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Introduction

The integrals
∫
R(t,

√
p(t)), where R is a rational function and p(t) is a poly-

nomial of third and fourth degree without multiple roots, are called elliptic

integrals, because they first occur in the formula for the arc length of the el-

lipse. The functions obtained by inverting elliptic integrals are called elliptic

functions, and the curves that require elliptic functions for their parametriza-

tion are called elliptic curves.

Elliptic integrals arise in many important problems of geometry and mechanics.

Indeed the arc of length of an ellipse represents the first approximation of the

orbit’s lenght of a planet around the sun.

In this thesis we shall consider other relations between mechanics and elliptic

integrals. First, we shall compute the action-angle variables of one-degree of

freedom Hamiltonian systems with a cubic or quadratic potential using elliptic

integrals. Then we shall redo the computations of Moser [11] for the integrable

systems of the geodesics on an ellipsoid and of the Neumann system on a sphere

in Rn, since in the case n=2 they can be solved by elliptic integrals.

The theory of elliptic functions and elliptic integrals has a long history. It

began with the discovery of a remarkable property of the arc of the leminiscate

of Bernouilli, made in 1718 by the Italian count Fagnano.

The leminiscate is the locus of a point p = (x, y) in the plane so that the product

of its distances from two fixed points, called the foci, has constant value c2.

1



2 Introduction

Figure 1: Leminiscate of Bernouilli

We choose the foci as (±a, 0) with c = a, so that the leminiscate passes throught

the origin and is symmetric with respect to the two coordinate axes. Let

a = 1/
√

2 and r be the distance between the point p and the origin. Since

the curve is symmetric with respect to both coordinate axes, we can restrict

the curve to the first quadrant.

Figure 2: Arc of a leminiscate
The arc length s in function of r satisfies

ds

dr
=

1√
1− r4

,

so that the lenght of the leminiscate, restricted to the first quadrant, is:

s =

∫ 1

0

dr√
1− r4

.
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Fagnano discovered how to double and halve a leminiscate arc given by its end

point using ruler and compass alone.

In 1751, Euler started his investigations closely related to the work of Fagnano,

which led him to the discovery of the addition theorem for elliptic integrals. He

knew that ∫ u

0

dt√
1− t2

+

∫ v

0

dt√
1− t2

=

∫ r

0

dt√
1− t2

.

from the trigonometric addition theorem

sin(x+ y) = sin x cos y + cosx sin y,

by substituting
u = sin(x),

v = sin(y),

r = sin(x+ y) = u(
√

1− v2) + v(
√

1− u2).

In the case of the leminiscate, he replaced the expression (1 − u4) under the

radical sign by the polynomial P (u) = 1 + au2 − u4, where a is an arbitrary

constant, and thus proved the addition theorem
r =

u
√
P (v)+v

√
P (u)

1+u2v2
and∫

u

0

dt√
P (t)

+
∫

v

0

dt√
P (t)

=
∫

r

0

dt√
P (t)

.

Finally Euler discovered the invariance of the integral under the fractional linear

transformation

u =
αw + β

γw + δ
, αδ − βγ 6= 0.

Indeed, by applying it at the variable u of a generic polynomial P (u) of fourth

degree, he found that

H(w) = (γw + δ)4P (u)

is again a polynomial of fourth degree in w. In particular, with a suitable choice

of the values of a, α, β, γ and δ, H(w) can take the form

H(w) = 1 + aw2 − w4.

Since

du =
αδ − βγ

(γw − δ)2
dw,
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it follows that

(αδ − βγ)−1 du√
P (u)

=
dw√
H(w)

.

This approach yields the general form of the Euler addition theorem.

The idea of inverting elliptic integrals to obtain elliptic functions is due to

Gauss, Abel and Jacobi.

Gauss first considered inverting an elliptic integral in 1796, in the case of∫
dt√

1− t3
.

The following year he inverted the leminiscatic integral

u =

∫ x

0

dt√
1− t4

,

defining the leminiscatic sine function x = sl(u), and he found sl(u) is doubly

periodic.

Thus Gauss discovered the double periodicity property of the elliptic functions,

but refrained from publishing any results. Beetween 1827 and 1829, this pro-

perty was discovered (and released) by Abel.

