL'AMBIENTE, PER
DIVERSE CLASSI DI CALCESTRUZZO
FIGURA 9 - DEFORMAZIONE DA RITIRO IN FUNZIONE DELL'UMIDITÀ RELATIVA DELL'AMBIENTE, PER
DIVERSI VALORI DELLO SPESSORE EFFICACE H ₀
FIGURA 10 - GEOMETRIA DELL'ELEMENTO CONSIDERATO
FIGURA 11 - ELEMENTO DI SOLO CALCESTRUZZO NELLO SCHEMA STRUTTURALE ISOSTATICO
(ESTERNAMENTE) SOGGETTO A RITIRO
FIGURA 12 - SPOSTAMENTI OTTENUTI DAL MODELLO CON ELEMENTI FRAME
FIGURA 13 - SPOSTAMENTI OTTENUTI DAL MODELLO CON ELEMENTI BRICK
FIGURA 14 - DIAGRAMMA DELLA SOLLECITAZIONE ASSIALE CONSEGUENTE AL RITIRO
$FIGURA \ 15 \ - \ TENSIONI \ NORMALI \ NELLA \ DIREZIONE \ DELL'ASSE \ DELLA \ TRAVE \ (S11 \ IN \ SAP2000). \ \dots \ 59$
FIGURA 16 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO
DI SOLO CALCESTRUZZO NELLO SCHEMA STRUTTURALE IPERSTATICO (ESTERNAMENTE) 60
$\label{eq:Figura17-Tensioni} Normali Nella direzione dell'asse della trave (S11 in SAP2000) 61$
FIGURA 18 - ANDAMENTO DELLE TENSIONI NORMALI NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 19 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 20 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000) 63
FIGURA 21 - ANDAMENTO DELLE TENSIONI NORMALI NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 22 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 23 - DIAGRAMMA DELLA SOLLECITAZIONE ASSIALE CONSEGUENTE AL RITIRO
FIGURA 24 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO
DI SOLO CALCESTRUZZO NELLO SCHEMA STRUTTURALE IPERSTATICO (ESTERNAMENTE)
FESSURATO
FIGURA 25 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO
DI SOLO CALCESTRUZZO NELLO SCHEMA STRUTTURALE IPERSTATICO CON FESSURAZIONE
DIFFUSA
FIGURA 26 - GEOMETRIA DELL'ELEMENTO CONSIDERATO
FIGURA 27 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO
DI CALCESTRUZZO E ARMATURA CENTRATA NELLO SCHEMA STRUTTURALE LABILE
(ESTERNAMENTE)
FIGURA 28 - SISTEMA DI RIFERIMENTO IMPIEGATO PER LA SCRITTURA DELLE EQUAZIONI DI
CONGRUENZA
FIGURA 29 - SPOSTAMENTI OTTENUTI DAL MODELLO CON ELEMENTI BRICK
FIGURA 30 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000) 78
FIGURA 31 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NELL'ACCIAIO
FIGURA 3'2 - ANDAMENTO DELLE TENSIONI NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE
FIGURA 33 - ANDAMENTO DELLO SFORZO ASSIALE NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE. 80
FIGURA 34 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NEL CALCESTRUZZO 80

Figura 35 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale 81
FIGURA 36 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 57 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECTIAZIONI PER L'ELEMENTO
DI CALCESTRUZZO E ARMATURA CENTRATA NELLO SCHEMA STRUTTURALE LABILE
(ESTERNAMENTE) NELLO STATO FESSURATO
FIGURA 58 - ASSETTO DEFORMATIVO DEL TIRANTE IN C.A. IN SEGUITO ALLA FORMAZIONE DELLE
FESSURE
FIGURA 57 - LENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (STITIN SAL 2000) 60 FIGURA 40. TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NELL'ACCIAIO. 86
FIGURA 40 - I ENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA IRAVE NELL'ACCIAIO
FIGURA 42 - ANDAMENTO DELLO SEORZO ASSIALE NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE 87
FIGURA 42 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NEL CALCESTRUZZO 88
FIGURA 45 - TENSIONI NORMALI NELLA DIREZIONE DELLA ASSE DELLA TRAVE NEL CALCESTRUZZO. SO FIGURA 44 - AND AMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE 88
FIGURA 45 - ANDAMENTO DELLO SEODZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
I ONGITI DINALE 80
FIGURA 46 DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI DELL'ELEMENTO
DI CALCESTRUZZO E ARMATURA CENTRATA NELLO SCHEMA STRUTTURALE ISOSTATICO
(ESTERNAMENTE)
FIGURA 47 - GRAFICO DEGLI SPOSTAMENTI NEL NODO LIBERO DI TRASLARE PARALLELAMENTE
ALL'ASSE DELL'ELEMENTO
FIGURA 48 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000) 95
FIGURA 49 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NELL'ACCIAIO
FIGURA 50 - ANDAMENTO DELLE TENSIONI NELL'ARMATURA SULLA SEZIONE LONGITUDINALE 96
FIGURA 51 - ANDAMENTO DELLO SFORZO ASSIALE NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE. 97
FIGURA 52 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NEL CALCESTRUZZO 97
FIGURA 53 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE 98
FIGURA 54 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 55 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO
DI CALCESTRUZZO E ARMATURA CENTRATA NELLO SCHEMA STRUTTURALE ISOSTATICO
(ESTERNAMENTE) NELLO STATO FESSURATO
FIGURA 56 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). . 102
FIGURA 57 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NELL'ACCIAIO 102
FIGURA 58 - ANDAMENTO DELLE TENSIONI NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE
FIGURA 59 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
$FIGURA\ 60\ -\ TENSIONI\ NORMALI\ NELLA\ DIREZIONE\ DELL'ASSE\ DELLA\ TRAVE\ NEL\ CALCESTRUZZO. 103$
$FIGURA\ 61\ -\ ANDAMENTO\ DELLE\ TENSIONI\ NEL\ CALCESTRUZZO\ SULLA\ SEZIONE\ LONGITUDINALE.\ 104$
FIGURA 61 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 62 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
FIGURA 61 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 62 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE
FIGURA 61 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 62 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE
FIGURA 61 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 62 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE
FIGURA 61 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 62 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE 104 FIGURA 63 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO 104 FIGURA 63 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO 104 FIGURA 63 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO 104 FIGURA 63 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO 110 MI CALCESTRUZZO E ARMATURA CENTRATA NELLO SCHEMA STRUTTURALE IPERSTATICO 110
FIGURA 61 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 62 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 63 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO DI CALCESTRUZZO E ARMATURA CENTRATA NELLO SCHEMA STRUTTURALE IPERSTATICO (ESTERNAMENTE). 110 FIGURA 64 - DIFFUSIONE DELLE TENSIONI NEL CALCESTRUZZO A PARTIRE DAI VINCOLI ESTERNI POSTI
FIGURA 61 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 62 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE
FIGURA 61 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 62 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 63 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO DI CALCESTRUZZO E ARMATURA CENTRATA NELLO SCHEMA STRUTTURALE IPERSTATICO (ESTERNAMENTE). 110 FIGURA 64 - DIFFUSIONE DELLE TENSIONI NEL CALCESTRUZZO A PARTIRE DAI VINCOLI ESTERNI POSTI ALLE ESTREMITÀ DELL'ELEMENTO. 111 FIGURA 65 - RIPARTIZIONE DELLO SFORZO ASSIALE INDOTTO DAI VINCOLI ESTERNI TRA
FIGURA 61 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 62 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 63 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO DI CALCESTRUZZO E ARMATURA CENTRATA NELLO SCHEMA STRUTTURALE IPERSTATICO (ESTERNAMENTE). 110 FIGURA 64 - DIFFUSIONE DELLE TENSIONI NEL CALCESTRUZZO A PARTIRE DAI VINCOLI ESTERNI POSTI ALLE ESTREMITÀ DELL'ELEMENTO. 111 FIGURA 65 - RIPARTIZIONE DELLO SFORZO ASSIALE INDOTTO DAI VINCOLI ESTERNI TRA 111
FIGURA 61 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 62 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE
FIGURA 61 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 62 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 63 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO DI CALCESTRUZZO E ARMATURA CENTRATA NELLO SCHEMA STRUTTURALE IPERSTATICO (ESTERNAMENTE). 110 FIGURA 64 - DIFFUSIONE DELLE TENSIONI NEL CALCESTRUZZO A PARTIRE DAI VINCOLI ESTERNI POSTI ALLE ESTREMITÀ DELL'ELEMENTO. 111 FIGURA 65 - RIPARTIZIONE DELLO SFORZO ASSIALE INDOTTO DAI VINCOLI ESTERNI TRA CALCESTRUZZO E BARRA. 111 FIGURA 66 - SOVRAPPOSIZIONE DEGLI EFFETTI SUL CALCESTRUZZO E SULLA BARRA. 112 FIGURA 67 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000).
FIGURA 61 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 104 FIGURA 62 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE 104 FIGURA 63 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO 104 FIGURA 63 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO 104 FIGURA 63 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO 104 FIGURA 64 - DIFFUSIONE DELLE TENSIONI NEL CALCESTRUZZO A PARTIRE DAI VINCOLI ESTERNI POSTI 110 FIGURA 64 - DIFFUSIONE DELLE TENSIONI NEL CALCESTRUZZO A PARTIRE DAI VINCOLI ESTERNI POSTI 111 FIGURA 65 - RIPARTIZIONE DELLO SFORZO ASSIALE INDOTTO DAI VINCOLI ESTERNI TRA 111 FIGURA 65 - RIPARTIZIONE DELLO SFORZO ASSIALE INDOTTO DAI VINCOLI ESTERNI TRA 111 FIGURA 66 - SOVRAPPOSIZIONE DEGLI EFFETTI SUL CALCESTRUZZO E SULLA BARRA. 112 FIGURA 67 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 115 FIGURA 68 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NELL'ACCIAIO. 115

 $FIGURA\ 70\ -\ ANDAMENTO\ DELLO\ SFORZO\ ASSIALE\ NELL'ACCIAIO\ SULLA\ SEZIONE\ LONGITUDINALE.$

$Figura~71\ \text{-}\ Tensioni\ \text{Normali}\ \text{Nella}\ \text{direzione}\ \text{dell}\ \text{asse}\ \text{della}\ \text{trave}\ \text{Nel}\ \text{calcestruzzo}.117$
$Figura\ 72\ \text{-}\ Andamento\ delle\ tensioni\ nel\ calcestruzzo\ sulla\ sezione\ longitudinale.\ 117$
FIGURA 73 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 74 - REAZIONI DEI VINCOLI ESTERNI POSTI ALLE ESTREMITÀ
FIGURA 75 - STATO FESSURATO PER LO SCHEMA STRUTTURALE IPERSTATICO 122
$FIGURA~76\ -\ TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000).\ .\ 123$
FIGURA 77 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NELL'ACCIAIO 123
FIGURA 78 - ANDAMENTO DELLE TENSIONI NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE
FIGURA 79 - ANDAMENTO DELLO SFORZO ASSIALE NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE.
FIGURA 80 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NEL CALCESTRUZZO. 125
FIGURA 81 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 125
FIGURA 82- ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 83 - GEOMETRIA DELL'ELEMENTO CONSIDERATO
FIGURA 84 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO
DI CALCESTRUZZO E ARMATURA ECCENTRICA NELLO SCHEMA STRUTTURALE LABILE
(ESTERNAMENTE)
FIGURA 85 - GRAFICO DEGLI SPOSTAMENTI.
FIGURA 86 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (STITIN SAP2000) 138
FIGURA 8 / - I ENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NELL'ACCIAIO 138
FIGURA 88 - ANDAMENTO DELLE TENSIONI NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE
FIGURA 89 - ANDAMENTO DELLO SFORZO ASSIALE NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE.
$Figura \ 90 \ \text{-} \ Tensioni \ \text{Normali} \ \text{Nella} \ \text{direzione} \ \text{dell}' \ \text{asse} \ \text{della} \ \text{trave} \ \text{nel calcestruzzo}. 140$
$Figura \ 91 \ \text{-} \ Andamento \ delle \ tensioni \ nel \ calcestruzzo \ sulla \ sezione \ longitudinale. \ 140$
FIGURA 92 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 93 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO
DI CALCESTRUZZO E ARMATURA ECCENTRICA NELLO SCHEMA STRUTTURALE ISOSTATICO
(ESTERNAMENTE)
FIGURA 94 - GRAFICO DEGLI SPOSTAMENTI
$FIGURA 95 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). \ . 148$
FIGURA 96 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NELL'ACCIAIO 148
FIGURA 97 - ANDAMENTO DELLE TENSIONI NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE
FIGURA 98 - ANDAMENTO DELLO SFORZO ASSIALE NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE.
FIGURA 99 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NEL CALCESTRUZZO. 150
FIGURA 100 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE.
EICUDA 101 - AND AMENTO DELLO SEODZO ASSIALENEL CAL CESTRUZZO SULLA SEZIONE
FIGURA TOT - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
ECUIDA 102 DIA CRAMMUDELLE TENSIONI E DELLE CONSECUENTI SOLLECITAZIONI DELL'ELEMENTO
DI CALCESTRUZZO E ARMATURA ECCENTRICA NELLO SCHEMA STRUTTURALE DEPENTATICO
(ESTERNAMENTE)
$E_{133} = E_{133} = E_{1$
FIGURA 105 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (STI IN SAF 2000). 158 FIGURA 104 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (STI IN SAF 2000). 158
FIGURA 105 - ANDAMENTO DELLE TENSIONI NELL'ACCIAIO SULLA SEZIONE L'ONGITUDINALE 150
FIGURA 106 - ANDAMENTO DELLE TENSION MELL ACCIAIO SULLA SEZIONE LONGITUDINALE 157
150 IN THE INDIVIDUATE OF THE INDIVIDUATE IN THE INDIVIDUATE OF THE IN
107

FIGURA 107 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NEL CALCESTRUZZO.
FIGURA 108 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE. 160
FIGURA 109 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
EXAMPLE 2000 DELVINGOL LEGTERNU ROSTI ALLE ESTRENUTÀ 161
FIGURA 110 - REAZIONI DEI VINCOLI ESTERNI POSTI ALLE ESTREMITA.
FIGURA TTT - GEOMETRIA DELL ELEMENTO CONSIDERATO.
FIGURA 112 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO
DI CALCESTRUZZO E ARMATURA DOPPIAMENTE ECCENTRICA NELLO SCHEMA STRUTTURALE ISOSTATICO (ESTERNAMENTE)
FIGURA 113 - GRAFICO DEGLI SPOSTAMENTI
FIGURA 114 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 172
FIGURA 115 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NELL'ACCIAIO 172
FIGURA 116 - ANDAMENTO DELLE TENSIONI NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE 173
FIGURA 117 - ANDAMENTO DELLO SFORZO ASSIALE NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE.
FIGURA 118 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NEL CALCESTRUZZO.
FIGURA 119 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE L'ONGITUDINALE
FIGURA 120 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 121 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO
DI CALCESTRUZZO E ARMATURA DOPPIAMENTE ECCENTRICA NELLO SCHEMA STRUTTURALE
IPERSTATICO (ESTERNAMENTE)
FIGURA 122 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 180
FIGURA 123 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NELL'ACCIAIO 180
FIGURA 124 - ANDAMENTO DELLE TENSIONI NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE 180
FIGURA 125 - ANDAMENTO DELLO SFORZO ASSIALE NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE.
FIGURA 126 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NEL CALCESTRUZZO.
FIGURA 127 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE.
FIGURA 128 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 129 – REAZIONI DEI VINCOLI ESTERNI POSTI ALLE ESTREMITÀ
FIGURA 130 - GEOMETRIA DELL'ELEMENTO CONSIDERATO
FIGURA 131 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ELEMENTO
DI CALCESTRUZZO E ARMATURA CENTRATA TESA NELLO SCHEMA STRUTTURALE LABILE (ESTERNAMENTE) 180
(ESTERNAMENTE)
FIGURA 152 - GRAFICO DEGLI SPOSTAMENTI
FIGURA 133 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (STI IN SAP2000). 194
FIGURA 154 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NELL'ACCIAIO 194
FIGURA 135 - ANDAMENTO DELLE TENSIONI NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE 194
FIGURA 136 - ANDAMENTO DELLO SFORZO ASSIALE NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE.
FIGURA 137 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NEL CALCESTRUZZO. 105
FIGURA 138 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE.

FIGURA 139 - ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 140 - STATO FESSURATO PER LO SCHEMA STRUTTURALE LABILE
FIGURA 141 - GRAFICO DEGLI SPOSTAMENTI. 200
FIGURA 142 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000) 200
FIGURA 1/2 TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (STTENSIA 2000). 200
FIGURA 145 - TENSIONI NORMALI NELLA DIREZIONE DELLA ASSE DELLA TRAVE NELL'ACCIAIO 200
FIGURA 144 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE.
FIGURA 145 - ANDAMENTO DELLO SFORZO ASSIALE NELL'ACCIAIO SULLA SEZIONE LONGITUDINALE.
FIGURA 146 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE NEL CALCESTRUZZO.
FIGURA 147 - ANDAMENTO DELLE TENSIONI NEL CALCESTRUZZO SULLA SEZIONE LONGITUDINALE.
FIGURA 148- ANDAMENTO DELLO SFORZO ASSIALE NEL CALCESTRUZZO SULLA SEZIONE
LONGITUDINALE
FIGURA 149 - GEOMETRIA DELL'ELEMENTO CONSIDERATO
FIGURA 150 - ELEMENTO A SEZIONE A T COSTITUITO DA ANIMA E SOLETTA DI CALCESTRUZZO NELLO
SCHEMA STRUTTURALE ISOSTATICO (ESTERNAMENTE) 209
FIGURA 151 - TENSIONI CHE SI GENERANO ALL'INITERFACCIA TRA SOLETTA E ANIMA 210
FIGURA 151 FENSION ALL NELLA SOLETTA E NELL'ANIMA 211
FIGURA 152 - STATI TENSIONALI NELLA SOLETTA E NELL'ANIMA.
FIGURA 155 - ACCORGIMENTO PER TENERE CONTO DELLA FLESSIONE DELLA SOLETTA IMPEDITA
DALL ANIMA SOTTOSTANTE
FIGURA 154 - PRIMA IPOTESI SUGLI ANDAMENTI DI TENSIONI, RISULTANTE DELLE TENSIONI,
DEFORMAZIONI
FIGURA 155 - SECONDA IPOTESI SUGLI ANDAMENTI DI TENSIONI, RISULTANTE DELLE TENSIONI,
DEFORMAZIONI
FIGURA 156 DIAGRAMMI DI TENSIONI, RISULTANTE DELLE TENSIONI, DEFORMAZIONI
FIGURA 157 - SCHEMATIZZAZIONE DELLA RISULTANTE DELLE TENSIONI CHE SI SCAMBIANO SOLETTA
E ANIMA
FIGURA 158 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI.
FIGURA 159 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI
CORRISPONDENTI
FIGURA 160 - DIAGRAMMA DELLE TENSIONI DA APPLICARE IN TERZA FASE ALLE SEZIONI DI
ESTREMITÀ 210
FIGURA 161 DIACRAMMA EINALE DELLE TENSIONI DED TUTTE LE SEZIONI DOSTE AD LINA DISTANZA
PAUDODDI CID CA DADI ALI 'ALTEZZA DELLA SEZIONE 200
DAI BORDI CIRCA PARI ALL'ALTEZZA DELLA SEZIONE
FIGURA 162 – GEOMETRIA DELL'ELEMENTO CONSIDERATO.
FIGURA 163 - SPOSTAMENTI IN SOMMITA E ALLA BASE DELL'ANIMA RICAVATI DAL MODELLO DI
ELEMENTI SHELL
FIGURA 164 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 223
FIGURA 165 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
FIGURA 166 - ANDAMENTO DELLE TENSIONI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA E
RISPETTIVE RISULTANTI
FIGURA 167 – RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE
DI MEZZERIA
FIGURA 168 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA
FIGURA 169 - ANDAMENTO DELLA RISULTANTE DEGLI SFORZI NORMALI DI TRAZIONE NELLA
SOLETTA
FIGURA 170 - ANDAMENTO DELLE TENSIONI NORMALI DI COMPRESSIONE NELL'ANIMA 227

FIGURA 171 - ANDAMENTO DELLA RISULTANTE DEGLI SFORZI NORMALI DI COMPRESSIONE
NELL'ANIMA
FIGURA 172 - REAZIONE DI INCASTRO PERFETTO IN CORRISPONDENZA DEI VINCOLI AUSILIARI
OTTENUTA CON UN MODELLO A ELEMENTO DI TIPO FRAME
FIGURA 173 - REAZIONE DI INCASTRO PERFETTO IN CORRISPONDENZA DEI VINCOLI AUSILIARI
OTTENUTA CON UN MODELLO A ELEMENTO DI TIPO SHELL
FIGURA 174 – MODELLI DI TENTATIVO
FIGURA 175 - MODELLO IN CUI SI È APPLICATO LO SFORZO DI COMPRESSIONE NEL BARICENTRO DELLA
SOLETTA
FIGURA 176 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
FIGURA 177 - ANDAMENTO DELLE TENSIONI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA E
RISPETTIVE RISULTANTI
FIGURA 178 - MODELLO IN CUI SI È APPLICATO LO SFORZO DI COMPRESSIONE NEL BARICENTRO DELLA
SEZIONE COMPOSTA ASSIEME AL RELATIVO MOMENTO DI TRASPORTO
FIGURA 179 - DIAGRAMMA DELLE TENSIONI NORMALLIN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA 233
FIGURA 180 - DIAGRAMMA DELLE TENSIONI NORMALLIN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA 233
FIGURA 181 – RISHI TANTI RICAVATE TRAMITE I E SECTION CUT IN CORRISPONDENZA DELLA SEZIONE
DI MEZZERIA 234
FIGURA 182 - STATO TENSIONALE COMPLESSIVO IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA
1 IOORA 102 - 51A10 TENSIONALE COMI LESSIVO IN CORRISI ONDENZA DELLA SEZIONE DI MEZZERIA. 235
FIGURA 183 DIACRAMMEDELLE TENSIONI E DELLE CONSECUENTI SOLLECITAZIONI DED L'ANIMA E
LA SOLETTA DI CALCESTRUZZO NELLO SCHEMA STRUTTURALE IDERSTATICO (ESTEDNAMENTE)
LA SOLETTA DI CALCESTRUZZO NELLO SCHEMA STRUTTURALE IPERSTATICO (ESTERNAMENTE).
7.40
EICLIDA 194 SCHEMA DI CALCOLO DI DDIMA FASE E DIA CRAMMA DELLE TENSIONI CORRISPONDENTE
FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 230
FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239
FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CONDIENTI
239 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 Evelura 186 - Schema di cal colo di terza fase 240
239 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 EVELIDA 187 - DIAGDAMMA DEL MOMENTO EL ETTENTE DUINO SCHEMA DEDISTATICO A TEL ADDOCCI.
 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240
239 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 EIGURA 188 - TENERONI NORMALI A DIFERIONE DELL'AGGE DELL'A SCHEMA INFENDICO 241 240
239 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 241
 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI
239 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI 241
239 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI 241 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI 242
239 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI 241 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI 242
 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 241 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 191 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE
 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 188 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 191 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA.
239 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI corrispondenti. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DELL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 191 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 243 FIGURA 192 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 243
239 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 241 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 191 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 243 FIGURA 192 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 243 FIGURA 193 - ANDAMENTO DELLA RISULTANTE DEGLI SFORZI NORMALI DI TRAZIONE NELLA
FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 191 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 243 FIGURA 192 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 244
FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 191 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 243 FIGURA 192 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 244 FIGURA 193 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 244 FIGURA 194 - ANDAMENTO DELLE TENSIONI NORMALI DI COMPRESSIONE NELL'ANIMA. 244
FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 241 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 191 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 243 FIGURA 192 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 244 FIGURA 193 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 244 FIGURA 194 - ANDAMENTO DELLA RISULTANTE DEGLI SFORZI NORMALI DI COMPRESSIONE
FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 241 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 191 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 243 FIGURA 192 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 244 FIGURA 193 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 244 FIGURA 194 - ANDAMENTO DELLE TENSIONI NORMALI DI COMPRESSIONE NELL'ANIMA. 244 FIGURA 195 - ANDAMENTO DELLE TENSIONI NORMALI DI COMPRESSIONE NELL'ANIMA. 244 FIGURA 195 - ANDAMENTO DELLA RISULTANTE DEGLI SFORZI NORMALI DI COMPRESSIONE NELL'ANIMA. 245
239 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 11 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 241 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 191 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 243 FIGURA 192 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 243 FIGURA 193 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 244 FIGURA 194 - ANDAMENTO DELLE TENSIONI NORMALI DI COMPRESSIONE NELL'ANIMA. 244 FIGURA 195 - ANDAMENTO DELLE TENSIONI NORMALI DI COMPRESSIONE NELL'ANIMA. 244 FIGURA 196 - REAZIONE DI INCASTRO PERFETTO IN CORRISPONDENZA DEI VINCOLI AUSILIARI 245
239 FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DEL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 241 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI 242 FIGURA 191 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE DI 243 FIGURA 192 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 243 FIGURA 193 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 244 FIGURA 194 - ANDAMENTO DELLE TENSIONI NORMALI DI COMPRESSIONE NELL'ANIMA. 244 FIGURA 195 - ANDAMENTO DELLE TENSIONI NORMALI DI COMPRESSIONE NELL'ANIMA. 244 FIGURA 196 - REAZIONE DI INCASTRO PERFETTO IN CORRISPONDENZA DEI VINCOLI AUSILIARI 245 FIGURA 196 - REAZIONE DI INCASTRO PERFETTO IN CORRISPONDENZA DEI VINCOLI AUSILIARI 245
Figura 184 - Schema di calcolo di prima fase e diagramma delle tensioni corrispondenti. 239 Figura 185 - Schema di calcolo di seconda fase e diagramma delle tensioni corrispondenti. 240 Figura 186 - Schema di calcolo di terza fase. 240 Figura 187 - Diagramma dello momento flettente in uno schema iperstatico a tre appoggi. 240 Figura 188 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000). 241 241 Figura 189 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria. 242 Figura 190 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria. 242 Figura 191 - Risultanti ricavate tramite le Section cut in corrispondenza della sezione di mezzeria. 243 Figura 192 - Andamento delle tensioni normali di trazione nella soletta. 243 Figura 193 - Andamento delle tensioni normali di trazione nella soletta. 243 Figura 194 - Andamento della risultante degli sforzi normali di trazione nella soletta. 243 Figura 195 - Andamento della risultante degli sforzi normali di compressione nell'anima. 244 Figura 194 - Andamento della risultante degli sforzi normali di compressione nell'anima. 244 Figura 195 - Andamento della risultante degli sforzi normali di compressione nell'anima. 244 Figura 196 - Reazione di incastro perfetto in corrispondenza dei vincoli ausiliari otte
FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 239 FIGURA 185 - SCHEMA DI CALCOLO DI SECONDA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI. 240 FIGURA 186 - SCHEMA DI CALCOLO DI TERZA FASE. 240 FIGURA 187 - DIAGRAMMA DELL MOMENTO FLETTENTE IN UNO SCHEMA IPERSTATICO A TRE APPOGGI. 240 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 188 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 241 FIGURA 189 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 190 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 242 FIGURA 191 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA. 243 FIGURA 192 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA. 244 FIGURA 193 - ANDAMENTO DELLA RISULTANTE DEGLI SFORZI NORMALI DI TRAZIONE NELLA SOLETTA. 244 FIGURA 194 - ANDAMENTO DELLA RISULTANTE DEGLI SFORZI NORMALI DI TRAZIONE NELLA SOLETTA. 244 FIGURA 195 - ANDAMENTO DELLA RISULTANTE DEGLI SFORZI NORMALI DI COMPRESSIONE NELL'ANIMA. 245 FIGURA 196 - REAZIONE DI INCASTRO PERFETTO IN CORRISPONDENZA DEI VINCOLI AUSILIARI 0TTENUTA CON UN MODELLO A ELEMENTO DI TIPO FRAME. 246 FIGURA 197 - DIAGRAMMA DELLE TENSIONI NORMALI IN DIREZIONE LONGITUDINALE PER LA SECONDA FASE. 247
FIGURA 184 - SCHEMA DI CALCOLO DI PRIMA FASE E DIAGRAMMA DELLE TENSIONI CORRISPONDENTI.

FIGURA 199 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI	
MEZZERIA	248
FIGURA 200 - DIAGRAMMA DELLE TENSIONI NORMALI IN DIREZIONE LONGITUDINALE PER LA TERZA	А
FASE	249
FIGURA 201 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI	
MEZZERIA	249
FIGURA 202 - DIAGRAMMA DELLE TENSIONI NORMALLIN CORRISPONDENZA DELLA SEZIONE DI	- 17
1 IOURA 202 - DIAORAMINIA DELLE TENSIONI NORMALI IN CORRISI ONDENZA DELLA SEZIONE DI	250
	250
FIGURA 205 - RISULTANTI PER ANIMA E SOLETTA PER LE VARIE FASI DI CALCOLI OTTENUTI TRAMIT.	.Е 251
LA DEFINIZIONE DI SECTION CUT	251
FIGURA 204 - STATO TENSIONALE COMPLESSIVO IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA	A.
	251
FIGURA 205 - STATO FESSURATO PER LO SCHEMA STRUTTURALE IPERSTATICO2	252
FIGURA 206 - GEOMETRIA DELL'ELEMENTO CONSIDERATO.	253
FIGURA 207 - ELEMENTO A SEZIONE A T COSTITUITO DA ANIMA IN ACCIAIO E SOLETTA DI	
CALCESTRUZZO NELLO SCHEMA STRUTTURALE ISOSTATICO (ESTERNAMENTE)	258
FIGURA 208 - GEOMETRIA DELL'ELEMENTO CONSIDERATO	259
FIGURA 209 - Spostamenti in sommità e alla base dell'anima ricavati dal modello di	
ELEMENTI SHELL.	260
FIGURA 210 - TENSIONI NORMALI NELLA DIREZIONE DELL'ASSE DELLA TRAVE (S11 IN SAP2000). 2	261
FIGURA 211 - DIAGRAMMA DELLE TENSIONI NORMALLIN CORRISPONDENZA DELLA SEZIONE DI	
MEZZERIA	262
FIGURA 212 - AND AMENTO DELLE TENSIONI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA E	202
DIGDETTIVE DIGULTANTI	ารา
EIGUDA 212 DIGUUTANTI DIGAMATE TRAMITE LE SECTION CUT DI CORDIGONDENZA DELLA GEZIO	202
FIGURA 215 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIOR	NE
DI MEZZERIA.	263
FIGURA 214 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA	264
FIGURA 215 - ANDAMENTO DELLA RISULTANTE DEGLI SFORZI NORMALI DI TRAZIONE NELLA	
SOLETTA	264
FIGURA 216 - ANDAMENTO DELLE TENSIONI NORMALI DI COMPRESSIONE NELL'ANIMA	265
FIGURA 217 - ANDAMENTO DELLA RISULTANTE DEGLI SFORZI NORMALI DI COMPRESSIONE	
NELL'ANIMA	265
FIGURA 218 - REAZIONE DI INCASTRO PERFETTO IN CORRISPONDENZA DEI VINCOLI AUSILIARI	
OTTENUTA CON UN MODELLO A ELEMENTO DI TIPO FRAME.	267
FIGURA 219 - REAZIONE DI INCASTRO PERFETTO IN CORRISPONDENZA DEI VINCOLI AUSILIARI	
OTTENUTA CON UN MODELLO A ELEMENTO DI TIPO SHELL.	267
FIGURA 220 - MODELLO IN CUI SI È APPLICATO LO SFORZO DI COMPRESSIONE NEL BARICENTRO DEI	LLA
SOLETTA	268
FIGURA 221 - DIAGRAMMA DELLE TENSIONI NORMALLIN CORRISPONDENZA DELLA SEZIONE DI	-00
ME77ERIA	268
FIGURA 222 AND AMENTO DELLE TENSIONI IN CODDISDONDENZA DELLA SEZIONE DI MEZZEDIA E	200
TIOURA 222 - ANDAMENTO DELLE TENSIONI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA E	260
RISPETTIVE RISULTANTI.	209
FIGURA 223 - MODELLO IN CUI SI E APPLICATO LO SFORZO DI COMPRESSIONE NEL BARICENTRO DEL	
SEZIONE COMPOSTA ASSIEME AL RELATIVO MOMENTO DI TRASPORTO	269
FIGURA 224 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI	• -
MEZZERIA	270
FIGURA 225 - ANDAMENTO DELLE TENSIONI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA E	
RISPETTIVE RISULTANTI	270
$FIGURA\ 226\ -\ RISULTANTI RICAVATE\ TRAMITE\ LE\ SECTION\ CUT\ IN\ CORRISPONDENZA\ DELLA\ SEZION\ CUT\ NOPPONDENZA\ DELLA\ SEZION\ SEZI$	NE
DI MEZZERIA	271
FIGURA 227 - STATO TENSIONALE COMPLESSIVO IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA	Α.
-	272

FIGURA 228 - DIAGRAMMI DELLE TENSIONI E DELLE CONSEGUENTI SOLLECITAZIONI PER L'ANIMA DI
CALCESTRUZZO E LA SOLETTA DI ACCIAIO NELLO SCHEMA STRUTTURALE IPERSTATICO
(ESTERNAMENTE)
$FIGURA\ 229\ \text{-}\ TENSIONI\ NORMALI\ NELLA\ DIREZIONE\ DELL'ASSE\ DELLA\ TRAVE\ (S11\ IN\ SAP2000).\ 276$
FIGURA 230 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
FIGURA 231 - ANDAMENTO DELLE TENSIONI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA E
RISPETTIVE RISULTANTI
FIGURA 232 - RISULTANTI RICAVATE TRAMITE LE SECTION CUT IN CORRISPONDENZA DELLA SEZIONE
DI MEZZERIA
FIGURA 233 - ANDAMENTO DELLE TENSIONI NORMALI DI TRAZIONE NELLA SOLETTA 278
FIGURA 234 - ANDAMENTO DELLA RISULTANTE DEGLI SFORZI NORMALI DI TRAZIONE NELLA
SOLETTA
FIGURA 235 - ANDAMENTO DELLE TENSIONI NORMALI DI COMPRESSIONE NELL'ANIMA
FIGURA 236 - ANDAMENTO DELLA RISULTANTE DEGLI SFORZI NORMALI DI COMPRESSIONE
NELL'ANIMA
FIGURA 237 - REAZIONE DI INCASTRO PERFETTO IN CORRISPONDENZA DEI VINCOLI AUSILIARI
OTTENUTA CON UN MODELLO A ELEMENTO DI TIPO FRAME
FIGURA 238 - DIAGRAMMA DELLE TENSIONI NORMALI IN DIREZIONE LONGITUDINALE PER LA
SECONDA FASE
FIGURA 239 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
FIGURA 240 - ANDAMENTO DELLE TENSIONI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA E
RISPETTIVE RISULTANTI
FIGURA 241 - DIAGRAMMA DELLE TENSIONI NORMALI IN DIREZIONE LONGITUDINALE PER LA TERZA
FASE
FIGURA 242 - DIAGRAMMA DELLE TENSIONI NORMALI IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
FIGURA 243 - ANDAMENTO DELLE TENSIONI IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA E
RISPETTIVE RISULTANTI
FIGURA 244 - RISULTANTI PER ANIMA E SOLETTA PER LE VARIE FASI DI CALCOLI OTTENUTI TRAMITE
LA DEFINIZIONE DI SECTION CUT
FIGURA 245 – STATO TENSIONALE COMPLESSIVO IN CORRISPONDENZA DELLA SEZIONE DI MEZZERIA.
FIGURA 246 - MODULO ELASTICO DEL CALCESTRUZZO A BREVE E LUNGO TERMINE
FIGURA 247 - (A) APPROSSIMAZIONI INTRODOTTE CON IL METODO DEL MODULO EFFICACE; (B)
APPROSSIMAZIONI INTRODOTTE CON IL METODO DELLE TENSIONI MEDIE
FIGURA 248 - FORZE E MOMENTI AGENTI SULLE VARIE PARTI DELLA SEZIONE SECONDO IL METODO
DELLA SCOMPOSIZIONE DELLE FORZE
FIGURA 249 - DIAGRAMMI DELLE DEFORMAZIONI RISPETTIVAMENTE A BREVE E LUNGO TERMINE. 305
FIGURA 250 - GEOMETRIA DELL'ELEMENTO CONSIDERATO
FIGURA 251 - RISULTANTI DEGLI SFORZI INTERNI NELL'ANIMA E NELLA SOLETTA RICAVATE TRAMITE
LE "SECTION CUT" NEL MODELLO FEM
FIGURA 252 - RITIRO: (A) (B) (C) EFFETTI GLOBALI; (D) EFFETTI LOCALI SULLA CONNESSIONE 317
FIGURA 253 - MODELLO FEM DI UNA TRAVE A SEZIONE MISTA CON L'ARMATURA LONGITUDINALE IN
SOLETTA
FIGURA 254 - TENSIONI IN DIREZIONE LONGITUDINALE NELLA TRAVE METALLICA NELLO SCHEMA
STRUTTURALE ISOSTATICO IN CUI SI È ASSUNTO MODULO ELASTICO ISTANTANEO PER IL
CALCESTRUZZO
FIGURA 255 - TENSIONI IN DIREZIONE LONGITUDINALE NELLA TRAVE METALLICA NELLO SCHEMA
STRUTTURALE IPERSTATICO IN CUI SI È ASSUNTO MODULO ELASTICO ISTANTANEO PER IL

FIGURA 256 - TENSIONI IN DIREZIONE LONGITUDINALE NELLE ARMATURE NELLO SCHEMA
STRUTTURALE ISOSTATICO IN CUI SI È ASSUNTO MODULO ELASTICO ISTANTANEO PER IL
CALCESTRUZZO 323
FIGURA 257 - TENSIONI IN DIREZIONE LONGITUDINALE NELLE ADMATURE NELLO SCHEMA
TIOURA 2.57 - TENSIONI IN DIREZIONE LONOITODINALE NELLE ARMATURE NELLO SCHEMA
STRUTTURALE IPERSTATICO IN CUTSTE ASSUNTO MODULO ELASTICO ISTANTANEO PER IL
CALCESTRUZZO
FIGURA 258 - TENSIONI IN DIREZIONE LONGITUDINALE NELLA SOLETTA NELLO SCHEMA
STRUTTURALE ISOSTATICO IN CUI SI È ASSUNTO MODULO ELASTICO ISTANTANEO PER IL
CALCESTRUZZO
FIGURA 259 - TENSIONI IN DIREZIONE LONGITUDINALE NELLA SOLETTA NELLO SCHEMA
STRUTTURALE IPERSTATICO IN CUI SI È ASSUNTO MODULO ELASTICO ISTANTANEO PER IL
CALCESTRUZZO 325
FIGURA 260 TENSIONI IN DIREZIONE LONGITUDINALE NELLA TRAVE NELLO SCHEMA STRUTTURALE
TOURA 200 - TENSIONI IN DIREZIONE LONOTI UDINALE NELLA TRAVE NELLO SCHEMA STRUTTURALE
ISOSTATICO IN CUI SI E ASSUNTO MODULO ELASTICO A LUNGO TERMINE PER IL CALCESTRUZZO.
FIGURA 261 - TENSIONI IN DIREZIONE LONGITUDINALE NELLA TRAVE NELLO SCHEMA STRUTTURALE
IPERSTATICO IN CUI SI È ASSUNTO MODULO ELASTICO A LUNGO TERMINE PER IL CALCESTRUZZO.
FIGURA 262 - TENSIONI IN DIREZIONE LONGITUDINALE NELLE ARMATURE NELLO SCHEMA
STRUTTURALE ISOSTATICO IN CUI SLÈ ASSUNTO MODULO ELASTICO A LUNGO TERMINE PER IL
CALCESTRUZZO 329
FIGURA 263 - TENSIONI IN DIREZIONE LONGITUDINALE NELLE ADMATURE NELLO SCHEMA
TIOURA 205 - TENSIONI IN DIREZIONE LONOITUDINALE NELLE ARMATURE NELLO SCHEMA
STRUTTURALE IPERSTATICO IN CUTSTE ASSUNTO MODULO ELASTICO A LUNGO TERMINE PER IL
CALCESTRUZZO
FIGURA 264 - TENSIONI IN DIREZIONE LONGITUDINALE NELLA SOLETTA NELLO SCHEMA
STRUTTURALE ISOSTATICO IN CUI SI È ASSUNTO MODULO ELASTICO A LUNGO TERMINE PER IL
CALCESTRUZZO
CALCESTRUZZO.332FIGURA 265 - TENSIONI IN DIREZIONE LONGITUDINALE NELLA SOLETTA NELLO SCHEMA STRUTTURALE IPERSTATICO IN CUI SI È ASSUNTO MODULO ELASTICO A LUNGO TERMINE PER IL CALCESTRUZZO.332FIGURA 266 - SEZIONE TRASVERSALE TIPICA.336FIGURA 267 - SEZIONE TRASVERSALE.336FIGURA 268 - SCHEMA STATICO PER LA PRIMA FASE.340FIGURA 269 - MODELLO FEM PER LA PRIMA FASE.340FIGURA 270 - DIAGRAMMA DEL MOMENTO FLETTENTE OTTENUTO DAL MODELLO FEM PER LA PRIMA FASE.341FIGURA 271 - DIAGRAMMA DEL TAGLIO OTTENUTO DAL MODELLO FEM PER LA PRIMA FASE.342FIGURA 273 - MODELLO FEM PER LA SECONDA FASE.342FIGURA 274 - DIAGRAMMA DEL MOMENTO FLETTENTE OTTENUTO DAL MODELLO FEM PER LA SECONDA FASE.342FIGURA 275 - DIAGRAMMA DEL TAGLIO OTTENUTO DAL MODELLO FEM PER LA SECONDA FASE.343FIGURA 276 - FOGLIO DI CALCOLO PER LA DETERMINAZIONE DELLA DEFORMAZIONE DA RITIRO SECONDO IL D.M. 14/01/2008.343FIGURA 277 - FOGLIO DI CALCOLO PER LA DETERMINAZIONE DEL COEFFICIENTE DI VISCOSITÀ343
CALCESTRUZZO

FIGURA 283 - REAZIONI OFFERTE DALLE TRAVI PER I CARICHI DISTRIBUITI.	348
FIGURA 284 - DISTRIBUZIONE DEI CARICHI CON ECCENTRICITÀ MASSIMA.	348
FIGURA 285 - DIAGRAMMA DEI MOMENTI FLETTENTI E DEL TAGLIO DOVUTI AI CARICHI	
CONCENTRATI.	349
FIGURA 286 - DIAGRAMMA DEI MOMENTI FLETTENTI E DEL TAGLIO DOVUTI AI CARICHI DISTRI	BUITI.
	349
FIGURA 287 - REAZIONI OFFERTE DALLE TRAVI PER I CARICHI CONCENTRATI.	349
FIGURA 288 - REAZIONI OFFERTE DALLE TRAVI PER I CARICHI DISTRIBUITI.	350
FIGURA 289 - DISTRIBUZIONE DEI CARICHI MASSIMI SULLA TRAVE CENTRALE	351
FIGURA 290 - DIAGRAMMA DEI MOMENTI FLETTENTI E DEL TAGLIO DOVUTI AI CARICHI	
CONCENTRATI.	351
FIGURA 291 - DIAGRAMMA DEI MOMENTI FLETTENTI E DEL TAGLIO DOVUTI AI CARICHI DISTRI	BUITI.
	351
FIGURA 292 - REAZIONI OFFERTE DALLE TRAVI PER I CARICHI CONCENTRATI.	352
FIGURA 293 - REAZIONI OFFERTE DALLE TRAVI PER I CARICHI DISTRIBUITI.	352
FIGURA 294 - DISTRIBUZIONI CONSIDERATE PER L'AZIONE DELLA TEMPERATURA SULL'IMPALC	ATO.
	354
FIGURA 295 - DIAGRAMMA DEL MOMENTO FLETTENTE DOVUTO ALLA COMPONENTE DI VARIAZ	ZIONE
TERMICA DIFFERENZIALE.	354
FIGURA 296 - FOGLIO DI CALCOLO PER LA DETERMINAZIONE DELLA PRESSIONE CINETICA DI	
RIFERIMENTO SECONDO IL D.M. 14/01/2008	355
FIGURA 297 – DIAGRAMMI DEL MOMENTO FLETTENTE OTTENUTI DAL MODELLO FEM PER L'AZ	ZIONE
DEL VENTO.	355
FIGURA 298 - DIAGRAMMI DEL TAGLIO OTTENUTI DAL MODELLO FEM PER L'AZIONE DEL VEN	го. 356
FIGURA 299 - MODELLO DI CALCOLO REALIZZATO PRINCIPALMENTE CON ELEMENTI DI TIPO "S	HELL".
	358
FIGURA 300 - MODELLO DI CALCOLO CON INGOMBRO SOLIDO DEGLI ELEMENTI "FRAMES" E "S	HELL".
	358
FIGURA 301 - MODELLO DI CALCOLO REALIZZATO CON ELEMENTI DI TIPO "FRAME".	359
FIGURA 302 - MODELLO DI CALCOLO CON INGOMBRO SOLIDO DEGLI ELEMENTI "FRAME"	359
FIGURA 303 - SEZIONI MISTE ASSEGNATE TRAMITE IL "SECTION DESIGNER".	359
FIGURA 304 - MODELLO DI CALCOLO REALIZZATO CON ELEMENTI DI TIPO "FRAME" E "SHELL".	360
FIGURA 305 - MODELLO DI CALCOLO CON INGOMBRO SOLIDO DEGLI ELEMENTI "FRAME" E "SH	ELL".
	360
FIGURA 306 - MODELLO DI CALCOLO REALIZZATO CON ELEMENTI DI TIPO "FRAME" E "SHELL".	361
FIGURA 307 - MODELLO DI CALCOLO CON INGOMBRO SOLIDO DEGLI ELEMENTI "FRAME" E "SH	ELL".
	361
FIGURA 308 - INDIVIDUAZIONE DELLE SEZIONI DI CALCOLO.	361
FIGURA 309 - DEFINIZIONE DELL'ESTENSIONE DELLE ZONE FESSURATE.	364
FIGURA 310 - DEFINIZIONE DELL'ESTENSIONE DELLE ZONE FESSURATE.	365
FIGURA 311 - ZONE FESSURATE.	365
FIGURA 312 – MOMENTO FLETTENTE DOVUTO AL PESO PROPRIO DA MODELLO 1A.	367
FIGURA 313 - MOMENTO FLETTENTE DOVUTO AL PESO PROPRIO DA MODELLO 2A.	368
FIGURA 314 - MOMENTO FLETTENTE DOVUTO AL PESO PROPRIO DA MODELLO 3A.	369
FIGURA 315 - MOMENTO FLETTENTE DOVUTO AL PESO PROPRIO DA MODELLO 4A.	370
FIGURA 316 - MOMENTO FLETTENTE DOVUTO ALLA VARIAZIONE TERMICA DA MODELLO 1B.	371
FIGURA 317 - MOMENTO FLETTENTE DOVUTO ALLA VARIAZIONE TERMICA DA MODELLO 2B	372
FIGURA 318 - MOMENTO FLETTENTE DOVUTO ALLA VARIAZIONE TERMICA DA MODELLO 3B	
FIGURA 319 - MOMENTO FLETTENTE DOVUTO ALLA VARIAZIONE TERMICA DA MODELLO 3DA	
FIGURA 320 - MOMENTO FLETTENTE DOVUTO AI CARICHI MOBILI DA MODELLO 1B	375
FIGURA 321 - MOMENTO FLETTENTE DOVUTO AI CARICHI MOBILI DA MODELLO 7B	
FIGURA 322 - MOMENTO FLETTENTE DOVUTO AI CARICHI MOBILI DA MODELLO 3B	377
FIGURA 323 - MOMENTO FLETTENTE DOVUTO AI CARICHI MOBILI DA MODELLO 4B.	378

FIGURA 324 - MOMENTO FLETTENTE DOVUTO AI PERMANENTI PORTATI DA MODELLO IC
FIGURA 325 - MOMENTO FLETTENTE DOVUTO AI PERMANENTI PORTATI DA MODELLO 2C
FIGURA 326 - MOMENTO FLETTENTE DOVUTO AI PERMANENTI PORTATI DA MODELLO 3C
FIGURA 327 - MOMENTO FLETTENTE DOVUTO AI PERMANENTI PORTATI DA MODELLO 4C
FIGURA 328 - MOMENTO FLETTENTE DOVUTO AL RITIRO DA MODELLO 1C
FIGURA 329 - MOMENTO FLETTENTE DOVUTO AL RITIRO DA MODELLO 2C
FIGURA 330 - MOMENTO FLETTENTE DOVUTO AL RITIRO DA MODELLO 3C
FIGURA 331 - MOMENTO FLETTENTE DOVUTO AL RITIRO DA MODELLO 4C
FIGURA 332 - LEGAME FORZA-SPOSTAMENTO CHE DEFINISCE IL COMPORTAMENTO DELLE MOLLE
POSTE IN CORRISPONDENZA DELLE SPALLE
FIGURA 333 - MODELLO "ISOSTATICO" PER LA VALUTAZIONE DELLE SOLLECITAZIONI DA RITIRO CON
MOLLE PER SIMULARE L'ATTRITO DEI VINCOLI
FIGURA 334 - MOMENTO FLETTENTE DOVUTO AL RITIRO DA MODELLO 2C CON E SENZA ATTRITO DEI
VINCOLI NELLO SCHEMA "ISOSTATICO"
FIGURA 335 - ELEMENTI CHE SI OPPONGONO AL RITIRO IN DIREZIONE LONGITUDINALE E
TRASVERSALE
FIGURA 336 - ARMATURE RESISTENTI IN DIREZIONE TRASVERSALE E SCHEMATIZZAZIONE ADOTTATA
PER LA SOLETTA
FIGURA 337 – STRISCIA LARGA 1 M DI SEZIONE LONGITUDINALE DI IMPALCATO E SCHEMA STATICO DI
CALCOLO ADOTTATO PER LA SOLETTA IN DIREZIONE TRASVERSALE
FIGURA 338 - ANDAMENTO DEGLI SFORZI DI TRAZIONE NELLA SOLETTA OTTENUTI DAL MODELLO
SULLE SEZIONI TRASVERSALI CONSIDERATE
FIGURA 339 - CARPENTERIA METALLICA E ARMATURE RESISTENTI IN DIREZIONE LONGITUDINALE. 396
FIGURA 340 - SEZIONE TRASVERSALE DELL'IMPALCATO E DISPOSIZIONE DEI VINCOLI
FIGURA 341 - ANDAMENTO LONGITUDINALE DEGLI SFORZI DI TRAZIONE NELLA SOLETTA OTTENUTI
DAL MODELLO. 399
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008
 FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 ADOTTARE NELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L_E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 ADOTTARE NELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L_E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 407 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 348 - EOUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 ADOTTARE NELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L_E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 405 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 349 - EOUILIBRIO ALLA TRASLAZIONE ORIZZONTALE DEL CONCIO. 423
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 ADOTTARE NELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L_E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 405 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 349 - EQUILIBRIO ALLA TRASLAZIONE ORIZZONTALE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER 423
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008.401FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA ADOTTARE NELLE COMBINAZIONI DI CARICO.402FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA.405FIGURA 345 - LUCI EQUIVALENTI (L_E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA.405FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI.407FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI.422FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO.423FIGURA 349 - EQUILIBRIO ALLA TRASLAZIONE ORIZZONTALE DEL CONCIO.423FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER RESISTERE ALLO SCORRIMENTO.424
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008.401FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA ADOTTARE NELLE COMBINAZIONI DI CARICO.402FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA.405FIGURA 345 - LUCI EQUIVALENTI (L_E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA.405FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407407FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI.422FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO.423FIGURA 349 - EQUILIBRIO ALLA TRASLAZIONE ORIZZONTALE DEL CONCIO.423FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER RESISTERE ALLO SCORRIMENTO.424FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE424
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 ADOTTARE NELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (<i>L_E</i>) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 405 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 349 - EQUILIBRIO ALLA ROTAZIONE ORIZZONTALE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE 425
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA ADOTTARE NELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L_E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 405 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 349 - EQUILIBRIO ALLA RASLAZIONE ORIZZONTALE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER RESISTERE ALLO SCORRIMENTO. 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE L'EQUILIBRIO. 425 FIGURA 352 - SEQUENZE DI GETTO DELLA SOLETTA 429
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 ADOTTARE NELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L _E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 405 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 349 - EQUILIBRIO ALLA RASLAZIONE ORIZZONTALE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER RESISTERE ALLO SCORRIMENTO. 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE L'EQUILIBRIO. 425 FIGURA 352 - SEQUENZE DI GETTO DELLA SOLETTA. 429 FIGURA 353 - POSA IN OPERA DELLA SOLETTA. 429
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA ADOTTARE NELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L_E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 405 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 423 FIGURA 349 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 349 - EQUILIBRIO ALLA ROTAZIONE ORIZZONTALE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER RESISTERE ALLO SCORRIMENTO. 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE L'EQUILIBRIO. 425 FIGURA 352 - SEQUENZE DI GETTO DELLA SOLETTA. 429 FIGURA 353 - POSA IN OPERA DELLA SOLETTA A SPINTA. 430 FIGURA 354 - SOLETTA PEFEABBRICATA A CONCL 430
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 ADOTTARE NELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L_E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L_E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 405 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 349 - EQUILIBRIO ALLA RASLAZIONE ORIZZONTALE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE 424 FIGURA 352 - SEQUENZE DI GETTO DELLA SOLETTA. 429 FIGURA 353 - POSA IN OPERA DELLA SOLETTA A SPINTA. 430 FIGURA 354 - SOLETTA PREFABBRICATA A CONCI. 430 FIGURA 355 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 ADOTTARE NELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (<i>L_E</i>) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 405 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 349 - EQUILIBRIO ALLA ROTAZIONE ORIZZONTALE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE 424 FIGURA 352 - SEQUENZE DI GETTO DELLA SOLETTA. 429 FIGURA 353 - POSA IN OPERA DELLA SOLETTA A SPINTA. 430 FIGURA 354 - SOLETTA PREFABBRICATA A CONCI. 430 FIGURA 355 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA 430
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 ADOTTARE NELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L_e) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 405 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 349 - EQUILIBRIO ALLA ROTAZIONE ORIZZONTALE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER RESISTERE ALLO SCORRIMENTO. 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE L'EQUILIBRIO. 425 FIGURA 352 - SEQUENZE DI GETTO DELLA SOLETTA. 429 FIGURA 353 - POSA IN OPERA DELLA SOLETTA A SPINTA. 430 FIGURA 354 - SOLETTA PREFABBRICATA A CONCI. 430 FIGURA 355 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA 430 FIGURA 355 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE (COLLABORAZIONE TRASVERSALE TRA LE TRAVI GARANTITA DAI LA SOL A SOLETTA) 431
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L_E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 405 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 349 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE 425 FIGURA 352 - SEQUENZE DI GETTO DELLA SOLETTA. 420 FIGURA 353 - POSA IN OPERA DELLA SOLETTA A SPINTA. 430 FIGURA 354 - SOLETTA PREFABBRICATA A CONCI. 430 FIGURA 355 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA 431 FIGURA 356 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA 431
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 ADOTTARE NELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (<i>L_E</i>) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 405 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 349 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE 425 FIGURA 352 - SEQUENZE DI GETTO DELLA SOLETTA. 420 FIGURA 353 - POSA IN OPERA DELLA SOLETTA A SPINTA. 430 FIGURA 354 - SOLETTA PEFFABBRICATA A CONCI. 430 FIGURA 354 - SOLETTA PERFABBRICATA A CONCI. 430 FIGURA 355 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA 431 FIGURA 356 -
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 FIGURA 343 - TABELLE COMBINAZIONI DI CARICO. 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (<i>L_E</i>) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 407 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 349 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE 425 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE 426 FIGURA 351 - SOLETTA PER A DELLA SOLETTA 429 FIGURA 353 - POSA IN OPERA DELLA SOLETTA A SPINTA. 430 FIGURA 354 - SOLETTA PREFABBRICATA A CONCI. 430 FIGURA 355 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA 431 FIGURA 356 - INVILUPPO DELLE TASIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA 431 FIGURA 356 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZI
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L_E) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 407 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 349 - EQUILIBRIO ALLA ROTAZIONE ORIZZONTALE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER RESISTERE ALLO SCORRIMENTO. 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE L'EQUILIBRIO. 424 FIGURA 352 - SEQUENZE DI GETTO DELLA SOLETTA. 429 FIGURA 353 - POSA IN OPERA DELLA SOLETTA A SPINTA. 430 FIGURA 354 - SOLETTA PREFABBRICATA A CONCI. 430 FIGURA 354 - SOLETTA PREFABBRICATA A CONCI. 431 FIGURA 355 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA 431 FIGURA 356 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA 431 FIGURA 356 - INVILUPPO DELLE TENS
FIGURA 342 - COMBINAZIONI DI CARICO DEFINITE DAL D.M. 14/01/2008. 401 FIGURA 343 - TABELLE FORNITE DAL D.M. 14/01/2008 PER LA DEFINIZIONE DEI COEFFICIENTI DA 402 FIGURA 344 - LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 345 - LUCI EQUIVALENTI (L _z) PER IL CALCOLO DELLA LARGHEZZA EFFICACE DELLA SOLETTA. 405 FIGURA 346 - DEFINIZIONE DELLE ZONE EFFICACI PER ELEMENTI COMPRESSI INTERNI ED ESTERNI. 407 407 FIGURA 347 - SEZIONE TRASVERSALE SCHEMA STATICO CONSIDERATI. 422 FIGURA 348 - EQUILIBRIO ALLA ROTAZIONE DEL CONCIO. 423 FIGURA 349 - EQUILIBRIO ALLA RASLAZIONE ORIZZONTALE DEL CONCIO. 423 FIGURA 350 - MECCANISMO RESISTENTE CHE SI INSTAURA ALL'INTERNO DELLA SOLETTA PER 424 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE 125 FIGURA 351 - SCHEMA PER LA COSTRUZIONE DEL POLIGONO DELLE FORZE CHE GARANTISCE 126 FIGURA 352 - SEQUENZE DI GETTO DELLA SOLETTA. 429 FIGURA 353 - POSA IN OPERA DELLA SOLETTA A SPINTA. 430 FIGURA 354 - SOLETTA PREFABBRICATA A CONCI. 430 FIGURA 355 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA NELL'IPOTESI CHE LA SOLETTA SIA REALIZZATA IN UN'UNICA SOLUZIONE (COLLABORAZIONE TRASVERSALE TRA LE TRAVI GARANTITA DALLA SOLA SOLETTA). 431 FIGURA 356 - INVILUPPO DELLE TENSIONI DI TRAZIONE DUR

FIGURA 358 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA
NELL'IPOTESI CHE LA SOLETTA SIA REALIZZATA CON UN GETTO OTTIMIZZATO CHE PREVEDE
PRIMA IL GETTO DEI CONCI IN CAMPATA
FIGURA 359 - INVILUPPO DELLE TENSIONI DI TRAZIONE DURANTE LA REALIZZAZIONE DELLA SOLETTA
NELL'IPOTESI CHE LA SOLETTA SIA REALIZZATA CON UN GETTO OTTIMIZZATO CHE PREVEDE
PRIMA IL GETTO DEI CONCI IN CAMPATA, MA DI UN CONCIO ALLA VOLTA
FIGURA 360 - STIMA DELL'AMPIEZZA DELLE FESSURE DURANTE LA REALIZZAZIONE DELLA SOLETTA
NELL'IPOTESI DI REALIZZAZIONE CON GETTO CONTINUO
FIGURA 361 - VERIFICA A FESSURAZIONE PER LA SEZIONE L
FIGURA 362 - VERIFICA A FESSURAZIONE PER LA SEZIONE D

Indice delle Tabelle:

TABELLA 1 - VALORI DI E_{c0}	36
TABELLA 2 - VALORI DI K_{H}	36
TABELLA 3 - VALORI NOMINALI DEL RITIRO (IN ‰) PER ESSICCAMENTO NON CONTRASTATO $E_{CD,0}$	DAL
CALCESTRUZZO CON CEMENTO CEM CLASSE N	39
TABELLA 4 - VALORI DI K _H	39
TABELLA 5 - CONFRONTO TRA LE DIVERSE FORMULAZIONI PROPOSTE DALLE NORMATIVE PRESE	IN
CONSIDER AZIONE.	41
TABELLA 6 - VALORI DI K _H	43
TABELLA 7 - VALORI DI E_{c0}	43
TABELLA 8 - VALORI DI K_{μ}	45
TABELLA 9 - TENSIONI E DEFORMAZIONI, SOLLECITAZIONI E SPOSTAMENTI PER L'ELEMENTO DI SO	OLO
CALCESTRUZZO NEGLI SCHEMI STRUTTURALI CONSIDERATI.	55
TABELLA 10 - RISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI	
MEZZERIA	62
TABELLA 11 - RISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI	
MEZZERIA.	64
TABELLA 12 - TENSIONI E DEFORMAZIONI. SOLLECITAZIONI E SPOSTAMENTI PER L'ELEMENTO DI	
CALCESTRUZZO CON ARMATURA CENTRATA NEGLI SCHEMI STRUTTURALI CONSIDERATI	68
TABELLA 13 - RISULTANTE DELLO SEORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI	
MEZZERIA	80
TARELLA 14- RISHI TANTE DELLO SEORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI	00
	81
TARELLA 15 - RISULTANTE DELLO SEORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI	01
MEZZERIA	87
TARELLA 16 - RISULTANTE DELLO SEORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE A L/4	89
TABELLA 10 - RISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI	07
METZEDIA	97
TARELLA 18 - RISULTANTE DELLO SEORTO ASSIALE IN CORRISONIDENZA DELLA SEZIONE DI)1
ME7ZERIA	98
TABELLA 19 - RISULTANTE DELLO SEORTO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI	70
METZEDIA	103
TABELLA 20 - RISULTANTE DELLO SEORZO ASSIALE IN CORRISONDENZA DELLA SEZIONE A L $/A$	104
TABELLA 20 RISULTANTE DELLO SI ORZO ASSIALE IN CORRISTONDENZA DELLA SEZIONE DI TARELLA $21 - R$ ISULTANTE DELLO SEOPZO ASSIALE IN CORRISTONDENZA DELLA SEZIONE DI	. 104
METZEDIA	116
TABELLA 22 - RISULTANTE DELLO SEORZO ASSIALE IN CORRISONIDENZA DELLA SEZIONE DI	. 110
ME77ERIA	118
TABELLA 23 - RISULTANTE DELLO SEORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI	. 110
METZEDIA	124
TARELLA 24 - RISULTANTE DELLO SEORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE A L $/4$	124
TABELLA 24 - RISULTANTE DELLO SPORZO ASSIALE IN CORRISTONDENZA DELLA SEZIONE A L'4 TABELLA 25 - TENSIONI E DEEOPMAZIONI, SOLI ECITAZIONI E SPOSTAMENTI DEPLI 'EL EMENTO DI	. 120
CALCESTDUZZO CON ADMATUDA ECCENTDICA NECU I SCHEMU STDUTTUDA I L'ONSIDEDATI	128
CALCESTRUZZO CON ARMATURA ECCENTRICA NEGLI SCHEMI STRUTTURALI CONSIDERATI TADELLA 26. DISULTANTE DELLO SEODZO ASSIALE IN CORDISDONIDENZA DELLA SEZIONE DI	. 120
ME77EDIA	130
MEZZERIA.	. 139
TABELLA 27 - KISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI	141
MEZZERIA. TADELLA 29 DIGULTANTE DELLO GEODZO AGGIALE IN CONDIGUONDENZA DELLA GEZIONE DI	. 141
TABELLA 28 - KISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI	140
	. 149
1 ABELLA 27 - KISULI AN 1E DELLU SFURZU ASSIALE IN CURRISPONDENZA DELLA SEZIONE DI	151
MELLEKIA	. 131
1 ADELLA JU - NISULI AN 1E DELLU SFUKZU ASSIALE IN UUKKISPUNDENZA DELLA SEZIONE DI	150
MEZZEKIA	139

TABELLA 31 - RISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
TABELLA 32 - TENSIONI E DEFORMAZIONI, SOLLECITAZIONI E SPOSTAMENTI PER L'ELEMENTO DI
CALCESTRUZZO CON ARMATURA DOPPIAMENTE ECCENTRICA NEGLI SCHEMI STRUTTURALI
CONSIDERATI
TABELLA 33 - RISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
TABELLA 34 - RISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
TABELLA 35 - RISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
TABELLA 36 - RISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
TABELLA 37 - TENSIONI E DEFORMAZIONI, SOLLECITAZIONI E SPOSTAMENTI PER L'ELEMENTO DI
CALCESTRUZZO CON ARMATURA CENTRATA TESA NEGLI SCHEMI STRUTTURALI CONSIDERATI.
TABELLA 38 - RISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
TABELLA 39 - RISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
TABELLA 40 - RISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE DI
MEZZERIA
TABELLA 41 - RISULTANTE DELLO SFORZO ASSIALE IN CORRISPONDENZA DELLA SEZIONE A L/4 203
TABELLA 42 - TENSIONI E DEFORMAZIONI, SOLLECITAZIONI E SPOSTAMENTI PER L'ELEMENTO A
SEZIONE A T DI SOLO CALCESTRUZZO NEGLI SCHEMI STRUTTURALI CONSIDERATI
TABELLA 43 - RISULTANTE DELLO SFORZO ASSIALE NELLA SOLETTA IN CORRISPONDENZA DELLA
SEZIONE DI MEZZERIA
TABELLA 44 - RISULTANTE DELLO SFORZO ASSIALE NELL'ANIMA IN CORRISPONDENZA DELLA
SEZIONE DI MEZZERIA
TABELLA 45 - REAZIONI VINCOLARI PER I MODELLI DI TENTATIVO. 230
TABELLA 46 - RISULTANTE DELLO SFORZO ASSIALE NELLA SOLETTA IN CORRISPONDENZA DELLA
SEZIONE DI MEZZERIA
TABELLA 47 - RISULTANTE DELLO SFORZO ASSIALE NELL'ANIMA IN CORRISPONDENZA DELLA
SEZIONE DI MEZZERIA
TABELLA 48 - TENSIONI E DEFORMAZIONI, SOLLECITAZIONI E SPOSTAMENTI PER L'ELEMENTO A T
COSTITUITO DA ANIMA IN ACCIAIO E SOLETTA DI CALCESTRUZZO NEGLI SCHEMI STRUTTURALI
CONSIDERATI
TABELLA 49 - RISULTANTE DELLO SFORZO ASSIALE NELLA SOLETTA IN CORRISPONDENZA DELLA
SEZIONE DI MEZZERIA
TABELLA 50 - RISULTANTE DELLO SFORZO ASSIALE NELL'ANIMA IN CORRISPONDENZA DELLA
SEZIONE DI MEZZERIA
TABELLA 51 - RISULTANTE DELLO SFORZO ASSIALE NELLA SOLETTA IN CORRISPONDENZA DELLA
SEZIONE DI MEZZERIA
TABELLA 52 - RISULTANTE DELLO SFORZO ASSIALE NELL'ANIMA IN CORRISPONDENZA DELLA
SEZIONE DI MEZZERIA
TABELLA 53 - TABELLA RIASSUNTIVA DEI RISULTATI OTTENUTI PER I CASI STUDIATI. 287
TABELLA 54 - VALORI DI $\phi(\infty, T_0)$. Atmosfera con umidità relativa di circa il 75% 292
TABELLA 55 - VALORI DI ϕ (∞ , τ 0). Atmosfera con umidità relativa di circa il 55%
TABELLA 56 - TABELLA AGGIORNATA PER UN'ANALISI PSEUDO-ELASTICA CON RAPPORTO MODULARE
N _{CS}
TABELLA 57 - VALORI DEL COEFFICIENTE Ψ_1
TABELLA 58 - RISULTANTE DELLO SFORZO ASSIALE NELLA TRAVE IN CORRISPONDENZA DELLA
SEZIONE DI MEZZERIA PER LO SCHEMA STRUTTURALE ISOSTATICO.

TABELLA 59 - RISULTANTE DELLO SFORZO ASSIALE NELLA TRAVE IN CORRISPONDENZA DELLA	
SEZIONE DI MEZZERIA PER LO SCHEMA STRUTTURALE IPERSTATICO.	. 321
TABELLA 60 - RISULTANTE DELLO SFORZO ASSIALE NELL'ARMATURA IN CORRISPONDENZA DELLA	A
SEZIONE DI MEZZERIA PER LO SCHEMA STRUTTURALE ISOSTATICO.	. 323
TABELLA 61 - RISULTANTE DELLO SFORZO ASSIALE NELL'ARMATURA IN CORRISPONDENZA DELLA	A
SEZIONE DI MEZZERIA PER LO SCHEMA STRUTTURALE IPERSTATICO.	. 324
TABELLA 62 - RISULTANTE DELLO SFORZO ASSIALE NELLA SOLETTA IN CORRISPONDENZA DELLA	-
SEZIONE DI MEZZERIA PER LO SCHEMA STRUTTURALE ISOSTATICO.	325
TABELLA 63 - RISULTANTE DELLO SEORZO ASSIALE NELLA SOLETTA IN CORRISPONDENZA DELLA	020
SEZIONE DI MEZZERIA PERI O SCHEMA STRUTTURALE IDERSTATICO	326
TABELLA $64 - R$ ISULTANTE DELLO SEODZO ASSIALE NELLA TRAVE IN CORDISPONDENZA DELLA	520
SEZIONE DI MEZZEDIA DELLO SI ORZO ASSIALE MELLA TRAVE IN CORRESI ONDENZA DELLA	377
TADELLA 65 DIVIDENTA DELLO SECOZO ASSIALE NELLA TRAVE IN CODDISDONDENZA DELLA	521
ADELLA UJ - NISULTANTE DELLO SFORZO ASSIALE NELLA TRAVE IN CORRISPONDENZA DELLA	378
TADELLA 66 DIGULTANTE DELLO GEODZO AGGIALE NELL'ADMATUDA DI CODDIGDONDENZA DELLA	, 320
I ABELLA 00 - NISULI ANTE DELLO SFORZO ASSIALE NELL'ARMATURA IN CORRISPONDENZA DELLA	320
SEZIONE DI MEZZERIA PER LO SCHEMA STRUTTURALE ISOSTATICO.	. 330
I ABELLA 67 - KISULTANTE DELLO SFORZO ASSIALE NELL'ARMATURA IN CORRISPONDENZA DELLA	4 221
SEZIONE DI MEZZERIA PER LO SCHEMA STRUTTURALE IPERSTATICO.	. 331
TABELLA 68 - RISULTANTE DELLO SFORZO ASSIALE NELLA SOLETTA IN CORRISPONDENZA DELLA	
SEZIONE DI MEZZERIA PER LO SCHEMA STRUTTURALE ISOSTATICO	. 333
TABELLA 69 - RISULTANTE DELLO SFORZO ASSIALE NELLA SOLETTA IN CORRISPONDENZA DELLA	
SEZIONE DI MEZZERIA PER LO SCHEMA STRUTTURALE IPERSTATICO.	. 333
.TABELLA 70 - PROPRIETÀ DEL CALCESTRUZZO	. 338
TABELLA 71 - VALORI DEL COEFFICIENTE Ψ_L SUGGERITI DALL'EC4-2 IN FUNZIONE DEL TIPO DI	
AZIONE	. 338
TABELLA 72 - COEFFICIENTI DI OMOGENEIZZAZIONE.	. 339
TABELLA 73 - PROPRIETÀ DELL'ACCIAIO DA ARMATURA LENTA	. 339
TABELLA 74 - PROPRIETÀ DELL'ACCIAIO DA CARPENTERIA METALLICA	. 339
TABELLA 75 - CARATTERISTICHE GEOMETRICHE DELLE SEZIONI INDAGATE.	. 362
TABELLA 76 - SEZIONI DI RIFERIMENTO	. 365
TABELLA 77 - SOLLECITAZIONI RILEVANTI AI FINI DELLE VERIFICHE	. 367
TABELLA 78 - SOLLECITAZIONI RILEVANTI AI FINI DELLE VERIFICHE	. 368
TABELLA 79 - SOLLECITAZIONI RILEVANTI AI FINI DELLE VERIFICHE	. 369
TABELLA 80 - SOLLECITAZIONI RILEVANTI AI FINI DELLE VERIFICHE	. 370
TABELLA 81 - SOLLECITAZIONI RILEVANTI AI FINI DELLE VERIFICHE	. 371
TABELLA 82 - SOLLECITAZIONI RILEVANTI AI FINI DELLE VERIFICHE	. 372
TABELLA 83 - SOLLECITAZIONI RILEVANTI ALFINI DELLE VERIFICHE	373
TABELLA 84 - SOLLECITAZIONI RILEVANTI ALFINI DELLE VERIFICHE	374
TABELLA 85 - SOLLECITAZIONI RILEVANTI ALFINI DELLE VERIFICHE	375
TABELLA 85 - SOLLECITAZIONI RILEVANTI ALFINI DELLE VERIFICHE	376
TABELLA 87 - SOLLECITAZIONI DILEVANTI ALEINI DELLE VERITCHE	370
TADELLA 67 - SOLLECTTAZIONI NILEVANTI ALFINI DELLE VERITCHE \dots	378
TADELLA 80 - SOLLECTIAZIONI DILEVANTI ALEINI DELLE VERIFICHE	370
TADELLA 00 - SOLLECTIAZIONI RILEVANTI ALENI DELLE VERIFICHE	200
TADELLA 70 - SOLLECTIAZIONI RILEVANTI ALENI DELLE VERIFICHE	201
TABELLA 91 - SOLLECTTAZIONI RILEVANTI ALERU DELLE VERIFICHE	202
TABELLA 92 - SOLLECITAZIONI RILEVANTI AI FINI DELLE VERIFICHE	. 382
TABELLA 93 - SOLLECITAZIONI RILEVANTI AI FINI DELLE VERIFICHE	. 383
I ABELLA 94 - SOLLECITAZIONI RILEVANTI AI FINI DELLE VERIFICHE	. 384
I ABELLA 95 - SOLLECITAZIONI RILEVANTI AI FINI DELLE VERIFICHE	. 385
TABELLA 96 - SOLLECITAZIONI RILEVANTI AI FINI DELLE VERIFICHE	. 386
TABELLA 97 - CONFRONTO TRA LE SOLLECITAZIONI RICAVATE DAI VARI MODELLI STUDIATI	. 387
TABELLA 98 - SFORZI DI TRAZIONE IN DIREZIONE TRASVERSALE NELLA SOLETTA ALLE VARIE SEZI	IONI
PRESE COME RIFERIMENTO.	. 394

$TABELLA \ 99 \ \text{-} \ CONFRONTO \ \text{trad} \ \text{gli} \ \text{sforzi} \ \text{di trazione in direzione trasversale nella soletta}$
ALLE VARIE SEZIONI PRESE COME RIFERIMENTO CALCOLATI CON IL MODELLO ANALITICO E
NUMERICO
$TABELLA \ 100 \ - \ Errori \ \text{medi} \ \text{e} \ \text{massimi} \ \text{in corrispondenza} \ \text{di pile e campate} 395$
TABELLA 101 - SFORZI DI TRAZIONE IN DIREZIONE LONGITUDINALE NELLA SOLETTA ALLE VARIE
SEZIONI PRESE COME RIFERIMENTO
TABELLA $102 - CONFRONTO$ TRA GLI SFORZI DI TRAZIONE IN DIREZIONE LONGITUDINALE NELLA
SOLETTA ALLE VARIE SEZIONI PRESE COME RIFERIMENTO CALCOLATI CON IL MODELLO
ANALITICO E NUMERICO
$TABELLA \ 103 \ - \ Errori \ \text{medi} \ \text{e} \ \text{massimi} \ \text{in corrispondenza} \ \text{di pile e campate}400$
TABELLA 104 - CONDIZIONI DI CARICO ELEMENTARI. 403
TABELLA 105 - VALORI DELLE AZIONI DA COMBINARE PER LA SEZIONE L
TABELLA 106 - VALORI DELLE AZIONI COMBINATE PER LA SEZIONE L
TABELLA 107 - VALORI DELLE AZIONI DA COMBINARE PER LA SEZIONE D
TABELLA 108 - VALORI DELLE AZIONI COMBINATE PER LA SEZIONE D
TABELLA 109 - PROSPETTO PER ELEMENTI COMPRESSI INTERNI (UNI ENV 1993-1-1). 407
TABELLA 110 - PROSPETTO PER ELEMENTI COMPRESSI SPORGENTI (UNI ENV 1993-1-1) 408
TABELLA 111 - RAPPORTI MASSIMI LARGHEZZA-SPESSORE PER ELEMENTI COMPRESSI (UNI EN 1993-
1-1)
$TABELLA\ 112-RAPPORTI\ MASSIMI\ LARGHEZZA-SPESSORE\ PER\ ELEMENTI\ COMPRESSI\ (UNI\ EN\ 1993-1993-1993-1993-1993-1993-1993-1993$
1-1)
TABELLA 113 - SCORRIMENTO UNITARIO DI CALCOLO IN CORRISPONDENZA DELLE SEZIONI DI
VERIFICA
TABELLA 114 - DESCRIZIONE DELLE CONDIZIONI AMBIENTALI. 439
TABELLA 115 - CRITERI DI SCELTA DELLO STATO LIMITE DI FESSURAZIONE. 439

1 Premessa

1.1 Background

Il ritiro del calcestruzzo è semplice da definire come fenomeno dal punto di vista fisico, ma è assai più complicato capire i meccanismi con cui si sviluppa, in particolare quando il calcestruzzo è messo a contatto, prima di aver completato l'indurimento, con altri materiali non soggetti allo stesso fenomeno. Dato che nel calcestruzzo si trova sempre immersa una certa quantità di armatura, risulta interessante capire quali implicazioni questa eterogeneità comporti nel ritiro del calcestruzzo. Di frequente sono adottate nell'ingegneria civile anche strutture miste acciaio-calcestruzzo, nelle quali risulta altrettanto interessante studiare gli effetti di questo fenomeno. Alla luce della limitata documentazione tecnica che tratta questo fenomeno complesso, si è pensato di dedicare il presente lavoro allo studio del ritiro del calcestruzzo per cercare di capire meglio i meccanismi con cui si sviluppa e gli effetti con cui si manifesta nelle strutture dell'ingegneria civile, con particolare riferimento alle solette da ponte di impalcati a sezione mista acciaio-calcestruzzo.

