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Abstract

The univariate Karhunen-Loève Expansion is the decomposition of a con-
tinuous-parameter second-order stochastic process into uncorrelated random
coe�cients. In the present dissertation, the expansion is achieved analytic-
ally by projecting the process, considered over a �nite time interval [a; b],
onto a deterministic orthonormal basis obtained from the covariance Hilbert-
Schmidt operator's eigenfunctions, which correspond to positive eigenvalues.

Basically, the idea of the method is to �rst �nd the positive eigenvalues
of the Hilbert-Schmidt integral operator, with the covariance function of the
process as a kernel. At every time of the interval, the process is projected onto
an orthonormal basis for the space spanned by the eigenfunctions corresponding
to positive eigenvalues. This procedure generates random coe�cients, which
turn to be uncorrelated centered random variables.

The expansion series, a countably in�nite linear combination of the eigen-
functions together with the random projections, converges in mean square to
the process, uniformly over the time interval. Furthermore, in the probability
space (
;F ; P ) the convergence gets almost surely if the process is Gaussian.

Many other expantions exist, however the peculiarity of the Karhunen-
Loève basis is that the expantion is optimal in terms of the total mean square
error resulting from the truncation of the series. Such feature has made this
method and its generalizations very successful in applied disciplines.



La trasformata di Karhunen-Loève monodimensionale è la decomposizione
di un processo stocastico del secondo ordine a parametrizzazione continua in
coe�cienti aleatori scorrelati. Nella presente dissertazione, la trasformata è
ottenuta per via analitica, proiettando il processo, considerato in un intervallo
di tempo limitato [a; b], su una base deterministica ottenuta dalle autofunzioni
dell'operatore di Hilbert-Schmidt di covarianza corrispondenti ad autovalori
positivi.

Fondamentalmente l'idea del metodo è, dal primo, trovare gli autovalori
positivi dell'operatore integrale di Hilbert-Schmidt, che ha in kernel la fun-
zione di covarianza del processo. Ad ogni tempo dell'intervallo, il processo è
proiettato sulla base ortonormale dello span delle autofunzioni dell'operatore
di Hilbert-Schmidt che corrispondono ad autovalori positivi. Tale procedura
genera coe�cienti aleatori che si rivelano variabili aleatorie centrate e scor-
relate.

L'espansione in serie che risulta dalla trasformata è una combinazione
lineare numerabile di coe�cienti aleatori di proiezione ed autofunzioni conver-
gente in media quadratica al processo, uniformemente sull'intervallo temporale.
Se inoltre il processo è Gaussiano, la convergenza è quasi sicuramente sullo
spazio di probabilità (
;F ; P ).

Esistono molte altre espansioni in serie di questo tipo, tuttavia la tras-
formata di Karhunen-Loève ha la peculiarità di essere ottimale rispetto
all'errore totale in media quadratica che consegue al troncamento della serie.
Questa caratteristica ha conferito a tale metodo ed alle sue generalizzazioni
un notevole successo tra le discipline applicate.
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Introduction
The present dissertation is primarily concerned with the analytical proof of the
univariate Karhunen-Loève Expansion Theorem, also known as Kosambi-Karhunen-
Loève Expansion Theorem. The Karhunen-Loève Expansion is to be seen as the
stochastic parallel of one of the most famous analytical methods ever: the Fourier
Expansion. In the Fourier Analysis a periodic real function is decomposed into a
countably in�nite linear combination of an orthonormal basis elements, the Fourier
sinusoidal basis of L2, together with projection coe�cients.

Stochastic functions given by similar series were �rst inquired by Kosambi
(1943). However, Karhunen (1946), Karhunen (1947) and Loève (1948) are the
earliest works on a proper generalization of such method in the �eld of Stochastic
Analysis, followed by Ash (1965). Historically, it created a bond between Stochastic
Analysis and Information Theory.

The Karhunen-Loève Expansion operates pretty much the same as Fourier
Expansion, but on L2(
; F ; P ) continuous-parameter random functions fXt; t 2
[a; b]g considered over a �nite time interval [a; b]. The basis, the random func-
tion is projected onto, is found in Section 2 through the study of the Hilbert-Schmidt
integral operator, which has the covariance of the random function as a kernel. The
Karhunen-Loève Expansion decompose the stocastic process by projecting every
variable onto an orthonormal basis for the space spanned by the operator's eigen-
functions, which correspond to the positive eigenvalues thereof. The coe�cients
of the in�nite linear combination are therefore expected to be random variables,
since, for every t 2 [a; b], they are the projection of a random variable onto a
deterministic orthogonal basis. As a result these random coe�cients are also ortho-
gonal in L2(
), namely they are uncorrelated.

The bond between Functional Analysis and Stochastic Analysis is here repres-
ented by the covariance Hilber-Schmidt operator. Being the whole method basically
an eigenvalue problem, the Fredholm Theory is particularly involved, as will become
clear in the �rst two sections of the work, which provide the basics of Functional
Analysis required for the Mercer's Theorem. In addition, the second-order Fredholm
integral equation happens to be the main character of Section 3, due to its connection
with the truncation error in the Karhunen-Loève Expansion.

Unlike the majority of the material available, the present dissertation is not only
focused on the proof of the expansion and its mean square convergence uniformly on
the time interval, argued in the �rst part of Section 4. The proof of the optimality
of the Karhunen-Loève basis with respect to the total mean square error resulting
from truncation is very detailed as well. Section 3 and the second part of Section 4
are dedicated to it. The optimality is fundamental, since in computational applic-
ations only a �nite number of terms of the decomposition are involved, due to the
truncation of the expansion series. There are of course di�erent possible expansions
of stochastic processes, however the one that minimizes the total mean square error
is the Kahrunen-Loève Expansion, because of the choice of the basis.

Eventually, in Section 5 the fundamental property of the Gaussian processes
expansion is derived: the random projections are not only uncorrelated, but inde-
pendent and Gaussian. As a result, the Gaussian processes expansion achieves
convergence almost surely in the probability space (
; F ; P ). Indeed, this class
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of processes is amongst the most notable and proli�c applications of the Karhunen-
Loève decomposition. Two analytical examples are given and fully computed with
great detail: the Brownian motion and the Brownian bridge.

The univariate Karhunen-Loève Expansion has known various generalizations
and applications up to the recent years. Should at least be mentioned: the mul-
tivariate Kahrunen-Loève expansion, the conditional Kahrunen-Loève Expansion,
the Kahrunen-Loève Expansion of a continuous spectrum operator. As to the last
one, a point should me made: in the present dissertation we deal only with the
favorable case of discrete spectrum operators. However, the general Spectral The-
orem admits self-adjoint operators with continuous spectrum, and therefore the
Karhunen-Loève Theorem can be extended in this direction, wich is done in P.
E. T. Jorgensen and M.-S. Song (2007). The present work does not go so far.
Nonetheless, we would like to conclude this introduction with a few examples of
simple implementations.

Many applied areas have con�rmed the Karhunen-Loève decomposition as a very
useful representation method: numerical methods, �nite element methods, model
reduction, functional data analysis, �nance, pattern recognition, signal detection,
machine learning, etc. On a �nal note, one of the most immediate applications of
the Karhunen-Loève Expansion we would like to mention is the Discrete Karhunen-
Loève Expansion. There are uncountable versions of it. One of them is the Linear
Karhunen-Loève Approximation of signals, very useful to approximate a whole class
of signals with a �nite number of terms of the Karhunen-Loève basis. Modelling a
signal as a �nite dimensional random vector, the best �nite approximation thereof
is provided by the vectors of the Karhunen-Loève basis, which here happen to diag-
onalize the covariance matrix of the random vector. It must be mentioned that also
non-linear approximations exist, where the vectors of the Karhunen-Loève basis are
chosen adaptively to the properties of the signals.

As the examples of Section 5 might suggest, the numerical cost of finding
eigenvalues and eigenfunctions of the covariance kernel operator may not be little.
However, the example above underlines that when the process is not continuous
parameter but is a �nite and discrete set of random variables, standard algebra
is only required, and the numerical cost of the method dips. In Fukunaga and
Koontz (1970) it becomes cleare that this results in the Karhunen-Loève Expansion
usefulness not only for discrete processes, since the decomposition can be applied
to a �nite sampled continuous parameter process, so that, under appropriate con-
ditions, the problem ir reduced again to the discrete case. Basically, this is the idea
behind Pricipal Component Analysis. Adaptive optics systems sometimes recon-
struct wave-front phase information thanks to such method. The Singular Value
Decomposition is closely related to the Kahrunen-Loève Expansion as well, andits
applications to image processing testify the success of this technique.
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1 Operators on Hilbert spaces

The Karhunen-Loève Expansion shall be derived mainly analytically, according to
the scheme followed by Ash (1990), pp. 262-281. However, the proves have been
often expanded, sometimes completely changed (mostly from Theorem 1.5 to 1.10
in the present section). In doing so, the main references for the basics of Functional
Analysis have been primarily Brézis (2010) and Reed and Simon (1980).

In this �rst section we recall and prove some useful results about linear compact
symmetric operators on any Hilbert space H. Actually, we assume H a real Hilbert
space, since in Section 2 we shall work on the Hilbert space L2[a; b] := L2[a; b]/s,
where L2[a; b] is the space of all the real-valued Borel-measurable functions f on the
interval [a; b]�R such that

R
a

b
f 2(t)dt<1; the equivalence relation s identi�es all

the functions that are equal almost everywhere.
In those sections, which are primarily focused with L2[a; b], the notation for

the inner product (� ; �) and for the norm k�k shall be adapted by simply adding a

subscript 2, so that (f ; g)2: =
R
a

b
f(t)g(t)dt and kf k2: =

�R
a

b
f 2(t)dt

�1
2. We shall use

0 both for the null real scalar and the vector 0H.

1.1 Continuous compact linear operators

Lemma 1.1. Let A: H ¡! H be a linear operator. Then A is continuous if and
only if A is bounded.

Proof. If A is unbounded, kAkop := supkxk=1kAxk>M foreveryM 2R. Then we ca
de�ne a sequence inH, fxngn2N such that for every n, kxnk=1 and limn!1kAxnk=
1. Indeed, for every n there is an xn2H such that kAxnk>n and by the axiom
of choice we can pick it up in order to de�ne the sequence. Now, de�ne another
sequence in H, fyngn2N, where yn := xn

kAxnk
. Since kxnk = 1, kynk = 1

kAxnk
¡!0;

as n¡!1, hence yn¡!0 as n!1. However, by the linearity of A we have that

kAynk=



 Axn
kAxnk




� 1. Therefore if the limit of Ayn existed, it should be non zero.

Since A limn!1 yn=A0=0, it turns out that A is discontinuous, because there are
only two possibilities: one is that the limn!1Ayn exists, but since it is non-zero, we
have discontinuity because limn!1Ayn=/ A limn!1 yn; the other is that this limit
does not exist, but since limn!1Ayn= limyn!0Ayn does not exist, and A0=0, again
we have discontinuity.

Conversely if A is bounded, there is a constant C > 0 such that kAxk6 Ckxk.
Thus for every x; y 2H; kAx¡Ayk= kA(x¡ y)k6Ckx¡ yk, which by de�nition
is the lipschitzianity of A. But it is well known that if A is Lipschitz , then A is
continuous. �

Remark 1.2. We recall that by de�nition of operatorial norm for a linear operator
A, it holds that:

jjAxjj=




kxkA� x

kxk

�



= kxk



A� x
kxk

�



6 kxksup
x2H





A� x
kxk

�



= kxkkAkop:
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Lemma 1.3. Let A: H ¡! H be a linear operator. If A is compact, then A is
continuous.

Proof. By de�nition A is compact if for every bounded sequence fxng in H, the
sequence fAxng has a convergent subsequence in H.

Suppose that A is discontinuous. Then by Lemma 1.1 A is unbounded. Thus
there is a sequence fxng in H such that kAxnk¡!1 as n ! 1. De�ne yn :=
kAxnk. Since fyng is a real-valued divergent sequence, every subsequence fynjg is
divergent, where ynj := kAxnjk. Since every subsequence {kAxnjk} diverges, there
is no possibility for every subsequence fAxnjg to converge. Therefore there is no
convergent subsequence of fAxng, namely A is not compact. �

For each compact linear operator A:H¡!H it is useful to consider the associate
Fredholm operator A� :=A¡�I, where � is a real scalar and I is the identity operator
on H.

De�nition 1.4. %(A) := f�2R:A� is bijectiveg and �(A) :=Rn%(A).

The terminology resolvent set for %(A) and spectrum for �(A) is not appropriate,
since we are not dealing with complex scalars.

In addition we remark that equivalently %(A) :=f�2R:A�
¡1 existsg and �(A) :=

f�2R:A�
¡1 does not existg.

We recall here a standard notation we shall adopt henceforth: N (A) denotes
the null space of A, N (A) := fx 2H:Ax= 0g, and R(A) denotes the range of A,
R(A) := fy 2H:9x2H; y=Axg. Both are trivially subspaces of H:

Theorem 1.5. Let A:H ¡!H be a continuous linear operator. If A is invertible,
then A¡1 is continuous.

Proof. By the Open Mapping Theorem every continuous linear surjective operator
between two Banach spaces, is an open map. Hilbert spaces are Banach spaces. Then
A, which is linear, continuous and bijective on a Hilbert space, is an open map. Thus
if O�H is open, then A (O)�H is open. Now, it is trivial that (A¡1)¡1=A. Thus
if O �H is open, then (A¡1)¡1 (O)�H is open. This is the topological de�nition
of continuity for A¡1:H ¡!H. �

We now adapt the famous Riesz's Lemma for Banach spaces to the case of real
Hilbert spaces.

Lemma 1.6. (Riesz's Lemma) Let C (H be a closed subspace of a Hilbert space.
Then there is anx2H such that kxk=1 anddist(x; C)= 1.

Proof. Let 0=/ y 2C?. This y exists, since C?! f0g. In fact C (H, then there is
w 2HnC. This w=/ 0 since 02C. If p is the projection of w onto C, then we can
take y=w¡ p2C?.

Operators on Hilbert spaces 9



Now, dist(y;C)> 0, since C is closed. If we eventually de�ne x := y

kyk the result
follows, since kxk=1 and for every z 2C

kx ¡ zk =





 y
kyk ¡ z





 =





y¡ zkykkyk





 = ky ¡ zkykk 1
kyk =

kyk2¡ 2kyk(y; z)+ kyk2kzk2
p

kyk =
kyk2+ kyk2kzk2

p
kyk = 1+ kzk2

p
:

Thus by de�nition of dist(x; C): = inf
z2C
kx¡ zk= kx¡ 0k=1. �

Theorem 1.7. Let BH be the unitary ball of a normed space H. If BH is compact,
then the dimension of H is �nite.

Proof. Per absurdum assume the dimension of H is in�nite. Then we can consider
a sequence of �nite-dimensional subspaces Hn; such thatHn¡1(Hn. By Lemma 1.6,
we can de�ne a sequence fxng such that xn2Hn;kxnk=1;dist(xn;Hn¡1)=1. Then
for every m< n, kxn ¡ xmk> 1. Therefore, there is no convergent subsequence of
fxng, which is absurd. Indeed, fxng is a sequence in BH, which is assumed compact,
namely, from every sequence in BH can be extracted a convergent subsequence. �

Lemma 1.8. Let A:H ¡!H be a compact linear operator and � a nonzero real
number. Then N (A�) is a �nite-dimensional subspace of H.

Proof. We shall prove the compactness of BN (A�). Then by Theorem 1.7 the result
shall follow. Now, it is su�cient to notice that 0 = A�(BN (A�)) = A(BN (A�)) ¡
�BN (A�). Thus �BN (A�) = A(BN (A�)) � A(BH) � A(BH). Since A is a compact
operator, by de�nition A(BH) is compact. Thus �BN (A�) is a closed subset of a
compact set, that is �BN (A�) is compact. Since �BN (A�) is homeomor�c to BN (A�),
the result follows. �

Lemma 1.9. Let A:H ¡!H be a compact linear operator and � a nonzero real
number. Then R (A�) is a closed subspace of H.

Proof. Let fxng be a sequence in H and suppose R(A�) 3 yn: =A�(xn)¡!y as
n!1. Since a subset of a normed space is closed if and only if every sequence in
the subset, which converges in the space, converges in the subset as well, we need
to prove that y 2R(A�).