This dissertation consists of five different chapters.

The first chapter introduces the necessary definitions concerning differential

geometry, symplectic geometry and complex analysis, which should be useful

to the reader to gain a better understanding of the following chapters.

In the second chapter we write some of the theory of the elliptic functions,

which are doubly-periodic meromorphic functions on C. We consider the fun-

damental parallelogram of the periods, and use it to characterize the the other

properties of the elliptic functions. We construct elliptic functions of order

N ≥ 3, using the convergence of certain infinity sums over a lattice and the

infinite products of meromorphic functions. Thanks to them we define the σ

and the ζ Weierstrass functions. We define the ℘ Weierstrass function from

the ζ function, and show that it is an elliptic function of second order. The ℘

Weierstrass function solves the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.
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We then use the property of the σ, ζ, ℘ Weierstrass functions to characterize

some elliptic integrals. Moreover, from the differential equation we can para-

metrize elliptic curves and describe some of their properties.

The third chapter covers Lagrangian mechanics which describes the motion

of a mechanical system by solving the Lagragian equations of motion that is

obtained from the calculus of variations.

Throughout the fourth chapter we obtain the Hamiltonian function by applying

the Legendre transformation to the Lagrangian function. From this we obtain

the Hamiltonian system of equations. We then define the Hamiltonian systems

as a triple (M,ω,H) where M is an even-dimensional manifold, ω a symplectic

structure and H ∈ C∞(M,R) the Hamiltonian function. With the Arnold-

Liouville theorem, we see the condition for which a Hamiltonian system is

integrable by quadrature. The chapter is concluded by with two basic examples

of one degree of freedom Hamiltonian system that involve the elliptic integrals.

In particular is explained how transform the elliptic integrals of the first kind

with cubic and quartic polynomials into the Weierstrass form.

In the last chapter the integrable systems of the geodesic on an ellipsoid and the

Neumann system on a sphere are considered. These two systems are linked by

the Gauss map. Here, Moser’s computations [11] are redone and it is shown that

in the case n = 2 the integral associated to the quadrature becomes elliptic.

Certain calculations of the two examples shown in chapter four and certain

proofs in the last chapter were made by using Matlab programs. Finally, the

codes are listed in the appendix.
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Chapter 1

Mathematical Preliminares

1.1 Differentiable manifold

Definition 1.1.1. An n-dimensional smooth manifold is a topological space

M together with a countable collection of open sets {Uα} called the coordinate

charts such that

•
⋃
α

Uα = M ;

• let Vα ⊆ Rn be an open set. There exist one-to-one homeomorphisms

φα : Uα −→ Vα, called the coordinate functions, such that for any pair of

overlapping coordinate charts the maps

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ)

are smooth (i.e. infinitely differentiable) functions from Rn to Rn.

The pair (Uα, φα) is called chart, while the whole family
{

(Uα, φα)
}

is called

atlas.

Definition 1.1.2. Let f : M −→ N be a map from an m-dimensional manifold

to an n-dimensional manifold. f is said differentiable at p ∈ M if there are

(U, φ) and (V, ψ) charts in M and N respectively, with p ∈ U and f(p) ∈ V ,

such that f(U) ⊂ V and

ψ ◦ f ◦ φ−1 : φ(U) −→ ψ(V )

7



8 1. Mathematical Preliminares

is C∞ with respect to each φ(p). Differentiable maps are also said to be smooth.

f is a diffeomorphism if ψ ◦ f ◦ φ−1 is invertible and the inverse is C∞.

Definition 1.1.3. Let φ : (−ε, ε) −→ M be a differentiable curve, ε > 0, such

that φ(0) = x. The tangent vector to M at x is a velocity vector of curves on

M passing thought x:

ẋ = lim
t−→0

φ(t)− φ(0)

t
.

Definition 1.1.4. Two curves φ(t) and ψ(t) are equivalent if φ(0) = ψ(0) = x

and lim
t−→0

(φ(t)− ψ(t))/t = 0 in some chart.

It’s easy to check that the set of tangent vectors is closed under scalar

multiplication and addition.