1.2 Obiettivo del lavoro

Il lavoro si pone l'obiettivo di studiare in modo approfondito il fenomeno del ritiro del calcestruzzo, in un primo momento come fenomeno fisico verificandone gli effetti su elementi strutturali semplici, per poi approfondire in un secondo momento gli effetti indotti su una struttura reale, nello specifico su un impalcato da ponte a sezione mista. Tramite questo percorso di studio articolato in fasi di studio prettamente teoriche, seguite dall'analisi del fenomeno su modelli realizzati con software FEM, si vuole indagare il fenomeno del ritiro del calcestruzzo dal punto di vista fisico, capire l'entità delle azioni che si manifestano nelle strutture come effetto di tale fenomeno ed infine valutare se effettivamente il ritiro abbia rilevanza pratica solo nell'ambito delle verifiche allo Stato Limite di Esercizio.

1.3 Organizzazione del lavoro

Il lavoro si è sviluppato in tre fasi principali:

- Fase 1: ricerca del materiale esistente in merito al fenomeno del ritiro del calcestruzzo;
- Fase 2a: studio teorico di casi elementari per analizzare il meccanismo con cui si attua il fenomeno del ritiro e cosa comporta nel caso di presenza di armatura e di sezioni miste acciaio-calcestruzzo (trattato nella Parte I di questo elaborato);
- Fase 2b: confronto dei casi elementari analizzati con applicazioni FEM, realizzate con modelli a fibre realizzati con elementi brick e modelli con elementi shell (trattato nella Parte I di questo elaborato);
- Fase 3: estensione delle conoscenze acquisite e delle osservazioni fatte sui casi elementari ad un caso reale, nello specifico un ponte con impalcato tritrave a sezione mista; studio di una tecnica esecutiva del getto della soletta al fine di contenerne il fenomeno della fessurazione da ritiro (trattato nella Parte II di questo elaborato).

In particolare, nel *capitolo 2* si definisce il fenomeno fisico del ritiro del calcestruzzo, specificando i fattori che lo influenzano e i parametri che concorrono a definire il ritiro totale in un elemento di calcestruzzo.

Nel *capitolo 3* si richiamano le prescrizioni fornite dal D.M. 14/01/2008 e dal EC2-1-1:2005 in merito al calcolo della deformazione da ritiro. Si esegue un esempio numerico per dimostrare che entrambi gli approcci conducono a valori di deformazione dello stesso ordine di grandezza. Si riportano quindi alcuni grafici che permettono di valutare l'influenza dei vari parametri che entrano in gioco nell'approccio proposto dal D.M. 14/01/2008 nel calcolo della deformazione da ritiro.

Nel *capitolo 4* si studiano una serie di *casi fondamentali* in cui si prendono in considerazione diversi elementi strutturali soggetti a ritiro del calcestruzzo, in assenza di altre azioni esterne e viscosità, sotto le consuete ipotesi della teoria classica del cemento armato. Per i vari casi si svolge una prima fase di studio teorico che porta alla definizione di un modello analitico, a cui segue una seconda fase in cui si realizza un modello numerico, ed infine una fase di confronto tra i risultati forniti dai due modelli.

I risultati oggetto di confronto sono le tensioni ed i loro profili sulle sezioni trasversale e longitudinale degli elementi, le relative risultanti, gli spostamenti qualora siano concessi dalle condizioni di vincolo esterne.

In particolare sono stati oggetto di studio elementi costituiti:

- di solo calcestruzzo;
- di calcestruzzo e armatura centrata;
- di calcestruzzo e armatura eccentrica;

- di calcestruzzo e armatura doppiamente eccentrica;
- di calcestruzzo e armatura tesa da un'azione esterna;
- a T in cui soletta e anima sono costituite da due calcestruzzi differenti;
- a T in cui la soletta è costituita da calcestruzzo e l'anima di acciaio.

Per i vari casi si è anche considerata la circostanza in cui si superi la resistenza a trazione del calcestruzzo e si abbia la conseguente formazione di fessure, verificando come muta la distribuzione delle tensioni nei materiali nei vari casi.

Nel *capitolo 5* si analizza come sia differente il comportamento del calcestruzzo nel breve e nel lungo termine e quindi come si possa tenere conto nei calcoli delle sollecitazioni che gravano sulle strutture del tempo in cui queste si esplicano, correggendo opportunamente il modulo elastico del calcestruzzo in fase di analisi della struttura. In questo capitolo vengono rivisti i risultati dei casi fondamentali studiati nel capitolo precedente alla luce delle considerazioni esposte in merito alla necessità di tenere conto della contemporaneità degli effetti di viscosità e ritiro nel calcestruzzo.

Nel *capitolo 6* si richiamano le ipotesi alla base della teoria della viscoelasticità lineare.

Nel *capitolo* 7 si espongono alcune considerazioni in merito al comportamento del calcestruzzo nel lungo termine. E' consuetudine infatti tenere conto della viscosità del calcestruzzo nel lungo termine adottando un modulo elastico del calcestruzzo ridotto rispetto al suo valore istantaneo. Vi sono metodi raffinati per tenere conto di questo aspetto che sono noti come metodi algebrizzati.

Nel *capitolo* 8 si esegue un'applicazione del metodo AAEM, il più raffinato tra i metodi trattati nel capitolo precedente, al fine di valutare le sollecitazioni che si generano in una struttura mista acciaio-calcestruzzo come effetto del peso proprio, della viscosità e del ritiro, e vedere la mutua interazione tra questi due fenomeni.

Nel *capitolo 9* si definiscono i principi guida dell'analisi viscoelastica per gli impalcati da ponte a sezione composta; in particolare come pervenire all'adozione di un appropriato coefficiente di omogeneizzazione che permetta di tenere conto della storia di carico con particolare riferimento alla durata delle azioni applicate alla struttura.

Nel *capitolo 10* si riportano i risultati in termini di distribuzioni tensionali ricavati da un modello a fibre di una sezione a T mista acciaio-calcestruzzo, in cui si sono modellate anche le armature all'interno della soletta, in modo da cogliere in maniera puntuale le forze che si scambiano mutuamente i diversi materiali. Nello specifico si sono considerati due modelli, uno per lo schema di vincolamento isostatico e uno per quello iperstatico, e per ciascun modello si sono eseguite due analisi, rispettivamente con il modulo del calcestruzzo istantaneo e a lungo termine.

Nel *capitolo 11* si considera un caso reale: un ponte costituito da cinque campate avente un impalcato tri-trave a sezione mista. Si esegue un confronto tra i diversi modelli implementati per cercare di capire quale sia il modo più corretto per modellare in modo affidabile e aderente alla realtà il caso oggetto di studio. Si esegue quindi un confronto tra sollecitazioni per vedere il ritiro che peso ha in relazioni alle sollecitazioni indotte dalle azioni esterne. Si esegue poi qualche verifica sezionale allo scopo di mettere in evidenza ancora una volta il ruolo giocato dalle sollecitazioni da ritiro. In accordo con lo spirito che ha guidato questo percorso di studio, si vuole vedere se le formule semplificate dei modelli analitici definiti nella fase di studio dei casi semplici siano applicabili ad un caso reale e se siano affidabili per una valutazione preliminare degli sforzi in gioco. Per verificare la validità di tali modelli si scompone lo studio dell'impalcato in direzione trasversale e longitudinale, trattando separatamente il calcolo nelle due direzioni.

Nel *capitolo 12* si sottolinea il problema della fessurazione delle solette negli impalcati da ponte a sezione mista già nelle fasi realizzative e si elencano alcune possibili soluzioni costruttive per ridurre tale fenomeno. Ci si sofferma in modo particolare sulla tecnica del getto per fasi della soletta, studiando come ad una diversa sequenza di getto dei conci in cui si suddivide la soletta corrispondano stati tensionali più o meno elevati e localizzati.

Nel *capitolo 13* si traggono le conclusioni del lavoro svolto, riassumendo le analisi condotte e i risultati ottenuti dai diversi modelli elaborati. Ci si sofferma infine sugli aspetti che non sono stati trattati per mancanza di tempo e che potrebbero essere oggetto di indagine.

PARTE I – Modelli analitici e numeri per la definizione degli sforzi dovuti al ritiro del calcestruzzo

2 Definizione del fenomeno del ritiro del calcestruzzo

2.1 Il ritiro: il fenomeno fisico

Il ritiro è una diminuzione di volume della massa di calcestruzzo, dovuta essenzialmente alla lenta evaporazione dell'acqua in eccesso rimasta imprigionata nel getto.

Diversamente dalle deformazioni viscose, che dipendono dall'intensità del carico applicato, il ritiro è, per un certo calcestruzzo e per assegnate condizioni ambientali, funzione solamente dell'età del materiale. Anche in questo caso la deformazione cresce nel tempo tendendo ad un valore asintotico, detto deformazione da ritiro a tempo infinito. Gli effetti del ritiro sono dunque deformazioni che si sviluppano nel tempo, anche in assenza di un'azione esterna applicata.

Come si è detto il ritiro si manifesta come una progressiva riduzione di volume, prodotta dall'evaporazione dell'acqua in eccesso rispetto al minimo richiesto dall'idratazione del cemento e rimasta intrappolata nei micropori della pasta cementizia; questo spiega la notevole influenza che hanno sul fenomeno l'umidità relativa dell'ambiente circostante ed il rapporto tra la superficie ed il volume dell'elemento.

L'entità del ritiro è inoltre influenzata dalla composizione del calcestruzzo: il rapporto acqua/cemento, la percentuale di inerti, la quantità totale di cemento; in particolare all'aumentare di queste variabili corrisponde un "amplificazione" del fenomeno.

La pelle del calcestruzzo è sempre la prima parte che viene attaccata da agenti esterni e il suo indebolimento è dovuto alla mancanza di una maturazione appropriata; questo è un aspetto critico per la durabilità della struttura.

Come per la maggior parte dei materiali, anche per il cemento il volume apparente cambia per effetto della temperatura: si ha un aumento di volume quando è riscaldato e una contrazione quando è poi raffreddato; in particolare il calcestruzzo diminuisce il volume solido quando idratato e diminuisce il volume apparente in fase di maturazione; ciascuno di questi cambiamenti volumetrici deve essere tenuto debitamente in conto nella valutazione del ritiro totale.

Nello specifico con "volume apparente" si intende il volume che si vede, senza fare alcuna considerazione sulla struttura interna o sulla porosità del materiale; invece il "volume solido" corrisponde alla parte di volume apparente che è realmente occupata dalla materia solida.

Per quanto riguarda il ritiro del calcestruzzo, esistono classificazioni molto articolate legate ai meccanismi fisico-chimici che lo descrivono(Aïtcin et al., 1998; Wittman, 1982), ma che risultano di scarsa utilità nella definizione degli effetti

sulle strutture. Una classificazione più interessante consiste nel suddividere il ritiro del calcestruzzo in tre componenti:

- ritiro endogeno;
- ritiro termico;
- ritiro da essiccamento.

Con *ritiro endogeno* si intende il ritiro causato dalla riduzione di volume che si genera durante la reazione di idratazione del cemento. Anche se questa componente del ritiro inizia quando il calcestruzzo è in fase plastica, la componente che induce effetti strutturali è solamente quella che interviene negli istanti successivi alla presa.

Con *ritiro termico* si intende invece la riduzione di volume conseguente al raffreddamento del calcestruzzo che si trova, a fine presa, a temperature più elevate di quelle ambientali a causa delle reazioni esotermiche di idratazione. Questa componente non deve confondersi con gli effetti termici in quanto l'incremento di temperatura è indotto da meccanismi interni.

La contrazione del volume solido si sviluppa finché la reazione di idratazione continua.

Con il termine "reazione di idratazione" si indicano una serie di reazioni chimiche complesse tutte esotermiche, che comportano quindi un aumento di temperatura nel calcestruzzo.

Il ritiro termico della pasta cementizia è sempre maggiore di quello degli aggregati. Nel caso di getti massivi, il ritiro termico è molto importante ed insidioso in quanto le temperature raggiunte sono elevate ed il fenomeno di raffreddamento risulta piuttosto lento e fortemente non uniforme tanto da generare stati di autotensione che possono produrre la fessurazione della struttura. Per elementi in cui il rapporto volume/superficie esposta è piccolo (come nel caso delle solette dei ponti) il ritiro termico risulta abbastanza uniforme e gli stati di autotensione sono dovuti all'impedimento delle variazioni di volume ad opera di altri elementi (es. trave di acciaio). Per le solette da ponte, realizzate con calcestruzzi ordinari, sono state rilevate sperimentalmente riduzioni della temperatura di oltre 20°C che si manifestano nell'arco della prima settimana di vita della struttura e risultano per questo piuttosto pericolose (Ducret e Lebet, 1999).

Sia il ritiro endogeno che quello termico si esauriscono nell'arco di qualche decina di giorni dalla fine presa, sono irreversibili e si manifestano anche nel caso in cui il calcestruzzo sia stagionato in condizioni di umidità ottimale per cui spesso vengono cumulate in un'unica componente detta *ritiro autogeno*.

Invece, il *ritiro da essiccamento* si manifesta successivamente alla stagionatura del getto a causa della diminuzione dell'umidità del calcestruzzo che comporta la riduzione della tensione capillare interna. La deformazione da ritiro per essiccamento si sviluppa lentamente, dal momento che è funzione della migrazione dell'acqua attraverso il calcestruzzo indurito. L'essiccazione del calcestruzzo è un risultato dell'evaporazione di una parte dell'acqua contenuta all'interno della rete di capillari nel cemento che sono collegati alla superficie, seguendo uno squilibrio tra

l'umidità relativa dell'aria dell'ambiente e dei capillari. L'essiccazione del calcestruzzo è sempre accompagnata da una contrazione del provino, durante il quale il volume apparente di calcestruzzo diminuisce.

L'essiccazione è un fenomeno localizzato che inizia a svilupparsi dalla superficie del calcestruzzo, in cui l'evaporazione può avvenire.

Il fenomeno progredisce all'interno del calcestruzzo più o meno rapidamente, a seconda della compattezza della microstruttura del calcestruzzo e la secchezza dell'aria dell'ambiente.

Al contrario delle altre componenti di ritiro, questa risulta parzialmente reversibile (infatti i calcestruzzi immersi in acqua tendono a rigonfiare) e si manifesta durante tutta la vita dell'opera, anche se la maggior parte di essa si esaurisce nell'arco dei primi anni. Il ritiro di un calcestruzzo indurito è sempre minore rispetto a quello di un impasto idratato avente lo stesso rapporto acqua/cemento.

La distribuzione degli aggregati di maggior diametro non è uniforme in un elemento in calcestruzzo: la parte superficiale è più ricca di malta e più povera di aggregati a causa dell'"effetto muro"; il calcestruzzo superficiale può quindi sviluppare un ritiro maggiore e quindi fessure maggiori rispetto alla massa del calcestruzzo, in cui lo scheletro dei grossi aggregati si oppone alla formazione di grandi fessure.

I modelli di più recente formulazione, quale quello proposto da Müller e Küttner (1996), distinguono la componente endogena del ritiro da quella da essiccamento, ma non considerano la riduzione di volume per raffreddamento del calcestruzzo.

Il ritiro non è un fenomeno inevitabile, ma è piuttosto la conseguenza della mancanza di un'adeguata maturazione o cessazione di una corretta maturazione.

2.2 Considerazioni generali sugli effetti della viscosità e del ritiro

La viscosità ed il ritiro hanno un ruolo veramente importante sul comportamento delle strutture in cemento armato, cemento armato precompresso, miste acciaiocalcestruzzo; l'influenza si manifesta soprattutto nei riguardi degli Stati Limite di Esercizio, ma può interessare anche alcuni Stati Limite Ultimi. La valutazione degli effetti prodotti dai due fenomeni, tra di loro sempre interagenti, sullo stato di sforzo e di deformazione delle strutture costituisce un problema in genere piuttosto complesso e spesso di difficile soluzione principalmente per due ragioni:

- la rappresentazione non semplice del comportamento viscoso del calcestruzzo;
- la soluzione dipende dalla tipologia strutturale che spesso non è semplice e a volte soggetta a cambiamenti di schema statico nel corso del tempo; inoltre la soluzione è anche influenzata dalle azioni applicate.

Le deformazioni lente possono influenzare sensibilmente il comportamento degli elementi in cemento armato; in particolare il ritiro, quando è ostacolato da vincoli interni od esterni, genera uno stato di coazione per cui le tensioni di trazione possono facilmente superare la (modesta) resistenza del materiale e provocare il formarsi di lesioni. Per questo motivo negli elementi in calcestruzzo è sempre opportuno disporre un certo quantitativo di armatura, anche in quelli in cui i carichi non inducono sollecitazioni di trazione.

Di solito gli effetti delle deformazioni lente non vengono analizzati accuratamente: di essi si tiene conto in modo forfettario, riducendo opportunamente il modulo elastico convenzionale del calcestruzzo.

Per quanto riguarda la tipologia strutturale da analizzare si procede distinguendo le strutture in omogenee (cioè formate ovunque dal medesimo materiale) e non omogenee (formate da materiali aventi caratteristiche viscose e di ritiro differenti); si considerano a parte le strutture che presentano cambiamenti di schema statico. Per le azioni applicate, invece, si distinguono in azioni di natura statica (forze) e geometrica (deformazioni impresse).

Un'analisi accurata degli effetti della viscosità e del ritiro è richiesta quando si debba tener conto degli effetti di stati di coazione, poiché questi sono fortemente influenzati dalla deformabilità dei componenti della struttura. È questo il caso delle strutture in cemento armato precompresso in quanto la precompressione è proprio uno stato di coazione, indotto artificialmente tra calcestruzzo ed acciaio, che viene sensibilmente alterato dall'evolvere delle deformazioni lente.

I modelli di viscosità noti in letteratura e suggeriti dalle principali norme tecniche, sono stati tarati sulla base di sperimentazioni relative a prove di compressione i cui risultati sono raccolti in un'estesissima banca dati (RILEM, 1995).

Nel caso in cui gli stati tensionali siano di trazione, le funzioni di viscosità riportate dai codici appaiono meno attendibili, in quanto gli effetti della viscosità sono stati oggetto di studio prevalentemente su modelli di elementi compressi.

Per quanto riguarda la deformazione di un elemento strutturale dipendente dallo stato tensionale, oltre alla componente elastica istantanea, la componente di deformazione dipendente dal tempo (viscosa) può ulteriormente dividersi in una componente base (basic creep) ed una componente legata all'essiccamento del calcestruzzo (drying creep) (Neville, 1981). Tale suddivisione deriva dai risultati di esperienze condotte su provini ad essiccamento impedito e ad essiccamento libero. Nei primi, se sottoposti a stati di tensione costante, si possono misurare gli effetti del ritiro autogeno del calcestruzzo sovrapposti a quelli della viscosità base. Nei secondi, le deformazioni misurabili sono sensibilmente maggiori di quelle che si avrebbero dalla semplice sovrapposizione del ritiro autogeno e da essiccamento nonché dalla viscosità base; la deformazione aggiuntiva si intende pertanto prodotta dalla componente di viscosità da essiccamento.

Figura 1 - Componenti della deformazione differita.

3 Calcolo dell'effetto del ritiro secondo le Normative vigenti

Si considera il seguente elemento di calcestruzzo:

Figura 2 – Geometria dell'elemento considerato.

Dati noti:

• f_{ck} ;

- RH;
- t;
- t_s;
- $h_0 = \frac{2*A_c}{u} = \frac{2*(b*h)}{2*(b+h)} = \frac{b*h}{b+h}.$

3.1 Approcci suggeriti dal D.M. 14/01/2008 e dal EC2-1-1:2005

<u>Calcolo ɛcs secondo D.M. 2008</u>

La deformazione totale da ritiro si può esprimere come:

$$\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$$

dove:

 ε_{cs} è la deformazione totale per ritiro;

 ε_{cd} è la deformazione per ritiro da essiccamento;

 ε_{ca} è la deformazione per ritiro autogeno.

La deformazione per ritiro da essiccamento si definisce nel modo seguente:

$$\varepsilon_{cd}(t) = \beta_{ds}(t-t_s) * \varepsilon_{cd,\infty}$$

dove:

il valore medio a tempo infinito della deformazione da ritiro da essiccamento si definisce:

$$\varepsilon_{cd,\infty} = k_h * \varepsilon_{c0}$$

Può essere valutato mediante i valori delle seguenti tabelle in funzione della resistenza caratteristica a compressione, dell'umidità relativa e del parametro h_0 :

	Deformazione da ritiro per essiccamento (in ‰)					
f _{ck}	Umidità Relativa (in %)					
	20	40	60	80	90	100
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00
40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00
80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00

Tabella 1 - Valori di ε_{c0} .

Tabella 2 - Valori di k_h .

h ₀ (mm)	k _h
100	1,0
200	0,85
300	0,75
≥500	0,70

Per valori intermedi dei parametri indicati è consentita l'interpolazione lineare. Lo sviluppo nel tempo della deformazione ε_{cd} può essere valutato come:

La funzione di sviluppo temporale assume la forma:

$$\beta_{ds}(t-t_s) = \frac{(t-t_s)}{\left[(t-t_s) + 0.04{h_0}^{3/2}\right]}$$

La deformazione per ritiro autogeno si definisce nel modo seguente:

$$\varepsilon_{ca}(t) = \beta_{as} * \varepsilon_{ca,\infty}$$

dove:

il valore medio a tempo infinito della deformazione da ritiro autogeno si definisce:

 $\varepsilon_{ca,\infty} = -2.5 * (f_{ck} - 10) * 10^{-6} \text{ con } f_{ck} \text{ in N/mm}^2$
La funzione di sviluppo temporale assume la forma:

$$\beta_{as} = 1 - e^{-0.2t^{0.5}}$$

Calcolo ε_{cs} secondo EC2-1-1:1993

Le deformazioni di contrazione o di espansione possono essere calcolate con:

$$\varepsilon_{cs}(t-t_s) = \varepsilon_{CSO} * \beta_s(t-t_s)$$

dove:

 ε_{cso} è il coefficiente nominale di ritiro;

 β_s è il coefficiente atto a descrivere lo sviluppo del ritiro nel tempo;

t è l'età del calcestruzzo, in giorni;

t_s è l'età del calcestruzzo, in giorni, all'inizio della contrazione o dell'espansione.

Il coefficiente nominale di ritiro può essere ottenuto con:

$$\varepsilon_{CSO} = \varepsilon_s(f_{cm}) * \beta_{RH}$$

essendo:

$$\varepsilon_s(f_{cm}) = [160 + \beta_{SC}(90 - f_{cm})] * 10^{-6};$$

$$\beta_{RH} = \begin{cases} -1,55\beta_{sRH}, & per \ 40\% \le RH \le 99\% \ (esposto \ all'aria); \\ +0,25, & per \ RH \ge 99\% \ (immerso \ in \ acqua). \end{cases}$$

dove:

$$\beta_{SC} = \begin{cases} 4 \text{ per calcestruzzo a lento indurimento, S}; \\ 5 \text{ per calcestruzzo a indurimento normale o rapido, N, R}; \\ 8 \text{ per calcestruzzo a rapido indurimentoe alta resistenza, RS}. \end{cases}$$

 $\beta_{sRH} = 1 - \left[\frac{RH}{100}\right]^3$ è il coefficiente che tiene conto dell'effetto dell'umidità relativa sul coefficiente di ritiro nominale;

RH è l'umidità relativa ambientale, in percento.

Il coefficiente per lo sviluppo del ritiro nel tempo può essere stimato con:

$$\beta_s(t - t_s) = \left[\frac{t - t_s}{0.035h_0^2 + t - t_s}\right]^{0.5}$$

dove:

h₀ è la dimensione fittizia, in millimetri;

 $(t-t_s)$ è la durata effettiva non corretta di ritiro o di espansione, espressa in giorni.

<u>Calcolo ε_{cs} secondo EC2-1-1:2005</u>

La deformazione totale da ritiro si può esprimere come:

$$\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$$

dove:

 ε_{cs} è la deformazione totale per ritiro;

 ε_{cd} è la deformazione per ritiro da essiccamento;

 ε_{ca} è la deformazione per ritiro autogeno.

La deformazione per ritiro da essiccamento si definisce nel modo seguente:

$$\varepsilon_{cd}(t) = \beta_{ds}(t - t_s) * \varepsilon_{cd,\infty}$$

dove:

il valore medio a tempo infinito della deformazione da ritiro da essiccamento si definisce:

$$\varepsilon_{cd,\infty} = k_h * \varepsilon_{c0}$$

Può essere valutato mediante i valori delle tabelle seguenti in funzione della resistenza caratteristica a compressione, dell'umidità relativa e del parametro h_0 :

f _{ck} /f _{ck,cube} (MPa)	Umidità relativa (in %)					
	20	40	60	80	90	100
20/25	0,62	0,58	0,49	0,30	0,17	0,00
40/50	0,48	0,46	0,38	0,24	0,13	0,00
60/75	0,38	0,36	0,30	0,19	0,10	0,00
80/95	0,30	0,28	0,24	0,15	0,08	0,00
90/105	0,27	0,25	0,21	0,13	0,07	0,00

Tabella 3 - Valori nominali del ritiro (in ‰) per essiccamento non contrastato $\varepsilon_{cd,0}$ dal calcestruzzo con cemento CEM classe N.

Tabella 4 - Valori di k_h .

h ₀ (mm)	k _h
100	1,0
200	0,85
300	0,75
≥500	0,70

Per valori intermedi dei parametri indicati è consentita l'interpolazione lineare.

In alternativa alla tabella 3, la deformazione da ritiro per essiccamento base ε_{c0} , si può ottenere anche con la formula seguente:

$$\varepsilon_{c0} = 0.85 * \left[(220 + 110 * \alpha_{ds1}) * exp\left(-\alpha_{ds2} * \frac{f_{cm}}{f_{cmo}} \right) \right] * 10^{-6} * \beta_{RH}$$

dove:

$$\beta_{RH} = 1,55 * \left[1 - \left(\frac{RH}{RH_0} \right)^3 \right];$$

 f_{cm} è la resistenza media a compressione in MPa;

 $f_{cmo} = 10$ MPa;

 α_{ds1} è un coefficiente dipendente dal tipo di cemento:

- = 3 per un cemento di Classe S;
- = 4 per un cemento di Classe N;
- = 6 per un cemento di Classe R;

 α_{ds2} è un coefficiente dipendente dal tipo di cemento:

= 0,13 per un cemento di Classe S;

= 0,12 per un cemento di Classe N;

= 0,11 per un cemento di Classe R;

RH è l'umidità relativa ambientale in %;

 $RH_0 = 100\%$.

Lo sviluppo nel tempo della deformazione ε_{cd} può essere valutato tramite la funzione di sviluppo temporale, che assume la forma:

$$\beta_{ds}(t-t_s) = \frac{(t-t_s)}{\left[(t-t_s) + 0.04{h_0}^{3/2}\right]}.$$

La deformazione per ritiro autogeno si definisce nel modo seguente:

$$\varepsilon_{ca}(t) = \beta_{as} * \varepsilon_{ca,\infty}$$

dove:

il valore medio a tempo infinito della deformazione da ritiro autogeno si definisce:

$$\varepsilon_{ca,\infty} = -2.5 * (f_{ck} - 10) * 10^{-6} \text{ con } f_{ck} \text{ in N/mm}^2$$

La funzione di sviluppo temporale assume la forma:

$$\beta_{as} = 1 - e^{-0.2t^{0.5}}.$$

Tabella 5 - Confronto	tra le diverse	formulazioni	proposte dal	lle Normative	prese in
considerazione.					

D.M. 2008	EC2-1-1:1993	EC2-1-1:2005
Si considerano due contributi: ritiro per essiccamento, ritiro autogeno.	Si considera solo il ritiro per essiccamento.	Si considerano due contributi: ritiro per essiccamento, ritiro autogeno.
$\varepsilon_{cs}(t) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t)$	$\varepsilon_{cs}(t) = \varepsilon_{cd}(t)$	$\varepsilon_{cs}(t) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t)$
$\varepsilon_{cd}(t) = \beta_{ds}(t-t_s) * \varepsilon_{cd,\infty}$	$\varepsilon_{cs}(t-t_s) = \varepsilon_{CSO} * \beta_s(t-t_s)$	$\varepsilon_{cd}(t) = \beta_{ds}(t-t_s) * \varepsilon_{cd,\infty}$
$\varepsilon_{cd,\infty} = k_h * \varepsilon_{c0}$	$\varepsilon_{CSO} = \varepsilon_s(f_{cm}) * \beta_{RH}$	$\varepsilon_{cd,\infty} = k_h * \varepsilon_{c0}$
k _h (h ₀); ε _{c0} (tabellato in funzione di RH, f _{ck})	ε _s (f _{ck} , tipo di cls); β _{RH} (RH)	$k_{h}(h_{0});$ $\varepsilon_{c0} \begin{pmatrix} tabellato in \\ funzione \ di \ RH, f_{ck} \end{pmatrix}$ oppure: $\varepsilon_{c0} = 0.85 * (220 + 110 * \alpha_{ds1})$ $* \exp\left(-\alpha_{ds2} * \frac{f_{cm}}{f_{cmo}}\right) * 10^{-6} * \beta_{RH}$
$= \frac{\beta_{ds}(t - t_s)}{\left[(t - t_s) + 0.04h_0^{3/2}\right]}$	$\beta_{s}(t - t_{s}) = \left[\frac{t - t_{s}}{0.035h_{0}^{2} + t - t_{s}}\right]^{0.5}$	$\beta_{s}(t - t_{s}) = \left[\frac{t - t_{s}}{0.035h_{0}^{2} + t - t_{s}}\right]^{0.5}$
$h_0(b,h)$	$h_0(b,h)$	$h_0(b,h)$
$\varepsilon_{ca}(t) = \beta_{as} * \varepsilon_{ca,\infty}$	/	$\varepsilon_{ca}(t) = \beta_{as} * \varepsilon_{ca,\infty}$
$\varepsilon_{ca,\infty} =$ $-2.5 * (f_{ck} - 10) * 10^{-6}$	/	$\varepsilon_{ca,\infty} = -2,5 * (f_{ck} - 10) * 10^{-6}$
$\beta_{as} = 1 - e^{-0.2t^{0.5}}$	/	$\beta_{as} = 1 - e^{-0.2t^{0.5}}$

Si osserva che tra le Normative attualmente vigenti in sostanza non vi è differenza di approccio e di formule proposte. L'unica differenza sostanziale è che l'Eurocodice 2-1-1:2005 fornisce nell'Appendice B una formula per ricavarsi la deformazione base da ritiro per essiccamento, ovviando così all'operazione di interpolazione tra i valori tabellati in funzione dell'umidità ambientale e della 41 classe di resistenza del calcestruzzo. Il D.M.2008, invece, fornisce solo le tabelle con valori medi attesi della deformazione base da ritiro per essiccamento con cui eseguire l'interpolazione.

3.2 Esempio numerico di calcolo del ritiro applicando le normative D.M. 14/01/2008 ed EC2 - parte2

Si considera il seguente elemento di calcestruzzo:

Figura 3 - Geometria dell'elemento considerato.

Dati noti:

- $f_{ck} = 45$ MPa;
- cemento di Classe R;
- RH = 80%;
- *t* = 10000 giorni;
- $t_s = 28$ giorni;
- b = 50 cm;
- h = 50 cm;
- l = 3 m;
- $h_0 = \frac{2*A_c}{u} = \frac{2*(b*h)}{2*(b+h)} = \frac{b*h}{b+h} = \frac{50*50}{50+50} = 25$ cm = 250 mm.

Calcolo Ecs secondo D.M. 2008

La deformazione totale da ritiro si può esprimere come:

$$\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca} = -1,7836 * 10^{-4} - 8,75 * 10^{-5} = -2,6586 * 10^{-4}$$
42

in particolare:

$$\varepsilon_{cd}(t) = \beta_{ds}(t - t_s) * \varepsilon_{cd,\infty} = 0.98 * (-1.82 * 10^{-4}) = -1.7836 * 10^{-4}$$

dove:

$$\beta_{ds}(t-t_s) = \frac{(t-t_s)}{\left[(t-t_s) + 0.04{h_0}^{3/2}\right]} = \frac{(10000 - 28)}{\left[(10000 - 28) + 0.04 * 250^{3/2}\right]} = 0.98$$

$$\varepsilon_{cd,\infty} = k_h * \varepsilon_{c0} = -0.227 * 10^3 * 0.8 = -0.000182 = -1.82 * 10^{-4}$$

h ₀ (mm)	k _h
100	1,0
200	0,85
300	0,75
≥500	0,70

Tabella 6 - Valori di k_h .

$$f(x) = \frac{x - x_b}{x_a - x_b} y_a - \frac{x - x_a}{x_a - x_b} y_b$$

$$k_h = \frac{h_0 - 300}{200 - 300} * 0,85 - \frac{h_0 - 200}{200 - 300} * 0,75 =$$

$$= \frac{250 - 300}{200 - 300} * 0,85 - \frac{250 - 200}{200 - 300} * 0,75 = 0,8$$

Tabena / - Valo	on a	$\Pi \mathcal{E}_{c0}$	

	Deformazione da ritiro per essiccamento (in ‰) Umidità Relativa (in %)					
fck						
	20	40	60	80	90	100
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00
40	-0,48	-0,46	-0,38	-0.24	-0,13	+0,00
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00
80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00

$$\varepsilon_{c0} = \frac{f_{ck} - 60}{40 - 60} * (-0.24) - \frac{f_{ck} - 40}{40 - 60} * (-0.19) =$$
$$= \frac{45 - 60}{40 - 60} * (-0.24) - \frac{45 - 40}{40 - 60} * (-0.19) = -0.2275\%_{00}$$

$$\varepsilon_{ca}(t) = \beta_{as} * \varepsilon_{ca,\infty} = 1 * (-8,75 * 10^{-5}) = -8,75 * 10^{-5}$$

dove:

$$\beta_{as} = 1 - e^{-0.2t^{0.5}} = 1 - e^{-0.2*10000^{0.5}} = 1$$

$$\varepsilon_{ca,\infty} = -2.5 * (f_{ck} - 10) * 10^{-6} = -2.5 * (45 - 10) * 10^{-6} = -8.75 * 10^{-5}$$

Nota la deformazione dovuta al ritiro del calcestruzzo si possono calcolare la variazione termica equivalente da applicare al modello:

$$\varepsilon_{cs} = \alpha * \Delta T \quad \Rightarrow \quad \Delta T = \frac{\varepsilon_{cs}}{\alpha} = \frac{-2,6586 * 10^{-4}}{10 * 10^{-6} \circ C^{-1}} \cong -26,6^{\circ}C$$

e lo sforzo normale che ne deriva:

$$N_{cs} = \varepsilon_{cs} * E_{cm} * A = -2,6586 * 10^{-4} * 36283 * 250000 = -2411 \, kN$$

dove:

$$E_{cm} = 22000 * \left(\frac{f_{cm}}{10}\right)^{0,3} = 22000 * \left(\frac{53}{10}\right)^{0,3} = 36283 \frac{N}{mm^2}$$
$$f_{cm} = f_{ck} + 8$$

<u>Calcolo ϵ_{cs} secondo EC2-1-1:2005</u>

La deformazione totale da ritiro si può esprimere come:

$$\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca} = -2,49 * 10^{-4} - 8,75 * 10^{-5} = -3,362 * 10^{-4}$$

in particolare:

$$\varepsilon_{cd}(t) = \beta_{ds}(t - t_s) * \varepsilon_{cd,\infty} = 0.98 * (-2.53 * 10^{-4}) = -2.49 * 10^{-4}$$

dove:

$$\beta_{ds}(t-t_s) = \frac{(t-t_s)}{\left[(t-t_s) + 0.04h_0^{3/2}\right]} = \frac{(10000 - 28)}{\left[(10000 - 28) + 0.04 * 250^{3/2}\right]} = 0.98$$

$$\varepsilon_{cd,\infty} = \varepsilon_{c0} * k_h = -3.16 * 10^{-4} * 0.8 = -0.000182 = -2.53 * 10^{-4}$$

Tabella 8 - Valori di k_h.

h ₀ (mm)	kh
100	1,0
200	0,85
300	0,75
≥500	0,70

$$f(x) = \frac{x - x_b}{x_a - x_b} y_a - \frac{x - x_a}{x_a - x_b} y_b$$

$$k_h = \frac{h_0 - 300}{200 - 300} * 0,85 - \frac{h_0 - 200}{200 - 300} * 0,75 =$$

$$= \frac{250 - 300}{200 - 300} * 0,85 - \frac{250 - 200}{200 - 300} * 0,75 = 0,8$$

La deformazione da ritiro per essiccamento base ε_{c0} , si può ottenere anche con la formula seguente:

$$\varepsilon_{c0} = 0.85 * \left[(220 + 110 * \alpha_{ds1}) * exp\left(-\alpha_{ds2} * \frac{f_{cm}}{f_{cmo}}\right) \right] * 10^{-6} * \beta_{RH} = 0.85 * \left[(220 + 110 * 6) * exp\left(-0.11 * \frac{53}{10}\right) \right] * 10^{-6} * 0.756 = 3.16 * 10^{-4}$$

dove:

$$\beta_{RH} = 1,55 * \left[1 - \left(\frac{80}{100}\right)^3 \right] = 0,756$$
$$f_{cm} = f_{ck} + 8 = 45 + 8 = 53 MPa$$
$$f_{cmo} = 10 \text{ MPa};$$

 $\alpha_{ds1} = 6$ per un cemento di Classe R;

 $\alpha_{ds2} = 0,11$ per un cemento di Classe R;

RH = 80 %;

 $RH_0 = 100\%$.

$$\varepsilon_{ca}(t) = \beta_{as} * \varepsilon_{ca,\infty} = 1 * (-8,75 * 10^{-5}) = -8,75 * 10^{-5}$$

dove:

$$\beta_{as} = 1 - e^{-0.2t^{0.5}} = 1 - e^{-0.2*10000^{0.5}} = 1$$

$$\varepsilon_{ca,\infty} = -2.5 * (f_{ck} - 10) * 10^{-6} = -2.5 * (45 - 10) * 10^{-6} = -8.75 * 10^{-5}$$

Nota la deformazione dovuta al ritiro del calcestruzzo si possono calcolare la variazione termica equivalente da applicare al modello:

$$\varepsilon_{cs} = \alpha * \Delta T \quad \Rightarrow \quad \Delta T = \frac{\varepsilon_{cs}}{\alpha} = \frac{-3,362 * 10^{-4}}{10 * 10^{-6} \circ C^{-1}} \cong -33,6^{\circ}C$$

e lo sforzo normale che ne deriva:

$$N_{cs} = \varepsilon_{cs} * E_{cm} * A = -3,362 * 10^{-4} * 36283 * 250000 = -3049,6 \, kN$$

dove:

$$E_{cm} = 22000 * \left(\frac{f_{cm}}{10}\right)^{0,3} = 22000 * \left(\frac{53}{10}\right)^{0,3} = 36283 \frac{N}{mm^2}$$
$$f_{cm} = f_{ck} + 8 = 45 + 8 = 53 MPa$$

Dunque l'approccio di calcolo fornito dall'Eurocodice 2 porta ad una stima della deformazione dovuta al ritiro del calcestruzzo superiore rispetto a quella che si ottiene operando secondo l'approccio proposto dal D.M.2008 (di circa un 20%), anche se comunque l'ordine di grandezza è lo stesso.

In termini di sforzo normale che deriva dall'effetto del ritiro, a parità di area e di materiale, considerando la deformazione ottenuta dal calcolo suggerito dall'Eurocodice, si ottiene un valore di sollecitazione pari a circa il 20% maggiore di quello che si ottiene considerando la deformazione ottenuta con il calcolo secondo il D.M.2008; si conserva quindi la proporzione tra le variazioni termiche equivalenti alla deformazione da ritiro e lo sforzo normale che ne deriva.

3.3 Analisi di sensitività dei parametri che concorrono alla definizione di ϵ_{cs}

Figura 4 - Deformazione da ritiro in funzione della classe di calcestruzzo e h_0 .

Figura 5 - Deformazione da ritiro in funzione dello spessore efficace $h_0 e f_{ck}$.

Figura 6 - Deformazione da ritiro in funzione dell'età del calcestruzzo al momento considerato, per diverse classi di calcestruzzo.

Figura 7 - Deformazione da ritiro in funzione dell'età del calcestruzzo al momento considerato, per diversi valori dello spessore efficace h_0 . 48

Figura 8 - Deformazione da ritiro in funzione dell'umidità relativa dell'ambiente, per diverse classi di calcestruzzo.

Figura 9 - Deformazione da ritiro in funzione dell'umidità relativa dell'ambiente, per diversi valori dello spessore efficace h_0 .

Osservazioni sui grafici precedenti:

- al crescere della classe di calcestruzzo f_{ck} o dello spessore efficace h_0 , la deformazione da ritiro diminuisce;
- variando il tempo in cui si compie l'osservazione, ovvero l'età del calcestruzzo al momento considerato *t*, la deformazione da ritiro aumenta; in particolare aumenta rapidamente per i primi mesi a partire dal momento del getto, per poi assestarsi su un valore che si mantiene costante nel tempo;
- all'aumentare dell'umidità relativa dell'ambiente la deformazione da ritiro diminuisce, fino a diventare nulla in un ambiente saturo.

4 Casi fondamentali

Se si assume che il calcestruzzo resista a trazione, deformandosi elasticamente con il modulo $E_{ct.}$ Il calcolo delle tensioni normali ad una sezione di un elemento in c.a. soggetto ad un'azione assiale N>0 (di trazione), nell'ipotesi di sezione interamente reagente, è descritto dall'espressione:

$$\sigma_c = \frac{N}{A_c + nA_s}$$

dove $n = E_s/E_{cm}$ è il coefficiente di omogeneizzazione dell'area di armatura a calcestruzzo.

Tali formule vengono impiegate per verifiche di esercizio che non attengono alla resistenza ultima della struttura. In particolare con esse, ponendo $\sigma_c = f_{ctk}$, si definisce il limite di formazione delle fessure. Nei riguardi del collasso invece la resistenza a trazione del calcestruzzo non risulta sufficientemente affidabile. Alcuni fenomeni, comunemente trascurati nei normali calcoli di resistenza, possono infatti concorrere ad una precoce fessurazione, in misura spesso difficilmente quantificabile.

Come effetto dell'azione del ritiro sul calcestruzzo sorgono trazioni nel calcestruzzo ancora prima che la struttura venga sottoposta ai carichi di servizio. Per la sezione di un elemento in c.a. tale effetto può essere valutato imponendo l'equilibrio e la congruenza al tempo *t*, al quale corrisponde il valore $\varepsilon_{cs}(t)$ del ritiro riferito al solo calcestruzzo:

$$A_{s}\sigma_{s}(t) + A_{c}\sigma_{c}(t) = 0$$
$$\frac{\sigma_{s}(t)}{r} = \frac{\sigma_{c}(t)}{r} + \varepsilon_{cs}(t)$$

$$\overline{E_s} = \overline{E_{cm}} + \varepsilon_{cs}$$

4.1 Ipotesi per lo sviluppo dei casi fondamentali

- 1) conservazione delle sezioni piane;
- elasticità lineare, con conseguente validità del principio di sovrapposizione degli effetti;
- 3) perfetta aderenza tra acciaio e calcestruzzo;
- 4) resistenze dei materiali considerati:
 - resistenza di calcolo a compressione del calcestruzzo *f_{cd}* definita dal D.M. 2008:

$$f_{cd} = \frac{\alpha_{cc} * f_{ck}}{\gamma_c}$$

dove:

 α_{cc} è il coefficiente riduttivo per le resistenze di lunga durata, assunto pari a 0,85;

 γ_c è il coefficiente parziale di sicurezza relativo al calcestruzzo, assunto pari a 1,5;

 f_{ck} è la resistenza caratteristica cilindrica a compressione del calcestruzzo a 28 giorni;

• resistenza di calcolo a trazione del calcestruzzo f_{ctd} definita dal D.M. 2008:

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c}$$

dove:

 γ_c è il coefficiente parziale di sicurezza relativo al calcestruzzo, assunto pari a 1,5;

 f_{ctk} è la resistenza caratteristica a trazione del calcestruzzo, che in sede di progettazione si può assumere come resistenza media:

- a trazione semplice (assiale) del calcestruzzo (in N/mm²):

$$f_{ctm} = 0,30 f_{ck}^{2/3} \ per \ classi \le C50/60;$$

 $f_{ctm} = 2,12 * ln \left[1 + \frac{f_{cm}}{10} \right] \ per \ classi > C50/60;$

- a trazione per flessione:

 $f_{cfm} = 1,2f_{ctm}$

• resistenza tangenziale di aderenza acciaio-calcestruzzo f_{bd} definita dal D.M. 2008:

$$f_{bd} = \frac{f_{bk}}{\gamma_c}$$

dove:

 γ_c è il coefficiente parziale di sicurezza relativo al calcestruzzo, assunto pari a 1,5;

 f_{ctk} è la resistenza tangenziale caratteristica di aderenza:

$$f_{bk} = 2,25 * \eta * f_{ctk}$$

in cui:

$$\eta = 1$$
 per barre di diametro $\phi \le 32$ mm;
 $\eta = (132 - \phi)/100$ per barre di diametro superiore;

• resistenza di calcolo dell'acciaio f_{yd} definita dal D.M. 2008:

$$f_{yd} = \frac{f_{yk}}{\gamma_s}$$

dove:

 γ_s è il coefficiente parziale di sicurezza relativo all'acciaio, assunto pari a 1,15;

 f_{yk} è la tensione caratteristica di snervamento per armatura ordinaria definita a seconda del tipo di prodotto, f_{pyk} (barre), $f_{p(0,1)k}$ (fili), $f_{p(1)k}$ (trefoli e trecce);

- 5) massime tensioni in esercizio per i materiali considerati nelle condizioni di esercizio:
 - tensione massima di compressione nel calcestruzzo:

 $\sigma_c < 0,60 * f_{ck}$ per combinazione caratteristica (rara); $\sigma_c < 0,45 * f_{ck}$ per combinazione quasi permanente;

- tensione massima nell'acciaio:

 $\sigma_s < 0.8 * f_{yk}$

- 6) assenza di viscosità e di altre azioni;
- 7) evoluzione monotona nel tempo della deformazione da ritiro fino al valore fornito dal calcolo secondo la Normativa (ε_{cs}), in condizioni ambientali costanti (umidità e temperatura non subiscono grosse variazioni).

4.2 Metodo per lo sviluppo analitico dei casi fondamentali

Per lo sviluppo analitico dei casi fondamentali si adotta il metodo della congruenza che, in generale, prevede:

- lo svincolamento della struttura per ottenere una struttura principale isostatica;
- l'impostazione di condizioni di congruenza tra elementi e/o parti costituenti l'elemento studiato.

4.3 Elemento di solo calcestruzzo

Figura 10 - Geometria dell'elemento considerato.

Dati noti:

- f_{ck} ;
- RH;
- t;
- t_s;
- $h_0 = \frac{2*A_c}{u} = \frac{2*(b*h)}{2*(b+h)} = \frac{b*h}{b+h};$
- Ipotesi: presenza di microfessure in mezzeria con conseguente formazione di lesioni.

Tabella 9 - Tensioni e deformazioni, sollecitazioni e spostamenti per l'elemento di solo calcestruzzo negli schemi strutturali considerati.

		Tensioni/Sollecitazioni	Deformazioni/Spostamenti
Isostatico (esternamente)		$N = \varepsilon_{cs} * E_c * A_c = 0$	$\Delta l_{c} = \varepsilon_{cs} * l$
	non fessurato	$\sigma_{c1} = \frac{N}{A_c} < f_{ct}$	$\varepsilon_c = \frac{\sigma_{c1}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c} = \varepsilon_{c1}$
Iperstatico		$N = \varepsilon_{cs} * E_c * A_c < N_{cr} = f_{ct} * A_c$	$\Delta l_c = 0$
(esternamente)	fessurato	$\sigma_{c2} = \frac{N}{A_c} = 0$	$\varepsilon_c = 0$
		$N = N_{cr}$	$\Delta l_c = 0$

Dove:

$$\varepsilon_{c1} \approx 0,1\%_{0};$$

 $A_{c} = b * h;$
 $f_{ctm} = 0,30 * f_{ck}^{2/3}.$

4.3.1 Schema di vincolamento isostatico (esternamente)

Figura 11 - Elemento di solo calcestruzzo nello schema strutturale isostatico (esternamente) soggetto a ritiro.

4.3.1.2 Modello numerico di raffronto

Si sono implementati due modelli con il programma di calcolo SAP2000 per il caso studiato in precedenza, al fine di validare i risultati a cui si è giunti nella fase di studio teorico.

L'effetto del ritiro è stato assegnato ai vari modelli come variazione termica negativa equivalente alla deformazione da ritiro ottenuta dal calcolo specifico caso per caso.

Valutazione degli spostamenti

Figura 12 - Spostamenti ottenuti dal modello con elementi FRAME.

Il valore dello spostamento calcolato manualmente coincide con il valore riscontrato dalla trave modellata come elemento FRAME.

Figura 13 - Spostamenti ottenuti dal modello con elementi BRICK.

$$\Delta l = \varepsilon_{cs} * l = -2,6586 * 10^{-4} * 3 = -7,9758 * 10^{-4} m = -0,00079758 m$$

Il valore dello spostamento del nodo di estremità libero di traslare ottenuto con una modellazione più raffinata tramite una mesh di elementi BRICK coincide con il valore ottenuto in precedenza dalla modellazione della trave tramite un unico elemento FRAME. Il tutto è poi corrispondente a quanto sviluppato nel modello analitico.

Valutazione delle sollecitazioni

Figura 14 - Diagramma della sollecitazione assiale conseguente al ritiro.

Il modello numerico conferma il risultato atteso: non nasce alcuno stato tensionale e deformativo nella trave che può sfogare la variazione termica negativa esplicando uno spostamento dell'estremo libero. Si può anche osservare la stessa cosa modellando la trave tramite una mesh di elementi BRICK:

Figura 15 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Infatti anche questo modello numerico conferma il fatto che non nasce uno stato di sollecitazione nell'elemento.

4.3.2 Schema di vincolamento iperstatico (esternamente)

4.3.2.1 Modello analitico

Figura 16 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di solo calcestruzzo nello schema strutturale iperstatico (esternamente).

4.3.2.1 Modello numerico di raffronto

Valutazione degli spostamenti

Figura 17 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Il modello numerico conferma il risultato atteso: il calcestruzzo si trova ovunque teso, infatti vorrebbe accorciarsi in quanto soggetto a variazione termica negativa, ma ciò gli è impedito dai vincoli esterni fissi posti alle due estremità. Si riportano di seguito i diagrammi che rappresentano l'andamento in direzione longitudinale delle tensioni normali nel calcestruzzo e della loro risultante.

Valutazione delle sollecitazioni

Figura 18 - Andamento delle tensioni normali nel calcestruzzo sulla sezione longitudinale.

Da tale grafico trova conferma l'andamento delle tensioni normali in direzione longitudinale nel calcestruzzo ipotizzato nella fase di studio teorico: un valore

tensionale pressoché costante lungo la trave escludendo le porzioni estreme di lunghezza pari a circa l'altezza della trave; in tali zone si assiste ad una progressiva diminuzione delle tensioni, a meno di un picco anomalo, in accordo con l'andamento delle isostatiche di compressione osservate in precedenza.

Figura 19 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 10 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	1,798	[MPa]
A _c	$0,25*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	449,53	[kN]

In realtà per far corrispondere la condizione modellata con una mesh di elementi BRICK a quella modellata con un elemento FRAME e al calcolo analitico si devono incernierare tutti i nodi di estremità.

Figura 20 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Figura 21 - Andamento delle tensioni normali nel calcestruzzo sulla sezione longitudinale.

Figura 22 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 11 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	9,859	[MPa]
A _c	$0,25*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	2465,00	[kN]

Si considera di seguito il valora dello sforzo assiale ricavato dal modello numerico con elemento FRAME:

Figura 23 - Diagramma della sollecitazione assiale conseguente al ritiro.

Ricordando la deformazione da ritiro calcolata secondo le prescrizioni del D.M. 2008 e la conseguente variazione termica corrispondente applicata al modello:

$$\varepsilon_{cs} = \alpha * \Delta T \quad \Rightarrow \quad \Delta T = \frac{\varepsilon_{cs}}{\alpha} = \frac{-2,6586 * 10^{-4}}{10 * 10^{-6} \circ C^{-1}} \cong -26,6^{\circ}C$$

si può calcolare sforzo normale che ne deriva:

$$N_{cs} = \varepsilon_{cs} * E_{cm} * A_c = -2,6586 * 10^{-4} * 36283 * 250000 = -2411 \, kN$$

Si osserva quindi che i risultati forniti dal calcolo analitico sono dello stesso ordine di grandezza di quelli ottenuti dai modelli numerici: in particolare sovrastima lo sforzo dell'1% rispetto alla modellazione con elemento FRAME e lo sottostima del 2% rispetto alla modellazione con elementi BRICK.

4.3.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato

Con il passare del tempo l'effetto del ritiro va incrementandosi con un conseguente aumento dello stato tensionale e deformativo. Avendo ipotizzato la presenza di un quadro di microfessure in corrispondenza della sezione di mezzeria, si verifica una concentrazione di tensioni in corrispondenza di tale sezione che per quanto detto risulta avere un'area della sezione resistente ridotta; per questi motivi si assiste alla formazione di una fessura passante da un lato a quello opposto della trave. Di seguito si osserva il mutamento dello stato tensionale nella trave conseguente alla formazione della fessura.

4.3.3.1 Modello analitico

Figura 24 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di solo calcestruzzo nello schema strutturale iperstatico (esternamente) fessurato.

Con il permanere della deformazione da ritiro nel tempo si avrà una successiva e progressiva formazione di fessure, che si andranno a localizzare nei punti dove si ha maggior concentrazione di tensioni dovuti a difetti preesistenti nella trave. Di seguito si osserva il mutamento dello stato tensionale nella trave conseguente alla formazione progressiva di una fessurazione diffusa.

Figura 25 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di solo calcestruzzo nello schema strutturale iperstatico con fessurazione diffusa.

Figura 26 - Geometria dell'elemento considerato.

Dati noti:

- f_{ck};
- f_{yk};
- RH;
- t;
- t_s;

•
$$h_0 = \frac{2*A_c}{u} = \frac{2*(b*h)}{2*(b+h)} = \frac{b*h}{b+h};$$

• Ipotesi: presenza di microfessure in mezzeria con conseguente formazione di lesioni.

		Tensioni/Sollecitazioni	Deformazioni/Spostamenti
Isostatico		$\sigma_c = \frac{N_c}{A_{ci}} < f_{ct}$ $\sigma_s = n * \sigma_c = n * \frac{N_c}{A_{ci}} < f_{yd}$	$\varepsilon_{c} = \frac{\sigma_{c1}}{E_{c}} < \varepsilon_{cr} = \frac{f_{ctm}}{E_{c}} = \varepsilon_{c}$ $\varepsilon_{s} = \frac{\sigma_{s}}{E_{s}} < \varepsilon_{yd}$
(esternam	ente)	$N_{c} = \varepsilon_{cs} * E_{c} * A_{ci}$ $N_{s} = \varepsilon_{s} * E_{s} * A_{s}$	$\Delta l_c = \varepsilon_{cs} * l$ $\Delta l_s = \varepsilon_s * l$
	non fessurato	$\sigma_c = \frac{N_c}{A_{ci}} < f_{ct}$ $\sigma_s = n * \sigma_c = n * \frac{N_s}{A_{ci}} < f_{yd}$	$\varepsilon_{c} = \frac{\sigma_{c1}}{E_{c}} < \varepsilon_{cr} = \frac{f_{ctm}}{E_{c}} = \varepsilon_{c}$ $\varepsilon_{s} = \frac{\sigma_{s}}{E_{s}} < \varepsilon_{yd}$
Iperstatico (esternamente)		$N_{c} = \varepsilon_{cs} * E_{c} * A_{ci} < N_{cr} = f_{ct} * A_{ci}$ $N_{s} = \varepsilon_{s1} * E_{s} * A_{s} < N_{ult} = f_{yd} * A_{s}$	$\Delta l_{c1} = 0$ $\Delta l_{s1} = 0$
	fessurato	$\sigma_{c2} = 0$ $\sigma_{s2} = \frac{N_s}{A_s}$	$\varepsilon_{c2} = 0$ $\varepsilon_{s2} = \frac{N_s}{E_s A_s}$
		$N_{c} = \varepsilon_{cs} * E_{c} * A_{ci} = N_{cr} = f_{ct} * A_{ci}$ $N_{s} = \varepsilon_{s2} * E_{s} * A_{s} < N_{ult} = f_{yd} * A_{s}$	$\Delta l_{c2} = 0$ $\Delta l_{s2} = 0$

Tabella 12 - Tensioni e deformazioni, sollecitazioni e spostamenti per l'elemento di calcestruzzo con armatura centrata negli schemi strutturali considerati.

Dove:

$$\varepsilon_c \approx 0,1\%_0;$$

$$f_{ct} = \frac{N_{cr}}{A_{ci}};$$

$$A_{ci} = A_c + n * A_{sc} = b * h + n * A_{sc};$$

$$f_{ctm} = 0,30 * f_{ck}^{\frac{2}{3}};$$

$$n = \frac{E_s}{E_c}.$$

4.4.1 Elemento appoggiato su un piano ideale in assenza di attrito

4.4.1.1 Modello analitico

Per tenere conto in modo efficace della presenza dell'armatura si considera la presenza di due tipi diversi di vincoli: uno di tipo elastico (fornito dalla barra) e uno fisso (dato dai vincoli esterni). Fino alla formazione della prima fessura funziona come una struttura iperstatica nel caso in cui si consideri lo schema strutturale iperstatico.

Per focalizzare l'attenzione sullo studio della trasmissione di sforzi tra armatura e calcestruzzo si considera inizialmente la trave in assenza di vincoli esterni, ovvero in cui l'unico vincolo è rappresentato dalla barra.

Candidato: Francesco Cavallini

Figura 27 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di calcestruzzo e armatura centrata nello schema strutturale labile (esternamente).

Si osserva che nel caso di assenza di vincoli esterni fissi, con la trave soggetta a ritiro del calcestruzzo, lo schema strutturale si trova in condizione di simmetria sia per geometria sia per carico; dunque si può studiare in modo equivalente metà trave considerando un vincolo del tipo cerniera in corrispondenza della mezzeria della trave e posizionato alla quota dell'asse baricentrico.

Per calcolare la risultante degli sforzi distribuiti che si scambiano per tutta la lunghezza dell'elemento barra e calcestruzzo si imposta la condizione di congruenza tra le deformazioni dei due materiali, che per l'ipotesi di aderenza devono essere uguali.

La condizione di congruenza tra i due materiali può essere scritta indifferentemente in termini di deformazioni o in termini si spostamenti dato che lo sforzo normale ha un andamento lineare lungo la trave, ma sempre in termini differenziali. Si è fissato il riferimento all'estremo di destra della trave in modo da poter valutare la deformazione sempre rispetto a tale riferimento fisso; in sostanza si valutano le deformazioni nei due materiali con riferimento ad un concio di ampiezza Δx che si sposta lungo l'asse della trave da destra verso sinistra.

Figura 28 - Sistema di riferimento impiegato per la scrittura delle equazioni di congruenza.

$$d\varepsilon = \frac{dN}{EA} \Rightarrow d\varepsilon * dx = \frac{dN}{EA} dx \Rightarrow \Delta l = \frac{\Delta N}{EA} \Delta x$$

Condizione di congruenza:

 $\Delta \varepsilon_c = \Delta \varepsilon_s$ condizione puntuale

$$\Delta l_c = \Delta l_s$$
 condizione globale

$$-\varepsilon_{cs} * l + \int_{0}^{l} dl = -\int_{0}^{l} dl$$
$$-\varepsilon_{cs} * l + \int_{0}^{l} \varepsilon_{c}(x) dx = -\int_{0}^{l} \varepsilon_{s}(x) dx$$
$$-\varepsilon_{cs} * l + \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx = -\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx$$

Ipotesi 1): andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{aderenza,max} = cost$

$$-\varepsilon_{cs} * l + \int_{0}^{l} \frac{N_{aderenza,max}}{E_{c}A_{c}} dx = -\int_{0}^{l} \frac{N_{aderenza,max}}{E_{s}A_{s}} dx$$
$$-\varepsilon_{cs} * l + \frac{N_{aderenza,max}}{E_{c}A_{c}} \int_{0}^{l} dx = -\frac{N_{aderenza,max}}{E_{s}A_{s}} \int_{0}^{l} dx$$
$$-\varepsilon_{cs} * l + \frac{N_{aderenza,max} * l}{E_{c}A_{c}} = -\frac{N_{aderenza,max} * l}{E_{s}A_{s}}$$

$$N_{aderenza,max} = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_c + n_0 A_s}\right) = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_{ci}}\right)$$

Ipotesi 2): andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità

$$\begin{split} &\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx = \\ &= \int_{0}^{\frac{l}{10}} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx + \int_{\frac{l}{10}}^{\frac{9}{10}l} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx = \\ &= \frac{1}{3000} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} + \frac{8}{10} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} + \frac{271}{3000} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} = \\ &= \frac{2672}{3000} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} = 0.89 \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} \end{split}$$

$$\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx =$$

$$= \int_{0}^{\frac{l}{10}} \frac{N_{aderenza,max}(x)}{E_{s}A_{s}} dx + \int_{\frac{l}{10}}^{\frac{9}{10}l} \frac{N_{aderenza,max}(x)}{E_{s}A_{s}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{aderenza,max}(x)}{E_{s}A_{s}} dx =$$

$$= \frac{1}{3000} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} + \frac{8}{10} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} + \frac{271}{3000} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} =$$

$$= \frac{2672}{3000} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} = 0.89 \frac{N_{aderenza,max} * l}{E_{s}A_{s}}$$

$$-\varepsilon_{cs} * l + \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx = -\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx$$
$$-\varepsilon_{cs} * l + 0.89 \frac{N_{aderenza,max} * l}{E_{c}A_{c}} = -0.89 \frac{N_{aderenza,max} * l}{E_{s}A_{s}}$$

$$N_{aderenza,max} = \varepsilon_{cs} * 0.89 * \left(\frac{1}{E_c A_c} + \frac{1}{E_s A_s}\right) = \varepsilon_{cs} * 0.89 * \left(\frac{E_c A_c E_s A_s}{E_c A_c + E_s A_s}\right) =$$
$$= \varepsilon_{cs} * 0.89 * \left(\frac{A_c E_s A_s}{A_c + n_0 A_s}\right) = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c A_s}{A_{ci}}\right)$$

Si osserva che si è considerato un elemento avente un rapporto tra le dimensioni pari a $\frac{h}{l} = \frac{1}{10}$, in cui si è assunta una suddivisione in tre porzioni:

- due zone di estremità "diffusive" di lunghezza pari a $\frac{1}{10}$ della luce complessiva;
- una zona centrale di lunghezza pari a $\frac{8}{10}$ della luce complessiva in cui valgono le ipotesi del solido di De Saint Venant.

4.4.1.2 Modello numerico di raffronto

Valutazione degli spostamenti

Figura 29 - Spostamenti ottenuti dal modello con elementi BRICK.

Nel modello per rappresentare in modo corretto la condizione di simmetria sia rispetto ai vincoli che rispetto ai carichi, si è posizionato un vincolo a cerniera nel nodo di intersezione tra l'asse baricentrico longitudinale e l'asse di simmetria verticale.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare lo spostamento tramite il modello analitico, che risulta:

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{aderenza,max} = cost$:

$$N_{aderenza,max} = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_c + n_0 A_s}\right) = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_{ci}}\right) =$$

= (2,6586 * 10⁻⁴) * $\left(\frac{210000 * 240000 * 10000}{300000}\right) = 446644,80 N$

$$\Delta l_c = \Delta l_s$$

$$-\varepsilon_{cs} * l + \int_0^l \frac{N(x)}{E_c A_c} dx = -\int_0^l \frac{N(x)}{E_s A_s} dx$$

Candidato: Francesco Cavallini

$$\begin{aligned} \Delta l_{c,per\,lato} &= \frac{\Delta l_c}{2} = -\frac{1}{2} \int_0^l \frac{N(x)}{E_s A_s} dx = -\frac{N_{aderenza,max}}{2E_s A_s} \int_0^l dx \\ &= -\frac{N_{aderenza,max} * l}{2E_s A_s} = \\ &= -\frac{(446644,80) * 3000}{2 * 210000 * 10000} = -0,319 \ mm = -0,319 * 10^{-3} \ m = -0,000319 \ m \end{aligned}$$

• andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità:

$$N_{aderenza,max} = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c A_s}{A_{ci}}\right) = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c A_s}{A_{ci}}\right) =$$

= (2,6586 * 10⁻⁴) * 0.89 * $\left(\frac{210000 * 240000 * 10000}{300000}\right) = 397513.87 N$

$$\Delta l_{c,per\ lato} = \frac{\Delta l_c}{2} = -\frac{N_{aderenza,max} * l}{2E_s A_s} = -\frac{(397513,87) * 3000}{2 * 210000 * 10000}$$
$$= -0,284\ mm =$$

$$= -0,284 * 10^{-3} m = -0,000284 m$$

Dunque con buona approssimazione lo spostamento coincide tra calcolo con il modello analitico e modello numerico.

Valutazione delle sollecitazioni

Figura 30 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Candidato: Francesco Cavallini

Il modello numerico conferma il risultato atteso: il calcestruzzo si trova ovunque teso, infatti vorrebbe accorciarsi in quanto soggetto a variazione termica negativa, ma ciò gli è impedito dal vincolo interno elastico costituito dalla barra metallica. Si riportano di seguito i diagrammi che rappresentano l'andamento in direzione longitudinale delle tensioni normali nei due materiali e della loro risultante.

Figura 31 - Tensioni normali nella direzione dell'asse della trave nell'acciaio.

Figura 32 - Andamento delle tensioni nell'acciaio sulla sezione longitudinale.

Figura 33 - Andamento dello sforzo assiale nell'acciaio sulla sezione longitudinale.

Tabella 13 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	-50,538	[MPa]
As	$0,01*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	-505,40	[kN]

➢ <u>lato calcestruzzo:</u>

Figura 34 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo.

Figura 35 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 36 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 14- Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	2,105	[MPa]
A _c	$0,24*10^{6}$	$[mm^2]$
$N_{risultante} = N_{max}$	505,40	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare tale risultante tramite il modello analitico, che risulta:

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{aderenza,max} = cost$:

$$N_{aderenza,max} = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_c + n_0 A_s}\right) = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_{ci}}\right) =$$
$$= (2,6586 * 10^{-4}) * \left(\frac{210000 * 240000 * 10000}{300000}\right) = 446644,80 N$$

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità:

$$N_{aderenza,max} = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c A_s}{A_{ci}}\right) = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c A_s}{A_{ci}}\right) =$$
$$= (2.6586 * 10^{-4}) * 0.89 * \left(\frac{210000 * 240000 * 10000}{300000}\right) = 397513.87 N$$

Dunque la soluzione ottenuta con il modello analitico sottostima (di circa un 12% nel caso si ipotizzi un andamento costante dello sforzo di aderenza, di circa un 22% nel caso si ipotizzi un andamento parabolico dello sforzo di aderenza) il valore ottenuto dal modello numerico.

4.4.2 Elemento appoggiato su un piano ideale in assenza di attrito nello stato fessurato

4.4.2.1 Modello analitico

Finché la tensione nel calcestruzzo rimane inferiore alla sua resistenza a trazione, tale stato di tensione resta qualitativamente invariato.

Con il passare del tempo l'effetto del ritiro va incrementandosi con un conseguente aumento dello stato tensionale e deformativo. Nonostante si sia ipotizzata la presenza di un quadro di microfessure in corrispondenza della sezione di mezzeria, si verifica una concentrazione di tensioni in prossimità dell'estremo di sinistra, dove è presente un vincolo esterno fisso; per questi motivi si assiste alla formazione di una fessura passante da un lato a quello opposto della trave in prossimità dell'estremo sinistro della trave. Di seguito si osserva il mutamento dello stato tensionale mutato nella trave conseguente alla formazione della fessura con tensioni nell'armatura che variano da $\sigma'_{s} = \frac{N}{A_{s}}$ in corrispondenza ella fessura, al valore σ_{s} dei tratti a completa diffusione dello sforzo e con delle tensioni nel calcestruzzo che variano parallelamente da a σ_{c} .

Candidato: Francesco Cavallini

Figura 37 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di calcestruzzo e armatura centrata nello schema strutturale labile (esternamente) nello stato fessurato.

Si osserva che superati i tratti estremi di lunghezza $\cong h$ necessari per la diffusione dello sforzo dall'acciaio all'intera sezione, si instaura in tutto il tratto interno dell'elemento uno stato di tensione calcolabile con le formule precedentemente citate:

$$\sigma_c = \frac{N}{A_c + nA_s}$$
$$\sigma_s = n\sigma_s$$

Al formarsi delle fessure il tirante in cemento armato prende l'assetto deformativo indicato nella figura seguente:

Figura 38 - Assetto deformativo del tirante in c.a. in seguito alla formazione delle fessure.

L'azzeramento delle trazioni in corrispondenza delle fessure provoca un esteso scarico tensionale nel calcestruzzo che, concio per concio, tende ad accorciarsi. Contemporaneamente il ferro d'armatura, sotto il complementare aumento tensionale, tende ad allungarsi maggiormente rispetto al precedente assetto di sezione interamente reagente. Allo scorrimento reciproco dei due materiali, dopo un primo assestamento δ corrispondente all'attivazione dei contatti efficaci, si oppone l'aderenza. Grazie a questa, una quota parte dello sforzo di trazione nell'elemento, che in corrispondenza della fessura è convogliato interamente entro il ferro di armatura, si diffonde nei conci di calcestruzzo come qualitativamente indicato in figura. La graduale diffusione delle tensioni lascia comunque zone di calcestruzzo sensibilmente scariche, con un assetto deformativo dei conci che non corrisponde più alla planarità delle sezioni trasversali. La fessura stessa si configura con ampiezza variabile, crescente con la dilatanza dell'armatura. Nei calcoli il fenomeno viene forfettizzato assumendo un comportamento "medio" attraverso i conci, dove la parziale diffusione delle tensioni nel calcestruzzo viene rappresentata da un'area efficace, ridotta rispetto a quella effettiva della sezione, e che risente della posizione e della distribuzione dei ferri d'armatura.

Candidato: Francesco Cavallini

Si osserva che il valore massimo delle tensioni nel calcestruzzo va via via crescendo; ciò non è dovuto alla formazione progressiva delle fessure e quindi alla conseguente ridistribuzione degli sforzi nelle porzioni non fessurate, bensì al passare del tempo. Infatti il fenomeno del ritiro va incrementandosi col passare del tempo dal momento del getto, per poi attestarsi ad un valore circa costante.

4.4.2.2 Modello numerico di raffronto

Valutazione delle sollecitazioni

Figura 39 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Figura 40 - Tensioni normali nella direzione dell'asse della trave nell'acciaio.

Figura 41 - Andamento delle tensioni nell'acciaio sulla sezione longitudinale.

Figura 42 - Andamento dello sforzo assiale nell'acciaio sulla sezione longitudinale.

Tabella 15 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	0	[MPa]
A _s	0,01*10 ⁶	$[mm^2]$
N _{risultante} =N _{max}	0	[kN]

➢ <u>lato calcestruzzo:</u>

Figura 43 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo.

Figura 44 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 45 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 16 - Risultante dello sforzo assiale in corrispondenza della sezione a l/4.

S11 _{tot}	2,057	[MPa]
A _c	$0,24*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	82,31	[kN]

4.4.3 Schema di vincolamento isostatico (esternamente)

4.4.3.1 Modello analitico

91

Figura 46 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di calcestruzzo e armatura centrata nello schema strutturale isostatico (esternamente).

4.4.3.2 Modello numerico di raffronto

Valutazione degli spostamenti

Figura 47 - Grafico degli spostamenti nel nodo libero di traslare parallelamente all'asse dell'elemento.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare lo spostamento tramite il modello analitico, che risulta:

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{aderenza,max} = cost$:

$$N_{aderenza,max} = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_c + n_0 A_s}\right) = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_{ci}}\right) =$$

= (2,6586 * 10⁻⁴) * $\left(\frac{210000 * 240000 * 10000}{300000}\right) = 446644,80 N_{cs}$

$$\Delta l_c = \Delta l_s$$
$$-\varepsilon_{cs} * l + \int_0^l \frac{N(x)}{E_c A_c} dx = -\int_0^l \frac{N(x)}{E_s A_s} dx$$

$$\Delta l_c = -\int_0^l \frac{N(x)}{E_s A_s} dx = -\frac{N_{aderenza,max}}{E_s A_s} \int_0^l dx = -\frac{N_{aderenza,max} * l}{E_s A_s} =$$
$$= -\frac{(446644,80) * 3000}{210000 * 10000} = -0,638 \ mm = -0,638 * 10^{-3} \ m = -0,000638 \ m$$

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità:

$$N_{aderenza,max} = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c A_s}{A_{ci}}\right) = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c A_s}{A_{ci}}\right) =$$
$$= (2.6586 * 10^{-4}) * 0.89 * \left(\frac{210000 * 240000 * 10000}{300000}\right) = 397513.87 N_{ci}$$

$$\Delta l_c = -\frac{N_{aderenza,max} * l}{E_s A_s} = -\frac{(397513,87) * 3000}{210000 * 10000} = -0,568 \text{ mm}$$
$$= -0,568 * 10^{-3} \text{ m} =$$

$$= -0,000568 m$$

Dunque con buona approssimazione lo spostamento coincide tra calcolo con modello analitico e modello numerico.

Valutazione delle sollecitazioni

Figura 48 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Figura 49 - Tensioni normali nella direzione dell'asse della trave nell'acciaio.

Figura 50 - Andamento delle tensioni nell'armatura sulla sezione longitudinale.

Figura 51 - Andamento dello sforzo assiale nell'acciaio sulla sezione longitudinale.

Tabella 17 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	-50,538	[MPa]
As	$0,01*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	-505,40	[kN]

➢ <u>lato calcestruzzo:</u>

Figura 52 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo.

Figura 53 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 54 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 18 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	2,105	[MPa]
A _c	$0,24*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	505,40	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare tale risultante tramite il modello analitico, che risulta:

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{aderenza,max} = cost$:

$$N_{aderenza,max} = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_c + n_0 A_s}\right) = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_{ci}}\right) =$$

= (2,6586 * 10⁻⁴) * $\left(\frac{210000 * 240000 * 10000}{300000}\right) = 446644,80 N$

 nell'ipotesi di andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità:

$$N_{aderenza,max} = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c A_s}{A_{ci}}\right) = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c A_s}{A_{ci}}\right) =$$
$$= (2.6586 * 10^{-4}) * 0.89 * \left(\frac{210000 * 240000 * 10000}{300000}\right) = 397513.87 N_{ci}$$

Si osserva che si è considerato un elemento avente un rapporto tra le dimensioni pari a $\frac{h}{l} = \frac{1}{10}$, in cui si è assunta una suddivisione in tre porzioni:

- due zone di estremità "diffusive" di lunghezza pari a $\frac{1}{10}$ della luce complessiva;
- una zona centrale di lunghezza pari a $\frac{8}{10}$ della luce complessiva in cui valgono le ipotesi del solido di De Saint Venant.

Dunque la soluzione ottenuta con il modello analitico sottostima (di circa un 12% nel caso si ipotizzi un andamento costante dello sforzo di aderenza, di circa un 22% nel caso si ipotizzi un andamento parabolico dello sforzo di aderenza) il valore ottenuto dal modello numerico.

4.4.4 Schema di vincolamento isostatico (esternamente) nello stato fessurato

4.4.4.1 Modello analitico

Con il passare del tempo l'effetto del ritiro va incrementandosi con un conseguente aumento dello stato tensionale e deformativo. Nonostante si sia ipotizzata la presenza di un quadro di microfessure in corrispondenza della sezione di mezzeria, si verifica una concentrazione di tensioni in prossimità dell'estremo di sinistra, dove è presente un vincolo esterno fisso; per questi motivi si assiste alla formazione di una fessura passante da un lato a quello opposto della trave in prossimità dell'estremo sinistro della trave. Di seguito si osserva il mutamento dello stato tensionale nella trave conseguente alla formazione della fessura.

Figura 55 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di calcestruzzo e armatura centrata nello schema strutturale isostatico (esternamente) nello stato fessurato.

4.4.4.2 Modello numerico di raffronto

Valutazione delle sollecitazioni

Figura 56 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Figura 57 - Tensioni normali nella direzione dell'asse della trave nell'acciaio.

Figura 58 - Andamento delle tensioni nell'acciaio sulla sezione longitudinale.

Figura 59 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 19 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	0	[MPa]
As	0,01	$[mm^2]$
N _{risultante} =N _{max}	0	[kN]

In corrispondenza della sezione di mezzeria fessurata vi è solo l'armatura, ma dato che la sollecitazione deriva dall'azione del ritiro, che si esplica solo nel calcestruzzo, in corrispondenza di tale sezione l'armatura risulta scarica.

lato calcestruzzo:

Figura 60 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo. 103

Figura 61 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 62 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 20 - Risultante dello sforzo assiale in corrispondenza della sezione a 1/4.