For every xn, let dn := dist (xn; N (A�)). By the Lemma 1.8 the dimension
of N (A�) is �nite, therefore there exists zn 2 N (A�) such that dn = kxn ¡ znk.
Indeed, by the de�nition of distance from a set, dn = infz2N(A�) kxn ¡ zk, how-
ever this in�mum is actually a minimum, since it is achieved at a speci�c zn in
N (A�). Since N (A�) is a �nite dimensional (say m¡ dimensional) subspace of H,
N (A�)happens tobehomeomor�c toRm. Because of the completeness of Rm, N (A�)
turns to be a complete subspace of H, thus it is closed. Having say that, take the
minimizing sequence fznkgk2N such that kxn¡znkk¡! infz2N (A�)kxn¡zk, as k!1:
the minimizing sequence is well de�ned and converges inH by de�nition of in�mum.
Since N (A�) is closed, it contains all its accumulation points, and the minimizing
sequence converges in N (A�). Thus the in�mum is achieved at a point of N (A�).
We call it zn.
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Now, take the previous sequence yn: since zn2N (A�), it holds that yn=A�(xn¡
zn) = A(xn ¡ zn) ¡ �(xn ¡ zn). Assume that fxn ¡ zng is bounded (we will prove
this in a while), then by the compactness of A we shall extract from fA(xn¡ zn)g
a convergent subsequence fA(xnj ¡ znj)g. Let the limit of fA(xnj ¡ znj)g be h.

Since ynj=A(xnj ¡ znj)¡ �(xnj ¡ znj), we have that (xnj ¡ znj) =
1

�
[A(xnj ¡ znj)¡

ynj]. Therefore (xnj ¡ znj) ¡!
1

�
(h ¡ y), as j ! 1. Let w: =h¡ y

�
. Then by the

continuity of A� we have that A�(w)= limj!1A�(xnj¡ znj)= limj!1A�(xnj)¡ 0=
limj!1A�(xnj)= y, therefore y 2R(A�).

The boundness of fxn ¡ zng remains to be proved. We show that fkxn ¡ znkg
is non-divergent (which gives us that fxn ¡ zng is bounded). It is well known
that if a real sequece is divergent, then every subsequence is divergent. Therefore
if there is a non-divergent subsequence, the sequence is not divergent. We will
show that fkxn ¡ znkg has no divergent subsequence. Suppose per absurdum that
there is a subsequence fkxnj¡ znjkg such that kxnj¡ znjk¡!1, as j!1. Then
if we consider the trivially bounded sequence fwng de�ned by wn: =

xn¡ zn
kxn¡ znk

, its

subsequence wnj: =
xnj¡ znj

xnj¡ znj

 is such that

A�(wnj)=
A�(xnj¡ znj)
kxnj¡ znjk

=
ynj

kxnj¡ znjk
¡!
j!1

y
1 =0:

Now, A is compact, wnj (and �wnj consequently) is bounded by construction, there-
fore Awnj admits a convergent subsequence, which implies that it cannot diverge.
Since Awnj¡�wnj¡!0, as j!1, and neither Awnj nor �wnj diverge, both Awnj

and �wnj must converge to a point u. This point u turns to be in N (A�), because
by continuity on one hand Awnj¡�wnj=A�(wnj)=

1

�
A�(�wnj)¡!

1

�
A�(u), j!1,

on the other hand by above Awnj¡�wnj¡! 0, j!1, which means A�(u)=0:

Now, by the construction of znj

dist(wnj; N (A�)) =
dist(xnj¡ znj;N (A�))

kxnj¡ znjk
=

inf
v2N (A�)

k(xnj¡ znj)¡ vk

kxnj¡ znjk
=

inf
v2N(A�)

kxnj¡ (znj+ v)k

kxnj¡ znjk
=
kxnj¡ znjk
kxnj¡ znjk

=1; for every j:

However, by the continuity of the distance we get an absurdum:

1= lim
j!1

dist(wnj;N (A�))=
1
�
dist(u;N (A�))=0; sinceu2N (A�):

We must conclude that there is no divergent subsequence of fkxn ¡ znkg, which
results consequently non-divergent. Therefore fxn¡ zng is bounded. �

Theorem 1.10. Let A:H¡!H be a compact linear operator and � a nonzero real
number. Then A� is injective (if and) only if A� is surjective.

Operators on Hilbert spaces 11



Proof. Only the su�cient implication will be showed. Suppose that A� is injective.
The range H1 := R(A�) � H is a closed subspace by Lemma 1.9. Since A is
compact on H � H1, AjH1 is compact on H1. Therefore by Lemma 1.9 H2 :=
A�(H1) is a closed subspace of H1. Trivially, H2 � H1, since if x2 2 H2, then
x2=A�

2x=A�(A�x) =A�x12H1. By induction on the powers of A�, we have that
Hn=A�

n(H) is a sequence of non-strictly decreasing closed subspaces. Our aim is to
show somehow that H =H1.

Suppose per absurdum that they are all strictly decreasing closed subspaces.
We can therefore apply to Hn the Riesz's Lemma and claim that there is xn such
that �xn 2 Hn, k�xnk = 1 and dist(�xn; Hn+1) = 1. Thus we have de�ned a
bounded sequence fxng with such property. Now, take m<n and consider Axn¡
Axm= [�xn+ (Axn¡ �xn)¡ (Axm¡ �xm)]¡ �xm= [�xn+A� xn¡A� xm]¡ �xm.
Since Hm)Hm+1)Hn )Hn+1, we have that [�xn+A� xn¡A� xm] 2Hm+1. This
leads to an absurdum: indeed, kAxn¡Axmk= k[�xn+A� xn¡A� xm]¡ �xmk> 1
for [�xn+A�xn¡A�xm]2Hm+1. Hence for every m<n; kAxn¡Axmk> 1, which
means that there is no convergent subsequence of fAxng. This is a contraddiction,
since fxng was bounded (kxnk= 1

�
). Thus not all the inclusions are proper, and for

some n, which we assume to be the �rst, Hn=Hn+1.
Let us prove that n = 0 and the thesis shall follow. If per absurdum n > 0,

Hn=Hn+1 for the �rst time, then an arbitrary point x2Hn¡1 is such that x=A�
n¡1y

for some y 2 H. Thus A�x = A�
ny 2 Hn = Hn+1. Therefore x 2 Hn, because there

is a w 2 H such that A�x = A�
n+1w = A�A�

nw. This yields, by injectivity, that
x = A�

nw 2 Hn. Therefore Hn¡1 � Hn. But since trivially also Hn¡1 � Hn holds,
Hn¡1=Hn, contrary to the hypothesis that n was the �rst. Therefore n=0. �

Lemma 1.11. Let A:H ¡!H be a compact linear operator and � a nonzero real
number. Then � 2 �(A) if and only if there is a sequence in H, fxng such that
kxnk=1 for every n and A�xn¡!

n!1
0:

Proof. Assume that there is a sequence fxng such that kxnk � 1 for every n
and A� xn ¡! 0, as n ! 1. Suppose per absurdum that � 2/ �(A), then A�

¡1

exists. By Lemma 1.3, A is continuous, then A�=A ¡ �I is continuous, hence by
Theorem 1.5 A�

¡1 is continuous as well. However, the continuity of A�
¡1 implies that

xn=A�
¡1A�xn¡! 0, as n!1, but this contradicts kxnk� 1.

Conversely if �2�(A) then A�
¡1 does not exist.

If the reason is that A� is not injective, then there is 0 =/ x 2 N (A�) � H, i.e.
A�x = 0: Then we can trivially de�ne xn � x

kxk , that is a sequence fxng such that
kxnk� 1 and {A�xn} vanishes identically.

If the reason is that A� is not surjective, then by Theorem 1.10, A� is not
injective, and we can proceed again as above and de�ne the sequence fxng. �

Proposition 1.12. If A:H ¡!H is a compact linear operator and 0 =/ � 2 �(A),
then � is an eigenvalue of A.

Proof. If �2�(A) then A�
¡1 does not exist.
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If the reason is the non-injectivity of A�, then there is 0=/ x2N (A�)�H, i. e.
there is 0 =/ x 2H such that 0 =A�x=Ax¡ �x: By de�nition, x is an eigenvector
of A corresponding to �.

If the reason is the non-surjectivity of A�, then by Theorem 1.10 A� is not
injective, and we can proceed again as above to �nd an eigenvector corresponding
to �. �

1.2 Eigenvalues of linear compact symmetric operators

De�nition 1.13. The bilinear form of a linear symmetric (or self-adjoint) operator
A:H¡!H is a function B:H�H¡!R; B(x; y)=(Ax; y)=(x;Ay): Analogously
the quadratic form of a linear symmetric operator A is a function Q: H ¡! R;
Q(x) = (Ax; x) = (x; Ax): The norm of the quadratic form is de�ned as any
operatorial norm: kQkop := sup

kxk=1
jQ(x)j.

Lemma 1.14. For every x; y 2H;B(x; y)= 1

4
[Q(x+ y)¡Q(x¡ y)].

Proof. Q(x+ y)¡Q(x¡ y)= (x+ y; A(x+ y))¡ (x¡ y;A(x¡ y))= (x;Ax)+ (y;

Ax)+ (x;Ay)+ (y; Ay)¡ (x;Ax)+ (x;Ay)+ (y; Ax)¡ (y; Ay)= 4(x;Ay) �

Theorem 1.15. Assume Q be the quadratic form of the symmetric linear operator
A:H ¡!H. Then kQkop= kAkop.

Proof. We prove �rst that kQkop6 kAkop. For every x2H

jQ(x)j= j(Ax; x)j= kxk2
�����A x

kxk ;
x
kxk

�����= kxk2����Q� x
kxk

�����6 kxk2kQkop



 x
kxk





=
kxk2kQkop:

Then by taking an xsuchthatkxk=1 it follows, from the Cauchy-Schwarz inequality,
that

jQ(x)j= j(Ax; x)j6 kAxk kxk6 kAkopkxk2= kAkop:

Conversely we prove that kQkop> kAkop.
In the previous step we have obtained the following inequality: jQ(x)j 6

kxk2kQkop: Thus by the Lemma 1.14 and the Hilbert's parallelogram law for every
x; y 2H

jB(x; y)j= 1
4
jQ(x+ y)¡Q(x¡ y)j6 1

4

����Q(x+ y)����+14
����Q(x¡ y)����6 1

4
kQkopkx+ yk2+

1
4
kQkopkx ¡ yk2 = 1

4
kQkop(kx + yk2 + kx ¡ yk2) = 1

4
kQkop2(kxk2 + kyk2) =

1
2
kQkop(kxk2+ kyk2):

Then taking x; y such that kxk= kyk=1 it follows that jB(x; y)j6 kQkop.
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However, it also holds that

jB(x; y)j = j(x; Ay)j = kxk kyk
����� x
kxk ; A

y
kyk

����� = kxk kyk ����B� x
kxk ;

y
kyk

����� 6
kxk kykkQkop:

Thus by taking y such that kyk=1 andx=Ay we obtain that

kAyk kykkQkop= kxk kykkQkop> jB(x; y)j= jB(Ay; y)j= j(Ay;Ay)j= kAyk2

that is kAyk 6 kykkQkop = 1kQkop = kQkop for every y such that kyk = 1: Then
kAkop := sup

kyk=1
kAyk6 kQkop: �

Theorem 1.16. A compact symmetric linear operator A:H¡!H has at least one
eigenvalue.

Proof. We �rst claim that either kAkop or ¡kAkop lies in �(A). Then by the
Proposition 1.12 the result shall follow.

To prove that either kAkop or ¡kAkop lies in �(A), we will primarily rely
on the Lemma 1.11. First of all, we remark that by the de�nition of kQkop :=
supkxk=1 jQ(x)j, we can de�ne on the unitary ball of H a maximizing sequence
fxng, that is a sequence such that for every n; kxnk = 1 and jQ(xn)j ¡! kQkop
as n!1. Now, by the Theorem 1.15 kQkop = kAkop, thus the sequence is such
that jQ(xn)j ¡! kAkop as n!1. Thus we have a subsequence fxnjg such that
either Q(xnj)¡!kAkop or Q(xnj)¡!¡kAkop as j!1.

If Q(xnj)¡!kAkop :=�, as j!1, then

kA�xnjk2 = (A�xnj ; A�xnj) = (Axnj ¡ �xnj; Axnj ¡ �xnj) = kAxnjk2 ¡ 2�(Axnj;

xnj)+�
2kxnjk26�2¡ 2�(Axnj ; xnj)+�2¡!j!1�

2¡ 2�2+�2=0

since (Axnj; Axnj)= kAxnjk26 kAk2kxnjk2= kAk2=�2, for kxnjk=1: Thus by the
Lemma 1.11 kAkop :=�2�(A):

If Q(xnj)¡!¡
j¡!1

kAkop :=¡�, then analogously

kA¡�xnjk2= (A¡�xnj; A¡�xnj) = (Axnj + �xnj ; Axnj + �xnj) = kAxnjk2+ 2�(Axnj;

xnj)+�
2kxnjk26�2+2�(Axnj; xnj)+�

2 ¡!
j¡!1

�2¡ 2�2+�2=0:

Thus by the Lemma 1.11 ¡kAkop :=¡�2�(A): �

Theorem 1.17. Let � =/ 0 be a �xed eigenvalue of a compact linear operator A:
H¡!H: Let E� :=fx2H:Ax=�xgbe the subspace of eigenvectors corresponding
to �. Then E�, also called the eigenspace of �, is �nite dimensional.

Proof. First step: take a bounded sequence in E�, fxng, then Axn = �xn, that is
xn= �¡1Axn. Since by the compactness of the operator, fAxng has a convergent
subsequence, so does fxng. Therefore every bounded sequence inE� has a convergent
subsequence.
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Second step: per absurdum. If E� were in�nite dimensional, by the Gram-
Schmidt process we could construct a sequence feng of mutually orthonormal vec-
tors in E�. But for

ken¡ emk2= kenk2+ kemk2¡ 2(en; em)= kenk2+ kemk2=2 for everyn=/ m

it follows that the distance between en and em is 2
p

for everyn=/ m. Therefore there
can be no convergent subsequence, against the result of the �rst step. Then E� must
be �nite dimensional. �

Remark 1.18. Since the eigenspace of �, E� = N (A�), the previous result could
have been drawn straightforward by Lemma 1.8. However the prove above has been
given too, primarily because of its geometric signi�cance.

Lemma 1.19. Let �; �=/ 0 be distinct eigenvalues of the compact symmetric linear
operator A:H ¡!H: Then the corresponding eigenvectors are orthogonal.

Proof. Since A is symmetric, by de�nition (Ax; y)=(x;Ay). If x is the eigenvector
corresponding to � and y is the eigenvector corresponding to �, then (�x; y)=(x; �y)
which gives us �(x; y)= �(x; y) that is (�¡ �)(x; y)=0. Since �¡ �=/ 0, (x; y)=0
results. �

Theorem 1.20. Let A: H ¡! H be a compact symmetric linear operator. Then
the set of eigenvalues of A is either �nite or countably in�nite. In addition, the only
possible limit point of a sequence of eigenvalues is 0.

Proof. Assume that a convergent sequence of eigenvalues f�ng is given, �n¡! �,
as n!1. Consider for every �n the corresponding eigenvector xn. Without loss
of generality, we can and do assume that �n =/ �m for every n =/ m, and take
the corresponding eigenvectors xn; kxnk = 1. Indeed, every subsequence we could
possibly extract is convergent, therefore we can extract a convergent subsequence
such that �n=/ �m for everyn=/ m, (consequently the corresponding eigenvectors are
already mutually orthogonal by the symmetry of A, according to Lemma 1.19).

We now suppose per absurdum that �=/ 0. Then

kAxn¡Axmk2= k�nxn¡�mxmk2=�n2 jjxnjj2+�m2 jjxmjj2=�n2 +�m2 ¡!
n;m!1

2�2> 0:

Therefore fAxng has no convergent subsequence, which means that A is not com-
pact, that is an absurdum. Thus �=0 and the second part of the thesis is proved.

Let now be � = f� 2 R: 9x =/ 0; Ax = �xgthe set of all the eigenvalues of the
symmetric operator A. Since ��R and R=

S
n=1

1 �
¡n;¡ 1

n

�
[ f0g [

S
n=1

1 � 1
n
; n
�
,

we can decopose by distributivity as follows:

�= (�\f0g)[

0@[1
n=1

��
1
n
; n

�
\�

�1A[
0@[1

n=1

��
¡n;¡1

n

�
\�

�1A:
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Suppose per absurdum that � is uncountably in�nite. Since both the unions are on
countably in�nite indices, then there exists n such that

� 1
n
; n
�
\� or

�
¡n;¡ 1

n

�
\�

is uncountably in�nite. Let us suppose, without loss of generality,
� 1
n
; n
�
\ � be

uncountably in�nite. Being
� 1
n
;n
�
�R a bounded in�nite set, it has an accumulation

point, which belongs to this closed interval, and therefore this point is non zero. As
a result

� 1
n
; n
�
\� has a non zero limit point, and this is a contradiction because we

have already proved that every sequence of eigenvalues of A has a zero limit. All in
all, � is a countable set. �

Lemma 1.21. Let A:H ¡!H be a linear operator and � one of its eigenvalues.
Then j�j6 kAkop.