Definition 1.1.5. Let M be a differentiable manifold of dimension n, and let

x be a point of M . The set of all tangent vectors to M at x is a vector space

of dimension n called the tangent space to M at x, and is denoted by TxM .

Definition 1.1.6. Let U be a chart of an atlas forM with coordinates q1, . . . , qn.

Then the components of the tangent vector to the curve q = φ(t) are the num-

bers ξ1, . . . , ξn, where ξi = (dφi/dt)
∣∣
t=0

.

Definition 1.1.7. The union of the tangent spaces to M at the various points,⋃
x∈M

TxM , has a natural differentiable manifold structure, the dimension of

which is twice the dimension of M . This manifold is called the tangent bundle

of M and is denoted by TM .

A point (x, ξ) ∈ TM is a point q ∈ M and a vector ξ ∈ TxM , tangent to

M at x. Let q1, . . . , qn be local coordinates on M , and ξ1, . . . ξn be the com-

ponents of tangent vector in this coordinate system. Then the 2n numbers

(q1, . . . , qn, ξ1, . . . ξn) give the local coordinate system on TM . One sometimes

writes dqi for ξi.
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1.2 Differential forms

1.2.1 Exterior form

Definition 1.2.1. A form of degree 1 (or a 1-form) on Rn is a linear function

ω : Rn −→ R, i.e., ∀λ1, λ2 ∈ R and ∀ξ1, ξ2 ∈ Rn,

ω(λ1ξ1 + λ2ξ2) = λ1ω(ξ1) + λ2ω(ξ2),

The space of 1-forms on Rn is itself n-dimensional, and is also called the

dual space (Rn)∗.

Suppose that we have choosen a linear coordinate system x1, . . . , xn on Rn.

Each coordinate xi is itself a 1-form. These 1-forms are linearly independent.

Therefore, every 1-form ω takes the form

ω = a1dx1 + · · ·+ andxn, ai ∈ R.

The value of ω on a vector ξ is equal to

ω(ξ) = a1x1(ξ) + · · ·+ anxn(ξ), ai ∈ R.

where x1(ξ), . . . , xn(ξ) are the components of ξ in the choosen coordinate sy-

stem.

Definition 1.2.2. An exterior form of degree 2 (or a 2-form) is a function of

pairs of vectors ω2 : R2n −→ R, which is bilinear and skew-symmetric:

ω2(λ1ξ1 + λ2ξ2, ξ3) = λ1ω
2(ξ1, ξ3) + λ2ω

2(ξ2, ξ3)

ω2(ξ1, ξ2) = −ω2(ξ2, ξ1)

∀λ1, λ2 ∈ R and ξ1, ξ2, ξ3 ∈ Rn.

The set of all 2-forms on Rn becomes a real vector space with the addition and

the multiplication by scalars.

Definition 1.2.3. A 2-form is non-degenerate if

ω2(ξ, η) = 0, ∀η ∈ Rn =⇒ ξ = 0
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1.2.2 Exterior product

Let ξ be a vector in Rn. Given two 1-forms ω1 and ω2, we can define a mapping

of Rn to the plane R×R by associating to ξ the vector ω(ξ) with components

ω1(ξ) and ω2(ξ) in the plane with coordinates ω1, ω2.

Definition 1.2.4. The value of exterior product ω1 ∧ ω2 on the pair of vectors

ξ1, ξ2 ∈ Rn is the oriented area of the image of the parallelogram with sides

ω(ξ1) and ω(ξ2) on the ω1, ω2 - plane:

(ω1 ∧ ω2)(ξ1, ξ2) =

∣∣∣∣∣∣ω1(ξ1) ω2(ξ1)

ω1(ξ2) ω2(ξ2)

∣∣∣∣∣∣ .
ω1 ∧ ω2 is a 2-form, so is bilinear and skew symmetic:

ω1 ∧ ω2 = −ω2 ∧ ω1

(λ1ω1 + λ2ω2) ∧ ω3 = λ1ω1 ∧ ω3 + λ2ω2 ∧ ω3.

Follows

ωi ∧ ωi = 0.

1.2.3 Differential forms

We give here the definition of differential forms on differentiable manifolds.