S11 _{tot}	2,105	[MPa]
A _c	$0,24*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	505,4	[kN]

4.4.5 Schema di vincolamento iperstatico (esternamente)

4.4.5.1 Modello analitico

Candidato: Francesco Cavallini

Figura 63 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di calcestruzzo e armatura centrata nello schema strutturale iperstatico (esternamente).

Si osserva che in prossimità degli estremi vincolati si ha una certa incertezza in merito all'effettivo andamento delle tensioni nei materiali. In parte si giustifica con il principio di De Saint Venant secondo cui solo ad una distanza dagli estremi pari a circa l'altezza della sezione non si risente dell'effetto degli estremi. Inoltre la presenza dei vincoli esterni posizionati in corrispondenza dell'asse baricentrico comporta una diffusione delle tensioni (isostatiche di compressione nel calcestruzzo) secondo il seguente andamento:

Figura 64 - Diffusione delle tensioni nel calcestruzzo a partire dai vincoli esterni posti alle estremità dell'elemento.

La presenza di vincoli esterni fissi alle estremità della trave comporta l'insorgere di uno sforzo normale. Tale sforzo si ripartisce tra calcestruzzo e armatura in base alle rigidezze assiali dei due elementi. Si osserva che questa aliquota di sforzo va a gravare su entrambi i materiali come componente di sforzo aggiuntiva rispetto allo sforzo assiale dovuto all'interazione tra i due materiali per aderenza. In questo caso però, questa aliquota di sforzo assiale risulta essere di trazione per entrambi i materiali.

Figura 65 - Ripartizione dello sforzo assiale indotto dai vincoli esterni tra calcestruzzo e barra.

Per ottenere lo sforzo massimo su entrambi i materiali si deve procedere con la sovrapposizione degli effetti dovuti all'aderenza e alla presenza dei vincoli esterni fissi; ciò si traduce nel calcestruzzo in una somma di due sforzi assiali concordi in segno, mentre nell'armatura in una somma di sforzi assiali opposti di segno.

Figura 66 - Sovrapposizione degli effetti sul calcestruzzo e sulla barra.

Dunque la presenza di vincoli esterni fissi posizionati agli estremi della trave sgrava l'armatura rispetto al caso in assenza di tali vincoli.

Per il calcolo delle sollecitazioni nel calcestruzzo e nella barra dovute alla presenza del vincolo si scrivono le seguenti equazioni di equilibrio e di congruenza:

 $N_{vinc} = N_{vinc,barra} + N_{vinc,cls}$

 $\Delta l_c = \Delta l_s = 0$

che corrisponde alle seguenti due equazioni di congruenza rispettivamente per i due materiali:

congruenza lato calcestruzzo:

$$\begin{aligned} \Delta l_c &= 0\\ -\varepsilon_{cs} * l + \int_0^l \frac{N_{aderenza}(x)}{E_c A_c} dx + \frac{N_{vinc,cls} * l}{E_c A_c} = 0\\ \Rightarrow N_{vinc,cls} &= \left[\varepsilon_{cs} * l - \int_0^l \frac{N_{aderenza}(x)}{E_c A_c} dx\right] * \frac{E_c A_c}{l} \end{aligned}$$

congruenza lato acciaio:

$$\begin{aligned} \Delta l_s &= 0\\ \frac{N_{vinc,barra} * l}{E_s A_s} - \int_0^l \frac{N_{aderenza}(x)}{E_s A_s} dx = 0\\ \Rightarrow N_{vinc,barra} &= \left[\int_0^l \frac{N_{aderenza}(x)}{E_s A_s} dx \right] * \frac{E_s A_s}{l} \end{aligned}$$

Dove:

$$N_{aderenza}(x) = \int_0^x \tau \pi \phi \ dx$$

Ipotesi 1): andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{aderenza,max} = cost$

$$\begin{split} N_{vinc,cls} &= \left[\varepsilon_{cs} * l - \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx \right] * \frac{E_{c}A_{c}}{l} \\ &= \left[\varepsilon_{cs} * l - \frac{N_{aderenza,max} * l}{E_{c}A_{c}} \right] * \frac{E_{c}A_{c}}{l} \end{split}$$

$$=\varepsilon_{cs}E_cA_c-N_{aderenza,max}$$

$$N_{vinc,barra} = \left[\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx \right] * \frac{E_{s}A_{s}}{l} = \left[\frac{N_{aderenza,max} * l}{E_{s}A_{s}} \right] * \frac{E_{s}A_{s}}{l}$$
$$= N_{aderenza,max}$$

Ipotesi 2): andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità

$$\begin{split} &\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx = \\ &= \int_{0}^{l} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx + \int_{l}^{\frac{9}{10}l} \frac{N_{aderenza,max}}{E_{c}A_{c}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx = \\ &= \frac{1}{3000} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} + \frac{8}{10} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} + \frac{271}{3000} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} = \\ &= \frac{2672}{3000} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} = 0.89 \frac{N_{aderenza,max} * l}{E_{c}A_{c}} \end{split}$$

$$\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx = \\ = \int_{0}^{\frac{l}{10}} \frac{N_{aderenza,max}}{E_{s}A_{s}} \frac{x^{2}}{l^{2}} dx + \int_{\frac{l}{10}}^{\frac{9}{10}l} \frac{N_{aderenza,max}}{E_{s}A_{s}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{aderenza,max}}{E_{s}A_{s}} \frac{x^{2}}{l^{2}} dx =$$

$$= \frac{1}{3000} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} + \frac{8}{10} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} + \frac{271}{3000} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} =$$
$$= \frac{2672}{3000} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} = 0.89 \frac{N_{aderenza,max} * l}{E_{s}A_{s}}$$

$$N_{vinc,cls} = \left[\varepsilon_{cs} * l - \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx\right] * \frac{E_{c}A_{c}}{l} = \\ = \left[\varepsilon_{cs} * l - 0.89 \frac{N_{aderenza,max} * l}{E_{c}A_{c}}\right] * \frac{E_{c}A_{c}}{l} =$$

 $= \varepsilon_{cs} E_c A_c - 0,89 N_{aderenza,max}$

$$N_{vinc,barra} = \left[\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx \right] * \frac{E_{s}A_{s}}{l} = \left[0,89 \frac{N_{aderenza,max} * l}{E_{s}A_{s}} \right] * \frac{E_{s}A_{s}}{l} = 0,89N_{aderenza,max}$$

Si osserva che si è considerato un elemento avente un rapporto tra le dimensioni pari a $\frac{h}{l} = \frac{1}{10}$, in cui si è assunta una suddivisione in tre porzioni:

- due zone di estremità "diffusive" di lunghezza pari a $\frac{1}{10}$ della luce complessiva;
- una zona centrale di lunghezza pari a $\frac{8}{10}$ della luce complessiva in cui valgono le ipotesi del solido di De Saint Venant.

4.4.5.2 Modello numerico di raffronto

Valutazione delle sollecitazioni

Figura 67 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

➢ <u>lato acciaio:</u>

Figura 68 - Tensioni normali nella direzione dell'asse della trave nell'acciaio.

Figura 69 - Andamento delle tensioni nell'acciaio sulla sezione longitudinale.

Figura 70 - Andamento dello sforzo assiale nell'acciaio sulla sezione longitudinale.

Tabella 21 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	-31,110	[MPa]
A_s	0,01*10 ⁶	$[mm^2]$
N _{risultante} =N _{max}	-311,10	[kN]

lato calcestruzzo:

Figura 71 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo.

Figura 72 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Confrontando le tensioni nel calcestruzzo tra il caso della trave in solo calcestruzzo e quest'ultimo con armatura centrata, si osserva come nel secondo caso si sono riscontrati valori tensionali maggiori. Infatti la presenza della barra, che costituisce un vincolo diffuso per il calcestruzzo per tutta la lunghezza della trave, comporta un irrigidimento complessivo dell'elemento trave. Si osserva anche che nel passaggio dalla configurazione isostatica a quella iperstatica si ha altresì un aumento delle tensioni nel calcestruzzo dato che si aumenta di un grado il vincolamento esterno.

Figura 73 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 22 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	5,427	[MPa]
A _c	$0,24*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	1302,50	[kN]

Figura 74 - Reazioni dei vincoli esterni posti alle estremità.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare tale risultante tramite il modello analitico, che risulta:

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{max} = cost$:

$$N_{vinc,cls} = \left[\varepsilon_{cs} * l - \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx \right] * \frac{E_{c}A_{c}}{l} =$$

$$= \left[\varepsilon_{cs} * l - \frac{N_{aderenza,max} * l}{E_c A_c}\right] * \frac{E_c A_c}{l} = \varepsilon_{cs} E_c A_c - N_{aderenza,max} =$$

 $2,6586 * 10^{-4} * 36283 * 240000 - 446644,80 = 1868442,8 N$

$$N_{vinc,barra} = \left[\int_0^l \frac{N_{aderenza}(x)}{E_s A_s} dx \right] * \frac{E_s A_s}{l} = \left[\frac{N_{aderenza,max} * l}{E_s A_s} \right] * \frac{E_s A_s}{l} =$$

$$= N_{aderenza,max} = -446644,80 N$$

 $N_{vinc} = N_{vinc,cls} + N_{vinc,barra} = 1868442,8 - 446644,80 = 1421798 N$

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità:

$$N_{vinc,cls} = \left[\varepsilon_{cs} * l - \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx\right] * \frac{E_{c}A_{c}}{l} = \\ = \left[\varepsilon_{cs} * l - 0.89 \frac{N_{aderenza,max} * l}{E_{c}A_{c}}\right] * \frac{E_{c}A_{c}}{l} = \varepsilon_{cs}E_{c}A_{c} - 0.89N_{aderenza,max} =$$

 $= 2,6586 * 10^{-4} * 36283 * 240000 - 0,89 * 446644,80 = 1917573,74 N$

$$N_{vinc,barra} = \left[\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx\right] * \frac{E_{s}A_{s}}{l} = \left[0,89\frac{N_{aderenza,max} * l}{E_{s}A_{s}}\right] * \frac{E_{s}A_{s}}{l} =$$

 $= 0,89N_{aderenza,max} = -397513,87 N$

 $N_{vinc} = N_{vinc,cls} + N_{vinc,barra} = 1917573,74 - 397513,87 = 1520059,87 \, N$

Dunque risulta lo stesso ordine di grandezza del valore ricavato dal modello numerico: in particolare con la prima ipotesi si ottiene un valore della reazione vincolare sottostimato di un 30%, mentre con la seconda ipotesi un valore sovrastimato di un 35%.

4.4.6 Schema di vincolamento iperstatico (esternamente) nello stato fessurato

4.4.6.1 Modello analitico

Con il passare del tempo l'effetto del ritiro va incrementandosi con un conseguente aumento dello stato tensionale e deformativo. Avendo ipotizzato la presenza di un quadro di microfessure in corrispondenza della sezione di mezzeria, si verifica una concentrazione di tensioni in corrispondenza di tale sezione che per quanto detto risulta avere un'area della sezione resistente ridotta; per questi motivi si assiste alla formazione di una fessura passante da un lato a quello opposto della trave. Di seguito si osserva il mutamento dello stato tensionale nella trave conseguente alla formazione della fessura.

Figura 75 - Stato fessurato per lo schema strutturale iperstatico.

4.4.6.2 Modello numerico di raffronto

Valutazione delle sollecitazioni

Figura 76 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Figura 77 - Tensioni normali nella direzione dell'asse della trave nell'acciaio.

Figura 78 - Andamento delle tensioni nell'acciaio sulla sezione longitudinale.

Figura 79 - Andamento dello sforzo assiale nell'acciaio sulla sezione longitudinale.

Tabella 23 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	73,394	[MPa]
As	0,01*10 ⁶	$[mm^2]$
N _{risultante} =N _{max}	733,94	[kN]

➢ <u>lato calcestruzzo:</u>

Figura 80 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo.

Figura 81 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 82- Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 24 - Risultante dello sforzo assiale in corrispondenza della sezione a l/4.

S11 _{tot}	4,465	[MPa]
A _c	$0,24*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	178,61	[kN]

Figura 83 - Geometria dell'elemento considerato.

Dati noti:

- f_{ck};
- f_{yk};
- RH;
- t;
- t_s;

•
$$h_0 = \frac{2*A_c}{u} = \frac{2*(b*h)}{2*(b+h)} = \frac{b*h}{b+h};$$

• Ipotesi: presenza di microfessure in mezzeria con conseguente formazione di lesioni.

		Tensioni/Sollecitazioni	Deformazioni/Spostamenti
Isostatico (esternamente)		$\sigma_c = \frac{N_c}{A_{ci}} < f_{ct}$ $\sigma_s = n * \sigma_c = n * \frac{N_s}{A_{ci}} < f_{yd}$	$\varepsilon_c = \frac{\sigma_{c1}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c} = \varepsilon_c$ $\varepsilon_s = \frac{\sigma_s}{E_s} < \varepsilon_{yd}$
		$N_{c} = \varepsilon_{cs} * E_{c} * A_{ci}$ $N_{s} = \varepsilon_{s} * E_{s} * A_{s}$ $M_{c} = N_{s} * e$	$\Delta l_c = \varepsilon_{cs} * l$ $\Delta l_s = \varepsilon_s * l$ $f = \frac{\chi l^2}{8} = \frac{M l^2}{8EJ}$
Iperstatico (esternamente)		$\sigma_{c1} = \frac{N_{cs}}{A_{ci}} + \frac{M_c}{W_{ci}} = \frac{N_{cs}}{A_{ci}} + \frac{N_s * e}{A_{ci} * \frac{h}{6}} < f_{ct}$ $\sigma_s = n * \sigma_c = n * \frac{N_s}{A_{ci}} < f_{yd}$	$\varepsilon_{c1} = \frac{\sigma_{c1}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c} = \varepsilon_{c1}$ $\varepsilon_{s1} = \frac{\sigma_s}{E_s} < \varepsilon_{yd}$
	non fessurato	$N_{c} = \varepsilon_{cs} * E_{c} * A_{ci} < N_{cr} = f_{ct} * A_{ci}$ $N_{s} = \varepsilon_{s} * E_{s} * A_{s} < N_{ult} = f_{yd} * A_{s}$ $M_{c} = N_{s} * e < M_{cr} = f_{ct} * W_{ci}$	$\Delta l_c = \varepsilon_{cs} * l = 0$ $\Delta l_s = \varepsilon_s * l = 0$
	fessurato	$\sigma_{c2} = \frac{N_{cs}}{A_{ci}} + \frac{M_c}{W_{ci}} = 0$ $\sigma_{s2} = \frac{N_s}{A_s}$	$\varepsilon_{c2} = 0$ $\varepsilon_{s2} = \frac{N_{cs}}{E_s A_s}$ $\chi = \frac{M_a}{EJ_{ci}}$
		$N_{c} = \varepsilon_{cs} * E_{c} * A_{ci} = N_{cr} = f_{ct} * A_{ci}$ $N_{s} = \varepsilon_{s} * E_{s} * A_{s} < N_{ult} = f_{yd} * A_{s}$ $M_{c} = N_{s} * e = M_{cr} = f_{ct} * W_{ci}$	$\Delta l_c = 0$ $\Delta l_s = 0$ $f_c = f_{c1} + f_{c2} =$ $= \frac{M_c l^2}{8E_{c0} J_{c1}} + \frac{M_c l^2}{8E_{c0} J_{c2}}$

Tabella 25 - Tensioni e deformazioni, sollecitazioni e spostamenti per l'elemento di calcestruzzo con armatura eccentrica negli schemi strutturali considerati.

Dove:

$$\varepsilon_{c} = \varepsilon_{c1} \approx 0.1\%_{0};$$

 $f_{ct} = \frac{N_{cr}}{A_{ci}} + \frac{M_{cr}}{W_{ci}} = \frac{N_{cr}}{A_{ci}} + \frac{N_{cr} * \frac{h}{4}}{A_{ci} * \frac{h}{6}};$
 $A_{ci} = A_{c} + n * A_{s} = b * h + n * A_{s};$
 $W_{ci} = A_{ci} * \frac{h}{6} = (b * h + n * A_{s}) * \frac{h}{6};$
 $J_{ci} = J_{c} + n * J_{a};$
 $f_{ctm} = 0.30 * f_{ck}^{\frac{2}{3}};$
 $n = \frac{E_{s}}{E_{c}};$
 $e = \frac{h}{2} - c.$

4.5.1 Elemento appoggiato su un piano ideale in assenza di attrito

4.5.1.1 Modello analitico

Per focalizzare l'attenzione sullo studio della trasmissione di sforzi tra armatura e calcestruzzo si considera inizialmente la trave in assenza di vincoli esterni, ovvero in cui l'unico vincolo è rappresentato dalla barra.

Candidato: Francesco Cavallini

Figura 84 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di calcestruzzo e armatura eccentrica nello schema strutturale labile (esternamente).

Condizione di congruenza:

$$\Delta \varepsilon_c = \Delta \varepsilon_s$$

 $\Delta l_c + \Delta l_c(m) = \Delta l_s$

con:

$$\begin{aligned} \Delta l_c(m) &= \int_0^l \frac{\chi}{(1+\varphi^2)^{\frac{3}{2}}} dx = \int_0^l \frac{\nu''}{(1+{\nu'}^2)^{\frac{3}{2}}} dx = \int_0^l \frac{M}{E_c J_c} \frac{1}{(1+{\nu'}^2)^{\frac{3}{2}}} dx = \\ &= \int_0^l \frac{N_{max} * e}{E_c J_c} \frac{1}{(1+{\nu'}^2)^{\frac{3}{2}}} dx = \int_0^l \frac{N_{max} * \frac{h}{4}}{E_c J_c} \frac{1}{(1+{\nu'}^2)^{\frac{3}{2}}} dx \end{aligned}$$

$$\nu' = \varphi = \frac{Ml}{3E_c J_c}$$

$$-\varepsilon_{cs} * l + \int_{0}^{l} dl + \int_{0}^{l} dl_{(m)} = -\int_{0}^{l} dl$$
$$-\varepsilon_{cs} * l + \int_{0}^{l} \varepsilon_{c}(x) dx + \int_{0}^{l} \varepsilon_{c}_{(m)}(x) dx = -\int_{0}^{l} \varepsilon_{s}(x) dx$$
$$-\varepsilon_{cs} * l + \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx + \int_{0}^{l} \frac{M(x)}{E_{c}J_{c}} \frac{1}{(1 + {v'}^{2})^{\frac{3}{2}}} dx = -\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx$$

Ipotesi 1): andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{max} = cost$

$$\begin{aligned} -\varepsilon_{cs} * l + \int_{0}^{l} \frac{N_{aderenza,max}}{E_{c}A_{c}} * \frac{x}{l} dx + \int_{0}^{l} \frac{N_{aderenza,max} * \frac{h}{4}}{E_{c}J_{c}} \frac{1}{(1 + {v'}^{2})^{\frac{3}{2}}} dx \\ &= -\int_{0}^{l} \frac{N_{aderenza,max}}{E_{s}A_{s}} * \frac{x}{l} dx \\ -\varepsilon_{cs} * l + \frac{N_{aderenza,max}}{E_{c}A_{c}} * \frac{1}{l} * \int_{0}^{l} x dx + \frac{N_{aderenza,max} * \frac{h}{4}}{E_{c}J_{c}} \frac{1}{(1 + {v'}^{2})^{\frac{3}{2}}} \int_{0}^{l} dx \\ &= -\frac{N_{aderenza,max}}{E_{s}A_{s}} * \frac{1}{l} \int_{0}^{l} x dx \end{aligned}$$

133

$$-\varepsilon_{cs} * l + \frac{N_{aderenza,max} * l}{2E_c A_c} + \frac{N_{aderenza,max} * \frac{h}{4}}{E_c J_c} \frac{l}{(1 + {v'}^2)^{\frac{3}{2}}}$$
$$= -\frac{N_{aderenza,max} * l}{2E_s A_s}$$
$$N_{aderenza,max} = \varepsilon_{cs} * \left[\frac{1}{\frac{1}{2E_c A_c} + \frac{1}{2E_s A_s} + \frac{h}{E_c J_c (1 + {v'}^2)^{\frac{3}{2}}}}\right]$$

Ipotesi 2): andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità

$$\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx =$$

$$= \int_{0}^{\frac{l}{10}} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx + \int_{\frac{l}{10}}^{\frac{9}{10}l} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx =$$

$$= \frac{1}{3000} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} + \frac{8}{10} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} + \frac{271}{3000} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} =$$

$$= \frac{2672}{3000} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} = 0.89 \frac{N_{aderenza,max} * l}{E_{c}A_{c}}$$

$$\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx =$$

$$= \int_{0}^{\frac{l}{10}} \frac{N_{aderenza,max}(x)}{E_{s}A_{s}} dx + \int_{\frac{l}{10}}^{\frac{9}{10}l} \frac{N_{aderenza,max}(x)}{E_{s}A_{s}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{aderenza,max}(x)}{E_{s}A_{s}} dx + \int_{\frac{1}{10}l}^{l} \frac{N_{aderenza,max}(x)}{E_{s}A_{s}} dx +$$

$$=\frac{1}{3000}\frac{N_{aderenza,max}*l}{E_sA_s}+\frac{8}{10}\frac{N_{aderenza,max}*l}{E_sA_s}+\frac{271}{3000}\frac{N_{aderenza,max}*l}{E_sA_s}=$$

$$=\frac{2672}{3000}\frac{N_{aderenza,max}*l}{E_{s}A_{s}}=0.89\frac{N_{max}*l}{E_{s}A_{s}}$$

$$-\varepsilon_{cs} * l + \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx = -\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx$$
$$-\varepsilon_{cs} * l + 0.89 \frac{N_{aderenza,max} * l}{E_{c}A_{c}} = -0.89 \frac{N_{aderenza,max} * l}{E_{s}A_{s}}$$

$$\begin{split} &\int_{0}^{l} \frac{M(x)}{E_{c}J_{c}} dx = \int_{0}^{l} \frac{N_{aderenza}(x) * \frac{h}{4}}{E_{c}J_{c}} \frac{1}{(1 + v'^{2})^{\frac{3}{2}}} dx = \\ &= \int_{0}^{\frac{l}{10}} \frac{N_{aderenza,max} * \frac{h}{4} x^{2}}{E_{c}J_{c}} dx + \int_{\frac{l}{10}}^{\frac{9}{10}l} \frac{N_{aderenza,max} * \frac{h}{4}}{E_{c}J_{c}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{aderenza,max} * \frac{h}{4} x^{2}}{E_{c}J_{c}} dx = \\ &= \frac{1}{3000} \frac{N_{aderenza,max} * \frac{h}{4} * l}{E_{c}J_{c}} + \frac{8}{10} \frac{N_{aderenza,max} * \frac{h}{4} * l}{E_{c}J_{c}} + \frac{271}{3000} \frac{N_{aderenza,max} * \frac{h}{4} * l}{E_{c}J_{c}} = \\ &= \frac{2672}{3000} \frac{N_{aderenza,max} * \frac{h}{4} * l}{E_{c}J_{c}} = 0.89 \frac{N_{aderenza,max} * \frac{h}{4} * l}{E_{c}J_{c}} \\ &N_{aderenza,max} = \varepsilon_{cs} * \left[\frac{1}{0.89 * \left(\frac{1}{E_{c}A_{c}} + \frac{\frac{h}{4}}{E_{c}J_{c}} + \frac{1}{E_{s}A_{s}} \right) \right] \end{split}$$

Si osserva che si è considerato un elemento avente un rapporto tra le dimensioni pari a $\frac{h}{l} = \frac{1}{10}$, in cui si è assunta una suddivisione in tre porzioni:

- due zone di estremità "diffusive" di lunghezza pari a $\frac{1}{10}$ della luce complessiva;
- una zona centrale di lunghezza pari a $\frac{8}{10}$ della luce complessiva in cui valgono le ipotesi del solido di De Saint Venant.

4.5.1.2 Modello numerico di raffronto

Valutazione delle sollecitazioni

Figura 85 - Grafico degli spostamenti.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare lo spostamento tramite il modello analitico, che risulta:

$$N_{aderenza,max} = \varepsilon_{cs} * \left[\frac{1}{\frac{1}{E_c A_c} + \frac{1}{E_s A_s} + \frac{e^2}{E_c J_c (1 + {v'}^2)^{\frac{3}{2}}}} \right] =$$

= (2,6586 * 10⁻⁴) * $\left[\frac{1}{\frac{1}{36283 * 240000} + \frac{1}{210000 * 10000} + \frac{125^2}{36283 * 5200000000}} \right] =$
= 394685,27 N

con:

$$v' = \varphi = \frac{Ml}{3E_c J_c} = \frac{N_{aderenza,max} * \frac{h}{4} * l}{3E_c J_c} = \frac{449315,53 * 125 * 3000}{3 * 36283 * 5200000000}$$
$$= 2,98 * 10^{-4}$$
$$v'^2 = (2,98 * 10^{-4})^2 \cong 8,86 * 10^{-8}$$
$$(1 + v'^2)^{\frac{3}{2}} \cong 1$$

$$\Delta l_c + \Delta l_c(m) = \Delta l_s$$

$$\begin{aligned} -\varepsilon_{cs} * l + \int_{0}^{l} \varepsilon_{c}(x) dx + \int_{0}^{l} \varepsilon_{c(m)}(x) dx &= -\int_{0}^{l} \varepsilon_{s}(x) dx \\ -\varepsilon_{cs} * l + \int_{0}^{l} \frac{N(x)}{E_{c}A_{c}} dx + \int_{0}^{l} \frac{M}{E_{c}J_{c}} \frac{1}{(1 + {v'}^{2})^{\frac{3}{2}}} dx &= -\int_{0}^{l} \frac{N(x)}{E_{s}A_{s}} dx \\ \Delta l_{c,per\ lato} &= \frac{\Delta l_{c}}{2} = \frac{1}{2} \left[-\int_{0}^{l} \frac{N(x)}{E_{s}A_{s}} dx - \int_{0}^{l} \frac{M}{E_{c}J_{c}} \frac{1}{(1 + {v'}^{2})^{\frac{3}{2}}} dx \right] = \\ &= \frac{1}{2} \left[-\int_{0}^{l} \frac{N_{aderenza,max}}{E_{s}A_{s}} dx - \int_{0}^{l} \frac{N * e}{E_{c}J_{c}} dx \right] = \\ &= \frac{1}{2} \left[-\frac{N_{aderenza,max}}{E_{s}A_{s}} \int_{0}^{l} dx - \frac{N_{aderenza,max} * e}{E_{c}J_{c}} \int_{0}^{l} dx \right] = \\ &= \frac{1}{2} \left[-\frac{N_{aderenza,max} * l}{E_{s}A_{s}} - \frac{N_{aderenza,max} * e * k}{E_{c}J_{c}} \right] = \\ &= \frac{1}{2} \left[-\frac{(449315,53) * 3000}{210000 * 10000} - \frac{(449315,53) * 150 * 3000}{36283 * 5200000000} \right] = -0,352 \ mm \\ &= -0,352 * 10^{-3}m = \\ &= -0,000352 \ mm \end{aligned}$$

Dunque con buona approssimazione lo spostamento coincide tra calcolo con il modello analitico e modello numerico.

Valutazione delle sollecitazioni

Figura 86 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

➢ <u>lato acciaio:</u>

Figura 87 - Tensioni normali nella direzione dell'asse della trave nell'acciaio.

Figura 88 - Andamento delle tensioni nell'acciaio sulla sezione longitudinale.

Figura 89 - Andamento dello sforzo assiale nell'acciaio sulla sezione longitudinale.

Tabella 26 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	-40,945	[MPa]
A _s	0,01*10 ⁶	$[mm^2]$
N _{risultante} =N _{max}	-409,50	[kN]

lato calcestruzzo:

Figura 90 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo.

Figura 91 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 92 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 27 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	1,706	[MPa]
A _c	$0,24*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	409,60	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare tale risultante tramite il modello analitico, che risulta:

 nell'ipotesi di andamento dello sforzo assiale di aderenza costante N_{aderenza}(x) = N_{max} = cost:

$$N_{aderenza,max} = \varepsilon_{cs} * \left[\frac{1}{\frac{1}{E_c A_c} + \frac{1}{E_s A_s} + \frac{e^2}{E_c J_c (1 + {v'}^2)^{\frac{3}{2}}}} \right] =$$

= (2,6586 * 10⁻⁴) * $\left[\frac{1}{\frac{1}{36283 * 240000} + \frac{1}{210000 * 10000} + \frac{125^2}{36283 * 5200000000}} \right] =$
= 394685,27 N

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità:

$$N_{aderenza,max} = \varepsilon_{cs} * \left[\frac{1}{0,89 * \left(\frac{1}{E_c A_c} + \frac{e^2}{E_c J_c} + \frac{1}{E_s A_s} \right)} \right] = (-2,6586 * 10^{-4}) * \left[\frac{1}{0,89 * \left(\frac{1}{36283 * 240000} + \frac{125^2}{36283 * 5200000000} + \frac{1}{210000 * 10000} \right)} \right] = (-2,6586 * 10^{-4}) * \left[\frac{1}{0,89 * \left(\frac{1}{36283 * 240000} + \frac{125^2}{36283 * 5200000000} + \frac{1}{210000 * 10000} \right)} \right]$$

= 443466,60 N

Si osserva che si è considerato un elemento avente un rapporto tra le dimensioni pari a $\frac{h}{l} = \frac{1}{10}$, in cui si è assunta una suddivisione in tre porzioni:

- due zone di estremità "diffusive" di lunghezza pari a $\frac{1}{10}$ della luce complessiva;
- una zona centrale di lunghezza pari a $\frac{8}{10}$ della luce complessiva in cui valgono le ipotesi del solido di De Saint Venant.

Dunque con buona approssimazione la risultante degli sforzi che si scambiano i due materiali, in corrispondenza della sezione di mezzeria, coincide tra calcolo con il modello analitico e modello numerico: in particolare il calcolo analitico sovrastima il valore della risultante dello sforzo assiale di un 9% nell'ipotesi di andamento dello sforzo assiale lineare, mentre nella seconda ipotesi di un 21%.

4.5.2 Schema di vincolamento isostatico (esternamente)

4.5.2.1 Modello analitico

Figura 93 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di calcestruzzo e armatura eccentrica nello schema strutturale isostatico (esternamente).

4.5.2.2 Modello numerico di raffronto

Valutazione degli spostamenti

Figura 94 - Grafico degli spostamenti.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare lo spostamento tramite il modello analitico, che risulta:

$$N_{aderenza,max} = \varepsilon_{cs} * \left[\frac{1}{\frac{1}{E_c A_c} + \frac{1}{E_s A_s} + \frac{e^2}{E_c J_c (1 + {v'}^2)^{\frac{3}{2}}}} \right] =$$

= (2,6586 * 10⁻⁴) * $\left[\frac{1}{\frac{1}{36283 * 240000} + \frac{1}{210000 * 10000} + \frac{125^2}{36283 * 5200000000}} \right] =$
= 394685,27 N

con:

$$v' = \varphi = \frac{Ml}{3E_c J_c} = \frac{N_{aderenza,max} * \frac{h}{4} * l}{3E_c J_c} = \frac{394685,27 * 125 * 3000}{3 * 36283 * 5200000000} =$$

= 2,61 * 10⁻⁴
$$v'^2 = (2,61 * 10^{-4})^2 \approx 6,81 * 10^{-8}$$
$$(1 + v'^2)^{\frac{3}{2}} \approx 1$$

 $\Delta l_c + \Delta l_c(m) = \Delta l_s$

$$\begin{aligned} &-\varepsilon_{cs} * l + \int_{0}^{l} \varepsilon_{c}(x) dx + \int_{0}^{l} \varepsilon_{c(m)}(x) dx = -\int_{0}^{l} \varepsilon_{s}(x) dx \\ &-\varepsilon_{cs} * l + \int_{0}^{l} \frac{N(x)}{E_{c}A_{c}} dx + \int_{0}^{l} \frac{M}{E_{c}J_{c}} \frac{1}{(1 + {v'}^{2})^{\frac{3}{2}}} dx = -\int_{0}^{l} \frac{N(x)}{E_{s}A_{s}} dx \\ &\Delta l_{c} = -\int_{0}^{l} \frac{N(x)}{E_{s}A_{s}} dx - \int_{0}^{l} \frac{M}{E_{c}J_{c}} \frac{e}{(1 + {v'}^{2})^{\frac{3}{2}}} dx = \\ &= -\int_{0}^{l} \frac{N_{aderenza,max}}{E_{s}A_{s}} dx - \int_{0}^{l} \frac{N * e^{2}}{E_{c}J_{c}} dx = \\ &= -\frac{N_{aderenza,max}}{E_{s}A_{s}} \int_{0}^{l} dx - \frac{N_{aderenza,max} * e^{2}}{E_{c}J_{c}} \int_{0}^{l} dx = \\ &= -\frac{N_{aderenza,max} * l}{E_{s}A_{s}} - \frac{N_{aderenza,max} * e^{2} * l}{E_{c}J_{c}} = \\ &= -\frac{(394685,27) * 3000}{210000 * 10000} - \frac{(394685,27) * 150^{2} * 3000}{36283 * 5200000000} = -0,705 \ mm = \\ &= -0,705 * 10^{-3} \ mm = -0,000705 \ mm \end{aligned}$$

Figura 95 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Figura 96 - Tensioni normali nella direzione dell'asse della trave nell'acciaio.

Figura 97 - Andamento delle tensioni nell'acciaio sulla sezione longitudinale.

Figura 98 - Andamento dello sforzo assiale nell'acciaio sulla sezione longitudinale.

Tabella 28 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	-40,945	[MPa]
A_s	0,01*10 ⁶	$[mm^2]$
N _{risultante} =N _{max}	-409,50	[kN]

lato calcestruzzo:

Figura 99 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo.

Figura 100 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 101 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 29 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	1,706	[MPa]
A _c	$0,24*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	409,60	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare tale risultante tramite il modello analitico, che risulta:

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{max} = cost$:

$$\begin{split} N_{aderenza,max} &= \varepsilon_{cs} * \left[\frac{1}{\frac{1}{E_c A_c} + \frac{1}{E_s A_s} + \frac{e^2}{E_c J_c (1 + {v'}^2)^{\frac{3}{2}}}} \right] = \\ &= (2,6586 * 10^{-4}) * \left[\frac{1}{\frac{1}{36283 * 240000} + \frac{1}{210000 * 10000} + \frac{125^2}{36283 * 5200000000}} \right] = \\ &= 394685,27 \, N \end{split}$$

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità:

$$N_{aderenza,max} = \varepsilon_{cs} * \left[\frac{1}{0,89 * \left(\frac{1}{E_c A_c} + \frac{e^2}{E_c J_c} + \frac{1}{E_s A_s} \right)} \right] = (-2,6586 * 10^{-4}) * \left[\frac{1}{0,89 * \left(\frac{1}{36283 * 240000} + \frac{125^2}{36283 * 5200000000} + \frac{1}{210000 * 10000} \right)} \right] = 443466,60 N$$

Dunque con buona approssimazione la risultante degli sforzi che si scambiano i due materiali, in corrispondenza della sezione di mezzeria, coincide tra calcolo con il modello analitico e modello numerico: in particolare il calcolo analitico sovrastima il valore della risultante dello sforzo assiale di un 9% nell'ipotesi di andamento dello sforzo assiale lineare, mentre nella seconda ipotesi di un 21%.

4.5.3 Schema di vincolamento iperstatico (esternamente)

4.5.3.1 Modello analitico

Figura 102 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di calcestruzzo e armatura eccentrica nello schema strutturale iperstatico (esternamente).

Per il calcolo delle sollecitazioni nel calcestruzzo e nella barra dovute alla presenza del vincolo si scrivono le seguenti equazioni di equilibrio e di congruenza:

 $N_{vinc} = N_{vinc,barra} + N_{vinc,cls}$

$$\Delta l_c = \Delta l_s = 0$$
 alla quota del baricentro

che corrisponde alle seguenti due equazioni di congruenza rispettivamente per i due materiali:

congruenza alla quota del vincolo:

$$\begin{aligned} \Delta l_{c,vinc} &= 0\\ -\varepsilon_{cs} * l + \int_0^l \frac{N_{aderenza}(x)}{E_c A_c} dx + \int_0^l \frac{N_{aderenza}(x) * d_{Gs} * d_{Gv} * e}{E_c J_c} dx + \\ &+ \frac{N_{vinc,cls} * l}{E_c A_c} + \frac{N_{vinc,cls} * d_{Gv} * d_{Gv} * e}{E_c J_c} - \frac{N_{vinc,barra} * e * d_{Gv} * l}{E_c J_c} = 0 \end{aligned}$$

congruenza alla quota della barra:

$$\Delta l_{c,barra} = \Delta l_s$$

$$-\varepsilon_{cs} * l + \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx + \int_{0}^{l} \frac{N_{aderenza}(x) * d_{Gs} * d_{Gs} * e}{E_{c}J_{c}} dx + \frac{N_{vinc,cls} * l}{E_{c}A_{c}} dx + \frac{N_{vinc,cls} * l}{E_{c}A_{c$$

Dove:

$$N_{aderenza}(x) = \int_0^x \tau \pi \phi \ dx$$

Ipotesi 1): andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{aderenza,max} = cost$

$$N_{vinc,cls} = \frac{E_c J_c^2 N_{aderenza,max} - A_c (E_c^2 \varepsilon_{cs} J_c^2 + A_s e^2 (d_{Gv} + e)^2 E_s N_{aderenza,max} - (d_{Gv} + e)^2 E_c J_c N_{aderenza,max})}{(-E_c J_c^2 + A_c d_{Gv} (A_s e^2 (d_{Gv} + e) E_s - d_{Gv} E_c J_c))}$$

$$N_{vinc,barra} = -\frac{J_c(-A_s e^2 E_s N_{aderenza,max} + E_c J_c N_{aderenza,max} + A_c d_{Gv} E_c (-A_s e \varepsilon_{cs} E_s + d_{Gv} N_{aderenza,max}))}{E_c J_c^2 - A_c d_{Gv} (A_s e^2 (d_{Gv} + e) E_s - d_{Gv} E_c J_c)}$$

Ipotesi 2): andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità

$$\begin{split} &\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx = \\ &= \int_{0}^{\frac{l}{10}} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx + \int_{\frac{l}{10}}^{\frac{9}{10}l} \frac{N_{aderenza,max}}{E_{c}A_{c}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx = \\ &= \frac{1}{3000} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} + \frac{8}{10} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} + \frac{271}{3000} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} = \\ &= \frac{2672}{3000} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} = 0.89 \frac{N_{aderenza,max} * l}{E_{c}A_{c}} \end{split}$$

$$\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx =$$

$$= \int_{0}^{\frac{l}{10}} \frac{N_{aderenza,max}(x)}{E_{s}A_{s}} dx + \int_{\frac{l}{10}}^{\frac{9}{10}l} \frac{N_{aderenza,max}(x)}{E_{s}A_{s}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{aderenza,max}(x)}{E_{s}A_{s}} dx =$$

$$= \frac{1}{3000} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} + \frac{8}{10} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} + \frac{271}{3000} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} =$$

$$= \frac{2672}{3000} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} = 0.89 \frac{N_{aderenza,max} * l}{E_{s}A_{s}}$$

$$N_{vinc,cls} = \frac{E_c J_c^2 0,89 N_{aderenza,max} - A_c (E_c^2 \varepsilon_{cs} J_c^2 + A_s e^2 (d_{Gv} + e)^2 E_s 0,89 N_{aderenza,max} - (d_{Gv} + e)^2 E_c J_c 0,89 N_{aderenza,max})}{2(-E_c J_c^2 + A_c d_{Gv} (A_s e^2 (d_{Gv} + e) E_s - d_{Gv} E_c J_c))}$$

$$N_{vinc,barra} = = -\frac{J_c(-A_s e^2 E_s 0,89 N_{aderenza,max} + E_c J_c 0,89 N_{aderenza,max} + A_c d_{Gv} E_c (-A_s e \varepsilon_{cs} E_s + d_{Gv} 0,89 N_{aderenza,max}))}{E_c J_c^2 - A_c d_{Gv} (A_s e^2 (d_{Gv} + e) Es - d_{Gv} E_c J_c)}$$

Si osserva che si è considerato un elemento avente un rapporto tra le dimensioni pari a $\frac{h}{l} = \frac{1}{10}$, in cui si è assunta una suddivisione in tre porzioni:

• due zone di estremità "diffusive" di lunghezza pari a $\frac{1}{10}$ della luce complessiva;

• una zona centrale di lunghezza pari a $\frac{8}{10}$ della luce complessiva in cui valgono le ipotesi del solido di De Saint Venant.

4.5.3.2 Modello numerico di raffronto

Valutazione delle sollecitazioni

Figura 103 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

➢ <u>lato acciaio:</u>

Figura 104 - Tensioni normali nella direzione dell'asse della trave nell'acciaio.

Figura 105 - Andamento delle tensioni nell'acciaio sulla sezione longitudinale.

Figura 106 - Andamento dello sforzo assiale nell'acciaio sulla sezione longitudinale.

Tabella 30 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	-34,479	[MPa]
A _s	0,01*10 ⁶	$[mm^2]$
N _{risultante} =N _{max}	-344,80	[kN]

➢ <u>lato calcestruzzo:</u>

Figura 107 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo.

Figura 108 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 109 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 31 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	3,051	[MPa]
A _c	$0,24*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	732,37	[kN]

Figura 110 - Reazioni dei vincoli esterni posti alle estremità.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare tale risultante tramite il modello analitico, che risulta:

Ipotesi 1): andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{aderenza,max} = cost$

$$N_{vinc} = N_{vinc,barra} + N_{vinc,cls} = -312008 + 1511400 = 1199392 N$$

Dunque dal calcolo con il modello analitico risulta sottostimato di circa il 9% lo sforzo nell'armatura, mentre risulta eccessivamente sovrastimato lo sforzo nel calcestruzzo e di conseguenza la sollecitazione dei vincoli dato che deriva dalla loro somma.

Nell'evidenziare tale incongruenza va sottolineato che i risultati sono stati ricavati sotto l'ipotesi che lo sforzo che si scambiano i due materiali per aderenza $(N_{aderenza,max})$ sia lo stesso del caso con vincolamento esterno isostatico.

Figura 111 - Geometria dell'elemento considerato.

Dati noti:

- f_{ck} ;
- f_{yk};
- RH;
- t;
- t_s;
- $h_0 = \frac{2*A_c}{u} = \frac{2*(b*h)}{2*(b+h)} = \frac{b*h}{b+h};$
- Ipotesi: presenza di microfessure in mezzeria con conseguente formazione di lesioni.

Tabella 32 - Tensioni e deformazioni, sollecitazioni e spostamenti per l'elemento di calcestruzzo con armatura doppiamente eccentrica negli schemi strutturali considerati.

		Tensioni/Sollecitazioni	Deformazioni/Spostamenti
		$\sigma_c = \frac{N_c}{A_{ci}} < f_{ct}$ $\sigma_s = n * \sigma_c = n * \frac{N_s}{A_{ci}} < f_{yd}$ $\sigma_s' = n * \sigma_c = n * \frac{N_s'}{A_{ci}} < f_{yd}$	$\varepsilon_{c} = \frac{\sigma_{c1}}{E_{c}} < \varepsilon_{cr} = \frac{f_{ctm}}{E_{c}} = \varepsilon_{c}$ $\varepsilon_{s} = \frac{\sigma_{s}}{E_{s}} < \varepsilon_{yd}$ $\varepsilon_{s}' = \frac{\sigma_{s}'}{E_{s}} < \varepsilon_{yd}$
Isostati (esternam	i co ente)		$\Delta l_c = \varepsilon_{cs} * l$
		$N_{c} = \varepsilon_{cs} * E_{c} * A_{ci}$ $N_{s} = \varepsilon_{s} * E_{s} * A_{s}$ $N'_{s} = \varepsilon_{s} * E_{s} * A'_{s}$	$\Delta l_s = \varepsilon_s * l$ $\Delta l'_s = \varepsilon'_s * l$
		$M_c = N_s * e - N_s' * e'$	$f = \frac{\chi l^2}{8} = \frac{M l^2}{8EJ}$
		$\sigma_{c1} = \frac{N_{cs}}{A_{ci}} + \frac{M_c}{W_{ci}} - \frac{M'_c}{W_{ci}} =$ $= \frac{N_{cs}}{A_{ci}} + \frac{N_s * e}{A_{ci} * \frac{h}{6}} - \frac{N'_s * e'}{A_{ci} * \frac{h}{6}} < f_{ct}$	$\varepsilon_{c1} = \frac{\sigma_{c1}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c} = \varepsilon_{c1}$
		$\sigma_s = n * \sigma_c = n * \frac{N_s}{A_{ci}} < f_{yd}$	$\varepsilon_s = \frac{\sigma_s}{E_s} < \varepsilon_{yd}$
Iperstatico non (esternamente) fessurato	$\sigma_{s}' = n * \sigma_{c} = n * \frac{N_{s}'}{A_{ci}} < f_{yd}$	$\varepsilon_s' = \frac{\varepsilon_s}{E_s} < \varepsilon_{yd}$	
		$N_c = \varepsilon_{cs} * E_c * A_{ci} < N_{cr} = f_{ct} * A_{ci}$	$\Delta l_c = \varepsilon_{cs} * l = 0$
		$N_s' = \varepsilon_s * E_s * A_s' < N_{ult} = f_{yd} * A_s'$ $N_s' = \varepsilon_s * E_s * A_s' < N_{ult} = f_{yd} * A_s'$	$egin{array}{lll} arDelta l_s &= arepsilon_s st l = 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
		$M_c = N_s * e - N'_s * e' < M_{cr} = f_{ct} * W_{ci}$	

fessurato	$\sigma_{c2} = \frac{N_{cs}}{A_{ci}} + \frac{M_c}{W_{ci}} - \frac{M'_c}{W_{ci}} = 0$ $\sigma_{s2} = \frac{N_s}{A_s}$ $\sigma'_{s2} = \frac{N_s}{A'_s}$ $N_c = \varepsilon_{cs} * E_c * A_{ci} = N_{cr} = f_{ct} * A_{ci}$ $N_s = \varepsilon_s * E_s * A_s < N_{ult} = f_{yd} * A_s$ $N'_s = \varepsilon_s * E_s * A'_s < N_{ult} = f_{yd} * A'_s$ $M_c = N_s * e - N'_s * e' = M_{cr} = f_{ct} * W_{ci}$	$\varepsilon_{c2} = 0$ $\varepsilon_{s2} = \frac{N_{cs}}{E_s A_s}$ $\varepsilon'_{s2} = \frac{N_{cs}}{E_s A'_s}$ $\chi = \frac{M_a}{EJ_{ci}}$ $\Delta l_c = 0$ $\Delta l_s = 0$ $\Delta l'_s = 0$ $f_c = f_{c1} + f_{c2} = \frac{M_c l^2}{8E_{c0} J_{c1}} + \frac{M_c l^2}{8E_{c0} J_{c2}}$
-----------	---	---

Dove:

$$\begin{split} \varepsilon_{c} &= \varepsilon_{c1} \cong 0,1\%_{0}; \\ f_{ct} &= \frac{N_{cr}}{A_{ci}} + \frac{M_{cr}}{W_{ci}} = \frac{N_{cr}}{A_{ci}} + \frac{N_{cr} * \frac{h}{4}}{A_{ci} * \frac{h}{6}}; \\ A_{ci} &= A_{c} + n * A_{s} = b * h + n * A_{s}; \\ W_{ci} &= A_{ci} * \frac{h}{6} = (b * h + n * A_{s}) * \frac{h}{6}; \\ J_{ci} &= J_{c} + n * J_{a}; \\ f_{ctm} &= 0,30 * f_{ck}^{\frac{2}{3}}; \\ n &= \frac{E_{s}}{E_{c}}; \\ e &= y_{G} - y_{s}; \\ e' &= y'_{s} - y_{G}; \\ y_{G} &= baricentro \ elemento; \\ y_{s} &= baricentro \ armatura \ inferiore; \end{split}$$

 $y_s' = baricentro armatura superiore.$

4.6.1 Schema di vincolamento isostatico (esternamente)

4.6.1.1 Modello analitico

è

Figura 112 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di calcestruzzo e armatura doppiamente eccentrica nello schema strutturale isostatico (esternamente).

Condizione di congruenza:

 $\Delta \varepsilon_c = \Delta \varepsilon_s$ condizione puntuale

$$\Delta l_c = \Delta l_s$$
 condizione globale

$$-\varepsilon_{cs} * l + \int_{0}^{l} dl = -\int_{0}^{l} dl$$
$$-\varepsilon_{cs} * l + \int_{0}^{l} \varepsilon_{c}(x) dx = -\int_{0}^{l} \varepsilon_{s}(x) dx$$
$$-\varepsilon_{cs} * l + \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx = -\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}n_{bar}A_{s}} dx$$

Ipotesi 1): andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{max} = cost$

$$-\varepsilon_{cs} * l + \int_{0}^{l} \frac{N_{max}}{E_c A_c} dx = -\int_{0}^{l} \frac{N_{max}}{E_s n_{bar} A_s} dx$$
$$-\varepsilon_{cs} * l + \frac{N_{max}}{E_c A_c} \int_{0}^{l} dx = -\frac{N_{max}}{E_s n_{bar} A_s} \int_{0}^{l} dx$$
$$-\varepsilon_{cs} * l + \frac{N_{max} * l}{E_c A_c} = -\frac{N_{max} * l}{E_s n_{bar} A_s}$$

$$N_{max} = \varepsilon_{cs} * \left(\frac{E_s A_c n_{bar} A_s}{A_c + n_0 n_{bar} A_s}\right) = \varepsilon_{cs} * \left(\frac{E_s A_c n_{bar} A_s}{A_{ci}}\right)$$

Ipotesi 2): andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità

$$\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx = \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx =$$

$$= \int_{0}^{l} \frac{N_{max}}{E_{c}A_{c}} \frac{x^{2}}{l^{2}} dx + \int_{\frac{l}{10}}^{\frac{9}{10}l} \frac{N_{max}}{E_{c}A_{c}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{max}}{E_{c}A_{c}} \frac{x^{2}}{l^{2}} dx =$$

$$= \frac{1}{3000} \frac{N_{max} * l}{E_{c}A_{c}} + \frac{8}{10} \frac{N_{max} * l}{E_{c}A_{c}} + \frac{271}{3000} \frac{N_{max} * l}{E_{c}A_{c}} = \frac{2672}{3000} \frac{N_{max} * l}{E_{c}A_{c}} =$$

$$= 0.89 \frac{N_{max} * l}{E_{c}A_{c}}$$

$$\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}n_{bar}A_{s}} dx = \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}n_{bar}A_{s}} dx =$$

$$= \int_{0}^{\frac{l}{10}} \frac{N_{max}}{E_{s}n_{bar}A_{s}} \frac{x^{2}}{l^{2}} dx + \int_{\frac{l}{10}}^{\frac{9}{10}l} \frac{N_{max}}{E_{s}n_{bar}A_{s}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{max}}{E_{s}n_{bar}A_{s}} \frac{x^{2}}{l^{2}} dx =$$

$$= \frac{1}{3000} \frac{N_{max} * l}{E_{s}n_{bar}A_{s}} + \frac{8}{10} \frac{N_{max} * l}{E_{s}n_{bar}A_{s}} + \frac{271}{3000} \frac{N_{max} * l}{E_{s}n_{bar}A_{s}} = \frac{2672}{3000} \frac{N_{max} * l}{E_{s}n_{bar}A_{s}} =$$

$$= 0.89 \frac{N_{max} * l}{E_{s}n_{bar}A_{s}}$$

$$-\varepsilon_{cs} * l + \int_0^l \frac{N_{aderenza}(x)}{E_c A_c} dx = -\int_0^l \frac{N_{aderenza}(x)}{E_s n_{bar} A_s} dx$$
$$-\varepsilon_{cs} * l + 0.89 \frac{N_{max} * l}{E_c A_c} = -0.89 \frac{N_{max} * l}{E_s n_{bar} A_s}$$

$$N_{max} = \varepsilon_{cs} * 0.89 * \left(\frac{1}{E_c A_c} + \frac{1}{E_s n_{bar} A_s}\right) = \varepsilon_{cs} * 0.89 * \left(\frac{E_c A_c E_s n_{bar} A_s}{E_c A_c + E_s n_{bar} A_s}\right) =$$
$$= \varepsilon_{cs} * 0.89 * \left(\frac{A_c E_s n_{bar} A_s}{A_c + n_0 n_{bar} A_s}\right) = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c n_{bar} A_s}{A_{ci}}\right)$$

Si osserva che si è considerato un elemento avente un rapporto tra le dimensioni pari a $\frac{h}{l} = \frac{1}{10}$, in cui si è assunta una suddivisione in tre porzioni:

- due zone di estremità "diffusive" di lunghezza pari a $\frac{1}{10}$ della luce complessiva;
- una zona centrale di lunghezza pari a $\frac{8}{10}$ della luce complessiva in cui valgono le ipotesi del solido di De Saint Venant.

4.6.1.2 Modello numerico di raffronto

Valutazione degli spostamenti

Figura 113 - Grafico degli spostamenti.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare lo spostamento tramite il modello analitico, che risulta:

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{max} = cost$:

$$N_{max} = \varepsilon_{cs} * \left(\frac{E_s A_c n_{bar} A_s}{A_c + n_0 n_{bar} A_s}\right) = \varepsilon_{cs} * \left(\frac{E_s A_c n_{bar} A_s}{A_{ci}}\right) =$$

= (2,6586 * 10⁻⁴) * $\left(\frac{210000 * 230000 * 2 * 10000}{350000}\right) = 733773,60 N$

$$\Delta l_c = \Delta l_s$$

$$-\varepsilon_{cs} * l + \int_0^l \frac{N(x)}{E_c A_c} dx = -\int_0^l \frac{N(x)}{E_s n_{bar} A_s} dx$$

$$\Delta l_c = -\int_0^l \frac{N(x)}{E_s n_{bar} A_s} dx = -\frac{N_{max}}{E_s n_{bar} A_s} \int_0^l dx = -\frac{N_{max} * l}{E_s n_{bar} A_s} =$$
$$= -\frac{(733773,60) * 3000}{210000 * 2 * 10000} = -0,524 \ mm = -0,524 * 10^{-3} \ m = -0,000524 \ mm$$

• andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità:

$$N_{max} = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c n_{bar} A_s}{A_{ci}}\right) = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c n_{bar} A_s}{A_{ci}}\right) =$$

= (2,6586 * 10⁻⁴) * 0.89 * $\left(\frac{210000 * 230000 * 2 * 10000}{350000}\right) = 653058,50 N$

$$\Delta l_c - \frac{N_{max} * l}{E_s n_{bar} A_s} = -\frac{(653058,50) * 3000}{210000 * 2 * 10000} = -0,466 \ mm = -0,466 * 10^{-3} \ m = -0,000466 \ m$$

Dunque con buona approssimazione lo spostamento coincide tra calcolo con il modello analitico e modello numerico.

Valutazione delle sollecitazioni

Figura 114 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

➢ <u>lato acciaio:</u>

Figura 115 - Tensioni normali nella direzione dell'asse della trave nell'acciaio.

Figura 116 - Andamento delle tensioni nell'acciaio sulla sezione longitudinale.

Figura 117 - Andamento dello sforzo assiale nell'acciaio sulla sezione longitudinale.

Tabella 33 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	-41,386	[MPa]
A _s	$0,02*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	-828	[kN]

lato calcestruzzo:

Figura 118 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo.

Figura 119 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 120 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale. 174

Tabella 34 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	3,598	[MPa]
A _c	$0,23*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	827,73	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare lo la risultante degli sforzi che si scambiano i due materiali tramite il modello analitico, che risulta:

 nell'ipotesi di andamento dello sforzo assiale di aderenza costante N_{aderenza}(x) = N_{max} = cost:

$$N_{max} = \varepsilon_{cs} * \left(\frac{E_s A_c n_{bar} A_s}{A_c + n_0 n_{bar} A_s}\right) = \varepsilon_{cs} * \left(\frac{E_s A_c n_{bar} A_s}{A_{ci}}\right) =$$

= (2,6586 * 10⁻⁴) * $\left(\frac{210000 * 230000 * 2 * 10000}{350000}\right) = 733773,60 N$

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità:

$$N_{max} = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c n_{bar} A_s}{A_{ci}}\right) = \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c n_{bar} A_s}{A_{ci}}\right) =$$

= (2,6586 * 10⁻⁴) * 0.89 * $\left(\frac{210000 * 230000 * 2 * 10000}{350000}\right) = 653058,50 N$

Dunque con buona approssimazione la risultante degli sforzi che si scambiano i due materiali, in corrispondenza della sezione di mezzeria, coincide tra calcolo con il modello analitico e modello numerico: in particolare il calcolo analitico sottostima il valore della risultante dello sforzo assiale di un 11% nell'ipotesi di andamento dello sforzo assiale lineare, mentre nella seconda ipotesi di un 22%.

4.6.2 Schema di vincolamento iperstatico (esternamente)

4.6.2.1 Modello analitico

Candidato: Francesco Cavallini

Figura 121 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di calcestruzzo e armatura doppiamente eccentrica nello schema strutturale iperstatico (esternamente).

Ricordando il modello elaborato per il caso di elemento con armatura eccentrica con vincolamento esterno iperstatico, si può osservare come in questo caso valgano le medesime equazioni in cui però si elidono i termini dovuti alle eccentricità:

 $N_{vinc,cls} = A_c * E_c * \varepsilon_{cs} - N_{aderenza,max}$

 $N_{vinc,barra} = -N_{aderenza,max}$

 $N_{vinc} = N_{vinc,cls} + N_{vinc,barra}$

Si osserva che tali equazioni risultano equivalenti a quelle scritte per il caso di elemento con armatura centrata con vincolamento esterno iperstatico.

4.6.2.2 Modello numerico di raffronto

Figura 122 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Figura 123 - Tensioni normali nella direzione dell'asse della trave nell'acciaio.

Figura 124 - Andamento delle tensioni nell'acciaio sulla sezione longitudinale.

Figura 125 - Andamento dello sforzo assiale nell'acciaio sulla sezione longitudinale.

Tabella 35 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	-35,980	[MPa]
A _s	$0,02*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	-720,00	[kN]

➢ <u>lato calcestruzzo:</u>

Figura 126 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo.

Figura 127 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 128 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 36 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	4,523	[MPa]
A_{c}	$0,23*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	1040,50	[kN]

Candidato: Francesco Cavallini

-
13
·m
0
0

Figura 129 - Reazioni dei vincoli esterni posti alle estremità

Ricordando le formule scritte in precedenza risulta:

$$\begin{split} N_{vinc,cls} &= A_c * E_c * \varepsilon_{cs} - N_{aderenza,max} = \\ &= 230000 * 36283 * 2,6586 * 10^{-4} - 733774 = 1485 \, kN \\ N_{vinc,barra} &= -N_{aderenza,max} = -734 \, kN \\ N_{vinc} &= N_{vinc,cls} + N_{vinc,barra} = 1485 - 734 = 751 \, kN \end{split}$$

Dunque con il calcolo tramite il modello analitico, lo sforzo nell'armatura risulta sovrastimato del 2%, mentre quello nel calcestruzzo è eccessivamente sovrastimato e di conseguenza anche la reazione dei vincoli. Si osserva che i risultati sono stati ottenuti assumendo che lo sforzo che si scambiano i due materiali sia il medesimo del caso in cui si è considerato un vincolamento esterno isostatico.

Figura 130 - Geometria dell'elemento considerato.

Dati noti:

- f_{ck} ;
- f_{yk};
- RH;
- t;
- t_s;
- $h_0 = \frac{2*A_c}{u} = \frac{2*(b*h)}{2*(b+h)} = \frac{b*h}{b+h};$
- Ipotesi: presenza di microfessure in mezzeria con conseguente formazione di lesioni.

		Tensioni/Sollecitazioni	Deformazioni/Spostamenti
	non fessurato	$\sigma_c = \frac{N_c}{A_{ci}} < f_{ct}$	$\varepsilon_c = \frac{\sigma_{c1}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c} = \varepsilon_c$
		$\sigma_s = n * \sigma_c = n * \frac{N_s}{A_{ci}} < f_{yd}$	$\varepsilon_s = \frac{\sigma_s}{E_s} < \varepsilon_{yd}$
		$N_c = \varepsilon_{cs} * E_c * A_{ci} + N_{s,est}$	$\Delta l_c = \varepsilon_{cs} * l$
Labile (esternamente)		$N_s = \varepsilon_s * E_s * A_s + N_{s,est}$	$\Delta l_s = \varepsilon_s * l$
	fessurato	$\sigma_{c2} = 0$	$\varepsilon_{c2} = 0$
		$\sigma_{s2} = \frac{N}{A_s}$	$\varepsilon_{s2} = \frac{N_s}{E_s A_s}$
		$N_c = \varepsilon_{cs} * E_c * A_{ci} + N_{s,est} =$	$\Delta l_{c2} = 0$
		$= N_{cr} = f_{ct} * A_{ci}$	$\Delta l_{s2} = 0$
		$N_s = \varepsilon_{s2} * E_s * A_s + N_{s,est}$	

Tabella 37 - Tensioni e deformazioni, sollecitazioni e spostamenti per l'elemento di calcestruzzo con armatura centrata tesa negli schemi strutturali considerati.

Dove:

$$\begin{split} \varepsilon_c &\cong 0,1\%_0; \\ f_{ct} &= \frac{N_{cr}}{A_{ci}}; \\ A_{ci} &= A_c + n * A_{sc} = b * h + n * A_{sc}; \\ f_{ctm} &= 0,30 * f_{ck}^{\frac{2}{3}}; \\ n &= \frac{E_s}{E_c}. \end{split}$$

4.7.1 Elemento appoggiato su un piano ideale in assenza di attrito

4.7.1.1 Modello analitico

Figura 131 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'elemento di calcestruzzo e armatura centrata tesa nello schema strutturale labile (esternamente).

Condizione di congruenza:

 $\Delta \varepsilon_c = \Delta \varepsilon_s$ condizione puntuale

 $\Delta l_c = \Delta l_s$ condizione globale

$$-\varepsilon_{cs} * l + \int_{0}^{l} dl + \int_{0}^{l} \frac{N_{s,est}}{E_{c}A_{c}} dx = + \int_{0}^{l} dl + \int_{0}^{l} \frac{N_{s,est}}{E_{s}A_{s}} dx$$
$$-\varepsilon_{cs} * l + \int_{0}^{l} \varepsilon_{c}(x) dx + \frac{N_{s,est}}{E_{c}A_{c}} \int_{0}^{l} dx = + \int_{0}^{l} \varepsilon_{s}(x) dx + \frac{N_{s,est}}{E_{s}A_{s}} \int_{0}^{l} dx$$
$$-\varepsilon_{cs} * l + \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx + \frac{N_{s,est} * l}{E_{c}A_{c}} = - \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx + \frac{N_{s,est} * l}{E_{s}A_{s}}$$

Ipotesi 1): andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{max} = cost$

$$-\varepsilon_{cs} * l + \int_{0}^{l} \frac{N_{aderenza,max}}{E_{c}A_{c}} dx + \frac{N_{s,est} * l}{E_{c}A_{c}} = -\int_{0}^{l} \frac{N_{aderenza,max}}{E_{s}A_{s}} dx + \frac{N_{s,est} * l}{E_{s}A_{s}}$$
$$-\varepsilon_{cs} * l + \frac{N_{aderenza,max}}{E_{c}A_{c}} \int_{0}^{l} dx + \frac{N_{s,est} * l}{E_{c}A_{c}} = -\frac{N_{aderenza,max}}{E_{s}A_{s}} \int_{0}^{l} dx + \frac{N_{s,est} * l}{E_{s}A_{s}}$$
$$-\varepsilon_{cs} * l + \frac{N_{aderenza,max} * l}{E_{c}A_{c}} + \frac{N_{s,est} * l}{E_{c}A_{c}} = -\frac{N_{aderenza,max} * l}{E_{s}A_{s}} + \frac{N_{s,est} * l}{E_{s}A_{s}}$$
$$N_{aderenza,max} = \left[\varepsilon_{cs} + N_{s,est} \left(\frac{1}{E_{s}A_{s}} - \frac{1}{E_{c}A_{c}}\right)\right] * \left(\frac{E_{s}A_{c}A_{s}}{A_{ci}}\right)$$

Ipotesi 2): andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità

$$\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx =$$

$$= \int_{0}^{\frac{l}{10}} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx + \int_{\frac{l}{10}}^{\frac{9}{10}l} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{aderenza,max}(x)}{E_{c}A_{c}} dx =$$

$$= \frac{1}{3000} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} + \frac{8}{10} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} + \frac{271}{3000} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} =$$

$$= \frac{2672}{3000} \frac{N_{aderenza,max} * l}{E_{c}A_{c}} = 0.89 \frac{N_{aderenza,max} * l}{E_{c}A_{c}}$$

$$\begin{split} &\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx = \\ &= \int_{0}^{\frac{l}{10}} \frac{N_{aderenza,max}(x)}{E_{s}A_{s}} dx + \int_{\frac{l}{10}}^{\frac{9}{10}l} \frac{N_{aderenza,max}}{E_{s}A_{s}} dx + \int_{\frac{9}{10}l}^{l} \frac{N_{aderenza,max}(x)}{E_{s}A_{s}} dx = \\ &= \frac{1}{3000} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} + \frac{8}{10} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} + \frac{271}{3000} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} = \\ &= \frac{2672}{3000} \frac{N_{aderenza,max} * l}{E_{s}A_{s}} = 0.89 \frac{N_{aderenza,max} * l}{E_{s}A_{s}} \end{split}$$

190

$$-\varepsilon_{cs} * l + \int_{0}^{l} \frac{N_{aderenza}(x)}{E_{c}A_{c}} dx + \frac{N_{s,est} * l}{E_{c}A_{c}} = -\int_{0}^{l} \frac{N_{aderenza}(x)}{E_{s}A_{s}} dx + \frac{N_{s,est} * l}{E_{s}A_{s}}$$
$$-\varepsilon_{cs} * l + 0.89 \frac{N_{aderenza,max} * l}{E_{c}A_{c}} + \frac{N_{s,est} * l}{E_{c}A_{c}} =$$
$$= -0.89 \frac{N_{aderenza,max} * l}{E_{s}A_{s}} + \frac{N_{s,est} * l}{E_{s}A_{s}}$$

$$\begin{split} N_{aderenza,max} &= \left[\varepsilon_{cs} + \frac{N_{s,est} * l}{E_s A_s} \left(\frac{1}{E_s A_s} - \frac{1}{E_c A_c} \right) \right] * \frac{1}{0,89} * \left(\frac{1}{E_c A_c} + \frac{1}{E_s A_s} \right) = \\ &= \left[\varepsilon_{cs} + \frac{N_{s,est} * l}{E_s A_s} \left(\frac{1}{E_s A_s} - \frac{1}{E_c A_c} \right) \right] * \frac{1}{0,89} * \left(\frac{E_c A_c E_s A_s}{E_c A_c + E_s A_s} \right) = \\ &= \left[\varepsilon_{cs} + \frac{N_{s,est} * l}{E_s A_s} \left(\frac{1}{E_s A_s} - \frac{1}{E_c A_c} \right) \right] * \frac{1}{0,89} * \left(\frac{A_c E_s A_s}{A_c + n_0 A_s} \right) = \\ &= \left[\varepsilon_{cs} + \frac{N_{s,est} * l}{E_s A_s} \left(\frac{1}{E_s A_s} - \frac{1}{E_c A_c} \right) \right] * \frac{1}{0,89} * \left(\frac{E_s A_c A_s}{A_c + n_0 A_s} \right) = \\ &= \left[\varepsilon_{cs} + \frac{N_{s,est} * l}{E_s A_s} \left(\frac{1}{E_s A_s} - \frac{1}{E_c A_c} \right) \right] * \frac{1}{0,89} * \left(\frac{E_s A_c A_s}{A_c + n_0 A_s} \right) = \end{split}$$

Si osserva che si è considerato un elemento avente un rapporto tra le dimensioni pari a $\frac{h}{l} = \frac{1}{10}$, in cui si è assunta una suddivisione in tre porzioni:

- due zone di estremità "diffusive" di lunghezza pari a $\frac{1}{10}$ della luce complessiva;
- una zona centrale di lunghezza pari a $\frac{8}{10}$ della luce complessiva in cui valgono le ipotesi del solido di De Saint Venant.

4.7.1.2 Modello numerico di raffronto

Valutazione degli spostamenti

Figura 132 - Grafico degli spostamenti.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare lo spostamento tramite il modello analitico, che risulta:

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{max} = cost$:

$$N_{max} = \left[\varepsilon_{cs} + N_{s,est} \left(\frac{1}{E_s A_s} - \frac{1}{E_c A_c}\right)\right] * \left(\frac{E_s A_c A_s}{A_{ci}}\right) = \\ = \left[2,6586 * 10^{-4} + 100000 \left(\frac{1}{210000 * 10000} - \frac{1}{36283 * 240000}\right)\right] * \\ * \left(\frac{210000 * 10000 * 240000}{300000}\right) = 507326,4 N$$

$$\Delta l_c = \Delta l_s$$

$$-\varepsilon_{cs} * l + \int_0^l \frac{N_{aderenza,max}}{E_c A_c} dx + \frac{N_{s,est} * l}{E_c A_c} = -\int_0^l \frac{N_{aderenza,max}}{E_s A_s} dx + \frac{N_{s,est} * l}{E_s A_s}$$

$$\begin{aligned} \Delta l_{c,per\,lato} &= \frac{\Delta l_c}{2} = -\int_0^l \frac{N(x)}{E_s A_s} dx + \frac{N_{s,est} * l}{E_s A_s} = \\ &= -\frac{N_{aderenza,max}}{E_s A_s} \int_0^l dx + \frac{N_{s,est} * l}{E_s A_s} = \\ &= -\frac{N_{aderenza,max} * l}{E_s A_s} + \frac{N_{s,est} * l}{E_s A_s} = \\ &= -\frac{507326,4 * 3000}{210000 * 10000} + \frac{100000 * 3000}{210000} = 0,290 \ mm = 0,290 * 10^{-3} \ m = \\ &= 0,000290 \ m \end{aligned}$$

Dunque con buona approssimazione lo spostamento coincide tra calcolo con il modello analitico e modello numerico.

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità:

$$\begin{split} N_{max} &= \left[\varepsilon_{cs} + \frac{N_{s,est} * l}{E_s A_s} \left(\frac{1}{E_s A_s} - \frac{1}{E_c A_c}\right)\right] * \frac{1}{0.89} * \left(\frac{E_s A_c A_s}{A_{ci}}\right) = \\ &= \left[2,6586 * 10^{-4} + 100000 \left(\frac{1}{210000 * 10000} - \frac{1}{36283 * 240000}\right)\right] * \frac{1}{0.89} * \\ &* \left(\frac{210000 * 10000 * 240000}{300000}\right) = 570029,66 \, N \end{split}$$

$$\Delta l_{c,per\ lato} = \frac{\Delta l_c}{2} = -\frac{N_{max} * l}{E_s A_s} + \frac{N_{s,est} * l}{E_s A_s} =$$
$$= -\frac{570029,66 * 3000}{210000 * 10000} + \frac{100000 * 3000}{210000 * 10000} = -0,671 \ mm =$$
$$= -0,671 * 10^{-3} \ m = -0,000671 \ m$$

Valutazione delle sollecitazioni

Figura 133 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Figura 134 - Tensioni normali nella direzione dell'asse della trave nell'acciaio.

Figura 135 - Andamento delle tensioni nell'acciaio sulla sezione longitudinale.

Figura 136 - Andamento dello sforzo assiale nell'acciaio sulla sezione longitudinale.

Tabella 38 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	-48,579	[MPa]
A_s	0,01*10 ⁶	$[m^2]$
N _{risultante} =N _{max}	-485,78	[kN]

➢ <u>lato calcestruzzo:</u>

Figura 137 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo.

Figura 138 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 139 - Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 39 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	2,440	[MPa]
A _c	$0,24*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	585,60	[kN]

Candidato: Francesco Cavallini

Si osserva come la presenza di una trazione esterna indotta nell'armatura comporti uno sgravio di sforzo nell'acciaio e un aggravio di sollecitazione nel calcestruzzo rispetto allo stesso schema strutturale studiato in precedenza in assenza dello sforzo esterno di trazione. Questo è vero fino a quando non si supera il limite di resistenza a trazione del calcestruzzo. Per fare un esempio di come avvenga la ripartizione della forza esterna tra i due materiali, si assume una forza esterna pari a 1 kN. Si osserva che la ripartizione avviene in base alle rigidezze rispettive delle porzioni di elemento costituite da uno dei due materiali:

 $E_c A_c = 36283 * 240000 = 8707920000 N ~(\cong 80\%)$

 $E_s A_s = 210000 * 10000 = 2100000000 N ~(\cong 20\%)$

Dunque del 1 kN applicato esternamente, il 20% va a sgravare l'acciaio (-505,3858 kN \Rightarrow -505,1899 kN), mentre l'80% va ad aggravare il calcestruzzo (505,3858 kN \Rightarrow 506,1900 kN).

Con tale forza esterna il calcestruzzo la vora a circa $3,48 \text{ kg/cm}^2$ a trazione; tale tasso di lavoro è compatibile con la resistenza limite a trazione del calcestruzzo, che quindi non si trova ancora in condizioni fessurate, e dunque tale ripartizione dello sforzo esterno tra i due materiali è effettiva.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante tramite il modello analitico, che risulta:

• nell'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{max} = cost$:

$$N_{max} = \left[\varepsilon_{cs} - N_{s,est} \left(\frac{1}{E_s A_s} - \frac{1}{E_c A_c}\right)\right] * \left(\frac{E_s A_c A_s}{A_{ci}}\right) = \\ = \left[2,6586 * 10^{-4} + 100000 \left(\frac{1}{210000 * 10000} - \frac{1}{36283 * 240000}\right)\right] * \\ * \left(\frac{210000 * 10000 * 240000}{300000}\right) = 507326,4 N$$

Dunque la risultante degli sforzi che si scambiano i due materiali rimane sostanzialmente invariata sia che l'armatura sia tesa esternamente sia che sia scarica. • nell'ipotesi di andamento dello sforzo assiale di aderenza costante nella zona centrale dell'elemento, mentre assume andamento parabolico nelle zone di estremità:

$$\begin{split} N_{max} &= \left[\varepsilon_{cs} - \frac{N_{s,est} * l}{E_s A_s} \left(\frac{1}{E_s A_s} - \frac{1}{E_c A_c}\right)\right] * \frac{1}{0.89} * \left(\frac{E_s A_c A_s}{A_{ci}}\right) = \\ &= \left[2,6586 * 10^{-4} + 100000 \left(\frac{1}{210000 * 10000} - \frac{1}{36283 * 240000}\right)\right] * \frac{1}{0.89} * \\ &* \left(\frac{210000 * 10000 * 240000}{300000}\right) = 570029 \, N \end{split}$$

Dunque con buona approssimazione la risultante degli sforzi che si scambiano i due materiali, in corrispondenza della sezione di mezzeria, coincide tra calcolo con il modello analitico e modello numerico: in particolare il calcolo analitico sottostima il valore della risultante dello sforzo assiale di un 14% nell'ipotesi di andamento dello sforzo assiale lineare, mentre nella seconda ipotesi di un 3%.

4.7.2.1 Modello analitico

Figura 140 - Stato fessurato per lo schema strutturale labile

4.7.2.2 Modello numerico di raffronto

Valutazione degli spostamenti

Figura 141 - Grafico degli spostamenti.

Valutazione delle sollecitazioni

Figura 142 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

▶ <u>lato acciaio:</u>

Figura 143 - Tensioni normali nella direzione dell'asse della trave nell'acciaio. 200

Figura 144 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 145 - Andamento dello sforzo assiale nell'acciaio sulla sezione longitudinale.

Tabella 40 - Risultante dello sforzo assiale in corrispondenza della sezione di mezzeria.

S11 _{tot}	10,00	[MPa]
As	0,01*10 ⁶	$[mm^2]$
N _{risultante} =N _{max}	100	[kN]

Candidato: Francesco Cavallini

Tale risultante in corrispondenza della sezione di mezzeria fessurata corrisponde alla sforzo di trazione applicato esternamente all'armatura; tale circostanza si giustifica col fatto che in corrispondenza della sezione fessurata vi è solo l'armatura e non si ha interazione tra i due materiali con conseguente distribuzione delle sollecitazioni.

Figura 146 - Tensioni normali nella direzione dell'asse della trave nel calcestruzzo.

Figura 147 - Andamento delle tensioni nel calcestruzzo sulla sezione longitudinale.

Figura 148- Andamento dello sforzo assiale nel calcestruzzo sulla sezione longitudinale.

Tabella 41 - Risultante dello sforzo assiale in corrispondenza della sezione a l/4.

S11 _{tot}	2,385	[MPa]
A _c	$0,24*10^{6}$	$[mm^2]$
N _{risultante} =N _{max}	573,0	[kN]

4.8 Elemento a T di solo calcestruzzo con due calcestruzzi diversi per anima e soletta

Figura 149 - Geometria dell'elemento considerato.

Dati noti:

- f_{ck,sol};
- f_{ck,a};
- RH;
- t;
- t_s;

•
$$h_{0,sol} = \frac{2*A_{c,1}}{u_1} = \frac{2*(a_1*b_1)}{a_1+2b_1+(a_1-a_2)}$$

•
$$h_{0,a} = \frac{2*A_{c,2}}{u_2} = \frac{2*(a_2*b_2)}{a_2+2b_2};$$

• $A_{c,sol}*y_{G,sol}+A_{c,a}*y_{G,a} = (a_1*b_1)*y_{G,sol}$

•
$$y_{G\infty} = \frac{A_{c,sol} * y_{G,sol} + A_{c,a} * y_{G,a}}{A_{c,sol} + A_{c,a}} = \frac{(a_1 * b_1) * y_{G,sol} + (a_2 * b_2) * y_{G,a}}{(a_1 * b_1) + (a_2 * b_2)};$$

- Ipotesi: $f_{ck,sol} < f_{ck,a}$;
- Ipotesi: presenza di microfessure in mezzeria con conseguente formazione di lesioni.