Proof. If x=/ 0; Ax=�x; then j�j= kAxk
kxk 6 sup

x=/ 0

kAxk
kxk =: kAkop: �

Remark 1.22. By the Theorem 1.16 if A:H¡!H is also compact and symmetric,
actually kAkop or ¡kAkop is an eigenvalue.

1.3 The Expansion Theorem

De�nition 1.23. If S�H, we call the smallest closed subspace of H containing S
the space spanned by the subset S and we denote it as span(S). Equivalently

span(S) :=

8<:Xn
k=1

�kxk; n2N; xk2S; �k2R

9=;:
Theorem 1.24. Let C be a closed subspace of the Hilbert space H. Then H =
C �C?.

Proof. We have to show that for every x2H, x= y+ z, y2C; z2C?. Take x2H,
by the Riesz's Lemma the orthogonal projection z of x on C is the unique nearest
element of C. We de�ne y: =x¡ z. If we prove that y 2C? the result shall follow.
Call d := kx¡ zk, then if t2Rand 0=/ w2C, d�kx¡ (z+ tw)k, then

d26 kx¡ (z+ tw)k2= ky¡ twk2= d2+ t2kwk2¡ 2t (y;w)

therefore t2kwk2¡ 2t(y; w)> 0 for every t. Taking t= (y;w)

kwk2 we obtain ¡ (y; w)2

kwk2 > 0:
Therefore (y;w)= 0 for every 0=/ w2C, that is y 2C?. �

Theorem 1.25. Let A: H ¡! H be a compact symmetric linear operator. The
eigenvectors of A span the entire space H.

Proof. Let be E spanned by the eigenvectors of A, E = span(f0 =/ e 2H: 9� 2R;
Ae=�eg). The thesis is that E=H. We shall proceed per absurdum. Assume E(H.
Since E is a closed subspace, by Theorem 1.24 H=E�E?, and for E (H, it holds
that E?=/ f0g, since it contains at least the di�erence between an element of HnE
and its projection onto E.
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E? is a closed subspace too, since if a sequence fxng�E? converges to a point
x, then x2E? since, by the continuity of the inner product,

(x; y)=
�
lim
n!1

xn; y
�
= lim

n!1
(xn; y)= lim

n!1
0=0:

Furthermore E? is A ¡ invariant, that is if x 2E? then Ax 2E?. Wa shall prove
it. Firstly, if x2E? then Ax is orthogonal to every eigenvector of A. Indeed, given
an eigenvector y corresponding to the eigenvalue �,

(Ax; y)= (x;Ay)= (x; �y)=�(x; y)=0

Secondly, all the eigenvectors of A span E, which means by de�nition of spanned
subspace, that for every y 2 E there is a sequence of �nite linear combinations of
eigenvalues that converges to y. E is the closed subspace of all those �nite linear
combinations indeed. Let us call fyng this convergent sequence of �nite linear com-
binations of eigenvalues of A.

As a result, if x2E? and y2E, y= limn!1 yn as above stated, assuming that ekn

are the eigenvectors involved in the �nite linear combination with coe�cients �kn that
yield yn, by the fact that Ax is orthogonal to every eigenvector of A, it holds that

(Ax; y) =
�
Ax; lim

n!1
yn
�

= lim
n!1

(Ax; yn) = lim
n!1

�
Ax;

X
�k
n

0<k<1

ek
n

�
=X

�k
n

0<k<1

lim
n!1

(Ax; ek
n)=

X
�k
n

0<k<1

lim
n!1

0=0;

therefore Ax2E?.
Now, since E? is a closed subspace of an Hilbert space H, E? is an Hilbert space

itself. We are allowed to restrict A and, since E? is A ¡ invariant, thi restricion
is still a compact symmetric linear operator AjE?: E? ¡! E?. By Theorem 1.16
this restriction has at least one eigenvalue. Therefore there is at least a (non zero)
eigenvector x 2 E?. But by de�nition, x 2E too. Thus ( x; x) = 0. Which implies
that x=0, which is absurd since it is an eigenvector. Therefore E=H. �

Remark 1.26. We now focus on the space spanned by the eigenvectors corres-
ponding to the non zero eigenvalues of A. We can always �nd an orthonormal basis
fengn2N for this space. We can construct it by forming, for each non zero eigenvalue
� of A, an orthonormal basis for the �nite-dimensional (Theorem 1.17) eigenspace
E� via a Gram-Schmidt process, and eventually taking the union of all such basis,
which are already mutually orthogonal (Lemma 1.19).

Theorem 1.27. (Expansion Theorem) Let A: H ¡! H be a compact symmetric
linear operator. Let fengn2N be an orthonormal basis for the space spanned by the
eigenvectors corresponding to the non zero eigenvalues of A. Then if x2H and h
is the projection of x on N (A), the null space of A, the following representation of
x holds

x=h+
X1
n=1

(x; en)en:
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Proof. First, we need to show that
P

n=1

1
(x; en)en is convergent in H. Since the

fengn2N are an orthonormal sequence in H, by the Bessel's inequality we have
that

P
i=1

1 j(x; ei)j26 kxk2<1. Therefore
P

i=1

1 j(x; ei)j2 is a real positive valued
convergent series. Then its partial sums form a convergent, and therefore Cauchy,
sequence, that is, given m>n,Xm

i=1

j(x; ei)j2¡
Xn
i=1

j(x; ei)j2=
Xm
i=n

j(x; ei)j2 ¡!
n;m!1

0:

By the orthonormality of the system feng,




X
m

i=n

(x; ei)ei







2

=
Xm
i=n

j(x; ei)j2 ¡!
n;m!1

0:

Therefore the sequence Sn: =
P

i=1

n
(x; ei)ei is a Cauchy sequence in H, since we

have just proved that kSm¡Snk¡! 0, as n;m!1. Being H complete, fSng is a
convergent sequence, that is

P
i=1

1
(x; ei)ei is a convergent series.

We are now allowed to write

x=

"
h+

X1
n=1

(x; en)en

#
+

"
x¡h¡

X1
n=1

(x; en)en

#
:

De�ne y :=x¡h¡
P

n=1

1
(x;en)en. We claim that y is orthogonal to every en. Indeed

(y; en)= (x; en)¡ (h; en)¡

 X1
i=1

(x; ei)ei; en

!
=(x; en)¡ (x; en)=0

since �rstly by Lemma 1.19 (h; en)=0, in that h2N(A) and for every n, en2/N (A)
by construction; secondly by continuity of the inner product X1

i=1

(x; ei)ei; en

!
=
X1
i=1

(x; ei)(ei; en)=
X1
i=1

(x; ei)�in=(x; en):

Moreover y is orthogonal to N (A). Indeed if z 2N (A) then

(y; z)= (x; z)¡ (h; z)¡

 X1
i=1

(x; ei)ei; z

!
=(x; z)¡ (h; z)= (x¡h; z)=0

since by the continuity of the inner product and Lemma 1.19, given a basis of N (A),
fek0gk=1m if m=dimN (A),

 X1
i=1

(x; ei)ei; z

!
=
X1
i=1

(x; ei)(ei; z) =
X1
i=1

(x; ei)

0BBB@ei;Xk=1
m

(z; ek
0)ek

0

1CCCA=X
1

i=1

(x; ei)
X
k=1

m

(z;

ek
0)(ei; ek

0)=0:
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Furthermore x ¡ h is orthogonal to z for h is the projection of x on N (A) and
z 2N (A).

As a result, we have shown that y is orthogonal to all eigenvectors of A, which
span the whole H by Theorem 1.25. Therefore by linearity of the inner product, y
is orthogonal to all elements of H, in particular to y itself, which means that y=0.
Since x= [h+

P
n=1

1
(x; en)en] + y, the result follows. �

Corollary 1.28. Given the same hypothesis of the Expansion Theorem, if in addi-
tion we call �n the non zero eigenvalue corresponding to the eigenvector en (these
�n are not all distinct consequently), then by the continuity of A and its linearity
we have that

Ax=
X1
n=1

(x; en)�nen

since Ah=0.

Operators on Hilbert spaces 19



2 Integral operators

In this Section Ash (1990) is strictly followed. We shall �rstly derive the properties of
the Hilbert-Schmidt integral operator A:L2[a; b]¡!L2[a; b];where a; b<1, de�ned
as

(Af)(t)=

Z
a

b

R(t; s)f(s)ds;

with t2 [a; b] and R: [a; b]� [a; b]¡!R assumed continuous in both variables jointly.

2.1 Properties of the Hilbert-Schmidt operator

Remark 2.1. The Hilbert-Schmidt operator A is linear, bounded and such that for
every f 2L2[a; b], (Af)(t) is continuous on [a; b].

Proof. Linearity of A: let f ; g 2L2[a; b] and�; � 2R, then

(A (�f + �g))(t)=

Z
a

b

R(t; s)(�f + �g)(s)ds=�

Z
a

b

R(t; s)f(s)ds+

+�

Z
a

b

R(t; s)g(s)ds=�(Af)(t)+ �(Ag)(t):

Boundness of A: let f 2 L2[a; b] andM :=maxt;s2[a;b] jR(t; s)j, which exixts and is
�nite by the Weierstrass theorem, because R is a continuous function on the compact
set [a; b] � [a; b](therefore R(t; �) 2 L2[a; b] in addition). By the Cauchy-Schwarz
inequality

jAf j(t)6
Z
a

b

jR(t; s)f(s)j ds= kR(t; �)f k16 kR(t; �)k2kf k2=

=kf k2
�Z

a

b

R2(t; s)ds
�
1

2 6 kf k2M b¡ a
p

:

Hence

kAkop = sup
0�/ f2L2[a;b]

kAf k2
kf k2

= sup
0�/ f2L2[a;b]

�R
a

b jAf j2(t) dt
�1
2

kf k2
6

sup
0�/ f2L2[a;b]

�R
a

b
M2(b¡ a)kf k22dt

�1
2

kf k2
6 sup

0�/ f2L2[a;b]

M(b¡ a)kf k2
kf k2

=M(b¡ a)<1:

Continuity: we shall prove equivalently that lim
t!t0

(Af)(t)= (Af)(t0):

lim
t!t0

j(Af)(t)¡ (Af)(t0)j= lim
t!t0

����Z
a

b

R(t; s)f(s)ds¡
Z
a

b

R(t0; s)f(s)ds

����= lim
t!t0

����Z
a

b

[R(t;

s)¡R(t0; s)]f(s)ds
����= ���� limt!t0

Z
a

b

[R(t; s)¡R(t0; s)]f(s)ds
����:
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If the dominated convergence conditions are satis�ed, then

lim
t!t0

Z
a

b

[R(t; s)¡R(t0; s)]f(s)ds=
Z
a

b

f(s) lim
t!t0

[R(t; s)¡R(t0; s)]ds=0

and the result shall follow. Now, R(t; s) ¡ R(t0; s) 6 jR(t; s)j + jR(t0; s)j 6 2M ;
in addition, given f 2 L2[a; b], jf j 2 L2[a; b] � L1[a; b]. Thus for every t 2 [a; b];
j[R(t; s)¡R(t0; s)]f(s)j6 2M jf j 2L1[a; b], the dominated convergence hypothesis
are satis�ed and the limit can be taken inside the integral sign as claimed. �

Corollary 2.2. The eigenfunctions of the Hilbert-Schmidt operator A corres-
ponding to non zero eigenvalues are continuous on [a; b].

Proof. Let e be an eigenfunction of A corresponding to the eigenvalue �=/ 0. Then
by de�nition �e(t) = (Ae)(t), then e(t) =

1

�
(Ae)(t). Hence by the continuity of A

over [a; b] the result follows. �

Proposition 2.3. The Hilbert-Schmidt operator A is compact.

Proof. By the Arzelà-Ascoli Theorem, if fykgk2N is a sequence of continuous func-
tions on [a; b] and they are uniformly bounded (i.e. there exists a �nite constant
L such that jyk(s)j < L for every k 2 N; s 2 [a; b] ) and equicontinuous (i.e.
for every positive ", there exists a positive �", such that for every s1; s2 2 [a;
b] if js1¡s2j< �";thenjyk(s1)¡ yk(s2)j< " for every k 2N) then fykg has a uniformly
convergent subsequence. The Arzelà-Ascoli Theorem helps us to prove that A is
compact (i.e. that for every bounded sequence ffkg�L2[a; b];fAfkg�L2[a; b] has a
convergent subsequence). Obviously the boundness and the convergence are meant
in L2¡norm: Let now de�ne yk(t) := (Afk)(t)=

R
a

b
R(t; s)fk(s) ds:

First we notice that fykgk2N is uniformly bounded: indeed, in the Remark 2.1
we have already shown that jyk(t)j 6 kfkk2M b¡ a

p
. But now by the boundness

there exists a constant N not depedent on k such that for every k 2N, kfkk26N .
Thus jyk(t)j6NM b¡ a

p
61 for every k; t.

Next we prove the equicontinuity of fykgk2N: by the Cauchy-Schwarz inequality

jyk(t1)¡ yk(t2)j=
����Z

a

b

[R(t1; s)¡R(t2; s)]fk(s)ds
����6Z

a

b

jR(t1; s)¡R(t2; s)jjfk(s)jds6�Z
a

b

jR(t1; s)¡R(t2; s)j2ds
�
1

2kfkk26N
�Z

a

b

jR(t1; s)¡R(t2; s)j2ds
�
1

2:

Since R is continuous on the compact [a; b]� [a; b], it is uniformly continuous, which
means that given "> 0, there is a �"> 0 such that if k(t1; s1)¡ (t2; s2)k<�", then we
have jR(t1; s1)¡R(t2; s2)j< ": Since jt1¡ t2j2+ js1¡ s2j2

p
= k(t1; s1)¡ (t2; s2)k by

the Pythagorean Theorem, we could rewrite: given ">0, there is a �">0 such that if
jt1¡ t2j<�" then jR(t1; s)¡R(t2; s)j<" for every s2 [a; b]: Thus if jt1¡ t2j<�" then
jyk(t1)¡ yk(t2)j6N

¡R
a

b
"2ds

�1
2=N b¡ a

p
". Then it is su�cient to take a �" for the

estimate of jyk(t1)¡ yk(t2)j de�ned as a �"0, that estimates jR(t1; s1)¡R(t2; s2)j as
above, where "0:= "

N b¡ a
p . Then if jt1¡ t2j<�" then jyk(t1)¡ yk(t2)j6N b¡ a

p
"0=".

For �" does not depend on k, the argument proves the equicontinuity.
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Eventually we draw the conclusion by the Ascoli-Arzelà Theorem: by unirfom
boundness and equicontinuity of fykgk2N there is a subsequence fykjgj2N uniformly
convergent to a function y 2 C[a; b]� L2[a; b]. Namely, for every " > 0 there is an
N 2N such that if j >N then jykj(s)¡ y(s)j<" for every s2 [a; b]. The convergence
of fykjg in L2[a; b]¡norm follows straightforward by its uniform convergence and
the �nite measure of the interval: for every ">0 there is an N 2N such that if j >N
then

kykj¡ yk2=
�Z

a

b

jykj(s)¡ y(s)j2ds
�
1

26
�Z

a

b

"2ds

�
1

2 = " b¡ a
p

it is then su�cient to consider an appropriate "0: = "

b¡ a
p corresponding to N . �

2.2 The Mercer's Theorem

De�nition 2.4. A function R: [a; b]� [a; b]!R is said symmetric ifR(t; s)=R(s; t)
for all t; s2 [a; b].

Remark 2.5. If R(t; s) is continuous and symmetric, then the operator (Af)(t)=R
a

b
R(t; s)f(s)ds is symmetric.

Proof. By de�nition A is symmetric on L2if (Af ; g)2=(f ;Ag)2. By the symmetry
of R, the result follows basically from the Fubini-Tonelli Theorem, which can be
used, since the functions f ; g are in L2[a; b] and R is bounded by its continuity on
a compact set, consequently the product R(t; s)f(s)g(t) is in L1[a; b]:

(Af ; g)2=

Z
a

bZ
a

b

R(t; s)f(s)dsg(t) dt=

Z
a

bZ
a

b

R(t; s)f(s)g(t)ds dt=

=

Z
a

bZ
a

b

R(t; s)f(s)g(t)dt ds=

Z
a

b

f(s)

Z
a

b

R(s; t)g(t)dt ds=(f ;Ag)2: �

Proposition 2.6. Let R: [a; b] � [a; b] ! R be symmetric and continuous. All
eigenvalues of (Af)(t) =

R
a

b
R(t; s)f(s)ds are non negative if and only if for all

functions f continuous on [a; b],
R
a

bR
a

b
R(t; s)f(t)f(s)dtds>0:

Proof. If
R
a

bR
a

b
R(t; s)f(t)f(s)dtds>0 for all functions f continuous on [a; b], thenR

a

bR
a

b
R(t; s)e(t)e(s)dtds>0, where e is the eigenfunction of A corresponding to the

non zero eigenvalue �, in that by the Corollary 2.2 e is continuous on [a; b].