Definition 1.2.5. A differential form of degree 1 (or a 1-form) on a manifold

M is a smooth map

ω : TM −→ R

of the tangent boundle of M to the line, linear on each tangent space TxM .

Let M = Rn be with coordinates x1, . . . , xn. Let ξ ∈ TxRn be a vector,

ξ =
n∑
i=1

ai(x)
∂

∂xi
,

with

dxi(ξ) = ai(ξ), dxi(
∂

∂xj
) = δi,j i = 1, . . . , n.

The n 1-forms dx1, . . . , dxn on TxM are linearly independent and form a basis

for the n-dimensional space of 1-forms on TxM . So we can say:
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Proposition 1.2.1. Let ω be a differential 1-form on the space M with a given

coordinate system x1, . . . xn. Then ω can be written uniquely in the form

ω = a1(x)dx1 + · · ·+ an(x)dxn

where the coefficients ai(x) are smooth functions.

Definition 1.2.6. Let M be an n-dimensional differentiable manifold. A 1-

form on the tangent space to M at point x is called cotangent vector to M at x.

The set of all cotangent vectors to M at x forms an n-dimensional vector space,

dual to the tangent space TxM . We will denote this vector space of cotangent

vectors by T ∗xM and call it the cotangent space to M at x.

The union of the cotangent spaces to the manifold at all of its points is called

the cotangent boundle of M and is denoted by T ∗M . The cotangent bundle has

a natural structure of a differentiable manifold of dimension 2n.

Definition 1.2.7. A differentiable k-form ωk at point x of a manifold M is

an exterior k-form on the tangent space TxM to M at x, i.e. a k-linear skew-

symmetric function of k vectors ξ1, . . . ξk tangent to M at x.

Theorem 1.2.2. Every differential k-form on the space M with a given co-

ordinate system x1, . . . xn can be written uniquely in the form

ωk =
∑

i1<···<ik

ai1,...,ik(x)dxi1 ∧ · · · ∧ dxik

where ai1,...,ik(x) are smooth functions on Rn.

Definition 1.2.8. We define the exterior derivative of the k-form

ωk =
n∑
i=1

ai1,...,ikdxi1 ∧ · · · ∧ dxik

be the (k + 1)-form

dωk =
n∑
i=1

dai1,...,ik ∧ dxi1 ∧ · · · ∧ dxik.

So, if ω is a 1-form, ,

ω = a1dx1 + · · ·+ andxn

its exterior derivative is

dω = da1 ∧ dx1 + · · ·+ dan ∧ dxn.
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Theorem 1.2.3 (Stoke’s Theorem). Let M be a n-dimensional orientable man-

ifold, i.e it can be given an orientation, and ω a k-form.

Then the integral of a differential form ω over the boundary of M is equal to

the integral of its exterior derivative dω over M , so∫
∂M

ω =

∫
M

dω.

Definition 1.2.9. A differential form ω on a manifold M is closed if its exterior

derivative is zero: dω = 0.

1.3 Symplectic geometry

Symplectic vector spaces

Definition 1.3.1. A symplectic linear structure on R2n is a non-degenerate

bilinear skew-symmetric 2-form given in R2n. This form is called the skew

scalar product and is denoted by [ξ, η] = −[η, ξ].

The pair (R2n, [, ]) is called the symplectic vector space.

Definition 1.3.2. Let (p1, . . . , pn, q1, . . . qn) be coordinate functions on R2n,

and ω2 be the form

ω2 =
n∑
i=1

dpi ∧ dqi.

This form is nondegenerate and skew-symmetric, it can be taken for a skew-

scalar product: [ξ, η] = ω2(ξ, η). In this way R2n = (p,q) receives a symplectic

structure and (R2n, ω2) is called the standard symplectic structure.

Definition 1.3.3. A symplectic basis is a set of 2n vectors epi , eqi , i = 1, . . . , n,

whose scalar products have the following structure:

[epi , epj ] = [eqi , eqj ] = 0, [epi , eqj ] = δij ∀i, j = 1, . . . n,

where δij is the Kronecker delta function.

