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Introduction

The integrals [ R(t, \/p(t)), where R is a rational function and p(t) is a poly-
nomial of third and fourth degree without multiple roots, are called elliptic
integrals, because they first occur in the formula for the arc length of the el-
lipse. The functions obtained by inverting elliptic integrals are called elliptic
functions, and the curves that require elliptic functions for their parametriza-
tion are called elliptic curves.

Elliptic integrals arise in many important problems of geometry and mechanics.
Indeed the arc of length of an ellipse represents the first approximation of the
orbit’s lenght of a planet around the sun.

In this thesis we shall consider other relations between mechanics and elliptic
integrals. First, we shall compute the action-angle variables of one-degree of
freedom Hamiltonian systems with a cubic or quadratic potential using elliptic
integrals. Then we shall redo the computations of Moser [11] for the integrable
systems of the geodesics on an ellipsoid and of the Neumann system on a sphere

in R", since in the case n=2 they can be solved by elliptic integrals.

The theory of elliptic functions and elliptic integrals has a long history. It
began with the discovery of a remarkable property of the arc of the leminiscate
of Bernouilli, made in 1718 by the Italian count Fagnano.

The leminiscate is the locus of a point p = (x, y) in the plane so that the product

of its distances from two fixed points, called the foci, has constant value c2.
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Figure 1: Leminiscate of Bernouilli
We choose the foci as (+a, 0) with ¢ = a, so that the leminiscate passes throught

the origin and is symmetric with respect to the two coordinate axes. Let
a=1/ V2 and 7 be the distance between the point p and the origin. Since
the curve is symmetric with respect to both coordinate axes, we can restrict

the curve to the first quadrant.

(x,y)

(a,0)

Figure 2: Arc of a leminiscate
The arc length s in function of r satisfies

ds 1

dr V1—r?

so that the lenght of the leminiscate, restricted to the first quadrant, is:

S_/l dr
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Fagnano discovered how to double and halve a leminiscate arc given by its end
point using ruler and compass alone.

In 1751, Euler started his investigations closely related to the work of Fagnano,
which led him to the discovery of the addition theorem for elliptic integrals. He
knew that

/“ dt +/” dt _/T dt
o VI—12 Jo V1—-12 Jo V112
from the trigonometric addition theorem

sin(x + y) = sinx cos y + cos xsiny,

by substituting

u = sin(x),
v = sin(y),

r=sin(z +y) = u(v1-0?) +o(V1-u?).

In the case of the leminiscate, he replaced the expression (1 — u*) under the
radical sign by the polynomial P(u) = 1+ au® — u*, where a is an arbitrary

constant, and thus proved the addition theorem

\/_+'U\/_u

e and

f R ol v

Finally Euler discovered the invariance of the integral under the fractional linear

transformation 5
aw +

= — o — 0.
S ad — By #

Indeed, by applying it at the variable u of a generic polynomial P(u) of fourth
degree, he found that
H(w) = (yw + 6)*P(u)

is again a polynomial of fourth degree in w. In particular, with a suitable choice
of the values of a, a, 5, v and §, H(w) can take the form
H(w) =1+ aw® — w".

Since

ad — By
du = ———dw
(yw — §)?
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it follows that
dw

du
VPw) JHw)

This approach yields the general form of the Euler addition theorem.

(ad — By)~

The idea of inverting elliptic integrals to obtain elliptic functions is due to
Gauss, Abel and Jacobi.

Gauss first considered inverting an elliptic integral in 1796, in the case of

The following year he inverted the leminiscatic integral

Todt
“: / V-t
defining the leminiscatic sine function = = si(u), and he found sl(u) is doubly
periodic.
Thus Gauss discovered the double periodicity property of the elliptic functions,
but refrained from publishing any results. Beetween 1827 and 1829, this pro-
perty was discovered (and released) by Abel.

This dissertation consists of five different chapters.

The first chapter introduces the necessary definitions concerning differential
geometry, symplectic geometry and complex analysis, which should be useful
to the reader to gain a better understanding of the following chapters.

In the second chapter we write some of the theory of the elliptic functions,
which are doubly-periodic meromorphic functions on C. We consider the fun-
damental parallelogram of the periods, and use it to characterize the the other
properties of the elliptic functions. We construct elliptic functions of order
N > 3, using the convergence of certain infinity sums over a lattice and the
infinite products of meromorphic functions. Thanks to them we define the o
and the ¢ Weierstrass functions. We define the o Weierstrass function from
the ¢ function, and show that it is an elliptic function of second order. The @

Weierstrass function solves the differential equation

0 (2)* = 4p(2)° — g20(2) — gs.



Introduction

We then use the property of the o, (, p Weierstrass functions to characterize
some elliptic integrals. Moreover, from the differential equation we can para-

metrize elliptic curves and describe some of their properties.

The third chapter covers Lagrangian mechanics which describes the motion
of a mechanical system by solving the Lagragian equations of motion that is
obtained from the calculus of variations.

Throughout the fourth chapter we obtain the Hamiltonian function by applying
the Legendre transformation to the Lagrangian function. From this we obtain
the Hamiltonian system of equations. We then define the Hamiltonian systems
as a triple (M, w, H) where M is an even-dimensional manifold, w a symplectic
structure and H € C*°(M,R) the Hamiltonian function. With the Arnold-
Liouville theorem, we see the condition for which a Hamiltonian system is
integrable by quadrature. The chapter is concluded by with two basic examples
of one degree of freedom Hamiltonian system that involve the elliptic integrals.
In particular is explained how transform the elliptic integrals of the first kind
with cubic and quartic polynomials into the Weierstrass form.

In the last chapter the integrable systems of the geodesic on an ellipsoid and the
Neumann system on a sphere are considered. These two systems are linked by
the Gauss map. Here, Moser’s computations [11] are redone and it is shown that
in the case n = 2 the integral associated to the quadrature becomes elliptic.
Certain calculations of the two examples shown in chapter four and certain
proofs in the last chapter were made by using Matlab programs. Finally, the

codes are listed in the appendix.
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Chapter 1

Mathematical Preliminares

1.1 Differentiable manifold

Definition 1.1.1. An n-dimensional smooth manifold is a topological space
M together with a countable collection of open sets {U,} called the coordinate

charts such that
L4 U Ua = M7
o let V, C R"” be an open set. There exist one-to-one homeomorphisms

Oo : Uy, —> V,,, called the coordinate functions, such that for any pair of

overlapping coordinate charts the maps

350 Pa : Ga(Ua NUp) — ¢5(Ua NUp)
are smooth (i.e. infinitely differentiable) functions from R™ to R".

The pair (U,, ¢) is called chart, while the whole family {(Ua, gba)} is called

atlas.

Definition 1.1.2. Let f : M — N be a map from an m-dimensional manifold

to an n-dimensional manifold. f is said differentiable at p € M if there are
(U, ) and (V,4) charts in M and N respectively, with p € U and f(p) € V,
such that f(U) C V and

Yo fodt:g(U) — (V)

7
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is C with respect to each ¢(p). Differentiable maps are also said to be smooth.

f is a diffeomorphism if 1) o f o ¢~ is invertible and the inverse is C*°.

Definition 1.1.3. Let ¢ : (—¢,e) — M be a differentiable curve, ¢ > 0, such
that ¢(0) = x. The tangent vector to M at x is a velocity vector of curves on

M passing thought x:
o(t) — o
x = lim —( ) <0)

t—0 t

Definition 1.1.4. Two curves ¢(t) and 1(t) are equivalent if ¢(0) = ¥ (0) = x
and 1tlimo(gb(t) —(t))/t =0 in some chart.
—

It’s easy to check that the set of tangent vectors is closed under scalar

multiplication and addition.

Definition 1.1.5. Let M be a differentiable manifold of dimension n, and let
x be a point of M. The set of all tangent vectors to M at x is a vector space

of dimension n called the tangent space to M at x, and is denoted by T, M.

Definition 1.1.6. Let U be a chart of an atlas for M with coordinates ¢y, . . ., qx.

Then the components of the tangent vector to the curve q = ¢(t) are the num-
bers &1, ..., &, where & = (d¢;/dt)|,_,.

Definition 1.1.7. The union of the tangent spaces to M at the various points,

U T.M, has a natural differentiable manifold structure, the dimension of
zeM
which is twice the dimension of M. This manifold is called the tangent bundle

of M and is denoted by T'M.

A point (z,&) € TM is a point ¢ € M and a vector £ € T, M, tangent to
M at x. Let qq,...,q, be local coordinates on M, and &, ...&, be the com-
ponents of tangent vector in this coordinate system. Then the 2n numbers
(q1,- -+, Gn, &1, - - - &) give the local coordinate system on T'M. One sometimes

writes dg; for &;.
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1.2 Differential forms

1.2.1 Exterior form

Definition 1.2.1. A form of degree 1 (or a 1-form) on R™ is a linear function
w:R" — R, ie., VA, A2 € R and V&, & € R”,

w(A€1 + Aaba) = Mw(&1) + Aaw(&a),

The space of 1-forms on R™ is itself n-dimensional, and is also called the
dual space (R™)*.
Suppose that we have choosen a linear coordinate system xq,...,x, on R™.
Each coordinate z; is itself a 1-form. These 1-forms are linearly independent.

Therefore, every 1-form w takes the form
w = ardri + -+ apdz,, a; € R.
The value of w on a vector £ is equal to
w() = arz1(&) + - - - + apxn(§), a; € R.

where z1(§), ..., x,(§) are the components of £ in the choosen coordinate sy-

stem.

Definition 1.2.2. An exterior form of degree 2 (or a 2-form) is a function of

pairs of vectors w? : R?" — R, which is bilinear and skew-symmetric:

W2()\1€1 + X262, 83) = )\1002(51, £3) + )\2002(52, £3)

W2<§17§2) = _W2<§27§1)
VAL, A2 € R and &, 6,83 € R™.

The set of all 2-forms on R™ becomes a real vector space with the addition and

the multiplication by scalars.
Definition 1.2.3. A 2-form is non-degenerate if

W' (&n) =0, VneR"=£=0
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1.2.2 Exterior product

Let & be a vector in R™. Given two 1-forms w; and wy, we can define a mapping
of R to the plane R x R by associating to £ the vector w(£) with components

wi(€) and wy(€) in the plane with coordinates wy, ws.

Definition 1.2.4. The value of exterior product wy A wo on the pair of vectors
&1,& € R™ is the oriented area of the image of the parallelogram with sides

w(&1) and w(&z) on the wy,ws - plane:

wi(&) wa(&r)

(w1 Awa)(&1,62) = w(62) walen)|

wi A wy is a 2-form, so is bilinear and skew symmetic:

wl/\wgz—wg/\wl

()\10)1 + )\2&12) Nws = )\1001 N wz + )\2&12 N\ ws.

Follows

wi/\wi:O.

1.2.3 Differential forms
We give here the definition of differential forms on differentiable manifolds.

Definition 1.2.5. A differential form of degree 1 (or a 1-form) on a manifold
M is a smooth map
w:TM — R

of the tangent boundle of M to the line, linear on each tangent space T, M.

Let M = R" be with coordinates x1,...,x,. Let £ € T,R™ be a vector,

= 0
5 = ;al(x)al',L’

with 5
dml(g) :ai(f)a de(a_iL'j) :(Si,j 7= 1,...,7”6.
The n 1-forms dz,...,dx, on T, M are linearly independent and form a basis

for the n-dimensional space of 1-forms on T, M. So we can say:
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Proposition 1.2.1. Let w be a differential 1-form on the space M with a given

coordinate system x1,...x,. Then w can be written uniquely in the form
w=a(x)dry + -+ ap(x)dz,
where the coefficients a;(x) are smooth functions.

Definition 1.2.6. Let M be an n-dimensional differentiable manifold. A 1-
form on the tangent space to M at point x is called cotangent vector to M at x.
The set of all cotangent vectors to M at x forms an n-dimensional vector space,
dual to the tangent space T, M. We will denote this vector space of cotangent
vectors by T M and call it the cotangent space to M at x.

The union of the cotangent spaces to the manifold at all of its points is called
the cotangent boundle of M and is denoted by T*M. The cotangent bundle has

a natural structure of a differentiable manifold of dimension 2n.

Definition 1.2.7. A differentiable k-form w® at point z of a manifold M is
an exterior k-form on the tangent space T, M to M at z, i.e. a k-linear skew-

symmetric function of k vectors &1, ... &, tangent to M at x.

Theorem 1.2.2. Every differential k-form on the space M with a given co-
ordinate system x1,...x, can be written uniquely in the form
wh = Z iy (@)dxg, Ao Ndag,
1< <ig
where a;, .., (x) are smooth functions on R™.

Definition 1.2.8. We define the exterior derivative of the k-form

n

Wk = E a1, ikdxin Ao N dag
i=1

be the (k + 1)-form

n
dwk = Z daﬂ’,_,,ik A di[fﬂ VASRERIAN df]?zk

i=1

So, if w is a 1-form, ,
w=aydry + -+ apdx,
its exterior derivative is

dw = day Ndxy + -+ + day, N dx,.
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Theorem 1.2.3 (Stoke’s Theorem). Let M be a n-dimensional orientable man-
ifold, i.e it can be given an orientation, and w a k-form.
Then the integral of a differential form w over the boundary of M 1is equal to

the integral of its exterior derivative dw over M, so

/ w:/ dw.
oM M

Definition 1.2.9. A differential form w on a manifold M is closed if its exterior

derivative is zero: dw = 0.

1.3 Symplectic geometry

Symplectic vector spaces

Definition 1.3.1. A symplectic linear structure on R*" is a non-degenerate
bilinear skew-symmetric 2-form given in R?". This form is called the skew
scalar product and is denoted by [£,n] = —[n, &].

The pair (R?",[,]) is called the symplectic vector space.

Definition 1.3.2. Let (p1,...,Pn,q1,---Gn) be coordinate functions on R?",

and w? be the form

n
w? = de,- A dg;.
i=1

This form is nondegenerate and skew-symmetric, it can be taken for a skew-
scalar product: [£,7] = w?(£,n). In this way R*" = (p, q) receives a symplectic

structure and (R?",w?) is called the standard symplectic structure.

Definition 1.3.3. A symplectic basis is a set of 2n vectors e,,, e, , 1 =1,...,n,

whose scalar products have the following structure:
ey, ep] = [eq,eq] =0, [ey,e,]l =045 Vi,j=1,...n,
where 9;; is the Kronecker delta function.