Deformazioni/Spostamenti **Tensioni/Sollecitazioni** $\sigma_{c,sol} = \frac{N_{sol}}{A_{c,sol}} < f_{ct,sol}$ $\sigma_{c,a} = \frac{N_a}{A_{c,a}} < f_{ct,a}$ $\varepsilon_{c,sol} = \frac{\sigma_{c1,sol}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c}$ $\varepsilon_{c,a} = \frac{\sigma_{c1,a}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c} = \varepsilon_{c1}$ Isostatico (esternamente) $N_{sol} = \varepsilon_{cs,sol} * E_{c,sol} * A_{c,sol} = 0$ $\Delta l_{c,sol} = \varepsilon_{cs,sol} * l$ $N_a = \varepsilon_{cs,a} * E_{c,a} * A_{c,a} = 0$ $\Delta l_{c,a} = \varepsilon_{cs,a} * l$ $\sigma_{c1,sol} = \frac{N_{sol}}{A_{c,sol}} < f_{ct,sol}$ $\sigma_{c1,a} = \frac{N_a}{A_{c,a}} < f_{ct,a}$
$$\begin{split} \varepsilon_{c1,sol} &= \frac{\sigma_{c1,sol}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c} \\ &= \varepsilon_{c1} \\ \varepsilon_{c1,a} &= \frac{\sigma_{c1,a}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c} = \varepsilon_{c1} \end{split}$$
non fessurato $N_{sol} = \varepsilon_{cs,sol} * E_{c,sol} * A_{c,sol} <$ $< N_{cr.sol} = f_{ct.sol} * A_{c.sol}$ $\Delta l_{c.sol} = 0$ $\Delta l_{c,a} = 0$ $N_a = \varepsilon_{cs,a} * E_{c,a} * A_{c,a} <$ $< N_{cr,a} = f_{ct,a} * A_{c,a}$ Iperstatico $\sigma_{c2,sol} = \frac{N_{sol}}{A_{c,sol}} = 0$ (esternamente) $\varepsilon_{c2,sol} = 0$ $\sigma_{c2,a} = \frac{N_a}{A_{ca}} < f_{ct,a}$ $\varepsilon_{c2,a} = \frac{N_a}{E_{ca}A_{ca}}$ fessurato $N_{sol} = \varepsilon_{cs,sol} * E_{c,sol} * A_{c,sol} =$ $= N_{cr,sol} = f_{ct,sol} * A_{c,sol}$ $\Delta l_{c,sol} = 0$ $N_a = \varepsilon_{s,a} * E_{s,a} * A_{s,a} <$ $\Delta l_{c.a} = 0$ $< N_{ult,a} = f_{yd,a} * A_{s,a}$

Tabella 42 - Tensioni e deformazioni, sollecitazioni e spostamenti per l'elemento a sezione a T di solo calcestruzzo negli schemi strutturali considerati.

Dove:

$$\varepsilon_{c1} \cong 0,1\%;$$

$$f_{ct,sol} = \frac{N_{cr,sol}}{A_{c,sol}};$$

$$f_{ct,a} = \frac{N_{cr,a}}{A_{c,a}};$$

$$A_{c,sol} = a_1 * b_1;$$

$$A_{c,a} = a_2 * b_2;$$

$$f_{ctm} = 0,30 * f_{ck}^{\frac{2}{3}}.$$

4.8.1 Schema di vincolamento isostatico (esternamente)

4.8.1.1 Modello analitico

Figura 150 - Elemento a sezione a T costituito da anima e soletta di calcestruzzo nello schema strutturale isostatico (esternamente).

Candidato: Francesco Cavallini

L'effetto del ritiro è paragonabile all'applicazione di una variazione di temperatura negativa.

Si considera la sezione a T trattata in precedenza, in cui è soggetta ad una variazione termica negativa solo l'ala superiore. Per garantire la connessione tra ala e anima devono nascere degli sforzi che si scambiano reciprocamente le due parti costituenti la trave.

Figura 151 - Tensioni che si generano all'interfaccia tra soletta e anima.

A causa di tale distribuzione di sforzi le due parti costituenti la trave risultano soggette al seguente stato di sollecitazione:

Figura 152 - Stati tensionali nella soletta e nell'anima.

$$\sigma = \frac{N}{A} \pm \frac{M}{W} = \frac{N}{h * s} \pm \frac{N * \frac{h}{2}}{\frac{s * h^2}{6}} = \frac{N}{A} \pm \frac{N * \frac{h}{2}}{A * \frac{h}{6}} = \frac{N}{A} \pm 3\frac{N}{A} = \begin{cases} 4\frac{N}{A} + \frac{N}{A} +$$

Condizione di congruenza tra soletta e anima:

$$\varepsilon_{c,sol}(x) = \varepsilon_{c,a}(x)$$

Tale condizione è necessaria affinché siano uguali ovunque gli spostamenti. Nello scrivere tale condizione si trascurano per semplicità i contributi derivanti dalla deformabilità flessionale dei due elementi costituenti la trave.

$$\varepsilon_{c,a}(x) = -\frac{4N(x)}{E_c A_{c,a}}$$
$$\varepsilon_{c,sol}(x) = -\varepsilon_{cs} + \frac{4N(x)}{E_c A_{c,sol}}$$

$$\chi = \frac{4N}{EA} \frac{1}{\frac{2}{3}h} = \frac{6N}{EAh} = \frac{6N}{Ebh^2}$$
$$\chi_{sol} = \chi_a$$
$$\frac{6N}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2}$$
$$\frac{cN}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2}$$
$$c = 6\frac{E_{sol}}{E_a}\frac{b_{sol}}{b_a}\frac{h_{sol}^2}{h_a^2}$$

Se anima e soletta sono dello stesso materiale o comunque di due materiali i cui moduli elastici differiscono di poco, allora si ha:

$$c = 6 \frac{b_{sol}}{b_a} \frac{h_{sol}^2}{h_a^2}$$

e il coefficiente è funzione solamente della geometria dell'elemento.

Si può verificare la circostanza in cui i due materiali abbiano moduli elastici molto diversi (ad esempio nel caso di sezioni miste acciaio-calcestruzzo) o in cui i rapporti geometrici tra le due parti costituenti la trave siano tali per cui è necessario modificare un coefficiente nella formula ricavata in precedenza. Dunque la deformazione della soletta si esprime nel modo seguente:

$$\varepsilon_{c,sol}(x) = -\varepsilon_{cs} + \frac{N(x)}{E_c A_{c,sol}}$$

Si osserva che nel termine che esprime la deformazione dell'ala superiore dovuta a N(x) non compare il coefficiente 4; ciò è dovuto al fatto che l'ala superiore a causa delle tensioni a cui è soggetta tenderebbe ad inflettersi molto di più di quanto non faccia l'anima sottostante (che ha un momento d'inerzia maggiore), ma dato che i due elementi collaborano, l'anima esplica degli sforzi sull'ala superiore che le impediscono di inflettersi. Con l'approccio considerato si trascurano tali sforzi esplicati dall'anima e quindi per tenere conto di questo fatto si applica una riduzione delle tensioni aventi distribuzione a farfalla nell'ala superiore.

Figura 153 - Accorgimento per tenere conto della flessione della soletta impedita dall'anima sottostante.

Si scrivono le equazioni di congruenza considerando l'ipotesi fatta in riferimento alla ridotta capacità di inflettersi della soletta.

$$\varepsilon_{c,sol}(x) = \varepsilon_{c,a}(x)$$
$$-\varepsilon_{cs} + \frac{N(x)}{E_c A_{c,sol}} = -\frac{4N(x)}{E_c A_{c,a}}$$

Da cui si ricava N(x) e poi derivando si ricava la distribuzione $\tau(x)$.

Si cerca ora di ipotizzare la distribuzione delle $\tau(x)$ che nascono tra le due parti costituenti la trave ragionando per assurdo:

Figura 154 - Prima ipotesi sugli andamenti di tensioni, risultante delle tensioni, deformazioni.

Si osserva che non è possibile che N(x) assuma un valore tale che $\varepsilon_{c,sol}(x) = \varepsilon_{c,a}(x)$, dunque la distribuzione lineare ipotizzata per le $\tau(x)$ non è corretta.

Si ipotizza allora una distribuzione parabolica:

Figura 155 - Seconda ipotesi sugli andamenti di tensioni, risultante delle tensioni, deformazioni.

Candidato: Francesco Cavallini

Si osserva che i profili di $\varepsilon_{c,sol}(x) \in \varepsilon_{c,a}(x)$ sono diversi ma tendono ad essere simili, infatti solo alle estremità permane una grossa differenza tra i due.

Quindi l'unico andamento di N(x) che consente di assicurare la compatibilità è quello costante.

Si può allora pensare un'azione concentrata alle estremità:

Figura 157 - Schematizzazione della risultante delle tensioni che si scambiano soletta e anima.

Questa è un'astrazione utile dal punto di vista applicativo, dovuta al fatto di impiegare ipotesi fortemente semplificative come:

- indeformabilità flessionale;
- conservazione delle sezioni piane per anima e ala superiore;
- perfetta aderenza tra i due elementi costituenti la trave.

In realtà X è la risultante di una distribuzione $\tau(x)$ su un breve tratto localizzato agli estremi della trave. Si considera la risultante e non la distribuzione degli sforzi perché:

- il modello impiegato è cinematicamente povero e permette di calcolare solo la risultante, mentre la distribuzione degli sforzi si è solo ipotizzata ma non calcolata;
- si è adottata l'ipotesi di conservazione delle sezioni piane.

Si può dunque calcolare la risultante *X* risolvendo l'equazione di congruenza scritta in precedenza:

$$\begin{split} &-\varepsilon_{cs} + \frac{X}{E_c A_{c,sol}} = -\frac{4X}{E_c A_{c,a}} \implies -\varepsilon_{cs} = -X\left(\frac{4}{E_c A_{c,a}} + \frac{1}{E_c A_{c,sol}}\right) \implies \\ &\Rightarrow \quad X = \frac{\varepsilon_{cs}}{\left(\frac{4}{E_c A_{c,a}} + \frac{1}{E_c A_{c,sol}}\right)} \end{split}$$

Dunque da quanto detto risulta che in presenza di stati coattivi le tensioni che consentono di collegare due elementi si concentrano nelle zone terminali della zona di collegamento.

Metodo dell'equilibrio

Si applica ora un metodo di calcolo alternativo basato sull'equilibrio; tale metodo prevede un'analisi per fasi, con una sostanziale applicazione del metodo dei vincoli ausiliari:

• Fase 1: si applicano dei vincoli ausiliari alla sola soletta di calcestruzzo, la quale volendosi contrarre per effetto del ritiro risulta così tesa per la presenza dei vincoli;

$$\sigma = \varepsilon_{cs} * \frac{E_{cm}}{2}$$
$$N = \sigma * A_c = \varepsilon_{cs} * \frac{E_a}{n_{cs}} * A_c$$

con:

$$E_{cm} = 9.5 * (f_{ck} + 8)^{\frac{1}{3}}$$

Figura 158 - Schema di calcolo di prima fase e diagramma delle tensioni corrispondenti.

• Fase 2: si calcolano gli effetti isostatici considerando la sollecitazione assiale ricavata in prima fase, applicandola cambiata di segno all'intera trave;

 $z_0 = y_{G,soletta} - y_{G,trave}$ $M = N * z_0$

Figura 159 - Schema di calcolo di seconda fase e diagramma delle tensioni corrispondenti.

Sommando le sollecitazioni di prima e seconda fase si osserva una incongruenza in quanto risultano sollecitazioni anche alle estremità della trave, cosa che non è possibile in accordo con De Saint Venant. Questo deriva dal fatto che si è attuata un'applicazione del metodo dei vincoli ausiliari impropria: infatti nella due fasi si sono considerate due sezioni diverse.

Per ripristinare la congruenza alle estremità della trave si applica, in una terza fase di calcolo, un diagramma delle tensioni sulle sezioni di estremità, uguale e contrario a quello ricavato dal calcolo in modo da annullare le sollecitazioni fino ad una distanza dagli estremi circa pari all'altezza della sezione.

Figura 160 - Diagramma delle tensioni da applicare in terza fase alle sezioni di estremità.

Figura 161 - Diagramma finale delle tensioni per tutte le sezioni poste ad una distanza dai bordi circa pari all'altezza della sezione.

4.8.1.2 Modello numerico di raffronto

La trave a T che si è considera è costituita da due differenti materiali, rispettivamente un calcestruzzo di classe C45/55 per la soletta e uno di classe C50/60 per l'anima della trave, ma si considera l'azione del ritiro agente solo sulla soletta.

La geometria considerata è la seguente:

Figura 162 - Geometria dell'elemento considerato.

Calcolo della deformazione da ritiro agente sulla soletta:

 $f_{ck} = 45 MPa$ $E_{cm} = 36283 MPa$ $h_0 = \frac{2A_c}{u} = \frac{2 * (5 * 0,3)}{2 * (5 + 0,3)} = 0,283 m = 283 mm$ da cui risultano:

$$\begin{aligned} \varepsilon_{c0} &= -\ 0.2275\ \% \\ k_h &= 0.77 \\ \varepsilon_{cd,\infty} &= \varepsilon_{c0} * k_h = -\ 0.2275 * 10^{-3} * 0.77 = -0.000159 \\ \beta_{ds} &\cong 1 \end{aligned}$$

$$\varepsilon_{cs} = \varepsilon_{cd,\infty} * \beta_{ds} = -0,000159 * 1 = -0,000159 = -1,59 * 10^{-4}$$
$$\Delta T = \frac{\varepsilon_{cs}}{\alpha} = \frac{-0,000159}{10 * 10^{-6}} = -15,9 \,^{\circ}C$$

Valutazione degli spostamenti

Figura 163 - Spostamenti in sommità e alla base dell'anima ricavati dal modello di elementi shell.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare lo spostamento tramite il modello analitico, che risulta:

$$X = \frac{\varepsilon_{cs}}{\left(\frac{4}{E_{c,a}A_{c,a}} + \frac{1}{E_{c,sol}A_{c,sol}}\right)} = \frac{-1,59 \times 10^{-4}}{\left(\frac{4}{37278 \times 950000} + \frac{1}{36283 \times 1500000}\right)} = -1211244 N$$

$$\Delta l_{sommita} = -\frac{4X * l}{E_{c,a}A_{c,a}} = -\frac{4 * 1211244 * 50000}{37278 * 950000} = -1,71 mm =$$
$$= -1,71 * 10^{-3}m = -0,00171 m$$

. . .

Dunque con buona approssimazione lo spostamento coincide tra calcolo con il modello analitico e modello numerico.

Figura 164 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Figura 165 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Figura 166 - Andamento delle tensioni in corrispondenza della sezione di mezzeria e rispettive risultanti.

Calcolo analitico della tensioni:

$$\sigma_{sup} = \frac{N}{A_{ci}} + \frac{N * e}{W_{ci}} = \left(\frac{-8653}{2,3354} + \frac{-8653 * 0,384}{2,107}\right) * 10^{-3} = -5,282 MPa$$

$$\sigma_{inf} = \frac{N}{A_{ci}} - \frac{N * e}{W_{ci}} = \left(\frac{-8653}{2,3354} - \frac{-8653 * 0,384}{0,534}\right) * 10^{-3} = 2,516 MPa$$

Si osserva che con il calcolo con il modello analitico si sovrastimano le tensioni al lembo superiore ed inferiore ricavate dal modello numerico: in particolare si sovrastima di un 7% la tensione al lembo superiore e di un 4% quella al lembo inferiore.

Si osserva che nel modello numerico il software considera due volte una piccola porzione di area appartenente all'anima che viene inglobato nello spessore della soletta; ciò è dovuto al fatto che nell'implementare il modello si collegano gli elementi in corrispondenza dei nodi e degli assi baricentrici, di conseguenza si verificano situazioni di compenetrazione di materiale tra i diversi elementi.

Eseguendo nuovamente il calcolo con il modello analitico considerando due volte la porzione di area di anima inglobata nella soletta si ha una riduzione dell'errore commesso:

$$\sigma_{sup} = \frac{N}{A_{ci}} + \frac{N * e}{W_{ci}} = \left(\frac{-8653}{2,4104} + \frac{-8653 * 0,384}{2,107}\right) * 10^{-3} = -5,166 MPa \ (4\%)$$

Calcolo analitico della risultante sulla sezione:

$$C = \frac{-4,936 * 1277}{2} = -3151,71 \, kN$$
$$T = \frac{2,408 * 623}{2} = 750,15 \, kN$$
$$N_{tot} = \frac{(C+T)}{2} = \frac{(-3151,71+750,15)}{2} = -1200,78 \, kN$$

Per verificare la risultante delle tensioni che si sviluppano nell'anima a causa della soletta ad essa connessa soggetta ad accorciamento per effetto del ritiro, si è definita una sezione di controllo in corrispondenza della sezione di mezzeria.

Section Cut Forces - Analysis										
File View Format-Filter-Sort Select Options										
Units: /	Units: As Noted Section Cut Forces - Analysis									
	SectionCut	OutputCase	CaseType	F1	F2	F3	M1	M2	M3	
	lext	Text	lext	1100.070	KN	KN 000001050	KN-m	KN-m	KN-m	
	delta I	l emperatura	LinStatic	C -1198.873	D UI	-0.0000008521		-11U5-2196		
								1100,2100		
	N+M	Temperatura	LinStatic	-1156,605	0	-0,0006753	0	-1105,1569	0	
	N+M Nsoletta	Temperatura Temperatura	LinStatic LinStatic	-1156,605 -1198,805	0	-0,0006753 -0,00002353	0	-1105,1569	0	
	N+M Nsoletta SOLETTA delta T	Temperatura Temperatura Temperatura	LinStatic LinStatic LinStatic	-1138,805 -1198,805 -1198,873	0 0 100000001944	-0,0006753 -0,00002353 0,000001853	0 0 00000001573	-1105,1569 -1105,1563 -43,7007	0 0 00000002058	
	N+M Nsoletta SOLETTA delta T SOLETTA N+M	Temperatura Temperatura Temperatura Temperatura	LinStatic LinStatic LinStatic LinStatic	-1198,805 -1198,805 -1198,873 -7494,195	0 0 000000001944 000000001853	-0,0006753 -0,00002353 0,000001853 0,0006753	0 000000001573 000000004038	-1105,1569 -1105,1563 -43,7007 -43,6981	0 00000002058 00000002897	

Figura 167 – Risultanti ricavate tramite le Section cut in corrispondenza della sezione di mezzeria.

Si osserva che le risultanti degli sforzi di anima e soletta risultano di uguale modulo e opposte di segno, rispettando così l'equilibrio; infatti la soletta vorrebbe accorciarsi perché soggetta a ritiro ma l'anima si oppone a tale accorciamento, quindi la soletta risulta tesa mentre l'anima compressa.

Figura 168 - Andamento delle tensioni normali di trazione nella soletta.

Figura 169 - Andamento della risultante degli sforzi normali di trazione nella soletta.

Tabella 43 - Risultante dello sforzo assiale nella soletta in corrispondenza della sezione di mezzeria.

S11 _{tot soletta}	0,799	[MPa]
A _{c,soletta}	$1,50*10^{6}$	$[mm^2]$
N _{risultante,soletta} =N _{max,soletta}	1198,87	[kN]

Figura 170 - Andamento delle tensioni normali di compressione nell'anima.

Figura 171 - Andamento della risultante degli sforzi normali di compressione nell'anima.

Tabella 44 - Risultante dello sforzo assiale nell'anima in corrispondenza della sezione di mezzeria.

S11 _{tot} anima	-1,223	[MPa]
$A_{c,anima}$	0,95*10 ⁶	$[mm^2]$
N _{risultante,anima} =N _{max,anima}	-1162,48	[kN]

Si precisa che ai fini dei risultati ottenuti con il modello numerico si è verificato che posizionare i vincoli esterni alle estremità in corrispondenza dell'asse baricentrico della sezione composta o all'intradosso dell'anima non comporta alcuna differenza nei risultati che si ottengono.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante tramite il modello analitico, che risulta:

$$N_{aderenza,max} = \frac{\varepsilon_{cs}}{\left(\frac{4}{E_c A_{c,a}} + \frac{1}{E_c A_{c,sol}}\right)} = \frac{-1,59 * 10^{-4}}{\left(\frac{4}{37278 * 950000} + \frac{1}{36283 * 1500000}\right)} = -1211244 N$$

Dunque il calcolo con il modello analitico sovrastima la risultante ottenuta con il modello numerico di circa un 4%.

In tale equazione si è assunta la riduzione del coefficiente numerico nel termine relativo deformazione della soletta perché in questo caso la diversità tra i moduli elastici dei due materiali costituenti l'elemento lo giustifica:

$$\chi_{sol} = \chi_a$$

$$\frac{6N}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2} \Rightarrow \frac{cN}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2} \Rightarrow c = 6\frac{E_{sol}}{E_a}\frac{b_{sol}}{b_a}\frac{h_{sol}^2}{h_a^2} = 6\frac{36283}{37278}\frac{5000}{500}\frac{300^2}{1900^2} = 1,46$$

Metodo dell'equilibrio

• Fase 1:

Figura 172 - Reazione di incastro perfetto in corrispondenza dei vincoli ausiliari ottenuta con un modello a elemento di tipo FRAME.

Si può ottenere lo stesso risultato anche analiticamente:

$$N_{cs} = \varepsilon_{cs} * E_{cm} * A_{c,soletta} = -1,59 * 10^{-4} * 36283 * 1500000 = 8653 kN$$

Si può anche ragionare modellando la soletta con elementi di tipo SHELL:

Figura 173 - Reazione di incastro perfetto in corrispondenza dei vincoli ausiliari ottenuta con un modello a elemento di tipo SHELL.

Va precisato che nella modellazione con elementi di tipo SHELL si deve prestare attenzione per ottenere un risultato accettabile rispetto al valore ottenuto con il modello ad elemento FRAME e con il calcolo manuale. Si riportano di seguito alcuni tentativi che si sono effettuati:

(e)

Figura 174 – Modelli di tentativo.

Tabella 45 - Reazioni vincolari per i modelli di tentativo.

a	10618 kN
b	9554 kN
c	8594 kN
d	8682 kN
e	8507 kN

Si è messo dunque in evidenza che bisogna fare attenzione con gli elementi bidimensionali, dato che la variazione termica assegnata come carico distribuito viene automaticamente assegnata a tutti i nodi dell'elemento; per questo il modello risente di una sorta di "effetto di bordo" dovuto al fatto che il materiale è isotropo e il carico termico è assegnato uguale automaticamente in tutte le direzioni. Per ottenere un risultato accettabile si può adottare una mesh più rada non assegnando però la variazione termica negativa ad alcuni degli elementi di bordo della mesh (elementi in blu nei casi c,d), oppure si può adottare una mesh più fitta assegnando la variazione termica a tutti gli elementi.

• Fase 2:

E' possibile modellare la seconda fase in due modi equivalenti:

- applicare lo sforzo di trazione ricavato in prima fase come sforzo di compressione nel baricentro della soletta;
- applicare lo sforzo di trazione ricavato in prima fase come sforzo di compressione nel baricentro della sezione composta assieme al relativo momento di trasporto;

Figura 175 - Modello in cui si è applicato lo sforzo di compressione nel baricentro della soletta.

Figura 176 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Figura 177 - Andamento delle tensioni in corrispondenza della sezione di mezzeria e rispettive risultanti.

Calcolo analitico della risultante sulla sezione:

$$C = \frac{-4,935 * 1277}{2} = -3151,53 \ kN$$

$$T = \frac{2,408 * 623}{2} = 750,10 \ kN$$

$$N_{tot} = \frac{(C+T)}{2} = \frac{(-3151,53+750,10)}{2} = -1200,71 \ kN$$

Figura 178 - Modello in cui si è applicato lo sforzo di compressione nel baricentro della sezione composta assieme al relativo momento di trasporto.

Figura 179 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Figura 180 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Calcolo analitico della risultante sulla sezione:

$$C = \frac{-4,935 * 1277}{2} = -3151,53 \, kN$$
$$T = \frac{2,408 * 623}{2} = 750,10 \, kN$$
$$N_{tot} = \frac{(C+T)}{2} = \frac{(-3151,53+750,10)}{2} = -1200,71 \, kN$$

Si può poi verificare, tramite la definizione delle Section cut , che la risultante delle sollecitazioni assiali in corrispondenza della sezione di mezzeria è la medesima per i due modelli.

Section Cut Forces - Analysis										
File View Format-Filter-Sort Select Options										
s Noted				Sec	tion Cut Forces	- Analysis		-		
				,						
SectionCut	OutputCase	CaseType	F1	F2	F3	M1	M2	M3		
Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m		
delta T	Temperatura	LinStatic	-1198,873	0	-0,000001852	0	-1105,2196	0		
N+M	Temperatura	LinStatic	-1198,805	0	-0,0006753	0	-1105,1569	0		
Nsoletta	Temperatura	LinStatic	-1198,805	0	-0,00002353	0	-1105,1563	0		
OLETTA delta	Temperatura	LinStatic	1198,873	000000001944	0,000001853	000000001573	-43,7007	000000002058		
SOLETTA N+M	Temperatura	LinStatic	-7454 195	000000001853	0,0006753	000000004038	-43,6981	00000002897		
DLETTA Nsolet	Temperatura	LinStatic	7454,195	00000002194	0,00002353	00000001464	-43,6982	000000004093		
	ew Format-F s Noted SectionCut Text delta T N+M Nsoletta DLETTA delta SDLETTA N+M DLETTA Nsolet	ew Format-Filter-Sort Se s Noted SectionCut OutputCase Text Temperatura N+M Temperatura DLETTA delta Temperatura DLETTA N+M Temperatura DLETTA N+M Temperatura	ew Format-Filter-Sort Select Options s Noted SectionCut OutputCase CaseType Text Text Text delta T Temperatura LinStatic N+M Temperatura LinStatic Nsoletta Temperatura LinStatic DLETTA delta Temperatura LinStatic DLETTA N+M Temperatura LinStatic DLETTA N+M Temperatura LinStatic	Section Cu ew Format-Filter-Sort Select Options s Noted SectionCut OutputCase CaseType F1 Text Text Text KN delta T Temperatura LinStatic -1198,873 N+M Temperatura LinStatic -1198,805 DILETTA delta Temperatura LinStatic -1198,873 OLETTA N+M Temperatura LinStatic -7454,195 DILETTA N+M Temperatura LinStatic -7454,195	Section Cut Forces - All ew Format-Filter-Sort Select Options s Noted SectionCut OutputCase CaseType F1 F2 Text Text Text KN KN delta T Temperatura LinStatic -1198,873 0 N+M Temperatura LinStatic -1198,805 0 DLETTA delta Temperatura LinStatic -1198,873 000000001944 OLETTA N+M Temperatura LinStatic -7454,195 000000001853 DLETTA Nsolet Temperatura LinStatic -7454,195 00000002194	Section Cut Forces - Analysis ew Format-Filter-Sort Select Options Solution Cut Forces Section Cut Forces Net To Persture InStatic 1198.805 0 0	Section Cut Forces - Analysis section Cut Forces - Analysis s Noted Section Cut Forces - Analysis Secti	Section Cut Forces - Analysis s Noted Section Cut Forces - Analysis Secti		

Figura 181 – Risultanti ricavate tramite le Section cut in corrispondenza della sezione di mezzeria.

Si osserva che per l'anima il valore della risultante ricavato nella seconda fase è già quello effettivo, mentre per la soletta bisogna sommare le risultanti di prima e seconda fase per ottenere la risultante effettiva:

$$N_{soletta} = N_{soletta, I fase} + N_{soletta, II fase} = 8653 - 7454, 195 = 1198, 81 kN$$

Ovviamente la risultante degli sforzi assiali nella soletta risulta essere di trazione: infatti la soletta soggetta a ritiro vorrebbe accorciarsi ma l'anima glielo impedisce parzialmente. Dunque la soletta risulta essere tesa, mentre l'anima compressa; come confermato dai risultati estratti dai modelli tali risultanti devono essere uguali in modulo affinché il sistema sia equilibrato.

Figura 182 - Stato tensionale complessivo in corrispondenza della sezione di mezzeria.

Si giustifica quindi il fatto che la risultante delle tensioni normali e la risultante delle tensioni tangenziali sulla medesima giacitura devono coincidere; risultano invece diverse le distribuzioni rispettivamente delle tensioni normali che presentano un massimo in mezzeria e delle tensioni tangenziali che presentano il valore massimo alle estremità.

Si osserva che tutti gli stati tensionali rappresentano solo compressioni, tranne che per il primo nodo di estremità, in cui si ha anche trazione.

4.8.2 Schema di vincolamento iperstatico (esternamente)

4.8.2.1 Modello analitico

Figura 183 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'anima e la soletta di calcestruzzo nello schema strutturale iperstatico (esternamente).

Metodo dell'equilibrio:

• Fase 1: si applicano dei vincoli ausiliari alla sola soletta di calcestruzzo, la quale volendosi contrarre per effetto del ritiro risulta così tesa per la presenza dei vincoli;

Figura 184 - Schema di calcolo di prima fase e diagramma delle tensioni corrispondenti.

• Fase 2: si calcolano gli effetti isostatici considerando la sollecitazione assiale ricavata in prima fase, applicandola cambiata di segno all'intera trave;

Figura 185 - Schema di calcolo di seconda fase e diagramma delle tensioni corrispondenti.

• Fase 3: si calcolano gli effetti iperstatici conseguenti alla deformazione impedita dagli appoggi, nei quali si genera un sistema autoequilibrato di reazioni vincolari;

Figura 186 - Schema di calcolo di terza fase.

Per ottenere le sollecitazioni complessive si devono sommare i risultati ottenuti nelle tre fasi per la soletta, mentre i risultati ottenuti solo nelle ultime due fasi per l'anima.

Nel caso di schema iperstatico (in particolare con trave su più appoggi) si deve prestare attenzione alle sollecitazioni che derivano dal calcolo in seconda fase. Infatti si possono avere inversioni di segno del momento flettente che comportano trazioni nella soletta; si devono quindi predisporre apposite armature in soletta di presidio a tali trazioni in corrispondenza degli appoggi intermedi.

Figura 187 - Diagramma del momento flettente in uno schema iperstatico a tre appoggi.

4.8.2.2 Modello numerico di raffronto

Valutazione delle sollecitazioni

Figura 188 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Figura 189 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Figura 190 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Calcolo analitico della risultante sulla sezione:

$$N_{tot} = \frac{(C_{sup} + C_{inf}) * h_{anima}}{2} = \frac{1}{2} \frac{(-3291,75 - 4369,66) * 1,9}{2} = -3639,17 \, kN$$

Per verificare la risultante delle tensioni che si sviluppano nell'anima a causa della soletta ad essa connessa soggetta ad accorciamento per effetto del ritiro, si è definita una sezione di controllo in corrispondenza della sezione di mezzeria.

Section Cut Forces - Analysis										
File View Format-Filter-Sort Select Options										
Units: /	Units: As Noted Section Cut Forces - Analysis									
	<u>уч</u>									
	SectionCut Text	OutputCase Text	CaseType Text	F1	F2 KN	F3 KN	M1 KN-m	M2 KN-m	M3 KN-m	
	ANIMA delta T	Temperatura	LinStatic	3639,436) 0	0,0008878	0	130,4217		
	Fase 2 - anima	Temperatura	LinStatic	-1198,805	0	-0,00002353	0	-1105,1563	d	
	Fase 2 - soletta	Temperatura	LinStatic	-7454,195	00000002194	0,00002353	00000001819	-43,6982	000000001501	
	Fase 3 - anima	Temperatura	LinStatic	-2525,915	0	-0,0008253	0	1278,9604	d	
	Fase 3 - soletta	Temperatura	LinStatic	2525 989	00000008299	-0,0009208	00000003411	51,8688	-5,684E-13	
	SOLETTA delta T	Temperatura	LinStatic	3639,436	00000001728	-0,0008878	000000001194	6,414	-5,684E-13	

Figura 191 - Risultanti ricavate tramite le Section cut in corrispondenza della sezione di mezzeria.

Si osserva che le risultanti degli sforzi di anima e soletta risultano di uguale modulo e opposte di segno, rispettando così l'equilibrio; infatti la soletta vorrebbe accorciarsi perché soggetta a ritiro ma l'anima si oppone a tale accorciamento, quindi la soletta risulta tesa mentre l'anima compressa.

Figura 192 - Andamento delle tensioni normali di trazione nella soletta.

Figura 193 - Andamento della risultante degli sforzi normali di trazione nella soletta.

Tabella 46 - Risultante dello sforzo assiale nella soletta in corrispondenza della sezione di mezzeria.

S11 _{tot} soletta	2,426	[MPa]
A _{c,soletta}	$1,50*10^{6}$	$[mm^2]$
N _{risultante,soletta} =N _{max,soletta}	3639,43	[kN]

Figura 194 - Andamento delle tensioni normali di compressione nell'anima.

Figura 195 - Andamento della risultante degli sforzi normali di compressione nell'anima.

Tabella 47 - Risultante dello sforzo assiale nell'anima in corrispondenza della sezione di mezzeria.

S11 _{tot} anima	-3,836	[MPa]
$A_{c,anima}$	0,95*10 ⁶	$[mm^2]$
N _{risultante,anima} =N _{max,anima}	-3644,78	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante tramite il modello analitico, che risulta:

$$\begin{split} N_{aderenza,max} &= \frac{\varepsilon_{cs}}{\left(\frac{1}{E_{c,a}A_{c,a}} + \frac{1}{E_{c,sol}A_{c,sol}}\right)} = \\ &= \frac{-1,59 * 10^{-4}}{\left(\frac{1}{37278 * 950000} + \frac{1}{36283 * 1500000}\right)} = -3411285 \, N \end{split}$$

Dunque il calcolo manuale sottostima la risultante (di circa un 6%).

In tale equazione si è assunta la riduzione del coefficiente numerico nel termine relativo deformazione della soletta perché in questo caso la diversità tra i moduli elastici dei due materiali costituenti l'elemento lo giustifica:

$$\chi_{sol} = \chi_a$$

$$\frac{6N}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2} \Rightarrow \frac{cN}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2} \Rightarrow c = 6\frac{E_{sol}}{E_a}\frac{b_{sol}}{b_a}\frac{h_{sol}^2}{h_a^2} = 6\frac{36283}{37278}\frac{5000}{500}\frac{300^2}{1900^2} = 1,46$$

In questo caso si è ridotto anche il coefficiente numerico nel termine relativo deformazione dell'anima in quanto lo schema strutturale iperstatico limite l'inflessione dell'anima stessa.

Metodo dell'equilibrio

• Fase 1:

Figura 196 - Reazione di incastro perfetto in corrispondenza dei vincoli ausiliari ottenuta con un modello a elemento di tipo FRAME.

Si può ottenere lo stesso risultato anche analiticamente:

$$N_{cs} = \varepsilon_{cs} * E_{cm} * A_{c,soletta} = -1,59 * 10^{-4} * 36283 * 1500000 = 8653 kN$$

• Fase 2:

si applica lo sforzo di trazione ricavato in prima fase come sforzo di compressione nel baricentro della soletta, considerando la trave composta nello schema isostatico;

Figura 197 - Diagramma delle tensioni normali in direzione longitudinale per la seconda fase.

Figura 198 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Figura 199 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Calcolo analitico della risultante sulla sezione:

$$C = \frac{-4,935 * 1277}{2} = -3151,53 \ kN$$
$$T = \frac{2,408 * 623}{2} = 750,10 \ kN$$
$$N_{tot} = \frac{(C+T)}{2} = \frac{(-3151,53 + 750,10)}{2} = -1200,71 \ kN$$

• Fase 3:

si applica il sistema autoequilibrato di reazioni vincolari alla trave composta;

Figura 200 - Diagramma delle tensioni normali in direzione longitudinale per la terza fase.

Figura 201 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Figura 202 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Calcolo analitico della risultante sulla sezione:

$$C = \frac{-7,015 * 1529}{2} = -5363,04 \ kN$$
$$T = \frac{1,701 * 371}{2} = 315,71 \ kN$$
$$N_{tot} = \frac{(C+T)}{2} = \frac{(-5363,04 + 315,71)}{2} = -2523,66 \ kN$$

Si sottolinea che per conoscere le reazioni vincolari che producono gli effetti iperstatici da applicare nella terza fase di calcolo si deve eseguire un passaggio intermedio tra la seconda e la terza fase in cui si applica lo sforzo di compressione alla sezione composta considerata con il vincolamento effettivo iperstatico.

Section Cut Forces - Analysis									
File View Format-Filter-Sort Select Options									
Units	Units: As Noted Section Cut Forces - Analysis								
					,				
	SectionCut	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
	ANIMA delta T	Temperatura	LinStatic	3639,436	0	0,0008878	0	130,4217	0
	Fase 2 - anima	Temperatura	LinStatic	-1198,805	0	-0,00002353	0	-1105,1563	0
	Fase 2 - soletta	Temperatura	LinStatic	-7454,195	000000002194	0,00002353	000000001819	-43,6982	000000001501
	Fase 3 - anima	Temperatura	LinStatic	-2525,915	0	-0,0008253	0	1278,9604	0
	Fase 3 - soletta	Temperatura	LinStatic	2525,989	000000008299	-0,0009208	00000003411	51,8688	-5,684E-13
	SOLETTA delta T	Temperatura	LinStatic	3639,436	000000001728	-0,0008878	000000001194	6,414	-5,684E-13

Figura 203 - Risultanti per anima e soletta per le varie fasi di calcoli ottenuti tramite la definizione di Section cut.

 $N_{tot,anima} = N_{II fase,anima} + N_{III fase,anima} =$ = -1198,805 - 2525,915 = -3724,72 kN

 $N_{tot,soletta} = N_{I\,fase,soletta} + N_{II\,fase,soletta} + N_{III\,fase,soletta}$ = 8653 - 7454,195 + 2525,989 = 3724,794 kN

Figura 204 - Stato tensionale complessivo in corrispondenza della sezione di mezzeria.

4.8.3 Schema di vincolamento iperstatico (esternamente) nello stato fessurato

4.8.3.1 Modello analitico

Figura 205 - Stato fessurato per lo schema strutturale iperstatico.

Figura 206 - Geometria dell'elemento considerato.

Dati noti:

- f_{ck} ;
- f_{yk} ;
- RH;
- t;

•
$$t_s$$
;
• $h_0 = \frac{2*A_{c,1}}{u_1} = \frac{2*(a_1*b_1)}{a_1+2b_1+(a_1-a_2)}$;
• $y_{G\infty} = \frac{A_c*y_{G,c}+A_s*y_{G,s}}{A_c+A_s} = \frac{(a_1*b_1)*y_{G,c}+(2(a_2*b_2)+(a_3*b_3))*y_{G,s}}{(a_1*b_1)+(2(a_2*b_2)+(a_3*b_3))}$;

- Ipotesi: $f_{ck,sol} < f_{ck,a}$;
- Ipotesi: presenza di microfessure in mezzeria con conseguente formazione di lesioni.

Tabella 48 - Tensioni e deformazioni, sollecitazioni e spostamenti per l'elemento a T costituito da anima in acciaio e soletta di calcestruzzo negli schemi strutturali considerati.

		Tensioni/Sollecitazioni	Deformazioni/Spostamenti
Isostatio (estername	20 ente)	$\sigma_{c,sol} = \frac{N_{sol}}{A_{c,sol}} < f_{ct,sol}$ $\sigma_{s,a} = \frac{N_a}{A_{s,a}} < f_{yd,a}$	$\varepsilon_{c,sol} = \frac{\sigma_{c1,sol}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c} = \varepsilon_{c1}$ $\varepsilon_{s,a} = \frac{\sigma_{c1,a}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c} = \varepsilon_{c1}$
		$N_{sol} = \varepsilon_{cs,sol} * E_{c,sol} * A_{c,sol} = 0$ $N_a = \varepsilon_{s,a} * E_{s,a} * A_{s,a} = 0$	$\Delta l_{c,sol} = \varepsilon_{cs,sol} * l$ $\Delta l_{s,a} = \varepsilon_{s,a} * l$
	non	$\sigma_{c1,sol} = \frac{N_{sol}}{A_{c,sol}} < f_{ct,sol}$ $\sigma_{s,a} = \frac{N_a}{A_{s,a}} < f_{yd,a}$	$\varepsilon_{c1,sol} = \frac{\sigma_{c1,sol}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c}$ $= \varepsilon_{c1}$ $\varepsilon_{s,a} = \frac{\sigma_{c1,a}}{E_c} < \varepsilon_{cr} = \frac{f_{ctm}}{E_c} = \varepsilon_{c1}$
		$\begin{split} N_{sol} &= \varepsilon_{cs,sol} * E_{c,sol} * A_{c,sol} < \\ &< N_{cr,sol} = f_{ct,sol} * A_{c,sol} \\ N_a &= \varepsilon_{s,a} * E_{s,a} * A_{s,a} < \\ &< N_{ult,a} = f_{yd,a} * A_{s,a} \end{split}$	$\Delta l_{c,sol} = 0$ $\Delta l_{s,a} = 0$
Iperstatico (esternamente)		$\sigma_{c2,sol} = \frac{N_{sol}}{A_{c,sol}} = 0$ $\sigma_{s2,a} = \frac{N_a}{A_{s,a}} < f_{yd,a}$	$\varepsilon_{c2,sol} = 0$ $\varepsilon_{s2,a} = \frac{N_a}{E_{s,a}A_{s,a}}$
	fessurato	$N_{sol} = \varepsilon_{cs,sol} * E_{c,sol} * A_{c,sol} =$ $= N_{cr,sol} = f_{ct,sol} * A_{c,sol}$ $N_a = \varepsilon_{s,a} * E_{s,a} * A_{s,a} <$ $< N_{ult,a} = f_{yd,a} * A_{s,a}$	$\Delta l_{c,sol} = 0$ $\Delta l_{s,a} = 0$

Dove:

$$\varepsilon_{c1} \cong 0,1\%;$$

$$f_{ct,sol} = \frac{N_{cr,sol}}{A_{c,sol}};$$

$$f_{ct,a} = \frac{N_{cr,a}}{A_{c,a}};$$

$$A_{c,sol} = a_1 * b_1;$$

$$A_{c,a} = a_2 * b_2;$$

$$f_{ctm} = 0,30 * f_{ck}^{\frac{2}{3}}.$$

4.9.1 Schema di vincolamento isostatico (esternamente)

4.9.1.1 Modello analitico

Figura 207 - Elemento a sezione a T costituito da anima in acciaio e soletta di calcestruzzo nello schema strutturale isostatico (esternamente).

Per calcolare gli effetti del ritiro in travi a sezione mista esistono vari metodi che tengono conto in modo diverso e con un differente grado di accuratezza, della collaborazione tra i due elementi costituenti la trave (anima e soletta), considerando che solo la soletta in calcestruzzo è soggetta a ritiro.

4.9.1.2 Modello numerico di raffronto

La trave a T che si è considera è costituita da due differenti materiali, rispettivamente un calcestruzzo di classe C45/55 per la soletta e acciaio per l'anima della trave; l'azione del ritiro si considera ovviamente agente solo sulla soletta.

La geometria considerata è la seguente:

Figura 208 - Geometria dell'elemento considerato.

Calcolo della deformazione da ritiro agente sulla soletta:

$$f_{ck} = 45 MPa$$

$$E_{cm} = 36283 MPa$$

$$h_0 = \frac{2A_c}{u} = \frac{2 * (5 * 0.3)}{2 * (5 + 0.3)} = 0,283 m = 283 mm$$

da cui risultano:

$$\varepsilon_{c0} = -0,2275 \%$$

$$k_{h} = 0,77$$

$$\varepsilon_{cd,\infty} = \varepsilon_{c0} * k_{h} = -0,2275 * 10^{-3} * 0,77 = -0,000159$$

$$\beta_{ds} \cong 1$$

$$\varepsilon_{cs} = \varepsilon_{cd,\infty} * \beta_{ds} = -0,000159 * 1 = -0,000159 = -1,59 * 10^{-4}$$

$$\Delta T = \frac{\varepsilon_{cs}}{\alpha} = \frac{-0,000159}{10 * 10^{-6}} = -15,9 °C$$

Valutazione degli spostamenti

Figura 209 - Spostamenti in sommità e alla base dell'anima ricavati dal modello di elementi shell.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare lo spostamento tramite il modello analitico, che risulta:

$$X = \frac{\varepsilon_{cs}}{\left(\frac{4}{E_c A_{c,a}} + \frac{1}{E_c A_{c,sol}}\right)} = \frac{-1,59 * 10^{-4}}{\left(\frac{4}{210000 * 950000} + \frac{1}{36283 * 1500000}\right)} = -4138469,77 \ N$$

$$\Delta l_{sommit} = -\frac{X * l}{E_s A_{s,a}} = -\frac{4138469 * 50000}{210000 * 950000} = -1,037 mm =$$

260

 $= -1,037 * 10^{-3}m = -0,001037 m$

Dunque con buona approssimazione lo spostamento coincide tra calcolo con il modello analitico e modello numerico.

Figura 210 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Valutazione delle sollecitazioni

Figura 211 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Figura 212 - Andamento delle tensioni in corrispondenza della sezione di mezzeria e rispettive risultanti.

Calcolo analitico della tensioni:

$$\sigma_{sup} = \frac{N}{A_{ci}} + \frac{N * e}{W_{ci}} = \left(\frac{-8653}{1,1342} + \frac{-8653 * 0,791}{0,550}\right) * 10^{-3} = -20,073 \ MPa$$

$$\sigma_{inf} = \frac{N}{A_{ci}} - \frac{N * e}{W_{ci}} = \left(\frac{-8653}{1,1342} - \frac{-8653 * 0,791}{0,392}\right) * 10^{-3} = 9,807 \ MPa$$

Calcolo analitico della risultante sulla sezione:

$$C = \frac{-17292,3 * 1,264}{2} = -10928,73 \ kN$$
$$T = \frac{8707,36 * 0,636}{2} = 2768,94 \ kN$$
$$N_{tot} = \frac{(C+T)}{2} = \frac{(-10928,73 + 2768,94)}{2} = -4079,89 \ kN$$

Per verificare la risultante delle tensioni che si sviluppano nell'anima a causa della soletta ad essa connessa soggetta ad accorciamento per effetto del ritiro, si è definita una sezione di controllo in corrispondenza della sezione di mezzeria.

	Section Cut Forces - Analysis								
File	File View Format-Filter-Sort Select Options								
Units	: As Noted				Section (Cut Forces - Ana	alysis		•
					,				
	SectionCut Text	OutputCase Text	CaseType Text	F1 KN	F2 KN	F3 KN	M1 KN-m	M2 KN-m	M 3 KN-m
	delta T	Temperatura	LinStatic	4062,128	> 0	-0,00001965	0	-3865,7382	C
	N+M	Temperatura	LinStatic	-4061,908	0	-0,012	0	-3865,5312	d
	Nsoletta	Temperatura	LinStatic	-4061,905	0	-0,0002597	0	-3865,5265	d
	SOLETTA delta T	Temperatura	LinStatic	4062,128	00000001364	0,00001966	000000003092	-27,1344	000000001398
	SOLETTA N+M	Temperatura	LinStatic	-4591,092	000000001154	0,012	00000003593	-27,1308	00000002956
	SOLETTA Nsoletta	Temperatura	LinStatic	-4591,095	00000000756	0,0002597	00000007276	-27,1328	000000001546

Figura 213 - Risultanti ricavate tramite le Section cut in corrispondenza della sezione di mezzeria.

Si osserva che le risultanti degli sforzi di anima e soletta risultano di uguale modulo e opposte di segno, rispettando così l'equilibrio; infatti la soletta vorrebbe accorciarsi perché soggetta a ritiro ma l'anima si oppone a tale accorciamento, quindi la soletta risulta tesa mentre l'anima compressa.

Figura 214 - Andamento delle tensioni normali di trazione nella soletta.

Figura 215 - Andamento della risultante degli sforzi normali di trazione nella soletta.

Tabella 49 - Risultante dello sforzo assiale nella soletta in corrispondenza della sezione di mezzeria.

S11 _{tot} soletta	2,708	[MPa]
A _{c,soletta}	$1,50*10^{6}$	$[mm^2]$
Nrisultante, soletta = Nmax, soletta	4062,12	[kN]

Figura 216 - Andamento delle tensioni normali di compressione nell'anima.

Figura 217 - Andamento della risultante degli sforzi normali di compressione nell'anima.

Tabella 50 - Risultante dello sforzo assiale nell'anima in corrispondenza della sezione di mezzeria.

S11 _{tot} anima	-4,141	[MPa]
A _{c,anima}	$0,95*10^{6}$	$[mm^2]$
N _{risultante,anima} =N _{max,anima}	-3934,81	[kN]

Candidato: Francesco Cavallini

Si precisa che ai fini dei risultati ottenuti con il modello si è verificato che posizionare i vincoli esterni alle estremità in corrispondenza dell'asse baricentrico della sezione composta o all'intradosso dell'anima non comporta alcuna differenza nei risultati che si ottengono.

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante tramite il modello analitico, che risulta:

$$N_{aderenza,max} = \frac{\varepsilon_{cs}}{\left(\frac{4}{E_s A_{s,a}} + \frac{1}{E_c A_{c,sol}}\right)} = \frac{-1,59 * 10^{-4}}{\left(\frac{4}{210000 * 950000} + \frac{1}{36283 * 1500000}\right)} = -4138469,77 N$$

Dunque il calcolo con il modello analitico sovrastima la risultante ottenuta con il modello numerico di circa un 5%.

In tale equazione si è assunta la riduzione del coefficiente numerico nel termine relativo deformazione della soletta perché in questo caso la diversità tra i moduli elastici dei due materiali costituenti l'elemento lo giustifica:

$$\chi_{sol} = \chi_a$$

$$\frac{6N}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2} \Rightarrow \frac{cN}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2} \Rightarrow c = 6\frac{E_{sol}}{E_a}\frac{b_{sol}}{b_a}\frac{h_{sol}^2}{h_a^2} = 6\frac{36283}{210000}\frac{500}{500}\frac{300^2}{1900^2} = 0,26$$

Metodo dell'equilibrio

• Fase 1:

Joint Reactions									
51		Eller Cost Co							
File V	iew Forma	t-Filter-Soft Se	lect Options						
Units: A	s Noted				Joint Re	actions			-
					,				
	Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
	T .	Text	Text		KN	KN	KN-m	KN-m	KN-m
	lext	1.011							-
•	64	Temperatura	LinStatic	-8653,496	0	0	0	0	0

Figura 218 - Reazione di incastro perfetto in corrispondenza dei vincoli ausiliari ottenuta con un modello a elemento di tipo FRAME.

Si può ottenere lo stesso risultato anche analiticamente:

$$N_{cs} = \varepsilon_{cs} * E_{cm} * A_{c,soletta} = -1,59 * 10^{-4} * 36283 * 1500000 = 8653 kN$$

Si può anche ragionare modellando la soletta con elementi di tipo SHELL:

Figura 219 - Reazione di incastro perfetto in corrispondenza dei vincoli ausiliari ottenuta con un modello a elemento di tipo SHELL.

In riferimento alla modellazione con elementi di tipo SHELL per la sola soletta per questa prima fase valgono gli stessi ragionamenti fatti in precedenza per il caso di elemento con sezione a T con soletta e anima di due calcestruzzi diversi.

• Fase 2:

E' possibile modellare la seconda fase in due modi equivalenti:

- applicare lo sforzo di trazione ricavato in prima fase come sforzo di compressione nel baricentro della soletta;
- applicare lo sforzo di trazione ricavato in prima fase come sforzo di compressione nel baricentro della sezione composta assieme al relativo momento di trasporto;

Figura 220 - Modello in cui si è applicato lo sforzo di compressione nel baricentro della soletta.

Figura 221 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Figura 222 - Andamento delle tensioni in corrispondenza della sezione di mezzeria e rispettive risultanti.

Calcolo analitico della risultante sulla sezione:

$$C = \frac{-17291,39 * 1,264}{2} = -10928,16 \, kN$$
$$T = \frac{8706,88 * 0,636}{2} = 2768,88 \, kN$$
$$N_{tot} = \frac{(C+T)}{2} = \frac{(-10928,16+2768,88)}{2} = -4079,64 \, kN$$

Figura 223 - Modello in cui si è applicato lo sforzo di compressione nel baricentro della sezione composta assieme al relativo momento di trasporto.

Figura 224 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Figura 225 - Andamento delle tensioni in corrispondenza della sezione di mezzeria e rispettive risultanti.

Calcolo analitico della risultante sulla sezione:

$$C = \frac{-17291,29 * 1,264}{2} = -10928,09 \ kN$$
$$T = \frac{8706,74 * 0,636}{2} = 2768,74 \ kN$$
$$N_{tot} = \frac{(C+T)}{2} = \frac{(-10928,09 + 2768,74)}{2} = -4079,67kN$$

Si può poi verificare, tramite la definizione delle Section cut , che la risultante delle sollecitazioni assiali in corrispondenza della sezione di mezzeria è la medesima per i due modelli.

	Section Cut Forces - Analysis								
File	File View Format-Filter-Sort Select Options								
Units:	Units: As Noted Section Cut Forces - Analysis								
					,				
	SectionCut	OutputCase Text	CaseType Text	F1 KN	F2 KN	F3 KN	M1 KN-m	M2 KN-m	M3 KN-m
	delta T	Temperatura	LinStatic	-4062,128	0	-0,00001965	0	-3865,7382	0
	N+M	Temperatura	LinStatic	-4061,908	0	-0,012	0	-3865,5312	0
	Nsoletta	Temperatura	LinStatic	-4061,905	0	-0,0002597	0	-3865,5265	0
	SOLETTA delta T	Temperatura	LinStatic	4062,128	00000001364	0,00001966	000000003092	-27,1344	00000001398
	SOLETTA N+M	Temperatura	LinStatic	-4591.092	000000001154	0,012	00000003593	-27,1308	00000002956
	SOLETTA Nsoletta	Temperatura	LinStatic	-4591,095	00000000756	0,0002597	00000007276	-27,1328	00000001546

Figura 226 - Risultanti ricavate tramite le Section cut in corrispondenza della sezione di mezzeria.

Si osserva che per l'anima il valore della risultante ricavato nella seconda fase è già quello effettivo, mentre per la soletta bisogna sommare le risultanti di prima e seconda fase per ottenere la risultante effettiva:

$$N_{soletta} = N_{soletta, I fase} + N_{soletta, II fase} = 8653 - 4591,095 = 4061,90 \, kN$$

Ovviamente la risultante degli sforzi assiali nella soletta risulta essere di trazione: infatti la soletta soggetta a ritiro vorrebbe accorciarsi ma l'anima glielo impedisce parzialmente. Dunque la soletta risulta essere tesa, mentre l'anima compressa; come confermato dai risultati estratti dai modelli tali risultanti devono essere uguali in modulo affinché il sistema sia equilibrato.

Figura 227 - Stato tensionale complessivo in corrispondenza della sezione di mezzeria.

Si giustifica quindi il fatto che la risultante delle tensioni normali e la risultante delle tensioni tangenziali sulla medesima giacitura devono coincidere; risultano invece diverse le distribuzioni rispettivamente delle tensioni normali che presentano un massimo in mezzeria e delle tensioni tangenziali che presentano il valore massimo alle estremità.

Si osserva che tutti gli stati tensionali rappresentano solo compressioni, tranne che per il primo nodo di estremità, in cui si ha anche trazione.

4.9.2 Schema di vincolamento iperstatico (esternamente)

4.9.2.1 Modello analitico

Figura 228 - Diagrammi delle tensioni e delle conseguenti sollecitazioni per l'anima di calcestruzzo e la soletta di acciaio nello schema strutturale iperstatico (esternamente).

4.9.2.2 Modello numerico di raffronto

Valutazione delle sollecitazioni

Figura 229 - Tensioni normali nella direzione dell'asse della trave (S11 in SAP2000).

Figura 230 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Figura 231 - Andamento delle tensioni in corrispondenza della sezione di mezzeria e rispettive risultanti.

Calcolo analitico della risultante sulla sezione:

$$N_{tot} = \frac{(C_{sup} + C_{inf}) * h_{anima}}{2} = \frac{1}{2} \frac{(-5614, 18 - 9380, 74) * 1,9}{2} =$$
$$= -7122,59 \ kN$$

Per verificare la risultante delle tensioni che si sviluppano nell'anima a causa della soletta ad essa connessa soggetta ad accorciamento per effetto del ritiro, si è definita una sezione di controllo in corrispondenza della sezione di mezzeria.

_	Section Cut Forces - Analysis									
	File View Format-Filter-Sort Select Options									
	Units: As Noted Section Cut Forces - Analysis									
						,				
		SectionCut Text	OutputCase Text	CaseType Text	F1 KN	F2 KN	F3 KN	M1 KN-m	M2 KN-m	M3 KN-m
	•	ANIMA delta T	Temperatura	LinStatic	7124,679) 0	0,0009947	0	495,7812	0
		Fase 2 - anima	Temperatura	LinStatic	-4061,905	0	-0,0002597	0	-3865,5265	0
		Fase 2 - soletta	Temperatura	LinStatic	-4591,095	000000001057	0,0002597	000000001078	-27,1328	000000007503
		Fase 3 - anima	Temperatura	LinStatic	-3120,169	0	-0,0001451	0	4445,4755	0
		Fase 3 - soletta	Temperatura	LinStatic	3120,969	00000005502	-0,001034	00000002956	31,6581	00000003325
		SOLETTA delta T	Temperatura	LinStatic	7124,679	000000005173	-0,0009947	00000002672	3,9312	00000004633

Figura 232 - Risultanti ricavate tramite le Section cut in corrispondenza della sezione di mezzeria.

Si osserva che le risultanti degli sforzi di anima e soletta risultano di uguale modulo e opposte di segno, rispettando così l'equilibrio; infatti la soletta vorrebbe accorciarsi perché soggetta a ritiro ma l'anima si oppone a tale accorciamento, quindi la soletta risulta tesa mentre l'anima compressa.

Figura 233 - Andamento delle tensioni normali di trazione nella soletta.

Figura 234 - Andamento della risultante degli sforzi normali di trazione nella soletta.

Tabella 51 - Risultante dello sforzo assiale nella soletta in corrispondenza della sezione di mezzeria.

S11 _{tot} soletta	4,749	[MPa]
$A_{c,soletta}$	$1,50*10^{6}$	$[mm^2]$
N _{risultante,soletta} =N _{max,soletta}	7124,68	[kN]

Figura 235 - Andamento delle tensioni normali di compressione nell'anima.

Figura 236 - Andamento della risultante degli sforzi normali di compressione nell'anima.

Tabella 52 - Risultante dello sforzo assiale nell'anima in corrispondenza della sezione di mezzeria.

S11 _{tot} anima	-7,519	[MPa]
$A_{c,anima}$	0,95*10 ⁶	$[mm^2]$
N _{risultante,anima} =N _{max,anima}	-7143,12	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante tramite il modello analitico, che risulta:

$$N_{aderenza,max} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_{s,a}} + \frac{1}{E_c A_{c,sol}}\right)} = \frac{-1,59 * 10^{-4}}{\left(\frac{1}{210000 * 950000} + \frac{1}{36283 * 1500000}\right)} = -6791969 N$$

Dunque il calcolo con il modello analitico sovrastima la risultante ottenuta con il modello numerico di circa un 5%.

In tale equazione si è assunta la riduzione del coefficiente numerico nel termine relativo deformazione della soletta perché in questo caso la diversità tra i moduli elastici dei due materiali costituenti l'elemento lo giustifica:

$$\chi_{sol} = \chi_a$$

$$\frac{6N}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2} \Rightarrow \frac{cN}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2} \Rightarrow c = 6\frac{E_{sol}}{E_a}\frac{b_{sol}}{b_a}\frac{h_{sol}^2}{h_a^2} = 6\frac{36283}{210000}\frac{500}{500}\frac{300^2}{1900^2} = 0,26$$

In questo caso si è ridotto anche il coefficiente numerico nel termine relativo deformazione dell'anima in quanto lo schema strutturale iperstatico limite l'inflessione dell'anima stessa.

Metodo dell'equilibrio

• Fase 1:

				Joint R	eactions					
File V	File View Format-Filter-Sort Select Options									
Units: A	s Noted				Joint Re	actions			-	
					J					
	Joint	OutputCase	CaseType	F1	F2	F3	M1	M2	M3	
	Text	Text	Text	- KAU	KN	KN	KN-m	KN-m	KN-m	
	64	Temperatura	LinStatic	-8653,496	0	0	0	0	0	
				-						

Figura 237 - Reazione di incastro perfetto in corrispondenza dei vincoli ausiliari ottenuta con un modello a elemento di tipo FRAME.

Si può ottenere lo stesso risultato anche analiticamente:

 $N_{cs} = \varepsilon_{cs} * E_{cm} * A_{c,soletta} = -1,59 * 10^{-4} * 36283 * 1500000 = 8653 \ kN$

• Fase 2:

si applica lo sforzo di trazione ricavato in prima fase come sforzo di compressione nel baricentro della soletta, considerando la trave composta nello schema isostatico;

Candidato: Francesco Cavallini

Figura 238 - Diagramma delle tensioni normali in direzione longitudinale per la seconda fase.

Figura 239 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Figura 240 - Andamento delle tensioni in corrispondenza della sezione di mezzeria e rispettive risultanti.

Calcolo analitico della risultante sulla sezione:

$$C = \frac{-8,645 * 1264}{2} = -5464,08 \ kN$$
$$T = \frac{4,353 * 636}{2} = 2768,79 \ kN$$
$$N_{tot} = \frac{(C+T)}{2} = \frac{(-5464,08 + 2768,79)}{2} = -4116,43 \ kN$$

• Fase 3:

si applica il sistema autoequilibrato di reazioni vincolari alla trave composta;

Figura 241 - Diagramma delle tensioni normali in direzione longitudinale per la terza fase.

Figura 242 - Diagramma delle tensioni normali in corrispondenza della sezione di mezzeria.

Figura 243 - Andamento delle tensioni in corrispondenza della sezione di mezzeria e rispettive risultanti.

Calcolo analitico della risultante sulla sezione:

$$C = \frac{-18433,10 * 1,155}{2} = -10645,11 \, kN$$
$$T = \frac{11900,92 * 0,745}{2} = 4433,09 \, kN$$
$$N_{tot} = \frac{(C+T)}{2} = \frac{(-10645,11+4433,09)}{2} = -3106,01 \, kN$$

Si sottolinea che per conoscere le reazioni vincolari che producono gli effetti iperstatici da applicare nella terza fase di calcolo si deve eseguire un passaggio intermedio tra la seconda e la terza fase in cui si applica lo sforzo di compressione alla sezione composta considerata con il vincolamento effettivo iperstatico.

Candidato: Francesco Cavallini

	Section Cut Forces - Analysis								
File	File View Format-Filter-Sort Select Options								
Units	Units: As Noted Section Cut Forces - Analysis								
	SectionCut Text	OutputCase Text	CaseType Text	F1	F2 KN	F3 KN	M1 KN-m	M2 KN-m	M3 KN-m
	ANIMA delta T	Temperatura	LinStatic	7124,679	> 0	0,0009947	0	495,7812	0
	Fase 2 - anima	Temperatura	LinStatic	-4061,905	0	-0,0002597	0	-3865,5265	0
	Fase 2 - soletta	Temperatura	LinStatic	-4591,095	000000001057	0,0002597	000000001078	-27,1328	00000007503
	Fase 3 - anima	Temperatura	LinStatic	-3120,169	0	-0,0001451	0	4445,4755	0
	Fase 3 - soletta	Temperatura	LinStatic	3120,969	000000005502	-0,001034	00000002956	31,6581	00000003325
	SOLETTA delta T	Temperatura	LinStatic	7124,679	000000005173	-0,0009947	000000002672	3,9312	000000004633

Figura 244 - Risultanti per anima e soletta per le varie fasi di calcoli ottenuti tramite la definizione di Section cut.

 $N_{tot,anima} = N_{II fase,anima} + N_{III fase,anima} =$

 $= -4061,905 - 3120,169 = -7182,074 \ kN$

 $N_{tot,soletta} = N_{I\,fase,soletta} + N_{II\,fase,soletta} + N_{III\,fase,soletta} =$ = 8653 - 4591,095 + 3120,969 = 7182,872 kN

Figura 245 – Stato tensionale complessivo in corrispondenza della sezione di mezzeria.

4.10 Sintesi dei casi studiati

Geometria dell'elemento	Schema strutturale	Formula semplificata	Ordine di grandezza
Solo calcestruzzo	isostatico (esternamente)	$N_{cs} = 0$	/
	iperstatico (esternamente)	$N_{vinc} = \varepsilon_{cs} * E_{cm} * A_c$	$N_{vinc} = 2411 kN$
Calcestruzzo con armatura centrata	isostatico (esternamente)	$Ip. (1)$ $N_{aderenza,max} = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_{ci}}\right)$ $Ip. (2)$ $N_{aderenza,max} =$ $= \varepsilon_{cs} * 0.89 * \left(\frac{E_s A_c A_s}{A_{ci}}\right)$	$Ip. (1)$ $N_{aderenza,max}$ $= 446 kN$ $Ip. (2)$ $N_{aderenza,max}$ $= 397 kN$
	iperstatico (esternamente)	$Ip. (1)$ $N_{vinc,cls} = \left[\varepsilon_{cs} * l - \frac{N_{aderenza,max} * l}{E_c A_c}\right]$ $* \frac{E_c A_c}{l} = \\= \varepsilon_{cs} E_c A_c - N_{aderenza,max}$ $N_{vinc,barra} = \left[\frac{N_{max} * l}{E_s A_s}\right] * \frac{E_s A_s}{l}$ $= -N_{aderenza,max}$ $N_{vinc} = N_{vinc,cls} + N_{vinc,barra}$	$Ip. (1)$ $N_{vinc,cls}$ = 1868 kN $N_{vinc,barra}$ = -446 kN N_{vinc} = 1421 kN

Tabella 53 - Tabella riassuntiva dei risultati ottenuti per i casi studiati.

		$Ip. (2)$ $N_{vinc,cls} = \left[\varepsilon_{cs} * l - 0.89 \frac{N_{aderenza,max} * l}{E_c A_c}\right] * \frac{E_c A_c}{l} = \varepsilon_{cs} E_c A_c - 0.89 N_{aderenza,max}$ $N_{vinc,barra} = \left[0.89 \frac{N_{max} * l}{E_s A_s}\right] * \frac{E_s A_s}{l} = -0.89 N_{aderenza,max}$ $N_{vinc} = N_{vinc,cls} + N_{vinc,barra}$	$Ip. (2)$ $N_{vinc,cls}$ $= 1917 kN$ $N_{vinc,barra}$ $= -397 kN$ N_{vinc} $= 1520 kN$
Calcestruzzo con armatura eccentrica	isostatico (esternamente)	$Ip. (1)$ $N_{aderenza,max} = \varepsilon_{cs}$ $* \left[\frac{1}{\frac{1}{E_c A_c} + \frac{1}{E_s A_s} + \frac{e^2}{E_c J_c (1 + {v'}^2)^{\frac{3}{2}}}} \right]$ $Ip. (2)$ $N_{aderenza,max} = \varepsilon_{cs}$ $* \left[\frac{1}{\frac{1}{E_c A_c} + \frac{1}{E_s A_s} + \frac{e^2}{E_c J_c (1 + {v'}^2)^{\frac{3}{2}}}} \right]$	$Ip. (1)$ $N_{aderenza,max}$ $= 395 kN$ $Ip. (2)$ $N_{aderenza,max}$ $= 443 kN$
	iperstatico (esternamente)	$N_{vinc,cls} = X$ $N_{vinc,barra} = Y$ $N_{vinc} = N_{vinc,cls} + N_{vinc,barra}$	$N_{vinc,cls}$ = 1511 kN $N_{vinc,barra}$ = -312kN N_{vinc} = 1199 kN
Calcestruzzo con armatura doppiamente eccentrica	isostatico (esternamente)	$Ip. (1)$ $N_{aderenza,max} = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_{ci}}\right)$ $Ip. (2)$ $N_{aderenza,max} = \varepsilon_{cs} * 0,89$ $* \left(\frac{E_s A_c A_s}{A_{ci}}\right)$	$Ip. (1)$ $N_{aderenza,max}$ $= 733 kN$ $Ip. (2)$ $N_{aderenza,max}$ $= 653 kN$
---	-------------------------------	--	--
	iperstatico (esternamente)	$N_{vinc,cls} =$ $= \varepsilon_{cs} E_c A_c - N_{aderenza,max}$ $N_{vinc,barra} = \left[\frac{N_{max} * l}{E_s A_s}\right] * \frac{E_s A_s}{l}$ $= -N_{aderenza,max}$ $N_{vinc} = N_{vinc,cls} + N_{vinc,barra}$	$N_{vinc,cls}$ = 1485 kN $N_{vinc,barra}$ = -734kN N_{vinc} = 751 kN
Calcestruzzo con armatura tesa	labile (esternamente)	$Ip. (1)$ $N_{aderenza,max} = \begin{bmatrix} \varepsilon_{cs} + N_{s,est} \left(\frac{1}{E_s A_s} - \frac{1}{E_c A_c} \right) \end{bmatrix} \\ * \left(\frac{E_s A_c A_s}{A_{ci}} \right)$ $Ip. (2)$ $N_{aderenza,max} = \begin{bmatrix} \varepsilon_{cs} + N_{s,est} \left(\frac{1}{E_s A_s} - \frac{1}{E_c A_c} \right) \end{bmatrix} * \frac{1}{0,89} \\ * \left(\frac{E_s A_c A_s}{A_{ci}} \right)$	$Ip. (1)$ $N_{aderenza,max}$ $= 507 kN$ $Ip. (2)$ $N_{aderenza,max}$ $= 570 kN$
Sezione a T di solo calcestruzzo	isostatico (esternamente)	$N_{aderenza,max} = \\ = \frac{\varepsilon_{cs}}{\left(\frac{4}{E_{c,a}A_{c,a}} + \frac{1}{E_{c,sol}A_{c,sol}}\right)}$	N _{aderenza,max} = 1211 kN
	iperstatico (esternamente)	$N_{aderenza,max} = \\ = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_{c,a}A_{c,a}} + \frac{1}{E_{c,sol}A_{c,sol}}\right)}$	N _{aderenza,max} = 3411 kN
Sezione a T mista	isostatico (esternamente)	$N_{aderenza,max} = \\ = \frac{\varepsilon_{cs}}{\left(\frac{4}{E_s A_{s,a}} + \frac{1}{E_c A_{c,sol}}\right)}$	N _{aderenza,max} = 4138 kN
	iperstatico (esternamente)	$N_{aderenza,max} = \frac{\varepsilon_{cs}}{\left(\frac{4}{E_s A_{s,a}} + \frac{1}{E_c A_{c,sol}}\right)}$	N _{aderenza,max} = 6792 kN

Dove:

$$X = \frac{E_c J_c^2 N_{aderenza,max} - A_c (E_c^2 \varepsilon_{cs} J_c^2 + A_s e^2 (d_{Gv} + e)^2 E_s N_{aderenza,max} - (d_{Gv} + e)^2 E_c J_c N_{aderenza,max})}{2(-E_c J_c^2 + A_c d_{Gv} (A_s e^2 (d_{Gv} + e) E_s - d_{Gv} E_c J_c))}$$

Y

$$=-\frac{J_c(-A_se^2E_sN_{aderenza,max}+E_cJ_cN_{aderenza,max}+A_cd_{Gv}E_c(-A_se\varepsilon_{cs}E_s+d_{Gv}N_{aderenza,max}))}{E_cJ_c^2-A_cd_{Gv}(A_se^2(d_{Gv}+e)Es-d_{Gv}E_cJ_c)}$$

Figura 246 - Modulo elastico del calcestruzzo a breve e lungo termine.

Per tenere conto in modo semplificato della variabile tempo si può adottare il seguente legame costitutivo:

$$\sigma = E_{creep} * \varepsilon_{tot}$$

in cui:

$$\varepsilon_{tot} = \varepsilon_{ei} + \varepsilon_{creep} \cong \varepsilon_{ei} + 2\varepsilon_{ei} \cong 3\varepsilon_{ei}$$

infatti per $t = \infty$ (2-3 anni dalla messa in carico) si può assumere $\varepsilon_{creep} \cong 2\varepsilon_{ei}$.

Dunque il modulo elastico a lungo termine risulta:

$$E_{creep} = \frac{\sigma}{\varepsilon_{tot}} = \frac{\sigma}{3\varepsilon_{ei}} = \frac{E_c}{3}$$

Dal grafico appare evidente che $E_{creep} < E_c$, quindi si ha il seguente rapporto tra i coefficienti di omogeneizzazione a breve e lungo termine:

$$n_{\infty} = \frac{E_s}{E_{creep}} = 15 > n_{ist} = \frac{E_s}{E_c} = 6 \div 7$$

Dal momento che il ritiro è un'azione di lungo termine di tipo geometrico (deformazione impressa), i suoi effetti sono attenuati dal comportamento viscoso del materiale.

Gli effetti simultanei di ritiro e viscosità possono essere valutati mediante un'analisi pseudoelastica con il rapporto modulare n_{cs} :

$$n_{cs} = n_0 * (1 + 0.55 * \phi_t)$$

Per il coefficiente di viscosità $\phi_t = \phi_{28}(t, t_s)$ si assume $t_s = 1$ giorno.

Per la definizione del coefficiente di viscosità a tempo infinito il D.M.2008, in sede di progettazione, se lo stato tensionale del calcestruzzo al tempo $t_0 = j$ di messa in carico non è superiore a $0,45f_{ckj}$, propone le seguenti tabelle:

t ₀	h₀ ≤ 75 mm	$h_0 = 150$	$h_0 = 300$	$h_0 \ge 600$
3 giorni	3,5	3,2	3,0	2,8
7 giorni	2,9	2,7	2,5	2,3
15 giorni	2,6	2,4	2,2	2,1
30 giorni	2,3	2,1	1,9	1,8
≥ 60giorni	2,0	1,8	1,7	1,6

Tabella 54 - Valori di $\phi(\infty, t_0)$. Atmosfera con umidità relativa di circa il 75%.

1000100000000000000000000000000000000

t ₀	$h_0 \le 75 \text{ mm}$	$h_0 = 150$	$h_0 = 300$	$h_0 \ge 600$
3 giorni	4,5	4,0	3,6	3,3
7 giorni	3,7	3,3	3,0	2,8
15 giorni	3,3	3,0	2,7	2,5
30 giorni	2,9	2,6	2,3	2,2
≥ 60giorni	2,5	2,3	2,1	1,9

Per valori intermedi è ammessa l'interpolazione lineare.

Invece, l'Eurocodice2-1-1:2005, per la definizione del coefficiente di viscosità a tempo infinito propone l'approccio seguente:

$$\phi(t,t_0) = \phi_0 * \beta_c(t,t_0)$$

dove:

 $\phi_0 = \phi_{RH} * \beta(f_{cm}) * \beta(t_0)$ è il coefficiente nominale di viscosità; ϕ_{RH} è un coefficiente che tiene conto dell'effetto dell'umidità relativa sul coefficiente nominale di viscosità:

$$\begin{split} \phi_{RH} &= 1 + \frac{1 - RH/100}{0.1 * \sqrt[3]{h_0}} & per \ f_{cm} \leq 35 \ MPa; \\ \phi_{RH} &= 1 + \left[\frac{1 - RH/100}{0.1 * \sqrt[3]{h_0}} * \alpha_1 \right] * \alpha_2 & per \ f_{cm} > 35 \ MPa; \end{split}$$

292

RH è l'umidità relativa in percentuale;

 $\beta(f_{cm}) = \frac{16,8}{\sqrt{f_{cm}}}$ è un coefficiente che tiene conto dell'effetto della resistenza del calcestruzzo sul coefficiente nominale di viscosità;

 $f_{cm} = f_{ck} + 8$ è la resistenza media a compressione del calcestruzzo;

 $\beta(t_0) = \frac{1}{(0,1+t_0^{0,20})}$ è un coefficiente che tiene conto dell'effetto dell'età del calcestruzzo al momento dell'applicazione del carico sul coefficiente nominale di viscosità;

 $\beta_c(t, t_0) = \left[\frac{(t-t_0)}{(\beta_H + t - t_0)}\right]^{0,3}$ è un coefficiente atto a descrivere l'evoluzione della viscosità nel tempo dopo l'applicazione del carico;

t è l'età del calcestruzzo, in giorni, al momento considerato; t_0 è l'età del calcestruzzo, in giorni, al momento dell'applicazione del carico; $t-t_0$ è la durata non corretta del carico, in giorni;

 β_H è un coefficiente dipendente dall'umidità relativa (*RH*) e dalla dimensione fittizia dell'elemento (h_0):

 β_H

 $= \begin{cases} 1,5 * [1 + (0,012 * RH)^{18}] * h_0 + 250 \le 1500 \text{ per } f_cm \le 35 \\ 1,5 * [1 + (0,012 * RH)^{18}] * h_0 + 250 * \alpha_3 \le 1500 * \alpha_3 \text{ per } f_cm \le 35; \end{cases}$

 $\alpha_{1/2/3}$ sono coefficienti atti a prenderein conto l'influenza della resistenza del calcestruzzo:

$$\alpha_1 = \left[\frac{35}{f_{cm}}\right]^{0,7} \quad \alpha_2 = \left[\frac{35}{f_{cm}}\right]^{0,2} \quad \alpha_3 = \left[\frac{35}{f_{cm}}\right]^{0,5}$$

Sia nelle travi isostatiche che in quelle iperstatiche, l'analisi può essere svolta sovrapponendo i seguenti due passi:

1- valutazione della forza assiale longitudinale che impedisce completamente l'accorciamento della soletta, considerata separata dalla trave;

$$N_{cs} = \varepsilon_{cs}(t, t_s) * \frac{E_a}{n_{cs}} * A_c$$

2- analisi elastica della trave composta soggetta alla forza longitudinale N_{cs} applicata nel baricentro della soletta e considerata come forza esterna.