If we take the vectors of a symplectic basis as a coordinate unit vectors,

we obtain a coordinate system pi, qi in which [ , ] takes the standard form

dp1 ∧ dq1 + · · ·+ dpn ∧ dqn. Such a coordinate system is called symplectic.
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Definition 1.3.4. A linear transformation S : R2n −→ R2n of the symplectic

space R2n to itself is called symplectic if, ∀ξ =
∑n

i=1

[
αi(p,q)epi + βi(p,q)eqi

]
and ∀η =

∑n
i=1

[
γiepi + δieqi

]
, it preserves the skew-scalar product:

[Sξ, Sη] = [ξ, η] = αiδj − βiγj, ∀ξ, η ∈ R2n.

It follows that a transformation S : R2n −→ R2n of the standard symplectic

space (p,q) is symplectic if and only if it is linear and canonical, i.e. preserves

the differential 2-form

ω2 = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn.

In this coordinate system, the transformation is given by a 2n× 2n matrix S.

Theorem 1.3.1. A transformation is symplectic if and only if its matrix S in

the symplectic coordinate system (p, q) satisfies the relation

S ′IS = I,

where

I =

 0 −E
E 0

 ,

S ′ is the transpose of S and E is the n× n identity matrix.

Symplectic atlas

An atlas of a manifold M2n is called symplectic if the standard symplectic

structure ω2 = dp ∧ dq is introduced into the coordinate space R2n = (p,q),

and the transfer from one chart to another is realized by canonical (i.e. ω2

preserving) transformation φβ ◦ φ−1
α .

Theorem 1.3.2 (Darboux’s theorem). Let ω2 be a closed nondegenerate dif-

ferential 2-form in a neighborhood of a point x in the space R2n. Then in some

neighborhood of x one can choose a coordinate system (p1, . . . , pn, q1, . . . qn) such

that the form has the standard form:

ω2 =
n∑
i=1

dpi ∧ dqi.
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1.4 Complex analysis review

The Riemann Sphere

In order to discuss meromorphic functions, we use the extended complex plane

Σ = C ∪ {∞}

where ∞ is an extra point called the point at infinity. Σ may be regarded as

being a sphere. Indeed, consider the 2-sphere

S2 =
{

(x1, x2, x3) ∈ R3|x2
1 + x2

2 + x2
3 = 1

}

in R3, and identify the complex plane C with the plane x3 = 0 by identifying

z = x + iy (x, y ∈ R) with (x, y, 0)∀z ∈ C. If N = (0, 0, 1) is the north pole

of S2, then the stereographic projection from N to the plane (x, y, 0) gives a

bijective map

π : S2 \ {N} −→ C

Q 7−→ A,

where A ∈ C, Q ∈ S2 \ {N}, and A,Q,N are collinear.

π is an homorphism between S2 \ {N} and C (see [6]), so we can extend

π : S2 \ {N} to a bijection π : S2 −→ Σ by defining π(N) to be ∞, and

use it to transfer algebraic and topological properties from Σ to S2 and vice-

versa. Since Σ has the same topological properties as the sphere S2, Σ is often

referred as the Riemann sphere.
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1

i

A

Q

N

Figure 1.1: Riemann sphere

Analytic and meromorphic functions

Let U ⊂ C be an open set (i.e. ∀zo ∈ U,∃r > 0 s.t.
{
|z − z0| < r

}
⊂ U).

Definition 1.4.1. A function f is said to be holomorphic on U if f is complex

differentiable on each point of U . i.e. at z0 ∈ C, the limit

lim
h−→o

f(z0 + h)− f(z0)

h

exists in C.

Theorem 1.4.1. Let f : U −→ C , and write f=u+iv, where u, v are real

valued functions.

• if f ∈ C1(U) satisfies the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

then f is holomorphic in U

• If f is given by a power series

f(z) =
∞∑
n=0

an(z − z0)n
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that converges on an open disc B(z0, r) of centre z0 and radious of con-

vergence r > 0, then f is holomorphic on B(z0, r) .

Definition 1.4.2. A function f : U −→ C is said to be analytic on U if for

each point z0 ∈ U there exists an open disc B(z0, r) ⊆ U in which f can be

written as the sum of a power series centrered at z0, i.e.

f(z) =
∞∑
n=0

an(z − z0)n, for z ∈ B(z0, r).

Proposition 1.4.2. f analytic on U =⇒ f holomorphic on U .