0 6
Z
a

bZ
a

b

R(t; s)e(t)e(s)d tds=

Z
a

b

e(s)

Z
a

b

R(t; s)e(t)d td s =

Z
a

b

e(s)�e(s)ds=

�

Z
a

b

e2(s)ds=�kek22:

Since an eigenfunction corresponding to a non zero eigenvalue is non zero, e�/ 0, and
it follows from above that �> 0:
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Conversely, suppose that every eigenvalue of A is non negative. Then if f 2C[a;
b]�L2[a; b] we have, by the Expansion Theorem in a Hilbert space of the previous
section, that f = h +

P
n=1

1
cnen, where the feng are an orthonormal basis for the

space spanned by the eigenvectors corresponding to the nonzero eigenvalues of the
symmetric compact linear operator A, arranged such that en is eigenvector of the
eigenvalue �n; cn=(f ; en)2; h2N (A). Now, the double integral can be rewritten asZ

a

bZ
a

b

R(t; s)f(t)f(s)dtds=

Z
a

b

f(s)

Z
a

b

R(t; s)f(t)dtds=

Z
a

b

f(s)(Af)(s)ds=

=(f ; Af)2 =

 
h +

X
n=1

1

cnen; Af

!
2

= (h; Af)2 +
X
n=1

1

cn(en; Af)2 = (Ah; f)2 +

X
n=1

1

cn(Aen; f)2=0+
X
n=1

1

cn(Aen; f)2=
X
n=1

1

cn�n( en; f)2=
X
n=1

1

cn
2�n> 0:

�

Definition 2.7. R: [a; b] � [a; b] ! R is said to be non-negative definite ifP
i;j=1

n
f(ti)R(ti; tj)f(tj) > 0 for all possible choices of t1; :::; tn 2 [a; b] and all

possible real-valued functions f on [a; b].

Proposition 2.8. Let R: [a; b]� [a; b]!R be continuous symmetric non-negative
de�nite. Then all eigenvalues of the associated integral operator A are non-negative.

Proof. Let f 2 C[a; b]. Then
R
a

bR
a

b
R(t; s)f(t)f(s)dtds is an ordinary Riemann

integral, and the approximating sums are Sn(�) =
P

i;j=1

n
f(ti)R(ti; tj)f(tj);where

�: a = t1 6 ::: 6 tn = b is an n ¡ partition of [a; b]. Since R is non-negative
de�nite, these approximating sums are non-egative for every n¡partition �. Thus
06 limn!1 Sn(�) =

R
a

bR
a

b
R(t; s)f(t)f(s)dtds. Then all eigenvalues of A are non-

negative by the Proposition 2.6. �

Theorem 2.9. (Mercer's Theorem) Let R: [a; b] � [a; b] ! R be continuous
symmetric non-negative de�nite and let A be the corresponding Hilbert-Schmidt
operator. Let fengbe an orthonormal basis for the space spanned by the eigenvectors
corresponding to the non-zero eigenvalues of A. If the basis is taken so that en is the
eigenvector corresponding to the eigenvalue �n, then R(s; t)=

P
n=1

1
�nen(s)en(t) for

every s; t2 [a; b], where:

i. the series converges absolutely in both variables jointly.

ii. the series converges to R(s; t) uniformly in both variables jointly.

iii. the series converges to R(s; t) in L2([a; b]� [a; b]).

Proof. We shall �rst prove the following points:

1. the series converges to R(s; t) in L2[a; b] in each variable separately.

2. Rn(s; t):=R(s; t)¡
P

i=1

n
�iei(s)ei(t) is such that for every t;Rn(t; t)> 0:
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3. the series converges absolutely in both variables jointly (i) and uniformly in
both variables separately.

4. the series converges pointwise to R(s; t).

5. (Dini's Theorem) Given a monotone (say increasing) sequence of functions
fgng; gn2C[a;b]; gn(x)6 gn+1(x) foreverynandx, if lim

n!1
gn(x)= g(x)2C[a;b]

pointwise, then the convergence is uniform.

The overall scheme of the proof is the following:

1) 2 )
1
3)1 4) gn(s)=

X
i=1

n

�iei
2(s)¡!

n!1
R(s; s)pointwise)5

)5 gn(s)¡!
n!1

R(s; s)uniformly)
3
ii)iii

Step 1: R(s; t) =
P

n=1

1
�nen(s)en(t), where the convergence is in L2[a; b] in each

variable separately.

For every �xed s2 [a; b] by the Expansion Theorem for R(s; t)2C[a; b]�L2[a; b]
as a function of t, we can decompose R(s; t) = h(s; t) +

P
n=1

1
cn(s)en(t), where

h 2 N (A) (i.e. (Ah)(s) =
R
a

b
R(s; t)h(s; t) dt = 0) and cn(s) = (R; en)2 =

R
a

b
R(s;

t)en(t)dt = �nen(s), for the feng are an orthonormal basis for the space spanned
by the eigenvectors corresponding to the non-zero eigenvalues of the symmetric
compact linear operator A, and they can be chosen such that en is an eigenvector of
the eigenvalue �n. By the Expansion Theorem h(s; t) +

P
n=1

1
cn(s)en(t) converges

to R(s; t) in L2[a; b].
Now we prove that h(s; �)�0 in L2[a;b], since then from the decomposition above

the result shall follow. By the continuity and the linearity of the inner product in a
Hilbert space, we have that

0=

Z
a

b

R(s; t)h(s; t)dt=(R; h)2=

 
h+

X
n=1

1

cnen; h

!
2

=(h; h)2+

+

 X
n=1

1

cnen; h

!
2

= khk22+

 
lim

m¡!1

X
n=1

m

cnen; h

!
2

= khk22+ lim
m¡!1

 X
n=1

m

cnen; h

!
2

=

=khk22 + lim
m¡!1

X
n=1

m

(cnen; h)2 = khk22 +
X
n=1

1 Z
a

b

cn(s)h(s; t)en(t)dt = khk22 +X
n=1

1

cn(s)

Z
a

b

h(s; t)en(t)dt:

Now, by Lemma 1.19, the eigenvectors of a linear symmetric operator, corresponding
to di�erent eigenvalues, are orthogonal, thus

R
a

b
h(s; t)en(t)dt = 0 for every n, for

every en corresponds to a nonzero eigenvalue, whereas h(s; �) corresponds to 0,
belonging to N (A). Therefore from above we have

khk22=¡
X
n=1

1

cn(s)

Z
a

b

h(s; t)en(t)dt=0:
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By the symmetry of R in the two variables the same result would have been achieved
�xing t instead of s.

Since kh(s; �)k2=0, h(s; �)=0 inL2[a; b] for every s2 [a; b], then by the L2-conver-
gent decomposition yielded by the Expansion Theorem, it holds that separately in
the two variables R(s; t)=h(s; t)+

P
n=1

1
cn(s)en(t)=

P
n=1

1
cn(s)en(t) in L2[a; b].

Step 2: for every t, Rn(t; t)> 0:

By Step 1, we can rewrite the remainder as

Rn(s; t) = R(s; t) ¡
X
i=1

n

�iei(s)ei(t) =
X
i=1

1

�iei(s)ei(t) ¡
X
i=1

n

�iei(s)ei(t) =X
i=n+1

1

�iei(s)ei(t)

with L2 ¡ convergence in each variable separately. Now, given f 2 L2[a; b] by the
continuity of the inner product it holds thatZ
a

bZ
a

b

Rn(s; t)f(s)f(t)dsdt=(f ; (Rn; f)2)2=

 
f(t);

 X
i=n+1

1

�iei(s)ei(t); f(s)

!
2

!
2

= 
f(t);

X
i=n+1

1

�iei(t)(ei(s); f(s))2

!
2

=
X
i=n+1

1

�i(ei; f)2(f ; ei)2=
X
i=n+1

1

�i(ei; f)2
2> 0

since the �i are positive. We shall use this inequality in an argument per absurdum.

Suppose that there is a t0 such that Rn(t0; t0)<0. Then by continuity there is an
"> 0 such that for (s; t) in some neighborood of (t0; t0), Rn(s; t)6¡"< 0. Suppose
this neighborood is a square described by t0¡�<s; t < t0+�: If we de�ne

w(s)=

�
1; s2 [t0¡�; t0+�]
0; elsewhere

;

we have trivially that w2L2[a; b], and �nally thatZ
a

bZ
a

b

Rn(s; t)w(s)w(t)dsdt =

Z
t0¡�

t0+�
Z
t0¡�

t0+�

Rn(s; t)dsdt 6 ¡"
Z
t0¡�

t0+�
Z
t0¡�

t0+�

dsdt =

¡"4�2< 0

which is an absurdum, since we have previously stated that for every f 2 L2[a; b],R
a

bR
a

b
Rn(s; t)f(s)f(t)dsdt> 0: Thus Rn(t; t) must be positive for every t2 [a; b].

Step 3: the series
P

n=1

1
�nen(s)en(t) converges absolutely, and this convergence

is uniform in t for each �xed s and viceversa.
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By Step 2, we know that Rn(t; t) = R(t; t) ¡
P

i=1

n
�iei

2(t) > 0, hence by the
continuity of R on the compact [a; b]� [a; b], de�ned M := max

t;s2[a;b]
jR(t; s)j, we have

that X
i=1

n

�iei
2(t)6R(t; t)6M <1

for every n. Then limn!1
P

i=1

n
�iei

2(t)=
P

i=1

1
�iei

2(t)6M <1. But
P

i=1

1
�iei

2(t) is
a non-negative terms series, and we have shown its boundness. Thus

P
i=1

1
�iei

2(t)
coverges for every t. In particular it is a Cauchy series, which means thatP

i=n

m
�iei

2(s)¡! 0; as m;n!1.
Now, by the Cauchy-Schwarz inequality and the positivity of the �i, we have the

absolute convergence in both variables jointly and the unifornity in each variable
separately:

X
i=n

m

�ijei(s)ei(t)j =

�����X
i=n

m

�i
p

jei(s)j �i
p

jei(t)j

����� 6

 X
i=n

m

[ �i
p

jei(s)j]2
!
1

2

 X
i=n

m

[ �i
p

jei(t)j]2
!
1

2

=

 X
i=n

m

�iei
2(s)

!
1

2

 X
i=n

m

�iei
2(t)

!
1

2

6

 X
i=n

m

�iei
2(s)

!
1

2

 X
i=n

1

�iei
2(t)

!
1

2

6 M
p

 X
i=n

m

�iei
2(s)

!
1

2

¡!
m;n!1

0

for each �xed s, uniformly in t. The argument for t �xed is symmetric and is given
by applying Step 2 for Rn(s; s):

Step 4:
P
n=1

1
�nen(s)en(t)=R(s; t)pointwise:

By Step 1,
P

n=1

1
�nen(s)en(t)=R(s; t) in L2[a; b] separately in the two variables.

Fix s. By Step 3, there is a function G(s; t) to which
P

n=1

1
�nen(s)en(t) converges

uniformly in t, hence in L2 ¡ norm (see the last paragraph of Proposition 2.3 for
this argument). Thus for each �xed s, R(s; t) = G(s; t) for almost every t. But
since for Corollary 2.2 feng are continuous, G(s; t) is a uniform limit of continuous
functions gm(t)=

P
n=1

m
�nen(s)en(t). Hence G(s; �) is a continuous function, as well

as R(s; �) is, by hypothesis. Thus for every �xed s; R(s; t) =G(s; t) for every t in
[a; b], that is R(s; t)�G(s; t): Thus

P
n=1

1
�nen(s)en(t) converges uniformly in t and

pointwise in s to R(s; t). In the same way, �xing t and repeating the proof, we can
show that

P
n=1

1
�nen(s)en(t) converges uniformly in s and pointwise in t to R(s; t).

Thus
P

n=1

1
�nen(s)en(t) converges pointwise to R(s; t) in [a; b]� [a; b]:

Step 5: (Dini's Theorem) Given a sequence of real-valued functions fgngn=11

continuous on [a; b] and a real-valued function g continuous on [a; b] such that
gn(x) 6 gn+1(x) for all n and all x and limn!1gn(x) = g(x) for all x 2 [a; b], then
gn¡! g as n!1, uniformly on [a; b].

26 Section 2



Given " > 0, de�ne the open set Un := fx 2 [a; b]: jgn(x) ¡ g(x)j < "g. Since
limn!1gn(x)= g(x) for all x2 [a; b],

S
n=1

1
Un= [a; b]. For fUng is an open cover of

the compact [a; b], a �nite open subcover of [a; b] can be extract, that is there is a
�nite set of indeces fn1; :::; nmg such that

S
i=1

m
Uni= [a; b]. By the monotonicity of

the sequence fgng, we infer that Un�Un+1 for all n, and so the Uni have the same
property. Hence [a; b]=

S
i=1

m
Uni=Um, so that jgm(x)¡ g(x)j<" for all x2 [a; b]. By

the monotonicity again, we have that if n>m, jgm(x)¡ g(x)j< " for all x 2 [a; b].
Thus it has been shown that for every " > 0, there is an m such that if n > m,
jgm(x) ¡ g(x)j < " for every x 2 [a; b], which is the uniformly convergence of the
function sequence fgngn=11 .

Proof of Mercer's Theorem:

By Step 4,
P

n=1

1
�nen

2(s) =R(s; s) pointwise on [a; b]: Let gn(s): =
P

i=1

n
�iei

2(s).
Then gn is continuous on [a; b], gn(s) 6 gn+1(s) for all n and for all s 2 [a; b] and
limn!1 gn(s)=R(s; s) for all s2 [a; b]. Hence by Step 5, gn(s)¡!R(s; s), as n!1
uniformly on [a; b]:

Now we proceed as in Step 3, to gain uniform convergence in both variables.
Indeed, the Cauchy-Schwarz inequality yields�����X

i=m

n

�iei(s)ei(t)

�����
2

6
X
i=n

m

[ �i
p

ei(s)]2
X
i=n

m

[ �i
p

ei(t)]2

!
<M

X
i=m

n

�iei
2(s) ¡!

n;m¡!1
0

uniformly in t for each �xed s, but in addition the convergence is also uniform in s,
since here we have proved that, by Step 5,

P
n=1

1
�nen

2(s)=R(s; s)uniformlyon [a; b].
Therefore the pointwise convergence

P
i=1

1
�iei(s)ei(t) = R(s; t) on [a; b] � [a; b]

stated in Step 4 is also uniform on [a; b]� [a; b] in both variables jointly and not only
separately.

The uniform convergence of the series to R(s; t) on [a; b] � [a; b] implies the
convergence in L2([a; b]� [a; b]), by the same argument shown in the last step of the

Proposition 2.3, that is
R
a

bR
a

b jR(s; t)¡
P

i=1

n
�iei(s)ei(t)j2dsdt¡! 0 asn¡!1:

�
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3 Homogeneous linear integral equations

In the present Section we leave for a while the straight path toward the Karhunen-
Loève Expansion we were about to follow, in order to achieve a result which will
become crucial for the study of the optimality of the mean square error. In doing
so, we change reference and adapt to our purposes the methods found in Courant
and Hilbert (1989), pp. 122-125.

De�nition 3.1. Let K: [a; b]� [a; b]¡!R be a continuous function and let � be
a scalar parameter. Let f ; ' be two real-valued continuous functions on [a; b]. The
integral equation

'(s)= f(s)¡�
Z
a

b

K(s; t)f(t)dt

is called a linear integral equation of the second kind with the kernel K. If '� 0 we
are dealing with a homogeneous linear integral equation of the second kind. In this
case we shall call the reciprocal of a value �=/ 0, for which the equation possesses non
trivial solutions, eigenvalue of the kernel (this convention is not universal though).
Such eigenvalues actually correspond to the non zero eigenvalues of the integral
operator (Af)(s) =

R
a

b
K(s; t)f(t)dt. The corresponding solutions f1; :::; fk are

called eigenfunctions of the kernel for the eigenvalue �¡1, and are the same of the
corresponding Hilbert-Schmidt integral operator.

Remark 3.2. If a homogeneous equation possesses a solution other than the trivial
one f � 0, the solution multiplied by an arbitrary constant remains a solution,
therefore it may be assumed normalized. Furthermore, by the linearity of the integral
equation, if f1; :::; fk are solutions, then all the linear combinations c1f1+ :::+ ckfk
are solutions. Therefore if several linearly independent solutions are given, they may
be assumed orthonormalized (e. g. by the Gram-Schmidt process in L2[a; b]) without
ceasing to be solutions.