If we take the vectors of a symplectic basis as a coordinate unit vectors,
we obtain a coordinate system p;,¢q; in which [ , | takes the standard form

dpy N dgi + - - - + dp, A dg,. Such a coordinate system is called symplectic.
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Definition 1.3.4. A linear transformation S : R?*" — R?" of the symplectic
space R?" to itself is called symplectic if, V& = 7" [ai(p, q)e,, + Bi(p, q)eqi]
and Vnp =>"" [%epi + (L-eqi}, it preserves the skew-scalar product:

[55’577] = [5777] = aiéj - ﬁi%, Vé,n e R?",

It follows that a transformation S : R?® — R?" of the standard symplectic
space (p, q) is symplectic if and only if it is linear and canonical, i.e. preserves
the differential 2-form

w? =dpy ANdqy + -+ + dp, A dgy,.
In this coordinate system, the transformation is given by a 2n x 2n matrix 5.

Theorem 1.3.1. A transformation is symplectic if and only if its matriz S in

the symplectic coordinate system (p, q) satisfies the relation

S'IS =1,
where
0 —F
I = ,
E 0

S’ is the transpose of S and E is the n x n identity matriz.

Symplectic atlas

An atlas of a manifold M?" is called symplectic if the standard symplectic
structure w? = dp A dq is introduced into the coordinate space R** = (p, q),
and the transfer from one chart to another is realized by canonical (i.e. w?

preserving) transformation ¢g o ¢, !.

Theorem 1.3.2 (Darboux’s theorem). Let w? be a closed nondegenerate dif-
ferential 2-form in a neighborhood of a point T in the space R**. Then in some
neighborhood of & one can choose a coordinate system (py, ..., Pnyq1,s - - - qn) Such
that the form has the standard form:

n
w? = de,» A dg;.
i=1
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1.4 Complex analysis review

The Riemann Sphere

In order to discuss meromorphic functions, we use the extended complex plane

Y =CU{o0}

where oo is an extra point called the point at infinity. ¥ may be regarded as

being a sphere. Indeed, consider the 2-sphere

§? = {($1,$2,5E3) € R322 4 22 + m% — 1}

in R?, and identify the complex plane C with the plane x3 = 0 by identifying
z =z +iy (r,y € R) with (z,y,0)Vz € C. If N = (0,0,1) is the north pole
of S2, then the stereographic projection from N to the plane (z,%,0) gives a

bijective map

7S\ {N} — C
Q— A,

where A € C, Q € S\ {N}, and A, Q, N are collinear.

7 is an homorphism between S? \ {N} and C (see [6]), so we can extend
7w S?\ {N} to a bijection 7 : S? — ¥ by defining 7(N) to be oo, and
use it to transfer algebraic and topological properties from X to S? and vice-
versa. Since Y has the same topological properties as the sphere S?, ¥ is often

referred as the Riemann sphere.
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Figure 1.1: Riemann sphere

Analytic and meromorphic functions
Let U C C be an open set (i.e. Vz, € U,Ir > 0s.t. {|z — 2| <r} C U).

Definition 1.4.1. A function f is said to be holomorphic on U if f is complex
differentiable on each point of U. i.e. at zg € C, the limit

lim f(zo+h) — f(20)
h—so h

exists in C.

Theorem 1.4.1. Let f : U — C , and write f=u+iv, where u,v are real

valued functions.

o if f € CY(U) satisfies the Cauchy-Riemann equations
ou OJv  Ou v

or — dy dy  ox
then f is holomorphic in U

e If fis given by a power series

f(2) =) an(z—z)"

n=0
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that converges on an open disc B(zo,r) of centre zo and radious of con-

vergence r > 0, then f is holomorphic on B(zo,T) .

Definition 1.4.2. A function f : U — C is said to be analytic on U if for
each point zg € U there exists an open disc B(zp,7) € U in which f can be

written as the sum of a power series centrered at z, i.e.

f(z) = ian(z —29)", for z € B(z,r).
n=0

Proposition 1.4.2. f analytic on U = f holomorphic on U.

Definition 1.4.3. Let 0 < r; <randz € C. Let A = {Z eClri <|z—2] < rg}
an annulus. f(z) is called Laurent series is has the form

[e.9]

f(z) = Z(ln<2—2’0)n+z(z_b—nzo)n, (11)

n=0
where the coefficients a,,b, for n € Z are complex numbers, and both the
series converge absolutely on A and uniformly in sets of the form B, ,, =
{z]p1 < |z — 20| < p2}, where 11 < p1 < ps <71

Let’s see the special case of the Laurent series when r; = 0:

Definition 1.4.4. If f is analitic on {z € C|0 < z — zp| < 2}, which is deleted

ro neighborhood of 2y, we say that zy is an isolated singularity.

e If z; is an isolated singularity of f ad if all but a finite number of the b,
in 1.1 are zero, then zy is called a pole of f. If k is the highest integer
such that b, # 0, zo is called a pole of order k. If 2y is a first-order pole,

we also say it is a simple pole. The Laurent series has the form

b + b +ap+ai(z — z) +
(z—zo)k ...(Z_Z()) 0 1 0
The part
e
(z—20)F (22— 2)

is called principal part of f at z.

e if an infinite number of b, in 1.1 are nonzero, then zj is called an essential

singularity.
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o We call by in 1.1 the residue of f at zy, and we denote it with Res(f(z)).

z2=20

e If all the by in 1.1 are zero, we say that zy is a removable singularity, then

o
= Z an(z — 29)"
n=0

l.e. is a convergent power series.

Definition 1.4.5. Let f be an analytic function and F'(z) = f(1/z). Then we
say that:

e f has a pole of order k at oo if I' has a pole of order k at 0;
e f has a zero of order k at oo if F' has a zero of order k at 0;
1
e we define Res(f(w)) = —Reés(—2F(z)), where w = 1.
w=00 z= z

Definition 1.4.6. A function is said to be meromorphic in A if it is analytic

on A, except for poles in A.

Theorem 1.4.3 (Residue theorem). Let f be analytic on a region A\ {z}
and have an isolated singularity at zy. If v is any circle around zg in A whose

interior, except for the pomt 2o, lies in A, then

7w | 1)z = Restr(2).

zZ=z0
Proposition 1.4.4. Let v be a simple closed curve in C . Let f be ana-

lytic along v and have only finitely many singularities outside v at the point

21y .., 2. Then

- / ;= Zg%e; )) + Res(1(2)).

Theorem 1.4.5 (Cauchy’s Residues Theorem). Suppose f and g are analytic

i a neirborhood of zy with zeros there of order n and k respectively.

Let h(z) = ‘;Ej; Then

e if k > mn, then h has a pole of order k —n at zy;

e if k =mn, then h has a removable singularity with nonzero limit at zy;

e if k < n, then h has a removable singularity at zy, and setting h(zp) = 0

produces an analytic function with a zero of order n — k at 2.
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Chapter 2

Elliptic functions

2.1 Periodic functions

Definition 2.1.1. Let f be a function defined on the complex plane C. Then

a complex number w is called a period of f if

fz+w)=f(z)
Vz € C, and f is called periodic if it has period w # 0.

The set 2 of periods of a function f has two important properties: one
algebraic, valid for all f, and one topological, valid for a non-constant mero-

morphic functions f.

Theorem 2.1.1. Let Qf be the set of periods of a function f defined on C ;
then Qy is a subgroup of the additive group C .

Theorem 2.1.2. Let Qf be the set of periods of a non-constant meromorphic
function f defined on C ; then Qy is a discrete subset of C .

We now show that there are three types of discrete subgroups of C, iso-

morphic to 0,7 and Z x Z respectively.

Theorem 2.1.3. Let 2 be a discrete subgroup of C . Then one of the followings
holds:

i. Q={0};

19
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ii. Q= {nwiln € Z} for some fizred w; € C\ {0}, and so Q is isomorphic to
Z;

1wi. Q= {mwl + nws|n, m € Z} for some fized wy,ws € C\{0}, where w, and
wy are linearly independent over R, i.e Im (i—f) # 0. In this case, € is

1somorphic to Z X 7.
Definition 2.1.2. If a function f has is set 2 of periods of type (i), then f
is simply periodic; if 1 is of type (iii), then f is doubly periodic.
Groups 2 of type (iii) are called lattices, and a pair {w;,ws} such that

Q= {mw1 + nwy|m,n € Z}

is called basis for the lattice.
The parallelogram M with vertices 0, wy, ws, wy + ws is called fundamental par-

allelogram for €) .

o w,

If My is another fundamental parallelogram for €2 , then M and M; have the same

area. Indeed

Theorem 2.1.4. Let Q2 be a lattice with basis {wy,ws}. Then {w],wh} is a
basis for Q0 <= Fa,b,c,d € Z such that

/
w; = awq + bwsy

wy = cwy + dws.

and ad — bc = £1.
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Given a lattice €2 | we define 21,29 € C to be congruent mod 2 , written

z1 ~ 29, if 21 — 29 € Q, i.e.
21 = z3(mod Q) <= 29 = z; +w, for some w € Q.

Congruence mod §? is easily to be an equivalence relation on C.
We can identify doubly periodic functions with functions on a quotient space
C/Q, and this is identified with the torus obtained by gluing together both

opposite pairs of edges of the fundamental parallelogram .

w, W +w
Pk KK K kK KKK KK KP L 2
[} /
I} ] =
7 N
II II “” 3
[ /

[/ I_l !

I ! > \ W, =W, +w
/ / 171
[ / \

[ / \
[ U -
/ / - =
@ ek Ok Kk ok kK ok k k X @ sz
w

2.2 General properties of elliptic functions

Definition 2.2.1. A meromorphic function f : C — X is elliptic with respect
to a lattice 2 C C if f is doubly periodic with respect to €0 , i.e. if

flz+w) = f(z) Vze C,w e (),

so that each w € Q is a period of f.
If f is elliptic with respect to €2 , then we may regard f as a function f : T —
¥, where 7' is the torus 7' = C/(.
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Figure 2.1: f: T — X

Definition 2.2.2. The order of the elliptic function f(z) , written N = N(f)
is the number of poles counted with multiplicity of f(z) mod € , i.e N is the

sum of the orders of the poles of f(z) in the interior of M.
Theorem 2.2.1. An elliptic function f has order N =0 <= f is constant.

Proof. (<= ) Let M be a (closed) period parallelogram for the elliptic function
f(2) . Suppose f(z) hasorder N = 0, i.e. it has no poles and so f is holomorphic
on C . In particular it is continuous and f(€2) = f(M). Since the continuous
image of a closed and bounded set is bounded, f(M) is a bounded subset of
C . So dM > 0 such that Vz € M, |f(z)} < M. Vz € C,d m,n € Z such
that z; = 2 — mw; — nwe € M and f(z) = f(z1) < M. Then f is bounded and

holomorphic on C , and, for the Liouville theorem, f is constant. m

Theorem 2.2.2. Let f(z) be elliptic, let T be a period parallelogram for f(z) with
no poles of f(z) on ON. Let by, ..., bs be the poles of f(z) in M. Then the sum

of the residues at poles of f(z) inside M is zero, i.e.
> Res(f(2)) = 0.
-1

Proof. We use the Cauchy’s Residue Theorem

y 1
Zzliebf(f(z)) = o ]gl_l f(2)dz.
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So
t+wi; + woy

t+ wo t 4w

t

1 1 1
%(/ ft + wix)wrde + f(t + wi + wer)wodx
=0

1 =0 1
—l—/ flt+w + we — wiz)(—wy )dx + / f(t + wo — wox)(—ws)dx).
z=0 =0

By substitution y = 1 — x in the last two integrals, and since w; and w, are

periods, we have

I 1
_(/ f(t +wiz)wdr + / f(t 4+ woz)wadx
21 oo 2—0

1 1
- / [t +wiy)wrdy — / f(t + way)wady) = 0.
y=0 y=0

Corollary 2.2.3. There are no elliptic function of order N = 1.

Proof. Suppose f is elliptic of order N = 1. So we have a pole at z = b, and
ailb, with residue szl;s(f(z)) =a_1 #0.

the Laurent series has principal part
But by Theorem 2.2.2

z —

0= Res(f(2)) =a-
and we have the contraddiction.
O]

Theorem 2.2.4. Let f(z) be a non constant elliptic function of order N. Then
the number of zeros of f(z), mod ), counted with multiplicity, equals the number

of the poles of f(z), mod 2, counted with multiplicity.
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Let M be a period parallelogram with no zeros and no poles of f(z) on
on. Let z = ay,...,a, be the zeros of f(z) inside M with orders ky,...,k,
respectively. Let z = by, ..., bs be the poles of f(z) inside M with orders [y, ..., [
respectively. Then

i=1 j=1

Proof. % is meromorphic, and since dM contains no poles or zeros of f, f'/f

is analitic on Jr1. Since f’/f is elliptic, from the previous theorem, we have

) s
) 0 L fe(p) =0

Now, f'/f has poles at poles and zeros of f and nowhere else. Suppose f has

zeros at z = a with multiplicity k. So

where ¢ is analytic and g(a) # 0, and
fl(2)=k(z—a)'g9(2) + (z —a)*¢'(z)  near z = a.

Then
f'(2) _k(z=a)*g() + (z—a)'d'(z) K 9'(2)

) - (- — g (2) Tea) g
so that f’/f has residue k at z = a.

Let’s do the same for f with a pole z = a of multiplicity k.

f(2) = (z2—a)"g(z) = f'(2) = —k(z—a) " 'g(2)+(2—a) *¢'(z) near z =a
Then we have

e kg

fz)  (z—a)  g(2)

So that f’/f has residue —k at z = a. Since the sum of the residues in zero, the

number of zeros must be equal to the number of poles counting with multiplicity.

So f(z) = 0 has N solution, as required. O

Corollary 2.2.5. If f has order N then f takes each value ¢ € X exactly N

times.
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Theorem 2.2.6. The sum of the places where f(z) has zeros (counted with
multiplicity) equals the sum of the places where f(z) has poles (counted with
multiplicity), i.e

i ]CZ'CLZ‘ — i ljbj =0 mod Q.
i=1 j=1

Proof. First we prove that

1 f’(Z)
Zka, Zlb i b A

Since the poles of zf’/f are at the zeros and poles of f, and if f has a zero of
multiplicity k at z = a, then

f(z) = (2 —a)'g(2)
f'(2) = k(z = a)"'g(2) + (2 — a)*4'(2)

near z = a and with g analytic, g(z) # 0.

f'(z) _ zk(z—a)*lg(z) + 2(z —a)*g'(2) _ 2k L2
f(2) (z —a)*g(2) (z—a)  g(2)

so Res (z%, a) = ka.