Definition 1.4.3. Let 0 ≤ r1 < r and z0 ∈ C . LetA =
{
z ∈ C |r1 < |z − z0| < r2

}
an annulus. f(z) is called Laurent series is has the form

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

, (1.1)

where the coefficients an, bn for n ∈ Z are complex numbers, and both the

series converge absolutely on A and uniformly in sets of the form Bρ1,ρ2 ={
z|ρ1 ≤ |z − z0| ≤ ρ2

}
, where r1 < ρ1 < ρ2 ≤ r1.

Let’s see the special case of the Laurent series when r1 = 0:

Definition 1.4.4. If f is analitic on
{
z ∈ C|0 < z − z0| < r2

}
, which is deleted

r2 neighborhood of z0, we say that z0 is an isolated singularity.

• If z0 is an isolated singularity of f ad if all but a finite number of the bn

in 1.1 are zero, then z0 is called a pole of f . If k is the highest integer

such that bk 6= 0, z0 is called a pole of order k. If z0 is a first-order pole,

we also say it is a simple pole. The Laurent series has the form

bk
(z − z0)k

+ . . .
b1

(z − z0)
+ a0 + a1(z − z0) + . . .

The part
bk

(z − z0)k
+ . . .

b1

(z − z0)

is called principal part of f at z0.

• if an infinite number of bk in 1.1 are nonzero, then z0 is called an essential

singularity.
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• We call b1 in 1.1 the residue of f at z0, and we denote it with Res
z=z0

(f(z)).

• If all the bk in 1.1 are zero, we say that z0 is a removable singularity, then

f(z) =
∞∑
n=0

an(z − z0)n

i.e. is a convergent power series.

Definition 1.4.5. Let f be an analytic function and F (z) = f(1/z). Then we

say that:

• f has a pole of order k at ∞ if F has a pole of order k at 0;

• f has a zero of order k at ∞ if F has a zero of order k at 0;

• we define Res
w=∞

(f(w)) = −Res
z=0

(
1

z2
F (z)), where w = 1

z
.

Definition 1.4.6. A function is said to be meromorphic in A if it is analytic

on A, except for poles in A.

Theorem 1.4.3 (Residue theorem). Let f be analytic on a region A \ {z0}
and have an isolated singularity at z0. If γ is any circle around z0 in A whose

interior, except for the point z0, lies in A, then

1

2πi

∫
γ

f(z)dz = Res
z=z0

(f(z)).

Proposition 1.4.4. Let γ be a simple closed curve in C . Let f be ana-

lytic along γ and have only finitely many singularities outside γ at the point

z1, . . . , zn. Then

1

2πi

∫
γ

f =
n∑
i=1

Res
z=zi

(f(z)) +Res
z=∞

(f(z)).

Theorem 1.4.5 (Cauchy’s Residues Theorem). Suppose f and g are analytic

in a neirborhood of z0 with zeros there of order n and k respectively.

Let h(z) =
f(z)

g(z)
. Then

• if k > n, then h has a pole of order k − n at z0;

• if k = n, then h has a removable singularity with nonzero limit at z0;

• if k < n, then h has a removable singularity at z0, and setting h(z0) = 0

produces an analytic function with a zero of order n− k at z0.
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Chapter 2

Elliptic functions

2.1 Periodic functions

Definition 2.1.1. Let f be a function defined on the complex plane C. Then

a complex number ω is called a period of f if

f(z + ω) = f(z)

∀z ∈ C, and f is called periodic if it has period ω 6= 0.

The set Ωf of periods of a function f has two important properties: one

algebraic, valid for all f , and one topological, valid for a non-constant mero-

morphic functions f .

Theorem 2.1.1. Let Ωf be the set of periods of a function f defined on C ;

then Ωf is a subgroup of the additive group C .

Theorem 2.1.2. Let Ωf be the set of periods of a non-constant meromorphic

function f defined on C ; then Ωf is a discrete subset of C .

We now show that there are three types of discrete subgroups of C, iso-

morphic to 0,Z and Z× Z respectively.