Remark 3.3. As a consequence of the Theorem 1.17, the eigenvectors corresponding
to each eigenvalue of the integral equation are �nite.

3.1 Properties of the Hilbert-Schmidt functions

In connection with integral equations it is natural to inquire into the properties of
functions, that we shall call Hilbert-Schmidt functions analogously to the operator
of the previous section, of the form:

g(s)=

Z
a

b

K(s; t)h(t) dt:

Proposition 3.4. If there is a constant M such that h 2 L2[a; b], khk26M <1,
then for every "> 0 there is a �"> 0; independent of the particular function h, such
that jg(s+ �)¡ g(s)j<" whenever j� j<�".
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Proof. Let khk26M <1. By the Cauchy-Schwarz inequality

jg(s+ �)¡ g(s)j6
Z
a

b

jK(s+ �; t)¡K(s; t)jjh(t)j dt6khk2
�Z

a

b

jK(s+ �; t)¡K(s;

t)j2
�
1

2 6M
�Z

a

b

jK(s+ �; t)¡K(s; t)j2
�
1

2:

Now, since K(s; t) is continuous on the compact [a; b] � [a; b], it is clear that it
is uniformly continuous, then there is a �� > 0 independent of (s; t) such that
jK(s+ �; t)¡K(s; t)j<��. Then

jg(s+ �)¡ g(s)j6M
�Z

a

b

��
2

�
1

2 =M b¡ a
p

��

and taking � such that jK(s+ �; t)¡K(s; t)j<��0 :=
��

M b¡ a
p the result follows. �

Corollary 3.5. If a sequence of kernels is given for which limn¡!1Kn(s; t)=K(s; t)

uniformly, the set of fuctions gn(s)=
R
a

b
Kn(s; t)h(t)dt, g(s)=

R
a

b
K(s; t)h(t)dt is an

equicontinuous set, as long as h2L2[a; b],khk26M <1.

Proof. For h2L2[a;b], the relation g(s)= limn¡!1
R
a

b
Kn(s; t)h(t)dt certainly holds,

and the convergence is uniform in s since the passage to the limit may be performed
under the integral sign. The result follows then by Proposition 3.4. �

Remark 3.6. fgngn=11 is also an uniformly bounded set.

Proof. Suppose khk2 6M <1, by the Cauchy-Schwarz inequality it holds that

there is a common bound for the set: jgn(s)j 6 M
p �R

a

b
Kn

2(s; t)dt
�1
2 and jg(s)j 6

M
p �R

a

b
K2(s; t)dt

�1
2. The result follows. �

3.2 The upper bound of the bilinear integral form

The theory of integral equations can be developed in great detail if the kernel is
symmetric, that is if K(s; t) =K(t; s). The aim of this section is actually to study
the bilinear integral form

J(f ; g)=

Z
a

bZ
a

b

K(s; t)f(s)g(t)dsdt

and in particular the quadratic form J(f ; f) when the kernel is non-negative def-
inite, that is J(f ; f)> 0; and with f �/ 0.

We consider the problem of �nding a normalized function f�/ 0 for which J(f ; f)
assumes the greatest possible value. The problem is well-posed since J(f ; f)<1.

The method we shall follow in the Theorem 3.7 is originally due to Holmgren.
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Theorem 3.7. The positive least upper bound of J(f ; f) is actually attained for
the normalized eigenfunction of the kernel corresponding to its greatest eigenvalue.

Proof. By the Mercer's Theorem a non-negative symmetric kernel is uni-
formly approximated by degenerate symmetric kernels of the form Kn(s; t) =P

i=1

n
�iei(s)ei(t), where degenerate means here that they are obtained by a �nite

sum of functions of s and t. The maximizing problem for

Jn(f ; f)=

Z
a

bZ
a

b

Kn(s; t)f(s)f(t)dsdt

with the subsidiary condition of normality of the solution f turns out to be equi-
valent to the corresponding problem for a quadratic form in n variables. Indeed,
setting for every i=1; :::; n; (f ; ei)2= xi, we obtain

Jn(f ; f) =

Z
a

bZ
a

b

Kn(s; t)f(s)f(t)dsdt =

Z
a

bZ
a

bX
i=1

n

�iei(s)ei(t)f(s)f(t)dsdt =

X
i=1

n

�i

Z
a

b

ei(s)f(s)ds

Z
a

b

ei(t)f(t)dt=
X
i=1

n

�i(f ; ei)2
2=
X
i=1

n

�ixi
2:

Now, by Bessel's inequality we know that 1 = (f ; f)2 >
P

i=1

n
xi
2. Therefore the

maximum of the form is attained when
P

i=1

n
xi
2 = 1; since otherwise the value of

Jn(f ; f) would be increased if we multiply f by a suitable factor. Now, without loss
of generality, suppose that �1>�2> :::>�n: ThenX

i=1

n

�ixi
26
X
i=1

n

�1xi
2=�1

X
i=1

n

xi
2=�1 � 1=�1

Thus the maximum is attaied by x1=1; x2=0; :::; xn=0, the value of the maximum
is �1;n and fn is given by the relations (f ; e1)2=1; (f ; ei)2=0 for i>1;hence fn= e1,
which means that fn is the eigenfunction of the kernel Kn corresponding to the
eigenvalue �1;n. Thus

�1;nfn(s)=

Z
a

b

Kn(s; t)fn(t)dt:

We now let n increase: �1;n will increase as well, and it ends up to converge
to a number �1, which is the maximum of J(f ; f). We prove this. Since Kn(s; t)
approximates uniformly K(s; t), for every "> 0 there is a su�ciently large integer n
such that jK(s; t)¡Kn(s; t)j<" for every (s; t)2 [a; b]� [a; b]: Then by the Cauchy-
Schwarz inequality and the normality of the solution f it holds that for n

jJ(f ; f) ¡ Jn(f ; f)j 6
Z
a

bZ
a

b

jK(s; t) ¡ Kn(s; t)jjf(s)f(t)jd s d t <

"

�Z
a

b

jf(s)jds
��Z

a

b

jf(t)jdt
�
= "

�Z
a

b

jf(t)j � 1dt
�
2

6 "kf k2 b¡ a
p

= " b¡ a
p

:
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Since the range of Jn(f ; f) coincides arbitrarily closely with the range of J(f ; f),
the same must be true for the upper bounds. Consequently �1= limn!1�1;n exists,
with all �1;n < �1. Therefore �1;nfn(s) =

R
a

b
Kn(s; t)fn(t)dt de�nes a sequence of

functions ffng uniformly boundend and equicontinuus on the compact [a; b] by the
Proposition 3.4, the Corollary 3.5 and the Remark 3.6. Then by the Ascoli-Arzelà
Theorem there is a uniformly convergent subsequence ffnjg. Let ' be the uniform
limit. By the uniform convergence of Kn and fn the integral relations satis�ed by
the fn take the limit inside the integral, hence:

�1'(s)=

Z
a

b

K(s; t)'(t)dt

('; ')2=1

J('; ')=�1

As can be seen, the function ' solves the maximum problem for the form J(f ; f);
it is an eigenfunction of the kernel K, and the maximum is the greatest eigenvalue
of the Hilbert-Schmidt integral operator. �
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4 The Karhunen-Loève Theorem

In this section the second-order random processes are brie�y introduced and their
Karhunen-Loève decomposition derived. In introducing the random processes, we
follow Loève (1978), pp. 121-135.

4.1 Second order random variables
We shall consider random functions formed by random variables whose second
moment, and therefore their mixed second moments, are �nite. Their second order
properties are those which can be expressed in terms of these moments. Up to
equivalences, the random variables in question can be interpreted as points in a
Hilbert space. Thus, it is to be expected that the study of the second order prop-
erties will only require analytical tools.

Let (
;F ; P ) be a probability space. Let X; Y ; ::: be second order real-valued
random variables, that is E jX j2<1; E jY j2<1, so that by the Cauchy-Schwarz
inequality their mixed second moments E[XY ] < 1. This hypothesis allow us
to center at expectations every variable, since having �nite second moments, the
�rst moment results �nite as well. In particular we shall assume, without loss of
generality, that each random variable is centered. Therefore E jX j2 turns to be
the variance of X and E[XY ] the covariance of X and Y . The space L2(
;F ; P )
of equivalence classes of such random variables is a Hilbert space, with the inner
product E[XY ] and the inducted norm kXk2 = (E jX j2)

p
and distance between

the points X; Y determined by kX ¡ Y k2. Thus the convergence in norm is a
convergence in quadratic mean in this space (or mean square convergence). Given
random variables fXngn=11 , we say thatXn converges in norm to X if kXn¡Xk2¡!
0, as n!1, which is equivalent to E jXn¡X j2¡!0, as n!1. In this space X;Y
are said to be orthogonal, and we write X ? Y , if E[XY ] = 0: In particular X ?X
if and only if E jX j2=0, that is X=0 almost surely . Moreover, by orthogonality we
have that if X ?Y then E jX +Y j2=E jX j2+E jY j2. More generally if X1;X2; :::;
Xn are mutually orthogonal random variables, then E j

P
k=1

n
Xkj2=

P
k=1

n
E jXkj2.

We introduce now the second order random functions. Let � be an argument
varying on a set T � R. A random function (or equivalently a random process,
although not all authors accept it as synonym) is a family of random variables
fX� ; � 2 T g. A second order random function is a family fX� ; � 2 T g such that
for every � 2 T , the variances E jX� j2 <1. As previously stated, we can and do
assume that the second order random functions under consideration are centered at
expectations. Eventually we say that the function is a continuous-parameter process
when its set of indices T �R is uncountable.

The function de�ned on T �T , KX(t; �): =E[XtX�] is called the covariance of
the random function X� on T (some authors refer to it as autocovariance).

According to the Cauchy-Schwarz inequality, the covariance of the process exists
and is �nite. Conversely, if the function de�ned on T �T , KX(t; � ):=E[XtX�] exists
and is �nite, then E jX� j2=KX(� ; � )<1 for every � 2 T . Therefore second order
random functions can be de�ned as those having covariances. Their second order
properties are those which can be de�ned or determined by means of covariances.
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Let X= fXtg, t2 [a; b]�R be a continuous-parameter real-valued second-order
random process with zero mean and covariance function KX(t; � ).

Remark 4.1. KX is a symmetric non-negative de�nite function.

Proof. First, by de�nition of KX(t; � ): =E[XtX�], its symmetry is trivial. Next,
it holds that for all possible choices of t1; :::tn2 [a; b], and all possible functions f :
[a; b]¡!R,

X
i;j=1

n

f(ti)KX(ti; tj)f(tj) =
X
i;j=1

n

f(ti)E[XtiXtj]f(tj) = E

"X
i;j=1

n

f(ti)XtiXtjf(tj)

#
=

E

"X
i=1

n

f(ti)Xti

 X
j=1

n

f(tj)Xtj

!#
= E

"X
i=1

n

f(ti)Xti

X
j=1

n

f(tj)Xtj

#
=

E

" X
i=1

n

f(ti)Xti

!
2
#
> 0;

thus KX is non-negative de�nite by de�nition. �

4.2 The Riemann integral of a stochastic process

We now go straight to the proof of the main theorem of this dissertation. In doing
so, we shall walk the path traced by Ash (1990) again.

De�nition 4.2. Given g: [a; b] ¡! R , we de�ne
R
a

b
g(t)Xt dt as follows. Let

�:a= t0<t1<:::< tn= b be a partition of [a; b] with j�j :=maxi=1n jti¡ ti¡1j. De�ne
the random variable I(�) :=

P
k=1

n
g(tk)Xtk(tk ¡ tk¡1). If the family of random

variables fI(�)g� converges in mean square to a random variable I as j�j ¡! 0,
that is E jI(�)¡ I j2¡! 0 as j�j ¡! 0, then we say that g(t)Xt is integrable over

[a; b] and that
R
a

b
g(t)Xt dt: =I, which is said the integral of g(t)Xt over [a; b].

Proposition 4.3. If g: [a; b] ¡! R is continuous and KX: [a; b] � [a; b] ¡! R is
continuous, then g(t)Xt is integrable over [a; b]:

Proof. We have to prove that I(�) is convergent in mean square as j�j¡!0. Being
X a second-order process, for every t, Xt2L2(
;F ; P ); hence we shall equivalently
prove that fI(�)g� is a Cauchy sequence with respect to the L2-norm squared,
that is to say mean square norm. This means that given two partitios � and �0,
E[(I(�)¡I(�0))2]¡!0;as j�j; j�0j¡!0. The result will follow by the completeness
of L2. Since E[(I(�)¡ I(�0))2] = E[I2(�)] + E[I2(�0)]¡ 2E[I(�)I(�0)], we shall
consider the limit of each block, as j�j; j�0j ¡! 0.
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Let �: a= t0< t1< ::: < tn= b; �0: a= �0<�1< ::: < �m= b be two partitions of
[a; b]. Then

I(�)I(�0) =
X
i=1

n

g(ti) Xti (ti ¡ ti¡1)
X
j=1

m

g(�j) X�j (�j ¡ �j¡1) =X
i=1

n X
j=1

m

g(ti)g(�j)XtiX�j(ti¡ ti¡1)(�j¡ �j¡1):

Thus

E[I(�)I(�0)] = E

"X
i=1

n X
j=1

m

g(ti)g(�j)XtiX�j(ti ¡ ti¡1)(�j ¡ �j¡1)

#
=X

i=1

n X
j=1

m

g(ti)g(�j)E[XtiX�j](ti ¡ ti¡1)(�j ¡ �j¡1) =
X
i=1

n X
j=1

m

g(ti)g(�j)KX(ti; �j)(ti ¡

ti¡1)(�j¡ �j¡1)¡!
Z
a

bZ
a

b

g(t)g(� )KX(t; � )dtd� as j�j; j�0j ¡! 0:

Indeed
P

i=1

n P
j=1

m
g(ti)g(�j)KX(ti; �j)(ti ¡ ti¡1)(�j ¡ �j¡1) is an approximating

sum to the two-dimensional Riemann integral above, which is well de�ned by the
continuity of the integrand over [a; b]� [a; b]. It has been proved that

lim
j�j;j�0j¡!0

E[I(�)I(�0)]=

Z
a

bZ
a

b

g(t)g(�)KX(t; � )dtd� :

Furthermore, taking �=�0 we have that

lim
j�j¡!0

E[I2(�)]=

Z
a

bZ
a

b

g(t)g(�)KX(t; � )dtd� = lim
j�0j¡!0

E[I2(�0)]:

As previously stated, in order to have fI(�)g� satisfying the Cauchy property in
mean square norm, it has to be shown that E[(I(�)¡I(�0))2]¡!0 as j�j; j�0j¡!0:

E[(I(�)¡I(�0))2]=E[I2(�)]+E[I2(�0)]¡2E[I(�)I(�0)]¡!
Z
a

bZ
a

b

g(t)g(� )KX(t;

� )dtd� +
Z
a

bZ
a

b

g(t)g(�)KX(t; � )dtd� ¡ 2
Z
a

bZ
a

b

g(t)g(� )KX(t; � )dtd� =0: �

Lemma 4.4. If g; h: [a; b]¡!R and KX: [a; b]� [a; b]¡!R are continuous, then

E

�Z
a

b

g(t)Xt dt
Z
a

b

h(� )X� d�

�
=

Z
a

bZ
a

b

g(t)h(� )KX(t; �) dtd� :

Furthermore E
�R

a

b
g(t)Xt dt

�
=E

�R
a

b
h(� )X� d�

�
=0:
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Proof. As in Proposition 4.3 let � and �0 be two partitions of [a; b]. Let

I(�) =
X
i=1

n

g(ti)Xti(ti ¡ ti¡1); I(�0) =
X
j=1

m

h(�j)X�j(�j ¡ �j¡1); I =

Z
a

b

g(t)Xt dt;

J =

Z
a

b

h(�)X� d� :

By Proposition 4.3 I(�) ¡! I and J(�0) ¡! J in L2(
; F ; P ) as j�j; j�0j ¡! 0:
Therefore E[I2(�)] ¡! E[I2] and E[J2(�0)] ¡! E[J2] by the continuity of the
inner product of L2(
). Furthermore we know that limj�j;j�0j¡!0E[I(�)J(�

0)] =R
a

bR
a

b
g(t)h(� )KX(t; � ) dtd� , for the argument of Proposition 4.3 can be applied,

even if we have h instead of g in the approximating sum J(�0). Thus if we prove
that limj�j;j�0j¡!0E[I(�)J(�0)] = E[IJ ], the �rst statement shall follow. By the
triangular inequality �rst and the Cauchy-Schwarz inequality next, it holds that

jE[I(�)J(�0)]¡E[IJ ]j= jE[I(�)J(�0)¡ IJ ]j= jE[I(�)J(�0)¡ I(�)J + I(�)J ¡
IJ ]j6E[jI(�)J(�0)¡ I(�)J j+ jI(�)J ¡ IJ j] =E jI(�)(J(�0)¡ J)j+E j(I(�)¡