Questo in sostanza è uno dei metodi che si sono considerati nello studio delle travi a T. Si deve precisare che nello studio svolto in precedenza si è considerato un calcestruzzo con modulo elastico pari ad E_{cm} , ovvero $\frac{E_a}{n_0}$; in sostanza per mettere in evidenza l'effetto del solo ritiro si è considerato un calcestruzzo con una rigidezza a tempo infinito maggiore di quella che ha il calcestruzzo nella realtà a causa degli effetti viscosi. Volendo ora ricondursi allo studio di situazioni più aderenti alla realtà risulta necessario rivedere i risultati ottenuti per i casi studiati in precedenza, considerando un calcestruzzo con un modulo ridotto a lungo termine, in modo da tenere conto della contemporaneità del fenomeno della viscosità rispetto agli effetti dovuti al ritiro. Si riportano di seguito i risultati aggiornati considerando il coefficiente di omogeneizzazione a lungo termine.

Tabella 56 - Tabella aggiornata per un'analisi pseudo-elastica con rapporto modulare n_{cs} .

Geometria dell'elemento	Schema strutturale	Ordine di grandezza
Solo calcestruzzo	isostatico (esternamente)	$N_{aderenza,max} = 0$
	iperstatico (esternamente)	$N_{aderenza,max} = 804 kN$
Calcestruzzo con armatura centrata		$Ip. (1)$ $N_{aderenza,max} = 324 kN$
	isostatico (esternamente)	$Ip.(2)$ $N_{aderenza,max} = 288 kN$
		$Ip. (1)$ $N_{vinc,cls} = 803 kN$ $N_{vinc,barra} = -324 kN$ $N_{vinc} = 479 kN$
	iperstatico (esternamente)	
		$Ip. (2)$ $N_{vinc,cls} = 771 kN$ $N_{vinc,barra} = -288 kN$ $N_{vinc} = 483 kN$

Si può osservare come gli ordini di grandezza diminuiscano sensibilmente per l'effetto della viscosità.

La presenza di forti percentuali di armatura esalta le tensioni di trazione nel calcestruzzo, riducendo in minor misura quelle di compressione nell'acciaio. La viscosità attenua nel tempo il fenomeno, come avviene per le comuni azioni permanenti. Trascurando gli effetti di contemporanea interazione tra i due fenomeni, le autotensioni da ritiro possono intendersi come valori "istantanei" iniziali seguiti poi da lento rilassamento viscoso delle tensioni

Va precisato che i modelli di viscosità noti in letteratura e suggeriti dalle principali norme tecniche, sono stati tarati sulla base di sperimentazioni relative a prove di compressione i cui risultati sono raccolti in un'estesissima banca dati (RILEM, 1995).

Nel caso in cui gli stati tensionali siano di trazione, le funzioni di viscosità riportate dai codici appaiono meno attendibili, in quanto il comportamento viscoso è più accentuato di quello a compressione.

6 Richiami di viscoelasticità lineare

Nelle analisi strutturali si assume di operare in campo di viscosità lineare sotto le seguenti ipotesi:

- linearità tra la deformazione viscosa e la tensione;
- validità del principio di sovrapposizione degli effetti nel tempo.

Tali ipotesi sono valide a condizione che:

- la tensione di compressione rimanga inferiore allo 0,4*f*_{ckj};
- le deformazioni seguano un'evoluzione monotona;
- le condizioni ambientali (umidità e temperatura) non subiscano brusche variazioni.

7 I metodi algebrizzati per la stima del modulo elastico ridotto per la viscosità

Il metodo generale, che presuppone la discretizzazione dell'intervallo di calcolo (t_0,t) in *n* sottointervalli (t_i, t_{i-1}) , risulta essere piuttosto laborioso da applicare e richiede in ogni caso l'uso di programmi di calcolo studiati ad hoc. In molti problemi pratici, come ad esempio nei calcoli di routine per la verifica delle travi composte, la precisione fornita dal metodo step-by-step non è richiesta ma risulta importante avere risultati che possano essere processati velocemente con le usuali formule di verifica.

La soluzione del problema viene affrontata adottando semplici regole di quadratura per la valutazione dell'integrale di sovrapposizione. Nel caso delle strutture composte i metodi di maggior interesse sono quelli che vanno sotto il nome di metodo del modulo efficace (EM) e metodo della tensione media (MS) (Dezi et al., 1996).

7.1 Metodo del modulo efficace (EM)

Tale metodo consiste nell'approssimare l'integrale di sovrapposizione considerando la funzione di viscosità $J(t,\tau) = J(t,t_0)$ (Figura 6). Analiticamente si ha:

$$\varepsilon_{c,tot}(t_k) \cong \sigma_c(t_0) * J(t, t_0) + \Delta \sigma_c(t) * J(t, t_0) + \varepsilon_{cs}(t) + \tilde{\varepsilon}(t) =$$
$$= \sigma_c(t) * J(t, t_0) + \varepsilon_{cs}(t) + \tilde{\varepsilon}(t)$$

Definendo il modulo efficace come:

 $E_{c,EM}(t,t_0) = J(t,t_0)^{-1}$

che può essere riscritta formalmente come:

$$\varepsilon_{c,tot}(t) \cong \frac{\sigma_c(t)}{E_{c,EM}(t,t_0)} + \varepsilon_{cs}(t) + \tilde{\varepsilon}(t)$$

Per cui gli effetti dell'applicazione di una storia di tensione sono calcolati considerando la tensione finale $\sigma_c(t)$ direttamente applicata all'istante iniziale t_0 .

Nell'ipotesi semplificativa di $E_c(t) = E_{c28} = E_c$, la funzione di viscosità $J(t,t_0)$ pone:

$$J(t,t_0) = \frac{1 + \phi_{28}(t,t_0)}{E_c}$$

e le relazioni scritte sopra per $E_{c,EM}(t,t_0)$ e $\varepsilon_{c,tot}(t)$ si semplificano nelle:

$$E_{c,EM}(t,t_0) = \frac{E_c}{1 + \phi_{28}(t,t_0)}$$

$$\varepsilon_{c,tot}(t) \cong \frac{\sigma_c(t)}{E_c} * \left[1 + \phi_{28}(t, t_0)\right] + \varepsilon_{cs}(t) + \tilde{\varepsilon}(t)$$

L'applicazione di questo metodo ad un generico istante t richiede pertanto una semplice analisi elastica condotta con il modulo elastico espresso dalla relazione precedente.

In via semplificata, l'EC4 consiglia di adottare $\phi = 2$ per gli effetti differiti dovuti ai carichi permanenti mentre, nel caso si preferisca non tener separati i carichi permanenti e quelli variabili, si considera un valore forfettario $\phi = 2$.

Osservazioni sul metodo:

- fornisce la soluzione esatta solo se lo stato tensionale è costante (problema di viscosità);
- nel caso di problema diretto (problema di viscosità), conduce a sovrastimare le deformazioni risultanti se la tensione nota cresce nel tempo (Figura 6a1); tale sovrastima è dovuta al fatto che si usa l'integrale più grande possibile; va precisato che in sede di valutazione delle frecce questo non è un grosso problema;
- porta a sottostimare le deformazioni nel caso in cui la tensione decresca nel tempo (Figura 6a2); sottostimare la perdita di tensione nel caso di elementi in cemento armato precompresso può risultare molto grave ai fini della correttezza del calcolo;
- si trascura la variazione di entità dell'effetto deformativo viscoso tra le tensioni iniziali e quelle intervenute successivamente, ottenendo così una relazione più semplice;
- è considerato valido solo se $\Delta \sigma < 15 \div 20\%$ del valore tensionale iniziale.

Nel caso di problema inverso, le approssimazioni sono opposte nel senso che, avendo fissato la storia delle deformazioni $\varepsilon c(t)$, e quindi il valore dell'integrale di sovrapposizione, per storie di tensioni crescenti si ha una sottostima della tensione incognita (Figura 247a3) e per storie di tensioni decrescenti si ha una sovrastima (Figura 247a4).

7.2 Metodo della tensione media (MS)

Questo metodo è basato sull'approssimazione dell'integrale di sovrapposizione con il trapezio di Figura 247b. Analiticamente si ha:

$$\varepsilon_{c,tot}(t_k) \cong \sigma_c(t_0) * J(t,t_0) + \Delta \sigma_c(t) * \frac{1}{2} * [J(t,t_0) + J(t,t)] + \varepsilon_{cs}(t) + \tilde{\varepsilon}(t)$$

che, tenendo conto della definizione di funzione di viscosità, si può riscrivere nel modo seguente:

$$\varepsilon_{c,tot}(t_k) \cong \frac{\sigma_c(t_0)}{E_c(t_0)} + \frac{\sigma_c(t) + \sigma_c(t_0)}{2} * \frac{\phi_{28}(t, t_0)}{E_{c28}} + \Delta\sigma_c(t) * \frac{1}{2} * \left[\frac{1}{E_c(t)} + \frac{1}{E_c(t_0)}\right] + \varepsilon_{cs}(t) + \tilde{\varepsilon}(t)$$

Dove si distinguono i termini della deformazione elastica iniziale, della deformazione puramente viscosa valutata con la tensione media e della variazione della deformazione elastica tra $t e t_0$ valutata considerando la deformabilità elastica media nell'intervallo. La relazione precedente può essere riscritta anche come:

$$\varepsilon_{c,tot}(t) \cong$$
$$\cong \sigma_c(t) * \frac{1}{2} * [J(t,t_0) + J(t,t)] + \sigma_c(t_0) * \frac{1}{2} * [J(t,t_0) - J(t,t)] + \varepsilon_{cs}(t) + \tilde{\varepsilon}(t)$$

che porta alla definizione del modulo efficace e della distorsione da viscosità:

$$E_{c,MS}(t,t_0) = \frac{2}{[J(t,t_0) + J(t,t)]}$$

$$\varepsilon_{cr}(t,t_0) \cong \sigma_c(t_0) * \frac{1}{2} * \left[J(t,t_0) - J(t,t)\right]$$

La relazione scritta per $\varepsilon_{c,tot}(t)$ può quindi essere riscritta in forma pseudo-elastica:

$$\varepsilon_{c,tot}(t) \cong \frac{\sigma_c(t)}{E_{c,MS}(t,t_0)} + \varepsilon_{cr}(t,t_0) + \varepsilon_{cs}(t) + \tilde{\varepsilon}(t)$$

Nell'ipotesi semplificativa di modulo di elasticità costante nel tempo, le relazioni scritte per $E_{c,MS}(t,t_0)$ e $\varepsilon_{c,tot}(t)$ diventano:

$$E_{c,MS}(t,t_0) = \frac{E_c}{[1+0.5*\phi_{28}(t,t_0)]}$$

$$\varepsilon_{c,tot}(t) \cong \frac{\sigma_c(t)}{E_c} * [1 + 0.5 * \phi_{28}(t, t_0)] + \varepsilon_{cr}(t, t_0) + \varepsilon_{cs}(t) + \tilde{\varepsilon}(t)$$

Osservazioni sul metodo:

- fornisce la soluzione esatta solo se lo stato tensionale è costante (problema di viscosità);
- risulta più affidabile del metodo EM;
- nel caso di problema diretto, cioè quando sia nota la storia di tensione, conduce ad una sottostima delle deformazioni se la storia di tensione è crescente (Figura 247b1) e ad una sovrastima nel caso in cui la storia di tensione sia decrescente (Figura 247b2);
- nel caso di problema inverso, ovvero quando sia nota la storia di deformazione, si hanno le approssimazioni inverse cioè, la tensione viene sovrastimata nel caso in cui la storia incognita di tensione sia crescente (Figura 247b3) e sottostimata in caso contrario (Figura 247b4);
- nei problemi di rilassamento (in particolare in strutture in c.a.p.) fornisce una stima migliore della perdita di tensione per viscosità rispetto al metodo EM;
- l'applicazione risulta comunque più laboriosa di quella del metodo EM in quanto il calcolo deve essere affrontato in due passi, il primo per ottenere la soluzione elastica del problema e il secondo per determinare gli effetti differiti dove entra in gioco, tra le azioni, la distorsione da viscosità;
- nel caso in cui la soluzione del problema elastico è nulla (come nel caso dell'azione del solo ritiro), la distorsione da viscosità è nulla ed il problema può essere risolto in un sol passo mediante un'analisi elastica condotta con il modulo *E_{c,MS}*;
- è considerato valido solo se $\Delta \sigma < 30\%$ del valore tensionale iniziale (quindi ha un range di applicazione più ampio rispetto al metodo EM).

Figura 247 - (a) Approssimazioni introdotte con il metodo del modulo efficace; (b) Approssimazioni introdotte con il metodo delle tensioni medie.

7.3 Metodo del modulo efficace aggiustato (AAEM)

Questo metodo valuta separatamente la parte di effetto viscoso connessa alla tensione iniziale e la parte connessa alla variazione di tensione nel tempo che, agendo su un materiale più invecchiato, ha un effetto deformativo minore (χ <1, generalmente a t = ∞ si assume χ = 0,8).

$$\varepsilon_{c,tot}(t) \cong \\ \cong \sigma_c(t_0) * \left[\frac{1}{E_c(t_0)} + \frac{1}{E_{28}} * \phi(t, t_0) \right] + \left[\sigma_c(t) - \sigma_c(t_0) \right] * \left[\frac{1}{E_c(t_0)} + \chi(t, t_0) * \frac{1}{E_{28}} * \phi(t, t_0) \right]$$

che porta alla definizione del modulo aggiustato e della distorsione da viscosità:

$$E_{adj}(t) \cong \frac{E_c(t_0)}{1 + \frac{E_c(t_0)}{E_{28}} * \chi(t, t_0) * \phi(t, t_0)}$$

$$\varepsilon_{c,tot}(t) \cong \frac{\sigma_c(t_0)}{E_{eff}} + \frac{[\sigma_c(t) - \sigma_c(t_0)]}{E_{adj}}$$

Si osserva che E_{adj} è sempre maggiore di E_{eff} dato che il coefficiente di invecchiamento $\chi < 1$.

Per il calcolo degli effetti dei carichi il valore del coefficiente di invecchiamento può essere ricavato con riferimento all'intervallo (t, t_0) dai manuali CEB o essere assunto costante pari a 0,8 con modesta approssimazione.

Nel caso di ritiro occorre assumere un valore inferiore di tale coefficiente, di solito pari a 0,5, per tener conto del fatto che gli effetti del ritiro sono minori quando la deformabilità viscosa è massima ($t = t_0$), mentre al crescere della deformazione da ritiro si riduce per invecchiamento la deformabilità viscosa.

La relazione scritta per $\varepsilon_{c,tot}(t)$ può quindi essere riscritta in forma pseudo-elastica:

$$\varepsilon_{c,tot}(t) \cong \frac{\sigma_c(t_0)}{E_{eff}} + \frac{[\sigma_c(t) - \sigma_c(t_0)]}{E_{adj}} + \varepsilon_{cr}(t, t_0) + \varepsilon_{cs}(t) + \tilde{\varepsilon}(t)$$

Osservazioni sul metodo:

- per $\chi = 1$ si ricade nel metodo EM;
- fornisce risultati migliori rispetto ai metodi EM ed MS;
- non è applicabile al caso di carichi ciclici dato che in tal caso non è più valida la calibrazione delle leggi di viscosità usate.

8 Applicazione del metodo AAEM al caso di una sezione mista acciao-calcestruzzo

Si applica il metodo AAEM alla sezione mista costituita da soletta in calcestruzzo e anima di acciaio considerata in precedenza tra i *casi fondamentali* studiati.

Figura 248 - Forze e momenti agenti sulle varie parti della sezione secondo il metodo della scomposizione delle forze.

Figura 249 - Diagrammi delle deformazioni rispettivamente a breve e lungo termine.

Condizioni di equilibrio iniziali:

 $N_{c0} - N_{a0} = 0$

 $M_{c0} + M_{a0} + N_{a0} * h^* = M$

Condizioni di congruenza interna iniziali:

1) $\chi_{c,aderenza} = \chi_{a,aderenza}$

ricordando la definizione di curvatura si può riscrivere l'equazione precedente nella forma seguente:

$$\frac{M_{c0}}{E_c I_c} = \frac{M_{a0}}{E_a I_a}$$

2) $\varepsilon_{c,aderenza} = \varepsilon_{a,aderenza}$

$$\varepsilon_{c,G_c} - \chi_c * d_c = \varepsilon_{a,G_a} + \chi_a * d_a \xrightarrow{\chi_c = \chi_a} \varepsilon_{c,G_c} = \varepsilon_{a,G_a} + \chi * (d_a + d_c) = \varepsilon_{a,G_a} + h^*$$

ricordando la definizione di deformazione si può riscrivere l'equazione precedente nella forma seguente:

$$\frac{N_{c0}}{E_cA_c} + \frac{N_{a0}}{E_aA_a} = \frac{M_{a0}}{E_aI_a} * h^*$$

Sforzi interni al tempo $t = t_0$:

$$N_{c0} = N_{a0} = \frac{M * y_c * \frac{A_c}{n_0}}{I_a + \frac{I_c}{n_0} + A_a * y_a^2 + A_a * \frac{y_c^2}{n_0}}$$
$$M_{c0} = \frac{M * \frac{I_c}{n_0}}{I_a + \frac{I_c}{n_0} + A_a * y_a^2 + A_a * \frac{y_c^2}{n_0}}$$
$$M_{a0} = \frac{M * I_a}{I_a + \frac{I_c}{n_0} + A_a * y_a^2 + A_a * \frac{y_c^2}{n_0}}$$

Condizioni di equilibrio per le variazioni di sforzo nel tempo:

$$\Delta N_c - \Delta N_a = 0$$

$$\Delta M_c + \Delta M_a + \Delta N_a * h^* = 0$$

Condizioni di congruenza per le variazioni degli sforzi nel tempo:

1)
$$\Delta \chi_{c0} + \Delta \chi_c = \Delta \chi_{a0} + \Delta \chi_a$$

$$\frac{M_{c0}}{E_c I_c} (1+\phi) + \frac{\Delta M_c}{E_c I_c} (1+\chi\phi) = \frac{M_{a0} + \Delta M_a}{E_a I_a}$$

$$2)\varDelta\varepsilon_{c0} + \varDelta\varepsilon_{c} = \varDelta\chi_{a0} * h^{*} + \varDelta\chi_{a} * h^{*} + \varDelta\varepsilon_{a0} + \varDelta\varepsilon_{a}$$

$$\frac{N_{c0}}{E_c A_c} (1+\phi) + \frac{\Delta N_c}{E_c I_c} (1+\chi\phi) = \frac{M_{a0} + \Delta M_a}{E_a I_a} * h^* - \frac{N_{a0} + \Delta N_a}{E_a I_a}$$

Dunque si ha così un sistema di otto equazioni nelle otto incognite N_{c0} , N_{a0} , M_{c0} , M_{a0} , ΔN_c , ΔN_a , ΔM_c , ΔM_a :

$$\begin{cases} N_{c0} - N_{a0} = 0 \\ M_{c0} + M_{a0} + N_{a0} * h^* = M \\ \frac{M_{c0}}{E_c I_c} = \frac{M_{a0}}{E_a I_a} \\ \frac{N_{c0}}{E_c A_c} + \frac{N_{a0}}{E_a A_a} = \frac{M_{a0}}{E_a I_a} * h^* \\ \Delta N_c - \Delta N_a = 0 \\ \Delta M_c + \Delta M_a + \Delta N_a * h^* = 0 \\ \frac{M_{c0}}{E_c I_c} (1 + \phi) + \frac{\Delta M_c}{E_c I_c} (1 + \chi \phi) = \frac{M_{a0} + \Delta M_a}{E_a I_a} \\ \frac{N_{c0}}{E_c A_c} (1 + \phi) + \frac{\Delta N_c}{E_c I_c} (1 + \chi \phi) = \frac{M_{a0} + \Delta M_a}{E_a I_a} \end{cases}$$

Da cui si ricavano le espressione che forniscono i valori per le incognite cercate:

 $\begin{aligned} \Delta Ma \\ &= \frac{E_{a}E_{c}I_{a}M\varphi(A_{c}^{2}E_{c}^{2}I_{c} + A_{a}^{2}E_{a}^{2}(A_{c}h^{2} + I_{c})(1 + \varphi\chi) + A_{a}A_{c}E_{a}E_{c}I_{c}(2 + \varphi\chi))}{(A_{c}E_{c}(E_{a}I_{a} + E_{c}I_{c}) + A_{a}E_{a}(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c}))(A_{a}E_{a}(1 + \varphi\chi)(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c} + E_{a}I_{a}\varphi\chi) + A_{c}E_{c}(E_{c}I_{c} + E_{a}(I_{a} + I_{a}\varphi\chi))))} \\ \Delta Na \\ &= -\frac{A_{a}A_{c}E_{a}E_{c}hM\varphi(-A_{c}E_{c}^{2}I_{c} + A_{a}E_{a}^{2}I_{a}(1 + \varphi\chi))}{(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c} + E_{a}I_{a}\varphi\chi) + A_{c}E_{c}(E_{c}I_{c} + E_{a}(I_{a} + I_{a}\varphi\chi))))} \\ \Delta Nc \\ &= -\frac{A_{a}A_{c}E_{a}E_{c}hM\varphi(-A_{c}E_{c}^{2}I_{c} + A_{a}E_{a}^{2}I_{a}(1 + \varphi\chi))}{(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c} + E_{a}I_{a}\varphi\chi) + A_{c}E_{c}(E_{c}I_{c} + E_{a}(I_{a} + I_{a}\varphi\chi))))} \\ \Delta Nc \\ &= -\frac{A_{a}A_{c}E_{a}E_{c}hM\varphi(-A_{c}E_{c}^{2}I_{c} + A_{a}E_{a}^{2}I_{a}(1 + \varphi\chi))}{(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c} + E_{a}I_{a}\varphi\chi) + A_{c}E_{c}(E_{c}I_{c} + E_{a}(I_{a} + I_{a}\varphi\chi))))} \\ \Delta Nc \\ &= -\frac{A_{a}A_{c}E_{a}E_{c}hM\varphi(-A_{c}E_{c}^{2}I_{c} + A_{a}E_{a}^{2}I_{a}(1 + \varphi\chi))}{(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c} + E_{a}I_{a}\varphi\chi) + A_{c}E_{c}(E_{c}I_{c} + E_{a}(I_{a} + I_{a}\varphi\chi)))} \\ \Delta Nc \\ &= -\frac{A_{a}A_{c}E_{a}E_{c}hM\varphi(-A_{c}E_{c}^{2}I_{c} + A_{a}E_{a}^{2}I_{a}(1 + \varphi\chi))}{(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c} + E_{a}I_{a}\varphi\chi) + A_{c}E_{c}(E_{c}I_{c} + E_{a}(I_{a} + I_{a}\varphi\chi)))} \\ \Delta Nc \\ &= -\frac{A_{a}A_{c}E_{a}E_{c}hM\varphi(-A_{c}E_{c}^{2}I_{c} + A_{a}E_{a}^{2}I_{a}(1 + \varphi\chi))}{(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c} + E_{a}I_{a}\varphi\chi) + A_{c}E_{c}(E_{c}I_{c} + E_{a}(I_{a} + I_{a}\varphi\chi)))} \\ \Delta Nc \\ &= -\frac{A_{a}A_{c}E_{a}E_{c}hM\varphi(-A_{c}E_{c}^{2}I_{c} + A_{a}E_{a}^{2}I_{a}(1 + \varphi\chi))}{(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c} + E_{a}I_{a}\varphi\chi) + A_{c}E_{c}(E_{c}I_{c} + E_{a}(I_{a} + I_{a}\varphi\chi)))} \\ \Delta Nc \\ &= -\frac{A_{a}A_{c}E_{a}E_{c}hM\varphi(-A_{c}E_{c}^{2}I_{c} + A_{a}E_{a}^{2}I_{c}(1 + \varphi\chi))}{(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c} + E_{a}I_{a}\varphi\chi) + A_{c}E_{c}(E_{c}I_{c} + E_{a}I_{a}\varphi\chi)} \\ + \frac{A_{a}A_{c}E_{a}E_{c}hM\varphi(-A_{c}E_{c}^{2}I_{c} + A_{a}E_{$

 ΔMc

$$= -\frac{E_{a}E_{c}I_{c}M\varphi(A_{c}^{2}E_{c}^{2}I_{a} + A_{a}^{2}E_{a}^{2}I_{a}(1 + \varphi\chi) + A_{a}A_{c}E_{c}(A_{c}E_{c}h^{2} + E_{a}I_{a}(2 + \varphi\chi)))}{(A_{c}E_{c}(E_{a}I_{a} + E_{c}I_{c}) + A_{a}E_{a}(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c}))(A_{a}E_{a}(1 + \varphi\chi)(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c} + E_{a}I_{a}\varphi\chi) + A_{c}E_{c}(E_{c}I_{c} + E_{a}(I_{a} + I_{a}\varphi\chi))))}$$

$$Nco = A_{c}E_{c}(E_{a}I_{a} + E_{c}I_{c}) + A_{a}E_{a}(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c})$$

$$Nao = \frac{A_{a}A_{c}E_{a}E_{c}hM}{A_{c}E_{c}(E_{a}I_{a} + E_{c}I_{c}) + A_{a}E_{a}(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c})}$$

$$Mco = \frac{E_{c}(A_{a}E_{a} + A_{c}E_{c})I_{c}M}{A_{c}E_{c}(E_{a}I_{a} + E_{c}I_{c}) + A_{a}E_{a}(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c})}$$

$$Mao = \frac{E_{a}(A_{a}E_{a} + A_{c}E_{c})I_{a}M}{A_{c}E_{c}(E_{a}I_{a} + E_{c}I_{c}) + A_{a}E_{a}(A_{c}E_{c}h^{2} + E_{a}I_{a} + E_{c}I_{c})}$$

L'effetto del ritiro può essere calcolato modificando il termine noto che rappresenta la deformazione al tempo *t* sulla soletta considerata libera per effetto del ritiro:

$$\begin{cases} N_{c0,r} - N_{a0,r} = 0 \\ M_{c0,r} + M_{a0,r} + N_{a0,r} * h^* = 0 \\ \frac{M_{c0,r}}{E_c I_c} = \frac{M_{a0,r}}{E_a I_a} \\ \frac{N_{c0,r}}{E_c A_c} + \varepsilon_{c,r} + \frac{N_{a0,r}}{E_a A_a} = \frac{M_{a0,r}}{E_a I_a} * h^* \end{cases}$$

Si precisa che il coefficiente χ nel caso si calcoli l'effetto del ritiro si assume con un valore inferiore rispetto a quando si vuole valutare l'effetto del carico permanente (viscosità) per tenere conto del fatto che gli effetti del ritiro sono minori quando la deformabilità viscosa è massima ($t = t_0$), mentre al crescere della deformazione da ritiro si riduce per invecchiamento la deformabilità viscosa. Con riferimento ai manuali CEB, con riferimento all'intervallo (t, t_0), si può assumere χ = 0,8 per la valutazione degli effetti dovuti al carico permanente, mentre χ = 0,5 nel caso si vogliano valutare gli effetti del ritiro.

Per considerare contemporaneamente l'effetto del ritiro e del peso proprio si utilizzano le seguenti equazioni ottenute dal sistema precedente con le opportune modifiche:

$$\begin{cases} N_{c0} - N_{a0} = 0 \\ M_{c0} + M_{a0} + N_{a0} * h^* = M \\ \frac{M_{c0}}{E_c I_c} = \frac{M_{a0}}{E_a I_a} \\ \frac{N_{c0}}{E_c A_c} + \varepsilon_{c,r} + \frac{N_{a0}}{E_a A_a} = \frac{M_{a0}}{E_a I_a} * h^* \\ \Delta N_{c,r} - \Delta N_{a,r} = 0 \\ \Delta M_{c,r} + \Delta M_{a,r} + \Delta N_{a,r} * h^* = 0 \\ \frac{M_{c0}}{E_c I_c} (1 + \phi) + \frac{\Delta M_{c,r}}{E_c I_c} (1 + \chi \phi) = \frac{M_{a0} + \Delta M_{a,r}}{E_a I_a} \\ \frac{N_{c0}}{E_c A_c} (1 + \phi) + \frac{\Delta N_{c,r}}{E_c I_c} (1 + \chi \phi) = \frac{M_{a0} + \Delta M_{a,r}}{E_a I_a} \\ \end{cases}$$

Da cui si ricavano le espressione che forniscono i valori per le incognite cercate:

$$\begin{split} \Delta M_{a,r} &= -(E_a E_c I_a (-A_c^2 E_c^2 I_c M \varphi + A_a^2 E_a^2 (A_c^2 E_c h^3 \varepsilon_{c,r} - I_c M \varphi + A_c h (E_c I_c \varepsilon_{c,r} \\ &- h M \varphi + E_a I_a \varepsilon_{c,r} (1 + \varphi)))(1 + \varphi \chi) + A_a A_c E_a E_c (-I_c M \varphi (2 \\ &+ \varphi \chi) + A_c h \varepsilon_{c,r} (E_c I_c (1 + \varphi (-1 + \chi)) + E_a (I_a \\ &+ I_a \varphi \chi)))))/((A_c E_c (E_a I_a + E_c I_c) + A_a E_a (A_c E_c h^2 + E_a I_a \\ &+ E_c I_c))(A_a E_a (1 + \varphi \chi) (A_c E_c h^2 + E_a I_a + E_c I_c + E_a I_a \varphi \chi) \\ &+ A_c E_c (E_c I_c + E_a (I_a + I_a \varphi \chi)))) \end{split}$$

$$\begin{split} \Delta N_{a,r} &= (A_a A_c E_a E_c (A_c E_c (E_c I_c (E_c I_c \varepsilon_{c,r} + hM\varphi) + E_a^2 I_a^2 \varepsilon_{c,r} (1 + \varphi\chi)) \\ &+ E_a E_c I_a I_c \varepsilon_{c,r} (2 + \varphi\chi)) + Aa E_a (E_c^2 I_c^2 \varepsilon_{c,r} (1 + \varphi) + E_a^2 I_a^2 \varepsilon_{c,r} (1 + \varphi)) \\ &+ \varphi\chi) (1 + \varphi\chi) + E_a I_a (-hM\varphi (1 + \varphi\chi) + E_c I_c \varepsilon_{c,r} (1 + \varphi)) (2 \\ &+ \varphi\chi)) + A_c E_c h^2 \varepsilon_{c,r} (E_c I_c (1 + \varphi) + E_a (I_a \\ &+ I_a \varphi\chi))))) / ((A_c E_c (E_a I_a + E_c I_c) + A_a E_a (A_c E_c h^2 + E_a I_a \\ &+ E_c I_c)) (A_a E_a (1 + \varphi\chi) (A_c E_c h^2 + E_a I_a + E_c I_c + E_a I_a \varphi\chi)) \\ &+ A_c E_c (E_c I_c + E_a (I_a + I_a \varphi\chi)))) \end{split}$$

$$\begin{split} \Delta N_{c,r} &= (A_a A_c E_a E_c (A_c E_c (E_c I_c (E_c I_c \varepsilon_{c,r} + hM\varphi) + E_a^2 I_a^2 \varepsilon_{c,r} (1 + \varphi\chi) \\ &+ E_a E_c I_a I_c \varepsilon_{c,r} (2 + \varphi\chi)) + A_a E_a (E_c^2 I_c^2 \varepsilon_{c,r} (1 + \varphi) + E_a^2 I_a^2 \varepsilon_{c,r} (1 \\ &+ \varphi) (1 + \varphi\chi) + E_a I_a (-hM\varphi (1 + \varphi\chi) + E_c I_c \varepsilon_{c,r} (1 + \varphi)) (2 \\ &+ \varphi\chi)) + A_c E_c h^2 \varepsilon_{c,r} (E_c I_c (1 + \varphi) + E_a (I_a \\ &+ I_a \varphi\chi))))) / ((Ac E_c (E_a I_a + E_c I_c) + A_a E_a (Ac E_c h^2 + E_a I_a \\ &+ E_c I_c)) (A_a E_a (1 + \varphi\chi) (A_c E_c h^2 + E_a I_a + E_c I_c + E_a I_a \varphi\chi)) \\ &+ A_c E_c (E_c I_c + E_a (I_a + I_a \varphi\chi)))) \end{split}$$

$$\begin{split} \Delta M_{c,r} &= -(E_a E_c I_c (A_c^2 E_c^2 I_a M \varphi + A_a A_c E_c (A_c E_c h (E_c I_c \varepsilon_{c,r} + h M \varphi + E_a I_a \varepsilon_{c,r} (1 + \varphi)) + E_a I_a M \varphi (2 + \varphi \chi)) + Aa^2 E_a (Ac^2 Ec^2 h^3 \varepsilon_{c,r} (1 + \varphi) \\ &+ E_a I_a M \varphi (1 + \varphi \chi) + A_c E_c h \varepsilon_{c,r} (E_c I_c (1 + \varphi) + E_a I_a (1 + 2\varphi) \\ &+ \varphi^2 \chi)))) / ((A_c E_c (E_a I_a + E_c I_c) + A_a E_a (A_c E_c h^2 + E_a I_a \\ &+ E_c I_c)) (A_a E_a (1 + \varphi \chi) (A_c E_c h^2 + E_a I_a + E_c I_c + E_a I_a \varphi \chi) \\ &+ A_c E_c (E_c I_c + E_a (I_a + I_a \varphi \chi)))) \end{split}$$

$$\begin{split} N_{c0} &= -\frac{A_a A_c E_a E_c (-hM + E_a I_a \varepsilon_{c,r} + E_c I_c \varepsilon_{c,r})}{A_c E_c (EaI_a + E_c I_c) + A_a Ea (A_c E_c h^2 + E_a I_a + E_c I_c)} \\ N_{a0} &= -\frac{A_a A_c E_a E_c (-hM + E_a I_a \varepsilon_{c,r} + E_c I_c \varepsilon_{c,r})}{A_c E_c (E_a I_a + E_c I_c) + A_a E_a (A_c E_c h^2 + E_a I_a + E_c I_c)} \\ M_{c0} &= \frac{E_c I_c (A_c E_c M + A_a E_a (M + A_c E_c h \varepsilon_{c,r}))}{A_c E_c (E_a I_a + E_c I_c) + A_a E_a (A_c E_c h^2 + E_a I_a + E_c I_c)} \\ M_{a0} &= \frac{E_a I_a (A_c E_c M + A_a E_a (M + A_c E_c h \varepsilon_{c,r}))}{A_c E_c (E_a I_a + E_c I_c) + A_a E_a (A_c E_c h^2 + E_a I_a + E_c I_c)} \end{split}$$

Con le equazioni ricavate si possono ora calcolare gli sforzi al tempo t sulle parti costituenti la sezione mista:

$$N_{a,t} = N_{a0} + \Delta N_a + \Delta N_{a,r}$$
$$M_{a,t} = M_{a0} + \Delta M_a + \Delta M_{a,r}$$
$$N_{c,t} = N_{c0} + \Delta N_c + \Delta N_{c,r}$$
$$M_{c,t} = M_{c0} + \Delta M_c + \Delta M_{c,r}$$

Si ricordano i dati del caso in esame:

Figura 250 - Geometria dell'elemento considerato.

 $E_{cm} = 36283 MPa$ $E_a = 210000 MPa$ $I_c = 1,125 * 10^{10} mm^4$ $I_a = 2,858 * 10^{11} mm^4$ $A_c = 150000 mm^2$ $A_a = 950000 mm^2$ $h^* = y_{G,c} - y_{G,a} = 1100 mm$ $(1 + \chi\phi) = (1 + 0,55 * 2,137) = 2,17$

Calcolo della deformazione da ritiro agente sulla soletta:

$$f_{ck} = 45 MPa$$
$$E_{cm} = 36283 MPa$$

$$h_0 = \frac{2A_c}{u} = \frac{2*(5*0,3)}{(5+4,5+0,3+0,3)} = 0,297 m = 297 mm$$

da cui risultano:

$$\begin{aligned} \varepsilon_{c0} &= -0,2275 \% \\ k_h &= 0,77 \\ \varepsilon_{cd,\infty} &= \varepsilon_{c0} * k_h = -0,2275 * 10^{-3} * 0,77 = -0,000159 \\ \beta_{ds} &\cong 1 \\ \varepsilon_{cs} &= \varepsilon_{cd,\infty} * \beta_{ds} = -0,000159 * 1 = -0,000159 = -1,59 * 10^{-4} \end{aligned}$$

Si considera il seguente momento esterno dovuto all'effetto dei pesi propri degli elementi costituenti la trave:

$$M = \frac{ql^2}{8} = \frac{(25*10^{-6}*1500000 + 78,5*10^{-6}*950000)*50000^2}{8} =$$

$$= 3502 \ kNm$$

Si ricavano quindi i valori delle sollecitazioni per il caso in cui si considerano gli effetti dovuti al peso proprio ed alla viscosità del calcestruzzo:

$$\begin{split} \Delta M_a &= 8,52041 * 10^9 \, Nmm = 8520 \, kNm \\ \Delta N_a &= 7,67389 * 10^6 \, N = 7674 \, kN \\ \Delta N_c &= -7,67389 * 10^6 \, N = -7674 \, kN \\ \Delta M_c &= -7,91347 * 10^7 \, Nmm = -79 \, kNm \\ N_{c0} &= 1,46868 * 10^7 \, N = 14687 \, kN \\ N_{a0} &= 1,46868 * 10^7 \, N = 14687 \, kN \\ M_{c0} &= 1,27455 * 10^8 \, Nmm = 127 \, kNm \\ M_{a0} &= 1,87405 * 10^{10} \, Nmm = 18740 \, kNm \end{split}$$

Con le opportune considerazioni effettuate in precedenza, modificando opportunamente le equazioni impiegate, si ricavano i valori delle sollecitazioni dovute agli effetti del solo ritiro del calcestruzzo:

$$\begin{cases} N_{c0,r} - N_{a0,r} = 0 \\ M_{c0,r} + M_{a0,r} + N_{a0,r} * 1100 = 0 \\ \frac{M_{c0,r}}{36283 * 1,125 * 10^{10}} = \frac{M_{a0,r}}{210000 * 2,858 * 10^{11}} \\ \frac{N_{c0,r}}{36283 * 1500000} - 1,59 * 10^{-4} + \frac{N_{a0,r}}{210000 * 950000} = \frac{M_{a0,r}}{210000 * 2,858 * 10^{11}} * 1100 \end{cases}$$

$$N_{c0,r} = 3,66266 * 10^{6} N = 3663 kN$$

$$N_{a0,r} = 3,66266 * 10^{6} N = 3663 kN$$

$$M_{c0,r} = -2,72157 * 10^{7} Nmm = -27,2 kNm$$

$$M_{a0,r} = -4,000171 * 10^{9} Nmm = -4000 kNm$$

Ricordando i valori ricavati in precedenza tramite modellazione con software di calcolo:

			S	ection Cut F	orces - Analy	/sis			
File	View Format-Filte	er-Sort Select	Options						
Unit	s: As Noted				Section	Cut Forces - An	alysis		•
	SectionCut	OutputCase	CaseType	F1	F2	F3	M1	M2	M3
	Text	Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
	delta T	Temperatura	LinStatic	4062,128	0	-0,00001965	0	-3865,7382	0
	N+M	Temperatura	LinStatic	-4061,308	0	-0,012	0	-3860,0312	0
	Nsoletta	Temperatura	LinStatic	-4061 905	0	-0,0002597	0	-3865,5265	0
	SOLETTA delta T	Temperatura	LinStatic	4062,128	00000001444	0,00001966	00000005593	27,1344	000000001808
	SOLETTA N+M	Temperatura	LinStatic	-4591,092	000000001074	0,012	00000002683	-27,1308	00000002251
	SOLETTA Nsoletta	Temperatura	LinStatic	-4591,095	00000007788	0,0002597	00000003183	-27,1328	000000002092

Figura 251 - Risultanti degli sforzi interni nell'anima e nella soletta ricavate tramite le "Section cut" nel modello FEM.

Si osserva che la soluzione manuale sottostima (di circa un 10%) il valore degli sforzi assiali e sovrastima il valore dello sforzo flessionale che si ha nell'anima della trave metallica (di circa un 4%) rispetto ai valori ottenuti dal modello.

Si ricavano quindi i valori delle sollecitazioni per il caso in cui si considerano gli effetti dovuti al peso proprio ed ritiro del calcestruzzo:

```
 \Delta M_{a,r} = 1,48869 * 10^{10} Nmm = 14887 kNm, 
 \Delta N_{a,r} = -1,34864 * 10^7 N = -13486 kN 
 \Delta N_{c,r} = -1,34864 * 10^7 N = -13486 kN 
 \Delta M_{c,r} = -5,19294 * 10^7 Nmm = -51,9 kNm 
 N_{c0} = 1,83494 * 10^7 N = 18349 kN 
 N_{a0} = 1,83494 * 10^7 N = 18349 kN
```

$$\begin{split} M_{c0} &= 1,0239 * 10^8 \ Nmm = 102,4 \ kNm \\ M_{a0} &= 1,47388 * 10^{10} \ Nmm = 14739 \ kNm \end{split}$$

Si osserva come i contributi relativi agli incrementi degli sforzi interni a lungo termine dovuti alla viscosità del calcestruzzo siano inferiori a quelli dovuti al ritiro del calcestruzzo (considerati in valore assoluto).

Con le equazioni ricavate si possono ora calcolare gli sforzi al tempo *t* sulle parti costituenti la sezione mista:

$$\begin{split} N_{a,t} &= N_{a0} + \Delta N_a + \Delta N_{a,r} = 14687 + 7674 - 13486 = 8875 \ kN \\ M_{a,t} &= M_{a0} + \Delta M_a + \Delta M_{a,r} = 18740 + 8520 + 14887 = 42147 \ kNm \\ N_{c,t} &= N_{c0} + \Delta N_c + \Delta N_{c,r} = 14687 - 7674 - 13486 = -6473 \ kN \\ M_{c,t} &= M_{c0} + \Delta M_c + \Delta M_{c,r} = 127 - 79 - 51,9 = -3,9 \ kNm \end{split}$$

9 Metodi semplificati per l'analisi viscoelastica degli impalcati da ponte a sezione composta

L'analisi rigorosa del comportamento dipendente dal tempo di una struttura composta richiede l'uso di procedure numeriche di tipo step-by-step.

Nel caso di strutture semplici, non interessate da importanti eterogeneità strutturali (getti frazionati, ecc.), l'analisi viscosa può essere condotta senza commettere gravi errori con i metodi algebrizzati descritti in precedenza.

L'applicazione del metodo EM nel caso di travi composte richiede la semplice definizione del rapporto modulare:

$$n_{EM} = n_0 * (1 + \phi_t)$$

dove:

- $n_0 = E_s / E_{c28}$ è il rapporto modulare usato per l'analisi elastica;
- $\phi_t = \phi_{28}(t, t_0)$ è il valore del coefficiente di viscosità dipendente dall'istante di applicazione del carico t_0 e dall'istante finale di analisi t.

L'applicazione del metodo MS diventa altrettanto semplice quando lo stato tensionale iniziale è nullo, come accade nel caso in cui si considera il solo ritiro. In tal caso il metodo richiede la semplice definizione del rapporto modulare:

$$n_{MS} = n_0 * (1 + 0.55 * \phi_t)$$

E' noto in letteratura (Dezi et al. 1996) che il metodo EM fornisce risultati soddisfacenti nel caso di strutture soggette ad azioni di natura statica a alla presollecitazione con cavi interni o esterni. Per l'analisi del ritiro, invece, risulta particolarmente efficace il metodo MS in quanto, oltre ad essere di semplice applicazione, fornisce risultati caratterizzati da un buon livello di precisione.

L'Eurocodice 4 parte 2 (EC4-2, 1997), per l'analisi viscoelastica delle strutture composte, suggerisce l'impiego del rapporto modulare:

$$n_L = n_0 * (1 + \Psi_L * \phi_t)$$

che rappresenta una generalizzazione delle espressioni precedenti dei rapporti modulari.

Il coefficiente correttivo Ψ_L dipende dal tipo di azione considerata ed assume i valori presenti nella tabella di seguito riportata:

Tipo di azione	EC4-2
Carichi permanenti e presollecitazione con cavi dopo che la connessione trave-soletta sia divenuta efficace	1,10
Effetti isostatici ed iperstatici del ritiro	0,55
Presollecitazione con cedimenti vincolari	1,50

Tabella 57 - Valori del coefficiente Ψ_L .

L'istante di applicazione del carico t_0 può essere assunto pari a 28 giorni; nel caso del ritiro deve essere assunto pari a 1 giorno. Infatti per il coefficiente di viscosità $\phi_t = \phi_{28}(t,t_s)$ si assume $t_s = 1$ giorno.

9.1 Ritiro della soletta

Gli accorciamenti della soletta dovuti al ritiro del calcestruzzo sono parzialmente impediti dalla trave d'acciaio; ciò comporta l'insorgere di stati tensionali di trazione nella soletta e di compressione nella trave metallica. Gli effetti del ritiro possono essere distinti in effetti primari e secondari; i primi si sviluppano nelle strutture isostatiche mentre i secondi rappresentano gli effetti delle reazioni iperstatiche. Dal momento che il ritiro è un'azione di lungo termine di tipo geometrico (deformazione impressa), i suoi effetti sono attenuati dal comportamento viscoso del materiale.

Sia nelle travi isostatiche che in quelle iperstatiche, l'analisi può essere svolta sovrapponendo i seguenti due passi:

1- valutazione della forza assiale longitudinale che impedisce completamente l'accorciamento della soletta, considerata separata dalla trave

$$N_{cs} = \varepsilon_{cs}(t, t_s) * \frac{E_a}{n_{cs}} * A_c$$

2- analisi elastica della trave composta soggetta alla forza longitudinale N_{cs} applicata nel baricentro della soletta e considerata come forza esterna.

Nel caso in cui la soletta venisse connessa alla trave di acciaio dopo un intervallo di tempo iniziale (t^*-t_s) , nell'analisi viscoelastica occorre considerare solo la deformazione da ritiro che si sviluppa dopo l'istante di connessione t^* :

$$\varepsilon_{cs}^{*}(t) = \varepsilon_{cs}(t, t_s) - \varepsilon_{cs}(t^*, t_s)$$

Per la valutazione dei picchi che la forza di scorrimento presenta agli estremi liberi della trave, l'EC4-2 (1997) suggerisce un metodo semplificato che ipotizza una distribuzione triangolare estesa ad un tratto di trave pari a metà larghezza efficace della trave ($b_{eff}/2$), e un'intensità massima della forza distribuita sui connettori data dalla relazione seguente:

$$q_{d,max} = \frac{4 * V_{L,Ed}}{b_{eff}}$$

dove:

 $V_{L,Ed}$ è la porzione di N_{cs} trasmessa alla trave di acciaio attraverso la connessione e che può essere determinata attraverso l'analisi sezionale elastica assumendo la perfetta aderenza tra la trave di acciaio e la soletta in c.a.

Figura 252 - Ritiro: (a) (b) (c) effetti globali; (d) effetti locali sulla connessione.

Di fatto si tratta di applicare il metodo per fasi che si è applicato in precedenza nello studio delle sezioni a T (con anima e soletta costituite di due calcestruzzi differenti, con anima in acciaio e soletta in calcestruzzo) considerando il modulo del calcestruzzo della soletta soggetta a ritiro opportunamente ridotto tramite il coefficiente n_{cs} .

10 Modello analitico e numerico per una sezione mista a T (anima in acciaio, soletta in calcestruzzo) con armature in soletta

Figura 253 - Modello FEM di una trave a sezione mista con l'armatura longitudinale in soletta.

Si è studiata la medesima trave sia con lo schema di vincolo isostatico (_______) che con quello iperstatico (________), considerando in un primo momento un modulo elastico istantaneo per il calcestruzzo per cogliere i soli effetti del ritiro, mentre in un secondo momento si è considerato un modulo elastico a lungo termine per tenere conto dell'effetto simultaneo di ritiro e viscosità.

10.1 Analisi a breve termine (modulo elastico istantaneo)

Si considerano di seguito i risultati ottenuti per i modelli in cui si è adottato un modulo istantaneo per i due schemi strutturali considerati:

Figura 254 - Tensioni in direzione longitudinale nella trave metallica nello schema strutturale isostatico in cui si è assunto modulo elastico istantaneo per il calcestruzzo.

Figura 255 - Tensioni in direzione longitudinale nella trave metallica nello schema strutturale iperstatico in cui si è assunto modulo elastico istantaneo per il calcestruzzo.

Tabella 58 - Risultante dello sforzo assiale nella trave in corrispondenza della sezione di mezzeria per lo schema strutturale isostatico.

S11 _{tot} trave	-8,756	[MPa]
A _{s,trave}	$0,28*10^{6}$	$[mm^2]$
N _{risultante,trave} =N _{max,trave}	-2451,70	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante dello sforzo assiale nella trave metallica, per lo schema strutturale isostatico, manualmente secondo la formula seguente:

$$N_{aderenza,max} = \frac{\varepsilon_{cs}}{\left(\frac{4}{E_s A_{s,a}} + \frac{1}{E_c A_{c,sol}}\right)} = \frac{-1,75 * 10^{-4}}{\left(\frac{4}{210000 * 286800} + \frac{1}{36283 * 1393200}\right)} = -2030633,56 N = -2030 kN$$

Dunque il calcolo analitico sottostima la risultante (di circa un 17%).

In tale equazione si è assunta la riduzione del coefficiente numerico nel termine relativo deformazione della soletta perché la diversità tra i moduli elastici dei due materiali costituenti l'elemento lo giustifica:

$$\chi_{sol} = \chi_a$$

$$\frac{6N}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2} \Rightarrow \frac{cN}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_aA_ah_a} \Rightarrow c = 6\frac{E_{sol}}{E_a}\frac{b_{sol}*h_{sol}^2}{A_a*h_a} = 6\frac{36283}{210000}\frac{4980*300^2}{286800*1900} = 0.85$$

Tabella 59 - Risultante dello sforzo assiale nella trave in corrispondenza della sezione di mezzeria per lo schema strutturale iperstatico.

S11 _{tot_trave}	-21,224	[MPa]
A _{s,trave}	$0,28*10^{6}$	$[mm^2]$
N _{risultante,trave} =N _{max,trave}	-5942,72	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante dello sforzo assiale nella trave metallica, per lo schema strutturale isostatico, manualmente secondo la formula seguente:

$$N_{aderenza,max} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_{s,a}} + \frac{1}{E_c A_{c,sol}}\right)} = \frac{-1,75 * 10^{-4}}{\left(\frac{1}{210000 * 286800} + \frac{1}{36283 * 1393200}\right)} = -4370533 N = -4370 kN$$

Dunque il calcolo analitico sottostima la risultante (di circa un 27%).

In tale equazione si è assunta la riduzione del coefficiente numerico nel termine relativo deformazione della soletta perché la diversità tra i moduli elastici dei due materiali costituenti l'elemento lo giustifica:

$$\chi_{sol} = \chi_a$$

$$\frac{6N}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2} \Rightarrow \frac{cN}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_aA_ah_a} \Rightarrow c = 6\frac{E_{sol}}{E_a}\frac{b_{sol}*h_{sol}^2}{A_a*h_a} = 6\frac{36283}{210000}\frac{4980*300^2}{286800*1900} = 0,85$$

In questo caso si è ridotto anche il coefficiente numerico nel termine relativo deformazione dell'anima in quanto lo schema strutturale iperstatico limite l'inflessione dell'anima stessa.

Figura 256 - Tensioni in direzione longitudinale nelle armature nello schema strutturale isostatico in cui si è assunto modulo elastico istantaneo per il calcestruzzo.

Figura 257 - Tensioni in direzione longitudinale nelle armature nello schema strutturale iperstatico in cui si è assunto modulo elastico istantaneo per il calcestruzzo.

Tabella 60 - Risultante dello sforzo assiale nell'armatura in corrispondenza della sezione di mezzeria per lo schema strutturale isostatico.

S11 _{tot_armatura}	-30,063	[MPa]
$A_{s,armatura}$	$0,10*10^{6}$	$[mm^2]$
Nrisultante,armatura =Nmax,armatura	-3006,30	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante dello sforzo assiale nell'armatura, per lo schema strutturale isostatico, manualmente secondo la formula seguente:

$$N_{aderenza,max} = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_c + n_0 A_s}\right) = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_{ci}}\right) =$$
$$= (-1,75 * 10^{-4}) * \left(\frac{210000 * 1393200 * 100800}{1976832}\right) = -2610727,71 N =$$
$$= -2610 \ kN$$

Si è assunta l'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{aderenza,max} = cost.$

Dunque il calcolo analitico sottostima la risultante (di circa un 13%).

Tabella 61 - Risultante dello sforzo assiale nell'armatura in corrispondenza della sezione di mezzeria per lo schema strutturale iperstatico.

S11 _{tot} armatura	-19,112	[MPa]
A _{s,armatura}	$0,10*10^{6}$	$[mm^2]$
N _{risultante,armatura} =N _{max,armatura}	-1911,20	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante dello sforzo assiale nell'armatura, per lo schema strutturale iperstatico, manualmente secondo la formula seguente:

$$N_{aderenza,max} = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_c + n_0 A_s}\right) = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_{ci}}\right) =$$
$$= (-1,75 * 10^{-4}) * \left(\frac{210000 * 1393200 * 100800}{1976832}\right) = -2610727,71 N =$$
$$= -2610 \ kN$$

Si è assunta l'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{aderenza,max} = cost.$

Dunque il calcolo analitico sovrastima la risultante (di circa un 27%).

Figura 258 - Tensioni in direzione longitudinale nella soletta nello schema strutturale isostatico in cui si è assunto modulo elastico istantaneo per il calcestruzzo.

Figura 259 - Tensioni in direzione longitudinale nella soletta nello schema strutturale iperstatico in cui si è assunto modulo elastico istantaneo per il calcestruzzo.

Tabella 62 - Risultante dello sforzo assiale nella soletta in corrispondenza della sezione di mezzeria per lo schema strutturale isostatico.

S11 _{tot_soletta}	7,895	[MPa]
A _{c,soletta}	$1,39*10^{6}$	$[mm^2]$
Nrisultante, soletta = Nmax, soletta	10974,05	[kN]

Scrivendo la relazione di congruenza tra la soletta, l'armatura e la trave metallica, sulla base delle osservazioni fatte nella fase di studio teorico, si può calcolare la risultante dello sforzo assiale nella soletta, per lo schema strutturale isostatico, manualmente secondo la formula seguente:

$$\begin{split} -\varepsilon_{cs}*l - \frac{N_{aderenza,\max(armatura)}*l}{E_{c}A_{c,sol}} - \frac{N_{aderenza,\max(trave\ metallica)}*l}{E_{c}A_{c,sol}} \\ + \frac{N_{aderenza,\max(soletta)}*l}{E_{c}A_{c,sol}} = 0 \end{split}$$

 $N_{aderenza, \max(soletta)} =$

$$= \varepsilon_{cs} E_c A_{c,sol} + N_{aderenza,\max(armatura)} + N_{aderenza,\max(trave\ metallica)} =$$

= 1,75 * 10⁻⁴ * 36283 * 1393200 * 10⁻³ + 3006 + 2451 = 14303 kN

Dunque il calcolo analitico sovrastima la risultante (di circa un 23%).

Tabella 63 - Risultante dello sforzo assiale nella soletta in corrispondenza della sezione di mezzeria per lo schema strutturale iperstatico.

S11 _{tot soletta}	11,430	[MPa]
$A_{c,soletta}$	$1,39*10^{6}$	$[mm^2]$
N _{risultante,soletta} =N _{max,soletta}	15877,70	[kN]

Scrivendo la relazione di congruenza tra la soletta, l'armatura e la trave metallica, sulla base delle osservazioni fatte nella fase di studio teorico, si può calcolare la risultante dello sforzo assiale nella soletta, per lo schema strutturale iperstatico, manualmente secondo la formula seguente:

$$-\varepsilon_{cs} * l - \frac{N_{aderenza,\max(armatura)} * l}{E_c A_{c,sol}} - \frac{N_{aderenza,\max(trave\ metallica)} * l}{E_c A_{c,sol}} + \frac{N_{aderenza,\max(soletta)} * l}{E_c A_{c,sol}} = 0$$

 $N_{aderenza, \max(soletta)} =$

 $= \varepsilon_{cs} E_c A_{c,sol} + N_{aderenza, \max(armatura)} + N_{aderenza, \max(trave metallica)} =$ = 1,75 * 10⁻⁴ * 36283 * 1393200 * 10⁻³ + 1911 + 5942 = 16699 kN

Dunque il calcolo analitico sovrastima la risultante (di circa un 5%).

10.2 Analisi a lungo termine (modulo elastico a lungo termine)

Si considerano di seguito i risultati ottenuti per i modelli in cui si è adottato un modulo a lungo termine per i due schemi strutturali considerati:

Figura 260 - Tensioni in direzione longitudinale nella trave nello schema strutturale isostatico in cui si è assunto modulo elastico a lungo termine per il calcestruzzo.

Figura 261 - Tensioni in direzione longitudinale nella trave nello schema strutturale iperstatico in cui si è assunto modulo elastico a lungo termine per il calcestruzzo.

Tabella 64 - Risultante dello sforzo assiale nella trave in corrispondenza della sezione di mezzeria per lo schema strutturale isostatico.

S11 _{tot_trave}	-4,457	[MPa]
A _{s,trave}	$0,28*10^{6}$	$[mm^2]$
N _{risultante,trave} =N _{max,trave}	-1247,96	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante dello sforzo assiale nella trave metallica, per lo schema strutturale isostatico, manualmente secondo la formula seguente:

$$N_{aderenza,max} = \frac{\varepsilon_{cs}}{\left(\frac{4}{E_s A_{s,a}} + \frac{1}{E_c A_{c,sol}}\right)} = \frac{-1,75 * 10^{-4}}{\left(\frac{4}{210000 * 286800} + \frac{1}{12094 * 1393200}\right)} = -1391650,09 \, N = -1392 \, kN$$

Dunque il calcolo analitico sovrastima la risultante (di circa un 11%).

In tale equazione si è assunta la riduzione del coefficiente numerico nel termine relativo deformazione della soletta perché la diversità tra i moduli elastici dei due materiali costituenti l'elemento lo giustifica:

$$\chi_{sol} = \chi_a$$

$$\frac{6N}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2} \Rightarrow \frac{cN}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_aA_ah_a} \Rightarrow c = 6\frac{E_{sol}}{E_a}\frac{b_{sol}*h_{sol}^2}{A_a*h_a} = 6\frac{36283}{210000}\frac{4980*300^2}{286800*1900} = 0,85$$

Tabella 65 - Risultante dello sforzo assiale nella trave in corrispondenza della sezione di mezzeria per lo schema strutturale iperstatico.

S11 _{tot_trave}	-9,068	[MPa]
A _{s,trave}	$0,28*10^{6}$	$[mm^2]$
N _{risultante,trave} =N _{max,trave}	-2539,04	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante dello sforzo assiale nella trave metallica, per lo schema strutturale isostatico, manualmente secondo la formula seguente:

$$N_{aderenza,max} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_{s,a}} + \frac{1}{E_c A_{c,sol}}\right)} =$$

$$=\frac{-1,75*10^{-4}}{\left(\frac{1}{210000*286800}+\frac{1}{12094*1393200}\right)}=-2305665\,N=-2305\,kN$$

Dunque il calcolo analitico sottostima la risultante (di circa un 9%).

In tale equazione si è assunta la riduzione del coefficiente numerico nel termine relativo deformazione della soletta perché la diversità tra i moduli elastici dei due materiali costituenti l'elemento lo giustifica:

$$\chi_{sol} = \chi_a$$

$$\frac{6N}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_ab_ah_a^2} \Rightarrow \frac{cN}{E_{sol}b_{sol}h_{sol}^2} = \frac{6N}{E_aA_ah_a} \Rightarrow c = 6\frac{E_{sol}}{E_a}\frac{b_{sol}*h_{sol}^2}{A_a*h_a} = 6\frac{36283}{210000}\frac{4980*300^2}{286800*1900} = 0.85$$

In questo caso si è ridotto anche il coefficiente numerico nel termine relativo deformazione dell'anima in quanto lo schema strutturale iperstatico limite l'inflessione dell'anima stessa.

Figura 262 - Tensioni in direzione longitudinale nelle armature nello schema strutturale isostatico in cui si è assunto modulo elastico a lungo termine per il calcestruzzo.

Figura 263 - Tensioni in direzione longitudinale nelle armature nello schema strutturale iperstatico in cui si è assunto modulo elastico a lungo termine per il calcestruzzo.

Tabella 66 - Risultante dello sforzo assiale nell'armatura in corrispondenza della sezione di mezzeria per lo schema strutturale isostatico.

S11 _{tot} armatura	-14,797	[MPa]
A _{s,armatura}	$0,10*10^{6}$	$[mm^2]$
Nrisultante,armatura =Nmax,armatura	-1479,7	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante dello sforzo assiale nell'armatura, per lo schema strutturale isostatico, manualmente secondo la formula seguente:

$$N_{aderenza,max} = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_c + n_\infty A_s}\right) = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_{ci}}\right) =$$
$$= (-1,75 * 10^{-4}) * \left(\frac{210000 * 1393200 * 100800}{3143088}\right) = -1642006,23 N =$$
$$= -1642 \ kN$$

Si è assunta l'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{aderenza,max} = cost.$

Dunque il calcolo analitico sovrastima la risultante (di circa un 10%).

Tabella 67 - Risultante dello sforzo assiale nell'armatura in corrispondenza della sezione di mezzeria per lo schema strutturale iperstatico.

S11 _{tot} armatura	-7,418	[MPa]
A _{s,armatura}	$0,10*10^{6}$	$[mm^2]$
Nrisultante,armatura =Nmax,armatura	-741,80	[kN]

Ricordando le relazioni scritte in precedenza nella fase di studio teorico si può calcolare la risultante dello sforzo assiale nell'armatura, per lo schema strutturale iperstatico, manualmente secondo la formula seguente:

$$N_{aderenza,max} = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_c + n_{\infty} A_s}\right) = \varepsilon_{cs} * \left(\frac{E_s A_c A_s}{A_{ci}}\right) =$$
$$= (-1,75 * 10^{-4}) * \left(\frac{210000 * 1393200 * 100800}{3143088}\right) = -1642006,23 N =$$
$$= -1642 \ kN$$

Si è assunta l'ipotesi di andamento dello sforzo assiale di aderenza costante $N_{aderenza}(x) = N_{aderenza,max} = cost.$

Dunque il calcolo analitico sovrastima la risultante (di circa un 27%).

In questo caso, tramite il calcolo analitico non si riesce a cogliere con sufficiente precisione il valore della risultante delle tensioni nelle armature. Si osserva comunque che fisicamente, in una struttura iperstatica esternamente, di fatto la presenza di vincoli intermedi, comporta in corrispondenza di tali vincoli una diminuzione di trazione e di compressione rispettivamente ai lembi di intradosso ed estradosso. In particolare la soletta perde la compressione che le era favorevole per evitare la fessurazione e risulta completamente tesa, mentre le armature, al contrario, riducono favorevolmente la compressione alla quale sarebbero soggette a causa dell'inflessione della trave.

Figura 264 - Tensioni in direzione longitudinale nella soletta nello schema strutturale isostatico in cui si è assunto modulo elastico a lungo termine per il calcestruzzo.

Figura 265 - Tensioni in direzione longitudinale nella soletta nello schema strutturale iperstatico in cui si è assunto modulo elastico a lungo termine per il calcestruzzo.

Osservazioni:

• lo stato tensionale di trazione della soletta presenta i massimi in corrispondenza dell'appoggio intermedio ed i picchi che la forza di scorrimento all'interfaccia concentra alle due estremità della trave.

Candidato: Francesco Cavallini

 Tabella 68 - Risultante dello sforzo assiale nella soletta in corrispondenza della sezione di mezzeria per lo schema strutturale isostatico

S11 _{tot soletta}	3,977	[MPa]
A _{c,soletta}	1,39*10 ⁶	$[mm^2]$
N _{risultante,soletta} =N _{max,soletta}	5528,03	[kN]

Scrivendo la relazione di congruenza tra la soletta, l'armatura e la trave metallica, sulla base delle osservazioni fatte nella fase di studio teorico, si può calcolare la risultante dello sforzo assiale nella soletta, per lo schema strutturale isostatico, manualmente secondo la formula seguente:

$$\begin{split} -\varepsilon_{cs}*l - \frac{N_{aderenza,\max(armatura)}*l}{E_{c}A_{c,sol}} - \frac{N_{aderenza,\max(trave\ metallica)}*l}{E_{c}A_{c,sol}} \\ + \frac{N_{aderenza,\max(soletta)}*l}{E_{c}A_{c,sol}} = 0 \end{split}$$

 $N_{aderenza, \max(soletta)} =$

$$= \varepsilon_{cs} E_c A_{c,sol} + N_{aderenza,\max(armatura)} + N_{aderenza,\max(trave\ metallica)} =$$

= 1,75 * 10⁻⁴ * 12094 * 1393200 * 10⁻³ + 1479 + 1248 = 5675 kN

Dunque il calcolo analitico sovrastima la risultante (di circa un 3%).

Tabella 69 - Risultante dello sforzo assiale nella soletta in corrispondenza della sezione di mezzeria per lo schema strutturale iperstatico.

S11 _{tot soletta}	4,778	[MPa]
A _{c,soletta}	1,39*10 ⁶	$[mm^2]$
N _{risultante,soletta} =N _{max,soletta}	6641,42	[kN]

Scrivendo la relazione di congruenza tra la soletta, l'armatura e la trave metallica, sulla base delle osservazioni fatte nella fase di studio teorico, si può calcolare la risultante dello sforzo assiale nella soletta, per lo schema strutturale iperstatico, manualmente secondo la formula seguente:

$$\begin{split} -\varepsilon_{cs} * l - \frac{N_{aderenza,\max(armatura)} * l}{E_c A_{c,sol}} - \frac{N_{aderenza,\max(trave\ metallica)} * l}{E_c A_{c,sol}} \\ + \frac{N_{aderenza,\max(soletta)} * l}{E_c A_{c,sol}} = 0 \end{split}$$

 $N_{aderenza, \max(soletta)} =$

 $= \varepsilon_{cs} E_c A_{c,sol} + N_{aderenza,\max(armatura)} + N_{aderenza,\max(trave\ metallica)} =$ = 1,75 * 10⁻⁴ * 12094 * 1393200 * 10⁻³ + 741 + 2539 = 6228 kN

Dunque il calcolo analitico sottostima la risultante (di circa un 6%).

PARTE II – Studio di un caso reale

11 Applicazione ad un caso reale: impalcato tri-trave a sezione mista

11.1 Descrizione dell'opera

Il manufatto preso in esame è un viadotto rettilineo di lunghezza complessiva pari a 220 m. La struttura adottata è in sistema misto acciaio calcestruzzo con schema statico in esercizio di trave continua su sei appoggi con luci di 30+50+60+50+30 m.

La travata metallica è costituita da 3 travi affiancate di altezza variabile (da un minimo di 1,40 m, ad un massimo di 3,00 m); le travi esterne hanno anime inclinate internamente di 20° rispetto alla verticale, interasse inferiore variabile in funzione dell'altezza delle travi ed interasse superiore pari a 7,6 m.

Le tre travi principali sono realizzate a doppio T composto saldato e sono collegate tramite diaframmi, interposti a distanza variabile con interasse massimo pari a 6,25 m. I diaframmi intermedi sono composti da angolari che formano una struttura reticolare, mentre i diaframmi di pila e di spalla sono pieni e composti da un doppio T composto saldato.

Completa la struttura il controvento inferiore, la cui maglia tipica ha larghezza variabile di circa 6,5 m e lunghezza variabile pari al passo dei diaframmi.

L'impalcato ha larghezza pari a 12,20 m, con alloggiata una carreggiata con due corsie da 3,75 m ciascuna più due banchine da 1,5 m.

La sezione stradale è completata da due cordoli esterni, con una larghezza pari a 0,85 m e spessore sopra la soletta pari a 0,15 m, su cui sono posizionati i sicurvia con le barriere integrate e le canalette di raccolta acqua laterali.

La soletta in calcestruzzo armato, di spessore costante pari a 28 cm, è gettata su coppelle prefabbricate in calcestruzzo di spessore 6 cm, che fungono da casserature a perdere.

Le coppelle sono inoltre provviste di aree libere in corrispondenza delle piattabande superiori delle travi sottostanti al fine di consentire la disposizione dei connettori di tipo Nelson.

Per motivi di realizzabilità e di trasporto la travata viene prefabbricata in conci di lunghezza massima di \cong 13,0 m. Tali conci vengono quindi assemblati in opera mediante giunzioni saldate a piena penetrazione, mentre i giunti dei diaframmi e dei controventi vengono eseguiti mediante giunti bullonati a taglio.

Figura 266 - Sezione trasversale tipica.

Figura 267 - Sezione trasversale.

11.2 Analisi strutturale

11.2.1 Fasi di calcolo

Per quanto riguarda il funzionamento globale dell'impalcato, essendo nel caso di un sistema misto acciaio-calcestruzzo, le azioni agenti vengono suddivise in tre fasi, corrispondenti al grado di maturazione del getto di calcestruzzo e quindi ai diversi livelli di rigidezza e caratteristiche statiche delle sezioni.

<u>Fase 1 – peso proprio (G_1)</u>:

- peso proprio della struttura metallica;
- peso proprio della soletta in calcestruzzo che, in questa fase, è ancora inerte;

La sezione resistente corrisponde alla sola struttura metallica in questa prima fase.

Fase 2:

- <u>permanenti portati (G₂)</u>:
 - cordolo in calcestruzzo;
 - guard rails e barriera antirumore;
 - impianti e veletta;
 - pavimentazione stradale;

- <u>effetti del ritiro (ε₂)</u>

La sezione resistente è costituita dalla sezione mista acciaio - calcestruzzo in questa seconda fase.

Per tenere in considerazione i fenomeni "lenti" che accompagnano questa fase, imputabili alla viscosità del calcestruzzo, si adotta un valore del modulo elastico del calcestruzzo corrispondente a quello suggerito dalla normativa, che si traduce, per le verifiche condotte con il metodo degli stati limiti, a considerare un valore del coefficiente di omogeneizzazione n_{∞} a lungo termine.

Anche gli effetti del ritiro sono da considerarsi "lenti" in quanto concomitanti agli effetti viscosi, e vengono pertanto anch'essi valutati con le caratteristiche di resistenza della sezione della fase 2.

In particolare gli effetti del ritiro sull'intera struttura del viadotto vengono tradotti con un' azione costituita da una variazione termica negativa corrispondente alla deformazione indotta dal ritiro.

<u>Fase 3- carichi mobili (Q_1) :</u>

- carichi mobili;
- variazione termica differenziale;

La sezione resistente è costituita dalla sezione mista acciaio - calcestruzzo in questa seconda fase.

11.2.2 Materiali

<u>Calcestruzzo</u>

Per la realizzazione della soletta è previsto l'impiego di calcestruzzo di classe C35/45.

Ycls	24	kN/m^3
Ycls,armato	25	kN/m ³
f _{ck}	35	N/mm^2
$f_{cm} = f_{ck} + 8$	43	N/mm^2
$E_{c0} = 9,5(f_{ck} + 8)^{1/3}$	33,5	kN/mm^2
α_c	$12*10^{-6}$	°C ⁻¹

.Tabella 70 - Proprietà del calcestruzzo.

Gli effetti della viscosità e del ritiro sono valutati mediante un modulo del calcestruzzo corretto:

$$E_{\infty} = \frac{E_{c0}}{1 + \Psi_L * \phi(t, t_0)}$$

Tabella 71 - Valori del coefficiente Ψ_L suggeriti dall'EC4-2 in funzione del tipo di azione.

Tipo di azione	EC4-2
Carichi permanenti e presollecitazione con cavi dopo che la connessione trave-soletta sia divenuta efficace	1,10
Effetti isostatici ed iperstatici del ritiro	0,55
Presollecitazione con cedimenti vincolari	1,50

Le caratteristiche geometriche di una sezione trasversale composta sono definite omogeneizzando la soletta alla trave metallica.

Per le azioni di breve durata si utilizza il modulo elastico del calcestruzzo a 28 giorni.

Per le azioni di lunga durata si definiscono i coefficienti di omogeneizzazione corretti in funzione del tipo di azione, secondo la seguente espressione:

$$n_L = \frac{E_a}{E_{\infty}} = \frac{E_a}{E_{c0}/(1 + \Psi_L * \phi(t, t_0))} = n_0(1 + \Psi_L * \phi(t, t_0))$$

Candidato: Francesco Cavallini

Azioni di breve durata	$n = n_0 = \frac{E_a}{E_{\rm c0}} = \frac{210000}{33500} \cong 6,27$
Azioni di lunga durata	$n = n_g = n_0 (1 + \Psi_L * \phi(t, t_0)) =$
(carichi permanenti)	= 6,27 * (1 + 1,10 * 1,399) = 15,92
Azioni di lunga durata	$n = n_{cs} = n_0(1 + \Psi_L * \phi(t, t_0)) =$
(ritiro calcestruzzo)	= 6,27 * (1 + 0,55 * 2,604) = 15,25

Tabella 72 - Coefficienti di omogeneizzazione.

Acciaio per l'armatura lenta

L'acciaio impiegato per l'armatura lenta è del tipo B450C.

Tabella 73 - Proprietà dell'acciaio da armatura lenta.

$\gamma_{acciaio}$	78,5	kN/m ³
f_{tk}	540	N/mm^2
f_{yk}	450	N/mm^2
E _a	210000	N/mm^2
α_a	$12*10^{-6}$	°C ⁻¹

Acciaio per la carpenteria metallica

Tabella 74 - Proprietà dell'acciaio da carpenteria metallica.

Yacciaio	78,5	kN/m^3	
f_{yk}	355	N/mm^2	a < 10 mm
f_u	510	N/mm^2	S < 40 mm
f_{yk}	335	N/mm^2	10 mm < c < 100 mm
f_u	490	N/mm^2	40 11111 < 3 < 100 11111
Ea	210000	N/mm^2	
α_a	$12*10^{-6}$	°C ⁻¹	

11.2.2 Analisi dei carichi

Per valutare l'entità dei carichi da applicare agli elementi del modello discreto si calcolano le reazioni dovute all'effettiva distribuzione delle azioni unitarie sulla sezione del viadotto, considerando gli elementi trave come vincoli fissi.

<u>Fase 1 – peso proprio (G_1)</u>:

Il peso della struttura metallica è applicato al modello dal programma in funzione delle aree assegnate agli elementi della struttura.

 $\gamma_{cls} * s_{soletta} * b_{impalcato} = 25 \frac{kN}{m^3} * 0,28 m * 12,2 m = 85,40 \frac{kN}{m}$

Figura 268 - Schema statico per la prima fase.

Figura 269 - Modello FEM per la prima fase.

Figura 270 - Diagramma del momento flettente ottenuto dal modello FEM per la prima fase.

Figura 271 - Diagramma del taglio ottenuto dal modello FEM per la prima fase.

$$R_A = 33,37 \frac{kN}{m}$$
$$R_B = 18,66 \frac{kN}{m}$$
$$R_C = 33,37 \frac{kN}{m}$$

Tali reazioni vincolari rappresentano i carichi a metro lineare che vanno applicati alle travi principali.

Fase 2:

Cordolo in calcestruzzo:

$$n_{cordoli} * \gamma_{cls} * s_{cordolo} * b_{cordolo} = 2 * \left(25 \frac{kN}{m^3} * 0,15 m * 0,85 m\right) = 6,37 \frac{kN}{m}$$

Guard rails + barriera antirumore:
$$2 * \left(3,5 \frac{kN}{m}\right) = 7,00 \frac{kN}{m}$$

Impianti + veletta:
$$2 * \left(1 \frac{kN}{m}\right) = 2,00 \frac{kN}{m}$$

Pavimentazione stradale:
$$\left(3 \frac{kN}{m^2} * 10,5m\right) = 31,50 \frac{kN}{m}$$

Totale: 46,87
$$\frac{kN}{m}$$

Figura 272 - Schema statico.

Figura 273 - Modello FEM per la seconda fase.

Figura 274 - Diagramma del momento flettente ottenuto dal modello FEM per la seconda fase.

Figura 275 - Diagramma del taglio ottenuto dal modello FEM per la seconda fase.

 $R_A = 23,31 \frac{kN}{m}$ $R_B = 0,25 \frac{kN}{m}$ $R_C = 23,31 \frac{kN}{m}$

Tali reazioni vincolari rappresentano i carichi a metro lineare che vanno applicati alle travi principali.

<u>Ritiro (ε₂)</u>:

La valutazione del valor medio a tempo infinito della deformazione totale per ritiro $\varepsilon_{cs}(t_{\infty}, t_0)$ è svolta secondo l'approccio suggerito dal D.M.14/01/2008.