Suppose z = b is a pole of f(z) of order [, so

f(2) = (z = b)g(2), near z = b, g(b) # 0, g analytic

and with the same calculation Res (z%, b) = —[b.
By the Residue Theorem

1 ')
Zk:al Zlb pael TR
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'z 5

Let’s calculate 5 fam in the same way we did in Theorem 2.2.2

f(2)
1 f'(2)
2mi Jon f(2)
1 ! J'(t +wiz) /1 f(t+ wp + wax)
— t+w:c widx + b+ wi + wax wodx
27i ! t—i—wlx) 1 sz( b )f(t—i-wl—l—ng) ?

v f'(t + wir + wy) ! f'(t + wyr)
/xzo(t + wir + CUQ) f(t ¥ oz + w2) 1dCL’ - /x O(t + CUQCL’)—f(t n wzx)

1 Lt +wiz) bt wen)
T o {—wg —o f(t+w) o=0 [f(t + wa) wgdx}

wodx)

widr + wq

1

" 2mi
1

27r

which is an element of 2 , as required.

{—an [log (1 + wr))]} + o [log(£(¢ + war)]1 )

{—wo2mim + wi2win} = —wem + win, for some n,m € Z

]

Theorem 2.2.7. Let f and g be elliptic functions with respect to Q) , with zeros
and poles of the same orders at the same points of C . Then f and g differ by

a (non zero) multiplicative constant, i.e.
dc € C, ¢ #0, such that g(z) = cf(2).

Proof. Consider )
_ 9\=
"= e

This is clearly elliptic. The only possible zeros and poles of h(z) are at zeros

and poles of f(z) and g(z). Suppose z is a zero (respectively pole) of order k
(respect. —k, k > 0) of f and hence of g.

f(2) = (z = 20)" fo(2)
9(2) = (2 — 20)" 90 (2)
where fo(z) and go(z) are holomorphic near z = zy, and go(20), fo(z0) # 0

2) — (Z - Zo)kfo(z) _ 90(2)
") = )~ )

So zp is a removable singularity of h(z) and h(z) is elliptic function without

poles. By Theorem 2.2.1 h(z) is a constant c.

c= 9(2) = g(2) = cf(2).
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]

Theorem 2.2.8. Let f and g be elliptic functions with respect to €2 , with poles
at the same points in C and with the same principal parts at these points, Then

f(2) and g(2) differ by an additive constant, i.e.

3 ¢ € C such that g(z) = f(z) + ¢

Proof. Let

h(z) is elliptic and has no poles since f(z) and g(z) have the same poles. So by

Theorem 2.2.1 h(z) is a constant c.

c=g(2) = f(2) = 9(2) = f(z) + ¢

2.3 Construction of elliptic functions of order
N > 3 with prescribed periods
In this section we construct elliptic functions of order N > 3 woth prescribed

periods using summation over the lattice 2 . To clarify the meaning of sum-

mation over {2 we must first describe a particular ordering of €2 . Let’s define

€ = {0}
Q, = {mw1 + nws|m, n € Z and maz {{m| |n|} =, }
Mo = {0}

M, = {mwl + nwelm,n € R and max {{m|,|n|} =r, }
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M
N
P

>
D
(>
=
+
)
(S
[y}

P
P
N

£
+

£

S ———
|
£
L
g
N
e

Figure 2.2: Summation over ()
We have M, D Q,Vr, Q is a disjoint union Q2 = {0}UQ;U---UQ, U..., and

for each r > 1 we have

1€2,.] = 8r. (2.1)

We can order the elements of €2 by starting at 0 and then listing the elements of
Q1,€), ... in turn, rotating around each €2, in the order rwy, rw, +ws, ..., rwy —
rwy (spiralling order).

2)

If we denote this ordering by w(©®, w®, w® . then w® = 0,w® = wy, w® =

w1 + wy and so on.

So we define the sum over a lattice

LSS

weN r=0 we,

!/
Notation: Z means omit the term w = 0, i.e.
weN

3= f: 3. (2.2)

weN r=1 we,
/
Proposition 2.3.1. If s € R, then Z lw|™ converges if and only if s > 2.
weN

Proof. Let D and d be the greatest and the least distances of a point of the
parallelogram My from 0. Since M, = {rz|z € I—ll}, the greatest and the least
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distances of a point in M, from 0 are rD and rd respectively. In particular, if

w € €., then
rd <|w| <rD
so, by (2.1) and (2.2) we have

r—*min {D’s,d’s} < |w|™* < r“P*max {D’S,d’S} -

8rr—*min {D_S, d_s} < Z lw|™* < 8rr~*max {D_S, d_s} =

wel
Z 8rr—*min {D~*,d"*} < Z/ lw| ™% < Z 8rr—*max {D~*,d°} =
r=1 wEN, r=1
[ee] © ’ o0
8min {D~*,d"*} Z riTs < Z w|™* < 8maz {D°,d"*} Z'r’l’s.
r=1 weN r=1
From calculus, we know that
Z/ |w|™*  converges <= Z 775 converges
weN r=1
ie.ifandonlyif 1 —s < -1 = s> 2. [

To prove the existence of meromorphic function with poles of order N > 3

we shall use Weierstrass M-test, and so the convergence.

Definition 2.3.1. Let (u,) be a sequence of functions u, : £ — C, defined
on some set F. We say that u,, converges uniformly to a function u : £ — C
if, for every € > 0, there exists ng € N such that |u,(2) — u(2)| < € Vn > ng
and Vz € E.

Definition 2.3.2. Let R be aregion in C | nd let (u,,) be a sequence of functions
u, : R — C; then (u,) converges uniforly on all compact subsets of R if, for

each compact K C R, the sequence of restrictions (un| K) converges uniformly
in K.

Theorem 2.3.2. Let (u,) be a sequence if analytic functions on a region R C C,
uniformly convergent to a function u on all compact subsets of R. Then u is
analytic on R, and the sequence of derivatives (ul) converges uniformly to u'

on all compact subsets of R.
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We can extend this result from sequences to series: we say that Y>> u,(2)
converges uniformly to u(z) on a set E if the sequence of partial sums > """ u,(2)

converges uniformly to u(z) on E as m — co.

Corollary 2.3.3. Let (u,) be a sequence of analytic functions on a region
R CC;if Y07 un(2) is uniformly convergent to u(z) on all compact subsets of

R, then u(z) is analytic on R and Yy ul(z) is uniformly convergent to u'(z)

on all compact subsets of R.

Theorem 2.3.4 (Weierstrass M-test). let (u,) be a sequence of functions u,, :
E — C, defined on some set E, such that

o for each n € N there exists M, € R satisfying |u,(z)| < M, forall z € E,
e > M, converges.

Then Y 0~ o un(2) converges uniformly on E, and converges absolutely for each

z€eF.

Suppose that (u,) is a sequence of meromorphic functions on a region R,

and for each compact subset K C R there exists Ny € N such that:

e u,(z) has no poles (and so it is analytic) in K for n > Ny,

® > .-n, Un(2) is uniformly convergent on K.

Then we say that Y w,(z) converges uniformly on all compact subsets of R.

Since ), <y, Un(2) is meromorphic on the interior K of K (being a sum of

finitely many meromorphic function), and since » v un(z) is analytic on K,

D ua(z) = > un(z)+ > un(2)

n<Ng n>Ng

the function

is meromorphic on K, its poles being included among the poles of the functions
un(2z) for n < Ng. Since each point z € R has a neighbourhood with compact

closure K C R, Y u,(z) is meromorphic on R.

Theorem 2.3.5. Let Y u,(z) be a series of meromorphic functions on a re-
gion R C C, uniformly convergent to u(z) on all compact subsets of R. Then
u(z) is meromorphic on R, and the series Y ul(z) of the derivatives converges

uniformly to u'(z) on all compact subsets of R.
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Theorem 2.3.6. For each integer N > 3, the function
Fy(z)=) (z=w)™
weN

1s elliptic of order N with respect to €1 .

Proof. Let’s prove first that F(z) is a meromorphic function. Let K be a com-
pact set in C \ Q (i.e closed and bounded).

Let’s suppose that |z| < R Vz € K. There are only finitely many w € Q
such that |w| < 2R.

Let ® = {w € Qf|w| > 2R} Vz € K and w € ®. Then

|z]<R<%and

1
|2 —wl > |wf = [2] = F|wl.
2

Thus

|z — w|™ < 2N|w| V.

For z € K
Z |z —w|™N < 2V Zw|_N which converges.

weN weN
So, by the Weierstrass M-test, z € K

Z |z — w|™ converges absolutely and uniformly in K.
we

Since each term (z — w)Y is analytic on K, Corollary 2.3.3 implies that Fi(z)
is analytic on C\ €. In the same way, using Theorem 2.3.5, we can show that
Fn(z) is meromorphic at each w € €. This means Fy(z) is meromorphic and
only has poles when (z — w)™" has poles for some w € €, i.e a pole of order N
at each lattice point and no others.

Now we show that Fy is doubly periodic.

Let wg € Q.
FN(Z +w0) = Z ((Z +w0) — w)_N — Z (,z — (wO - LU))_N
we we
= (z =)™ = Fn(2), where W' = (w — wy) € Q.
w'eN

So Fy(z) is doubly periodic with period lattice Q2 . Hence it is elliptic, with
single pole of order N mod 2. Thus F has order N. O
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Note we know that there exist elliptic functions of all orders N > 3, and
none of order N = 1.
In the next section, we will discute about the Wieierstrass elliptic function,

that is an example of elliptic function of order N = 2.

2.4 Weierstrass functions

Let = Q (wy,ws) be a lattice with basis {w;, ws}, and let M be a fundamental
parallelogram for €2 with no elements of Q2 on 0. By corollary 2.2.3 we know
that f cannot have just one simple pole in M, so the simplest non-constant
elliptic function has order 2, with either two simple poles or else a single pole
of order 2 in M. In this section we shall introduce the Weierstrass function p(z)
which is elliptic of order 2 in M. We shall derive p(z) from the Weierstrass

sigma-function o(z).

Definition 2.4.1. The Weierstrass sigma-function o(z) is defined by the fol-

lowing infinite product

o(z) ==z H,g(w, z)

weld
where
(, 2) LA z . 1/2\°
= ——Jexp| —+=|— .
T W) P e T2 \G
o(z) is holomorphic, is odd (o(—z) = —o(z)), and has simple zero at each

w € Q and nowhere else.

Definition 2.4.2. The Weierstrass zeta-function ((z) is defined by
_d'(?)
= Log (o(2) 2.3
dz '
1

! 1 1 z
i+ Y (o).

weN

Since o(z) is an odd function, ((z) is also odd. It has simple poles at the
lattice-points, and is analytic on C \ Q. As a series of meromorphic functions,
((z) converges uniformly on compact subsets of C and so we may differentiate

term-by-term to obtain a meromorphic function ¢’(z).
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Definition 2.4.3. The Weierstrass p-function is defined by p(z) = —('(2),

then we have

p=%+zl<ﬁ—é>. (2.4)

we

Theorem 2.4.1. The Weierstrass p-function has the following properties:
1. ¢(2) = —2F3(2) = =2>" oz —w) ™3 ;
2. p(2) is even ;
3. p(z) is an elliptic function with period lattice ) ;

4. 9(z) has order 2, with double pole at each w € Q ;

Proof. 1. p(z) converges uniformly on compact sets
2 / -2 1
/ _ —— _— — —_— —2F
7=+ X () = oy -0

2. Since p(z) = —('(z) and ('(2) is even, than p(z) is even.

3. We have seen that @(z) is meromorphic, so it is sufficient to prove the
doubly periodicity.
Since ¢'(z) is elliptic, we have Yw € Q

oz +w) = ¢/(2).

So, integrating,

pz+w)=p(z)+c¢ VzeC

where c is a constant.
Putting z = —w/2 we have ¢ = p(w/2) — p(—w/2) = 0 since p(z) is even.
Thus p(z 4+ w) = p(z) V 2z € C and w € Q. So p(z) is elliptic.

4. Clearly each point of €2 is a pole of order 2 and @(z)has not other poles.
So €2 is exactly the period lattice and p(z) has order 2.
O
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2.5 The Addition Theorems for the Weierstrass

functions

Definition 2.5.1. A meromorphic function f(z): C — CU {oo = @} is said

to have the addition formula if there exixts a rational function in three variables

R:C3 — C so that
R(f(n), f(v), flu+v)) =0 Vu,veC.

For example:

“ f()=
fw S0 fto)
L= f(u)  1—f(w) 1-flut+v)
. f(z) = e
o f(z) =tan(z)
f(u) + ()

flutv) = ZO LI
1= f(u)f(v)
Theorem 2.5.1 (Weierstrass Theorem). A meromorphic function has the ad-
dition formula <= it is:
e rational
e simply periodic or

e doubly periodic.

Also the Weierstrass functions ¢ and @ are provided with the addition formula,

and are (see [2])

pluct o)+ o) +plo) = 7 | S9 =) (25)
Clut ) = ) +6(0) + 5 | S =0, (2.6)

where 2.6 comes from 2.5 since

I =) o) et — el
oy, = 2 ) — () — ()
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2.6 The differential equation for p(z)

In this section we derive an important equation connecting @(z)and ¢'(z), ob-

tained from the Laurent series near p(z) = 0. We start by finding the Laurent

C(2)=§+Z’(2iw+£+§). (2.7)

weN
Let m = min {jw| |w € @\ {0}}, and let D = {z € C||z| < m}, the largest

open disc centered at 0 and containing no other lattice-points. Since

series for

1 1 z 22

z—w w W Wi (z-w)

Y

we see, by comparison with > |w|™%, that 3’ (ﬁ +14 ﬁ) is absolutely
convergent for each z € C\ Q. Moreover, for each w € Q\ {0}, the binomial

1 1 1 12\
Emi <1_5)——;Z<;>

J=0

series

is absolutely convergent for z € D, so we may substitute this in 2.7 to obtain

1 12 1
=1+ (S (5) 145
we 7=0
1 N S Ry
-2 (x0)
weN j=2
A 1
-1+ ()
j=2 we
Define
11
Gr=G(@) =) —. ke€Zk>3

wel
called the Fisenstein series for () | absolutely convergent for £ > 3, and G =0
for k odd.