I )J j 6 fE[I2(�)]E[(J(�0) ¡ J)2]g
1

2 + fE[J2]E[(I(�) ¡ I)2]g
1

2 ¡! E[I2]
p

� 0 +

E[J2]
p

� 0= 0 as j�j; j�0j ¡! 0:

This argument proves the �rst statement, as mentioned above. Similarly we shall
proceed for the latter statement, which is equivalent to E[I] = E[J ] = 0: Let us
prove it for I. Since the process X is centered, E[I(�)] =

P
i=1

n
g(ti)E[Xti](ti ¡

ti¡1)=0; hence we only need to prove that E[I(�)] ¡! E[I] as j�j ¡! 0: This is
straightforward: L1(
) � L2(
), thus if I(�) ¡! I in L2, then I(�) ¡! I in L1

which is equivalent to E jI(�) ¡ I j ¡! 0. Since E jI(�) ¡ I j > jE[I(�) ¡ I]j =
jE[I(�)]¡E[I]j, we have proved that jE[I(�)]¡E[I]j ¡! 0 as j�j ¡! 0: Now, for
every �; E[I(�)]=0; thus 0=E[I(�)]¡!E[I] as j�j ¡! 0, which is equivalent to
E[I] = 0: �

Lemma 4.5. If h: [a; b] ¡!R and KX: [a; b] � [a; b] ¡!R are continuous, then
for every t2 [a; b]

E

�
Xt

Z
a

b

h(�)X� d�

�
=

Z
a

b

h(� )KX(t; �) d�

Proof. As in the Lemma 4.4 let J(�0) =
P

j=1

m
h(�j)X�j(�j ¡ �j¡1) and

J =
R
a

b
h(� )X� d� . Since J(�0) ¡! J in mean square as j�0j ¡! 0; on one

hand E[XtJ(�0)] ¡! E[XtJ ]: indeed, just as in the Lemma 4.4, by replacing
I and I(�) byXt, which is independent from �0, we have that

jE[XtJ(�0)]¡E[XtJ ]j=E jXt(J(�0)¡J)j6fE[Xt
2]E[(J(�0)¡J)2]g

1

2¡! E[Xt
2]

p
�

0= 0 as j�0j ¡! 0; sinceXt2L2:
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On the other hand, E[XtJ(�0)] ¡!
R
a

b
h(� )KX(t; �) d� as j�0j ¡! 0, since as in

Proposition 4.3, by replacing I(�) by Xt; we have an approximating sum to a
Riemann integral:

E[XtJ(�
0)] = E

"X
j=1

m

h(�j)XtX�j(�j ¡ �j¡1)

#
=
X
j=1

m

h(�j)E[XtX�j](�j ¡ �j¡1) =X
j=1

m

h(�j)KX(t; �j)(�j¡ �j¡1)¡!
Z
a

b

h(� )KX(t; �) d� as j�0j ¡! 0:

Thus the lemma follows. �

4.3 The Karhunen-Loève Theorem

Theorem 4.6. (Karhunen-Loève Expansion) Let X = fXtg, t 2 [a; b] � R; a;
b<1;be a continuous-parameter real-valued second-order random process with zero
mean and continuous covariance function KX(t; �).

Then for every t2 [a; b]wemaydecompose

Xt=
X
k=1

1

Zkek(t)

with

Zk=

Z
a

b

Xtek(t)dt;

where the fekgk=11 are the eigenfunctions of the Hilbert-Schmidt integral operator
on L2[a; b], (Af)(t)=

R
a

b
KX(t; � )f(� ) d� ; fekgk is the Karhunen-Loève basis, which

is an orthonormal basis for the space spanned by the eigenfunctions corresponding
to the non-zero eigenvalues of A; each random variable Zk is the coe�cient given
by the projection of Xt onto the k-th deterministic element of the Karhunen-Loève
basis in L2(
;F ; P ); moreover the fZkg are pairwise orthogonal random variables
with zero mean and variance �k, where �k is the eigenvalue corresponding to the
eigenfunction ek.

The series
P

k=1

1
Zkek(t) converges to Xt in mean square, uniformly for t2 [a; b].

Proof. By Corollary 2.2 the eigenfunctions corresponding to the non-zero eigen-
values of A are continuous, thus by Proposition 4.3 Zk=

R
a

b
Xtek(t)dt is a well de�ned

random variable. By Lemma 4.4 E[Zk] =E
�R

a

b
Xtek(t) dt

�
=0 and

E[ZiZj] = E

�Z
a

b

Xtei(t) dt
Z
a

b

X�ej(� ) d�

�
=

Z
a

bZ
a

b

ei(t)ej(� )KX(t; � ) d�d t =Z
a

b

ei(t)

Z
a

b

ej(� )KX(t; � )d�dt=�j

Z
a

b

ei(t)ej(t)dt=�j�ij

36 Section 4



where �ij is the Kronecker's delta, by the orthonormality of fekgk inL2[a; b]. Thus,
on one hand, since E[ZiZj] = 0; 8i=/ j, the random variables fZkgk2N are pairwise
orthogonal in L2(
) (because of this random coe�cients's property, the Karhunen-
Loève Expansion is usually referred as bi-orthogonal); on the other hand, by de�n-
ition, var(Zk):=E[ZkZk] =�k � 1=�k.

Let us show the mean square convergence of the series. Let Sn(t):=
P

k=1

n
Zkek(t).

Then

E jSn(t)¡Xtj2=E[Sn2(t)¡ 2Sn(t)Xt+Xt
2] =E[Sn

2(t)]¡ 2E[Sn(t)Xt] +E[Xt
2]:

Since

E[Xt
2] :=KX(t; t)

E[Sn(t)Xt] =E

"X
k=1

n

Zkek(t)Xt

#
=
X
k=1

n

ek(t)E[ZkXt]

E[Sn
2(t)] = E

"X
i=1

n

Ziei(t)
X
j=1

n

Zjej(t)

#
= E

"X
i;j=1

n

ei(t)ej(t)ZiZj

#
=

X
i;j=1

n

ei(t)ej(t)E[ZiZj] =
X
i;j=1

n

ei(t)ej(t)�ij�ij=
X
k=1

n

�kek
2(t)

it holds that

E jSn(t)¡Xtj2=
X
k=1

n

�kek
2(t)¡ 2

X
k=1

n

ek(t)E[ZkXt] +KX(t; t):

By the Lemma 4.5 E[ZkXt]=E
�
Xt

R
a

b
X�ek(� )d�

�
=
R
a

b
ek(�)KX(t;� )d�=�kek(t):Thus

E jSn(t)¡Xtj2=
X
k=1

n

�kek
2(t)¡ 2

X
k=1

n

�kek
2(t)+KX(t; t)=KX(t; t)¡

X
k=1

n

�kek
2(t)¡!

n!1
0;

uniformly in t2 [a; b] by Mercer's Theorem. �

Remark 4.7. Since we have just shown that E[Zk] = 0 and var[Zk] = �k, we could
de�ne Zk�: =

Zk

�
p and decompose Xt with the fZk�g in a more popular way:

Xt=
X
k=1

1

�k
p

Zk
�ek(t)

with the advantage that not only by linearity, E[Zk�]=0, but var[Zk�]=
1

�k
var[Zk]=1.
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Remark 4.8. If the random process fXtg is a non zero-mean process, we can
subtract its mean �rst before applying the Karhuen-Loève Expansion, and the result
is trivially that

Xt=E[Xt] +
X
k=1

1

Zkek(t)

4.4 Optimality of the Karhunen-Loève basis

Remark 4.9. As a consequence of the Karhunen-Loève Theorem we can easily
evaluate the variances:

var[Xt] =E[Xt
2]¡E2[Xt] =KX(t; t)¡ 0=

X
k=1

1

�kek
2(t)

and consequently we draw the conclusion that the total variance of the process,
de�ned as the integral of var[Xt] over the indices interval [a; b], isZ

a

b

var[Xt] dt=

Z
a

bX
k=1

1

�kek
2(t) dt=

X
k=1

1 Z
a

b

�kek
2(t) dt=

X
k=1

1

�k

Z
a

b

ek
2(t) dt=

X
k=1

1

�k

since the convergence of the sum is uniform by Mercer's Theorem. As a result,
if the Karhunen-Loève Expansion gets trucated, we have that the N ¡ truncated
expansion explains the

P
k=1

N
�k/

P
k=1

1
�k of the total variance of the process.

This fact is somewhat related to the truncation error, the main topic of the
remaining part of this section. We �rst seek a representation for the truncation error,
in order to show the optiality of the Karhunen-Loève Expansion. In doing so, useful
hints have been found in Brown (1960).

Remark 4.10. Given an orthonormal basis ffkgk2N of L2[a; b], let us suppose
that the following expansion in L2(
), Xt =

P
k=1

1
Akfk(t); with Ak =

R
a

b
Xtfk(t)dt

holds. Then the truncated sum Xt
n =

P
k=1

n
Akfk(t) approximates Xt by an error

"n(t)= jXt¡Xt
nj= jXt¡

P
k=1

n
Akfk(t)j.

De�nition 4.11. De�ne the mean square error as E["n2(t)], then
R
a

bE["n2(t)] dt =:
En2(ffkg) de�nes the total mean square error , also called integrated mean square
error , with respect to the basis ffkgk2N thatXt is projected onto, for every t2 [a;b].

Lemma 4.12.

En2(ffkg)=
Z
a

b

E[Xt
2]dt¡

X
k=1

n Z
a

bZ
a

b

KX(�; � )fk(�)fk(� )d�d�
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Proof. By linearity of the expectation and by orthonormality of ffkgk in L2[a; b]

En2(ffkg) =

Z
a

b

E["n
2(t)]dt = E

"Z
a

b
 
Xt ¡

X
k=1

n

Akfk(t)

!
2

dt

#
=

E

�Z
a

b

Xt
2dt
�
¡ 2E

"Z
a

b

Xt

X
k=1

n

Akfk(t)dt

#
+ E

"Z
a

b
 X

k=1

n

Akfk(t)

!
2

dt

#
=

Z
a

b

E[Xt
2]dt ¡ 2E

"Z
a

bX
k=1

n

AkXtfk(t)dt

#
+ E

"Z
a

bX
i;j=1

n

AiAjfi(t)fj(t)dt

#
=

Z
a

b

E[Xt
2]dt ¡ 2E

"X
k=1

n

Ak

Z
a

b

Xtfk(t)dt

#
+ E

"X
i;j=1

n

AiAj

Z
a

b

fi(t)fj(t)dt

#
=

Z
a

b

E[Xt
2]dt ¡ 2E

"X
k=1

n

Ak
2

#
+ E

"X
i;j=1

n

AiAj�ij

#
=

Z
a

b

E[Xt
2]dt ¡

2E

"X
k=1

n

Ak
2

#
+ E

"X
k=1

n

Ak
2

#
=

Z
a

b

E[Xt
2]dt ¡ E

"X
k=1

n

Ak
2

#
=

Z
a

b

E[Xt
2]dt ¡

X
k=1

n

E[Ak
2] =

Z
a

b

E[Xt
2]dt ¡

X
k=1

n

E

�Z
a

b

X�fk(� )d�

Z
a

b

X�fk(�)d�

�
=

Z
a

b

E[Xt
2]dt ¡

X
k=1

n

E

�Z
a

bZ
a

b

X�X�fk(� )fk(�)d�d�

�
=

Z
a

b

E[Xt
2]dt ¡

X
k=1

n Z
a

bZ
a

b

E[X�X�]fk(� )fk(�)d�d�=Z
a

b

E[Xt
2]dt¡

X
k=1

n Z
a

bZ
a

b

KX(�; � )fk(�)fk(�)d�d�

�

Theorem 4.13. En2(ffkg) is minimized if and only if ffkgk=1n are an orthonormaliza-
tion (via Gram-Schmidt for example) of the eigenfunctions of the Fredholm equation

�
R
a

b
KX(�; �)f(� )d� = f(�) and ffkgk=1n are arranged in order to correspond to the

eigenvalues f�kgk=1n numbered according to decreasing magnitude: �1>�2> ::::>0:
Equivalently, this arranged, the Kahrunen-Loève basis minimizes the mean square
truncation error.

Proof. By Lemma 4.12 En2(ffkg)=
R
a

b
E[Xt

2]dt¡
P

k=1

n R
a

bR
a

b
KX(�;� )fk(�)fk(�)d�d�

but since the �rst term is independent from the orthonormal system ffkg, the
minimum of En2(ffkg) is attained with the maximum of

X
k=1

n Z
a

bZ
a

b

KX(�; � )fk(�)fk(�)d�d� :
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In order to minimize En2(ffkg) with respect to the constraint
R
a

b
fk(t)fk(t)dt = 1;

for everyk,
P

k=1

n R
a

bR
a

b
KX(�; � )fk(�)fk(� )d�d� should be maximized. We can there-

fore solve the equivalent problem of maximizing the quadratic integral form

J(fk; fk)=

Z
a

bZ
a

b

KX(�; �)fk(�)fk(�)d�d�

for every k, where KX(�; � ) is given continuous, simmetric, non-negative de�nite
and

R
a

b
fk(t)fk(t)dt = 1. It has already been shown in the Theorem 3.7 that the

maximum value of J(fk; fk) is �1, where �1 is the eigenvalue of greatest magnitude
of the kernel KX(�; � ) of the integral equation �

R
a

b
KX(�; �)f(� )d� = f(�), and the

function, which attains the maximum, is the corresponding normalized eigenfunction
f1: Since the kernel KX(�; � ) is non-negative de�nite, the eigenvalue is positive. In
fact bilinear integral forms non-negative de�nite have strictly positive eigenvalues,
as a result of the Hilbert's basic formula. This argument can be reviewed in Tricomi
(1957).

Now, if the eigenvalues of KX are numbered in non increasing order, so that
�1 > �2 > :::: > 0; then it is clear that

P
k=1

n R
a

bR
a

b
KX(�; �)fk(�)fk(� )d�d� shall

be maximized by chosing the corresponding �rst n orthonormalized eigenfunctions
f1; :::; fn:When these �rst n eigenvalues are distinct, a unique solution is provided
and

En2(ffkg)=
Z
a

b

E[Xt
2]dt¡

X
k=1

n Z
a

bZ
a

b

KX(�; �)fk(�)fk(� )d�d� =

Z
a

b

E[Xt
2]dt¡

X
k=1

n

�k

is the smallest n¡ th mean square error of truncation.

However, if there are indistinct eigenvalues, namely there is an eigenvalue �~
which has more than one corresponding eigenfunctions (say a �nite number k by
Remark 3.3: we say the index of the eigenvalue is k; let be 1 6 p 6 n such that
�~ = �p = ::: = �p+k¡1 if n > p + k ¡ 1 or �~ = �p = ::: = �n if n 6 p + k ¡ 1), these
k eigenfunctions are not uniquely determined. Anyway, any two competing sets
of orthonormal solutions for �~, f'1; :::; 'kg and f 1; :::;  kg, are related by an
orthogonal transformation, that is there exists an orthogonal k�k matrix A=(aij)
(i.e.

P
j=1

k
aijamj= �im) such that �i(t) =

P
j=1

k
aij j(t). Indeed, it is trivial that if

we have two orthonormal basis, the matrix of the basis change is orthogonal. Then

X
k=1

n Z
a

bZ
a

b

KX(�; � )fk(�)fk(� )d�d� =
X
k=1

p¡1 Z
a

bZ
a

b

KX(�; � )fk(�)fk(�)d�d� +

X
k=p

p+k¡1 Z
a

bZ
a

b

KX(�; � )'k(�)'k(�)d�d� +
X

k=p+k

n Z
a

bZ
a

b

KX(�; � )fk(�)fk(� )d�d� =

X
k=1

p¡1

�k+
X
k=p

p+k¡1 Z
a

bZ
a

b

KX(�; � )
X
j=1

k

akj j(�)
X
j=1

k

akj j(� )d�d� +
X

k=p+k

n

�k
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but X
k=p

p+k¡1 Z
a

bZ
a

b

KX(�; � )
X
j=1

k

akj j(�)
X
j=1

k

akj j(�)d�d� =

X
k=p

p+k¡1 Z
a

bZ
a

b

KX(�; � )
X
j ;i=1

k

akjaki j(�) i(� )d�d� =

X
k=p

p+k¡1 X
j ;i=1

k

akjaki

Z
a

bZ
a

b

KX(�; �) j(�) i(�)d�d� =

X
k=p

p+k¡1 X
j ;i=1

k

akjaki

Z
a

b

 i(�)

Z
a

b

KX(�; �) j(�)d�d� =

�~
X
k=p

p+k¡1 X
j ;i=1

k

akjaki

Z
a

b

 i(� ) j(� )d� = �~
X
k=p

p+k¡1 X
j ;i=1

k

akjaki�ij = �~
X
k=p

p+k¡1 X
j=1

k

akj
2 =

�~
X
k=p

p+k¡1

�kk= k�~=�p+ :::+�p+k¡1:

Thus X
k=1

n Z
a

bZ
a

b

KX(�; � )fk(�)fk(� )d�d� =

X
k=1

p¡1

�k+
X
k=p

p+k¡1 Z
a

bZ
a

b

KX(�; � )
X
j=1

k

akj j(�)
X
j=1

k

akj j(�)d�d� +
X

k=p+k

n

�k=

X
k=1

n

�k

Hence it turns out that En2(ffkg) is minimized as well. �
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5 Analytical applications to Gaussian processes.