		Deform	nazione	da ritiı	ro (seco	ndo D.	M. 14/	01/2008	3)			
RH	80	%								Interpola	tione lineare	
fck	37,4	Мра		Deformazione da rifiro per essiccamento (in %.)								
b	12200	mm	L.		U	nidítá Re	Relativa (in %)			$f(r) = \frac{x}{r}$	$f(x) = \frac{x - x_b}{y_a} - \frac{x - x_a}{y_b} - x$	
h	280	mm	- · · ·	20	40	60	80	90	100	$\int (x) x_{0}$	$-x_b^{ga}$ $x_a - x_b^{ga}$	
Ac	3/16000	mma	20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00			
	12200	mm	40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00 .			
u	12200	mm	80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00			
h0	560	mm					-			x=tck	37,4	
										xb	<u>40</u>	
εc0	-0,25	‰								ха	20	
kh	0,685									yb	-0,24	
εcd,infinito	-0,00017									ya	-0,3	
t	20833									f(x)=ɛc0	-0,25	
ts	28											
βds	0,9751545				h _e (mm)		k			Interpola	tione lineare	
εcd	-0,000166				100		l,	0				
					200 0,85		35		$f(x) = \frac{x - x_b}{y_a} - \frac{x - x_a}{y_b}$			
eca infinito	-6 85E-05				300	0,75			$\int (x) x_{0}$	$-x_b^{a}$ $x_a - x_b^{a}$		
Bac	0,002.03				≥500	0,70						
pas	C 055 05			_								
ECa	-6,85E-05											
										x=h0	560	
ECS	-0,000234									xb	<mark>500</mark>	
										ха	<mark>300</mark>	
										yb	0,7	
										уа	0,75	
										f(x)=kh	0,685	

Figura 276 - Foglio di calcolo per la determinazione della deformazione da ritiro secondo il D.M. 14/01/2008.

Dove:

 A_c è l'area della sezione di getto del calcestruzzo;

u è il perimetro della sezione di calcestruzzo esposta all'aria;

 h_0 è una dimensione fittizia;

			Coefficier	nte di viscosità (se	condo D.M. 14	/01/2008)			
Ecm	34637	MPa					1		
Es	210000	MPa	Tabella 11.2.VI - Valor:	di φ(∞, t₀). Atmosfera co	n unddità relativa di	l eltea il 75%		Interpolaz	ione lineare
Urel	80%		6	h ₀ ≤75 mm	h ₀ = 150	h ₀ =300	h ₀ ≥ 600		
tO	1gg		7 giorni	2,9	3,2 2,7	2,5	2,8	$f(r) = \frac{x}{r}$	$-x_b = \frac{x - x_a}{n_b}$
φ	2,83		15 giorni 30 giorni	2,6	2,4	2,2	2,1	$y(x) = x_a$	$-x_b^{\ \ ya} x_a - x_b^{\ \ yb}$
n3	6,06		≥ 60giorni	2,0	1,8	1,5	1,6		
n2	23,20		Tabella 11.2.VII - Valor	i di φ(~, ty).Atmosfera ce	n umidità relativa di	etrea II 55%			
			lo	h ₀ ≤ 75 mm	h ₀ - 150	h ₀ -300	$h_0 \ge 600$	x=h0	560
Variazione termica per modello			3 giomi 7 giomi	4,5	4,0	3,6	3,3	xb	600
α	0.00001	°C^-1	15 giorni	3.3	3,0	2.7	2.5	xa	300
ΔT	-23,40257	°C	30 giorni	2,9	2,6	2,3	2,2	yb	2,8
			e oogreini				1.2	ya	3
								f(x)=ф	2,83

Figura 277 - Foglio di calcolo per la determinazione del coefficiente di viscosità secondo il D.M. 14/01/2008.

A seconda che si calcoli gli effetti nel breve o nel lungo termine si è considerato il relativo coefficiente di omogeneizzazione:

$$n_{ist} = \frac{E_s}{E_{cm}} = 6,27$$

 $n_{\infty} = n_{ist} * (1 + \phi_{(\infty,t_0)}) = 15,25$

Se invece di applicare la variazione termica negativa corrispondente alla deformazione da ritiro al modello, si vuole procedere con il metodo per fasi, le sollecitazioni da applicare in corrispondenza del baricentro della sezione composta sono:

$$N_{cs} = A_c * \varepsilon_{cs} * \frac{E_a}{n_{\infty}} = 3,42 * 10^6 * (-0,000234) * \frac{210000}{15,25} = -11007 \ kN$$
$$\left(\frac{11007}{3} = 3669 \ kN \ per \ ciascuna \ trave\right)$$

$$M_{cs} = 3669 * 1,04 = 11447 \ kNm$$

dove:

$$e = \frac{s_{soletta}}{2} + y_{G,lembo\ sup} = \frac{0,28}{2} + 0,9 = 1,04\ m$$

$$\alpha * \Delta T = \varepsilon_{cs} \Rightarrow \Delta T = \frac{\varepsilon_{cs}}{\alpha} = \frac{-0,000234}{10^{-5}} = -23,4^{\circ}C$$

344

Fase 3:

Carichi mobili (Q1)

Coerentemente con quanto indicato al par. 5.1.3.3.3 del DM 14/01/08 le azioni variabili del traffico, comprensive degli effetti dinamici, sono definite dai seguenti scemi di carico:

Schema di Carico 1: è costituito da carichi concentrati su due assi in tandem, applic di pneumatico di forma quadrata e lato 0,40 m, e da carichi distribuiti come mostrato in Fig. 5.1.2. Questo schema è riferimento sia per le verifiche globali, sia per le verifiche local un solo carico tandem per corsia, disposto in asse alla corsia e tandem, se presente, va considerato per intero.	ati su impronte uniformemente da assumere a i, considerando stessa. Il carico
Schema di Carico 2: è costituito da un singolo asse applicato su specifiche impronte di forma rettangolare, di larghezza 0,60 m ed altezza 0,35 m, in Fig. 5.1.2. Questo schema va considerato autonoman longitudinale nella posizione più gravosa ed è da assumere a r per verifiche locali. Qualora sia più gravoso si considererà singola ruota di 200 kN.	e di pneumatico come mostrato ente con asse iferimento solo il peso di una
Schema di Carico 3: è costituito da un carico isolato da 150kN con impronta q	uadrata di lato
Schema di Carico 4: è costituito da un carico isolato da 10 kN con impronta quadrat: Si utilizza per verifiche locali su marciapiedi protetti da s passerelle pedonali.	a di lato 0,10m. icurvia e sulle
Schema di Carico 5: costituito dalla folla compatta, agente con intensità nominal degli effetti dinamici, di 5,0 kN/m ² . Il valore di combinazione kN/m ² . Il carico folla deve essere applicato su tutte le zone sig superficie di influenza, inclusa l'area dello spartitraffico rilevante.	e, comprensiva è invece di 2,5 mificative della centrale, ove
Schemi di Carico 6.a, b, c: In assenza di studi specifici ed in alternativa al mo principale, generalmente cautelativo, per opere di luce maggio fini della statica complessiva del ponte, si può far riferimen carichi q _{L,a} , q _{L,b} e q _{L,c}	dello di carico ore di 300 m, ai nto ai seguenti
$q_{L,a} = 128,95 \left(\frac{1}{L}\right)^{0.25} [kN/m];$	(5.1.1)
$q_{L,b} = 88,71 \left(\frac{1}{L}\right)^{0.38} [kN/m];$	(5.1.2)
Q _{1k} Q _{1k} q _{1k}	Carico tandem 2 Q _{ik}
■ 0.5 2,0 Corsia n. 1 Q1k=300 kN q1k= 9 kN/m ²	Tandem 00 → 0,50 m
■ 0.5 2.0 Corsia n. 2 Q _{2k} =200 kN q _{2k} = 2.5 kN/m ²	007 Tandem 007 1,60
0,5	0,40

Figura 278 - Schemi di carico previsti dal D.M.14/01/2008.

Candidato: Francesco Cavallini

Per l'applicazione dei carichi al modello si è utilizzato un apposito preprocessore, il SAPBRIDGE che, una volta inseriti i risultati della ripartizione trasversale, produce per ogni distribuzione trasversale 'n' condizioni di carico, facendo "muovere" il carico concentrato Q_{1k} lungo tutto il viadotto con passo predefinito e segmentando il carico distribuito q_{1k} nel rispetto delle linee di influenza.

Ripartizione trasversale dei carichi mobili

Si riportano di seguito le condizioni di carico considerate, in cui il valore del carico concentrato rappresenta la singola ruota.

Massimo carico verticale sul lato esterno

Figura 279 - Distribuzione dei carichi con carico verticale massimo sul lato esterno.

Figura 280 - Diagramma dei momenti flettenti e del taglio dovuti ai carichi concentrati.

Figura 281 - Diagramma dei momenti flettenti e del taglio dovuti ai carichi distribuiti.

Figura 282 - Reazioni offerte dalle travi per i carichi concentrati.

 $R_A = 323,0 \frac{kN}{m}$ $R_B = 230,4 \frac{kN}{m}$ $R_C = 46,7 \frac{kN}{m}$

Tali reazioni vincolari rappresentano i carichi a metro lineare che vanno applicati alle travi principali.

Figura 283 - Reazioni offerte dalle travi per i carichi distribuiti.

$$R_A = 27,5 \frac{kN}{m}$$
$$R_B = 10,2 \frac{kN}{m}$$
$$R_C = 8,2 \frac{kN}{m}$$

Tali reazioni vincolari rappresentano i carichi a metro lineare che vanno applicati alle travi principali.

Massima eccentricità del carico

Figura 284 - Distribuzione dei carichi con eccentricità massima.

Figura 285 - Diagramma dei momenti flettenti e del taglio dovuti ai carichi concentrati.

Figura 286 - Diagramma dei momenti flettenti e del taglio dovuti ai carichi distribuiti.

Figura 287 - Reazioni offerte dalle travi per i carichi concentrati.

$$R_A = 329,4 \frac{kN}{m}$$
$$R_B = 177,0 \frac{kN}{m}$$
$$R_C = -6,2 \frac{kN}{m}$$

Tali reazioni vincolari rappresentano i carichi a metro lineare che vanno applicati alle travi principali.

$$R_A = 27,9 \frac{kN}{m}$$
$$R_B = 5,8 \frac{kN}{m}$$
$$R_C = -0,4 \frac{kN}{m}$$

Tali reazioni vincolari rappresentano i carichi a metro lineare che vanno applicati alle travi principali.

Massimo carico sulla trave centrale

Figura 289 - Distribuzione dei carichi massimi sulla trave centrale.

Figura 290 - Diagramma dei momenti flettenti e del taglio dovuti ai carichi concentrati.

Figura 291 - Diagramma dei momenti flettenti e del taglio dovuti ai carichi distribuiti.

Figura 292 - Reazioni offerte dalle travi per i carichi concentrati.

$$R_A = 136,2 \frac{kN}{m}$$
$$R_B = 367,0 \frac{kN}{m}$$
$$R_C = 97,0 \frac{kN}{m}$$

Tali reazioni vincolari rappresentano i carichi a metro lineare che vanno applicati alle travi principali.

Figura 293 - Reazioni offerte dalle travi per i carichi distribuiti.

$$R_A = 11,3 \frac{kN}{m}$$
$$R_B = 27,0 \frac{kN}{m}$$
$$R_C = 7,5 \frac{kN}{m}$$

Tali reazioni vincolari rappresentano i carichi a metro lineare che vanno applicati alle travi principali.

Si osserva che il coefficiente dinamico amplificativo dei carichi mobili è già compreso all'interno dei valori di carico stessi forniti dal D.M. 14/01/2008.

Effetti della temperatura (ε_3)

Gli effetti della temperatura vengono valutati con riferimento al paragrafo 3.5 delle Norme Tecniche. Al punto 3.5.2 vengono indicati i valori di riferimento dell'aria esterna T_{est} nei casi di temperatura massima estiva e minima invernale, relativamente ad un periodo di ritorno di 50 anni.

Si assumono i seguenti valori:

$$T_{max} = 45^{\circ}C$$

 $T_{min} = -15^{\circ}C$

Per quanto concerne la temperatura minima questa non si considera sollecitante la soletta perché agente in modo uniforme sull'impalcato. La sostanziale analogia fra i coefficienti di dilatazione termica del calcestruzzo e dell'acciaio consente quindi di non tener conto di deformazioni differenziali. Si ammette quindi che la temperatura dell'aria esterna in inverno non induca stati coattivi nella soletta.

Nel periodo estivo, invece, le temperature della superficie esterna $T_{sup,est}$ e quella della superficie interna $T_{sup,int}$ dell'elemento considerato vengono valutate a partire dalla temperatura dell'aria esterna T_{est} e di quella interna T_{int} nonché del trasferimento del calore per irraggiamento dalla superficie superiore sino all'intradosso. La temperatura massima della superficie estradossale della soletta è data da (tenendo conto della tabella 3.5.I):

$$T_{pav} = T_{conv} + \Delta T_{irr} = 45^{\circ}C + 42^{\circ}C = 87^{\circ}C$$

In cui si è assunto $\Delta T_{irr} = 42^{\circ}C$, trattandosi di superficie esposta a sud-ovest, orizzontali, in estate.

Ipotizzando che tale valore di temperatura vari linearmente sino ai 45°C dell'intradosso dell'impalcato e con riferimento, prudenzialmente, all'altezza minima dell'impalcato (1,4 m), si ottiene:

$$\Delta T_{M} = (T_{sup,est})_{e} - (T_{sup,est})_{i} =$$

$$= (T_{sup,est})_{i} + \frac{h_{ts}}{h} * [T_{pav} - (T_{sup,est})_{i}] - (T_{sup,est})_{i} =$$

$$= T_{conv} + \frac{h_{ts}}{h} * [T_{pav} - T_{conv}] - T_{conv} = \frac{(77,8 + \frac{1,40}{1,68} * [87 - 77,8] - 77,8)}{2}$$

$$= \frac{7,6^{\circ}C}{2} = 3,8^{\circ}C$$

Figura 294 - Distribuzioni considerate per l'azione della temperatura sull'impalcato.

Ai fini del calcolo delle sollecitazioni si assume a favore di sicurezza, un valore uniforme di 5°C ed una variazione termica a farfalla pari a \pm 5°C. Quest'ultima corrisponde ad un gradiente pari a 32,86 °C/m.

 $\frac{T_b - T_a}{h_b - h_a} = \frac{87 - 77.8}{1.68 - 1.40} \cong 32.86^{\circ}C/m$

Il conseguente diagramma delle sollecitazioni termico di input risulta:

Figura 295 - Diagramma del momento flettente dovuto alla componente di variazione termica differenziale.

 $M_A = 0 \ kNm$ $M_B = 30,79 \ kNm$ $M_C = 0 \ kNm$

Azione del vento (Q₅)

Si valuta la pressione del vento in accordo con il D.M. 14/01/2008.

			Azione del vento D.M 14/01/2008
	2		Zona di riferimento - Parametro da figura 3.3.1 pag.27 D.M.2008
V _{b,0}	25,00	m/s	Parametro da tabella 3.3.1 pag. 26 D.M.2008
a ₀	750,00	m	Parametro da tabella 3.3.1 pag. 26 D.M.2008
k _a	0,02	1/s	Parametro da tabella 3.3.1 pag. 26 D.M.2008
a _s	750,00	m	Altitudine sul livello del mare del sito
Vh	25.00	m/s	Velocità di riferimento - Parametro da formula 3 3 1 pag. 26 D M 2008
ρ	1,25	kg/m ³	Densità dell'aria
q _b	390,63	N/m ²	Pressione cinetica di riferimento
	D		Classe di rugosità del terreno - Tabella 3 3 III nag. 29 D. M 2008
	III		Categoria di esposizione del sito - Figura 3.3.2 pag. 29 D.M.2008
k _r	0,20		Parametro da tabella 3,3,11 pag. 28 D.M.2008
C _t	1,00		Coefficiente di topografia
z	26,30	m	Altezza del suolo
z ₀	0,10	m	Parametro da tabella 3.3.II pag. 28 D.M.2008
Z _{min}	5,00	m	Parametro da tabella 3.3.II pag. 28 D.M.2008
c _e (z _{min})	1,71		Coefficiente di esposizione minimo
c _e (z)	2,80		Coefficiente di esposizione di calcolo - Parametro da formula 3.3.5 pag. 28 D.M.2008
Cp	2,40		Coefficiente di forma o aerodinamico - Parametro da Istruzioni D.M.2008
c _d	1,00		Coefficiente dinamico - Parametro definito al paragrafo 3.3.8 pag. 30 (generalmente posto cautelativamente unitario)
р	2,63	kPa	Pressione cinetica di riferimento del vento
b	1	m	Striscia di soletta unitaria considerata
h _b	3	m	Altezza barriera integrata
F _{Rv}	7,88	kN	Risultante applicata ad ogni metro di barriera integrata a metà altezza della barriera
M _{Rv}	11.82	kNm/m	

Figura 296 - Foglio di calcolo per la determinazione della pressione cinetica di riferimento secondo il D.M. 14/01/2008.

Figura 297 – Diagrammi del momento flettente ottenuti dal modello FEM per l'azione del vento.

Figura 298 - Diagrammi del taglio ottenuti dal modello FEM per l'azione del vento.

11.3 Modello di calcolo

L'analisi dello stato tensio-deformativo degli elementi costituenti la struttura è stata svolta mediante la realizzazione di tre modelli di calcolo ad elementi finiti tramite il programma "SAP2000" della "Computers & Structures Inc.", Berkeley – California (USA).

Sono stati considerati tre modelli di calcolo corrispondenti alle ipotesi di carico di breve, di lunga durata e della sola struttura metallica tri-trave.

I modelli di calcolo implementati possono essere di seguito riassunti:

- 1) **Modello A** (sezione tipo 1): modello che considera le proprietà inerziali della sola sezione metallica. Il modello è utilizzato per la valutazione degli effetti indotti dai soli pesi propri della struttura portante metallica e della soletta in fase di getto;
- 2) **Modello B** (sezione tipo 2): modello che considera le proprietà inerziali della sezione composta dalla soletta collaborante e dalla trave metallica omogeneizzata al calcestruzzo tramite il coefficiente n = 6 (breve termine). Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di breve durata (variazioni termiche, carichi mobili, vento);
- 3) **Modello C** (sezione tipo 3e 4): modello che considera le proprietà inerziali della sezione composta dalla soletta collaborante e dalla struttura metallica omogeneizzata al calcestruzzo tramite il coefficiente n = 16 (lungo termine). Il modello è utilizzato per la valutazione degli effetti indotti dalle azioni di lunga durata (carichi permanenti e ritiro). In particolare si sono considerati due modelli differenti per valutare separatamente gli effetti dei carichi permanenti (viscosità) e ritiro, adottando rispettivamente un coefficiente pari a n = 16,09 per i permanenti e n = 15,41 per il ritiro.

11.3.1 Modelli FEM

Caratteristiche generali:

- l'impalcato è stato modellato tramite una serie di elementi finiti bidimensionali tipo "shell" e modimensionali tipo "frames";
- è stata trascurata la pendenza longitudinale del viadotto;
- i modelli schematizzano fedelmente la reale geometria dell'opera rispettando gli ingombri solidi dei vari elementi e l'offset tra il piano medio della soletta e il piano baricentrale delle sezioni delle travi metalliche.

Sono state eseguite quattro differenti modellazioni dell'impalcato al fine di stabilire quale sia il criterio più adeguato per modellare questo tipo di struttura.

Modello 1): con soli elementi di tipo "shell"

Si è cercato di realizzare un modello che fosse il più aderente possibile alla geometria reale, rappresentando con elementi shell il maggior numero di elementi possibile: soletta, anima e ali delle travi metalliche, diaframmi trasversali. Gli elementi di controvento sono invece stati modellati con elementi di tipo frame. Per rispettare il reale ingombro degli elementi si è assegnato un offset tra soletta e ali superiori delle travi, realizzando la connessione tra travi e soletta tramite una serie di elementi di tipo "Link elements" di connessione rigidi.

Figura 299 - Modello di calcolo realizzato principalmente con elementi di tipo "shell".

Figura 300 - Modello di calcolo con ingombro solido degli elementi "frames" e "shell".

Modello 2): con soli elementi di tipo "frame"

Si è cercato di realizzare un modello che fosse il più semplice da gestire dal punto di vista dei risultati da ricavare. Si è assegnata la geometria variabile alle tre travi, ciascuna con la propria porzione di soletta collaborante. Per garantire la collaborazione trasversale tra le tre travi si sono assegnati dei link rigidi tra i nodi delle travi in corrispondenza degli appoggi e dei giunti tra i conci.

Figura 301 - Modello di calcolo realizzato con elementi di tipo "frame".

Figura 302 - Modello di calcolo con ingombro solido degli elementi "frame".

Figura 303 - Sezioni miste assegnate tramite il "Section Designer".

Modello 3): con elementi di tipo "frame" ed elementi di tipo "shell"

Si è cercato di realizzare un modello che permettesse il compromesso tra un modello facilmente gestibile che al tempo stesso rappresenta abbastanza fedelmente la geometria reale. In particolare si è assegnata la geometria variabile delle travi tramite il comando "Section Designer", quindi le travi sono state rappresentate con elementi "frame". La soletta, invece, è stata modellata con elementi di tipo "shell". Dato che i nodi degli elementi frame e degli elementi shell sono i medesimi, si sono assegnati degli offset agli elementi frame in modo da evitare sovrapposizione tra soletta e travi.

Figura 304 - Modello di calcolo realizzato con elementi di tipo "frame" e "shell".

Figura 305 - Modello di calcolo con ingombro solido degli elementi "frame" e "shell".

Modello 4): con elementi di tipo "frame" ed elementi di tipo "shell", con reticolare spaziale

Si è cercato di realizzare un modello che rappresentasse l'effettiva collaborazione trasversale tra le travi, garantita dai diaframmi e dagli elementi di controvento. Per realizzare tale geometria spaziale si è rappresentata la soletta con elementi "shell", mentre le travi con elementi "frame", con l'offset opportuno tra nodi degli elementi frame e quelli degli elementi shell. La realizzazione della reticolare spaziale di controventamento ha richiesto l'aggiunta di appositi nodi esterni alla geometria di travi e soletta. Per garantire il funzionamento complessivo si sono assegnati link rigidi in direzioni verticale tra i nodi degli elementi frame che rappresentano le travi e superiormente con i nodi appartenenti agli elementi shell che schematizzano la soletta, mentre inferiormente ai nodi inferiori del sistema reticolare.

Figura 306 - Modello di calcolo realizzato con elementi di tipo "frame" e "shell".

Figura 307 - Modello di calcolo con ingombro solido degli elementi "frame" e "shell".

Ai fini della modellazione e successiva verifica degli elementi strutturali, la trave continua d'impalcato è stata discretizzata in 18 conci di sezione variabile tra le sezioni di estremità ad essi relative: nelle tabelle seguenti si riportano le caratteristiche inerziali delle sezioni assegnate. I valori numerici caratterizzano le grandezze definite nei titoli delle Tabelle, con riferimento alla geometria riportata nella figura seguente.

Figura 308 - Individuazione delle sezioni di calcolo.

Candidato: Francesco Cavallini

TRAVE CENTRALE									
conci	Iconci	Iprogressive	htrave	Sanima	bala_sup	Sala_sup	bala_inf	Sala_inf	
	[m]	[m]	[m]	[mm]	[mm]	[mm]	[mm]	[mm]	
C1	12 1	0	1,4	18	600	18	800	40	
	12,1	0	1,53	10	000	10	000	-10	
C2	13	12.1	1,53	14	600	30	800	40	
		/_	2,12						
C3	11	25,1	2,12	16	700	35	900	45	
		,	2,05					73	
C4	12,75	36,1	2,05	16	600	20	900	45	
			1,43						
C5	13,5	48,85	1,43	14	600	20	1000	45	
			1,59						
C6	12,75	62,35	1,59	16	800	40	900	40	
			2,54						
C7	11	75,1	2,34	18	900	40	1000	50	
			2,09						
C8	12	86,1	2.03	16	800	35	900	40	
			2.03						
C9	13	98,1	1,8	14	600	20	1000	45	
			1,8			•••			
C10	12	111,1	2,03	14	600	20	1000	45	
C11	10	100.1	2,03	10	000	25	000	40	
CII	12	123,1	2,68	10	800	35	900	40	
C12	11	125 1	2,68	18	900	40	1000	50	
012	11	133,1	2,54	10	500	40	1000	50	
C13	12 75	146 1	2,54	16	800	40	900	40	
015	12,75	110,1	1,59	10	000	10	500	10	
C14	13.5	158.85	1,59	14	600	20	1000	45	
			1,42						
C15	12,75	172,35	1,42	16	600	20	900	45	
	,		2,04						
C16	11	185,1	2,04	16	700	35	900	45	
			2,12						
C17	13	13 196,1	2,12	14	600	30	800	40	
			1,53						
C18	12,1	209,1	1,53	18	600	18	800	40	
		221.2	1,4						
	1	~~_,<	1	1	1	1	1		

Tabella 75 - Caratteristiche geometriche delle sezioni indagate.

	TRAVI LATERALI									
conci	Iconci	Iprogressive	htrave	htrave_inclinata	spost_base	Sanima	bala_sup	Sala_sup	bala_inf	Sala_inf
	[m]	[m]	[m]	[m]	[m]	[mm]	[mm]	[mm]	[mm]	[mm]
C1	12.1	0	1,4	1,62	0,81	20	600	10	800	40
	12,1	0	1,53	1,77	0,88	20	000	10	800	40
C2	12	17 1	1,53	1,77	0,88	1/	700	20	800	40
C2	13	12,1	2,12	2,45	1,22	14	700	50	800	40
63	11	25 1	2,12	2,45	1,22	16	700	25	900	45
03	11	23,1	2,05	2,37	1,18	10	700	55	900	45
C1	12 75	26.1	2,05	2,37	1,18	16	700	20	000	45
C4	12,75	50,1	1,43	1,65	0,83	10	700	50	900	43
C5	12 5	10 05	1,43	1,65	0,83	1/	700	20	1000	50
0	15,5	40,03	1,59	1,84	0,92	14	700	50	1000	30
6	12 75	62.25	1,59	1,84	0,92	16	800	45	900	40
0	12,75	02,33	2,54	2,93	1,47	10	800	45	900	40
67	11	75 1	2,54	2,93	1,47	10	000	45	1000	55
C/	11	75,1	2,69	3,11	1,55	10	900	45	1000	55
62	12	86.1	2,69	3,11	1,55	16	800	40	900	45
0	12	80,1	2,03	2,34	1,17	10	800	40	500	45
<u></u>	12	08 1	2,03	2,34	1,17	1/	600	20	1000	50
05	13	56,1	1,8	2,08	1,04	14	000	20	1000	50
C10	12	111 1	1,8	2,08	1,04	1/	600	20	1000	50
010	12	111,1	2,03	2,34	1,17	14	000	20	1000	50
C11	12	173 1	2,03	2,34	1,17	16	800	40	900	45
011	12	123,1	2,68	3,09	1,55	10	000		500	-13
C12	11	135 1	2,68	3,09	1,55	18	900	45	1000	55
012		155,1	2,54	2,93	1,47	10	500		1000	55
C13	12 75	1/16 1	2,54	2,93	1,47	16	800	45	900	40
015	12,75	140,1	1,59	1,84	0,92	10	000		500	
C14	13 5	158 85	1,59	1,84	0,92	1/	700	30	1000	50
014	13,5	130,05	1,42	1,64	0,82	14	700	50	1000	50
C15	12 75	172 35	1,42	1,64	0,82	16	700	30	900	45
015	12,75	172,55	2,04	2,36	1,18	10	700	50	500	-13
C16	11	185 1	2,04	2,36	1,18	16	700	35	900	45
010		105,1	2,12	2,45	1,22	10	700	55	500	-13
C17	13	196 1	2,12	2,45	1,22	1/	700	30	800	40
	10	10,1	1,53	1,77	0,88	14	700	50	800	
C18	12 1	209 1	1,53	1,77	0,88	18	600	18	800	40
C10	14,1	203,1	1,4	1,62	0,81	10	000	10	800	40
		221,2								

11.4 Calcolo delle sollecitazioni

Il calcolo delle sollecitazioni agenti sull'impalcato è effettuato tramite un'analisi elastica basata sull'ipotesi di linearità delle relazioni fra tensioni e deformazioni dei materiali, indipendentemente dal livello tensionale.

La definizione delle caratteristiche geometriche della sezione trasversale è un'operazione preliminare sia al calcolo delle rigidezze, e quindi all'analisi globale, sia al calcolo delle resistenze da utilizzare nelle verifiche di sicurezza. A tale scopo si devono valutare le larghezze efficaci della soletta e le sezioni di riferimento.

Il calcolo delle sollecitazioni può essere effettuato sia a mezzo di un'analisi elastica lineare che mediante un'analisi non lineare. L'EC4-2 non dà indicazioni per l'analisi non lineare che deve pertanto essere utilizzata in casi molto particolari.

L'analisi elastica si basa sull'ipotesi di linearità delle relazioni tensionideformazioni dei materiali indipendentemente dal livello di tensione.

Nel caso delle travi continue si può tener conto della fessurazione della soletta sugli appoggi intermedi utilizzando uno dei seguenti tre metodi:

- 1- analisi elastica sulla trave non fessurata e ridistribuzione dei momenti flettenti (massimo del 10%);
- 2- analisi elastica della trave trascurando la presenza del calcestruzzo da ciascun lato degli appoggi intermedi per un'estensione pari al 15% della luce delle campate adiacenti. Tale modello può essere utilizzato solo nel caso in cui i rapporti tra le lunghezze delle campate adiacenti sono più piccolo di 0,6.

Figura 309 - Definizione dell'estensione delle zone fessurate.

- 3- analisi elastica della trave in due passi:
 - individuazione delle zone del calcestruzzo non fessurato, calcestruzzo parzialmente fessurato (tension stiffening) e calcestruzzo fessurato, mediante un'analisi elastica della trave con sezione completamente reagente sottoposta ad una combinazione di carico convenzionale;
 - analisi lineare della trave tenendo conto delle diverse rigidezze flessionali per le zone individuate con il passo precedente.

Figura 310 - Definizione dell'estensione delle zone fessurate.

Nel caso di travi continue con campate interne aventi all'incirca la stessa lunghezza e campate esterne ridotte del 20-25% rispetto alle prime, i risultati ottenuti con i tre metodi in termini di caratteristiche della sollecitazione sono quasi coincidenti. Più sensibili sono le differenze nel calcolo degli spostamenti (frecce).

In definitiva per tener conto della fessurazione, della viscosità e delle fasi costruttive si deve operare su più modelli strutturali caratterizzati da differenti rigidezze.

Si è scelto di tenere conto degli effetti della fessurazione del calcestruzzo sono considerati trascurando la presenza del calcestruzzo sugli appoggi intermedi per un tratto pari al 15% delle campate adiacenti in accordo con la ENV 1994-2 punto 4.5.3.4.

Figura 311 - Zone fessurate.

Candidato: Francesco Cavallini

Tipologia di sezione resistente	Azioni di r	riferimento
Sezione tipo 1 (Modello A)		Peso proprio soletta
		Peso proprio travi metalliche
(trave metallica)		
Sezione tipo 2 (Modello B)		Carichi accidentali
		 Azione del vento Variazioni termiche differenziali
(trave metallica + soletta efficace + armature)		
$n = n_0 = \left(\frac{E_a}{E_c}\right) \cong 5,79$		
Sezione tipo 3 (Modello C)		Ritiro del
Department Department Period Period		calcestruzzo
(trave metallica + soletta efficace + armature)		
$n = n_{cs} = n_0(1 + 0.55\phi_t) \cong 15.41$		
Sezione tipo 4 (Modello C)		Carichi permanenti
$n = n_g = n_0(1 + 1, 1\phi_t) \cong 16,09$		
(trave metallica + soletta efficace + armature)		

11.4.1 Diagrammi delle sollecitazioni principali

Figura 312 – Momento flettente dovuto al Peso Proprio da Modello 1A.

Tabella 77 - Sollecitazioni rilevanti ai fini delle verifiche

Sollecitazio	ni massime	Sollecitazioni massime in
asso	olute	corrispondenza della sezione L
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^{-} [kNm]
5652	-12062	-12062

- sollecitazioni lette tramite "Section Cut" preimpostate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche come elementi resistenti;
- si è assegnato un coefficiente maggiorativo di 1,2 al <u>peso</u> delle travi metalliche per tenere conto delle bullonature non modellate.

Figura 313 - Momento flettente dovuto al Peso Proprio da Modello 2A.

Tabella 78 - Sollecitazioni rilevanti ai fini delle verifiche

Sollecitazio	oni massime	Sollecitazioni massime in
asso	olute	corrispondenza della sezione L
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^{-} [kNm]
4336	-11671	-11671

- sollecitazioni lette come sollecitazioni sugli elementi frame ;
- nella geometria delle sezioni si sono considerate le sole travi metalliche come elementi resistenti;
- si è assegnato un coefficiente maggiorativo di 1,2 al <u>peso</u> delle travi metalliche per tenere conto delle bullonature non modellate;
- il peso della soletta si è assegnato come carico uniformemente distribuito su ciascuna delle tre travi, in particolare:

per la trave centrale:

$$\gamma_{cls} * s_{soletta} * b_{striscia\ centrale} = 25\ \frac{kN}{m^3} * 0,28\ m * 4,2\ m = 29,4\ \frac{kN}{m}$$

per ciascuna delle travi laterali:

$$\gamma_{cls} * s_{soletta} * b_{striscia\ laterale} = 25 \ \frac{kN}{m^3} * 0,28 \ m * 4 \ m = 28 \ \frac{kN}{m}$$

• per garantire la collaborazione trasversale tra le tre travi i nodi che si corrispondono ad ogni ascissa sono stati vincolati tramite link rigidi.

Figura 314 - Momento flettente dovuto al Peso Proprio da Modello 3A.

Sollecitazio	ni massime	Sollecitazioni massime in
asso	lute	corrispondenza della sezione L
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^{-} [kNm]
4278	-11521	-11521

Tabella 79 - Sollecitazioni rilevanti ai fini delle verifiche

- sollecitazioni lette come sollecitazioni sugli elementi frame e sugli elementi shell separatamente e poi sommate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche come elementi resistenti;
- si è assegnato un coefficiente maggiorativo di 1,2 al <u>peso</u> delle travi metalliche per tenere conto delle bullonature non modellate;
- il peso della soletta si è considerato tramite gli elementi shell che modellano la stessa, assegnando però rigidezza flessionale nulla a tali elementi;
- per garantire la collaborazione trasversale tra le tre travi i nodi che si corrispondono ad ogni ascissa sono stati vincolati tramite link rigidi.

Figura 315 - Momento flettente dovuto al Peso Proprio da Modello 4A.

	Tabella 80 -	Sollecitazioni	rilevanti a	ai fini	delle	verifiche
--	--------------	----------------	-------------	---------	-------	-----------

Sollecitazio	oni massime	Sollecitazioni massime in
asso	olute	corrispondenza della sezione L
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^{-} [kNm]
4670	-10664	-10664

- sollecitazioni lette come sollecitazioni sugli elementi frame e sugli elementi shell separatamente e poi sommate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche come elementi resistenti;
- si è assegnato un coefficiente maggiorativo di 1,2 al <u>peso</u> delle travi metalliche, dei diaframmi e delle aste di controvento, per tenere conto delle bullonature non modellate;
- il peso della soletta si è considerato tramite gli elementi shell che modellano la stessa, assegnando però rigidezza flessionale nulla a tali elementi;
- sono stati assegnati link rigidi tra i nodi baricentrici delle travi metalliche e i nodi corrispondenti in ascissa alla quota della soletta ed alla quota inferiore dove si colloca il nodo con le aste di controvento.

Figura 316 - Momento flettente dovuto alla Variazione Termica da Modello 1B.

Fabella 81 - Sollecitazioni rilevant	ai	fini	delle	verifiche
--------------------------------------	----	------	-------	-----------

Sollecitazioni massime	Sollecitazioni massime in
assolute	corrispondenza della sezione L
M_{max}^+ [kNm]	M_{max}^+ [kNm]
143	143

- sollecitazioni lette tramite "Section Cut" preimpostate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- si è assegnato il gradiente termico agli elementi shell che rappresentano la soletta e le ali superiori ed inferiori delle travi metalliche; non si è potuto assegnare il gradiente termico alle anime delle travi in quanto per gli elementi shell l'asse 3-3 è di default ortogonale al piano dell'elemento e il gradiente si può assegnare solo in tale direzione. Dunque questo modello non è affidabile per ricavare le sollecitazioni conseguenti alla variazione termica.

Figura 317 - Momento flettente dovuto alla Variazione Termica da Modello 2B.

Γabella 82 - Sollecitazioni rilevanti ai fini delle verifich
--

Sollecitazioni massime	Sollecitazioni massime in
assolute	corrispondenza della sezione L
M_{max}^+ [kNm]	M_{max}^+ [kNm]
4104	4104

- sollecitazioni lette come sollecitazioni sugli elementi frame;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- si è assegnato il gradiente termico agli elementi frame che rappresentano le sezioni miste.

Figura 318 - Momento flettente dovuto alla Variazione Termica da Modello 3B.

l abella 83 - Sollecitazioni filevanti ai fini delle verifich	Fabella 8	3 - Soll	ecitazion	i rilevanti	ai	fini	delle	verifiche
---	-----------	----------	-----------	-------------	----	------	-------	-----------

Sollecitazioni massime	Sollecitazioni massime in
assolute	corrispondenza della sezione L
M_{max}^+ [kNm]	M_{max}^+ [kNm]
4140	4140

- sollecitazioni lette come sollecitazioni sugli elementi frame e sugli elementi shell separatamente e poi sommate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- si è assegnato il gradiente termico agli elementi frame che rappresentano le travi metalliche in direzione 2-2 e agli elementi shell che rappresentano la soletta in direzione 3-3.

Figura 319 - Momento flettente dovuto alla Variazione Termica da Modello 4B.

Fabella 84 -	Sollecit	azioni	rilevanti	ai fini	delle	verifiche

Sollecitazioni massime	Sollecitazioni massime in
assolute	corrispondenza della sezione L
M_{max}^+ [kNm]	M_{max}^+ [kNm]
6073	6073

- sollecitazioni lette come sollecitazioni sugli elementi frame e sugli elementi shell separatamente e poi sommate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- si è assegnato il gradiente termico agli elementi frame che rappresentano le travi metalliche in direzione 2-2 e agli elementi shell che rappresentano la soletta in direzione 3-3.

Figura 320 - Momento flettente dovuto ai carichi Mobili da Modello 1B.

Tabella	85 -	Solle	citazio	ni ri	levanti	ai f	ïni	delle	verifiche
1 uoonu	05	00110	CITUZIO	111 111	ie v uniti	ui 1	TITT	actic	verificite

Sollecitazio	oni massime	Sollecitazioni massime in			
asso	olute	corrispondenza della sezione L			
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^+ [kNm]	M_{max}^{-} [kNm]		
3685	-3673	713	-3673		

- sollecitazioni lette tramite "Section Cut" preimpostate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- si è definita una trave fittizia baricentrica di riferimento per la definizione delle linee di carico.

Figura 321 - Momento flettente dovuto ai carichi Mobili da Modello 2B.

Tabella	86 -	Solle	citazio	oni r	ilevanti	ai	fini	delle	verifiche
1 uoonu	00	00110	CITUDIO	JIII I	ne vanti	ui	11111	aono	vermene

Sollecitazio	oni massime	Sollecitazioni massime in			
asso	olute	corrispondenza della sezione L			
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^+ [kNm]	M_{max}^{-} [kNm]		
3283	-3477	1024	-3432		

- sollecitazioni lette come sollecitazioni sugli elementi frame;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- come trave di riferimento si è presa la trave centrale: dato che i nodi sono nel baricentro delle travi composte, i carichi mobili sono applicati a tale quota.

Figura 322 - Momento flettente dovuto ai carichi Mobili da Modello 3B.

Tabella 87 - Sollecitazioni	rilevanti ai	fini delle	verifiche
-----------------------------	--------------	------------	-----------

Sollecitazio	oni massime	Sollecitazioni massime in			
asso	olute	corrispondenza della sezione L			
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^+ [kNm]	M_{max}^{-} [kNm]		
3329	-3727	947	-3766		

- sollecitazioni lette come sollecitazioni sugli elementi frame e sugli elementi shell separatamente e poi sommate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- come trave di riferimento si è presa la trave centrale: dato che i nodi di trave e soletta coincidono sull'allineamento centrale, i carichi mobili risultano applicati al livello della soletta.

Figura 323 - Momento flettente dovuto ai carichi Mobili da Modello 4B.

Sollecitazio	oni massime	Sollecitazioni massime in		
asso	olute	corrispondenza della sezione L		
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^+ [kNm]	M_{max}^{-} [kNm]	
5748	-5526	877	-5327	

Tabella 88 - Sollecitazioni rilevanti ai fini delle verifiche

- sollecitazioni lette come sollecitazioni sugli elementi frame e sugli elementi shell separatamente e poi sommate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- come trave di riferimento si è presa la trave centrale: dunque i carichi mobili sono applicati al baricentro delle travi metalliche e non della soletta.

Figura 324 - Momento flettente dovuto ai Permanenti Portati da Modello 1C.

Tabella 89 - Sollecitazioni rilevanti ai fini delle verifich	ıe

Sollecitazioni massime		Sollecitazioni massime in	
assolute		corrispondenza della sezione L	
M_{max}^+ [kNm] M_{max}^- [kNm]		M_{max}^{-} [kNm]	
805	-1848	-1848	

- sollecitazioni lette tramite "Section Cut" preimpostate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- si sono assegnati come carichi lineari uniformemente distribuiti il peso relativo alla veletta ed alla barriera integrata, con le relative eccentricità rispetto alle travi laterali;

si sono assegnati invece come carichi di superficie uniformemente distribuiti il peso dei neri e dei cordoli.

Figura 325 - Momento flettente dovuto ai Permanenti Portati da Modello 2C.

Tabella 90 - Sollecitazioni rilev	vanti ai fini delle verifiche
-----------------------------------	-------------------------------

Sollecitazioni massime		Sollecitazioni massime in	
assolute		corrispondenza della sezione L	
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^{-} [kNm]	
1006	-2448	-2448	

- sollecitazioni lette come sollecitazioni sugli elementi frame ;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- si sono assegnati come carichi lineari uniformemente distribuiti in corrispondenza delle travi laterali il peso relativo alla veletta, alla barriera integrata, ai cordoli;

si sono assegnati carichi lineari uniformemente distribuiti in corrispondenza della trave centrale il peso dei neri.

Figura 326 - Momento flettente dovuto ai Permanenti Portati da Modello 3C.

Sollecitazio	ni massime	Sollecitazioni massime in
asso	lute	corrispondenza della sezione L
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^{-} [kNm]

-2984

Tabella 91 - Sollecitazioni rilevanti ai fini delle verifiche

Accorgimenti adottati nel modello:

1272

• sollecitazioni lette come sollecitazioni sugli elementi frame e sugli elementi shell separatamente e poi sommate;

-2984

- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- si sono assegnati come carichi lineari uniformemente distribuiti in corrispondenza delle travi laterali il peso relativo alla veletta ed alla barriera integrata;

si sono assegnati invece come carichi di superficie uniformemente distribuiti il peso dei neri e dei cordoli.

Figura 327 - Momento flettente dovuto ai Permanenti Portati da Modello 4C.

Tabella 92 - Sollecitazioni rilevanti ai fini delle verifiche	e

Sollecitazioni massime		oni massime	Sollecitazioni massime in
assolute		olute	corrispondenza della sezione L
	M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^{-} [kNm]
	1460	-2812	-2812

- sollecitazioni lette come sollecitazioni sugli elementi frame e sugli elementi shell separatamente e poi sommate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- si sono assegnati come carichi lineari uniformemente distribuiti in corrispondenza delle travi laterali il peso relativo alla veletta ed alla barriera integrata, ma sono assegnati a due travi fittizie (senza rigidezza e senza peso) alla quota della soletta;

si sono assegnati invece come carichi di superficie uniformemente distribuiti il peso dei neri e dei cordoli.

Figura 328 - Momento flettente dovuto al Ritiro da Modello 1C.

Tabella 93 - Sollecitazioni	rilevanti a	i fini	delle	verifiche
-----------------------------	-------------	--------	-------	-----------

Sollecitazioni massime		Sollecitazioni massime in		
assolute		corrispondenza della sezione L		
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^+ [kNm]	M_{max}^{-} [kNm]	
2651	-3883	2651	-3330	

- sollecitazioni lette tramite "Section Cut" preimpostate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- Schema ISO: assegnati N_{cs} , M_{cs} ai nodi estremi della trave centrale: tali nodi sono il baricentro della sezione mista all'estremità.
- Schema IPER:
 - assegnati N_{cs}, M_{cs} ai nodi estremi della trave centrale: tali nodi sono il baricentro della sezione mista all'estremità;
 - 2- assegnate le reazioni vincolari ricavate nella fase precedente al modello senza vincoli.

Figura 329 - Momento flettente dovuto al Ritiro da Modello 2C.

Tabella 94 - Sollecitazioni	rilevanti ai	i fini delle	verifiche
-----------------------------	--------------	--------------	-----------

Sollecitazioni massime		Sollecitazioni massime in		
assolute		corrispondenza della sezione L		
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^+ [kNm]	M_{max}^{-} [kNm]	
4170 -2835		4170	-2835	

- sollecitazioni lette come sollecitazioni sugli elementi frame ;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- Schema ISO: assegnati N_{cs}, M_{cs} ai nodi estremi della trave centrale: tali nodi sono il baricentro della sezione mista all'estremità.
- Schema IPER:
 - assegnati N_{cs}, M_{cs} ai nodi estremi della trave centrale: tali nodi sono il baricentro della sezione mista all'estremità;
 - 4- assegnate le reazioni vincolari ricavate nella fase precedente al modello senza vincoli.

Figura 330 - Momento flettente dovuto al Ritiro da Modello 3C.

Tabella 95 - Sollecitazioni rilevanti ai fini delle verifiche

Sollecitazioni massime		Sollecitazioni massime in		
assolute		corrispondenza della sezione L		
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^+ [kNm]	M_{max}^{-} [kNm]	
4171	-2781	3755	-2503	

- sollecitazioni lette come sollecitazioni sugli elementi frame e sugli elementi shell separatamente e poi sommate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- Schema ISO: assegnati N_{cs} , M_{cs} ai nodi estremi della trave centrale: tali nodi sono il baricentro della sezione mista all'estremità e anche della soletta.
- Schema IPER:
 - 1- assegnati N_{cs} , M_{cs} a dei nodi fittizi aggiunti alla quota del baricentro della sezione composta e collegati ai nodi baricentrici della trave centrale tramite link rigidi.
 - 2- assegnate le reazioni vincolari ricavate nella fase precedente al modello senza vincoli.

Figura 331 - Momento flettente dovuto al Ritiro da Modello 4C.

	Tabella 96 -	Sollecitazioni	rilevanti	ai fini	delle ver	rifiche
--	--------------	----------------	-----------	---------	-----------	---------

Sollecitazio	ni massime	Sollecitazioni massime in			
asso	lute	corrispondenza della sezione L			
M_{max}^+ [kNm]	M_{max}^{-} [kNm]	M_{max}^+ [kNm]	M_{max}^{-} [kNm]		
2603	-2462	2603	-2462		

- sollecitazioni lette come sollecitazioni sugli elementi frame e sugli elementi shell separatamente e poi sommate;
- nella geometria delle sezioni si sono considerate le sole travi metalliche ciascuna con la relativa parte di soletta collaborante;
- Schema ISO: assegnati N_{cs} , M_{cs} ai nodi estremi della trave centrale: tali nodi sono il baricentro della sezione mista all'estremità e anche della soletta.
- Schema IPER:
 - 1- assegnati N_{cs} , M_{cs} a dei nodi fittizi aggiunti alla quota del baricentro della sezione composta e collegati ai nodi baricentrici della trave centrale tramite link rigidi.
 - 2- assegnate le reazioni vincolari ricavate nella fase precedente al modello senza vincoli.

MODELLI	Peso F	Proprio	Carich	i Mobili	Variazione Termica	Perm Poi	anenti rtati	Ritiro ISO	Ritiro IPER	Ritiro Totale (Fasi)	Ritiro Totale (-ΔT in soletta)
	M_{max}^{-}	M_{max}^+	M_{max}^{-}	M_{max}^+	M_{max}^+	M_{max}^{-}	M_{max}^+	M_{max}^+	M_{max}^{-}	M _{max}	M _{max}
	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
SHELL	-12062*	+5652*	-3673	+3685	+143	-1848	+805	+2651	-3330	-679	/
FRAME	-11671*	+4336*	-3477	+3283	+4104	-2448	+1006	+4170	-2835	1335	/
FRAME+ SHELL	-11521*	+4278*	-3727	+3329	+4140	-2984	+1272	+3755	-2503	1252	437
FRAME+ SHELL con reticolare	-10664*	+4670*	-5526	+5748	+6073	-2812	+1460	+2603	-2462	141	671

Tabella 97 - Confronto tra le sollecitazioni ricavate dai vari modelli studiati.

*peso soletta assegnato come carico esterno

Si è constatato che la modellazione più affidabile per questo tipo di strutture è sia quella a soli elementi "frame" sia quella in cui si modellano le travi come elementi "frame" e la soletta come elementi "shell".

Si esegue ora un confronto delle sollecitazioni dovute al solo ritiro del calcestruzzo ottenute applicando direttamente nel modello agli elementi rappresentanti la soletta un delta T negativo corrispondente all'azione del ritiro e quelle ottenute applicando il metodo per fasi basato sul metodo dell'equilibrio.

Schema isostatico:

$$\sigma_{sup}^{+} = \frac{4171}{0,2652} * 1,3 = 20446 \ \frac{kN}{m^2}$$

$$\sigma_{inf}^{+} = \frac{4171}{0,2652} * 0,85 = 13368 \frac{kN}{m^2}$$

$$\sigma_m = \frac{\sigma_{sup}^+ + \sigma_{inf}^+}{2} = \frac{20446 + 13368}{2} = 16907 \ \frac{kN}{m^2}$$

Schema iperstatico:

$$\sigma_{sup}^{-} = \frac{-2835}{0,2652} * 1,3 = -13897 \frac{kN}{m^2}$$

$$\sigma_{inf}^{-} = \frac{-2835}{0,2652} * 0,85 = -9086 \frac{kN}{m^2}$$

$$\sigma_m = \frac{\sigma_{sup}^{-} + \sigma_{inf}^{-}}{2} = \frac{-13897 - 9086}{2} = -11491 \frac{kN}{m^2}$$

$$N_{tot,soletta} = N_{I fase,soletta} + N_{II fase,soletta} + N_{III fase,soletta} =$$

= 11007 + (16907 * 1,12) - (11491 * 1,12) = 17073 kN

$$\frac{17073 \ kN}{3} = 5691 \ kN$$

5691 kN + 1252 kN = 6943 kN (Errore del 9% rispetto al valore ottenuto con soletta shell)

Si può quindi affermare che entrambe le procedure di calcolo sono corrette in quanto le sollecitazioni che si ottengono differiscono di una percentuale accettabile. Si sottolinea comunque l'importanza di avere due metodi per verificarne di volta in volta la validità ed essere sicuri di non aver commesso errori nel modello. Infatti il metodo per fasi, come si è visto nella prima parte di questo lavoro, è eseguibile anche manualmente.

11.4.2 Attrito dei vincoli

In tutte le valutazioni effettuate in precedenza, ma anche in quelle che si faranno nel seguito, quando si considera uno schema strutturale che prevede un vincolamento esterno di tipo isostatico si assume lo spostamento assiale non impedito e in assenza di attrito. Si vuole ora considerare l'attrito che effettivamente tali vincoli forniscono nella realtà opponendosi allo spostamento assiale. La forza di attrito si può quantificare come un 3% delle reazioni vincolari offerte dai vincoli considerando l'impalcato soggetto ai pesi propri e ai permanenti portati. In sostanza ciò che cambia rispetto alle analisi precedenti sono le sollecitazioni ricavate dal modello "isostatico" per la valutazione delle sollecitazioni dovute a ritiro. Si sono modellati i vincoli con molle a cui si è lasciato libero solo lo spostamento assiale in direzione longitudinale secondo il seguente comportamento.

Displ	Force		F						
-U,U5	-21,72		ŀ						
-5,000E-04	-21,72		E						
0,	0,		E						
5,000E-04	21,72		ŀ						
0,05	21,72	•	E						
	-0,05 -5,000E-04 0, 5,000E-04 0,05	-0,05 -21,72 -5,000E-04 -21,72 0, 0, 5,000E-04 21,72 0,05 21,72	-0,05 -21,72 -5,000E-04 -21,72 0, 0, 5,000E-04 21,72 0,05 21,72	-0,05 -21,72 -5,000E-04 -21,72 0, 0, 5,000E-04 21,72 0,05 21,72 ▼	-0,05 -21,72 -5,000E-04 -21,72 0, 0, 5,000E-04 21,72 0,05 21,72	-0,05 -21,72 -5,000E-04 -21,72 0, 0, 5,000E-04 21,72 0,05 21,72	-0,05 -21,72 -5,000E-04 -21,72 0, 0, 5,000E-04 21,72 0,05 21,72	-0,05 -21,72 -5,000E-04 -21,72 0, 0, 5,000E-04 21,72 0,05 21,72	-0,05 -21,72 -5,000E-04 -21,72 0, 0, 5,000E-04 21,72 0,05 21,72

Figura 332 - Legame forza-spostamento che definisce il comportamento delle molle poste in corrispondenza delle spalle

Figura 333 - Modello "isostatico" per la valutazione delle sollecitazioni da ritiro con molle per simulare l'attrito dei vincoli

Figura 334 - Momento flettente dovuto al Ritiro da Modello 2C con e senza attrito dei vincoli nello schema "isostatico"

Si può osservare come mediamente, considerando l'attrito dei vincoli, si abbia un incremento delle sollecitazioni del 25%, ad eccezione degli appoggi adiacenti alla campata centrale in cui si registra un abbattimento delle sollecitazioni del 7%.

Figura 335 - Elementi che si oppongono al ritiro in direzione longitudinale e trasversale.

11.5.1 Direzione trasversale

Figura 336 - Armature resistenti in direzione trasversale e schematizzazione adottata per la soletta.

Figura 337 – Striscia larga 1 m di sezione longitudinale di impalcato e schema statico di calcolo adottato per la soletta in direzione trasversale.

Il comportamento trasversale è differente a seconda che lo si valuti in corrispondenza delle pile, dove la presenza di un diaframma metallico lo rende schematizzabile come una sezione mista a T con vincolamento esterno isostatico, o che si esegua il calcolo in campata tra un elemento irrigidente e l'altro, dove l'assenza di elementi di vincolamento trasversali permette una schematizzazione che considera la sola soletta in cemento armato con un vincolamento esterno isostatico. Complessivamente il comportamento in campata è intermedio tra quello schematizzabile con la sola soletta in cemento armato vincolata isostaticamente e quello di sezione mista dato che ad interasse pari a 3 m sono presenti degli elementi reticolari come elementi irrigidenti in direzione trasversale.

$$N_{aderenza,max, TRASVERSALE, PILA 1} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} = \frac{2,34 * 10^{-4}}{(1 - 4)^{-4}} = 636 \, kN$$

$$=\frac{4}{\left(\frac{4}{210000 * 55330} + \frac{1}{13627 * 3080000}\right)} = 636 \, kN$$

$$N_{aderenza,max,TRASVERSALE, PILA 2} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} =$$

$$=\frac{2,34*10^{-4}}{\left(\frac{4}{210000*59180}+\frac{1}{13627*3080000}\right)}=677\ kN$$

$$N_{aderenza,max, TRASVERSALE, PILA 3} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} = \frac{2,34 * 10^{-4}}{\left(\frac{4}{210000 * 59180} + \frac{1}{13627 * 3080000}\right)} = 677 \, kN$$

$$N_{aderenza,max, TRASVERSALE, PILA 4} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} =$$

$$2.34 \times 10^{-4}$$

$$=\frac{2,34*10^{-4}}{\left(\frac{4}{210000*55330}+\frac{1}{13627*3080000}\right)}=636\,kN$$

$$N_{aderenza,max, TRASVERSALE, CAMPATA1} = \varepsilon_{cs} * \left(\frac{E_s * A_c * A_s}{A_c + n_0 * A_s}\right) =$$

$$= 2,34 * 10^{-4} * \left(\frac{210000 * 3388000 * 2575}{280000 + 15,41 * 2575}\right) = 110 \, kN$$

$$N_{aderenza,max, TRASVERSALE, CAMPATA 2} = \varepsilon_{cs} * \left(\frac{E_s * A_c * A_s}{A_c + n_0 * A_s}\right) =$$
$$= 2,34 * 10^{-4} * \left(\frac{210000 * 280000 * 2575}{280000 + 15,41 * 2575}\right) = 110 \ kN$$

$$N_{aderenza,max, TRASVERSALE, CAMPATA 3} = \varepsilon_{cs} * \left(\frac{E_s * A_c * A_s}{A_c + n_0 * A_s}\right) =$$
$$= 2,34 * 10^{-4} * \left(\frac{210000 * 280000 * 2575}{280000 + 15,41 * 2575}\right) = 110 \ kN$$

 $N_{aderenza,max, TRASVERSALE, CAMPATA4} = \varepsilon_{cs} * \left(\frac{E_s * A_c * A_s}{A_c + n_0 * A_s}\right) =$

$$= 2,34 * 10^{-4} * \left(\frac{210000 * 280000 * 2575}{280000 + 15,41 * 2575}\right) = 110 \, kN$$

393

 $N_{aderenza,max, TRASVERSALE, CAMPATA5} = \varepsilon_{cs} * \left(\frac{E_s * A_c * A_s}{A_c + n_0 * A_s}\right) =$

$$= 2,34 * 10^{-4} * \left(\frac{210000 * 280000 * 2575}{280000 + 15,41 * 2575}\right) = 110 \ kN$$

Figura 338 - Andamento degli sforzi di trazione nella soletta ottenuti dal modello sulle sezioni trasversali considerate.

Tabella	98	-	Sforzi	di	trazione	in	direzione	trasversale	nella	soletta	alle	varie
sezioni j	pres	e c	come ri	feri	mento.							

conci	Nc,trasversale,sol [kN]	N _{c,trasversale,sol} [kN] (con barre equivalenti)
campata1	2	73
pila1	705	705
campata2	2	132
pila2	731	731
campata3	4	153
pila3	731	731
campata4	2	132
pila4	705	705
campata5	2	73

Si osserva che gli sforzi in corrispondenza degli appoggi sono più rilevanti rispetto a quelli in campata; ciò è dovuto alla presenza di diaframmi trasversali costituiti da piatti metallici di irrigidimento in corrispondenza degli appoggi.

Per studiare l'effetto del ritiro in direzione trasversale all'impalcato si sono considerate alcune sezioni di riferimento in corrispondenza degli appoggi e della mezzaria di ciascuna campata. Si è ricavato il valore dello sforzo di trazione che nasce nella soletta in direzione trasversale in corrispondenza delle sezioni longitudinali di riferimento considerate tramite le "Section Cut".

Si è considerato anche un secondo modello in cui si sono inseriti degli elementi FRAME in direzione trasversale in corrispondenza della mezzeria di ciascuna campata aventi una sezione tale da costituire un'unica barre equivalente a tutte le armature trasversali presenti nel tratto considerato di soletta. In tal modo si sono ottenuti valori di sollecitazione trasversale confrontabili con quelli ottenuti dal modello analitico, che infatti tiene conto della presenza delle armature. Si sono quindi assunti i valori ottenuti da questo secondo modello come rappresentativi del modello numerico.

Nella tabella seguente si può osservare l'errore che si commette nella stima effettuata con il modello analitico per ciascuna sezione considerata.

Tabella 99 - Confronto tra gli sforzi di trazione in direzione trasversale nella soletta alle varie sezioni prese come riferimento calcolati con il modello analitico e numerico.

conci	N _{c,trasversale,sol} [kN] (da modello numerico)	N _{c,trasversale,sol} [kN] (da modello analitico)	Errore [%]
campata1	73	110	34
pila1	705	636	10
campata2	132	110	17
pila2	731	677	7
campata3	153	110	28
pila3	731	677	7
campata4	132	110	17
pila4	705	636	10
campata5	73	110	34

Tabella 100 - Errori medi e massimi in corrispondenza di pile e campate

Candidato: Francesco Cavallini

	Pile	Campate
Errore medio	8,5%	26%
Errore massimo	10%	34%

11.5.2 Direzione longitudinale

Figura 339 - Carpenteria metallica e armature resistenti in direzione longitudinale.

Figura 340 - Sezione trasversale dell'impalcato e disposizione dei vincoli.

Il comportamento in direzione longitudinale è schematizzabile unicamente come quello di un'unica trave a sezione mista considerando il vincolamento esterno isostatico o iperstatico rispettivamente a seconda che si valuti lo sforzo in corrispondenza delle campate o degli appoggi.

$$N_{aderenza,max, LONGITUDINALE, x = 12,10 m} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} =$$
$$=\frac{2,34*10^{-4}}{\left(\frac{4}{210000*211020}+\frac{1}{13627*3416000}\right)}=2094\ kN$$

$$N_{aderenza,max, LONGITUDINALE, x = 25,10 m} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} =$$

$$=\frac{2,34*10^{-4}}{\left(\frac{1}{210000*214260}+\frac{1}{13627*3416000}\right)}=5354\ kN$$

$$N_{aderenza,max, \ LONGITUDINALE, \ PILA1} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} =$$

$$=\frac{2,34*10^{-4}}{\left(\frac{1}{210000*296760}+\frac{1}{13627*3416000}\right)}=6235kN$$

$$N_{aderenza,max, \ LONGITUDINALE, \ x = 36,10 \ m} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} =$$

$$=\frac{2,34*10^{-4}}{\left(\frac{1}{210000*293400}+\frac{1}{13627*3416000}\right)}=6205\ kN$$

$$N_{aderenza,max, \ LONGITUDINALE, \ x = 48,85 m} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} =$$

$$=\frac{2,34*10^{-4}}{\left(\frac{4}{210000*255900}+\frac{1}{13627*3416000}\right)}=2440\ kN$$

$$N_{aderenza,max, LONGITUDINALE, x = 62,35 m} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} =$$

$$=\frac{2,34*10^{-4}}{\left(\frac{2}{210000*280320}+\frac{1}{13627*3416000}\right)}=2284\ kN$$

$$N_{aderenza,max, \ LONGITUDINALE, \ x = 75,1 \ m} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} = \frac{2,34 * 10^{-4}}{\left(\frac{1}{210000 * 395160} + \frac{1}{13627 * 3416000}\right)} = 6978 \ kN$$

$$N_{aderenza,max, \ LONGITUDINALE, \ PILA 2} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} = \frac{2,34 * 10^{-4}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} = 7029 \ kN$$

$$\left(\frac{1}{210000 * 403260} + \frac{1}{13627 * 3416000}\right)$$

$$N_{aderenza,max, \ LONGITUDINALE, \ x = 86,10 \ m} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} =$$

$$=\frac{2,34*10^{-4}}{\left(\frac{1}{210000*321120}+\frac{1}{13627*3416000}\right)}=6444\ kN$$

$$N_{aderenza,max, LONGITUDINALE, x=98,10 m} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} = \frac{2,34 * 10^{-4}}{\left(\frac{2}{210000 * 256260} + \frac{1}{13627 * 3416000}\right)} = 2442 \ kN$$

$$N_{aderenza,max, \ LONGITUDINALE, \ x = 111,10 \ m} = \frac{\varepsilon_{cs}}{\left(\frac{1}{E_s A_s} + \frac{1}{E_c A_c}\right)} = \frac{2,34 \times 10^{-4}}{1} = 2370 \ kN$$

$$= \frac{4}{\left(\frac{4}{210000 * 246600} + \frac{1}{13627 * 3416000}\right)} = 237$$

Figura 341 - Andamento longitudinale degli sforzi di trazione nella soletta ottenuti dal modello.

Tabella 101 - Sforzi di trazione in direzione longitudinale nella soletta alle varie sezioni prese come riferimento.

X [m]	N _{c,longitudinale,sol} [kN]
12,10	2491
25,10	5971
30,00	6102
36,10	5517
48,85	3032
62,35	3372
75,10	7633
80,00	7661
86,10	6916
98,10	3402
111,10	2323
123,10	3402
135,10	6916
140,00	7661
146,10	7633
158,85	3372
172,35	3032
185,10	5517
190,00	6102
196,10	5971
209,10	2491

Per studiare l'effetto del ritiro in direzione longitudinale all'impalcato si sono considerate diverse sezioni trasversali dell'impalcato, in corrispondenza delle quali tramite le "Section Cut" si sono estratte le sollecitazioni nella soletta, che risulta soggetta ad uno sforzo di trazione variabile lungo lo sviluppo longitudinale attorno ad un valore medio di 4947 kN.

Nella tabella seguente si può osservare l'errore che si commette nella stima effettuata con il modello analitico per ciascuna sezione considerata.

Tabella 102 – Confronto tra gli sforzi di trazione in direzione longitudinale nella soletta alle varie sezioni prese come riferimento calcolati con il modello analitico e numerico.

X [m]	N _{c,longitudinale,sol} [kN] (da modello numerico)	N _{c,longitudinale,sol} [kN] (da modello analitico)	Errore [%]
12,10	2491	2094	16
25,10	5971	5354	10
30,00	6102	6235	2
36,10	5517	6205	11
48,85	3032	2440	20
62,35	3372	2284	2
75,10	7633	6978	9
80,00	7661	7029	6
86,10	6916	6444	7
98,10	3402	2442	15
111,10	2323	2370	2
123,10	3402	2442	15
135,10	6916	6444	7
140,00	7661	7029	6
146,10	7633	6978	9
158,85	3372	2284	2
172,35	3032	2440	20
185,10	5517	6205	11
190,00	6102	6235	2
196,10	5971	5354	10
209,10	2491	2094	16

Tabella 103 - Errori medi e massimi in corrispondenza di pile e campate

	Pile	Campate
Errore medio	4%	10%
Errore massimo	6%	20%

11.6 Azioni di verifica

11.6.1 Combinazioni di carico

In accordo con i paragrafi. 2.5.3 e 5.1.3.12 del DM 14/01/2008 si definiscono le seguenti combinazioni delle azioni:

-	Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (S	LU):
	$\gamma_{G1}\cdot G_1+\gamma_{G2}\cdot G_2+\gamma_P\cdot P+\gamma_{Q1}\cdot Q_{k1}+\gamma_{Q2}\cdot \psi_{02}\cdot Q_{k2}+\gamma_{Q3}\cdot \psi_{03}\cdot Q_{k3}+\ldots$	(2.5.1)
-	Combinazione caratteristica (rara), generalmente impiegata per gli stati limite (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al	di esercizio § 2.7:
	$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \ldots$	(2.5.2)
-	Combinazione frequente, generalmente impiegata per gli stati limite di eser reversibili:	cizio (SLE)
	$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$	(2.5.3)
-	Combinazione quasi permanente (SLE), generalmente impiegata per gli effittermine:	etti a lungo
	$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$	(2.5.4)
-	Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connes sismica E (v. § 3.2):	si all'azione
	$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$	(2.5.5)
-	Combinazione eccezionale, impiegata per gli stati limite ultimi connessi eccezionali di progetto $\Lambda_d(v.\S3.6)$:	alle azioni
	$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$	(2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Figura 342 - Combinazioni di carico definite dal D.M. 14/01/2008.

		Carich	i sulla carreggio	ita		Carichi su marciapiedi e piste ciclabili	
	Carichi verticali			Carichi orizz	ontali	Carichi verticali	
Gruppo di Izioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q3	Forza centrifuga q ₄	Carico uniformemente. distribuito	
	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²	
2 a	Valore frequente			Valore caratteristico			
2 b	Valore frequente				Valore caratteristico		
; O						Schema di carico 5 con valore caratteristico 5,0 kN/m ²	
t ()			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²	
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale					

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, si dovranno considerare, generalmente, le combinazioni riportate in Tab. 5.1.IV. Tabella 5.1.IV – Valori caratteristici delle azioni dovute al traffico

La Tab. 5.1.V fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi.

Nella Tab. 5.1.V il significato dei simboli è il seguente:

- coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua, quando YGI
- pertinente;
- coefficiente parziale dei pesi propri degli elementi non strutturali; coefficiente parziale delle azioni variabili da traffico; coefficiente parziale delle azioni variabili. YG2
- YQ
- Yqi

Il coefficiente parziale della precompressione si assume pari a $\gamma_P{=}1$

Altri valori di coefficienti parziali sono riportati nel Cap. 4 con riferimento a particolari azioni specifiche dei diversi materiali.

I valori dei coefficienti ψ_{0j} , ψ_{1j} e ψ_{2j} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI.

Tabella 5.1.VI - Coefficienti \u03c8 per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente ¥o di combinazione	Coefficiente ¥1 (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		attice (valio) (valio) nazione frequenti) perm 75 0,75 (0) 40 0,40 (0) 40 0,40 (0) 40 0,40 (0) 40 0,40 (0) 40 0,40 (0) 40 0,75 (0) 40 0,00 (0) 40 0,00 (0) 40 0,00 (0) 40 0,00 (0) 40 0,00 (0) 40 0,00 (0) 40 0,00 (0) 40 0,00 (0) 40 0,00 (0) 40 0,00 (0) 40 0,00 (0) 40 0,00 (0) 40 0,00 (0)	0,0
	5	0,0	0,0	. 0,0
	Vento a ponte scarico			
Vanta a	SLU e SLE	0,6	0,2	0,0
vento q ₅	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
N	SLU e SLE	0,0	0,0	0,0
weve q_3	esecuzione	0,8	0,6	0,5
Temperatura	Tk	0,6	0,6	0,5

Per le opere di luce maggiore di 300 m è possibile modificare i coefficienti indicati in tabella previa autorizzazione del Servizio Tecnico Centrale del Ministero delle Infrastrutture, sentito il Consiglio Superiore dei lavori pubblici.

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO						
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00						
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30						
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15						
Carichi variabili	favorevoli sfavorevoli	Yqi	0,00 1,50	0,00 1,50	0,00 1,30						
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γει	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00						
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	Ye2, Ye3, Ye4	0,00 1,20	0,00 1,20	0,00 1,00						
 ⁽¹⁾ Equilibrio che non coinvolga i parametri d valori di GEO. ⁽²⁾ Nel caso in cui i carichi permanenti non str definiti si potranno adottare gli stessi coet ⁽³⁾ 1,30 per instabilità in strutture con precomp ⁽⁴⁾ 1,20 per effetti locali 	 ⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO. ⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti. ⁽³⁾ 1,30 per instabilità in strutture con precompressione esterna 										

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Figura 343 - Tabelle fornite dal D.M. 14/01/2008 per la definizione dei coefficienti da adottare nelle combinazioni di carico.

Combinazioni adottate per lo Stato Limite Ultimo:

Combinazione per i carichi mobili:

 $1,35*(G_1+G_2)+1,35*q_1+1,35*0,75*q_8\pm 1,5*0,6*q_5+1,2*0,6*\varepsilon_3$

Combinazione per la temperatura:

 $1,35*(G_1+G_2)+1,2*\varepsilon_3+1,35*0,75*q_1+1,35*0,75*q_8\pm1,5*0,6*q_5+1,2*\varepsilon_2$

Combinazioni adottate per lo Stato Limite di Esercizio:

Combinazione Quasi Permanente:

 $(G_1 + G_2) + 1,0 * \varepsilon_2 + 0,5 * \varepsilon_3$

COND	IZIONI ELEME	NTARI DI CARICO
1) c1	DEAD(Gk ₁)	Peso Proprio Strutturale
2) c2	Neri(Gk ₁)	Peso Proprio Pavimentazione Stradale
3) c3	Barriera(Gk ₁)	Peso Proprio Guard Rails+Barriera
4) c4	Veletta(Gk ₁)	Peso Proprio Impianti+Veletta
5) c5	Wind(Gk ₁)	Azione del Vento
6) c6	Temperatura(ε_1)	Azione Termica
7) c7	Ritiro(ε_2)	Azione del Ritiro
8) c8	Traffico(Qk ₁)	Azioni da Traffico Corsia 1
9) c9	Traffico (Qk ₁)	Azioni da Traffico Corsia 2
10) c10	Traffico (Qk ₁)	Azioni da Traffico Corsia 3
11) c11	Traffico (Qk ₁)	Azioni da Traffico Folla
12) c12	Urto veicoli(Q ₈)	Urto veicoli in svio

Tabella 104 - Condizioni di carico elementari.

Tabella 105 - Valori delle azioni da combinare per la sezione L.

	SEZIONE L _s											AT	ritiro
modello AZIONE		CARATTERISTICA DI SOLLECITAZIONE P V2 V3 T M2 M3						coefficienti parziali di sicurezza		contempora neità	contempora neità	contempora neità	
			KN	KN	KN	KNm	KNm	KNm	favorevoli	sfavorevoli	Ψοι	Ψοι	Ψοι
Α	Peso Proprio	g1	0	953	0	0,E+00	0	-11023	1,00	1,35	1	1	1
	∆ termico	ε3	0,0	-42,5	0,0	-0,1	0,0	3594	0,00	1,20	0,6	1	0,6
Р	Carichi Mobili [MAX]	q ₁	0,0	1130,0	0,0	11,0	0,0	1500	0,00	1,35	1	0,75	0,75
В	Carichi Mobili [MIN]	q ₁	0,0	-85,0	0,0	-17,00	0,0	-7822	0,00	1,35	1	0,75	0,75
	Vento	q ₅							0,00	1,50	0,6	0,6	0,6
C	Permanenti Portati	g ₂	0,0	362,0	0,0	0,000	0,0	-4066	1,00	1,35	1	1	1
C	Ritiro	ε2	-3102,0	-23,9	0,000	0,00	28,00	225	0,00	1,20	1	1	1

	Comb_max M3 mobili	Comb_min M3 mobili	Comb_max M2 mobili	Comb_min M2 mobili	Comb_max T mobili	Comb_min T mobili	Comb_max V3 mobili	Comb_min V3 mobili	Comb_max V2 mobili	Comb_min V2 mobili	Comb_max P mobili	Comb_min P mobili
Α	-11023	-14881	0	0	0	0	0	0	953	1287	0	0
В	4613	-10560	0	0	15	-23	0	0	1526	-145	0	0
C	-4066	-5219	0	34	0	0	0	0	333	460	-3722	-3722

Tabella 106 - Valori delle azioni combinate per la sezione L.

Tabella 107 - Valori delle azioni da combinare per la sezione D.

	SEZIONE DS											ΔT	ritiro
	AZIONE			CARAT	ITERISTICA E	DI SOLLECITA	coefficient	i parziali di	contempora	contempora	contempora		
modello			Р	V2	V3	т	M2	M3	sicurezza		neità	neità	neità
			KN	KN	KN	KNm	KNm	KNm	favorevoli	sfavorevoli	Ψοι	Ψοι	Ψοι
А	Peso Proprio	g1	0	667	0	0,E+00	0	-5234	1,00	1,35	1	1	1
	∆ termico	ε3	0,0	-240,0	0,0	0,1	0,0	7756	0,00	1,20	0,6	1	0,6
Р	Carichi Mobili [MAX]	q1	0,0	925,0	0,0	9,4	0,0	1643	0,00	1,35	1	0,75	0,75
Б	Carichi Mobili [MIN]	q ₁	0,0	-68,0	0,0	-15,00	0,0	-5158	0,00	1,35	1	0,75	0,75
	Vento	q ₅							0,00	1,50	0,6	0,6	0,6
C	Permanenti Portati	g ₂	0,0	259,0	0,0	0,000	0,0	-2118	1,00	1,35	1	1	1
C	Ritiro	ε2	-3119,0	138,0	0,000	-0,11	9,50	-829	0,00	1,20	1	1	1

Tabella 108 - Valori delle azioni combinate per la sezione D.

	Comb_max M3 mobili	Comb_min M3 mobili	Comb_max M2 mobili	Comb_min M2 mobili	Comb_max T mobili	Comb_min T mobili	Comb_max V3 mobili	Comb_min V3 mobili	Comb_max V2 mobili	Comb_min V2 mobili	Comb_max P mobili	Comb_min P mobili
Α	-5234	-7066	0	0	0	0	0	0	667	900	0	0
В	7802	-6963	0	0	13	-20	0	0	1249	-265	0	0
С	-2118	-3854	0	11	0	0	0	0	425	515	-3743	-3743

11.7 Verifiche

11.7.1 Definizione della larghezza efficace della soletta

La larghezza efficace della soletta, per la determinazione della resistenza agli stati limite ultimi e di esercizio, è assunta pari a:

$$b_{eff} = b_0 + \sum b_{ei}$$

dove:

 b_0 è la distanza fra i centri dei connettori a taglio più esterni;

 b_{ei} è il valore della larghezza efficace del calcestruzzo da ogni lato dell'anima, pari a $L_{e'}/8$ ma non più grande della larghezza geometrica b_i (L_e è la distanza approssimativa fra i punti di nullo del momento flettente (luce equivalente) ed è ricavabile dalla figura seguente.

Figura 344 - Larghezza efficace della soletta.

Figura 345 - Luci equivalenti (L_e) per il calcolo della larghezza efficace della soletta.

11.7.2 Verifiche di resistenza allo Stato Limite Ultimo

11.7.2.1 Verifiche di resistenza allo Stato Limite Ultimo per tensioni normali

La verifica di resistenza della sezione metallica per le tensioni normali, parallele all'asse della trave, si conduce considerando la sommatoria degli effetti provenienti da differenti stadi di costruzione. Le distribuzioni iniziali delle tensioni possono essere calcolate utilizzando l'area efficace delle flange e lorda dell'anima, e successivamente sommate così da determinare le proprietà efficaci dell'intera sezione e la distribuzione finale delle tensioni, secondo un processo iterativo.

Le caratteristiche geometriche efficaci della sezione trasversale sono ricavate considerando gli effetti dello shear-lag e della stabilità per le parti compresse, e del solo shear-lag per le parti tese. In ogni caso, nelle verifiche allo Stato Limite

Ultimo, le riduzioni per shear-lag delle flange si applicano solo per valori di b_0 maggiori di $L_e/20$.