So the Laurent series for ((z) becomes
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and hence

1 - 2n—2
plz) = —((z) = 5 + Zz(zn —1)2%" 2 Gap; (2.8)
this is the Laurent series for p(z), valid for z € D. From this we obtain

—2
0 (2) = = +6G4z +20Ge2" + ...,
2

and so ) e
o'(2)? = .2 180G, + 22¢1(2)
4  36G
4@(2)3 = E + 52 4 + 60G6 + Z2¢2<Z)
60G
60G0(z) = = 2+ 22¢(2)

where ¢1, @2, @3 are power series convergent in D). These last three equations
give

©'(2)* — 4p(2)® + 60G,0(2) + 140G = 2%4(2)

where ¢(z) = ¢1 — ¢2(2) + ¢3(2) is a power series convergent in D. As g and

@ are elliptic with respect to € , the function
f(2) = ¢ (2)* — 4p(2)® + 60G4p(2) + 140G

is also elliptic. Since f(z) = 2?¢(z) in D, with ¢(z) analytic, f vanishes at 0
and hence at all w € ). However, by its construction f can have poles only
where p(z)or ¢’ have poles, that is, at the lattice-points. Therefore f has no
poles and so, by Theorem 2.2.1 , f(z) is a constant, which must be zero since

f(0) = 0. Thus we have proved the following

Theorem 2.6.1.
0 (2)* = 4p(2)* — 60G49(2) — 140G. (2.9)
The equation 2.9 is the differential equation for p(z). If we denote with

2= 60G; =60 w™
g5 = 140G = 140} W

we can write 2.9 like

O (2)? = 4p(2)" — gap(2) — gs. (2.10)
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2.7 Elliptic integrals

Definition 2.7.1. An integral of the form

/R(z, w)dz, (2.11)

where R(z,w) is a rational function of its argument and

w? = a2t + 4a1 2% + 6a22% + dagz + ay

is a polynomial of third or fourth degree in z without multiple roots, is called

elliptic integral.

We saw the function x = p(u) satisfies the differential equation

(3_2)2 — 40P — gyr — g5 = Az — a)(w — )z — ).

Then

du = de (2.12)

2/m—a)r—b)(x — )

o dx
ulx) = . 2.13
() /p 2\/(at—a)(x—b)(x—c) ( )

The integral 2.13 is called an elliptic integral of the first kind.

With the help of a suitable linear fractional transformation it is possible to

reduce the radical in the integral 2.11 to the form \/ 423 — gox — g3. This linear

fractional transformation has the form

ax +
_ : S5 — =1.
S= s (ad — )
Then
4 3 _ —
Va2 + a1 23 + 6a222 + dagz + ag = v f,yx 5253;2 93’
and

/R(z, \/a0z4 + 4ay2% 4 6a222 + dazz + aqg)dz =

—/R azr + B /4rd — gox — g3 dx
B yr+do’ (yr+0)? (v +6)*
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In particular
/ dz B dx
Vaozt + 4a123 + 6a922 + dasz + ay \/4x3 — o — gg'

(2.14)

So, instead of 2.11 we can consider 2.14.
If we introduce the function g corresponding to the invariant g, and g3, and let

x = p(u), then an elliptic integral

/R@wﬂﬂ—mx—%mxZ/waxﬂﬂMMWMU=/RAMWwﬂww,
(2.15)

i.e- we arrive at the integral of an elliptic function.
Expanding the elliptic function R;(gp, ') into partial fractions, and using the
addition theorems for the function ¢ and g it may be prove (see [2] for calcu-

lation)

/le ¢ )du = Cu+ Y Ajlogo(u— a;) + Al(u) + R*(p, ¢').

i=1
where A is a constant and A; is the residue of our elliptic function with respect

to the pole a;. Since > | A; = 0, this formula can be rewritten in the form

/ Ri(p, ¢')du=Cu+ Y A;log U(Z —9%) L act) + R o). (2.16)

P (u)
R*(p, ¢) is an elliptic integral, but the other three terms on the right-hand side
are not.
Let us pass from the variable u to z = p(u). Then the last term on the RHS of
2.16 is written in the form R*(z,w), where w = 423 — gy2 — g3, and this is the

algebraic part of the integral 2.14. The remaining part is constructed with the

functions
u= %, (2.17)
C(u) = —/p(u)du = — Z:Uﬁ, (2.18)
and
Jotu—a) o 1P ta),
o st = [ S 219

1 [w+wydz
— — 2.20
2/z—z0w ( )
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where we replaced z = p(u), w = @'(u) and so p(a) = 2y and ©'(a) = wy.

The integral 2.17 an elliptic integral of the first kind, 2.18 is called elliptic
integral of the second kind, with a pole of order two, and 2.19 is called elliptic
integral of the third kind, and has two simple poles.

Thus, every elliptic integral is the result of adding elliptic integrals of three

kinds and a certain function of z and w.

2.8 Real elliptic curves

We have seen that g satisfies a differential equation (¢')? = p(p), where p(z) is
the cubic polinomial 42% — gox — g3, so every point ¢ € C/§ determines a point

(p(t), ©'(t)) on the elliptic curve

E={(z,y) €T xZly* =p(z)}. (2.21)

We can think of E as the graph of the equation y* = p(x), for z,y € ¥. As a
subset of ¥ x ¥, E has a natural topology and is homemomorphic to a torus.
Let’s concentrate on the real points of E, those for which x,y € R, under the
assumption thet the coefficients go, g3 of p(x) are real. We define the real elliptic
curve Eg to be {(z,y) € R|y* = p(z)}, the graph of y? = p(z) as an equation
between real variables. Clearly Ex is symmetric about the z-axis of R2.

First we examine the condictions under which the coefficients ¢, g3 are real.
We define a meromorphic function f: C — ¥ to be real if f(Z) = f(z) for all
z € C. We define a lattice 2 to be real if Q = Q (where Q denotes {@|w € Q}

).

Theorem 2.8.1. The following condictions are equivalent:
1. g2, g3 € R;
2. G e R, Vk > 3;
3. p s a real function;

4. ) is a real lattice.
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Proof. 1 =2
Differentiating (¢')? = 49® — gop — g3, and then dividing by 2¢’ (which is not
identically zero) we have

" = 6p° — %. (2.22)

Now by 2.8, ¢(z) has Laurent expansion

o0

pz) =272+ > anz™,
n=1
valid near z = 0, where

!/
an = (2n+ 1)Gopya = (2n+ 1) Z w2,
The coefficient of 22 in the expansion of ¢ (2) is therefore (2n+2)(2n+1)ag, 1,
while the coefficient of 2" in ©(2)* is 2an41 + >, , Gras. Equating the

coefficients in 2.22 we have, for each n > 1,

(2n+2)(2n + Dann = 120,10 +6 Y aa,

r+s=n

and hence
(2n+5)(n—1)an+1=3 Z Ay Qs

r4+s=n

So, for n > 2 we have

3
= o0 1 5)(n - 1) D @,

r+s=n

By induction on n, we see that each coefficient a,, is a polynomial in a; and as,
with rational coefficients. Using a,, = (2n+1)Gap19, g2 = 60G4 and g3 = 140G,
we see that each Gy (k even,k > 4), is a polynomial in g and g3 with rational
coefficients, so if go and g3 are real then so is Gy; since G; = 0 for all odd k,
(2) is proved.

2=3

If Gy € RVEk > 3, then the coefficients of the Laurent series for p(z)are real,
so p(Z) = p(z) near z = 0. Now @(z)and p(Z) are meromorphic functions,
identically equal on a neighbourhood of 0, so they are identically equal on C .

Thus g is a real function.
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3—4

Let w € Q. Then p(z + W) = p(Z+w) = p(Z) since p is real and has w
as a period. Thus @ € €, so Q C Q. Taking complex conjugates, we have
N=0CO, s0oNQ=0and Q is real.

4=1

This follow immediately from gy — 60 Z'w Wt and g5 = 140 Z'w WSO

Definition 2.8.1. We say that Q is real rectangular if Q = Q{w;,ws}, where
wy is real and wy is purely imaginary.

We say that 2 is real rhombic if Q = Q {w;,wy}, where w; = ws.

The fundamental parallelogram with vertices 0,w;,ws and ws = w; + wy is

rectangular or rhombic respectively.

Theorem 2.8.2. A lattice 2 is real if and only if it is real rectangular or real

rhombic

Proof. <= 1f Q) = Q(wy, ws) is real rectangular, with w; € R and wy € iR, then
Q= Q@y,wy) = Qwy, —wy) = Qwy,ws) = Q, s0 Q is real. A similar argument
applies to real rhombic lattices.

= Suppose that €2 is real. If w € Q, then w4+ &, w — W € €, so ) contains
both real and purely imaginary elements, and these form discrete subgroups
QNR = M and QN iR = wZ for certain \,u € R, Ay > 0. Clearly
Q D A+ piZ, and if we have equality, then there exists w € Q\ (AZ+ piZ). By
addind a suitable element of AZ+ piZ to w we may assume that 0 < Re(w) < p.
Now

2w=(w+w)+ (w—n),

withw+we QNR =M and w —w € QNiR = piZ, so we have
2w =mA+nui

for integers m,n, and the condictions on Re(w) and Im(w) force m and n to
take value 0 or 1. Since w is neither real or purely imaginary, we must have
m=mn =1, and so w = (X + pi). Thus every element of Q \ (\Z + piZ) has
the form

1 A+ i A i
SO i)+ ad+bpi = @+ b+ 1) [ 2 L a—b =8N
2 > 2
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for integers a, b, while every elememt of A\Z + piZ has the form

a + byi = (a + b) ()\J;'ui>—|—(a—b) (A_“i).

2
Thus Q = Q(3(X + pi), (A — pi)), which is a real rhombic. O
w3
W )
0
wy
Wi
0 Wi
(1 real rectangular {2 real rhombic

2.9 The discriminant of a cubic polynomial

In this section we give a necessary and sufficient condiction for p to have di-
stinct roots. We saw that Weierstrass’elliptic function p satisfies a differential

equation @' = 1/p(gp), where p is a cubic polynomial on the form

p(z) = 42" = 22 — g5, (92,93 € C). (2.23)

Any polynomial in this form is said to be in the Weierstrass normal form. By
means of a substitution 6 : z — az + b(a,b € C,a # 0), any cubic polynomial
may be brought into this form; now 6 : C — C is a bijection, preserving
multiplicities of roots, so without loss of generality we can restrict our attenction
to cubic polynomials p in the Weierstraiss normal form.

If ey, e9,e3 are the roots of the polynomial p in 2.23, then we can define the

discriminant of p to be

Ap = 16(61 — 62)2(62 — 63)2(63 - 61)2 (224)
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and these roots are distinct if and only if A, # 0.
Theorem 2.9.1. A, = g5 — 27g3.
Proof. putting
p(z) = 4(z —e1)(z — e2) (2 — e3), (2.25)

and equating coefficients between this and 2.23, we have

€1 +ex+e3 = 0
92
4
g3
€1€9€3 — —.

4

€162 + €263 + €361 = — (2.26)

The remaining symmetric functions of the roots may be obtained from 2.26:

el + €5+ 5 = (e1 + ea + e3)” — 2(ere + ees + ezer) = %
and
gQ
ere; + eae; + esel = (e1e2 + eaes + eze1)” — 2erezes(er + €2 + €3) = 1_?3

Differentiating 2.22 and 2.25 at z = ey, we have:
4(e; —4.2)(e; —e3) = p(e1) = 122 — g,

with similar expressions for p’(es) and p(e3). Hence

1

p— —Zpl(el)]?’(ez)p/(eza)

1
=1 1_[(12%2 — 92)

A

- 3(1728(616263)2 — 144gs(e1€5 + eges + ezel)
+12g5(el + €3 + €3) — g5)

= 2(10893 — 995 + 695 — g5)

= g5 — 27g3.

Corollary 2.9.2. p has distinct roots if and only if g3 — 27g2 # 0.
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Chapter 3

Lagrangian Mechanics

3.1 Calculus of variations

The calculus of variations is concerned with the extremals of functions whose
domain is an infinite-dimensional space: the space of curves. Such functions
are called functionals. An example of a functional is the length ¢ of a curve in
the euclidean plane:

if v ={(t,z) : x =x(t),to <t < t;}, then

t1
o :/ V1+ a2
to

where & = dx/dt.

In general, a functional is any mapping from the space of curves to the real
numbers.

We consider an ”approximation” ' to v, v/ = {(t,z) : = x(t) + h(t)}. We
will call it 4/ = v + h. Consider the increment of ®, ®(y + h) — O(7).

Definition 3.1.1. Let v,h € C*([ty, t1],R?). A functional ® is called differ-
entiable if

O(y + h) = @(y) = F(h) + R(h,7), (3.1)
where F' depends linearly on h (i.e. for fixed v, F'(hy + he) = F(hy) + F(hs)
and F(ch) = cF(h)), and R(h,v) = O(h?), in the sense that if |h| ,‘%‘ < €,
then |h| < Ce?
The linear part of the increment, F'(h), is called the differential or variation,

and h is called the variation of the curve.

45
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Theorem 3.1.1. Let L(u,v,w) be a C* differentiable function in three vari-
ables. Then the functional ®(v) = ftil L(x(t), z(t),t)dt is differentiable, and its

derivative is given by the formula

b /oL d oL oL 1"
with h € Cw([to,tl] ,R2)

Definition 3.1.2. An extremal of a differentiable functional ®(v) is a curve ~
such that Vh F(h) =0 .

Theorem 3.1.2. The curve v : x = x(t) is an extremal of the functional
O(y) = til L(z(t),z(t),t)dt on the space of the smooth curves passing through

the points x(ty) = xo and z(t1) = 1 if and only if

d oL OL
il 0 along the curve x(t). (3.3)

Lemma 3.1.3. If a continuous function L(t), t, < t < t; satisfies ftil L(t)h(t)dt
0 for any continuous function h(t), with h(t,) = h(ty) =0, then f(t) = 0.

Definition 3.1.3. The equation

d (0L oL

is called the Fuler-Lagrange equation for the functional
t1
@:/memmm.
to
Written out explicitly (recall L = L(x, #,t)), 3.4 is
oL 0?L . 82Lj_ o’L
Or  0i0z" 042" 0iot

and it is a second order ordinary differential equation for the function x(¢) of

0 (3.5)

the form ,

d*x . odr .
W—i—gg(x,x,t)%—i—gg(:c,x,t) =0. (36)

The two arbitrary constants in the general solution are fixed by the boundary

g1(z, &,t)

condictions.

If x is a vector in the n-dimensional coordinate space R™, x € C*([to, t1, R"])
v=At,x =x(t),tg <t <t} acurve in the (n + 1)-dimensional space R x R",
and f : R" x R" x R — R a differentiable function of 2n + 1 variables, as

before we have:
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Theorem 3.1.4. The curve is an extremal of the functional ® = ﬂ: flx(t), (t),t)dt
on the space of curves joining (to, o) and (t1, @) if and only if the Euler-

Lagrange equation is satisfied along .

This a system of n second order equations, and the solution depends on 2n
arbitrary constants.
Given a solution of 3.4, the value of F' is extremal but not necessary minimal.