The Karhunen-Loève Expansion assumes a special form when the process X is
Gaussian. We therefore brie�y recall the notions of Gaussian random variable and
Gaussian random vector in order to introduce the Gaussian processes.

5.1 Basics of Gaussian processes.
A real-valued Gaussian random variable X is completely de�ned by the following
density of its distribution function:

f(x)=
1

2��2
p exp

�
¡(x¡m)

2

2�2

�
where m=

R
R
xf(x) dx is the expectation E[X] and �2=

R
R
(x¡m)2f(x) dx is the

variance var[X]. We usually denote thatX is Gaussian distributed as X�N (m;�2).
The characteristic function, which uniquely determines the density, turns to be

'(�):=E[exp(i�X)] =
Z
R

exp(i�x)f(x)dx= exp
�
im�¡ 1

2
�2�2

�
Similarly, a real-valued Gaussian random vector X = (X1; X2; :::; Xn) is completely
de�ned by the following joint density:

f(x)=
1

(2�)ndet�
p exp

�
¡1
2
(x¡m)t�¡1(x¡m)

�
where x=(x1; x2; :::; xn)t;m=(m1; m2; :::;mn)t;mi=E[Xi] for every i=1; :::; n: The
covariance matrix � is a symmetric positive-de�nite matrix

�=�t=

0BBB@
�1
2�12 :::�1n
�21�2

2 :::�2n

�n1�n2 :::�n
2

1CCCAwhere�i2=E[(Xi¡mi)2] and�ij=E[(Xi¡mi)(Xj¡mj)]:

For every a; b2f1; :::; ng if we block out

X =

�
Xa

Xb

�
;m=

�
ma

mb

�
;�=

�
�a�ab

�ba�b

�
then for every i2fa; bg, Xi is a multivariate Gaussian with expectation vector mi

and covariance matrix �i.
The characteristic function turns to be

'(�)= exp
�
i�tm¡ 1

2
�t��

�
where �=(�1; �2; :::; �n).

Remark 5.1. Linear transformations preserve the Gaussian property of random
vectors.
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Proof. If X is a Gaussian random vector and A is an appropriate matrix, Y =AX
turns to be a Gaussian vector as well, since

�tY =�tAX =At�X = �tX

where � = At�, which implies that, up to a change of variable, the characteristic
function of Y turns to be the same of X:

'Y (�)= 'X(�): �

De�nition 5.2. fXt; t 2 T g is said to be a Gaussian process if it is a stochastic
process such that for all positive integers k and all choices of ft1; :::; tkg � T, the
random variables Xt1;Xt2; :::;Xtk form a Gaussian random vector, which means that
are jointly gaussian.

Proposition 5.3. If jointly Gaussian random variables are orthogonal, then they
are independent.

Proof. Let X = (X1; X2; :::; Xn) be a Gaussian vector of orthogonal components,
that is E[XiXj] = 0 for every i=/ j. Thus

�=

0BBB@
�1
2 0:::0

0�2
2 :::0

0 :::0�n
2

1CCCA
'X(�)= exp

�
i�tm¡ 1

2
�t��

�
= exp

 
i
X
j=1

n

mj�j¡
1
2

X
j=1

n

�j
2�j

2

!
=

Y
j=1

n

exp
�
imj�j¡

1
2
�j
2�j

2

�
=
Y
j=1

n

'Xj(�j):

What we have shown is that the joint characteristic function 'X of the Gaussian
variables X1; X2; :::; Xn is actually the product of their marginal characteristic
functions 'Xj. This fact is well known to be equivalent to the independence of X1;
X2; :::;Xn. �

5.2 Expansion and convergence of Gaussian processes

Theorem 5.4. If fXt; t2 [a;b]g is a zero mean Gaussian process, then the Karhunen-
Loève Expansion projections Zk are independent Gaussian random variables.

Proof. By the Karhunen-Loève Theorem, given �:a= t16 t26 :::6 tn= b, for every
positive integer k

Zk=

Z
a

b

Xtek(t)dt := lim
j�j!0

Xn
i=1

Xtiek(ti)(ti¡ ti¡1)= lim
j�j!0

Ik(�):
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Since fXtg is Gaussian, fXt1; Xt2; :::; Xtng are jointly Gaussian. If we take as
coe�cients of a linear combination �ki = ek(ti)(ti ¡ ti¡1), we have that Ik(�) =Pn
i=1

�kiXti. As a consequence for every set of indexes fk1; k2; :::; kng we have that0BB@
Ik1(�)
Ik2(�)���
Ikn(�)

1CCA=
0BB@

�k11�k12 :::�k1n
�k21�k22 :::�k2n

�kn1�kn2:::�knn

1CCA
0BB@

Xt1

Xt2���
Xtn

1CCA
thus by Remark 5.1 fIk(�)g is a Gaussian sequence (i.e. a discrete Gaussian pro-
cess), since every �nite set of samples forms jointly a random Gaussian vector. We
can therefore write the joint characteristic function of the random vector I(�) =
(Ik1(�); Ik2(�); :::; Ikn(�)). The calculations are greatly simpli�ed by the hypothesis
of having zero mean variables Xti. In fact, by linearity of the expectation, the
whole random vector I will have zero mean. In addition, the covariance matrix will
result very simple as well: (E[Ikj(�)Ikm(�)])16j;m6n. The characteristic function is
therefore

'I(�)(�1; :::; �n)= exp

 
¡1
2

Xn
j;m=1

�jE[Ikj(�)Ikm(�)]�m

!
:

Since Ik(�) converges in mean square to Zk as j�j¡! 0 for every k, we have that

E[Ikj(�)Ikm(�)] ¡!j�j!0
E[ZkjZkm]:

Indeed

jE[Ikj(�)Ikm(�)¡ZkjZkm]j= jE[Ikj(�)Ikm(�)+Ikj(�)Zkm¡ Ikj(�)Zkm¡ZkjZkm]j6
E[jIkj(�)[Ikm(�) ¡ Zkm]j] + E[jZkm[Ikj(�) ¡ Zkj]j] 6 fE[jIkj(�)j2]E[jIkm(�) ¡

Zkmj2]g
1

2 + fE[jZkmj2]E[jIkj(�)¡Zkj j2]g
1

2 ¡!
j�j!0

0

because �rstly

E[jIkj(�)j2]
1

2 ¡!
j�j!0

E[jZkj j2]
1

2 <1

given the fact that Ikj(�) 2 L2(
) and therefore limj�j!0 E[jIkj(�)j2] =
E[jlimj�j!0 Ikj(�)j2]; secondly by hypothesis we know that

E[jIkm(�)¡Zkmj2]¡! 0 andE[jIkj(�)¡Zkj j2]¡! 0 as j�j ¡! 0:

As a consequence of the fact just proven, we have that, by continuity

'I(�)= exp

 
¡1
2

X
j ;m=1

n

�jE[Ikj(�)Ikm(�)]�m

!
¡!
j�j!0

exp

 
¡1
2

X
j ;m=1

n

�jE[ZkjZkm]�m

!
:

Now, de�ne the random vector Z = (Zk1; :::; Zkn). By construction I(�) ¡! Z as
j�j! 0; therefore by continuity 'I(�)¡! 'Z, as j�j! 0.

As a result

'Z(�1; :::; �n)= exp

 
¡1
2

X
j ;m=1

n

�jE[ZkjZkm]�m

!
;

44 Section 5



which means that fZk1; Zk2; :::; Zkngare jointly Gaussian, because by the Karhunen-
Loève Theorem they are centered. By the arbitrariness of the indices, we have
therefore obtained that fZkg is a Gaussian sequence. Now, by the Karhunen-Loève
Theorem we also know that fZkg are orthogonal. By the Proposition 5.3 we conclude
that they are independent. �

We need a few results to achieve more information about the convergence of a
Gaussian process expansion in its probability space (
;F ;P ). The most iportant are
Etemadi's inequality and Theorem 5.10, both read in Billingsley (1995), pp. 288-290.

De�nition 5.5. A sequence of real valued random variables fSng is said to converge
to a random variable S almost surely (or with probability one) when

P
�n

!2
; lim
n!1

Sn(!)=S(!)
o�

=1; shortlywritten asP

 
lim
n!1

Sn=S

!
=1:

De�nition 5.6. A sequence of real valued random variables fSng is said to converge
to a random variable S in probability when for every ">0 there is an n2N such that

P
�n

! 2
;
���Sn(!)¡S(!)���> "o�=0; shortlywritten asP (jSn¡S j> ")=0

Proposition 5.7. The mean square convergence of a real valued random variables
sequence fSng implies its convergence in probability.

Proof. We recall the elementary fact that for any event A�
; P (A)=E[1A], where
1A is the indicator function of the event A. Therefore

P
����Sn¡S���> "�=Eh1����Sn¡S���>"�i

and since on the event
����Sn¡S���> "� we have trivailly that

���Sn¡S���2
"2

> 1, then

E
h
1����Sn¡S���>"�

i
6 E

24 ���Sn¡S���2
"2

1����Sn¡S���>"�
35= 1

"2
E

����Sn ¡ S
���21����Sn(!)¡S(!)���>"�

�
6

1
"2
E
h���Sn¡S���2i

because
���Sn¡ S���2> 0 for every ! 2
. Since by hypothesis of mean square conver-

gence lim
n!1

E
h���Sn¡S���2i=0, the result follows. �

Remark 5.8. Whereas the almost surely convergence implies the convergence in
probability , the viceversa is not always true. However series of independent variables
make an exception.
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Theorem 5.9. (Etemadi's inequality) Suppose that fZ1; :::; Zng are independent.

For �> 0; given Sk=
P
i=1

k

Zi with k6n,

P
�
max
16k6n

jSkj> 3�
�
6 3 max

16k6n
P (jSkj>�)

Proof. Let Bk be the set where jSkj> 3� but jSj j< 3� for j < k. Since the Bk are
disjoint,

P
�
max
16k6n

jSkj > 3�
�
6 P (jSnj > �) +

X
k=1

n¡1

P (Bk \ (jSnj < �)) 6 P (jSnj > �) +

X
k=1

n¡1

P (Bk\ (jSn¡Skj> 2�))=P (jSnj>�)+
X
k=1

n¡1

P (Bk)P (jSn¡Skj> 2�)6P (jSnj>

�) + max
16k6n

P (jSn ¡ Skj > 2�) 6 P (jSnj > �) + max
16k6n

(P (jSnj> �) + P (jSkj > �)) 6

3 max
16k6n

P (jSkj>�): �

Theorem 5.10. If fZjg is a sequence of independent real valued random variables,
then the convergence of the series

P
j=1

1
Zj in probability implies its convergence

almost surely.

Proof. It is enough to prove that if Sn=
P
i=1

n

Zi converges in probability to S, then

fSng is a Cauchy sequence with probability one. Since

P (jSn+j¡Snj> ")6P
�
jSn+j¡S j>

"
2

�
+P

�
jSn¡S j>

"
2

�
the hypothesis of convergence in probability, which yields lim

n!1
P (jSn¡S j> ") = 0,

obtains that

lim
n!1

sup
j>1

P (jSn+j¡Snj> ")= 0:

But by the Etemadi's inequality

P
�
max
16j6k

jSn+j¡Snj> "
�
6 3max

16j6k
P
�
jSn+j¡Snj>

"
3

�
;

therefore

P
�
sup
k>1
jSn+k¡Snj>"

�
6 3sup

k>1
P
�
jSn+k¡Snj>

"
3

�
:

Since by hypothesis lim
n!1

sup
j>1

P (jSn+j¡Snj> ")= 0; then

lim
n!1

P
�
sup
k>1
jSn+k¡Snj>"

�
=0

for each "> 0.
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Let now En;" be the event where supj ;k>n jSj¡Skj> 2", and put

E" :=
\
">0

En;":

Then En;"& E" as n ¡!1, and since limn!1P (supk>1 jSn+k ¡ Snj > ") = 0, the
continuity from above of the probability measure obtains P (E")=0. Now, the union
over the positive rationals [

q2Q+

Eq

contains the set where the sequence fSng is not Cauchy. By countability of Q,

P

 [
q2Q+

Eq

!
=
X
q2Q+

P (Eq)= 0

and therefore, passing to the complementary, the set over which fSng is Cauchy has
probability one. �

Corollary 5.11. For each �xed t2 [a; b],
P
k=1

1
Zkek(t) converges to Xt almost surely.

Proof. We have shown that the fZkg are independent, therefore so are fZkek(t)g,
since the eigenfunctions are deterministic. Thus the Theorem 5.10 can be applyed to
the series of independent random variables

P
k=1

1
Zkek(t), that is its convergence in

probability shall obtains the convergence almost surely . We therefore need to prove
only the convergence in probability . The argument is actually straightforward, since
by the Proposition 5.7 the convergence in mean square implies the convergence in
probability , and the mean square convergence of the partial sums Sn=

P
k=1

n
Zkek(t)

is actually a result of the Karhunen-Loève Theorem. �

As notable examples to test the Karhunen-Loève Expansion on, we chose two
signi�cant Gaussian processes, the Brownian motion and the Brownian bridge. We
have found some help in deriving their expansion from Ash (1990) and Wang (2008).
We start with a de�nition of Brownian motion introduced according to Loève (1978).

5.3 The Brownian motion
The ceaseless and erratic dance of microscopic particles suspended in a �uid is called
Brownian motion, after the botanist Brown, who �rst systematically investigated
it. Today we know that this motion is due to the bombardament of the particles
by the molecules of the medium. In a liquid, under normal conditions, the order
of magnitude of the �gures of these impacts is of 1020 per second. In 1905 kinetic
molecular theory led Einstein to the �rst mathematical model of Brownian motion:
the heat partial di�erential equation for the probability density that the particle be
at a particular position at a particular time. However rigorous de�nition and study
of mathematical Brownian motion requires measure theory. Some 20 years after
Lebesgue's theory, Wiener (1923) gave its �rst satisfactory construction. We shall
focus here on the basic case, the one-dimensional Brownian motion modelled as a
stochastic process fWt; t2T �Rg, where the W refers to Wiener.
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There are several de�nitions of the (one-dimensional) Brownian process. As
Loève (1978), pp. 235-236, we proceed by successive re�nements, based on required
or relevant properties. A process fWtg is Brownian distributed if it is decomposable,
that is its increments Wst :=Wt ¡Ws;where s < t for s; t 2 T , are independents on
disjointed intervals (s; t), and Wst� N (�(t ¡ s); �2(t ¡ s)), where � is called the
drift and �2> 0 is called the di�usion coe�cient of the process. A more restrictive
de�nition obtains by adding the requirements T = [0;1) and W0=0 almost surely .
At this point, with no real loss, from now on we restrict Brownian distributed to the
normalized form obtained taking �=0 and �2=1.

De�nition 5.12. A random process fWt; t > 0g; where W0 = 0 almost surely , is
Brownian distributed if its disjoint increments Wst are independent and centered
normal: Wst�N (0; t¡ s).

Proposition 5.13. If a stocastic process is Brownian distributed then it is a Gaus-
sian process such that Wt�N (0; t) and E[WsWt] =min (s; t).