Le parti stabili della sezione trasversale metallica sono determinate applicando alle aree lorde il coefficiente riduttivo ρ : $A_{eff} = \rho * A$. Per tale coefficiente, l'Eurocodice 1993-1-5 propone le seguenti espressioni:

per elementi compressi interni:

$$\begin{split} \rho &= 1 \ per \, \bar{\lambda}_p \leq 0,673; \\ \rho &= \frac{\bar{\lambda}_p - 0,055(3 + \Psi)}{\bar{\lambda}_p^2} \leq 1 \ per \, \bar{\lambda}_p > 0,673; \end{split}$$

per elementi compressi sporgenti:

$$ho = 1 \ per \ \bar{\lambda}_p \le 0.748;$$

 $ho = \frac{\bar{\lambda}_p - 0.188}{\bar{\lambda}_p^2} \le 1 \ per \ \bar{\lambda}_p > 0.748;$

in cui la snellezza adimensionalizzata è definita nel modo seguente:

$$\bar{\lambda}_{p} = \sqrt{\frac{f_{y}}{\sigma_{cr}}} = \frac{\frac{\bar{b}}{t}}{28,4 * \varepsilon * \sqrt{k_{\sigma}}}$$

in cui:

$$\begin{split} \Psi &= \frac{\sigma_2}{\sigma_1} \, \grave{\mathbf{e}} \, \text{il rapporto tra le tensioni di estremità della sezione;} \\ \bar{b}_w \quad per \ le \ anime \\ \bar{b} &= \begin{cases} b \quad per \ gli \ elementi \ a \ piattabanda \ interni \\ c \quad per \ le \ ali \ sporgenti \end{cases}; \end{split}$$

è la larghezza pertinente;

 k_{σ} è il fattore di imbozzamento corrispondente al rapporto tensionale Ψ e alle condizioni di vincolo;

 σ_{cr} è la tensione di instabilità critica elastica del piatto;

Figura 346 - Definizione delle zone efficaci per elementi compressi interni ed esterni.

prospetto	5.3.2 Elementi c	ompressi interni				
	Distribuzione (compressio	delle tensioni me positiva)		Larghezza e	efficace A _{ut}	
σ1	<u></u>		$\frac{d \nu = +1}{\Delta_{\rm eff} = \rho} \frac{\rho}{\delta}$ $\frac{\Delta_{\rm eff}}{\Delta_{\rm eff}} = 0.5 \ \Delta_{\rm eff}$ $\Delta_{\rm eff} = 0.5 \ \Delta_{\rm eff}$			
σ1		b _{e2}	σ ₂	$\frac{1 > w \ge 0}{b_{at} = \rho \ \bar{b}}$ $\frac{b_{at} = \rho \ \bar{b}}{b_{at} = \frac{b_{at}}{b_{at}}}$ $\frac{b_{at} = \frac{b_{at}}{b_{at}}}{b_{at} = b_{at} \cdot b_{at}}$		
σ		b ₁	$b_{ab} = \rho b_0 = \mu$ $b_{ab} = \rho$ $b_{ab} = 0$	<u>:0:</u> ο δ /(1 - ψ) 4 Δ _{lef} 6 Δ _{lef}		
$\psi = \sigma_2 / \sigma_1$	+1	1>ψ>0	0	0> y> -1	-1	-1> \vee y> -2
imbozzamento ko	4,0	8,2 1,05 + y	7,81	r,s1 - 6,29 ψ + 9,78 ψ*	23,9	ο,98 (1- ψ)*
In alternativa, per 1 > $\hat{K}_{\sigma} = \frac{1}{\left[\left(1 + \psi\right)^2 + 0\right]}$	$\psi \ge -1:$ 16 $(112(1-\psi)^2)^{0.5} + (112(1-\psi)^2)^{0.5}$	1+ <i>ψ</i>)				

Tabella 109 - Prospetto per elementi compressi interni (UNI ENV 1993-1-1).

Tabella 110 - Prospetto per elementi compressi sporgenti (UNI ENV 1993-1-1).

Tabella 111 - Rapporti massimi larghezza-spessore per elementi compressi (UNI EN 1993-1-1).

			0	utstand	d flanges				
t†	• ^c •	2	t t		ť	+			
		Rolled sections	5			Weld	ed sections		
Class Part subject to compression					Part su ip in comp	bject to bendin ression	g and compress Tip in t	ension	
Stress distribution in parts (compression positive)		- +				α c +			
1		$c/t \le 9s$	E	$c/t \le \frac{9\varepsilon}{\alpha}$			c / t ≤	$\frac{9\varepsilon}{\alpha\sqrt{\alpha}}$	
2		$c/t \le 10$	3	$c/t \le \frac{10\varepsilon}{\alpha}$			$c/t \le \frac{10\varepsilon}{\alpha\sqrt{\alpha}}$		
Stress distribution in parts (compression positive)		+][- c				<u></u> →			
3 c/t≤14ε					$c/t \le 21\epsilon\sqrt{k_{\sigma}}$ For k_{σ} see EN 1993-1-5				
$\varepsilon = \sqrt{235/f}$	£	fy	235		275	355	420	460	
	y	3	1,00		0,92	0,81	0,75	0,71	

Tabella 112 – Rapporti massimi larghezza-spessore per elementi compressi (UNI EN 1993-1-1).

Si riportano di seguito i fogli di calcolo impiegati per la verifica delle travi metalliche svolta per la sezione L in corrispondenza della pila 2.

Modello A:

INPUT E CLA	SSIFICAZION	E SEZIONE	- modello A -	-						
f _{vk}	335	N/mm ²			SOLLE	CITAZIONI				
t max	55	mm	sforzo normale	momento	momento					
	0,8	338	+ compressione	flettente	flettente	tagiio longitudinale	tagiio trasversale	torsione		
Υμο	1	,05	- trazione	longitudinale	trasversale	·	⊢ <u> </u>	'		
N _{pl,Rd}	46909	<u>kN</u>	<u>N</u>	M ₃ [kNm]	<u>M₂</u>	V	V_3	⊢ ^T		
N _{ed comp max}	8220	<u>kN</u>	[kN]	[kNm]	[kNm]	[kN]		[kN]		
Non tengo conte	o della compress	ione sull'anima		-14881	0	1287		0		
	ΔΝΙΜΑ	PARTITINTERN	E COIVIPRESSE PIZ	ATTABANDA INFE	NORF	PAR	ITABANDA SUPER	IORF		
с	2690	mm	c	2000	mm	с	450	mm		
t	19,1551999	mm	t	55	mm	t	45	mm		
c <u>/t</u>	140,431842	「	c/t	<u>36,</u> 3636364		<u>c/t</u>	10	⊢		
	CLASSE	4		CLASSE	4		CLASSE	3		
			CL A (
			CLASS	SE RISULTANTE	4					
$\mathbf{N} \rightarrow calcolor$	dell'area effic		ione							
PARTI INTERNE COMPRESSE PARTI ESTERNE COMPRESSE										
	ANIMA		PI/	ATTABANDA INFER	NORE	PIA	TABANDA SUPER	IORE		
Ψ=σ2	/σ1	1	Ψ=α	σ ₂ /σ ₁	1	Ψ=σ;	2/σ1	1		
buckling f	factor k _σ	4	buckling	factor k _o	4	buckling	factor k _o	0,43		
$\lambda_p = (f_v / \sigma_{cr})$	r)^(1/2)	2,952	$\lambda_p = (f_v / \sigma)$	cr)^(1/2)	0,764	$\lambda_p = (f_y / \sigma_c)$	r)^(1/2)	1,282		
ρ calc	olo	0,314	ρ са	lcolo	0,932	<u>ρ cal</u>	colo	0,666		
ρ	ل	0,314	I	<u> </u>	0,932	ρ		0,666		
b _{efficace}	[mm]	843	b _{efficac} e	[mm]	932	b _{efficace}	[mm]	599		
b _{riduzione}	[mm]	0	b _{riduzione}	[mm]	0	b _{riduzione}	[mm]	⊢ _°		
YG lembo inferiore	[mm]	1400	Y G lembo inferiore	[mm]	27,5	YG lembo inferiore	[mm]	2767,5		
$M + \rightarrow calco$	olo del modulo	o di resistenza	efficace a fless	ione per l'anin	na e a compress	ione per le piatt	abande			
		DADTI INITEDN	E COMADDECCE			DAD	TI ECTEDNIE COMADE	DECCE		
		PARTITINTERN	IE COIVIPRESSE			PAR	II ESTERINE CONIPR	(LJJL		
,			PI/	ATTABANDA INFER						
YG	ANIMA 1464		<u></u> <u>ΡΙ</u> Ψ=c	$\frac{\mathbf{ATTABANDA} \mathbf{INFER}}{\sigma_2/\sigma_1}$	NO <u>RE</u>	 Ψ=σ;	TABANDA SUPER	IO <u>RE</u>		
y _G	1464 2,578E+11		$\frac{\Psi = c}{\psi = c}$	$\frac{\Delta TTABANDA INFER}{\sigma_2/\sigma_1}$	NO <u>RE</u>	$\frac{\Psi = \sigma_{2}}{2}$	$\frac{1}{12} \frac{1}{\sigma_1} \frac{1}{\sigma_2} \frac{1}{\sigma_1} \frac{1}{\sigma_2} \frac{1}{\sigma_1} \frac{1}{\sigma_2} \frac{1}{$	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $		
Y <u>G</u> J	ANIMA 1464 2,578E+11 176072905		$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	$\frac{\sqrt{17ABANDA INFEF}}{\sqrt{5_2/\sigma_1}}$	NO <u>RE</u>	Ψ =σ; ψ =σ;	TABANDA SUPER $\frac{1}{\sigma_1}$ factor k_{σ} $\frac{1}{\sigma_1}$	IORE		
Y _G J Wintradosso Westradosso	ANIMA 1464 2,578E+11 176072905 -194446479	mm	$\frac{\mu}{\mu} = \frac{\rho_{II}}{\mu}$ $\frac{\mu}{\mu} = c$ $\frac{\mu}{\mu} = c$ $\frac{\mu}{\mu} = c$ $\frac{\rho_{II}}{\mu} = c$	$\frac{\text{ATTABANDA INFER}}{\sigma_2/\sigma_1}$ factor k _o factor k _o factor k _o	NORE	$\frac{PAR}{PIA}$ $\frac{PIA}{PIA}$ $\frac{\Psi=\sigma_{c}}{Duckling}$ $\frac{\lambda_{p}=(f_{y}/\sigma_{c})$ $\rho calc$	TTABANDA SUPER $2/\sigma_1$ factor k_σ $r_1^{(1/2)}$	IORE		
$\frac{Y_{6}}{J}$ $\frac{W_{intradosso}}{W_{estradosso}}$ $\frac{W_{estradosso}}{\Psi = \sigma_{2}/\sigma_{1} = W_{intrad}}$	ANIMA 1464 2,578E+11 176072905 -194446479 osso/Westradossd	mm mm ⁴ mm ³ -1,10435209	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c c} \underline{ATTABANDA INFEF}\\ \underline{f_2/\sigma_1} & \underline{f_2/\sigma_1} & \underline{f_3}\\ \underline{factor } k_{\sigma} & facto$			TTABANDA SUPER a/σ_1 factor k_σ $a/\gamma(1/2)$ factor	$ \begin{array}{c} 1 \\ 1 \\ - \\ - \\ 0,43 \\ - \\ 1,282 \\ - \\ 0,666 \\$		
Y _G J W _{intradosso} W _{estradosso} ₩=σ ₂ /σ ₁ =W _{intrad} buckling f	1464 2,578E+11 176072905 194446479 	mm ⁴ mm ⁴ mm ³ -1,10435209 26,68399932	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	$\begin{array}{c c} \hline \mathbf{A} \\ \hline \mathbf$		$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	TTABANDA SUPER $2/\sigma_1$ $factor k_{\sigma}$ $r_{1}/r_{1/2}$ $r_{1}/r_{1/2}$	$ \begin{array}{c} \text{IORE} \\ $		
$\begin{array}{c} y_{\underline{G}} \\ J \\ W_{intradosso} \\ \Psi = \sigma_2/\sigma_1 = W_{intrad} \\ \Psi = \sigma_2/\sigma_1 = W_{intrad} \\ Duckling f \\ \lambda_p = (f_y/\sigma_{cr}) \\ \lambda_p = (f$	1464 2,578E+11 176072905 -194446479 osso/Westradosso actor k_g }?(1/2)	mm ⁴ mm ³ -1,10435209 26,68399932 1,143	$\begin{array}{c} & PI \\ & \Psi = c \\ & \Psi = c \\ & & \mu = c \\ & & \mu = c \\ & & \lambda_p = (f_v/\sigma \\ & & \rho \ ca \\ & & \rho $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $		$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	Image: Control Image: Control Trabanda super	$ \begin{array}{c} $		
$\begin{array}{c} y_{\underline{G}} \\ J \\ W_{\underline{m}tradosso} \\ \psi_{\underline{m}stradosso} \\ \psi_{$	1464 2,578E+111 176072905 -194446479 osso/Westradosso factor k₀)^(1/2) olo	mm ⁴ mm ³ -1,10435209 26,68399932 1,143 <u>0,795</u>	$\begin{array}{c} & \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	ATTABANDA INFEP 52/01 factor k _o factor		$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	Image: Control of the second secon	$ \begin{array}{c} \text{IORE} \\ \hline & 1 \\ \hline & 0,43 \\ \hline & 1,282 \\ \hline & 0,666 \\ \hline & 599 \\ \hline & 301 \\ \hline & 2767,5 \\ \end{array} $		
$\begin{array}{c} Y_{G} \\ J \\ W_{intradosso} \\ W_{estradosso} \\ \Psi = \sigma_{2}/\sigma_{1} = W_{intrad} \\ \psi = \sigma_{2}/\sigma_{1} = W_{intrad} \\ huckling f \\ \lambda_{p} = (f_{y}/\sigma_{cr} \\ \rho \ colc \\ \rho $	$\begin{array}{c} \text{ANIMA} \\ 1464 \\ 2,578E+11 \\ 176072905 \\ -19446479 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	mm ⁴ mm ³ -1,10435209 26,68399932 1,143 <u>0,795</u> 0,795 1015	$\begin{array}{c} & \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	ATTABANDA INFEF 52/01 factor k _o factor k _o factor k _o factor k _o factor k _o [mm] [mm]		$\begin{array}{c} & & \text{PIA} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	Image: Super level Image: Super level	lo <u>RE</u> 		
$\begin{array}{c} y_{\underline{G}} \\ J \\ W_{\underline{m}tradosso} \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{m}trad} \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{m}trad} \\ Duckling f \\ \lambda_p = (f_V/\sigma_{cr} \\ \rho calc \\ \rho \\ \underline{\rho} \\ \underline{b}_{\underline{efficace}} \\ p \\ \underline{b}_{\underline{efficace}} \end{array}$		mm ⁴ mm ³ mm ³ mm ³ -1,10435209 26,68399932 1,1430,795 0,795 0,795 0116 209,28720253	$\begin{array}{c} & \begin{array}{c} & & & \\ $	σ_{17} TABANDA INFER σ_{2}/σ_{1}	NORE	PAR PIA $\Psi = \sigma;$ buckling $\rho = f_y/\sigma_c$ $\rho = f_{y}/\sigma_c$ $\rho = f_{y$	Image: constraint of the	IORE		
$\begin{array}{c} y_{\underline{G}} \\ J \\ W_{\underline{G}} \\ w_{\underline{G}} \\ radosso \\ \psi = \sigma_2/\sigma_1 = W_{\underline{In}} \\ w_{\underline{G}} \\ \mu = \sigma_2/\sigma_1 = W_{\underline{In}} \\ \mu = \sigma_2/\sigma_2 \\ \mu = \sigma_2/\sigma_1 = W_{\underline{In}} \\ \mu = \sigma_2/\sigma_2 \\ \mu =$	ANIMA 	mm ⁴ mm ³ -1,10435209 26,68399932 1,143 0,795 0,795 1016 209,3870063 2179	$\begin{array}{c} & \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	$\sigma_{17ABANDA INFER}$ σ_{2}/σ_{1} $factor k_{\sigma}$ $\sigma_{r})^{(1/2)}$ lcolo [mm] [mm] [mm] baricentro per mom. di inerzia p	NORE	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	Image: Non-State Comparison factor k _o	IORE		
$\begin{array}{c} y_{G} \\ y_{G} \\ w_{intradosso} \\ \hline \\ W_{estradosso} \\ \hline \\ \psi = \sigma_{2}/\sigma_{1} = W_{intrad} \\ buckling f \\ \hline \\ \lambda_{p} = (f_{y}/\sigma_{cr} \\ \rho \ colc \\ \hline \\ \rho \ colc \\ \hline \\ \hline \\ b_{efficace} \\ \hline \\ y_{G} \ lembo \ inferiore \\ \hline \end{array}$		mm ⁴ mm ³ -1,10435209 26,68399932 1,143 0,795 0,795 1016 209,3870063 2179 odi resistenza	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$	artaBanda INFER f_2/σ_1	NORE	PAR Plan V=\sigma; buckling pcald pcald pcald pcald pcald p pcald p pcald pcad pcad pcald pcad pcad pcad pcad p	Image: Non-State Content Trabanda super	IORE1 0,43 1,282 0,666 0,666 301 301 301 301 		
$\begin{array}{c} y_{\underline{G}} \\ J \\ W_{intradosso} \\ W_{\underline{es}tradosso} \\ \Psi = \sigma_2/\sigma_1 = W_{intrad} \\ buckling f \\ \lambda_p = (f_V/\sigma_{cr} \\ \rho \ color \\ \rho \ color \\ \rho \ befricace \\ \hline b_{riduzione} \\ Y_{\underline{G} \ lembo \ inferiore} \\ \hline M - \rightarrow calco \end{array}$	ANIMA 	mm ⁴ mm ³ -1,10435209 26,68399932 1,143 0,795 0,795 1016 209,3870063 2179 o di resistenza e	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$	artaBanda INFER f_2/σ_1	NORE	PAR Plan V=\sigma; buckling pcald pcald pcald p pcald p p pcald p pcald pcald p pcald pcad pcad pcad pcad pcad pcad pcad pcad pcad pcad pcad pcad p	TABANDA SUPER z/σ_1	IORE		
$\begin{array}{c} y_{\underline{G}} \\ J \\ W_{intradosso} \\ W_{\underline{es}tradosso} \\ \Psi = \sigma_2/\sigma_1 = W_{intrad} \\ \underline{D}_{\underline{G}} = 0 $	ANIMA 	mm ⁴ mm ³ -1,10435209 26,68399932 1,143 0,795 0,795 1016 209,3870063 2179 o di resistenza e PARTI INTERN	$\frac{PIZ}{PIZ} = \frac{PIZ}{PIZ}$	artaBANDA INFER	NORE	PAR PIA V= σ_{r} buckling pcald pcald p p p befficacep p	abande	IORE		
$\begin{array}{c} Y_{G} \\ J \\ W_{intradosso} \\ W_{estradosso} \\ \Psi = \sigma_{2}/\sigma_{1} = W_{intrad} \\ buckling f \\ buckling f \\ \rho calc \\ \rho$		mm ⁴ mm ³ -1,10435209 26,68399932 1,143 0,795 0,795 1016 209,3870063 2179 odi resistenza e PARTI INTERN mm	$\begin{array}{c} & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$	TTABANDA INFER	NORE	PAR PIA V=o; buckling $\lambda_p=(f_y/o_c$ ρ ρ befficace briduzione VG lembo inferiore 1464,176237 2,57802E+11 one per le piatta PAR PAR	factor k _o factor k _o factor mm factor mm [mm] [mm] [mm] mm mm ⁴ abande II ESTERNE COMPPR (of 1	IORE1 0,43 0,666 0,666 301 2767,5 RESSE IORE		
$\begin{array}{c} Y_{\underline{G}} \\ J \\ W_{intradosso} \\ W_{\underline{es}tradosso} \\ \Psi = \sigma_2/\sigma_1 = W_{intrad} \\ \underline{D}_{\underline{e}}(f_V) \sigma_{cr} \\ \underline{D}_{\underline{e}$	ANIMA 	mm ⁴ mm ³ 1,10435209 26,68399932 1,143 0,795 0,795 1016 209,3870063 2179 0 di resistenza e PARTI INTERN mm mm ⁴	$\frac{PI}{L} = \frac{PI}{L}$	ATTABANDA INFER $5_2/\sigma_1$	NORE	PAR PIA V=o; buckling $\lambda_p = (f_y/o_c$ p p p berficace p briduzione p briduzione p 1464,176237 2,57802E+11 ione per le piatta par	Image and the second se	IORE		
$\begin{array}{c} Y_{G} \\ J \\ W_{intradosso} \\ W_{estradosso} \\ \Psi = \sigma_2/\sigma_1 = W_{intrad} \\ buckling f \\ buckling f \\ heta = 0 \\ buckling f \\ heta = 0 \\ he$	ANIMA 	mm ⁴ mm ³ 1,10435209 26,68399932 1,143 0,795 0,795 0,795 1016 209,3870063 2179 0 di resistenza e PARTI INTERN mm mm ⁴ mm ³	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	ATTABANDA INFER f_2/σ_1 $f_actor k_{\sigma}$ $f_actor k_{\sigma}$ $f_actor k_{\sigma}$ $f_actor k_{\sigma}$ $f_actor k_{\sigma}$ $f_actor k_{\sigma}$ $f_actor k_{\sigma}$ $f_actor k_{\sigma}$ $f_actor k_{\sigma}$	NORE	$\begin{array}{c} & \qquad & $	Image and the second se	NORE		
$\begin{array}{c} Y_{G} \\ J \\ W_{intradosso} \\ W_{estradosso} \\ \Psi = \sigma_{2}/\sigma_{1} = W_{intrad} \\ & buckling f \\ & \Delta_{p} = (f_{v}/\sigma_{cr} \\ p \\ color \\ \phi \\ briduzione \\ V_{G} \\ W_{intradosso} \\ \end{array}$		mm ⁴ mm ³ -1,10435209 26,68399932 1,143 0,795 0,795 0,795 1016 209,3870063 2179 odi resistenza e PARTI INTERN mm mm ⁴ mm ³	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\$	ATTABANDA INFER $5_2/\sigma_1$	NORE	$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$	TABANDA SUPER $\frac{1}{\sigma_1}$	IORE		
$\begin{array}{c} \underline{Y_G} \\ \underline{J} \\ \underline{W_{intradosso}} \\ \underline{W_{estradosso}} \\ \underline{W=\sigma_2/\sigma_1=W_{intrad}} \\ \underline{D_{p}=(f_y/\sigma_{cr})} \\ \underline{D_{p}=(f_y/$		mm	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$	$\frac{\text{ATTABANDA INFEF}}{5_2/\sigma_1}$ $\frac{\text{factor } \text{k}_{\sigma} }{1/(1/2)}$ $\frac{1}{1/(1/2)}$ $\frac{1}{1/(1/2)}$ $\frac{1}{1/(1/2)}$ $\frac{1}{1/(1/2)}$ $\frac{1}{1/(1/2)}$ $\frac{1}{1/(1/2)}$ $\frac{1}{1/(1/2)}$ $\frac{1}{1/(1/2)}$	NORE	$\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$	Image and the second se	IORE		
$\begin{array}{c} \underline{Y_G} \\ \underline{y}_{intradosso} \\ \underline{W}_{estradosso} \\ \underline{W}=\sigma_2/\sigma_1=\underline{W}_{intrad} \\ \underline{b}_{uckling} f \\ \underline{\lambda}_p=(f_v/\sigma_{cr} \\ \underline{\rho}_{calc} \\ \rho$	ANIMA 1464 2,578E+111 176072905 -194446479 $0so W_{stradoss}$ $actor k_{\sigma}$ (mm) (mm) (mm) (mm) (mm) 10 del modulo ANIMA $2,578E+111176072905-1944464790so /W_{intradoss'}actor k_{\sigma}$	PARTINICEN mm ⁴ mm ³ -1,10435209 26,68399932 1,143 0,795 0,795 0,795 209,3870063 2179 of i resistenza comparente PARTI INTERN mm ⁴ mm ³ -0,90550832 21,52471251	$\begin{array}{c} & \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\frac{\text{ATTABANDA INFEF}}{5_2/\sigma_1}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{[mm]}}{1}$ $\frac{\text{[mm]}}{1}$ $\frac{\text{[mm]}}{1}$ $\frac{\text{factor } \text{k}_{\sigma}$	NORE	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	In ESTERNE COMPER i/o1 factor k _o [mm] [mm] [mm] [mm] [mm] mm ⁴ abande TI ESTERNE COMPER i/o1 factor k _o [mm] factor k _o [nm] factor k _o [nm] [mm	NORE		
$\begin{array}{c} \underline{Y_G} \\ \underline{J} \\ \underline{W_{intradosso}} \\ \underline{W_{estradosso}} \\ \underline{W=\sigma_2/\sigma_1=W_{intrad}} \\ \underline{D_{p}=(f_y/\sigma_{cr})} \\ \underline{D_{p}=(f_y/\sigma_{cr})} \\ \underline{D_{p}=(f_y/\sigma_{cr})} \\ \underline{D_{p}=(f_y/\sigma_{cr})} \\ \underline{D_{p}=(f_y/\sigma_{cr})} \\ \underline{D_{p}=(f_y/\sigma_{cr})} \\ \underline{M_{p}=\sigma_2/\sigma_1=W_{estrad}} \\ \underline{D_{p}=(f_y/\sigma_{cr})} \\ \underline{D_{p}$		mm	$\begin{array}{c} & \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\frac{\text{ATTABANDA INFEF}}{5_2/\sigma_1}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{[mm]}}{1}$ $\frac{\text{[mm]}}{1}$ $\frac{\text{factor } \text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$	NORE	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	Image: Control of the second secon	NORE		
$\begin{array}{c} \underline{Y_G} \\ \underline{J} \\ \underline{W_{intradosso}} \\ \underline{W_{estradosso}} \\ \underline{W=d_2/\sigma_1=W_{intrad}} \\ \underline{D_{gel}(\mu/\sigma_{cr})} \\ \underline{M_{gel}(\mu/\sigma_{cr})} \\ \underline{M_{gel}(\mu/\sigma_{cr})} \\ \underline{M_{gel}(\mu/\sigma_{cr})} \\ \underline{M_{gel}(\mu/\sigma_{cr})} \\ \underline{D_{gel}(\mu/\sigma_{cr})} \\ $	ANIMA 	mm	$\begin{array}{c} \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\frac{\text{ATTABANDA INFER}}{5_2/\sigma_1}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{[mm]}}{1}$ $\frac{\text{[mm]}}{1}$ $\frac{\text{[mm]}}{1}$ $\frac{\text{baricentro per } \text{mom. di inerzia per } mom. di inerzia per $	NORE	$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array}$	Image: Non-State Content Trabanda SUPER $(/\sigma_1$	KLSI IORE		
$\begin{array}{c} \underline{Y_G} \\ \underline{J} \\ \underline{W_{intradosso}} \\ \underline{W_{estradosso}} \\ \underline{W=d_2/\sigma_1=W_{intrad}} \\ \underline{b_{intrad}} \\ \underline{b_{intradosso}} \\ \underline{p_{calc}} \\ \underline{\rho_{calc}} \\ \underline{\rho_{calc}} \\ \underline{\rho_{calc}} \\ \underline{\rho_{calc}} \\ \underline{\rho_{calc}} \\ \underline{N_{intradosso}} \\ \underline{W_{intradosso}} \\ \underline{W_{intradosso}} \\ \underline{W_{estradosso}} \\ \underline{W=d_2/\sigma_1=W_{estrad}} \\ \underline{b_{intradosso}} \\ \underline{b_{intradosso}}$		mm mm ⁴ mm ³ -1,10435209 26,68399932 1,143 0,795 0,795 0,795 0,795 0,795 0,795 0,795 0,795 0,795 0,795 0,795 0,795 0,1016 209,3870063 2179 0 di resistenza di	$\begin{array}{c} \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\frac{\text{ATTABANDA INFEF}}{5_2/\sigma_1}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{[mm]}}{1}$ $\frac{\text{[mm]}}{1}$ $\frac{\text{[mm]}}{1}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{m}}{1}$	NORE	$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Image: Non-State Content Trabanda SUPER $(/\sigma_1$	KLSI IORE		
$\begin{array}{c} \underline{Y_{G}} \\ \underline{W_{intradosso}} \\ \underline{W_{estradosso}} \\ \underline{W_{estradosso}} \\ \underline{W_{estradosso}} \\ \underline{W}_{estradosso} \\ \underline{P}_{2}/\sigma_{1}^{=} \underline{W_{intrad}} \\ \underline{P}_{2}/\sigma_{1}^{=} \underline{W_{intrad}} \\ \underline{P}_{1}/\sigma_{cr} \\ \underline{P}_{2}/\sigma_{1}^{=} \\ \underline{P}_{1} \\ \underline{P}_{2}/\sigma_{1}^{=} \\ \underline{P}_{1} \\ \underline{P}_{2}/\sigma_{1}^{=} \\ \underline{P}_{1} \\ \underline{P}_{2}/\sigma_{1}^{=} \\ \underline{P}_{2}/\sigma$		PARTINICEN mm mm ³ -1,10435209 26,68399932 1,143 0,795 0,795 0,795 1016 209,3870063 2179 0 di resistenza e PARTI INTERN mm ⁴ mm ³ -0,90550832 21,52471251 1,273 0,715 0,715 1009	$\begin{array}{c} \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\frac{\text{ATTABANDA INFER}}{5_2/\sigma_1}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{[mm]}}{\text{[mm]}}$ $\frac{\text{[mm]}}{\text{[mm]}}$ $\frac{\text{baricentro per l'anim}}{\frac{\text{factor } \text{k}_{\sigma}}{\frac{\text{cr}}^{(1/2)}}$ $\frac{\text{factor } \text{k}_{\sigma}}{\frac{\text{cr}}^{(1/2)}}$ $\frac{\text{[mm]}}{\text{[mm]}}$	NORE	$\begin{array}{c} & & & & & & & \\ & & & &$	Image: Non-accepted and a super internet comments in the internet of the internet internet of the internet of t	KLSI IORE 		
$\begin{array}{c} \underline{Y_G} \\ \underline{y_G} \\ \underline{W_{intradosso}} \\ \underline{W_{estradosso}} \\ \underline{W_{estradosso}} \\ \underline{W_{estradosso}} \\ \underline{W_{estradosso}} \\ \underline{\phi_{calc}} \\ \phi$		PARTINICEN mm ⁴ mm ³ -1,10435209 26,68399932 1,143 0,795 0,795 0,795 209,3870063 2179 0 di resistenza e PARTI INTERN mm ⁴ mm ³ -0,90550832 21,52471251 1,273 0,715 0,715 1009 455	$\begin{array}{c} & \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	$\frac{\text{ATTABANDA INFER}}{52/\sigma_1}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{[mm]}}{\text{[mm]}}$ $\frac{\text{[mm]}}{\text{[mm]}}$ $\frac{\text{baricentro per } \text{l'anim}$ $\frac{\text{ATTABANDA INFER}}{52/\sigma_1}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{k}_{\sigma}$ $\frac{\text{factor } \text{m}}{\text{[mm]}}$ $\frac{\text{baricentro per } \text{m}}{\text{[mm]}}$	NORE	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	Image: Non-acceleration of the second sec	NORE		

SEZIONE		-						
			L	t (thickness)	Area	VG lembo inferiore	d	J (mom d'inerzia)
elementi che	e compongon	o la sezione	[mm]	[mm]	[mm ²]	[mm]	[mm]	[mm ⁴]
soletta coll	aborante	1	0	280	19792	2956.67	1437.6	40994437023
piattabanda	superiore	2	900	45	40500	2767,5	1248,4	6,31E+10
riduzione p	iat sup N	r		45	0	2768		
riduzione pi	iat sup M	3	0	45	0	0	-1519	0,00E+00
altezza tra	ve [mm]	2790						
anin	na	4	2690	18	<u>515</u> 27 <u>,48</u> 77 <u>4</u>	1400	- <u>11</u> 9,1	<u>3,18E+10</u>
riduzione d	anima N	5		19	0	1400		L
riduzione a	ınima M		209	19	-4011	631	-888	-3,18E+09
piattabanda	<u>inferiore</u>	<u> </u>	1000	55	55000	27,5	- <u>1491,6</u>	<u>1,2</u> 23 <u>82</u> E+1 <u>1</u>
riduzione p	piat inf N	7	0	55	0	27,5		+
riauzione p	olat inf M		68,28165514	55	-3755,491033	27,5	-1491,6	-8,36E+09
ARMATURA	SOLETTA							
	armatura	superiore			coefficiente d	i omogeneizzazio	ne cls-acciaio	6
ø	num	A	с		A _{cls} (area sol	etta solo cls)	0	mm ²
[mm]		[mm ²]	[mm]		A _{ideale} (sezi	one ideale)	118752	mm ²
20	42	13195	65		distanza arma	tura superiore	215	
					dall'intrado	osso soletta		⊢
					distanza arma	atura inferiore	70	mm
	armatura	inferiore			dall'intrado	osso soletta		\downarrow
ø	num	A	<u>c'</u>		baricentro	o soletta y _G	166,67	mm
[mm]		[mm ²]	[mm]		1/2 lunghezza	adistribuzione	0.00	mm
20	21	6597	70		trasversale d	elle armature	-,	
CARATTERIS	TICHE GENE	RALI SEZION	E					
alt	tezza trave H _{tr}	ave	2790	mm				
al	tezza sezione	H	2790	mm				
Area sezio	ne omogenizz	ata totale				7 1	3	
(so	letta → accia	io)	166820	mm²		^ , M_	-	
Area sezione	e omogenizzat	ta EFFICACE			•	H.		
(so	letta → accia	io)	166820	mm ⁺		ll ll	-	
barice	entro sezione	totale	1464				1	
baricen	tro sezione FI		1519				1	
momonto	d'inorzia cozi					_ 5	4	
momento			2,5/8E+11	m				
momento d	Inerzia sezior		2,47E+11	mm*				
ECCENTRIC	LITA sez. total	e-efficace	-55	mm				
CARATTERIS	TICHE SEZI	ONE IMPLEM	ENTATE NEL	CODICE DI	CALCOLO			
Atotale	$y_{G \text{ totale}}$	Y _G totale		J trasversale	α inclinazione	Ω	$J_{torsionale}$	Peso trave
	INTRAD OSSO	ESTRADOSSO	- iongituulilaid	- 0 034612016	anima		sezione APERTA	
[m ²]	[m]	[m]	[m ⁴]	[m ⁴]	[deg]	[m ²]	[m ⁴]	[kN/m]
0,167	1,464	1,326	0,258	0,231	20	9,56	8,84E-05	13,10
MODULI DI R	RESISTENZA	A LIVELLO D	ELLE FIBRE C	CONSIDERAT	TE E STATO TE	ENSIONALE		
	Y fibra	W.,"	· _		1			T*- (T) tensione
I	posizione	modulo di	A _{eff}	σ _{My (M3)}	σ _{Mz (M2)}	σ _{N (N1)}	τ _{ν (V2)}	tangenziale dovuta
	baricentro	resistenza efficace	alea enicace					alla torsione
	mm	mm ³	mm ²	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
FIBRA 1	1519	162445690	166820	-91,61	0,00	0,00	0,0	0,0
FIBRA 2	1464	168548067	166820	-88,29	0,00	0,00	25,0	0,0
FIBRA 3	-1226	-2012 <u>99</u> 127	166820	73,92	0,00	0,00	25 <u>,0</u>	0,0
FIBRA 4	-1271	-194171511	166820	76,64	0,00	0,00	<u>0,</u> 0	0,0
FIBRA 4 cls	0	0	<u> </u>	0,00	0,00	0,00	0,0	
FIBRA 5 arm inf		⊢_°		0,00	0,00	0,00	<u> </u>	0,0
FIBRA 6 arm sup		<u> </u>	+ <u> </u>	0,00	0,00	0,00	<u> </u>	+ <u> </u>
	0	U	U	0,00	0,00	0,00	0,0	0,0

Modello B:

INPUT E CLASSIFICAZIONE	SEZIONE ·	- modello B	- sezione cor	nposta acciai	o-calcestruzzo	o a breve terr	nine
f _{yk} 335	N/mm ²			SOL	LECITAZIONI		
t max 55	mm	sforzo normale	momento	momento			
ε 0,83	8	+ compressione	flettente	flettente	taglio	taglio	torsione
γ _{M0} 1,0	5	- trazione	longitudinale	trasversale	longituumale	trasversare	' <u> </u>
N _{pl,Rd} 46909	kN	<u>N</u>	M₃ [kNm]	M ₂	V2	V_3	L _ T _
N _{ed comp max} 8220	kN	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kN]
Non tengo conto della compressio	ne sull'anima	0	-10560	0	-145	0	-23
	PARTI INTERN	E COMPRESSE			P	ARTI ESTERNE CON	APRESSE
ANIMA		PIA	ATTABANDA INFE	RIORE		PIATTABANDA SUF	PERIORE
$\frac{c}{1} = \frac{2690}{1551000}$	m		2000	mm	<u> </u>	450	<u>mm</u>
t <u>19,1551999</u>	mm	$-\frac{t}{c''}$ -	55	m	•t	<u>45</u> 10	mm
CLASSE	<u> </u>	<u> </u>	CLASSE	L	<u></u>		<u> </u>
			01/1002			01/1001	
		CLASS	SE RISULTANTE	4			
$N \rightarrow$ calcolo dell'area efficad	e a compress	ione					
	PARTI INTERN	E COMPRESSE			P	ARTI ESTERNE CON	APRESSE
ANIMA			PIATTABANDA SUF	PERIORE			
$\Psi = \sigma_2 / \sigma_1$	1	Ψ=c	σ_2/σ_1	1	Ψ=σ2	σ_1	
buckling factor k_σ	4	buckling	factor k _o	4	buckling	factor k _o	0,43
$\lambda_p = (f_y / \sigma_{cr})^{(1/2)}$	2,952	$\lambda_p = (f_y / \sigma)$	cr)^(1/2)	0,764	$\lambda_p = (f_y / \sigma_c)$	r)^(1/2)	1,282
ρ calcolo	0,314	<u>ρc</u> a	Icolo	0,932	ρ calo	colo	0,666
ρ	0,314	L (o	0,932	ρ		0,666
b _{efficace} [mm]	843	b _{efficace}	[mm]	932	b _{efficace}	[mm]	599
b _{riduzione} [mm]	0	b _{riduzione}	[mm]	0	b _{riduzione}	[mm]	0
YG lembo inferiore [mm]	1400	y_{G} lembo inferiore	[mm]	27,5	Y _G lembo inferiore	[mm]	2767,5
$M + \rightarrow$ calcolo del modulo d	di resistenza	efficace a fless	ione per l'anir	na e a compress	ione per le piatt	abande	
	PARTI INTERN	E COMPRESSE			P	ARTI ESTERNE CON	APRESSE
		P <u>I</u> /	ATTABANDA INFE	RIORE	4	PIATTABANDA SUF	PERIORE
y _G 2238 m	1m	Ψ=σ	σ ₂ /σ ₁	⊢ <u> </u>	Ψ=σ2	_/σ1	<u> </u>
J 4,4383E+12 m	1m ⁴	buckling	factor k _o	'	buckling	factor k _o	0,43
W _{intradosso} 1982957006 m	nm ³	$\lambda_p = (f_y / \sigma)$	_{cr})^(1/2)		$\lambda_p = (f_y / \sigma_c)$	r)^(1/2)	1,282
W _{estradosso} -8,044E+09 m	nm ³	ρca	Icolo		ρ calo	colo	0,666
$\Psi = \sigma_2 / \sigma_1 = W_{intradosso} / W_{estradosso}$	4,05653561	,		- <u> </u>	ρ		0,666
buckling factor k _σ 1	94,2602149	b _{efficace}	[mm]		b _{efficace}	[mm]	599
$\lambda_{\rm p} = (f_{\rm v}/\sigma_{\rm cr})^{1/2}$	0,424	b _{riduzione}	[mm]		b _{riduzione}	[mm]	
ρ calcolo	1,000	Y G lembo inferiore	[mm]	┌─ <u></u> _	YG lembo inferiore	[mm]	2767,5
+	1,000						
b _{efficace} [mm]	532		baricentro pe	calcolo di W _{eff}	2238,238831	mm	
b riduzione [mm]	0		mom. di inerzia p	er il calcolodi W 🚑	4,43833E+12	mm ⁴	
YG lembo inferiore [mm]	2557			- · · · ejj			
$M - \rightarrow$ calcolo del modulo d	li resistenza e	efficace a flessi	ione per l'anim	a e a compressi	one per le niatta	abande	
	PARTI INTERN	E COMPRESSE			Periode	ARTI ESTERNE CON	APRESSE
ANIMA		PIA	ATTABANDA INFE	RIORE		PIATTABANDA SUF	PERIORE
y _G 2238 m	1m		σ_2/σ_1	1	Ψ=σ2	σ_	·
J 4.4383E+12 m	nm ⁴	buckling	factor ka	4	buckling	factor k _a	
Wisterdam 1982957006 m	nm ³	$\lambda_{-}=(f_{-}/\sigma)$	$\frac{1}{(1/2)}$	0.764	$\lambda_{-}=(f_{-}/\sigma_{-})$.)^(1/2)	
N/ 8 044E+00 m		<u></u> (; <u>w</u> _			<u> </u>		
$W = \sigma_0 / \sigma_1 = W / W$	0 24651577	<u> </u>	<u> </u>	0.932			
huckling factor k-	954915036	h.#:		932	p	[mm]	
$\lambda_{-}=(f_{1}/\sigma_{-})/(1/2)$	1 871	h	[mm]	<u> </u>	b and the	[mm]	'
	0 491	V riduzione	[mm]	275	VG lombs informe	[mm]	\vdash
	0 4 9 1	r o lembo interiore	[]	27,5	7 G lembo interiore	[]	-
hefficace	1060		haricentro per	calcolo di W. "	2238 238821	mm	
h	1179		mom di inerzia a	er il calcolodi W	A A3832F+17	⁴	
v riduzione	1110		nom. ur merziù p	ci il cuicoloui W _{eff}	7,7JUJJLTIZ		
YG lembo inferiore [mm]	1013						

SEZIONE								
al ann an thaile			L soletta collaborante	t (thickness)	Area	YG lembo inferiore	d	J (mom d'inerzia)
elementi chi	e compongon	o la sezione	[mm]	[mm]	[mm ²]	[mm]	[mm]	[mm ⁴]
soletta coll	aborante	1	4000	280	206459	2932,56	584,4	72396877535
piattabanda	superiore	2	900	45	40500	2767,5	419,4	7,13E+09
riduzione p	iat sup N		0	45	0	2768		L
riduzione p	at sup M	3	0	45	0	0	-2348	0,00E+00
anin	na	4	2690	18	515 <u>27</u> ,48774	1400	-948,1	7,74E+10
<u>riduzione</u> a	anima N	5	0	19	<u> </u>	1400		
riduzione a	nima M		1178	19	-22570	1013	-1335	-4,28E+10
piattabanda	inferiore	6	1000	<u> </u>	55000	27,5	<u>-2320,6</u>	2,96208E+11
<u>riduzion</u> e p	piat inf N	7		55	<u> </u>	27,5		' <u> </u>
riduzione p	iat inf M		68,28165514	55	-3755,491033	27,5	-2320,6	-2,02E+10
ARMATURA	Soletta							
	armatura	superiore			coefficiente d	i omogeneizzazio	ne cls-acciaio	6
ø	num	A	c		A _{cis} (area sol	etta solo cls)	1120000	mm ²
[mm]		[mm ²]	[mm]		A _{ideale} (sezi	one ideale)	1238752	mm ²
20	42	13195	65		distanza arma	tura superiore	215	
					dall'intrado	osso soletta		
					distanza arma	atura inferiore	70	mm
	armatura	a inferiore			dall'intrade	osso soletta		
ø	num	A	C'		baricentro	soletta y _G	142,56	m
[mm]		[mm ²]	[mm]		1/2 lunghezza	a distribuzione	6100,00	n mm
20	21	6597	70		trasversaled	elle armature		
CARATTERIS	FICHE GENE	ERALI SEZION	Ł		7			1
alt	ezza trave H _t	rave	2790	mm				
al	tezza sezione	<u>H</u>	3070	<u></u> mm		1	<u> </u>	
Area sezio	ne omogenizz	ata totale	353486	mm ²		7.7		
(so	letta → accia	<u>nio)</u>				2 3 14		
Area sezion	e omogenizza	ta EFFICACE	353486	mm ²		H.		
(so	$\frac{1etta}{.} \rightarrow \frac{a}{.}$	<u> </u>				K		
barice	entro sezione	totale	4476	m		N		
baricen	tro sezione E	FFICACE	2348	mm		<u> </u>		
momento	d'inerzia sezi	one totale	4,4383E+12	mm ⁴		-6		
momento d	inerzia sezio	ne EFFICACE	3,90E+11	mm ⁴				
ECCENTRI	CITA sez. total	e-efficace	-2128	mm				
CARATTERIS	FICHE SEZI	ONE IMPLEM	ENTATE NEL	CODICE DI	CALCOLO			
	Y _G totale	YG totale			α inclinazione		J _{torsionale}	
A _{totale}	INTRADOSSO	ESTRAD. cassone	J longitudinale	J trasversale	anima		sezione APERTA	I
[m ²]	[m]	[m]	[m ⁴]	[m ⁴]	[deg]	• — — +	[m ⁴]	
0,353	4,476	-1,686	4,438	3,762	20	<u> </u>	2,94E-02	
MODULI DI F	ESISTENZA	A LIVELLO D	ELLE FIBRE (CONSIDERAT	ΓΕ Ε STATO ΤΕ	ENSIONALE		
	Vfibra	I					,	
	posizione	Weff modulo di	A _{eff}	σ	OM7 (M2)	σ _{NL} (N1)	T ₁₁ (1/2)	$\tau^*{}_{z(T)}$ tensione tangenziale
	rispetto al baricentro	resistenza efficace	area efficace	wiy (1015)	W12 (W12)	(((1))	• (•=)	dovuta alla torsione
	mm	mm ³	mm ²	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
FIBRA 1	2348	166116458.8	353486	-63,57	0,00	0,00	0,0	-0,0379
FIBRA 2	2293	170100700,7	353486	-62,08	0,00	0,00	-2,8	-0,0379
FIBRA 3	-397	-982863427	<u>35348</u> 6	10,74	0,00	0,00	-2,8	- <u>0,0379</u>
FIBRA 4	-442	-882767530	353486	11,96	0,00	0,00	0,0	-0,0983
FIBRA 4 cls	-442	-882767530	353486	1,99	0,00	0,00	0,0	-0,0983
FIBRA 5 arm inf	-512	<u>-762044780</u>	353486	13,86	<u>0,00</u>	0,00	0,0	<u>0,0</u>
FIBRA 6 arm sup	-6 <u>57</u>	-59 <u>38</u> 26766	353486	17,78	0,00	0,00	0,0	0,0
FIBRA 7	-722	-540355895	353486	3,26	0,00	0,00	0,0	0,0

Modello C:

INPUT E CLAS	SIFICAZION	IE SEZIONE	NE - modello C - sezione composta acciaio-calcestruzzo a lungo termine					
f _{yk}	335	N/mm ²			SOLLE	CITAZIONI		
t max	55	mm	sforzo normale	momento	momento			
εε	0,8	338	+ compressione	flettente	flettente	taglio	taglio	torsione
Υμο	— — _{1,}	,05	- trazione	longitudinale	trasversale	longitudinale	trasversale	
N _{pl.Rd}	46909	kN	N	M ₃ [kNm]	M ₂	V2	V ₃	
Ned comp max	8220	kN	[kN]	[kNm]	[kNm]	[kN]	[kN]	[kN]
L'ani	ima è tenso infle	essa	-3722	-5219	34	460	0	0
		PARTI INTERN	E COMPRESSE			PAR	TI ESTERNE COMPR	RESSE
	ANIMA		PIA	ATTABANDA INFER	IORE	PIA	TTABANDA SUPERI	IORE
с	2690	mm	с	2000	mm	С	450	mm
t	19,1551999	mm	t	55	mm	t	45	mm
c <u>/t</u>	140,431842	「 <u>_</u>	c/t	36,3636364		c/t	10	
	CLASSE	4		CLASSE	4		CLASSE	3
			CLASS	SE RISULTANTE	4			
$\mathbf{N} \rightarrow \text{calcolod}$	lell'area effica	ace a compress	ione					
		PARTI INTERN	E COMPRESSE			PAR	TI ESTERNE COMPR	RESSE
	ANIMA		PI/	TTABANDA INFER		PIA	TT <u>ABA</u> ND <u>A S</u> UPERI	
Ψ=σ2/	/σ1	1	Ψ=c	σ2/σ1	1	Ψ=σ	2/σ1	<u>1</u>
buckling fa	actor k_{σ}	4	buckling	factor k_{σ}	4	buckling	factor k _o	0,43
$\lambda_p = (f_y / \sigma_{cr})$	^(1/2)	2,952	$\lambda_p = (f_y / \sigma)$	cr)^(1/2)	0,764	$\lambda_p = (f_y / \sigma_c)$	r)^(1/2)	1,282
ρ calco	olo	0,314	ρ ca	lcolo	0,932	ρ cal	colo	0,666
ρ		0,314	۱ <u> </u>	>	0,932	ρ		0,666
b _{efficace}	[mm]	843	b _{efficace}	[mm]	932	b _{efficace}	[mm]	599
b riduzione	[mm]	0	b _{riduzione}	[mm]	0	b _{riduzione}	[mm]	0
YG lembo inferiore	[mm]	1400	Y G lembo inferiore	[mm]	27,5	YG lembo inferiore	[mm]	2767,5
$M + \rightarrow calco$	lo del modulo	o di resistenza e	efficace a fless	ione per l'anim	a e a compress	ione per le piatt	tabande	
				•				
		PARTI INTERN	IE COMPRESSE			PAR	TI ESTERNE COMPR	RESSE
	ANIMA	PARTI INTERN	E COMPRESSE PI/		IORE	PAR PIA	TI ESTERNE COMPR	IORE
	ANIMA 1897	PARTI INTERN	E COMPRESSE PIA Ψ=c	$\frac{1}{\sigma_2/\sigma_1}$	I <u>ORE</u>	PAR ΡΙΑ Ψ=σ	TI ESTERNE COMPR TTABANDA SUPERI 2/σ1	RESSE
	ANIMA 1897 2.4337E+12		E COMPRESSE PIA Ψ=c buckling	$\frac{1}{\sqrt{\sigma_1}} - \frac{1}{\sqrt{\sigma_1}}$	I <u>ORE</u>	PAR PIA Ψ=σ 	TI ESTERNE COMPR TTABANDA SUPERI $2/\sigma_1$ factor k _a	RESSE
Y _G	ANIMA 1897 2,4337E+12 1282597018	PARTI INTERN	E COMPRESSE $\Psi = c$ $\psi = c$ buckling $\lambda = (f/g)$	$\frac{1}{\sqrt{\sigma_1}}$	I <u>ORE</u>	PAR PIA $\Psi=\sigma$ $buckling$ $\lambda = (f / \sigma)$	TI ESTERNE COMPR TTABANDA SUPERI $2/\sigma_1$ factor k_σ $\lambda^{\alpha}(1/2)$	RESSE
Y _G J† W _{intradosso} ?	ANIMA 1897 2,4337E+12 1282597018	PARTI INTERN	E COMPRESSE $\Psi = c$ $\psi = c$ buckling $\lambda_p = (f_y/\sigma)$	$\frac{1}{5_2/\sigma_1} + \frac{1}{5_2/\sigma_1}$	I <u>ORE</u>	$\begin{array}{c} & \text{PAR} \\ & \text{PIA} \\ & \text{PIA} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	TI ESTERNE COMPRI TTABANDA SUPERI $_2/\sigma_1$ factor k_σ $_r)^{(1/2)}$	RESSE
Y _G J Wintradosso Westradosso	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09	PARTI INTERN	ECOMPRESSE $\Psi = c$ buckling $\lambda_p = (f_v/\sigma)$	$\frac{\text{ATTABANDA INFER}}{f_2/\sigma_1} + \frac{f_2}{f_2}$	I <u>ORE</u>	$\begin{array}{c} & \text{PAR} \\ & \text{PIA} \\ & & \text{PIA} \\ \\ & & & \\ & $	TT ESTERNE COMPRI TTABANDA SUPERI $2/\sigma_1$ factor k_σ $r_1 \wedge (1/2)$ colo	Image: Normal System Image: Normal System Image: Normal System Ima
$\begin{array}{c} Y_{\underline{G}} \\ J \\ W_{\underline{intradosso}} \\ W_{\underline{estradosso}} \\ \Psi = \sigma_2 / \sigma_1 = W_{\underline{intrado}} \end{array}$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 -ssso/Westradosse	PARTI INTERN mm mm ⁴ mm ³ -2,12587498 cr 2000 101	ECOMPRESSE $\Psi = c$ $\psi = c$ buckling $\lambda_p = (f_v/\sigma)$	$\frac{1}{p_2/\sigma_1} - + \frac{1}{p_2/\sigma_1} - + \frac{1}{p_2/\sigma_1} - + \frac{1}{p_2/\sigma_1} - + \frac{1}{p_2/\sigma_1} - \frac{1}{p_2/\sigma_2} - \frac{1}$	IO <u>RE</u>	PAR PIA Ψ=σ buckling $λ_p=(f_y/σ_c$ $ρ_cal$ $ρ_cal$	TTABANDA SUPERI $2/\sigma_1$ factor k_σ $r_1^{(1/2)}$	1 0,43 1,282 0,666 0,666 0,666
Y <u>G</u> J Wintradosso Westradosso Ψ=σ ₂ /σ ₁ =Wintrado buckling fa	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 asso V estradosse actor k _o	PARTI INTERN mm mm ⁴ mm ³ -2,12587498 65,3809421	ECOMPRESSE $\psi = c$ $\psi = c$ buckling $\lambda_p = (f_y/\sigma)$ ρca ρca buckling ρca	$\frac{1}{p_2/\sigma_1} \longrightarrow + \frac{1}{p_2/\sigma_1} \longrightarrow + \frac{1}{p_2/\sigma_2} \longrightarrow + \frac{1}{p_2/\sigma_1} \longrightarrow + \frac{1}{p_2/\sigma_2} \longrightarrow + \frac{1}{p_2/\sigma$	IO <u>RE</u>	PAR PIA $\Psi=\sigma$ buckling $\lambda_p=(f_y/\sigma_c$ ρ_cal ρ_cal ρ_cal	TT ESTERNE COMPRI TTABANDA SUPERI $2/\sigma_1$ factor k_{σ} $r_1^{(1/2)}$ $r_2^{(1/2)}$	NORE
$\begin{array}{c} Y_{\underline{G}} \\ J \\ W_{\underline{intradosso}} \\ \Psi = \sigma_2 / \sigma_1 = W_{\underline{intrados}} \\ \Psi = \sigma_2 / \sigma_1 = W_{\underline{intrados}} \\ \underline{buckling fa} \\ \lambda_p = (f_y / \sigma_{cr}) \end{array}$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 actor k _o h(1/2)	PARTI INTERN mm ⁴ mm ³ -2,12587498 65,3809421 0,730	ECOMPRESSE $\Psi = c$ buckling $\lambda_p = (f_y/\sigma)$ $\rho = c\sigma$ $b_{efficace}$ $b_{iduzione}$	$\begin{array}{c c} \underline{ITTABANDA INFER} \\ \underline{factor } \\ \underline{k}_2/\underline{o}_1 \\ \underline{factor } \\ \underline{k}_\sigma \\ \underline{cr} \\ \underline{cr} \\ \underline{(clob} \\ \underline{cr} \\ \underline{mm} \\ \underline{mm} \\ \underline{mm} \\ \underline{mm} \end{array}$	IO <u>RE</u>	$\begin{array}{c} & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & &$	IT ESTERNE COMPRI 2/01	1 0,43 1,282 0,666 0,666 0,666 0,666 0,666 0
$\begin{array}{c} Y_{G} \\ J \\ W_{intradosso} \\ W=\sigma_{2}/\sigma_{1}=W_{intrado} \\ \Psi=\sigma_{2}/\sigma_{1}=W_{intrado} \\ \Phi_{uckling fe} \\ \lambda_{p}=(f_{y}/\sigma_{cr}) \\ \rho calco$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 Mestradosse actor k _o (^(1/2))00	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279	$\begin{array}{c} \hline \textbf{ECOMPRESSE} \\ \hline & PIL \\ \Psi = c \\ \hline & \mu = c \\ \hline & \rho = (f_{\psi}/\sigma) \\ \hline &$	$\begin{array}{c c} & \text{ITTABANDA INFERI f_2/0_1 & & \\ factor k_{\sigma} & & \\ \hline fa$	IO <u>RE</u>	$\begin{array}{c} & \text{PAR} \\ & & \text{PIA} \\ & & \text{PIA} \\ & & \text{PIA} \\ & & \text{Usc} \\ & & \text{Usc} \\ & & \text{Ling} \\ & &$	IT ESTERNE COMPR 2/01	1 0,43 1,282 0,666 0,666 0,666 0,666 0,2767,5
$\begin{array}{c} Y_{G} \\ J \\ W_{intradosso} \\ \Psi = \sigma_{2}/\sigma_{1} = W_{intrado} \\ \Psi = \sigma_{2}/\sigma_{1} = W_{intrado} \\ Duckling fe \\ \lambda_{p} = (f_{y}/\sigma_{cr}) \\ \rho calco \\ Q \\ $	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 Mestradosse actor k ₀ // /(1/2)	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000	$\begin{array}{c} \hline \textbf{ECOMPRESSE} \\ \hline \textbf{PIL} \\ \Psi = c \\ \hline \textbf{Uckling} \\ \hline \lambda_p = (f_{\psi}/\sigma) \\ \hline \textbf{hore} \\ \hline \textbf{Y}_{G} \text{ lembo inferiore} \\ \hline \end{array}$	$\begin{array}{c c} \underline{ITTABANDA INFER} \\ \underline{factor } \\ \underline{k}_{\sigma} \\ \underline{cr} \\ \underline{factor } \\ \underline{k}_{\sigma} \\ \underline{cr} \\ \mathsf{cr$		PAR PAR PIA $\Psi = \sigma$ buckling $\lambda_p = (f_y/\sigma_c$ ρcal ρc	IT ESTERNE COMPR 2/01 5 factor ko 5 ,n/01/2) 5 ,m/01/2) 1	1 0,43 1,282 0,666 0,666 0,666 0,666 0,2767,5
$\begin{array}{c} Y_{G} \\ J \\ \hline \\ W_{intradosso} \\ \Psi = \sigma_{2}/\sigma_{1} = W_{intrado} \\ \Psi = \sigma_{2}/\sigma_{1} = W_{intrado} \\ \hline \\ \Phi uckling fe \\ \hline \\ \Delta_{p} = (f_{y}/\sigma_{cr}) \\ \hline \\ \hline \\ \hline \\ \Phi _{p} = f_{y}/\sigma_{cr} \\ \hline \\ $	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 000 000 000 000 000 000	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861	$\begin{array}{c} \hline \textbf{ECOMPRESSE} \\ \hline \textbf{PI} \\ \Psi = c \\ \hline \Psi = c \\ \hline \textbf{buckling} \\ \hline \lambda_p = (f_{\psi}/\sigma \\ \hline \rho ca \\ \hline \rho ca \\ \hline \textbf{b} \\ \textbf{fiducione} \\ \hline \textbf{Y}_G \text{ lembo inferiore} \\ \hline \end{array}$	$\begin{array}{c c} \mathbf{L} \\ $	I <u>ORE</u>	PAR PAR PAR PAR PAR PAR PAR PAR	IT ESTERNE COMPR TTABANDA SUPERI 2/G1 factor ko factor [ko (mm] [mm] [mm]	00RE
$\begin{array}{c} Y_{G} \\ J \\ \hline \\ W_{intradosso} \\ \hline \\ \Psi = \sigma_{2}/\sigma_{1} = W_{intrado} \\ \hline \\ \hline \\ \hline \\ D columnation \\ \hline \\ D columnation \\ \hline \\ \\ \hline \\ \\ D columnation \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \\ \hline \\$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 westradosse actor k ₀ // /(1/2) // (mm)	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0	$\frac{PIP}{PI} = COMPRESSE}{PIP} = PIP = COMPRESSE}$	Intrabanda INFERI Iz2/01 factor ko factor ko cr)^(1/2) Icolo	IQRE	PAR PAR PAR PAR PAR PAR PAR PAR	IT ESTERNE COMPR TTABANDA SUPERI 2/G1 factor ko factor [ko [mm] [mm] [mm] [mm] [mm]	00RE
$\begin{array}{c} Y_{\underline{G}} \\ J \\ \hline \\ W_{\underline{intradosso}} \\ \hline \\ W_{\underline{estradosso}} \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intrado}} \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intrado}} \\ \hline \\ \\ D uckling fraine fractional fr$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 westradosse actor k ₀ /\(1/2) /\(1/2) [mm] [mm]	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381	$\frac{PI}{P} = COMPRESSE} = \frac{PI}{P} = COMPRESSE = \frac{PI}{P} = $	ATTABANDA INFERI iz/o1 factor ko cr)^(1/2) (colo (mm) (mm) (mm) baricentro per mom. di inerzia pe	IQ <u>RE</u>	PAR PAR PAR PAR PAR PAR PAR PAR	IT ESTERNE COMPR TTABANDA SUPERI 2/G1 factor k _o factor [k _o [mm] [mm] [mm] [mm] mm mm ⁴	I 0,43 1,282 1,282 0,666 0,666 0,666 0 0,2767,5 0
$\begin{array}{c} Y_{\underline{G}} \\ J \\ \hline \\ W_{\underline{intradosso}} \\ \hline \\ W_{\underline{estradosso}} \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intrado}} \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intrado}} \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intrado}} \\ \hline \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intrado}} \\ \hline \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intrado}} \\ \hline \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intrado}} \\ \hline \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intrado}} \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intrado}} \\ \hline \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intradosso}} \\ \hline \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intradosso}} \\ \hline \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intradosso}} \\ \hline \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intradosso}} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \Psi = \sigma_2/\sigma_1 = W_{\underline{intradosso}} \\ \hline \\$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 0,550 (westradosse actor k ₀ (n(1/2) (mm) [mm] 0 del modulo	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 odi resistenza e	$\begin{array}{c} \text{ECOMPRESSE} \\ & & \text{PI} \\ & & \Psi = c \\ & & \mu = c \\ & & \rho =$	ITTABANDA INFERI f_2/σ_1 factor k_σ factor k_σ $(r)^{(1/2)}$ $($	IO <u>RE</u>	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI 2/G1 factor k _o ,n/(1/2) 	I 0,43 1,282 0,666 0,666 0,666 0,666 0,2767,5
$\begin{array}{c} Y_{\underline{G}} \\ J \\ W_{intradosso} \\ \overline{W} = \sigma_2/\sigma_1 = W_{intrado} \\ \Psi = \sigma_2/\sigma_1 = W_{intrado} \\ \underline{W} = \sigma_2/\sigma_2 = W_{intrad$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 0,550 (westradosse actor k ₀ (v(1/2) (mm) [mm] (mm) 0 del modulo	PARTI INTERN mm ⁴ mm ³ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 od i resistenza e PARTI INTERN	ECOMPRESSE $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	ITTABANDA INFERI f_2/σ_1 factor k_σ factor k_σ $(r)^{(1/2)}$ $(r)^{(1/2)}$ $(r)^{(mm)}$ (mm)	IO <u>RE</u>	PAR PAR PAR PAR PAR PAR Par Par Par Par PAR Par Par Par Par Par Par Par Par	TTABANDA SUPERI 2/G1 factor k _o factor k _o [mm] [mm] [mm] [mm] mm mm ⁴ abande TI ESTERNE COMPR	RESSE
$\begin{array}{c c} Y_{G} \\ y_{G} \\ y_{extradosso} \\ \hline \\ W_{extradosso} \\ \psi = \sigma_2/\sigma_1 = W_{intrado} \\ \hline \\$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 0,550/Westradossd actor k ₀ (*(1/2) (mm) [mm] [mm] 0 del modulo	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 odi resistenza e PARTI INTERN	FE COMPRESSE = PIL $ = PIL = pLc = p$	ATTABANDA INFERI factor k _o + factor k _o + fac	IO <u>RE</u>	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI 2/G1 factor ko factor ko (mm] [mm] [mm] [mm] mm mm mm mm time	NORE
$\begin{array}{c c} Y_{G} \\ y_{G} \\ y_{extradosso} \\ \hline \\ W_{extradosso} \\ \psi = \sigma_2/\sigma_1 = W_{intrado} \\ \hline \\$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 0,550/Westradossa actor k ₀ (*(1/2) (mm) [mm] [mm] 0 del modulo ANIMA 1897	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 odi resistenza e PARTI INTERN	$\begin{array}{c} \text{ECOMPRESSE} \\ \hline & \begin{array}{c} & PIL \\ & \ & \ & \ & \ & \ & \ & \ & \ & \ &$	ITTABANDA INFERI f_2/σ_1 factor k_σ	IO <u>RE</u>	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI 2/G1 factor k _o factor k _o [mm] [mm] [mm] [mm] mm mm ⁴ abande TTABANDA SUPERI 2/G1	NORE
$\begin{array}{c} Y_{G} \\ y_{G} \\ y_{extradosso} \\ \hline \\ W_{extradosso} \\ \psi = \sigma_{2}/\sigma_{1} = W_{intrado} \\ \hline \\ \psi = \sigma_{2}/\sigma_{1} \\ \hline \\ \psi = \sigma_{2}/\sigma_{1} = W_{intrado} \\ \hline \\ \psi = \sigma_{2}/\sigma_{2} = W$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 isso/Westradoss actor ko (M(1/2) isso (M(1/2) isso (M(1/2) isso (M(1/2) isso (M(1/2) isso (M(1/2) isso (M(1/2) isso (M(1/2) isso (M(1/2)) (M(1/2) (M(1/2)) (PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 odi resistenza e PARTI INTERN	FE COMPRESSE = PIL $ = PIL = U = c = buckling = bcikling = bcikling = bcikling = bcikling = PIL = PIL = PIL = V = c = v = c$	ITTABANDA INFERI f_2/σ_1 + $factor k_{\sigma}$ + $factor k_{\sigma}$ + $(r)^{(1/2)}$ - (mm) - </td <td>IO<u>RE</u></td> <td>PAR PAR PAR PAR PAR PAR PAR PAR</td> <td>TTABANDA SUPERI 2/G1 factor ko factor ko (mm] [mm] [mm] [mm] mm mm⁴ abande TTABANDA SUPERI 2/G1 factor ko</td> <td>NORE </td>	IO <u>RE</u>	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI 2/G1 factor ko factor ko (mm] [mm] [mm] [mm] mm mm ⁴ abande TTABANDA SUPERI 2/G1 factor ko	NORE
$\begin{array}{c} Y_{G} \\ y_{G} \\ y_{extradosso} \\ \hline \\ W_{extradosso} \\ \psi = \sigma_2/\sigma_1 = W_{intrado} \\ \hline \\ \psi = \sigma_2/\sigma_1 = W_{intrado} \\ \hline \\ \psi = \sigma_2/\sigma_1 = W_{intradoso} \\ \hline \\ \psi = \sigma_2/\sigma_2 = W_{$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 isso/Westradoss actor k _o /*(1/2) isso /*(1/2)	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 odi resistenza e PARTI INTERN	$\begin{array}{c} \text{ECOMPRESSE} \\ \hline & PIL \\ & \ensuremath{\mathbb{U}} = c \\ \hline & \ensuremath{\mathbb{U}} = c \\$	ITTABANDA INFERI f_2/σ_1 + $factor k_{\sigma}$ + $factor k_{\sigma}$ + $(r)^{\wedge}(1/2)$ + $(r)^{\circ}(1/2)$ + $(r)^{\circ}(1/2)$ + $(r)^{\circ}(1/2)$ + $(r)^{\circ}(1/2)$ + $(r)^{\circ}(1/2)$ + $(r)^{\circ}(1/2)$ +	IORE	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI 2/G1 factor ko factor ko (mm] [mm] [mm] [mm] mm mm ⁴ abande TTABANDA SUPERI 2/G1 [actor ko factor ko (mm) mm	NORE
Y_G J $W_{intradosso}$ $W_{estradosso}$ $U = \sigma_2/\sigma_1 = W_{intrado}$ $D uckling fracture \lambda_p = (f_v/\sigma_{cr})\rho calcol D riduzione YG lembo inferiore M - → calcol V_GJW_{intradosso}V_GW_{intradosso}$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 Mestradoss actor k _o /*(1/2) /*(1/	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 odi resistenza e PARTI INTERN mm ⁴ mm ³ mm ³	$\begin{array}{c} \text{ECOMPRESSE} \\ \hline & PIL \\ & \Psi = c \\ & \psi$	ITTABANDA INFERI f_2/σ_1 $f_actor k_{\sigma}$ $f_actor k_{\sigma}$ $(r)^{(1/2)}$ $(r)^{(1/2)}$ $(r)^{(1/2)}$ $(r)^{(1/2)}$ $(r)^{(1/2)}$ $(r)^{(1/2)}$ $(r)^{(1/2)}$ $(r)^{(1/2)}$	IORE	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI 2/G1 factor ko factor ko (mm] [mm] [mm] [mm] mm mm ⁴ abande TTABANDA SUPERI 2/G1 [actor ko factor ko	NORE
Y_G y_G $W_{extradosso}$ $Ψ=σ_2/σ_1=W_{intrado}$ $ψ=σ_2/σ_1=W_{intrado}$ p calco p calco p calco p calco p calco p calco p calco p calco M - → calcol M - → calcol y_G	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 SSSO/Westradoss actor k _o (*(1/2) (mm] [mm] [mm] 0 del modulo ANIMA1897 2,4337E+12 1282597018 -2,727E+09 (W	PARTI INTERN mm ⁴ mm ³ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 odi resistenza e PARTI INTERN mm ⁴ mm ³ -0,47039455	$\begin{array}{c} \text{ECOMPRESSE} \\ \hline & & PIL \\ & & & \\$	ITTABANDA INFERI f_2/O_1 + $factor k_{\sigma}$ + $factor k_{\sigma}$ + $(r)^{(1/2)}$ +	IORE	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI 2/G1 factor ko factor ko (mm] [mm] [mm] [mm] mm mm ⁴ abande TTABANDA SUPERI 2/G1 [mm] [mm] [mm] abande TTABANDA SUPERI 2/G1 factor ko (mm) [mm] [mm	NORE
Y_G y_G $W_{extradosso}$ $Ψ=σ_2/σ_1=W_{intrado}$ $ψ=σ_2/σ_1=W_{intrado}$ p calco p calco p calco p calco p calco p calco p calco M - → calcol M - → calcol y_G y_G y_G y_G y_G y_G $y_{extradosso}$ $W_{extradosso}$ $W_{extradosso}$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 ACTOR Ko -2,727E+09 ACTOR Ko -2,727E+09 ANIMA [mm] 0 del modulo ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 -2,72	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 0 di resistenza e PARTI INTERN mm ⁴ -0,47039455 12,93281230	ECOMPRESSE μ_{ec} μ_{ec} μ_{ec} μ_{ec} μ_{ec} μ_{ec} μ_{ec} μ_{ec} μ_{ec} μ_{ec} μ_{ec} μ_{ec} μ_{ec} μ_{ec}	ITTABANDA INFERI f_2/O_1 factor k_σ factor k_σ (cr)^(1/2) (colo (mm] (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mom. di inerzia per (mom. di inerzia per (mom. di colo) (mom. di inerzia per (mom. di colo) (mom. di colo) (mom. di colo) (mm) (mm) <td< td=""><td>IORE</td><td>PAR PAR PAR PAR PAR PAR PAR PAR</td><td>TTABANDA SUPERI $2/\sigma_1$ factor k_σ factor k_σ $(n/^{(1/2)})$ (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m</td><td>Image: state stat</td></td<>	IORE	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI $2/\sigma_1$ factor k_σ factor k_σ $(n/^{(1/2)})$ (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m	Image: state stat
Y_G y_G $W_{extradosso}$ $Ψ=σ_2/σ_1=W_{intrado}$ $μ = σ_2/σ_1=W_{intrado}$ $μ = σ_2/σ_1=W_{intrado}$ $μ = σ_2/σ_1=W_{intrado}$ M - → calcol M - → calcol y_G y_G y_G $W_{extradosso}$ $W_{extradosso}$ $W_{extradosso}$ $W_{extradosso}$ $M = -φ_2/\sigma_1=W_{extrado}$ $M = -φ_2/\sigma_1=W_{extrado}$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 ACTOR Ko -2,727E+09 ACTOR Ko -2,727E+09 ACTOR Ko -2,727E+09	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 0 di resistenza e PARTI INTERN mm ⁴ -0,47039455 12,93281239 1 642	ECOMPRESSE $\begin{array}{c} & PIL\\ & \Psi = c\\ & D call \\ & D ca$	ITTABANDA INFERI f_2/O_1	IORE	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI $2/\sigma_1$ factor k_σ factor k_σ (mm] (mm] (mm) (mm) (mm) (mm) (mm) (mm)	Image: state stat
$\begin{array}{c} \underline{Y_{G}} \\ \underline{y}_{G} \\ \underline{y}_{extradosso} \\ \underline{W}_{extradosso} \\ \underline{\psi} = \sigma_2/\sigma_1 = \underline{W}_{intrado} \\ \underline{\psi} = \sigma_2/\sigma_1 = \underline{W}_{intrado} \\ \underline{\psi} = \sigma_2/\sigma_1 = \underline{W}_{intradosso} \\ \underline{\psi} = \sigma_2/\sigma_1 = \underline{W}_{extradosso} \\ \underline{\psi} = \overline{\psi} = \sigma_2/\sigma_1 = \underline{W}_{extradosso} \\ \underline{\psi} = \sigma_2/\sigma_2 $	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 SSSO/Westradoss actor k _o (1/2) (mm) (mm) 0 del modulo ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 SSSO/Wintradoss actor k _o (1/2) -2,727E+09 SSSO/Wintradoss actor k _o (1/2) -2,727E+09 SSSO/Wintradoss (1/2) -2,727E+09 SSSO/Wintradoss (1/2) -2,727E+09 (1/2)	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 odi resistenza e PARTI INTERN mm ⁴ mm ³ -0,47039455 12,93281239 -0,642 05555	ECOMPRESSE $\mu_{p} = 0$ $\mu_{p} = 0$ μ_{p	ITTABANDA INFERI f_2/O_1	IORE	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI $2/\sigma_1$ factor k_σ factor k_σ (mm] (mm] (mm] (mm] (mm] (mm] (mm] (mm	Image: state stat
$\begin{array}{c} \underline{Y_{G}} \\ \underline{y}_{G} \\ \underline{y}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{p}_{eff_{v}}/\sigma_{cr} \\ \underline{\rho}_{calco} \\ \underline{\rho}_{eff_{v}}/\sigma_{cr} \\ \underline{\rho}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{\rho}_{calco} \\ \underline{\rho}_{calc$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 SSSO/Westradossd actor k _o (*(1/2) (mm) (mm) (mm) (mm) 0 del modulo ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 SSSO/Wintradossd actor k _o (*(1/2) -100 (*(1/2)) (*(1/2) (*(1/2)) (*	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 odi resistenza e PARTI INTERN mm ⁴ mm ³ -0,47039455 12,93281239 1,642 0,558 0,558 0,558	FE COMPRESSE = PIL $ = PIL = productions = productio$	ITTABANDA INFERI f_2/O_1 factor k_o factor k_o (colo (colo (mm] (mm)	IORE	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & $	TTABANDA SUPERI $2/\sigma_1$ factor k_σ factor k_σ (mm] (mm] (mm] (mm] (mm] (mm] (mm] (mm	Image: constraint of the second se
$\begin{array}{c} \underline{Y_{G}} \\ \underline{y}_{G} \\ \underline{y}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{p}_{eff_{v}}/\sigma_{cr} \\ \underline{\rho}_{calco} \\ \underline{\rho}_{calco} \\ \underline{\rho}_{calco} \\ \underline{\rho}_{calco} \\ \underline{\rho}_{calco} \\ \underline{\rho}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{w}_{extradosso} \\ \underline{\rho}_{calco} \\ \underline{\rho}$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 Asso/Westradoss actor k _o (M1/2) (mm) (mm) (mm) (mm) 0 del modulo ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 OSSO/Wintradoss (M1/2) -2,727E+09 OSSO/Wintradoss (M1/2) (mm) -2,727E+09 OSSO/Wintradoss (M1/2) -2,727E+09 (M1/2) -2,727E+09 (M1/2) -2,727E+09 (M1/2) -2,727E+09 (M1/2) -2,727E+09 (M1/2) (M1/	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 odi resistenza e PARTI INTERN mm ⁴ mm ³ -0,47039455 12,93281239 1,642 0,558 0,558 10,020	ECOMPRESSE $\psi_{=c}$ $\psi_{=c}$ $\psi_{=c}$ b_{ckling} $\lambda_{p}=(f_{v}/\sigma)$ $f_{v}\sigma$ $b_{rduzione}$ $y_{s lembo inferiore}$ $\psi_{=c}$ $\psi_{=c}$ $\lambda_{p}=(f_{v}/\sigma)$ $\lambda_{p}=(f_{v}/\sigma)$ $\lambda_{p}=(f_{v}/\sigma)$ h_{ca} $\lambda_{p}=(f_{v}/\sigma)$ h_{ca} $\lambda_{p}=(f_{v}/\sigma)$ h_{ca} $h_{$	ITTABANDA INFERI f_2/O_1 factor k_o factor k_o (colo	IORE	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI 2/σ1	RESSE 00RE
$\begin{array}{c} Y_{\underline{G}} \\ J \\ W_{intradosso} \\ \overline{\Psi} = \sigma_2 / \sigma_1 = W_{intrado} \\ \underline{\Psi} = \sigma_2 / \sigma_1 = W_{intradosso} \\ \underline{\Psi} = \sigma_2 / \sigma_1 = W_{estradosso} \\ \underline{\Psi} = W_{estra$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 Astronometry Astronometry (Marrian Construction (Marrian Construction) (Marrian Construction) (M	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 0 ir esistenza e PARTI INTERN mm ³ -0,47039455 12,93281239 1,642 0,558 0,558 0,558 0,558	ECOMPRESSE $\psi_{=c}$ $\psi_{=c}$ $\psi_{=c}$ $\psi_{=c}$ $b_{ch}(y/\sigma)$ $\frac{\rho ca}{p} = (f_y/\sigma)$ $\frac{\rho ca}{p} = (f_y/\sigma)$ $\frac{h}{duzione}$ $y_{S lembo inferiore}$ $\psi_{=c}$ $\frac{h}{duzione}$ $\frac{h}{duzione}$ $\frac{h}{duzione}$ $\frac{h}{duzione}$ $\frac{h}{duzione}$ $\frac{h}{duzione}$ $\frac{h}{duzione}$ $\frac{h}{duzione}$ $\frac{h}{duzione}$ $\frac{h}{duzione}$ $y_{S lembo inferiore}$	ITTABANDA INFERI f_2/O_1 factor k_o factor k_o (colo	IORE	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI 2/G1 factor kg)^(1/2) [mm] [mm] [mm] [mm] mm mm ⁴ abande TTABANDA SUPERI 2/G1 [mm]	RESSE 00RE
Y_G J $W_{intradosso}$ $U = \sigma_2/\sigma_1 = W_{intrado}$ $U = \sigma_2/\sigma_1 = W_{intrado}$ $U = \sigma_2/\sigma_1 = W_{intrado}$ $D_{intradosso}$ $D_{intradosso}$ $D_{intradosso}$ $M - \rightarrow calcol$ $M - \rightarrow calcol$ $M - \rightarrow calcol$ $M - \rightarrow calcol$ $U = \sigma_2/\sigma_1 = W_{estrado}$ $U = \sigma_2/\sigma_1 = W_{estrados}$ $U = \sigma_2/\sigma_1 = W_{estrados}$ $U = \sigma_2/\sigma_1 = W_{estrados}$ $U = \sigma_2/\sigma_1 = W_{estrados}$ $U = \sigma_2/\sigma_1 = W_{estrados}$	ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 Actor k ₀ (Mathematical (mm) (mm) 0 del modulo ANIMA 1897 2,4337E+12 1282597018 -2,727E+09 3550/Wintradossc Actor k ₀ (Mathematical (Mathematical (Mathematical) (Mathematic	PARTI INTERN mm ⁴ -2,12587498 65,3809421 0,730 1,279 1,000 861 0 1381 0 1381 0 1381 0 0 12,93281239 1,642 0,558 1020 0 0 0,558 0 0,558 0 0,558 0,55	ECOMPRESSE $\psi_{=c}$ $\psi_{=c}$ $\psi_{=c}$ $b_{ch}(y)\sigma$ $\rho(z)$ $b_{efficace}$ $b_{iduzione}$ y_{s} lembo inferiore $\psi_{=c}$ $\psi_{=c}$ $\psi_{=c}$ $b_{ch}(y)\sigma$ $\lambda_{p}=(f_{y}/\sigma)$ $\lambda_{p}=(f_{y}/\sigma)$ $\lambda_{p}=(f_{y}/\sigma)$ $\lambda_{p}=(f_{y}/\sigma)$ $\lambda_{p}=(f_{y}/\sigma)$ $\lambda_{p}=(f_{y}/\sigma)$ $\lambda_{p}=(f_{y}/\sigma)$	ITTABANDA INFERI f_2/O_1 factor k_o factor k_n cr)^(1/2) $(colo$	IORE	PAR PAR PAR PAR PAR PAR PAR PAR	TTABANDA SUPERI $2/\sigma_1$	RESSE 00RE 1 0,43 1,282 0,666 0,666 0 2767,5 0 2767,5