There are two special cases of f = f(x,,t)):

i) f does not depend on x

f= [ (3.7)
In this case, since % = 0, the Euler - Lagrange equation implies
dof of
pT 0= 9 const. (3.8)
ii) f does not depend on ¢ explicitly
f=Ff(z ). (3.9)
We can write
. dx 1 1 . dt

dx

/f(x,x')dt:/f(x,%)idx ::/F(i,x)dx. (3.11)

Since F' is independent of ¢, and using i) we put

oF 0 1. 1 . Of 1
Fri af(m, ;)t = const = f(z, ;) + ta—l. (_—152) = const (3.12)
i
which may be rewritten in terms of x and z as
flz,2) — %x = const. (3.13)

Corollary 3.1.5. The condition for a curve to be an extremal of a functional

does not depend on the choice of coordinate system.
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3.2 Lagrange’s equation

Lagrangian mechanics describes the motion of a mechanical system by means
of the configuration space. The configuration space of a mechanical system has
the structure of a differentiable manifold, on which its group of diffeomorphism
acts.

One of the fundamental concepts of mechanics is that of particle. By this
we mean a body whose dimensions may be neglected in describing its motion.
The position of a particle in space is defined by a vector x = (x1, 2, 23). The

derivative

dx

U:EE

X = (1:17 1:2; :L‘3)

of x with respect to the time ¢ is called the wvelocity of the particle, and the

second derivative
d*x

W = (:i’;Qa 35-27 373)

is its acceleration.

To define the position of a system of n particles in space, it is necessary to
specify n vectors, i.e. 3n coordinates. The number of independent quantities
which must be specified in order to define uniquely the position of any system
is called the number of degrees of freedom; here, this number is 3n. These
quantities don’t need to be the Cartesian coordinates of the particles, and the
condition of the problem may render some other choice of coordinates more
convenient. Any s quantities ¢y, gs, . . ., ¢s which completely define the position
of a system with s degrees of freedom are called generalized coordinates of
the system, and the derivatives ¢; are called generalized velocities. 1f all the
co-ordinates and the velocities are simultaneously specified, the state of the
system is completely determined and its motion can be calculated. The relations
between the accelerations, velocities and coordinates are called the equations
of motion. They are second order differential equations for the functions ¢(t),
and their integration makes possible the determination of these functions and
so the path of the system. The set (¢1,q2,...,qs,q1,42,---4s) = (q,q) is called
the state variable of the system.

Let’s us consider the equations for the one dimensional motion of a particle in
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a potential V(q)

. d
mg = @V(q% (3.14)

and let’s express it in the Eulero-Lagrange equation. We want a function

L(q, q,t) that satisfies the variational problem

t2
/ L(q,q,t)dt = extreme value
t1

such that the Euler-Lagrange differential equation

doL OL
i (3.15)
dt 0q 0q

takes the same form as the equation of the motion 3.14.

Since only the second term in the Euler-Lagrange equation can contain q, by

comparing it with Newton’s equation, we immediately deduce the two equations

d L
daoL _ . 1
dtog (3.16)
oL v

_ 9V 1
5 = da (3.17)

The solution of 3.17 give
L=1T(q)-V(q)

for some unknow function 7°(q). This function 7'(q) can be determined from
3.16, which, after inserting L = T'(q) — V(q), becomes

atog &

Integrating over t yields
orT

36 = mq (+const)
q
and further integration over ¢ shows that 7" is the kinetic energy of the particle

1 . .
T = quQ (14 + ¢2).

Since the term c;q + ¢o does not contribute to the Euler-Lagrange equations,

we have ¢; = ¢o = 0. Hence, the Lagrangian L(q, q,t) becomes

i 1 .
L(q,q,t) = §mq2 —V(qQ=T-V. (3.18)
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Since L does not depend on time explicitely, according to 3.13 we have

L— g_gq — const. (3.19)
Since
g_fl’ = o7 — a% (%mc’f - V(q)> =mq = 2T
we have
L_g_flq:L—QT:T—V—QT:—(TJFV):_EzconSt'

So L is constant in time, and 3.19 are called a first integrals of the Euler-
Lagrange equation.

It follows that the total energy is conserved
E=T+YV = const

If V.= V(q,t), i.e. also depends on the time, then the Lagrangian is
L(q,q,t) = T — V(q,t) and the Euler-Lagrange equations take form 3.15.
However in this case, the energy 7'+ V' is not conserved anymore (since 3.19 is

not a solution of the Euler-Lagrange equation).

Definition 3.2.1. The derivative of the Lagrangian 3.18 with respect to the
generalized velocity q is called generalized momentum p,

Definition 3.2.2. A coordinate ¢ is called cyclic if does not enter into the

Lagrangian, i.e.
oL

0g; B

Theorem 3.2.1. The generalized momentum corresponding to a cyclic coordin-

0.

ate is conserved: p; = const.

Proof.

i oL _8L—0:>i»—02> ; = const
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3.3 Hamilton’s Principle

We now recall the variational problem, which leads to the Lagrange equations.
The most general formulation of the law governing the motion of mechanical
systems is the principle of least action or Hamilton’s principle, according to
which every mechanical system is characterised by a definite function

L(q1, 92, -, qs,G1, G2, - - - gs, ), or briefly L(q, q,t), and the motion of the system
is such that a certain condiction is satisfied.

Let the system occupy, at the instants t; and t,, positions defined by q) =
(q,q3,...q}) and 9@ = (¢2,42,...4%). Then the condiction is that the system

moves between these positions in such a way that the integral

to
5 — / L(q, &, )dt (3.21)
t

1
takes the least possible values. The function L is called the Lagrangian of the
system concerned, and the integral 3.21 is called action.

Let us now derive the differential equations which solve the problem of minimi-
sing the integral 3.21. For simplicity, we shall first assume that the system has
only one degree of freedom, so that only the function ¢(¢) has to be determined.
Let ¢ = q(t) be the function for which S is a minimum. A wvariation 6q(t) of
the function ¢(t) (we have called it A(t) in section 3.1)

q(t) — q(t) + dq(t),  dq(t1) = dq(t) =0 (3.22)
causes the increase of the action
to
Sla-+0a = Sl = [ [Lla-+ 6.4+ 84.0) — Lig.d. )
t1
Expanding the difference under the integral in Taylor’s series d¢ and d¢ in the

integrand, the leading terms are of the first order:

2 /9L, oL
Slg + gl — S :/ (—5 +—,5')dt+0 5qll?).
lq + dq] — S[q] .\ 9 1+ 5q0 (llog]”)

The necessary condition for S to have a minimum is that these terms (called

the first variation, or simply the variation, of the integral) should be zero:

2 /oL oL )
—=5q+ =8¢ ) dt = 0.
/t1 (f?q 4 dq 1
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So, since ¢ = ddq/dt, we obtain, integrating the second term by parts

(9L d oL oL 1"
S+ od) - sl = [ (50— 558 ) dude-+ | 5254] + olsal®) o
t1 t1

to
t1

By 3.22, [Z—S(Sq} = 0. So S[g + dq] — S[q] =0 only if

When the system has more than one degree of freedom, the s different functions
¢;(t) must be varied independently in the principle of least action. We then
evidently obtain s equations of the form

doL oL
dt o4 Ogq

(i=1,...,5). (3.23)

These are the required differential equations, called Lagrange’s equations. If
the Lagrangian of a given mechanical system is known, the equations 3.4 give
the relations between accelerations, velocities and co-ordinates, i.e.they are the

equations of motion of the system.



Chapter 4

Hamiltonian mechanics

4.1 From Lagrangian’s equations to Hamilto-

nian’s equations

4.1.1 Legendre transformation

Let y = f(z) be a convex function, f”(z) > 0. The Legendre transformation of
the function f is a new function g of a new variable p, which is costructed in
the following way:

we draw the graph of f in the z,y plane. Let p be a given number. Consider
the straight line y = px. We take the point x = x(p) at which the curve is
farthest from the straight line in the vertical direction: for each p the function
pr — f(z) = F(p, ) has a minimum with respect to = at the point z(p). Now

we define

g(p) = F(p,z(p)).

oF
The point x(p)is defined by the extremal condiction e 0,ie. f'(x) =np.
x

Since f is convex, the point x(p) is unique.

Theorem 4.1.1. The Legendre transformation is involutive, i.e. its square is
the identity: if under the Legendre transformation f is taken to g, then the

Legendre transformation of g will again be f.

33
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4.1.2 The case of many variables

Let f(x) be a convex function of the vector variable x = (zy,...,2,) (i.e.
the quadratic form ((9? f/0x?)dx, dx) is positive definite). Then the Legendre
transform is the function g(p) of the vector variable p = (py, ..., p,) defined as

above by the equalities g(p) = F(p,x(p)), where F(p,x) = (p,x) — f(x) and
p=0f/0z.

Theorem 4.1.2. Let L € C®°(R" xR" xR, R) be a Lagrangian function convex
with respect to q. We consider a system of Lagrangian’s equations p = 0L/0q,
where p = 0L/0q. Then the system of Lagrange’s equations is equivalent to the

system of 2n-first order equations, called the Hamilton’s equations, with

. 0H
=5
. oH
=%

where H(p, q,t) = pq— L(q, q,t) is the Legendre transform of the Lagrangian

function viewed as a function of q.

So by means of a Legendre transformation, a Lagrangian system of second
order differential equations is converted into a symmetrical system of 2n first-
order equations called a Hamiltonian system of equations (or canonical equa-

tions).

Example

Let L(q,q) = %mq’2 —V(q). Let’s find the Hamiltonian. Let’s apply the Legen-

dre transform
F(p,q) = pq— f(q)
with

p=—(q).
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Then
1
H(p.q) = pg— 5md”* +V(q).
The Hamiltonian equations are
dqg OH
dt  Op
dp  OH 9V
dt  0q  0q
Then from 3.14 we deduce that p =mq < ¢ = 2, that is f(¢) = %mch and
m
1p?
H=-—+V(q).
5., V(@)
4.1.3 Liouville’s theorem
For simplicity we assume that the Hamiltonian function does not depend ex-
plicitly on the time: H = H(p, q). Moreover, the space M where H is defined
M is a 2n-dimensional smooth manifold.
Definition 4.1.1. The 2n-dimensional space with coordinates p1, ..., pn,q1, ... qn

is called the phase space.

Proposition 4.1.3. The right-hand sides of the Hamilton’s equations give a
vector field: at each point (p, q) of the phace space there is a 2n-dimensional
vector (—0H/0q,0H/0p).

Definition 4.1.2. The phase flow is the one parameter group of transforma-

tions of phase space
g (p(0),q(0)) = (p(t),a(t)),
where p(t) and q(t) are solutions of Hamilton’s system of equations.

Theorem 4.1.4 (Liouville’s theorem). The phase flow preserves the volume:

for any region D € M we have

volume of (g'D) = volume of (D)
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4.2 Hamiltonian mechanical system

In this section we will define the Hamiltonian mechanical system, i.e. any triple
(M,w, H) where:

e )M is an even- dimensional manifold is the phace space and has the struc-
ture of symplectic manifold, i.e a closed non-degenerated differential 2-

form;
e w is the symplectic structure and it is an integral invariant;

e H € C*°(M.R) is the hamiltonian function.

On a symplectic manifold (phase space), there is a natural isomorphism between
vector field an 1-forms. A vector field on a symplectic manifold corresponding
to the differential of a function is called Hamiltonian vector field. A vector
field on a manifold determines a phase flow, i.e. a one-parameter group of
symplectic diffeomorphisms that acts on the phace space and preserves the
Hamiltonian function. Vector fields on a manifold form a Lie-algebra. The
Hamiltonian vector fields on a symplectic manifold also form a Lie algebra,

with an operation on it called the Poisson bracket.

4.2.1 Hamiltonian vector field

Definition 4.2.1. Let M?" be an even-dimensional differentiable manifold. A

symplectic form on M?" is a closed non degenerate differential form w? on M?".

The pair (M?",w?) is called symplectic manifold.
According to the Darboux’s theorem, in a small neighborhood of each point of

M w? can be express in the standard (or canonical) form:

n
w? = Z dp; N dg;
i=1
where p1,....pn, 1, ..., q, are suitable coordinates.
Definition 4.2.2. To each vector £, tangent to a symplectic manifold (M?", w?)

at the point z, we associate a 1-form wg on T, M by the formula

we (n) = w?(n, ).
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We will denote by I the isomorphism
I=T:M —T,M
£ — we(n).
Definition 4.2.3. Let H be a function on a symplectic manifold M?". Then
dH is a differential 1-form on M, and to every point there is a tangent vector
to M associated to it. In this way we obtain a vector field IdH on M.
The vector field IdH is called a Hamiltonian vector field; H is called the Ha-

miltonian function.

If M?" =R = {(p,q)}, then we obtain the phase velocity vector field of

Hamilton’s canonical equation:

t=I1dH(z) <= p=—— and ¢=—.

4.2.2 Hamiltonian phase flow

Definition 4.2.4. Let (M?", w?) be a symplectic manifold and H : M** — R
a function. Assume that the vector field IdH corresponding to H gives a 1-
parameter group of diffeomorphisms g* : M?" — M?":

d

pr im0 g'x = IdH (x).

The group ¢' is called the Hamiltonian phase flow with Hamiltonian finction

H.
Theorem 4.2.1. A Hamiltonian phase flow preserves the symplectic structure:
(¢')'w® =

In the case n = 1, M?" = R?, this theorem says that the phase flow preserves

the area (Liouville’s theorem).

4.2.3 Canonical transformations

Definition 4.2.5. A differential k-form w is called an integral invariant of the
map g : M — M if the integrals of w on any k-chain ¢ and on its image under

g are the same.
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Theorem 4.2.2. The form w? giving the symplectic structure in an integral

wmvariant of hamiltonian phase flow.

Corollary 4.2.3. Each of the forms (w?)?, (w?)?, (w?),... is an integral in-

variant of the phase flow.

Definition 4.2.6. A map g : R>" — R?" is called canonical if it has w? as an
integral invariant. A canonical map is generally called a canonical transforma-

tion. Moreover g preserves the 2-form w? = Y dp; A dg;.

Corollary 4.2.4. Canonical transformation preserve the volume element in

phase space:
the volume of gD s equal to the volume of D, for any region D.

In particular, let g : R?® — R?" be a canonical transformation of phase space
taking a point with coordinates (p, q) to a point with coordinates (P, Q). The
functions P(p,q) and Q(p,q) can be considered as new coordinates on phase

space.

Proposition 4.2.5. The 1-form pdq— PdQ is an exact differential:

pdq— Pd@Q = dS(p,dq). (4.1)

Definition 4.2.7. The coordinates (Q, q) are called free if in a neighborhood

of some point (py,q,) we can take (Q,q) as independent coordinates, i.e. at

(Po» o)
(Q,q)

Id(p,q)

In this case the function S can be expresses locally in these coordinates:

det

= det@ # 0.
op

S(p,q) = 51(Q, q)

where S1(Q, q) is called generating function of the canonical transformation g.