Proof. Let fWtg be Brownian distributed. We have to prove that any �nite selection
of the process is jointly Gaussian. Fix any �nite sampling fWt1; Wt2; :::; Wtmg with
t1<t2<:::< tm. Denote u=(u1; :::; um). By decomposability the joint characteristic
function of W =(Wt1;Wt2; :::;Wtm) is

'W(u) = E[exp(i u1Wt1 + ::: + iumWtm) = E[exp(iu1Wt1 + ::: + i(um¡1 +

um)Wtm¡1+ iumWtm¡1 tm)] = :::=E[exp(i(u1+ :::+ um)Wt1 t2+ :::+ iumWtm¡1 tm)] =

E[exp(i�1Wt1 t2+ :::+ i�mWtm¡1 tm)] = 'W(�)= 'Wt1 t2
(�1):::'Wtm¡1 tm

(�m¡1)

where �k=uk+uk+1+ :::+um; �=(�1; :::; �m¡1) and W =(Wt1 t2; :::;Wtm¡1 tm). The
independent increments Wtk tk+1 being Guassian by de�nition, so is W indeed. As a
result W has a multivariate Gaussian distribution. Since any �nite sampling of the
process is jointly Gaussian, we have that fWtg is a Gaussian process.

We now �nd its covariance. Given 06 s6 t,
E[WsWt]=E[Ws((Wt¡Ws)+Ws)]=E[Ws(Wt¡Ws)]+E[Ws

2]=E[(Ws¡W0)(Wt¡
Ws)] + E[Ws

2] = E[Ws ¡W0]E[Wt ¡Ws] + E[Ws
2] = E[Ws]E[Wt ¡Ws] + E[Ws

2] =

0+E[Ws
2] =E[Ws

2] =E[(Ws¡ 0)2] =E[(Ws¡E[Ws])
2] = var[Ws] = s=min (s; t): �

We can now expand by the Karhuen-Loève Theorem the Brownian motion over
a �nite interval [0; 1]. By the Proposition 5.13 we know that the covariance is
KW(s; t) = min (s; t); s; t 2 [0; 1]. This allow us to apply the Karhunen-Loève
Expansion as follows.

Theorem 5.14. The Karhunen-Loève Expansion of the Brownian motion on [0;1] is

Wt=
2 2
p

�

X
k=1

1
Zk
�

2k¡ 1sin
�
(2k¡ 1)�

2
t

�
where Zk =

R
0

1
Wt 2
p

sin
h
(2k¡ 1)�

2
t
i
dt, �k =

4

(2k¡ 1)2�2 ; k 2 N, Zk� =
Zk

�k
p and the

convergence in mean square is almost surely.
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Proof. We have �rst to �nd the eigenvalues of (Af)(s)=
R
0

1
KW(s; t)f(t)dt.Z

0

1

min (s; t)e(t)dt=�e(s)Z
0

s

te(t)dt+ s

Z
s

1

e(t) dt=�e(s)

Di�erentiating with respect to s both of the sides we obtain

se(s)+

Z
s

1

e(t) dt¡ se(s)=�e0(s)Z
s

1

e(t) dt=�e0(s)

Di�erentiating again we obtain
¡e(s)=�e00(s)

its characteristic polynomial is x2 � + 1 = 0 which has roots x1;2 =
�i
�

p and the
solutions are therefore

e(s)= a sin
s

�
p + b cos

s

�
p

and if � = 0 then e(s) = �e00(s) � 0, therefore 0 is not an eigenvalue and we can
proceed to determine a, b and �.

For s=0 we have e(0)= b, but

e(0)=
1
�

Z
0

1

min (0; t)e(t)dt=0:

Thus b=0 and e(s)= a sin s

�
p . For s=1, we have

e0(1)=
1
�

Z
1

1

e(t) dt=0:

Since

0= e0(1)=

�
d
ds
e(s)

�
s=1

=

�
a

�
p cos

s

�
p

�
s=1

=
a

�
p cos

1

�
p

we obtain that if there is a non-trivial solution (a=/ 0), cos 1

�
p =0must yield. Namely,

1

�
p =¡�

2
+ k�=�

�
2k¡ 1
2

�
; k 2N:

The positive eigenvalues are therefore �k =
4

(2k¡ 1)2�2 ; k 2N and the eigenfunctions

are ek(s)= a sin
h
(2k¡ 1)�

2
s
i
where a must be a normalization constant. Then

1
a2

=





sin� (2k¡ 1)�2
s

�




2

2

=

Z
0

1

sin2
�
(2k¡ 1)�

2
s

�
dt =

2
(2k¡ 1)�

Z
0

(2k¡1)�
2

sin2zdz =

2
(2k¡ 1)�

Z
0

(2k¡1)�
2 1¡ cos(2z)

2
d z =

1
(2k¡ 1)�

Z
0

(2k¡1)�1¡ cos(u)
2

d u =

1
2(2k¡ 1)�

Z
0

(2k¡1)�
1¡ cosudu=

1
2(2k¡ 1)� [(2k¡ 1)�¡ sin((2k¡ 1)�)]= 1

2
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therefore a=



sinh (2k¡ 1)�

2
s
i




2

¡1
= 2
p

.

The whole arguent is invertible, by applying A to ek(s) = 2
p

sin
h
(2k¡ 1)�

2
s
i
we

obtain

(A ek)(s) =

Z
0

s

t 2
p

sin
�
(2k¡ 1)�

2
t

�
d t + 2

p
s

Z
s

1

sin
�
(2k¡ 1)�

2
t

�
d t =

4 2
p

(2k¡ 1)2�2
Z
0

(2k¡1)�
2

s

z sin zd z +
2 2
p

s
(2k¡ 1)�

Z
s
(2k¡1)�

2

(2k¡1)�
2

sin zd z =
4 2
p

(2k¡ 1)2�2

(
¡

z cos z
���
0

(2k¡1)�
2

s

+

Z
0

(2k¡1)�
2

s

cos z d z

)
¡ 2 2

p
s

(2k¡ 1)� cos z

����
s
(2k¡1)�

2

(2k¡1)�
2

= ¡

2 2
p

s
(2k¡ 1)�cos

�
(2k¡ 1)�

2
s

�
+

4 2
p

(2k¡ 1)2�2sin
�
(2k¡ 1)�

2
s

�
+

2 2
p

s
(2k¡ 1)� cos

�
(2k¡ 1)�

2
s

�
=

4 2
p

(2k¡ 1)2�2sin
�
(2k¡ 1)�

2
s

�
=�ke(s):

Eventually, according to the Karhuen-Loève Expansion, given

Zk=

Z
0

1

Wt 2
p

sin
�
(2k¡ 1)�

2
t

�
dt

we have that

Wt=
2 2
p

�

X
k=1

1
Zk
�

2k¡ 1sin
�
(2k¡ 1)�

2
t

�
where, being fWtg a Gaussian process, by Remark 4.7 and Theorem 5.4 it follows
that the random variables Zk

�k
p =

(2k¡ 1)�
2

Zk = Zk
� � N (0; 1) are independent. By

Corollary 5.11 the convergence of the expansion is predicted not only to be in mean
square with probability one. �

5.4 The Brownian bridge

The Brownian bridge can be derived from the Brownian motion fWt; t2 [0; 1]g by
conditioning W1 = 0. It is therefore a Brownian process tied down at both ends.
Hence the evocative name Brownian bridge: supported at both ends of the interval
by the conditioning, just as a bridge by pylons. It results particularly useful in the
Brownian interpolation of generated points by a Brownian motion simulation. An
equivalent de�nition, more close to our aims, is the following:

De�nition 5.15. The Brownian bridge is the process fBt; t 2 [0; 1]g such that
Bt=Wt¡ tW1, where fWt; t2 [0; 1]g is the Brownian motion.

Proposition 5.16. The Brownian bridge is a centered Gaussian process and its
covariance is KB(s; t)=min (s; t)¡ st:
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Proof. The Brownian bridge is centered because, by Proposition 5.13, the Brownian
motion is centered: E[Bt] =E[Wt]¡ tE[W1] = 0.

Let fBtg be a Brownian bridge. We have to prove that any �nite selection of the
process is jointly Gaussian. Fix any �nite sampling fBt1; Bt2; :::; Btmg and suppose
without loss of generality that t1< t2< ::: < tm. By Remark 5.1, B = (Bt1; Bt2; :::;
Btm) is a random gaussian vector, since it is the linear transformation of a random
gaussian vector:

B =

0@ Bt1���
Btm

1A =

0@ Wt1¡ t1W1
���

Wtm¡ tmW1

1A =

0@ Wt1���
Wtm

1A ¡ W1

0@ t1
���
tm

1A =

0BB@
10:::0¡ t1
01:::0¡ t2

0:::01¡ tm

1CCA
0BB@

Wt1���
Wtm

W1

1CCA=
0BB@

10:::0¡ t1
01:::0¡ t2

0:::01¡ tm

1CCAW
whereW=(Wt1 ; :::;W tm;Wt1) is jointly Gaussian, namely a random vector, because
by Proposition 5.13 fWtg is a Gaussian process.

We now evaluate the covariance of the Brownian bridge. Given 06 s< t6 1:

KB(s; t) = E[(Bt ¡ E[Bt])(Bs ¡ E[Bs])] = E[BtBs ¡ BtE[Bs] ¡ BsE[Bt] +

E[Bt]E[Bs]] = E[BtBs] = E[(Wt ¡ tW1)(Ws ¡ sW1)] = E[WtWs ¡ sWtW1 ¡
tW1Ws + stW1

2] = E[WtWs] ¡ sE[WtW1] ¡ tE[W1Ws] + stE[W1
2] = min (t; s) ¡

smin (t; 1)¡ tmin (1; s)+ stmin (1; 1)= s¡ st¡ ts+ st= s¡ st=min (s; t)¡ st: �

At this point we shall proceed, as previously for the Brownian motion, with the
Karhunen-Loève Expansion applied to the linear operator A corresponding to the
covariance kernel KB(s; t)=min (s; t)¡ st:

Theorem 5.17. The Karhunen-Loève Expansion of the Brownian bridge on [0;1] is

Bt=
2

p

�

X
k=1

1
Zk
�

k
sin(k�t)

where Zk=
R
0

1
Bt 2
p

sin(k�t)dt, �k=
1

k2�2
; k 2N, Zk�= k�Zk and the convergence in

mean square is almost surely.

Proof. We have �rst to �nd the eigenvalues of (Af)(t)=
R
0

1
KB(s; t)f(s)ds.Z

0

1

[min (s; t)¡ st ]e(s)ds=�e(t)Z
0

t

(s¡ st) e(s)ds+
Z
t

1

(t¡ st) e(s) ds=�e(t)

(1¡ t)
Z
0

t

se(s)ds+ t

Z
t

1

(1¡ s ) e(s) ds=�e(t)
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Di�erentiating with respect to t both of the sides we obtain

¡
Z
0

t

se(s)ds+(1¡ t)te(t)+
Z
t

1

(1¡ s) e(s) ds¡ (1¡ t)te(t)=�e0(t)

Z
t

1

e(s) ds¡
Z
0

1

se(s) ds=�e0(s)

Di�erentiating again we obtain

¡e(t)=�e00(t)

which is the same equation obtained for the Brownian motion. Therefore, as previ-
ously, the solutions are

e(t)= a sin
t

�
p + b cos

t

�
p

and if �=0 then e(t)=�e00(t)� 0, which means 0 is not an eigenvalue, and we can
proceed to determine a, b and �.

For t=0 we have e(0)= b, but

e(0)=
1
�

Z
0

1

[min (0; s)¡ s0]e(s)ds=0:

Thus b=0 and e(t)= a sin t

�
p , which we now substitute in

R
t

1
e(s)ds¡

R
0

1
se(s)ds=

�e0(s). We obtain

a

Z
t

1

sin
s

�
p ds¡ a

Z
0

1

s sin
s

�
p ds=�

a

�
p cos

t

�
p

�
p Z

t

�
p

1

�
p

sin zdz ¡�
Z
0

1

�
p

z sin zdz=
�

�
p cos

t

�
p

¡�cos z

����� t

�
p

¡1
�

p

¡� �
p
(
¡z cos z

����
0

1

�
p

+

Z
0

1

�
p

cos zdz

)
=� cos

t

�
p

cos
t

�
p ¡ cos

¡1
�

p + cos
1

�
p ¡ �

p
sin

1

�
p = cos

t

�
p

cos
t

�
p ¡ �

p
sin

1

�
p = cos

t

�
p

For t=1 we have

cos
1

�
p ¡ �

p
sin

1

�
p = cos

1

�
p

which yields

sin
1

�
p =0

Namely,
1

�
p = k�; k 2N:
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The positive eigenvalues are therefore �k =
1

k2�2
; k 2N and the eigenfunctions are

ek(t) = a sin(tk�) where a must be a normalization constant by orthonormality
condition on the eigenfunctios. Hence

1
a2

= ksin(tk�)k22 =
Z
0

1

sin2(tk�)dt =
1
k�

Z
0

k�

sin2zdz =
1
k�

Z
0

k�1¡ cos(2z)
2

dz =

1
4k�

Z
0

2k�

1¡ cosudu=
1
4k�

Z
0

2k�

1¡ cosudu=
1
4k�

[2k�¡ sin(2k�)]=
1
2

therefore a=



sinh (2k¡ 1)�

2
s
i




2

¡1
= 2
p

.

The whole argument is invertible, by applying A to ek(t)= 2
p

sin(tk�) we obtain

(Aek)(t) = 2
p Z

0

t

(s ¡ s t)sin(s k�) d s + 2
p Z

t

1

(t ¡ s t)sin(s k�) d s =

2
p Z

0

t

s sin(s k�) d s ¡ 2
p

t

Z
0

t

s sin(s k�) d s + 2
p

t

Z
t

1

sin(s k�) d s ¡

2
p

t

Z
t

1

s sin(sk�) ds= 2
p �Z

0

t

s sin(sk�)ds¡ t
Z
0

1

s sin(sk�) ds+ t
Z
t

1

sin(sk�)ds
�
=

2
p

k�

�
1
k�

Z
0

tk�

z sin zdz ¡ t
k�

Z
0

k�

z sin zdz + t

Z
tk�

k�

sin zdz
�
=

2
p

k�

8<:¡ 1
k�
z cos z

�����
0

tk�

+

1
k�

Z
0

tk�

cos zdz+
t
k�
z cos z

����
0

k�

¡ t
k�

Z
0

k�

cos zdz ¡ t cos z jtk�k�
9=;=

2
p

k�

�
¡t cos( tk�) +

1
k�

sin(tk�)+ t cos (k�)¡ t cos k�+ t cos (tk�)
�
=

2
p

k2�2
sin(tk�)=�kek(t):

Eventually, according to the Karhuen-Loève Expansion, given

Zk=

Z
0

1

Bt 2
p

sin(k�t) dt

we have that

Bt=
2

p

�

X
k=1

1
Zk
�

k
sin(k�t)

where, being fBtg a Gaussian process, by Remark 4.7 and Theorem 5.4 it follows
that the random variables Zk

�k
p =k�Zk=Zk

��N (0;1) are independent. By Corollary

5.11 the convergence of the expansion is predicted to be in mean square with prob-
ability one. �

Analytical applications to Gaussian processes. 53



Bibliography
R. B. Ash. Information Theory . Corrected reprint of the 1965 original. Dover, 1990.

P. Billingsley. Probability and Measure. Wiley, 1995.

H. Brezis. Functional Analysis, Sobolev Spaces and Partial Di�erential Equations.
Springer, 2010.

J. L. Brown, Jr. Mean Square Truncation Error in Series Expansions of Random
Functions. Journal of the Society for Industrial and Applied Mathematics 8.1: 28-
32, 1960.

R. Courant and D. Hilbert. Methods of Mathematical Physics. Vol. I, Wiley, 1989.

K. Fukunaga and W. L. G. Koontz. Representation of Random Processing
Using the Finite Kahrunen-Loève Expansion. Information and Control 16: 85-
101, 1970.

P. E. T. Jorgensen and M.-S. Song. Entropy Encoding, Hilbert Space and Kar-
hunen-Loève Transforms. Journal of Mathematical Physics 48, 2007.

K. Karhunen. Zur Spektraltheorie Stochastiche Prozesse. Annales Academiae Sci-
entarum Fennicae. Ser. A. I. Math.-Phys. 34, 1946.

K. Karhunen. Uber lineare methoden in der wahrscheinlichkeitsrechnung. Annales
Academiae Scientarum Fennicae. Ser. A. I. Math.-Phys. 37: 3-79, 1947.

D. D. Kosambi. Statistics in Function Space. Journal of the Indian Mathematical
Society 7: 76-88, 1943.

M. Loève. Fonctions aléatoires du second ordre. Processus Stochastique et
Mouvement Brownien, P. Levy (ed.), 1948.

M. Loève. Probability Theory II . Springer-Verlag, 1978.

M. Reed and B. Simon. Methods of Modern Mathematical Physics I: Functional
Analysis. Academic Press, 1980.

F. G. Tricomi. Integral Equations. Interscience, 1957.

L. Wang. Karhunen-Loeve Expansions and their Applications . Dissertation, The
London School of Economics and Political Science. Ann Arbor: ProQuest/UMI,
2008.

D. Williams. Probability with Martingales. Cambridge University Press, 1991.

54 Section