SEZIONE								
			L soletta collaborante	t (thickness)	Area	VG lembo inferiore	d	J (mom d'inerzia)
elementi ch	e compongono	o la sezione	[mm]	[mm]	[mm ²]	[mm]	[mm]	[mm ⁴]
soletta col	laborante	1	4000	280	89792	2935.88	924.3	78028389178
piattabanda	superiore	2	900	45	40500	2767,5	755,9	2,31E+10
riduzione p	iat sup N			45		2768	<u> </u>	, <u> </u>
riduzione p	iat sup M	3	0	45	0	0	-2012	0,00E+00
anir	na	4		18	51527,48774	1400	-611,6	5,03E+10
riduzione	anima N		0	19	0	1400		
riduzione d	riduzione anima M		878	19	-16809	847	-1165	-2,39E+10
piattaband	a inferiore	6	1000	55	<u>55000 27,</u> 5		-1984,1	2,16528E+11
riduzione	piat inf N			55	0	27,5		Γ
riduzione p	piat inf M	,	68,28165514	55	-3755,491033	27,5	-1984,1	-1,48E+10
ARMATURA	SOLETTA							
armatura superiore					coefficiente d	i omogeneizzazio	one cls-acciaio	16
ø	num	Α	c		Aris (area sol	etta solo cls)	1120000	mm ²
[mm]	[mm]	[mm ²]	[mm]		A (sozi	one ideale)	1426672	mm ²
20	12	13195	65		distanza arma	tura superiore	_ 1450075	. — — —
20	72	15155	05		dall'intrad		215	mm
					distanza arma	atura inferiore	\vdash $ -$	
	armatura	inferiore			dall'intrad	osso soletta	70	mm
ø	num	А	c'		baricentro	soletta y _G	145,88	mm
[mm]	[mm]	[mm ²]	[mm]		1/2 lunghezza	distribuzione		
20	21	6597	70		trasversale d	elle armature	6100,00	mm
CARATTERIS	TICHE GENE	RALL SEZION	F		2		•	·
			_		1			
al	tezza trave H _{tr}	ave	2790	mm				
- <u> </u>	l <u>tez</u> za <u>sezione</u>	<u> </u>	3070	mm		1		
Area sezio	one omogenizz	ata totale	236820	mm ²				
	$\frac{1}{2}$					2 3	4 —	
Area sezion	e onogenizzan Jetta → accia		236820	mm ²			ł. –	
	ontro sezione						h –	
			3795	_ "	•		N –	
baricer	ntro sezione El		2012	mm			N	
momento	d'inerzia sezio	one totale	2,4337E+12	⁴		_ ~	6	
momento d	'inerzia sezior	ne EFFICACE	3,29E+11	mm ⁴				
ECCENTRI	CITA sez. total	e-efficace	-1783	mm				
CARATTERIS	TICHE SEZI	ONE IMPLEM	ENTATE NEL	CODICE DI	CALCOLO			
	Y _G totale	y G totale			α inclinazione	C C	J _{torsionale}	
A _{totale}	INTRADOSSO	ESTRAD, cassone	J longitudinale	J trasversale	anima	Ω	sezione APERTA	
[m ²]	[m]	[m]		[m ⁴]	[deg]	[m ²]	[m ⁴]	
0.237	3.795	-1.005	2.434	3.111	20	9.56	2.94E-02	ł
	RESISTENZA	A LIVELLO D	FILE FIBRE (ΓΕ Ε STATO ΤΕ		,	. <u> </u>
	Ver						•	•
	posizione	W _{eff}	A _{eff}	0	6 14 (111)	G 1, (11)	Tan	τ* _{z (T)} tensione
	rispetto al	resistenza efficace	area efficace	OMY (M3)	^O Mz (M2)	^O N (N1)	¢v (V2)	alla torsione
	Dancentro				[MDa]	[MDa]	[MDol	[MDa]
	2012	162740045	226920	[IVIPa]				
FIBRA 2	1957	168342790 1	236820	-31,07	0,00	15,72	89	
FIBRA 3	-733	-449107815	236820	11 62	0.00	15 72	89	
FIBRA 4	-778	-423144697	236820	12.33	0,00	15.72	0.0	0.0
FIBRA 4 cls	-778	-423144697	236820	0,77	0,00	0,98	0,0	0,0
FIBRA 5 arm inf	-848	-388232024	236820	13,44	0,00	15,72	0,0	, <u> </u>
FIBRA 6 arm sup	-9 <u>93</u>	-33 <u>15</u> 64 <u>72</u> 8	236820	15,74	0,00	<u>15,72</u>	0,0	0,0
FIBRA 7	-1058	-311202312	236820	1.05	0.00	15.72	0.0	0.0

	modello A - solo cassone metallico			modello B - breve termine			modello C-lungo termine		
	$\sigma_{x,Ed}$	$\sigma_{z,Ed}$	τ _{Ed}	$\sigma_{x,Ed}$	$\sigma_{z,Ed}$	τ _{Ed}	$\sigma_{x,Ed}$	σ _{z,Ed}	τ _{Ed}
	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
FIBRA 1	-91,61	0,00	0,00	-63,57	0,00	0,00	-16,16	0,00	0,00
FIBRA 2	-88,29	0,00	24,98	-62,08	0,00	2,85	-15,29	0,00	8,93
FIBRA 3	73,92	0,00	24,98	10,74	0,00	2,85	27,34	0,00	8,93
FIBRA 4	76,64	0,00	0,00	11,96	0,00	0,04	28,05	0,00	0,00
FIBRA 4 cls	0,00	0,00	0,00	1,99	0,00	0,04	1,75	0,00	0,00
FIBRA 5 arm inf	0,00	0,00	0,00	13,86	0,00	0,00	29,16	0,00	0,00
FIBRA 6 arm sup	0,00	0,00	0,00	17,78	0,00	0,00	31,46	0,00	0,00
FIBRA 7	0,00	0,00	0,00	3,26	0,00	0,00	16,76	0,00	0,00

VERIFICA							
σ _{ideale} [MPa]	LIMITE [MPa]						
171,33	319,05	VERIFICATO					
177,47	319,05	VERIFICATO					
128,84	319,05	VERIFICATO					
116,65	319,05	VERIFICATO					
3,75	319,05	VERIFICATO					
43,02	319,05	VERIFICATO					
49,24	319,05	VERIFICATO					
20,02	319,05	VERIFICATO					

Nei fogli di calcolo riportati in precedenza sono stati implementati i seguenti parametri:

M^+ \Rightarrow Calcolo modulo di resistenza efficace a flessione per l'anima e a compressione per le piattabande

Parametri per il calcolo di W_{eff} :

$$y_{G,efficace} = (A_{sol} * y_{G,sol,lembo inf} + A_{piatt sup} * y_{G,piatt sup,lembo inf} + A_{riduz,piatt sup} * y_{G,piatt sup,lembo inf} + A_{anima} * y_{G,anima,lembo inf} + A_{piatt inf} * y_{G,piatt inf,lembo inf}) * 1/(A_{sol} + A_{piatt sup} + A_{riduz,piatt sup} + A_{anima} + A_{piatt inf})$$

$$J_{efficace} =$$

$$=J_{tot\,sez} - \left(\frac{L_{piatt\,sup} * t_{piatt\,sup}^3}{12} - L_{piatt\,sup} * t_{piatt\,sup} * \left(H_{trave} - y_{G,efficace} - \frac{t_{piatt\,sup}}{2}\right)\right)$$

$M \Rightarrow$ Calcolo modulo di resistenza efficace a flessione per l'anima e a compressione per le piattabande

*P*arametri per il calcolo di W_{eff} :

$$y_{G,efficace} = (A_{sol} * y_{G,sol,lembo inf} + A_{piatt sup} * y_{G,piatt sup,lembo inf} + A_{anima} * y_{G,anima,lembo inf} + A_{piatt inf} * y_{G,piatt inf,lembo inf} + A_{riduz,piatt inf} * y_{G,piatt inf,lembo inf}) * 1/(A_{sol} + A_{piatt sup} + A_{anima} + A_{piatt inf} + A_{riduz,piatt inf})$$

$$J_{efficace} =$$

$$= J_{tot sez} - \left(\frac{L_{piatt inf} * t_{piatt inf}^{3}}{12} - L_{piatt inf} * t_{piatt inf} * \left(y_{G,efficace} - \frac{t_{piatt inf}}{2}\right)\right)$$

Caratteristiche generali della sezione

 $A_{tot,sez \ omogeniz} = A_{ideale \ sol} + A_{piatt \ sup} + A_{anima} + A_{piatt \ inf}$

 $A_{efficace,sez omogeniz} =$

 $= A_{ideale\ sol} + A_{piatt\ sup} + A_{riduz,piatt\ sup} + A_{anima} + A_{riduz,anima} + A_{piatt\ inf}$

+A_{riduz,piatt} inf

 $y_{G,tot} = \frac{A_{ideale\ sol} * y_{G,sol,lembo\ inf} + A_{piatt\ sup} * y_{G,piatt\ sup,lembo\ inf} + A_{anima} * y_{G,anima,lembo\ inf} + A_{piatt\ inf} * y_{G,piatt\ inf,lembo\ inf}}{A_{tot,sez\ omogeniz}}$

$$y_{G,efficace} = \left(A_{ideale\ sol} * y_{G,sol,lembo\ inf} + A_{piatt\ sup} * y_{G,piatt\ sup,lembo\ inf} + A_{riduz,piatt\ sup} * y_{G,piatt\ sup,lembo\ inf} + A_{anima} * y_{G,anima,lembo\ inf} + A_{riduz,anima} * y_{G,riduz,anima,lembo\ inf} + A_{piatt\ inf} * y_{G,piatt\ inf,lembo\ inf} + A_{riduz,piatt\ inf} * y_{G,piatt\ inf,lembo\ inf}\right) \\ * \left(1/A_{ideale\ sol} + A_{piatt\ sup} + A_{riduz,piatt\ sup} + A_{anima} + A_{riduz,anima} + A_{piatt\ inf} + A_{riduz,piatt\ inf}\right)$$

$$J_{tot,sez} = \frac{1}{n} \frac{L_{sol} * t_{sol}^3}{12} + \frac{L_{sol} * t_{sol}}{n} * \left(\frac{t_{sol}}{2} + H_{trave} - y_{G,tot}\right)^2 + A_{arm sup}$$

$$* \left(d_{intr sol} + H_{trave} - y_{G,tot}\right)^2 + A_{arm inf}$$

$$* \left(d_{intr sol} + H_{trave} - y_{G,tot}\right)^2 + \frac{L_{piatt sup} * t_{piatt sup}^3}{12} + L_{piatt sup}$$

$$* t_{piatt sup} * \left(y_{G,lembo inf} - y_{G,tot}\right)^2 + \frac{L_{anima} * t_{anima}^3}{12} + L_{anima}$$

$$* t_{anima} * \left(y_{G,lembo inf} - y_{G,tot}\right)^2 + \frac{L_{piatt inf} * t_{piatt inf}^3}{12}$$

$$+ L_{piatt inf} * t_{piatt inf} * \left(y_{G,lembo inf} - y_{G,tot}\right)^2$$

 $J_{efficace} = J_{sol} + J_{piatt sup} - J_{riduz,piatt sup} + J_{anima} - J_{riduz,anima} + J_{piatt inf}$ $-J_{riduz,piatt inf}$

 $e = y_{G,tot} - y_{G,efficace}$

Caratteristiche della sezione implementate nel codice di calcolo

 $A_{tot} = A_{tot,sez omogeniz}$

 $y_{G,tot,intradosso} = y_{G,tot}$

 $y_{G,tot,estradosso} = H_{trave} - y_{G,tot,intradosso}$

 $J_{longitudinale} = J_{tot,sez}$

$$J_{trasversale} = \frac{1}{n} \frac{t_{sol} * \left(\frac{1}{2} lunghezza \ di \ distribuz \ trasv \ arm\right)^3}{3} + \frac{t_{piatt} \ sup * L_{piatt}^3 \ underset{underset}}{3} + A_{piatt} \ sup \left(L_{piatt} \ inf + L_{anima} * tana\right)^2 + \frac{t_{piatt} \ inf * L_{piatt}^3 \ inf}{3} + \frac{L_{anima} * \frac{t_{anima}}{\sin(90 - \alpha)}}{12} + A_{anima}$$

$$J_{torsionale} = \frac{1}{3} \left(L_{piatt\ inf} * t_{piatt\ inf}^{3} + L_{piatt\ sup} * t_{piatt\ sup}^{3} + \frac{L_{anima}}{\sin(90 - \alpha)} * t_{anima}^{3} \right)$$

 $Peso\ trave = \gamma_{acciaio} * A_{tot}$

Moduli di resistenza al livello delle fibre considerate e stato tensionale

 $M_y = M_3 = momento flettente longitudinale$

$M_z = M_2 = momento\ flettente\ trasversale$

Fibra	1	2	3	4
Yrispetto al b	$y_{G,efficace}$	$y_{G,efficace} - t_{piatt inf}$	$y_{G,efficace} - H_{trave}$ + $t_{piatt sup}$	$y_{G,efficace} - H_{trave}$
$W_{efficace}$			Jefficace Yrispetto al baricentro	
$A_{efficace}$			$A_{efficace,sez\ omogeniz}$	
$\sigma_{M_{\mathcal{Y}}}$		~	$\begin{cases} \frac{M_{y}}{W_{efficace}} & se \ N \leq 0\\ \frac{M_{y} + N * e}{W_{efficace}} & se \ N > 0 \end{cases}$	
σ_{M_Z}	$\begin{cases} P & seM_y > 0 \\ Q & seM_y \le 0 \end{cases}$	$\begin{cases} P * \frac{t}{\sin \theta} \\ Q * \frac{t}{\sin \theta} \end{cases}$	$\begin{array}{l} \frac{anima}{(90-\alpha)} & seM_y > 0\\ \frac{anima}{(90-\alpha)} & seM_y \le 0 \end{array}$	$\begin{cases} R & seM_y > 0 \\ S & seM_y \le 0 \end{cases}$
σ_N			$\frac{N}{A_{efficace}}$	
τ	0	$\overline{L_c}$	V _y nima * <u>t_{anima}</u> sinα	0
$ au_{tors}$		<u>T * L_{anima} *</u> J _{torsiona}	t _{anima} ale	$\left(\frac{T * L_{anima} * t_{anima}}{J_{torsionale}}\right) * \frac{1}{n}$

Fibra	4_cls	5_armat ura inf	6_armatura sup	7		
Yrispetto al bo	$y_{G,efficace} - H_{trave}$	Y _{G,eff} icace − H _{trave} − c'	y _{G,efficace} – H _{trave} – dist arm sup da intradosso sol	$y_{G,efficace}$ - H_{trave} - t_{sol}		
$W_{efficace}$		Jef Yrispetto	ficace al baricentro			
$A_{efficace}$		$A_{efficace}$,sez omogeniz			
$\sigma_{M_{\mathcal{Y}}}$	$ \begin{pmatrix} \frac{M_y}{W_{efficace}} & se \ N \leq 0 \\ \frac{M_y + N * e}{W_{efficace}} & se \ N > 0 \end{pmatrix} * \frac{1}{n} $	$\begin{cases} \frac{M_y}{W_{efficace}} & se \ N \le 0\\ \frac{M_y + N * e}{W_{efficace}} & se \ N > 0 \end{cases}$				
σ_{M_Z}	$ \begin{pmatrix} R & seM_y > 0 \\ S & seM_y \le 0 \end{pmatrix} * \frac{1}{n} $	0	0	0		
σ_N	$\left(\frac{N}{A_{efficace}}\right) * \frac{1}{n}$		$\frac{N}{A_{efficace}}$			
τ	0	0	0	0		
$ au_{tors}$	$\left(\frac{T * L_{anima} * t_{anima}}{J_{torsionale}}\right) * \frac{1}{n}$	0	0	0		

Dove:

$$P = \frac{M_z}{J_{trasv,efficace}} * x_{G,sez}$$

$$Q = -\frac{M_z}{J_{trasv,efficace}} * x_{G,sez}$$

$$R = \frac{M_z}{J_{trasv,efficace}} * (x_{G,sez} + L_{anima} * tan\alpha)$$

$$S = -\frac{M_z}{J_{trasv,efficace}} * (x_{G,sez} + L_{anima} * tan\alpha)$$

11.7.2.2 Verifica di resistenza della connessione a pioli soletta-trave metallica

La resistenza a taglio di progetto di un piolo munito di testa saldata in modo automatico, con collare di saldatura normale, può essere determinata in base al minore dei seguenti valori:

$$P_{Rd} = min(P_{Rd,a}; P_{Rd,c})$$

dove:

 $P_{Rd,a}$ è la resistenza dei dispositivi di connessione (crisi lato acciaio):

$$P_{Rd,a} = 0.8 * f_u * \left(\pi * \frac{\phi^2}{4}\right) * \frac{1}{\gamma_v}$$

 $P_{Rd,c}$ è la resistenza del calcestruzzo della soletta (crisi lato calcestruzzo):

$$P_{Rd,c} = \frac{0.29 * \alpha * \phi^2 * \sqrt{f_{ck} * E_c}}{\gamma_v}$$

in cui:

$$\alpha = \begin{cases} 0,2 * \left[\frac{h}{\phi} + 1\right] & per \ 3 \le \frac{h}{\phi} \le 4 \\ 1 & per \ \frac{h}{\phi} \ge 4 \end{cases}$$

h è l'altezza del piolo;

 ϕ è il diametro del piolo;

 f_u è la resistenza ultima a trazione del materiale del piolo;

 f_{ck} è la resistenza cilindrica caratteristica del calcestruzzo in MPa;

 γ_{v} è il coefficiente di sicurezza, che si assume pari a 1,25.

Nel caso specifico:

$$P_{Rd} = min(P_{Rd,a}; P_{Rd,c}) =$$

$$= min\left[0,8 * f_u * \left(\pi * \frac{\phi^2}{4}\right) * \frac{1}{\gamma_v}; \frac{0,29 * \alpha * \phi^2 * \sqrt{f_{ck} * E_c}}{\gamma_v}\right] =$$

$$= min\left[0,8 * 450 * \left(\pi * \frac{26^2}{4}\right) * \frac{1}{1,25}; \frac{0,29 * 1 * 26^2 * \sqrt{0,83 * 45 * 36283}}{1,25}\right] =$$

$$= min(153; 183) = 153 \ kN$$

La resistenza a taglio di ciascun piolo è assunta quindi pari a 153 kN. Complessivamente, per metro di sviluppo longitudinale dell'impalcato, la resistenza a taglio complessiva della piolatura risulta pari a:

$$T_{res} = n.\,pioli*n.\,file\,\,di\,pioli\,\,in\,\,1\,\,m*P_{Rd} = 4*5*153 = 3060\frac{kN}{m}$$

La verifica dello stato limite ultimo di collegamento presuppone che lo sforzo di scorrimento Q_d agente su ciascun dispositivo di collegamento risulti non maggiore della resistenza di calcolo del dispositivo stesso. Nelle verifiche a seguire lo sforzo di scorrimento Q_d è stato calcolato con riferimento alle caratteristiche geometriche e inerziali di ciascuna delle sezioni di calcolo. Tuttavia nelle sezioni dove si verifica fessurazione del calcestruzzo (sezioni in corrispondenza degli appoggi) il taglio longitudinale per unità di lunghezza verrà determinato con riferimento al momento statico e d'inerzia della sezione interamente reagente ossia della sezione equivalente di

acciaio calcolata assumendo che il calcestruzzo in trazione sia non fessurato ed utilizzando il relativo modulo di omogeneizzazione dipendente dal carico.

Analogo discorso per le restanti sezioni in cui non avviene fessurazione della soletta.

Le sollecitazioni che comportano scorrimento tra anima e soletta sono state ricavate dai modelli. Si precisa che in presenza di connettori si ha un comportamento unitario della sezione composta, ovvero è valida l'ipotesi di conservazione delle sezioni piane anche nella configurazione deformata. Per la determinazione dell'azione di scorrimento si deve considerare il seguente funzionamento della sezione composta.

Figura 348 - Equilibrio alla rotazione del concio.

Assumendo q(x) = q = cost si può scrivere l'equilibrio alla rotazione nel modo seguente:

Δx

$$M = N * z$$
$$\Delta M = \Delta N * z$$
$$\Rightarrow \Delta N = \frac{\Delta M}{z} = \frac{V * \Delta x}{z}$$

Si è così definito lo sforzo di scorrimento che tende a far scorrere la soletta in calcestruzzo e l'ala superiore della trave metallica; tale sforzo nasce per la presenza di un'aliquota variazionale del momento flettente (ΔM).

Si isola la soletta e si mette in evidenza il meccanismo resistente che si instaura per resistere alla sforzo di scorrimento:

Figura 350 - Meccanismo resistente che si instaura all'interno della soletta per resistere allo scorrimento.

$$\tau * b * \Delta x = \Delta N$$
$$\Rightarrow \tau = \frac{V}{b * z} = \frac{V * S}{b * J}$$

dove b è la larghezza dell'ala superiore della trave metallica.

Le tensioni tangenziali rappresentano le azione esplicate dall'ala superiore della trave sulla soletta per opporsi allo scorrimento; esse si trasferiscono al calcestruzzo della soletta tramite le saldature dei pioli all'ala superiore della trave e poi con l'instaurarsi di un meccanismo a traliccio alla Ritter-Morsh nel calcestruzzo della soletta. Secondo questo meccanismo la risultante delle tensioni tangenziali entra alla base del piolo e deve arrivare alla quota di applicazione dello sforzo ΔN (circa a metà della soletta).

Il gambo di ogni piolo deve quindi resistere a recisione ed il calcestruzzo attorno al piolo deve resistere a rifollamento.

Si può osservare lo schema che garantisce l'equilibrio tra le forze focalizzando l'attenzione sul tratto di soletta compreso tra due piolo consecutivi:

Figura 351 - Schema per la costruzione del poligono delle forze che garantisce l'equilibrio.

$$N_{t} = \Delta N * tan\theta = \frac{V * \Delta x}{z} * tan\theta$$
$$N_{c} = \frac{\Delta N}{cos\theta} = \frac{V * \Delta x}{z} * \frac{1}{cos\theta}$$

Secondo tale meccanismo resistente i pioli sono soggetti a trazione; dunque è importante che i pioli abbiano la testa larga e rigida e che la testa si trovi ad una quota maggiore del baricentro della zona compressa (cioè circa più in alto della mezzeria della soletta). Solo rispettando queste condizioni si può ritenere che si instauri il meccanismo resistente a traliccio, che è un modo per impedire lo scorrimento tra soletta e ala superiore della trave, ovvero di garantire il rispetto della conservazione delle sezioni piane.

Ai fini del calcolo, con riferimento al meccanismo precedentemente illustrato, si è considerata una striscia lunga 1 m ($\Delta x = 1 m$) e un'inclinazione dei puntoni compressi pari a 45° ($\theta = 45^{\circ}$).

SEZIONE A													
MODELLO	AZIONE		V2 [[M]	coefficienti parziali	coefficienti parziali di sicurezza		mobili ∆T ritiro		Sforzo di taglio di calcolo Vd [kN/m]		- [m]	icorrimento unitario di calcolo qd [kN/m	
WODELLU			VZ [KN]	favorevoli	sfavorevoli	Ψ_{0i}	Ψοί	Ψ_{0i}	Comb_max V2 mobili	Comb_min V2 mobili	2 [111]	Comb_max V2 mobili	Comb_min V2 mobili
А	Peso Proprio	g 1	88	1,00	1,35	1	1	1	119	88		100	74
	∆ termico	ε3	-274,5	0,00	1,20	0,6	1	0,6		-960 0,		155	-806
в	Carichi Mobili [MAX]	q ₁	136,4	0,00	1,35	1	1	0,75	184		0.04		
	Carichi Mobili [MIN]	q ₁	-564,6	0,00	1,35	1	1	0,75			0,84		
с	Permanenti Portati	g ₂	-7,1	1,00	1,35	1	1	1	181	179		152	150
	Ritiro	ε2	156,8	0,00	1,20	1	1	1					

Tabella 113 - Scorrimento unitario di calcolo in corrispondenza delle sezioni di verifica.

SEZIONE D													
MODELLO	AZIONE		V2 field	coefficienti parziali di sicurezza		mobili	mobili ∆T ritiro		Sforzo di taglio di calcolo qd [kN/m]		- [m]	Scorrimento unitario di calcolo qd [kN/m	
			V2 [KN]	favorevoli	sfavorevoli	$\Psi_{\alpha i}$	Ψα	Ψοί	Comb_max V2 mobili	Comb_min V2 mobili	z [m]	Comb_max V2 mobili	Comb_min V2 mobili
Α	Peso Proprio	g1	786	1,00	1,35	1	1	1	1060	786		1235	915
	∆ termico	ε3	-281,7	0,00	1,20	0,6	1	0,6	1452	-284	1,165	1692	-331
В	Carichi Mobili [MAX]	q ₁	1075,8	0,00	1,35	1	1	0,75					
	Carichi Mobili [MIN]	q ₁	-59,9	0,00	1,35	1	1	0,75					
с	Permanenti Portati	g ₂	305,4	1,00	1,35	1	1	1	500	607		500	707
	Ritiro	ε2	162,4	0,00	1,20	1	1	1				583	/0/

SEZIONE L													
MODELLO	AZIONE		V2 field	coefficienti parziali	coefficienti parziali di sicurezza		mobili ∆T riti		Sforzo di taglio di calcolo qd [kN/m]		- [m]	corrimento unitario di calcolo qd [kN/m	
MODELLO			V2 [KN]	favorevoli	sfavorevoli	Ψ_{oi}	Ψ_{0i}	Ψ_{0i}	Comb_max V2 mobili	Comb_min V2 mobili	z [m]	Comb_max V2 mobili	Comb_min V2 mobili
А	Peso Proprio	g1	1121	1,00	1,35	1	1	1	1514	1121		2248	1665
	∆ termico	ε3	-50,0	0,00	1,20	0,6	1	0,6	1831	-137	1,485	2718	-204
в	Carichi Mobili [MAX]	q1	1355,9	0,00	1,35	1	1	0,75					
	Carichi Mobili [MIN]	q ₁	-75,0	0,00	1,35	1	1	0,75					
с	Permanenti Portati	g ₂	425,7	1,00	1,35	1	1	1	392	541		502	803
	Ritiro	ε2	-28,1	0,00	1,20	1	1	1				302	

	SEZIONE O												
MODELLO	AZIONE		V2 [kN]	coefficienti parziali di sicurezza		mobili	mobili ∆T r		 Sforzo di taglio di calcolo qd [kN/m] 		7 [m]	corrimento unitario	di calcolo qd [kN/m
MODELLO			V2 [KNJ	favorevoli	sfavorevoli	Ψ_{oi}	Ψ_{0i}	Ψ_{0i}	Comb_max V2 mobili	Comb_min V2 mobili	2 [11]	Comb_max V2 mobili	Comb_min V2 mobili
Α	Peso Proprio	g1	33	1,00	1,35	1	1	1	45	33		46	34
	∆ termico	ε3	-7,5	0,00	1,20	0,6	1	0,6		-786	1,04	428	-817
В	Carichi Mobili [MAX]	q1	305,0	0,00	1,35	1	1	0,75	412				
	Carichi Mobili [MIN]	q ₁	-577,9	0,00	1,35	1	1	0,75					
с	Permanenti Portati	g ₂	-33,2	1,00	1,35	1	1	1	-34	-45		25	17
	Ritiro	ε2	-0,4	0,00	1,20	1	1	1				-35	-47

Le sezioni risultano dunque tutte verificate.

Si osserva come le sollecitazioni derivanti dal ritiro siano tutt'altro che trascurabili ai fini della determinazione della resistenza necessaria che la piolatura deve garantire al fine di evitare lo scorrimento tra soletta e flangia superiore delle travi metalliche.

12 Principali innovazioni nella costruzione dei ponti composti

Le principali innovazioni introdotte nella concezione e costruzione dei ponti a struttura composta riguardano:

- nuovi tipi di acciai e di prodotti
- tecniche costruttive della soletta
- nuove tipologie di impalcato.

12.1 Nuovi tipi di acciaio e di prodotti

12.1.1 Acciai ad alta resistenza saldabili

Nella costruzione dei ponti i requisiti di saldabilità e resilienza (resistenza alla rottura fragile) sono parametri molto importanti, in particolare quando si devono eseguire in cantiere le saldature di testa di piatti di notevole spessore.

L'impiego di nuove e più sofisticate attrezzature per la lavorazione dell'acciaio ha permesso di mettere a punto processi di laminazione in grado di ottenere direttamente le proprietà meccaniche delle lamiere di forte spessore senza dover ricorrere a ulteriori trattamenti termici. Gli acciai prodotti con questo metodo di lavorazione vengono detti "acciai termomeccanici". In pratica l'utilizzo di acciai termomeccanici (TM), rispetto a quelli normalizzati (N), presenta il duplice vantaggio di poter avere maggiori resistenze meccaniche abbinate a migliori caratteristiche di saldabilità (ad es. possibilità di eliminare il preriscaldamento).

12.1.2 Piatti a spessore variabile

Le lamiere a spessore variabile o lamiere profilate nel senso della lunghezza sono lamiere il cui spessore varia nella direzione del senso della laminazione. La realizzazione di queste lamiere richiede un dispositivo di serraggio forte e veloce ed una complessa regolazione di spessore che consenta di ottenere una regolazione continua dello scartamento dei cilindri in funzione dell'avanzamento delle lamiere da laminare.

La soluzione tradizionale per la realizzazione delle piattabande consiste nel saldare di testa dei piatti di spessore differente in modo da ottenere un andamento "a scalini" del momento resistente che approssimi nel migliore dei modi il diagramma del momento flettente dovuto alle azioni esterne.

L'utilizzo di lamiere a spessore variabile consente di seguire in maniera ottimale le curve del momento flettente ottenendo quindi un risparmio sulla quantità di acciaio.

Oltre al risparmio di materiale rispetto alla soluzione tradizionale (che in genere viene compensato dal maggior costo delle lamiere a spessore variabile) l'impiego delle lamiere a spessore variabile presenta i seguenti vantaggi:

- notevole riduzione del numero delle saldature di testa delle piattabande e delle anime; in pratica le saldature di testa si riducono a quelle da eseguire in cantiere per l'assemblaggio dei tronconi di carpenteria metallica;
- spostamento delle saldature al di fuori delle zone maggiormente sollecitate con conseguente riduzione dei problemi connessi alla verifica a fatica;
- miglioramento dell'estetica dell'opera d'arte.

12.2 Tecniche costruttive della soletta

In un ponte a sezione composta la fessurazione della soletta nelle zone di momento negativo fa parte del funzionamento naturale. Salvo casi particolari in cui tramite precompressione o cedimento degli appoggi si voglia mantenere la soletta sempre compressa, l'obiettivo di una corretta progettazione è quello di "controllare" la fessurazione tramite:

- verifica dell'apertura massima delle fessure;
- limitazione dell'intensità della fessurazione, caratterizzata dalla lunghezza totale della zona fessurata e dalla somma delle ampiezze delle singole fessure per metro lineare di soletta nella zona fessurata.

Mentre il controllo dell'apertura delle fessure viene effettuato con il calcolo delle armature longitudinali, la necessità di limitare la tensione di trazione nel calcestruzzo in modo da ridurre l'intensità della fessurazione durante le fasi costruttive ha stimolato la ricerca di nuovi sistemi di realizzazione della soletta. Tra i sistemi più utilizzati vi sono i seguenti:

- getto in opera a tratti non consecutivi su casseri mobili;
- realizzazione a tratti consecutivi con posa in opera "a spinta";
- prefabbricazione di conci.

Il problema della fessurazione delle solette nei ponti a sezione composta acciaiocalcestruzzo durante le fasi costruttive è stato messo in evidenza da recenti studi basati su indagini molto estese condotte su impalcati continui di nuova costruzione (Krauss e Rogalla, 1996). Sulla base di misure in situ e in laboratorio è stato rilevato l'alto stato tensionale di trazione che si sviluppa in soletta durante la costruzione. Tutti gli autori concordano che la fessurazione prematura delle solette è conseguenza sia delle sequenze di getto adottate, sia del comportamento del calcestruzzo alle brevi stagionature, e cioè del ritiro endogeno e della riduzione di volume per raffreddamento nelle fasi successive alla presa (ritiro termico).

12.2.1 Getto in opera ai tratti non consecutivi su casseri mobili

Al fine di limitare le tensioni sul calcestruzzo durante la realizzazione della soletta il getto del calcestruzzo viene effettuato a tratti non consecutivi di 12-15 m di lunghezza, eseguendo dapprima il getto dei "blocchi" ubicati nelle zone di campata e di estremità e successivamente quelli a cavallo degli appoggi. (Dezi et al., 2003).

Questo sistema rispetto al getto a tratti consecutivi, richiede un maggior onere per la movimentazione dei casseri ma ha il vantaggio di limitare in maniera significativa le tensioni di trazione sul calcestruzzo nelle zone in prossimità degli appoggi intermedi.

Una variante a tale metodo consiste nel gettare la soletta a tratti consecutivi rendendo immediatamente solidali alla struttura metallica solo i blocchi delle zone di campata. In corrispondenza dei blocchi a cavallo delle zone di appoggio vengono lasciate delle apposite tasche (dove sono ubicati i pioli) per la successiva connessione alla struttura metallica da eseguirsi con un getto integrativo dopo il completamento dell'intera soletta.

Figura 352 - Sequenze di getto della soletta.

12.2.2 Realizzazione di tratti consecutivi con posa in opera "a spinta"

La soletta è realizzata in cantiere a tratti consecutivi in un'area situata all'estremità dell'opera (cioè dietro una delle due spalle); al termine della realizzazione di ciascun tratto la soletta viene fatta avanzare facendola scorrere sopra la struttura metallica. La continuità delle armature lente tra un blocco di soletta ed il successivo è assicurata dalla sovrapposizione alternata delle barre longitudinali. Una volta posizionata l'intera soletta si esegue il getto di collegamento con la struttura metallica.

Figura 353 - Posa in opera della soletta a spinta.

12.2.3 Prefabbricazione di conci

La tecnica di prefabbricazione della soletta in conci viene utilizzata per opere particolari, quali i sovrappassi autostradali, che richiedono una prefabbricazione integrale per contenere i tempi di esecuzione ed i periodi di interruzione del traffico sottostante.

Figura 354 - Soletta prefabbricata a conci.

12.2.4 Applicazione della tecnica costruttiva a getti frazionati della soletta dell'impalcato oggetto di studio

Si è impiegato il modello FEM in cui le travi sono modellate con elementi FRAME e la soletta con elementi SHELL, in quanto ritenuto sufficientemente affidabile in base alle osservazioni fatte in precedenza. Si è modellato l'effetto del ritiro come una variazione termica negativa equivalente applicata agli elementi SHELL che rappresentano la soletta; al calcestruzzo costituente la soletta è stato assegnato un modulo elastico ridotto per tenere conto degli effetti di lungo termine. Si è svolta una prima analisi in cui si ipotizza che la soletta venga gettata in una unica soluzione. Ovviamente non è realistico pensare di realizzare la soletta con un unico gatto date le dimensioni dell'impalcato, ma si svolge questa analisi preliminare utile per svolgere confronti con i modelli successivi.

Figura 355 - Inviluppo delle tensioni di trazione durante la realizzazione della soletta nell'ipotesi che la soletta sia realizzata in un'unica soluzione (collaborazione trasversale tra le travi garantita dalla sola soletta).

Figura 356 - Inviluppo delle tensioni di trazione durante la realizzazione della soletta nell'ipotesi che la soletta sia realizzata in un'unica soluzione (collaborazione trasversale tra le travi garantita da elementi trasversali infinitamente rigidi).

Candidato: Francesco Cavallini

Figura 357 - Inviluppo delle tensioni di trazione durante la realizzazione della soletta nell'ipotesi che la soletta sia realizzata con un getto ottimizzato che prevede prima il getto dei conci agli appoggi.

Figura 358 - Inviluppo delle tensioni di trazione durante la realizzazione della soletta nell'ipotesi che la soletta sia realizzata con un getto ottimizzato che prevede prima il getto dei conci in campata.

Figura 359 - Inviluppo delle tensioni di trazione durante la realizzazione della soletta nell'ipotesi che la soletta sia realizzata con un getto ottimizzato che prevede prima il getto dei conci in campata, ma di un concio alla volta.

Dall'osservazione degli inviluppi delle tensioni massime ottenute durante la costruzione, si evidenzia in modo chiaro che:

- la soletta è sempre soggetta a trazione, qualunque sia la sequenza di getto adottata; questo spiega perché in molti ponti di nuova costruzione si manifesta un quadro fessurativo che interessa l'impalcato anche nelle regioni di campata;
- l'impiego delle sequenze di getto ottimizzate permette di controllare la fessurazione; infatti il getto sequenziale induce trazioni massime che sono circa un terzo di quelle ottenute con il getto in un'unica soluzione;
- le massime tensioni in appoggio ottenute con il getto in avanzamento crescano all'aumentare della luce del ponte;
- con il getto per fasi ottimizzate, in cui si prevede prima il getto dei conci in corrispondenza degli appoggi, si hanno le tensioni massime anche nelle zone di campata, a differenza di quanto si osserva nel caso di getto continui in cui le tensioni massime si hanno solo in corrispondenza degli appoggi;
- con il getto per fasi ottimizzate, in cui si prevede prima il getto dei conci in corrispondenza delle zone di campata, si ottiene un maggior abbattimento delle tensioni massime, che comunque restano localizzate in corrispondenza degli appoggi;

Candidato: Francesco Cavallini

• con il getto per fasi ottimizzate, in cui si prevede prima il getto dei conci in corrispondenza delle zone di campata, ma di un concio alla volta, si registra la massima riduzione dei picchi di tensione tra le diverse soluzioni studiate.

Considerando l'ipotesi di realizzazione della soletta mediante getto continuo, si può osservare come il superamento della resistenza limite a trazione del calcestruzzo in corrispondenza degli appoggi corrisponda al superamento del limite di apertura delle fessure nelle medesime sezioni. D'altra parte adottando la tecnica del getto per fasi si riesce a contenere l'ampiezza di apertura delle fessure. E' anche possibile adottare una soluzione più sbrigativa aumentando semplicemente la armatura longitudinale in corrispondenza delle sezioni quantità di in corrispondenza degli appoggi dove il problema della fessurazione è più rilevante. Si deve meditare però sull'effettivo beneficio che si può trarre adottando tale soluzione sia in termini di contenimento efficace della fessurazione sia in termini di costi. Dunque può valere la pena di soffermarsi più lungamente nella fase progettuale per individuare la sequenza di getti più adeguare a contenere il fenomeno.

Figura 360 - Stima dell'ampiezza delle fessure durante la realizzazione della soletta nell'ipotesi di realizzazione con getto continuo.

12.2.5 Stati limite di esercizio

Per descrivere il comportamento reale delle strutture in cemento armato sotto carichi di esercizio è in genere necessario tenere conto della fessurazione del calcestruzzo teso, che avviene quando la tensione di trazione nel calcestruzzo supera la resistenza a trazione dello stesso (f_{ct}).

La fessurazione del calcestruzzo provoca un significativo calo di rigidezza (rispetto al caso di sezione interamente reagente), che deve essere tenuto in conto nella valutazione della deformabilità.

Secondo le normative, per le strutture in cemento armato, gli stati limite di esercizio da verificare sono:

- limitazione delle tensioni
- stato limite di fessurazione
- stato limite di deformazione

Le verifiche di servizio delle travi composte sono fortemente influenzate dagli effetti connessi al comportamento reologico del calcestruzzo. Tali effetti non condizionano lo stato limite ultimo in quanto la resistenza ultima delle sezioni non è influenzata dalle deformazioni differite. La viscosità e il ritiro possono al più determinare nelle travi continue incrementi delle rotazioni plastiche richieste allo SLU rispetto al caso di carichi istantanei.

Gli effetti più rilevanti del comportamento reologico sono invece da ricercarsi negli stati limite di servizio di tipo deformativo o tensionale; in questo caso le azioni esterne sono quelle di normale esercizio delle strutture mentre il comportamento meccanico dei materiali può essere assunto elastico-lineare salva la fessurazione del calcestruzzo di cui occorre tener conto.

Gli effetti differiti producono nella sezione una redistribuzione interna delle sollecitazioni tra acciaio e calcestruzzo, con un progressivo trasferimento di tensioni dalla soletta al profilo metallico.

Tali effetti sono anche responsabili di una variazione dei momenti flettenti che ha l'aspetto di una ridistribuzione di segno contrario a quella prodotta dalla fessurazione. Infatti la viscosità determina un incremento di curvatura nelle zone soggette a momento positivo, sede degli scorrimenti viscosi, con effetto simile a quello prodotto da una diminuzione di rigidezza, mentre le curvature anelastiche dovute al ritiro determinano variazioni del regime di sollecitazione nelle strutture iperstatiche; in entrambi i casi si ha un aumento dei momenti negativi sugli appoggi interni delle travi continue, che riduce o addirittura elimina la ridistribuzione dei momenti dovuta alla fessurazione sotto i carichi iniziali.

12.2.5.1 Stato limite di fessurazione

Per assicurare la funzionalità e la durata delle strutture è necessario:

- prefissare uno stato limite di fessurazione (ampiezza della fessura) adeguato alle condizioni ambientali e di sollecitazione nonché alla sensibilità delle armature alla corrosione;
- realizzare un sufficiente ricoprimento delle armature con calcestruzzo di buone qualità e compattezza;
- tener conto delle esigenze estetiche.

Per la valutazione corretta delle sollecitazioni in esercizio delle travi continue occorre utilizzare una procedura di calcolo che tenga conto della fessurazione della soletta nelle zone fessurate ($M > M_{cr}$, momento di prima fessurazione), con il conseguente effetto di tension-stiffening e degli effetti a lungo termine dovuti alla viscosità ed al ritiro

Per definire la suddivisione della trave in zona parzializzata e in zona tutta reagente, è opportuno far riferimento al momento di prima fessurazione M_{cr} determinabile nel modo seguente:

$$M_{cr} = W_1 * n * f_{ct} = \frac{I_1}{y_1} * n * f_{ct}$$

Dove W_I è il modulo di resistenza a momento negativo della sezione integra omogeneizzata rispetto all'acciaio (calcestruzzo della soletta non fessurato). Nelle zone non fessurate la rigidezza flessionale è pari a quella integra EaI1 (profilo metallico + calcestruzzo); nelle zone fessurate il comportamento flessionale è intermedio tra quello di sezione interamente reagente e quello di sezione completamente fessurata a causa del tension-stiffening e può essere interpretato mediante la formula di interpolazione proposta da Fauvre e recepita dal CEB, espressa in termini di curvatura:

$$\chi_m = \chi_1 * \beta_1 * \beta_2 * \left(\frac{M_{cr}}{M}\right)^2 + \chi_2 * \left[1 - \beta_1 * \beta_2 * \left(\frac{M_{cr}}{M}\right)^2\right]$$

con:

$$\chi_1 = \frac{M}{E_a * I_1}$$
$$\chi_2 = \frac{M}{E_a * I_2}$$

In alternativa si può calcolare la rigidezza equivalente $E_a I_m$ in cui l'apporto dell'armatura metallica in zona tesa è incrementato per tener conto del tension stiffening.

Gli effetti differiti possono essere considerati in modo semplificato, ma sufficientemente affidabile, separando gli effetti della viscosità e del ritiro.

In particolare sono utilizzabili il metodo del modulo efficace (EM) per la viscosità ed il metodo AAEM, con coefficiente di invecchiamento $\chi = 0,5$, per la determinazione della curvatura da ritiro.

Quindi l'effetto a lungo termine dei carichi permanenti (quasi permanenti nella definizione della normativa che comprende sia le azioni da peso proprio che quelle derivanti da carichi permanenti e da quote di carichi variabili), si valuta assumendo un modulo di elasticità ridotto con il conseguente coefficiente di omogeneizzazione, che risultano:

$$E_{c,eff} = \frac{E_c}{(1+\phi)}$$
$$n_{eff} = \frac{E_a}{E_c} * (1+\phi)$$

Per il ritiro, essendo nulle le tensioni iniziali, si può definire un modulo corretto per tener conto dell'invecchiamento del materiale e dell'incremento progressivo nel tempo delle deformazioni da ritiro, impiegando:

$$E_{c,adj} = \frac{E_c}{(1+0.5\phi)}$$
$$n_{adj} = \frac{E_a}{E_c} * (1+0.5\phi)$$

Nel caso di travi composte continue un aspetto importante del comportamento in condizioni di servizio è costituito dalla fessurazione della soletta in zona tesa. Tale fenomeno deve essere limitato ad un livello tale da non pregiudicare la durabilità o rendere inaccettabile l'aspetto ed il corretto funzionamento.

Nel caso degli impalcati da ponte, il problema è assente nelle campate appoggiate in quanto la soletta è compressa dai carichi esterni ed il solo ritiro non è sufficiente a determinare una fessurazione significativa.

Secondo le NTC del 2008 la verifica di fessurazione in generale può essere condotta secondo tre livelli di severità decrescente:

- stato limite di decompressione;
- stato limite di formazione delle fessure;
- stato limite di ampiezza delle fessure.

Nelle travi composte lo stato limite di decompressione ha senso solo in presenza di precompressione della soletta nelle zone di momento negativo; tale soluzione costruttiva è adottata molto spesso proprio per ridurre la fessurazione degli

impalcati da ponte dove la ripetizione dei carichi e le condizioni di esposizione rendono la fessurazione particolarmente insidiosa.

Tale stato limite equivale a verificare che la tensione normale sia ovunque di compressione o al più uguale a zero.

La verifica dello stato limite di formazione delle fessure consiste nel controllare che la tensione di trazione rimanga inferiore alla tensione caratteristica di trazione: $|\sigma_{ct}| \leq f_{ctk}$.

Dove la σ_{ct} è definita: $\sigma_{ct} = \frac{f_{ctm}}{1,2}$, dove $f_{ctm} = 0.30 * f_{ck}^{2/3}$.

Tale verifica può anche essere espressa in termini di caratteristiche della sollecitazione controllando che il momento minimo risulti inferiore in valore assoluto del momento di fessurazione: $|M_{min}| \le M_{cr}$.

La condizione di verifica, pur facendo riferimento alla condizione di carico quasi permanente per la quale è richiesta la verifica di fessurazione, è generalmente troppo onerosa da soddisfare a causa della limitata resistenza a trazione del calcestruzzo. Pertanto la verifica allo stato limite di fessurazione può essere eseguita controllando l'entità dell'ampiezza delle fessure.

Il calcolo dell'ampiezza delle fessure è significativo se l'armatura tesa non ha raggiunto lo snervamento; si deve quindi verificare che non sia raggiunto lo snervamento per la più gravosa delle condizioni di carico di servizio (condizione di carico rara) prima di svolgere la verifica dello stato limite di fessurazione.

In questa verifica il valore limite di apertura delle fessure dipende dalla classe di esposizione ambientale adottata:

- $w_1 = 0,2 mm;$
- $w_2 = 0,3$ mm;
- $w_3 = 0,4$ mm;

Tipicamente un impalcato da ponte ricade in classe di esposizione ambientale XF4 (elevata saturazione d'acqua con agente antigelo), che porta quindi a considerare condizioni ambientali molto aggressive e quindi un valore limite di apertura delle fessure pari a w_1 .

Per la determinazione di tale valore limite si deve tenere conto di diversi fattori. Si individuano le tre possibili situazioni di "aggressività" dell'ambiente in cui si può trovare la struttura:

- ambiente poco corrosivo, caratterizzato da umidità relativa non elevata o da umidità relativa elevata per brevi periodi;
- ambiente moderatamente aggressivo, caratterizzato da un'elevata umidità relativa in assenza di vapori corrosivi;
- ambiente molto aggressivo, caratterizzato dalla presenza di liquidi o di aeriformi particolarmente corrosivi.

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE					
Ordinarie	X0, XC1, XC2, XC3, XF1	Ie				
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3					
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4					

Tabella 114 - Descrizione delle condizioni ambientali.

armature si possono caratterizzare in:

- armature sensibili alla corrosione: armature costituite da acciai temprati, non rinvenuti, o acciai incruditi a freddo soggetti ad elevati valori di tensione permanente;
- armature poco sensibili alla corrosione: tutte le armature ordinarie.

In funzione quindi delle condizioni individuate in termini di aggressività dell'ambiente e di sensibilità delle armature alla corrosione, si determinano di volta in volta le combinazioni delle azioni da prendere in considerazione ed il relativo stato ultimo da controllare, secondo quanto indicato nel seguente prospetto:

Cumpi di	Condizioni	Combinaziono	Armatura						
Gruppi u	ambiantali	di azioni	Sensibile	Poco sensibile					
esigenze	amortinan		Stato limite	Stato limite w _d Stato lim		Wd			
a	Ordinaria	frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq w_3$			
	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$			
b	Accreacitto	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq W_2$			
	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$			
c	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$			
	mono aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$			

Tabella 115 - Criteri di scelta dello stato limite di fessurazione.

La verifica consiste nel rispetto della seguente condizione: $w_d = \varepsilon_{sm} * \Delta_{sm} \le w_1$, dove ε_{sm} è la deformazione media delle barre, Δ_{sm} è la distanza massima tra le fessure.

In linea di principio la valutazione dell'ampiezza delle fessure si effettua valutando la differenza di allungamento tra le barre di armatura ed il calcestruzzo nel tratto compreso tra due fessure:

$$w_m = \int_0^s (\varepsilon_s - \varepsilon_c) dz = (\varepsilon_{sm} - \varepsilon_{cm}) * s_{sm}$$

dove:

 ε_{sm} = deformazione media nell'armatura;

 ε_{cm} = deformazione media nel calcestruzzo teso;

 s_{sm} = distanza tra le fessure.

Trascurando nella relazione precedente la deformazione del calcestruzzo ε_{cm} rispetto a quella dell'acciaio teso, si può esprimere quest'ultima in funzione delle deformazioni estreme ε_{s1} ed ε_{s2} relative alle condizioni di calcestruzzo teso reagente (sezione non fessurata) e di calcestruzzo completamente non reagente (sezione fessurata).

A tal fine si utilizza una combinazione convessa, regolata dal livello di tensione raggiunto dall'armatura nella sezione in rapporto a quello di prima fessurazione; si pone:

$$\varepsilon_{sm} = \frac{\sigma_s}{E_s} * \left[1 - \beta_1 * \beta_2 * \left(\frac{\sigma_{sr}}{\sigma_s} \right)^2 \right]$$

dove:

 σ_s è la tensione nell'armatura calcolata nella sezione fessurata per la combinazione di azioni considerata;

 σ_{sr} è la tensione nell'acciaio calcolata fessurata per la sollecitazione corrispondente al raggiungimento della resistenza a trazione f_{ctm} nella fibra di calcestruzzo più sollecitata compresa nell'area efficace, considerando la sezione interamente reagente;

 β_1 , β_2 sono coefficienti legati all'aderenza delle armature e alle modalità di applicazione del carico e/o permanenza dello stesso; in particolare:

 β_l è un coefficiente che rappresenta l'aderenza acciaio-cls:

$$\beta_1 = \begin{cases} 1 \ per \ barre \ ad \ aderenza \ migliorata \\ 0,5 \ per \ barre \ lisce \end{cases};$$

 B_2 è un coefficiente che tiene conto delle condizioni di sollecitazione:

$$\beta_2 = \begin{cases} 1 & nel \ caso \ della \ prima \ applicazione \ di \ un'azione \ di \ breve \ durata \\ 0,5 \ nel \ caso \ di \ azioni \ di \ lunga \ durata \ o \ di \ azioni \ ripetute \end{cases}$$

Sotto l'ipotesi $\frac{\sigma'_{s,II}}{\sigma_{s,II}} \cong \frac{M_{cr}}{M}$, l'espressione precedente può essere riscritta nel modo seguente:

$$\varepsilon_{sm} = \frac{M}{E_s} * \left[1 - \beta_1 * \beta_2 * \left(\frac{M_{cr}}{M} \right)^2 \right]$$

La distanza tra le fessure si esprime mediante una relazione di origine teoricosperimentale, che fornisce la distanza tra le fessure sulla base di parametri quali il diametro delle barre di armatura, il copriferro, la percentuale di armatura, le caratteristiche di aderenza tra acciaio e calcestruzzo, il tipo di sollecitazione (trazione o trazione-flessione). L'espressione è la seguente:

$$s_{rm} = 2 * \left(c + \frac{f_c}{10}\right) + k_2 * k_3 * \frac{\phi_t}{\rho_r}$$

dove:

c è il copriferro in zona tesa (misurato dal baricentro dell'armatura tesa);

 f_c è l'interasse tra le barre tese;

 k_2 è un coefficiente che caratterizza l'aderenza barra-cls:

 $k_2 = \begin{cases} 0,4 \ per \ barre \ ad \ aderenza \ migliorata \\ 0,8 \ per \ barre \ lisce \end{cases};$

 k_3 è un coefficiente che tiene conto della forma del diagramma delle tensioni prima della fessurazione:

$$k_{3} = \begin{cases} 0,250 \ nel \ caso \ di \ trazione \ pura \\ 0,250 * \left(\frac{\sigma_{1} + \sigma_{2}}{2\sigma_{1}}\right) \ nel \ caso \ di \ trazione \ eccentrica \\ 0,125 \ nel \ caso \ di \ diagramma \ triangolare \ di \ flessione \ o \ presso - flessione \\ (asse \ neutro \ interno \ alla \ sezione) \end{cases};$$

 ϕ_t è il diametro medio delle barre tese;

$$\rho_r = \frac{A_s}{A_{eff}}.$$

In alternativa si possono impiegare le formule suggerite dall'Eurocodice 4:

$$(\varepsilon_{sm} - \varepsilon_{cm}) = \frac{\sigma_s - k_t * \frac{f_{ct,eff}}{\rho_{p,eff}} * (1 + \alpha_e * \rho_{p,eff})}{E_s} \ge 0.6 * \frac{\sigma_s}{E_s}$$

dove:

 ε_{sm} è la deformazione media nell'armatura sotto la combinazione di carico pertinente, tenendo conto delle deformazioni impresse e dell'effetto di "tension stiffening"; si considera soltanto la deformazione aggiuntiva a partire dallo stato indeformato del calcestruzzo posto allo stesso livello;

 ε_{cm} è la deformazione media del calcestruzzo tra le fessure;

 σ_s è la tensione nell'armatura tesa considerando la sezione fessurata;

$$\alpha_e = \frac{E_s}{E_{cm}};$$

$$\rho_{p,eff} = \frac{A_s}{A_{c,eff}};$$

 k_t è un fattore dipendente dalla durata del carico, in particolare:

 $k_t = \begin{cases} 0,6 & \text{per carichi di breve durata} \\ 0,4 & \text{per carichi di lunga durata}; \end{cases}$

La distanza massima tra le fessure si calcola invece nel modo seguente:

$$s_{r,max} = k_3 * c + k_1 * k_2 * k_4 * \frac{\phi_{eq}}{\rho_{p,eff}}$$

dove:

 k_1 è un coefficiente che tiene conto delle proprietà di aderenza dell'armatura, in particolare:

 $k_1 = \begin{cases} 0.8 & per \ le \ barre \ ad \ aderenza \ migliorata \\ 1,6 \ per \ barre \ lisce \end{cases};$

 k_2 è un coefficiente che tiene conto della distribuzione delle deformazioni, in particolare:

$$k_{2} = \begin{cases} 0,5 & per flessione \\ 1,0 & per trazione pura \end{cases}$$

$$k_3 = 3,4;$$

$$k_4 = 0,425;$$

 ϕ_{eq} è il diametro delle barre equivalente, da adottare nel caso in una sezione siano impiegate barre di diametro diverso:

$$\phi_{eq} = \frac{n_1 * \phi_1^2 + n_2 * \phi_2^2}{n_1 * \phi_1 + n_2 * \phi_2};$$

Per la verifica di ampiezza delle fessure si usa in genere il suo valore medio w_m , amplificato tramite il coefficiente di sicurezza β assunto pari a 1,7:

$$w_d = 1,7 * w_m$$

Si è eseguita la verifica di fessurazione per le sezioni in corrispondenza degli appoggi (zone soggette a momento negativo) secondo entrambi gli approcci. Si riportano di seguito i fogli di calcolo impiegati, in cui si è dovuto tener conto del fatto che si verifica a fessurazione una soletta doppiamente armata che è parte di una sezione mista acciaio-calcestruzzo.

Figura 361 - Verifica a fessurazione per la sezione L.

Candidato: Francesco Cavallini

SEZIONE D														
	GETTO	сонтінио				GET	TO PER FAS	1		GETTO	CONTINUO CO	ON ARMAT	URA AGGI	UNTIVA
fck	35	Mpa			fck	35	Mpa			fck	35	Мра		
t	5	gg			t	5	gg			t	5	gg		
fctm	2,44	MPa			fctm	2,44	MPa			fctm	2,44	MPa		
h	28	cm			h	28	cm			h	28	cm		
с	7	cm			c	7	cm			с	7	cm		
d	21	cm			d	21	cm			d	21	cm		
h	400	cm	nasso	n° harre	h	400	cm	nasso	n° harre	h	400	cm	nasso	n° harre
ф.,	16	mm	20	20	ф.	16	mm	20	20	ф.	20	mm	10	42
φ.	16		20	20	ф ,	16	mm	20	20	ф ф	20	mm	20	21
φ Δ.	40.21	cma	20	20	φ Δs	40.21	cma	20		φ Δs	131.95	cma	20	
A'.	40,21	cmq			A'-	40,21	cmq			A'-	65.07	cmq		
dea.	40,21	mm			A 5	40,21	mm			As dec	20	mm		
φεq	10				φει	16				φeq	16			
	210000	N/mma				210000	N/mma				210000	N/mma		
Es	12125	N/mmg				12125	N/mma			5	12125	N/mmg		
Ecm	15125	N/IIIIIq			Ecm	15125	N/IIIIq			Ecm	15125	N/IIIIq		
A No. 1	2110	LN			A No. 1	521	LIII			X No. 1	2110	LIII		
INQ.D.	5119	KIN Libbar			INQ.P.	351	KIN Ishlar			INQ.p.	5119	KIN Liblari		
IVIq.p.	5750	KINITI			IVIq.p.	4857	KINITI			IVIq.p.	5750	KINITI		
JI A.	0,148	mr4			Ji	0,220	m^4 m~7			Ji	0,220	mr4 m-5		
Ai	0,202	mq			Ai	0,202	mq			Ai	0,202	mq		-
Ysup	0,8795	m			Ysup	0,8795	m			Ysup	0,8795	m		
Yinf	0,7345	m			Yinf	0,7345	m			Yinf	0,7345	m		
σSup	50	Мра			σSup	22	Мра			σSup	38	Мра		
Øinf	44	Мра			Øinf	18	Мра			Øinf	34	Мра		
σs,max	50	Мра			Øs,max	22	Mpa			Øs,max	38	Мра		
	EC2	_				EC2	_				EC2			
kt	0,4				kt	0,4				kt	0,4			
hc,eff	7	cm			hc,eff	7	cm			hc,eff	6	cm		
Ac,eff	2985	cmq			Ac,eff	2985	cmq			Ac,eff	2540	cmq		
$\rho_{p,eff}$	0,013470603				ρ _{p,eff}	0,013470603				ρ _{p,eff}	0,051939795			
αe	16				αe	16				αe	16			
(EE)	0.000141744				(Em-Em)	6 15148F-05				(E-m-E-m)	0.000108049			
(-sii -ciii)	0,000111711				(-511 -611)	0,151102.05				(-sin -un)	0,000100010			
k1	0.8				k1	0.8				И	0.8			
1/2	0,5				k1 k2	0,0				k1 k2	0,0			
1/2	2.4				k2	2.4				k2	2.4			
k/	0.425				k/	0.425				k) k/	0.425			
6	0,425	cm			K4	21	cm			к ч	21	cm		
cr may	015.02	mm			cr may	015.02	mm			cr may	770.46	mm		
51,111dA	513,52				51,111dA	513,52				51,111dA	773,40			
and.	0.12					0.06					0.09			
O NK	0,15				P	0,00				e e e e e e e e e e e e e e e e e e e	0,06			
P	1,7				P	1,7				P	0.14			
wa	0,22				wa	0,10	mm			wa	0,14	mm		
WIIM		mm			Wlim	U,20	mm			Wlim		mm		
<u> </u>	NON VERIFICATO					VENIFICATO					VENIFICATU			
					CE0	FID Madel Co.	1- 00				FID Madel Co.	1- 00		
C C	D-FIP WODELCODE	: 50			CEB	TIP WOODELCO	ue 90			CEE	-riP IVIODEI COO	16.20		
tc	20				fc	20				fc	15			
φt	16	mm			φt	16	mm			φt	20	mm		
As	4021	mmq			As	4021	mmq			As	13195	mmq		-
ρr	0,013470603				ρr	0,013470603				ρr	0,051939795			
k2	0,4				k2	0,4				k2	0,4			
k3	0,125				k3	0,125				k3	0,125			
srm	483,39	mm			srm	483,39	mm			srm	442,25	mm		
I														
Mcr	127558061	Nmm			Mcr	127558061	Nmm			Mcr	127558061	Nmm		
β1	1				β1	1				β1	1			
β2	0,5				β2	0,5				β2	0,5			
εsm	0,000236182				εsm	0,000102489				εsm	0,000180038			
Wm	0,11	mm			Wm	0,05	mm			Wm	0,08	mm		
β	1,7				β	1,7				β	1,7			
Wd	0,19	mm			Wd	0,08	mm			Wd	0,14	mm		
Wlim	0,20	mm			Wlim	0,20	mm			Wlim	0,20	mm		
	VERIFICATO					VERIFICATO					VERIFICATO			
-					· · · · ·			,		· · · · ·	-			

Figura 362 - Verifica a fessurazione per la sezione D.

Si osserva che è più cautelativo riferirsi alla formulazione proposta dall'Eurocodice 2.

12.2.5.2 Valutazione economica delle tecniche costruttive studiate

Si riferisce il calcolo all'armatura longitudinale presente in soletta:

sulla sezione trasversale l'armatura presente è costituita da:

Armatura superiore: 61 barre

Armatura inferiore: 61 barre

Per tenere conto delle lunghezze di sovrapposizione si considera una lunghezza pari a quella dell'impalcato incrementata del 20%, ovvero 264 m.

Ipotesi 1:

assumendo che l'armatura della soletta sia costituita da soli ϕ 16/20'', si ha un totale di:

122 barre longitudinali*264 m = 32208 m di barre longitudinali ϕ 16

A tali barre corrisponde un peso di:

$$32208 \ m * 1,578 \ \frac{kg}{m} = 50824 \ kg$$

Assumendo per l'acciaio da armatura lenta un costo di 1,20 €kg, si ha:

50824 kg * 1,20 €/kg = 60989 €

Ipotesi 2:

si considera ora il caso in cui sia previsto un incremento di armatura in corrispondenza degli appoggi. In particolare le zone soggette a questo incremento corrispondono ad una lunghezza di impalcato di 57 m, che si considera incrementata per tenere conto delle sovrapposizioni e quindi risulta pari a 68 m. In tali zone si prevede sulla sezione trasversale un'armatura costituita da:

Armatura superiore: $\phi 20/10$ ''

Armatura inferiore: $\phi 20/20$ ''

Si calcola l'incremento di armatura conseguente a tale armatura rispetto a quella considerata nell'ipotesi 1:

$$\Delta_{peso \ berra \ a \ metro} = 2,466 \ \frac{kg}{m} (barre \ \phi 20) - 1,578 \ \frac{kg}{m} (barre \ \phi 16) =$$
$$= 0,888 \ \frac{kg}{m}$$

$$\Delta_{peso,inf,a\ metro} = 65 * 0,888 \frac{kg}{m} = 58 \frac{kg}{m}$$
$$\Delta_{peso,sup,a\ metro} = 58 \frac{kg}{m} + 65 * 2,466 \frac{kg}{m} (barre\ \phi 20) = 218 \frac{kg}{m}$$

$$\Delta_{peso,a\ metro} = \Delta_{peso,sup,a\ metro} + \Delta_{peso,inf,a\ metro} = 218\ \frac{kg}{m} + 58\ \frac{kg}{m} =$$

$$=276 \frac{kg}{m}$$

$$\Delta_{peso} = 276 \frac{kg}{m} * 68 m = 18768 kg$$
$$18768 kg * 1,2 \notin /kg = 22522 \notin$$

Incremento di costo di armatura longitudinale $=\frac{22522}{65000}=37\%$

Dunque vale la pena soffermarsi durante la fase di progettazione cercando la tecnica più adeguata per realizzare la soletta evitandone la fessurazione già in fase di realizzazione. In particolare nella tecnica del getto per fasi si è individuata la sequenza di getto che prevede prima il getto dei conci di campata e poi di quelli in corrispondenza degli appoggi senza avere un incremento di costo rispetto alla realizzazione tramite getto continuo. Se invece si procede speditamente incrementando semplicemente la quantità di armatura al fine di far tornare le verifiche nelle sezioni soggette a momento negativo si va incontro ad incrementi di costo corrispondenti all'armatura lenta aggiuntiva ed inoltre si ottiene una riduzione dell'apertura delle fessure inferiore rispetto al caso in cui si adotti la tecnica del getto per fasi.

13 Conclusioni

13.1 Analisi condotte

Sono state condotte analisi statiche lineari su modelli a fibre realizzati tramite elementi "brick" ed elementi "shell" al fine di trovare corrispondenza con gli andamenti delle tensioni che insorgono all'interfaccia tra calcestruzzo e armature per effetto del ritiro del calcestruzzo.

Sono state poi condotte analisi statiche lineari su differenti modelli simulanti l'impalcato del ponte preso da esempio come caso reale al fine di ricavare le sollecitazioni che nascono sulla struttura per effetto delle azioni di progetto, tra cui il ritiro del calcestruzzo.

Infine si sono svolte analisi statiche non lineari al fine di individuare quale sia la sequenza ottimale di getto della soletta al fine di ridurre le tensioni che insorgono in essa durante le fasi di maturazione della stessa e che ne inducono la fessurazione.

13.2 Risultati ottenuti

Si sono esplorati i diversi metodi già noti in letteratura per il calcolo delle sollecitazioni che insorgono negli elementi strutturali per effetto del ritiro, applicandoli ai casi di studio selezionati. Si è quindi valutato il grado di attendibilità di questi metodi e quali convenga applicare a parità di accuratezza e laboriosità del procedimento.

Si sono elaborati dei modelli analitici che permettano di pervenire, per le diverse situazioni di vincolamento esterno ed interno della soletta in calcestruzzo, ad una stima attendibile degli sforzi che insorgono negli elementi strutturali per effetto del ritiro.

Si è verificata l'applicabilità di tali modelli ad caso reale: un ponte a sezione mista acciaio-calcestruzzo di lunghezza complessiva pari a 220 m.

Si è potuto individuare i modelli numerici più adeguati a descrivere il fenomeno del ritiro.

Si è infine cercato di fornire una soluzione al problema frequente della fessurazione della soletta nella fase di realizzazione negli impalcati da ponte a sezione mista, tramite la tecnica costruttiva del getto per fasi della soletta. Tale tecnica mira a individuare la sequenza di getto ottimale tale da permettere di sfogare liberamente ai vari conci parte dell'accorciamento indotto dal ritiro prima che la soletta risulti saldata in un unico elemento continuo, al fine di ridurre gli stati tensionali che nascono nella soletta stessa, in particolare i picchi di tensioni di trazione che si avrebbero in corrispondenza degli appoggi e che innescano la fessurazione della soletta. Si è potuto constatare come l'impiego di questa tecnica esecutiva non comporti alcun incremento dei costi di realizzazione dell'opera a differenza di quanto avviene invece nel caso in cui si proceda a maggiorare fortemente l'armatura di rinforzo longitudinale al fine di limitare la fessurazione.

Dai confronti svolti si osserva come il ritiro sia un fenomeno rilevante anche per quanto attiene alle verifiche di Esercizio in quanto provoca la fessurazione della soletta fin dalle prime fasi di indurimento della stessa e, di fatto, possa pregiudicarne la durabilità della struttura.

13.3 Sviluppi futuri

Per motivi di tempo non si è potuto trattare esaustivamente tutte le tematiche e le possibili implicazioni nel campo delle strutture dell'ingegneria civile connesse al fenomeno fisico del ritiro. Questo lavoro può trovare completamento nello studio di altre tecniche volte alla riduzione delle tensioni di trazione nella soletta degli impalcati da ponte nelle fasi realizzative dell'opera. Resta aperto anche il capitolo di una più accurata definizione delle funzioni temporali che permettano di tenere conto dell'evoluzione del fenomeno nel tempo, ad esempio quando si sovrappongono ad istanti successivi i diversi conci nella tecnica del getto per fasi. Si potrebbero anche indagare gli effetti del ritiro nel caso delle fondazioni superficiali estese, in particolare delle platee di fondazione massive che presentano un'elevata superfici esposta all'aria nella fase di getto. Occorre infatti tenere conto dell'interazione terreno-struttura al fine di valutare come l'attrito offerto dal terreno costituisca di fatto un vincolo alla libera contrazione della platea durante la maturazione.

Bibliografia

[1] EC4, "Design of composite steel and concrete structures – Part 2: General rules and rules for bridges", 2006

[2] D.M. 14/01/2008, "Norme tecniche per le costruzioni",2008

[3] L. Dezi (2006). Ponti a sezione composta: tipologie strutturali, tecniche costruttive e criteri generali di calcolo. Volume CISM su "STRUTTURE COMPOSTE. Nuove costruzioni, Recupero, Ponti" - a cura di L. Dezi e N. Gattesco - 2006, pp. 115-139.

[4] L. Dezi, G. Leoni (2006). *Effetti della viscosità e del ritiro negli impalcati da ponti a sezione composta*. Volume CISM su *"STRUTTURE COMPOSTE. Nuove costruzioni, Recupero, Ponti"* - a cura di L. Dezi e N. Gattesco - 2006, pp. 169-207.

[5] L. Dezi, M. Formica (2006). *Impalcato bitrave continuo a sezione composta*. *Verifica secondo gli Eurocodic*i. Volume CISM su "*STRUTTURE COMPOSTE*. *Nuove costruzioni, Recupero, Ponti*" - a cura di L. Dezi e N. Gattesco - 2006, pp. 241-262.

[6] D. Richardson, Y. Tung, A. Ibrahim, R. Hindi, "Shrinkage and durability of concrete bridge decks using different cements", Bridge Maintenance, Safety, Management and Life Extension – Chen, Frangopol & Ruan (Eds).

[7] Y.Koda, I. Iwaki, K. Matsumoto, H. Yamagishi, S. Tsuchiya, "Performance evaluation of an RC bridge deck retrofitted by partial-depth repair using shrinkage-compensated ultra-rapid-hardening steel-fiber-reinforced concrete", Life-Cycle of Structural Systems – future, Frangopol & Akiyama (Eds).

[8] S.R.Salib, "*Utilizing construction stages to control bridge movement due to creep and shrinkage*", Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures – Tanabe et al. (Eds).

[9] G. Ranzi, G. Leoni, L. Dezi, R. Zandonini, "*Consideration on the long-term behavior of composite steel-concrete bridges*", Research and Applications in Structural Engineering, Mechanics and Computation – Zingoni (Ed.)

[10] P.Pozzati, C. Ceccoli, "Teoria e tecnica delle strutture, volume secondo Sistemi di travi parte seconda Applicazioni pratiche", 1972, Unione tipografico-Editrice torinese

[11] P.Jossa, "Problemi della tecnica delle costruzioni", 1972, Liguori editore

[12] A.Migliacci, F.Mola, "*Progetto agli stati limite delle strutture in c.a.*", 1972, Masson editore

[13] B.S.Smith, A.Coull, "Tall building structures", 1972, Masson editore

[14] G.Toniolo, "*Cemento armato: calcolo agli stati limite, volume 2A*", 1998, Masson editore

[15] C.Faella, E.Martinelli, E.Nigro, "Non-Linearity of shear connection and deflections of stell-concrete composite beams: a simplified method", 2003, ASCE Journal of Structural Engimeering

Ringraziamenti

Al *Professor Stefano Silvestri* per avermi accordato la tesi nell'ambito del corso di Progetto di Ponti, per la sua disponibilità in termini di tempo dedicatomi durante tutto il periodo di svolgimento del lavoro, per avermi spronato a ragionare prima analiticamente sugli aspetti teorici e solo in un secondo momento a cercare conferme in modelli numerici tramite un codice di calcolo.

Alla *società Enser s.r.l.* per avermi concesso di svolgere il tirocinio per tesi presso la sede di Bologna e avermi fornito spunti e assistenza per lo svolgimento del mio lavoro.

All'Ing. *Michele Bianchini* per avermi permesso di svolgere la tesi presso la società Enser s.r.l. sotto la sua supervisione; un ringraziamento particolare per la sua disponibilità continua durante i mesi in cui ho sviluppato il mio lavoro fornendomi un supporto con la sua esperienza ed invitandomi a cercare la soluzione di un problema sempre in modi diversi, senza lasciare nulla al caso.

Ai compagni di studio, *Baldo, Gaia, Manfro, Marisa, Michi, Pedo* con cui ho svolto i progetti degli esami dell'ultimo anno di Laurea Magistrale, per essere stati validi compagni con cui confrontarsi, meditare sui problemi e trovarvi soluzioni, affrontare momenti di studio intensi, per essersi dimostrati amici anche al di fuori del contesto universitario.

Alla mia famiglia, in particolare ai miei *Genitori*, per avermi permesso di svolgere i cinque anni di studio universitario serenamente sia dal punto di vista economico, garantendomi gli studi, sia riguardo alle scelte che ho dovuto compiere in merito al mio percorso di studi, lasciandomi sempre libero di intraprendere la mia strada. Un ringraziamento anche ai *Nonni* per avermi sostenuto credendo in me e festeggiando per i miei risultati.

Alla mia ragazza, *Iva*, per aver sopportato momenti di tensione, il tanto tempo dedicato allo studio in questi cinque anni, per avermi sostenuto in momenti di incertezza e spronato a proseguire per il mio percorso secondo le mie scelte.