4.2.4 The Lie Algebra of Hamiltonian functions

Hamilton’s equations can be written in a simple form if we define the Poisson
bracket of two smooth functions F' and G on M. The Poisson bracket {F, G}
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of F and G is the smooth function w?(IdG, IdH) and in the local coordinates
p.q

- O0GIOF 0GOF
F = § — . 4.2
{ ’ G} 1 (8pi 0q; 0q; api) ( )

i=

It has the following properties:
e {F+G,H} ={F,H}+{G,H} (bilinearity)
o {F,G}=—-{G,H} (skewsimmetry)
o {F\F),G} =F{FG}+ FK{F,G} (Leibnitz rule)
e {{H,F},G}+{{F,G} ,H} +{{G,H} ,F} =0 (Jacoby identity)

e if x € M is not a critical point of F', then there exists a smooth function
G such that {F,G} (z) #0 (nondegeneracy).

The Poisson bracket {F,G'} may also be calculated by the formula dF(I1dG),
i.e. as the value of the covector dF on the vector IdG. Therefore, the derivative
of function F' in the direction of the Hamiltonian vector field IdH in in fact
{F,H}.

Thus, the Hamilton’s equation can be written in the equivalent form F =
{F,G}. Since the coordinate functions py,...pn,,q1,- .- ¢, form a complete set

of independent functions, the equations

Di = {piuH}
g = {C]i,H}

with 1 <7 < n, form a closed system. They are called Hamilton’s canonical

equations.

4.2.5 The Arnold-Liouville’s theorem on integrable sys-

tems

In the following sections, we will consider (M,w) as a symplectic manifold, and

w? in the canonical form w? = Y7 | dp; A dg;.
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Definition 4.2.8. A function F'is a first integral of the phase flow with hamil-

tonian function H if and only if its Poisson bracket with H is identically zero:
{H,F} =0,ie.

"\ /OHOF OHOIF
HF’:E: _ -0
{ ’ } i1 (api 0g; dg; 32%) 0

Theorem 4.2.6. The function H is a first integral of the hamiltonian phase

flow with hamiltonian function H.

Definition 4.2.9. Two functions F} and F5 on the symplectic manifold are in
involution if {Fy, Fo} = 0.

Theorem 4.2.7. Arnold-Liouville’s theorem
If in a Hamiltonian system with n degrees of freedom (i.e., let (M,w) a 2n-
dimensional phase space), Fy, ..., F,, with Fy = H, n independent first integrals

i wnvolution are known, then the system s integrable by quadratures.

Suppose there are given n functions in involution on a symplectic 2n-dimensional

manifold

F,..., F, {F,,F;} =0, i,i=1,...,n
and let Mg be a smooth manifold
My={z:F(z)=fi,i=1,...,n}.

Assume that the n functions F; are independent on Mg (i.e., the n 1-forms dF;

are linearly independent at each point of Mg). Then
1. My 1s invariant under the phase flow with hamiltonian function H = F.

2. If the manifold My is compact and connected, then it is diffeomorphic to

the n-dimensional torus
" ={(¢1,...,¢,) mod 27} .

3. The phase flow with hamiltonian function H determines a conditionally

periodic motion on Mg, i.e., in angular coordinates ¢ = (¢1,. .., ¢n) we
have ié

— =w w=w(f).

dt 7 ( )
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4. The canonical equations with hamiltonian function H can be integrated by

quadratures.

Corollary 4.2.8. If, in a canonical system with two degrees of freedom, a
first antegral F' s known which does not depend on the hamiltonian H, then
the system is integrable by quadratures; a compact connected two-dimensional
submanifold of the phase space H = h, F' = f is an invariant torus, and the

motion on it is conditionally periodic.

4.2.6 The action-angle variables

If M is compact and connected, we may choose angular coordinates ¢; on M
so that the phase flow with hamiltonian function H = Fj takes an especially

simple form:
— =w(f) o(t) = d(0) + wt .
We will now look at a neighborhood of the n-dimensional manifold My in 2n-

dimensional space.

In the coordinates (F, ¢) the phase flow with hamiltonian function H = F} can

be written in the form of the simple system of 2n ordinary differential equations
ax_, 4o _
dt dt

which is easily integrated: F(t) = F(0), ¢(t) = ¢(0) + w(F(0))t.

Thus, in order to integrate explicitly the original canonical system of differential

w(F), (4.3)

equation, it is sufficient to find the variables ¢ in explicit form. It turns out
that this can be done using only quadratures. A construction of the variables
¢ is given below.

We note that the variables (F, ¢) are not, in general, symplectic coordinates.
It turns out that there are functions of F, which we will denote by I = I(F),
I=(L,...,I,), such that the variables (I, ¢») are symplectic coordinates: the

original symplectic structure w? is expressed in them by the usual formula

W'=Y dI; Nde;

The variables I are called action variables; together with the angle variables ¢

they form the action-angle system of canonical coordinates in a neighborhood
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of Ms.

The quantities I; are first integrals of the system with Hamiltonian function
H = Fy, since they are functions of the first integrals F;. In turn, the variables
F; can be expressed in terms of I and, in particular, H = F; = H(I). In

action-angle variables the differential equations of our flow (4.3) have the form

d1 d
_, 99

@ _ 9@ _ (.
dt Y

Construction of action-angle variables in the case of one degree of
freedom

A system with one degree of freedom in the phase plane (p,q) is given by the
hamiltonian function H(p, q).

In order to construct the action-angle variables, we will look for a canonical

transformation (p,q) — (I, ¢) satisfying the two conditions:

1. I=1I(H),

2. ]{ dp =21 .
Mp,

In order to construct the canonical transformation p,q — I, ¢ in the general

(4.4)

case, we will look for its generating function S(Z, q):

95(1,q) 051, q) 051, q)
— = H =h(I) . 4.5
We first assume that the function h(7) is known and invertible, so that every
curve M, is determined by the value of I (M = Mj;)). Then for a fixed value
of I we have from (4.5)

dS = pdq + ¢dI
dp 0¢p 8gz5 8p
O—ddS—aId /\dI—i—adI/\d 90 ol
o9
= d¢p = Ed +§d1

Since we are considering I = const, it follows

dp
do|, = 57% S R = 2dq
dS|, = pdq S=J1 pdq.
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Let’s call
n= j{ pdq (area)
9
A¢ = - a—z;dq (period).
We have
dr dp
— —dqg=A¢ =2
ar , ar4=ne ="
ar_ 1
dn - 2n’

In this way, we have obtained the action variable

1 1
[=—MN=— pdq
2m 2 Jr,
and the angle variable
9 9p
= —dq.
¢ 57

Definition 4.2.10. The action variable in the one-dimensional problem with

hamiltonian function H(p, ¢) is the quantity I(h) = 5=TI(h).

Finally, we arrive at the following conclusion. Let % # 0. Then the inverse
I(h) of the function h(I) is defined.

Theorem 4.2.9. Set
q
S(I,q) :/ pdq‘H:h(I)‘

q0
Then formulas (4.5) give a canonical transformation p,q — I, ¢ satisfying con-
ditions (4.4).

Thus, the action-angle variables in the one dimensional case are constructed.

4.3 Examples

Let us apply the theory of Hamiltonian systems and elliptic integrals to a simple

example.
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4.3.1 Example 1

Let ,
H(p,q) = —p2 +V(q), where V(q)= _ T +q

2 3
Vq)
a3 E=
o8 2
\ 2 =3
ol
93 oef @2 Q E—= 1
3
\,\/5 G2, \\/§ E=0
\(I:; ® /7 q E=— %
-04 B
2
\ / ) \ E=—-3
— — D)
w3 \
q E—_1
h

Figure 4.1: V(q) = —% +q

d
Since p = % and H(p,q) = FE

dt
1 [(dqg 2
EFE=—-|— Vig) =
; () +ve

Y VA V) =

dt = + dq —
2(E=V(q))

t— t() == !

dq
w V2(E—=V(g)

where

2B~ V(a) =2E ~ g +6*/3) = 5 (0~ 0)la ~ a2)(a — )

and q1, q2, q3 are the turning point and are shown on the figure above

By a change of coordinate ¢ — ax + b

/MH’ adzx
t—tyo==% =
roa+b \/Z(E — V(GZE + b))

N /a:a+b adz
P 2 1

oa+b 2 €
a\/gcw:3 + 2022 + (20? — 2)5 + (2F —2b+ 563)5
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We want the Weierstrass form is 423 — gox — g3, so
2
—a=4=—=a=6
3@ a
2b=0=0b=0

By substituting the values of a and b we obtain

t—ty == /
6o
\/ 4z — =

Now, P(z) = 423 — § + 1_8 has three distinct roots < A = g5 —27¢2 # 0,

E

1 N
, g3 = 18

3

with go =

2

e Case E = —1 There is only one turnig point at ¢;

Waq)

Figure 4.2: V(q) < —1

t—ty =+ /
a1 x —1
VA T
—=t=p '(z,02,93) — 9 (6792,93)
—_——
=C

—t+C = '(z,92,93)
— T = p(t—l—C,QQ,gg)

q
= 6 = p(t_’_ ca92a93)

— q = 6p(t + ¢, 92, 93)
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where g0 = 1/3, g3 = 1/18

o Case £ =—-1/3

In this case we have three distinct inversion points q1, 2, gs-

Wq)

3

o
o

: ' ; % O T e T 3 %

o2 1

q3 q a EF=——
\/ .

Figure 4.3: V(q) < —

Wl

Case q3 < ¢ < ¢
We have a periodic motion between ¢3 and g¢s.

The period T' is given by

~1,9
—2/1'2 \/— |: 792793) £ 1(5792793)

Case ¢ > ¢4

:>t:@ ($ 92793 p ( 792793)

=C
—t+C=p '(z,0,093)

== T = p(t + Ca 92793)

= % = @(t + 0792793)

= ¢ =6p(t+ C, g2,93)
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with go = 1/3, g3 = 1/54, and where we have assumed the initial time
to = 0.
Action-angle variables

Let’s calculate the action-angle variables. By a canonical transformation

(p,q) — (I1,9)

where

I =1(h)

§do = 2r.
Let S(1,q) be its generating function s.t.

e Y )
then
S(.a) = [ pin= [ VEE= Ty (46)

and "’ "’

1= foio= 52 [*VAE Vi =
= [ VAE=T

OF
_0S(Lg) 1 [ B

L o g,
ol 2 @2 2(E - V(y))

Imposing the condiction

¢

oE

B a3 I _
f@"”:*QQ v
oF T

= 5l [P __d
“ 2BV ()

I
dE  m ), 2(E—-V(y)
— Lo g )~ 07 (% g g)
dE m
Al o (%, 00,95) — 97 (2, 92, 95)
substituting on 4.7 we can find ¢.

2T
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4.3.2 Example 2

In this example we are going to show how to transform a polynomial of fourth
degree into the Weierstrass form. The calculation were made by the help of
Matlab, of which we report the codex in 5.7.

Let’s assume V(q) = ¢* — 1= (¢ — 1)(qg+ 1)(qg+i)(q — 7).

H(p.q) = 30° + V().

Wq)
N
11
Figure 4.4
e d
t—ty= d =
o V—=2x1+2E +2
q dq

o V@—a)(g—b)(g—c)(g—d)

where

a=vVE+1
b=—VE+1,
c=—-1VE+1,



4.3 Examples

1

. So
qg—a

1 1
Let’s apply the transformation ¢ — a + T Then dq = 2 and t =

our integral becomes

dt
1 R
q—a tQ .
—1/4 1/4 1/4
e \/_g 8B+ 1)V §(E+ DV 12(E+ 1Y
4 3 t 2
dt
1 [
q—a t2

!
e t—z\/—Q —8(E + 1)~ V4t — 8(E + 1)V/43 — 12(E + 1)1/4¢2

We apply the second transformation ¢t — —as + 8, with dt = ads and s =

1 -1
— ( + 5) and the integral becomes
a\qg—a

/i(qlﬁﬁ) ds
1(o=ts) VAs3 +4(E +1)s’

qp—a

where
1

2(E + 1)3/1
-1

RV
This polynomial has distinct roots <= A #0ie. —4(E+1)3#0 < E #
—1.
Let’s assume E = 0.
The motion is periodic between ¢; = —1 and g = 1. The period T is

T — /;(q21a+5) ds
T i (es) VAP T s

a =

Let’s calculate the motion

5 ds (@) ds
t—ty = / = / =
ko) VI Ty VIS

_ S |
t=p""(592,95) — 9 1(5 (ql_a+ﬂ) 192, 93) =

=C
s=p(t+C,g2,93)
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Chapter 5

Geodesic flow on an ellipsoid
and the mechanical problem of

C. Neumann

5.1 Constrained Hamilton system

Consider a constrained Hamiltonian systems on M in R?", given by
M = {z € R*|Gi(z) =0,...,Gs(z) =0}.

The dimension of M is 2n — 2r if dG; are linearly independent on M. We will

require more by assuming

det({G}, G })jr=1,.2r # 0 (5.1)

which makes M a symplectic manifold.
If a given system
dx

— =JH
dt‘]ﬂ”

defines a vector field tangential to M, then there is no difficulty in restricting

this system to M. The condictions for this to be so is
XuG;=—{H,Gj} =0 forj=1,....2r (5.2)

on M.

This can done in many ways, for example, using the mehod of Lagrange mul-

71



72

5. Geodesic flow on an ellipsoid and the mechanical problem of C.
Neumann

tipliers, by replacing Xy by
2r
XH — Z )\j(l’)XGj
j=1

where the multipliers A; are defined so that this vectorfield is tangential to M.
This requires that

{H,Gk}—i{Gj,Gk} =0 (5.3)

which by 5.1 defines the A\; = \;(x) uniquely on M.

If we set

2r
H*=H-) )Gy,
j=1

the constrained vectorfield is given by

2r
Xy =X =Y NXq,.
j=1
5.2 Geodesics on an Ellipsoid
Let’s consider the geodesic flow on an ellipsoid

{:c e R", <A’1x,x> = 1} ,

where A = AT is a positive definite symmetric matrix with distinct eigenvalues

0<a; <--- < a,. Forsimplicity we assume, without loss of generality,

a; 0 - 0
‘ 0 ay -+ 0
A=diag(ay, - ,an) = . | '
0 O fo
The differential equations are given by
) dx ,
d—f =—vAlr = dy ds (5.4)
5 T Yy = —vA
s
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Proposition 5.2.1. The multiplier v is determined so that

%(d>2<A—1x,x>:o.

ds
1.€.

v=|A""2| (A z, 1)

Proof.

(A7 'z, z) —v|A7 2> =0

_ <A*1x,x>
= UV = W

O

We will show that this system is integrable and that the integrals can be

written as quartic polynomials in 2 and z’.
It’s usefull to represent this system by constraining the free Hamiltonian

1
H =yl (5.5)

to the tangent bundle of the ellipsoid

n_o 9
G, = <A’1x,:c> -1 :Z% -1,
i=1
Gy = <A_1$Uay> = Z x;yi-
i=1 "



5. Geodesic flow on an ellipsoid and the mechanical problem of C.
Neumann

74

Since
9G,0Gy  0G, 0Gy
{G1,Gy} = Z ox; Oy; Oy Ox;

N——

=0

n 2

T3 -~
=) 25 =242 £0,
=1 v

then det({G1, G2}) # 0, so the condiction 5.1 is satisfied.

OH G, OH G
XuGr=—{H,Gi} = Z@x 3. Oy, On,
K3 K3 (] K3

i=1

=0

= - (ZZyz—) =2(A"z,y);
i=1 v

0H 0G 8H oG
i 7 ) i

=0

Z%— Alyy):

{H,G1} = 2 {G1,Ga} = 0= 2(A7 2, y) — M(2]A72f*) =

== e

{H,Gs} — M {G1,G2} =0= <A_1Z/ ?/> - )\1(2‘/4_137’2) =0

(A'yy)
=N = A

So we have .
H" = 5’1/‘2 - )\1(<A7137755> —1) =X <A71$73/>

or
1 o Moo 2
—|y|2+§q>0(x,y) - §<A 1.T,y> )
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where
p= AT
¢0 - (<A_15L‘,J]> - 1) <A_1y7y> - <A_15L',y>2 =
2
DIl D Dbl O D
i=1 j=1 7 i=1 "
Proposition 5.2.2. The constrained system is
dx .
g =y
L 1 1
o~ Hi=—n(ATlyy) A
Proof.
o O (L ) 1O PO At ) —
;= o () + 5 @ulo) - 524 =
Boyae 9, v
y+ (A x) - 1)6_y<A W) =52 (A e y) oo (AT e )l = y
=0 =0
«_1ou 1.9 Lop /4 1O -t _
=0 =0
]. a 1 —1 ].2
= 5o [((A ) — 1) (A7 yy) — (A2, )]+
=0 =0 P
-0
1 .0 0 _
hlg- (A7, 2)) (A 1y,y>—@—x(<A tr,y)0)] =
-0
lugi Li (A, y) = /‘i Li <A‘1y y) = pA e (A, y).
2 Ha ’ i 7 ’
- -
A-1lg
n

Hence they agree with 5.4.
With this approach we extend the system from a flow on the tangent bundle of

the ellipsoid to R?", so we avoid the use of the local coordinates on the ellipsoid.



5. Geodesic flow on an ellipsoid and the mechanical problem of C.
76 Neumann

Also, the extended system Xp, has an interesting geometric interpretation.
The cone

{Z/ € R"|¢o(z,y) = O}
when traslated by z represents the cone of vectors throught the point the point

x which are tangent to the ellipsoid.

Figure 5.1: Tangent cone

Proposition 5.2.3. We have that |y|* and ¢y commute, i.e.

{\y|2 ) %} =0.

Proof.

n Ty n yz n Ty n y2

4 § | - § == § : =0
; o Qs e
i=1 " j=1 7 j=1 7 1t
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So, because of the proposition above, in the vectorfield

1
Xy = X‘

7
2 |2 + X¢O

2

Yy

also the two summands commute, we can discuss the two vectorfields separately.

The first summand describes the free flow

(z,y) =— (z + sy,y)

and the second is given by

T = N¢Oy
y = _M¢Ox

5.3 Confocal quadrics, construction of integ-

rals

Basic for the understing of the geodesics on the ellipsoid is the family of confocal

quadrics
Q.= ((zI —A) 'z, 2) +1=0, with z € R, 2 # oy
where the oy, k= 1,...n are the eigenvalues of the matrix A. (), contains the

ellipsoid for z = 0.

For abbreviation we set

Q:(x,y) =((zI —A) 'yy);  Qux) = Qu(z, ),

and we introduce
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‘\ _
R
BoR

Figure 5.2: Confocal quadrics

The functions ¢, (z,y) are quartic polynomials as far as x and y are concerned,

and rational functions of z with simple poles at the eigenvalues a4 of A.

n n

z? v; ~ 2y Y% | =
Qz(y)+ ZZ’—O(Z‘ ZZ_JQJ- B ZZ—OQ‘ : Zi;j -

i=1 j=1 i=1 j=1

oYy
zZ — Qy

i#j

53 y? S THY; + jy; — 2wy
(z — ) (2 — a )

Yi (zay; — z9:)*
Zz—ai * Z (z— i)z — ;)

vi ~ _(wiy; — zy:)°
Z z— q; +Z(2—ai)(2—aj)

By using in the second summation the partial fraction decomposition method,

we obtain
n

(ziy; — z4:)° <~ B
Z(z—ai)(z—aj) _Zz—ozi

j=1
J#i J#i
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where

So we can write

n

bulery) =3 EEY) (5.8)

- © T %
where
~ (25 — x79:)°
Fi(z,y) =y; + Y ~—=——=—. (5.9)
jz:; CYj —
i

Proposition 5.3.1. For any two numbers zy, zo one has for the functions ¢,
¢, defined by 5.7 the identity

{¢21 ) ¢2’2} - O

hence also

(F.5} =0

Proof.

_ - a¢z1 a(bzz a(bzl a(b’z? =

z":{ 1 OF(z,y) 1 0F(x,y) 1 0F(zy 1 8Fi<x,y>}zo

21 — Q4 8IZ Z9 — O 83/, 21 — O 8yl Z9 — O 8@

=1

Let’s prove {Fj, Fk} = 0 in the case n = 2. We have

<x2y1 - x1y2)2

Flzy%—i_ )
g — (1

2
T — X

F2:y§+< 12 291) ’
a1 — Q9

2
= OFOF, OF 0F,
{FI’FQ} B 121 O0x; Oy; 0y; Oz; B

2(7;2?/1 - $1y2) (_y2)2(951y2 - 1‘2?/1) (—22) — (2y1 + 2(952% - 1‘13/2)362)2(331% - 33291)y2
Qg — (X7 a1 — (g Qg — (X1 a1 — Qg
T —x x —x T - T —
+2( 21 1y2)y1(2y2 n 2( 1Y2 2y1)x1> . 2( 21 1y2>(_$1)2< 1Y2 2y1)(—y1) —0.
Qg — (X a1 — g Qg — (X1 a1 — Qg

O
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Since
> F =y’
i=1

also commutes with the Fj, it follows that the F; also are integrals for 5.6, and
hence the restrictions of the F; to the tangent bundle of the ellipsoid @)y are
integrals of the geodesic problem. By proposition 5.3.1 they commute, and
the dF; are linearly independent on an open set of R?". This shows that the
geodesic problem is integrable on an open and dense set of the tangent bundle,

and the integrals are given by the restriction of the functions 5.9.

5.4 Iso-spectral deformations

The system
0
95; = a_%
Yi (5.10)
9, |

can be interpreted as iso-spectral deformation. The difficulty is to guess the

matrices L and B with whitch the above equation can be written in the form

dL
— =|B,L|=BL - LB.
dt [ ’ ]

Following Moser [11], let
L =L(z,y) = PJ(A—z®x)P, ly| > 0,
where (z ® z) = x;z; is the tensor product and
-2
By = 05 — yiyslyl

is the projection onto the orthogonal complement of y.

Since
] — l‘% —T1T2 e — 1Ty
— T Qg — JZ% e — T
A—rz®zr=

—Tp,T1 —TpTy o Oy — X
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and
Y e i
2 2 2
Y| |yl , Y|
Y21 Y :
2 2
P,=1 lyl |y
Yl Yabe o Yn
lyl* ly[® ly[®

are both symmetric matrices, we have
(P,CP,)" = P/C"P] = P,CP,, where C = A—z®uz.

So L = Py(A — x ® x)P, also is symmetric. Thanks to the Matlab codex 5.7,

we calculate L in the case n = 2

a2 [(z1y2 — woyn)? — oy — ary] [(z1y2 — woy1)* — oy — a1y
I Witu) e (Wi+us) A =
Y11a [(z1y2 — 2ay1)” — oyy — arys)] o [(z1y2 — m21)” — oyt — arys]
(y1 +43) (vi +43)
N AT
Y1Y2 y%

and it’s easy to verify that

a2
Ly — Y2 y132/2 byr) _ 0,
Y1iy2 Y5 Y2
i.e. y is eigenvector for the eigenvalue A = 0.
Let B be a skewsymmetric matrix
0 —T1Y2 + oY1 —TYn T Tl
B— Ty — Ty \ | T %2Y + TiYe 0 Tt T X2Yn t Tnl
- aza‘] - . . . .
—TpY1 + T1Yn —TpY2 + ToYn - 0

the differential equation L' = [B, L] agrees with 5.10, and so the eigenvalues of
L are integrals for 5.10.
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Proposition 5.4.1. Since we have

ly|* det(2] — L) & Fi(a,y)
2 det(zl — A) o=(y) = Z z—

i=1
then the eigenvalues of L are related to the polynomials Fj, and ¢..

It follows that the eigenvalues of L are integrals for 5.10.
Proof. We proved it by using matlab for the case n = 2, see 5.7.1. O]

Therefore the eigenvalues A\i, Ao, ..., \,, with A\, = 0, and |y|2 can be viewed

as functions of the Fj and therefore commute also.

5.5 The mechanical problem of C. Neumann

The system in question describes the motion of a mass point on a sphere
Sl = {q e R"|q| = 1}

under the influence of the force —Agqg, where A is a symmetric matrix with
distinct eigenvalues. For simplicity we use A = diag(ay,...,ay) .

We can obtain the differential equations by constraining Xy with

1 =3 (40,0 + 50abl = (a.)?) = G.11)

%Zo‘iq?Jr% YaEY v D aw| | = (5.12)
=1 i=1 j=1 =1

% > gl + % > (qipj — pig)’,  @peR™ (5.13)
i=1 i=1
i#]
In the following way.
There are n commuting integrals Fi, ..., F,, which are polynomials in ¢, p, of
which
)

is one. We constrain this system to the tangent bundle of the sphere

2F =|¢> —1=0
G1=(p,q) = 0.
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Since
oF, 0G o0F, 0G -
{F1,G1} = Z P - TR =N =140
i=1 qi Di Di q; i—1
=0
and

0H 0G 0H 0G
{H, G} = Z L L=
=1

q;i Di bi G

n

1
[( g + 2q1pz 210?%)) ¢%— 5 (2piq} — 2pigiqi) pi| =

Zazq, (Aq, q)

=1

from 5.3 we want
{H7 Gl} -\ {Fh Gl} =0= )\ = <AQ,Q>

so follows
{H,G1} =M {F1,G1} =0 =\ = (4q,q) .
(Aq,q) 1
—(Agqq _

Then the constrained Hamiltonian system is
H*:H—)\lFl, with )\1:<Aq,q>

Therefore the differetial equations becomes

L o1 1 5 |
¢=H,=H,—\I, = | 2 (Ag,4) + 5(al*Ipl" = gp)) | =
=0 =0
0 (1 O (1. 2 o
(A R e —
o (5 (00 ) 50 (50aP0) =

=0

p=—H;=—Hy+MF, = —Aq—qlp]’ + Mg = —Aq+ q(\ —[p[*)

where |¢|' and (¢, p) = 0.
With v = A\, —|p|* = (4q, ¢) —|4|*, we can rewrite the differential equations as

follows
d*q

p:ij:ﬁ:—Aq—H}q? (5.14)
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where vq is the force keeping y on the sphere.
Now we show that this system is integrable.

Expanding the rational function ¢, at z = oo, we find from 5.7

.o =0+ L { Lty 41l - (e} +

or

_lal* | 2H(g,p)
¢-(p-q) = — T

We have also

1 ¢ i — @ip;)°
DIUTRIES S WTETI W M

=1 j=1
JF

—Zazqz + = Zzaz q;Pi — szj> =H

=1 j=1

J#i
so the functions Fj(p, ¢) being defined in 5.9 with (z,y) replaced by (p, q) are
the desired integrals of the system 5.11. Since |q|2 = Y " F; also commutes

with the Fj, the constrained system is integrable.

5.6 The connection between the two systems

The geodesic flow on the ellipsoid <A‘1x, x> = 1 and the Neumann’s problem
are closely related. There is also another connection between these problems,
found by Knorrer, that uses the Gauss map of the ellipsoid )y onto the unit

sphere in this way

QO N Snfl
(5.15)
r—q=rA"z
where r = ‘A_lx‘_l.
T 2
The Gauss mapping take solutions of i —vA~'z into solution of d_g =
s

—Aq + vq, where A is replaced by A~1.

T

We will change the independent variable s into t via s = (), so that T2
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becomes
Lo dU(Y(t)  d (d _d | de dy(t) |
=" T Ex(w(t)) = %W(t)) | =
W—/
=¢
d*x .. dx .
@(lﬂ(f))?/fw + %(?/J(t))df = “
o d . .
oA 4+ S () = oA 4 ¥
\L,-/ ¢
t
¢
Choosing 9 (t) so that —v¢2 =1 and writing B = A™!, the system becomes
¥ = —Bx + bt, where b = % (5.16)

Since <A_1a:, x> = (Bz,z) = 1, by differentiating once

d
7 <B:v(t), x(t)> =0
% D alby = 2miib; = 2(Bx,i) =0
=1 =1

= (Bz,i) =0

two times we obtain

d2
dt2 (Bx, i) d222xaclz
= (i + 2ayiib;) = 2 (B, i) + 2 (Bx, &) —2x|Ba[* = 0

=1 -0
Bi. i
| Bz|
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and three times

— Z 24::b; + 21:bidib; = 0

=1

replacing & = —Bx + bt

> " 2i(=bi; + bidg)bi + 2 (B, &) b; = 0
P \“_6_./
—2(Bx, Bi) 4 2b (Bi, &) = 0
——
= Baf?

- (Bz, Bi)
|Bz”

Theorem 5.6.1. The Gauss map of Qo — S™ ! takes the solutions of

ASRIRSS

i— Br+bi, b

satisfying
(Bz,z) =1, (Bz,&)=0, (Bt i)=|Bz|*,

into the solution of the Neumann problem
j=-Bg+vg, v=(Bgq) —|ql’ (5.17)

satisfying
i* =1 (@a)=0.  Wo(¢.q)=0, (5.18)
where W, (x,y) is defined like ¢.(z,y) but with A replaced by B = A™!,

Proof. Differentiating ¢ = rA~'x = r Bz we have

i = Bir+iBx = rB(i + —), (5.19)
T
where
d, B Bi
¢ = —|Ba|™ = —|Ba| ? Bi = ———
dt | Bz |
f Bi (Bx, Bi)

Y

_ - = — —
r |Bzf*|Bz| | Ba|?
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and
G = Bir+ Bxr +7Bx +7Bx =i2Br +22Br +7Bx =
Br(—Bz + bi) + 2rBi + #Bx = —BrBx + Brbi + 2rBi + 7 Bxr =
r T 7
—Bq + Bar (b + 2—) +-q=—Bqg+ —q.
r) T r

=0

]

This shows that the solutions of the geodesic problem correspond to the

solutions of the Neumann problem.

Moreover, following Moser [11],
(B, i)
| Ba”

Yo(d,q) = ( - 1) (Agq,q) .

Definition 5.6.1. A solution ¢ = ¢(t) of 5.17 is said non degenerate if

n—1

H(z — 1)
®.(¢,q) = m

has a zero, say p;, which is not an eigenvalue of B.

Replacing B by B — puy [

|V )

D.(4,q) = ——
(4:4) det(zI — B + uyI)
1 n—1

(z = py) Iz =)

1 j=1

n

—

|-

det((z+m)l —B) &
((z+m) — b:)
j=1
The condition
n—1
H(Nl = 1)
) j=1
V., (4, 9) =0
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becomes
n—1

[

1

Uo(d,q) = 5—— =0

H 1 — b;)

J=1

and the above reduction become possible, then the two problems are essentially

equivalent.

Theorem 5.6.2. Let ¢.(x,y) be the integrals of the geodesic problem and

V.(q,q) the integrals of the Neumann’s problem. If
(Bz,z) =1, (Bz,&)=0, (Bt &)=|Bz|*,
holds and (z, &) are related to (4, q) by the Gauss map

g =rBx
¢=rB(&+ L),

then
b.(x,3) =|Bz|* U,u(4, q), where w = —

z
Let’s introduce first a proposition that we will use in the proof

Proposition 5.6.3. We have the following identity

(wl — B) ™ + B = —(21 — A1 A%
Proof. Since

(—(2f —A)TA) P = —A2(2] — A) =

—AT2 I+ AT = A I (wl — ATY) = BzI(wl — B)

ie. (—(zf — A)7'A?)~! = BzI(wI — B),
then we should have

BzI(wl — B) [(wI —B)'+ B '] =1

= Bzl — BzI(wl — B)B™' =1
— Bz2I+BB ' —Bzl=1—=1=1.

(5.20)

(5.21)

(5.22)

(5.23)
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Proof. To verify the relation we introduce the abbreviations

Py(p,q) = ((w—B)"'p,q)

Pu(q = Pu(q,q))

7 (Bzx, Bz)
Q: —_— = —2
r |Bal

We find from 5.21

q=rBx

¢ =rBi+rB(—o)v =rBi —qo={+qo=rBi
and from 5.20

Py(q) = — (Aq,q) = — (ArBx,rBx) = —r? (Bx,z) = —r?
Po(q,q+ 0q) = — (Aq, ¢+ 0q) = — (ArBz,rBi) = r* (Bz,z) = 0
Py(¢+ 0q) = — (ArBz,rBi) = —r* (B, 1) = —|Bx|_2|Bx|2 -1

Moreover, the identity 5.23 gives

Pu(q) = Po(q) =((w — B)'q,q) + (Aq, q) =
(—(z=A)71A% = A)g,q) + (Aq, q) =
— ((z— A)"'A%q, q) — (Aq, q) + spAq =
— Q.(Aq) = —Q.(ArBx) = —r*Q.(x);

Pu(q,4+ 09)=Po(q, 4 + 0q) = ((w — B)"'q,4 + 0q) + (Aq, ¢ + 0g) =

(=(z = A)'A% = A)q, 4+ 0g) + (Aq, ¢+ 0q) =

((=(z = A)7'A%q, 4 + 0q) — (Aq, 4 + 0q) + (Aq, 4 + 0q) =
((z— A)'A*rBz,rBi) =

—r? <(z — A) ', x> = —12Q, (v, 1);

Po(Tt 00)—Po(d + 0q) = ((w — B)"“rBi,rBi) +r (B, &) =

((—(z— A)7'A* — AyrBi,rBi)y + r (Bi, i) =

((=(z — A)7'A*)rBi,rBi) — (ArBi,rBi) + r (Bi, i) =
—1r°Q. (i) — r (B&,2) +r (Bi, i) = —r*Qa(%).
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Hence

U.(q,4) = Pu(@)(1+ Puld + 09)) — (Pu(g,a + 09))* =

4 . ¢Z(x7 (IJ)
rig,(x, ) = .
m
5.7 The Riemann surface
Consider the flow in the n — 1 dimensional manifold
M= {q7QI <QJQ> = O,Fk(q;Q) :Ckak = 17"'”}7
where c1,...,c, are given so that
|Q|2 = Z ¢ =1
i=1
We will consider only the general case where the rational function
. g E(Q7Q) - C;
¢z(q,q)—; — —;Z_ai

has f31,..., 3,1 distinct roots, so aq,...,a,, B1,. .., Bn_1 are distinct and real,
SO

n—1

[1:-5)

. = b(z
¢-(4.q) = 5+ _ A )7
a(z)

H(z — )

i=1
where

n—1 n

b(z) = H(z —pBi), and a(z) = H(z — ;) =det(zl — A).

i=1 i=1
We prefer to use the elliptic coordinates as parameters on the manifold M.

Definition 5.7.1. uy, ..., u,_1 are called elliptic coordinates on the sphere if

they are the zeros of

Q0 =2 7o
i=1 ¢
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Let’s see how we can compute ¢, ¢ from them.

Since |q\2 = 1, we can write (), as

n—1

o rllew Tlew

Qz(q) _ Z q; _ _ z'? _ )

H(z — ;) H(z — ) alz)

i=1 =1

with

n—1

m(z) = [T = )

i=1
With the residues method we recover the ¢; up to sign from py, .., pin_1:

o m(a)
" da)

Let’s now compute q.

Since for z = p;, 1 =1,...n—1

¢=(¢, ) = (Q:=(q) + 1)&@—@(4, q)

=0
= Qz(Q> q) = _¢Z<Q’Q) = Y

we have obtained n — 1 linear equations for ¢ and these, together to (4, ¢), allow
us to recover (.

The differential equations theke the implicit form

n]l-

-1
Z =0;1, forj=1,....,.n—1
i \/7 !

where R(z) = a(z)b(z). These formulas are related to the Jacobi map given by

il pluiwi)  n—j—14,
S,
i=1 (uo,wo) 2 _R(Z)

that takes the divisor class defined by (y;,21/—R(z)) into a point s € C" '\ I',
where I denotes the period lattice of the differentials of the first kind.

The Riemann surface

w? = —4R(2)
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is an hyperelliptic curve of genus n—1 with branch points at i, ...y, 81, ... Bn_1,-

Then the differential equation becomes
$i=0;1, or s =0;1t+ s;(0).
In the case n = 2 we are on an ellipse and
R(z) = a(2)b(z) = (z — 1) (z — o) (2 — b1)

i.e it is a third degree polynomial, so we can easier calculate the differential

equation since

/<W> dz
—— =35
(uo,wo) V/ —4R(z)

is an elliptic integral of the first kind that we studied in 2.6.
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Example 1

clc

clear

% To convert a polynomial of third degree into the Weierstrass form
syms x Eabtq

%V=input (’ inserire potenziale V(q)\’)
% In our case

V= -q~3/3+q;

p=2%(E-V) % polinimio sotto radice
Pl=subs(p,q,a*x+b);

Pi1=expand(P1);

Pl=collect(P1,x);
P2=collect(expand(P1/(a"2)));

C = coeffs(P2,x);

al=C(1,4);

a2=solve(al==4,a)

b1=C(1,3);

b2=solve(b1==0,b)

P3=subs(P2,a,a2);

P3=subs (P3,b,b2)

p:

(2%q~3)/3 - 2xq + 2xE

93
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b2

P3 =

4*xx~3 - x/3 + E/18

Example 2

clear

clc

r=[1 -1 i -i];
syms x a bt s E;
V=poly(r);

E=[0 0 0 O E];
P=2x(E-V);
v=roots(P);
P=poly2sym(P,x);
Pl=subs(P,x,v(1)+1/t);
P1=expand(P1);
P2=expand (t~4x*P1) ;

P3=expand(subs(P2,t,-a*s+b)) ;

P4=collect(P3,s);
p4=expand(P4/a"2) ;
C = coeffs(p4,s);
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al=C(1,4);
a2=solve(al==4,a);
b1=C(1,3)
b2=solve(b1==0,b);
P5=subs(p4,a,a2);
P6=subs(P5,b,b2)

P6 =

4dxsx(E + 1) + 4%s”3

Some chapter 5 proofs

e confocal quadrics

e [so-spectral deformations

clc

clear

syms yl y2 y al a2 x1 x2 z z1
a=sym(’a’,[1 2]);
x=sym(’x’, [1 2]);
y=sym(’y’,[1 2]);

A=[al 0; 0 a2];

Al=inv(A);

confocal quadrics

We set

o Qr =Q.(x)
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b Qxy - Qz (LL’, y)
L Pz = ¢z(x7 y)

Qx=x*inv(zxeye(2,2)-A)*x.’;
Qxy=x*inv(z*eye(2,2)-A)*y.’;
Qy=y*inv(z*eye(2,2)-A)*y.’;
format rat

P_z=(1+Qx) *Qy-Qxy~2
simplify(P_z)

Let’s proof proposition 5.3.1, with P.; = ¢,

P_zl=subs(P_z,z,z1)

fprintf (’vediamo che {P_z,P_z1}=0\n’)

% Let’s calculate the Poisson bracket Pb

Pb=0;

for j=1:2

Pb=Pb+diff (P_z,x(j))*diff (P_z1,y(j))-diff(P_z,y(j))*diff (P_z1,x(j));
end

Pb=simplify(Pb)

fprintf(’é uguale a O\n’)

Iso-spectral deformations

Let’s construct the matrix P,

Y=[y172 yilxy2; ylxy2 y2°2];
Y=1/(y172+y2°2) . *Y;
P=eye(2)-Y

X=[x1"2 x1*x2; x1*x2 x2°2];
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X=A-X
L=P*X*P;
L=simplify(L)

We proof the symmetry of L by calculating the transpose matrix and then

doing the difference. If the difference is 0, the matrix is symmetric;

L1=L.’; % L1 is the transpose

fprintf (’L-L1=\n’)

simplify(L-L1)

fprintf (’L-L1=0, so L is symmetric\n’);

fprintf (’vediamo che Ly=0 )\n’);

Ly=Lx*y.’

fprintf (’Vediamo com’’& fatta B\n’);

B=[0 (x2*xyl-x1xy2)/(al*a2); (x1*xy2-x2*y2)/(al*a2) 0 ]
L2=simplify (B*L-L*B)

w=(—x172%y27 2+2xx 1 xx 2%y 1¥y2-x2"2xy1~2+a2*y1 " 2+alxy2~2) / (alxa2x* (y1~2+y272) "2) ;
L2=L2/w % we devide by w since matlab doesn’t do it
P_O=(x*Al*x.’-1)*(y*Al*xy.’)-(x*Al*y.’)"2

5.7.1 Proof Proposition 5.4.1.

fprintf (’Let’s proof 5.4.1\n’)
N=((y172+y2~2) /z) *det (z*eye (2,2)-L) /det (zxeye(2,2)-A)
N=simplify (N)

simplify(P_z-N)

fprintf (’P_z-N=0, so 5.4.1 is verified\n’)

¢ Weierstrass function

The following Matlab function enable us to calculate the Weierstrass function.

function [P] = weierstrassfunc(z,g2,g3)

C=zeros(1,20);
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C(1)=g2/20;

C(2)=g3/28;

for j=3:20

b=zeros(1,j-1);

for m=1:j-2
b(m)=C(m)*C(j-1-m) ;

end

s=sum(b) ;
M=3/((2x(j+1)+1)*(j-2));
C(j)=s*M;

end

C;

cz=zeros(1,20);

for i=1:20
cz(i)=double(C(i)*z"(2%i))
end

P=double(z" (-2)+ sum(cz));

end

I



Bibliography

Abramowitz Milton, Stegun Irene, Handbook of Mathematical Functions
with Formulas, Graph, and Mathematical Tables, Dover Publications,
INC., New York, 1965

Naum I. Akhiezer, Elements of the Theory of Elliptic Functions, American
Mathematical Society, Providence, 1990

Vladimir I. Arnold, Mathematical Methods of Classical Mechanics, Second
Edition, Springer Science+Business Media, New York, 1989

Antonio Fasano, Stefano Marmi, Analytical Mechanics: An Introduction,
Oxford University Press, New York, 2006

Harald Iro, A Modern Approach to Classical Mechanics, World Scientific,
Singapore, 2002

Gareth A. Jones, David Singerman, Complex Functions: An Algebraic and

Geometric Viewpoint, Cambridge University Press, Cambridge, 1987

Anthony W. Knapp, Elliptic Curves, Mathematical Notes 40, Princeton

University Press, Princeton, 1992

Lev D. Landau, Evgeny M. Lifshitz, Course of Theoretical Physics: Volu-
me 1 - Mechanics, Third Edition, Butterworth-Heinemann, 1976

Stephen T. Lovett, Differential Geometry of Manifolds, CRC Press, 2010

Jerrold E. Marsden, Michael J. Hoffman, Basic Complex Analysis, Third
Edition, W.H. Freeman and Company, New York, 1999

99



100 BIBLIOGRAPHY

[11] Jirgen Moser, Lezioni Fermiane - Integrable Hamiltonian Systems and

Spectral Theory, Edizioni della Normale, Pisa, 1981

[12] Carl L. Siegel, Topics in Complex Function Theory: Volume III - Abelian
Functions and Modular Functions of Several Variables, Wiley Classic Edi-
tion, Toronto, 1989

[13] John Stillwell, Mathematics and Its History, Springer-Verlag, New York,
1989



Ringraziamenti

Questo traguardo non sarebbe stato raggiunto senza l'incoraggiamento e il sup-
porto dei miei genitori e di tutti i miei parenti, anche di quelli con cui purtroppo
non posso piu condividere questa gioia.

Un ringraziamento particolare va ai professori Simonetta Abenda e Alberto
Parmeggiani, per aver appoggiato questo lavoro ed avermi aiutato nel realiz-
zarlo.

Il mio pensiero va inoltre ai miei amici: quelli che mi hanno accompagnato in
questi anni, quelli che mi hanno fatto prendere le decisioni giuste e rimproverato
quelle sbagliate, e quelli che hanno allietato il mio lungo, ma comunque troppo

breve, periodo all’estero.

101