Theorem 2.1.3. Let Ω be a discrete subgroup of C . Then one of the followings

holds:

i. Ω = {0};

19
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ii. Ω =
{
nω1|n ∈ Z

}
for some fixed ω1 ∈ C \ {0}, and so Ω is isomorphic to

Z;

iii. Ω =
{
mω1 + nω2|n,m ∈ Z

}
for some fixed ω1, ω2 ∈ C\{0}, where ω1 and

ω2 are linearly independent over R, i.e Im
(
ω2

ω1

)
6= 0. In this case, Ω is

isomorphic to Z× Z.

Definition 2.1.2. If a function f has is set Ωf of periods of type (ii), then f

is simply periodic; if Ωf is of type (iii), then f is doubly periodic.

Groups Ω of type (iii) are called lattices, and a pair {ω1, ω2} such that

Ω =
{
mω1 + nω2|m,n ∈ Z

}
is called basis for the lattice.

The parallelogram u with vertices 0, ω1, ω2, ω1 + ω2 is called fundamental par-

allelogram for Ω .

If u1 is another fundamental parallelogram for Ω , then u and u1 have the same

area. Indeed

Theorem 2.1.4. Let Ω be a lattice with basis {ω1, ω2}. Then {ω′1, ω′2} is a

basis for Ω ⇐⇒ ∃ a, b, c, d ∈ Z such that

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2.

and ad− bc = ±1.
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Given a lattice Ω , we define z1, z2 ∈ C to be congruent mod Ω , written

z1 ∼ z2, if z1 − z2 ∈ Ω, i.e.

z1 ≡ z2(mod Ω) ⇐⇒ z2 = z1 + ω, for some ω ∈ Ω.

Congruence mod Ω is easily to be an equivalence relation on C.

We can identify doubly periodic functions with functions on a quotient space

C/Ω, and this is identified with the torus obtained by gluing together both

opposite pairs of edges of the fundamental parallelogram u.

0 �1

�1+�2
�2

0=�2

�1=�1+�2

0 = �1 = �2 = �1+�2

⊓

2.2 General properties of elliptic functions

Definition 2.2.1. A meromorphic function f : C −→ Σ is elliptic with respect

to a lattice Ω ⊆ C if f is doubly periodic with respect to Ω , i.e. if

f(z + ω) = f(z) ∀z ∈ C, ω ∈ Ω,

so that each ω ∈ Ω is a period of f .

If f is elliptic with respect to Ω , then we may regard f as a function f : T −→
Σ, where T is the torus T = C/Ω.
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Figure 2.1: f : T −→ Σ

Definition 2.2.2. The order of the elliptic function f(z) , written N = N(f)

is the number of poles counted with multiplicity of f(z) mod Ω , i.e N is the

sum of the orders of the poles of f(z) in the interior of u.

Theorem 2.2.1. An elliptic function f has order N = 0 ⇐⇒ f is constant.

Proof. (⇐⇒ ) Let u be a (closed) period parallelogram for the elliptic function

f(z) . Suppose f(z) has orderN = 0, i.e. it has no poles and so f is holomorphic

on C . In particular it is continuous and f(Ω) = f(u). Since the continuous

image of a closed and bounded set is bounded, f(u) is a bounded subset of

C . So ∃M > 0 such that ∀z ∈ u,
∣∣f(z)

∣∣ ≤ M . ∀z ∈ C,∃ m,n ∈ Z such

that z1 = z −mω1 − nω2 ∈ u and f(z) = f(z1) < M . Then f is bounded and

holomorphic on C , and, for the Liouville theorem, f is constant.

Theorem 2.2.2. Let f(z) be elliptic, let u be a period parallelogram for f(z) with

no poles of f(z) on ∂u. Let b1, . . . , bs be the poles of f(z) in u. Then the sum

of the residues at poles of f(z) inside u is zero, i.e.

s∑
i=1

Res
z=bi

(f(z)) = 0.

Proof. We use the Cauchy’s Residue Theorem

s∑
i=1

Res
z=bi

(f(z)) =
1

2πi

∮
∂u
f(z)dz.
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So
t + ω1 + ω2

t + ω1
t + ω2

t

1

2πi
(

∫ 1

x=0

f(t+ ω1x)ω1dx+

∫ 1

x=0

f(t+ ω1 + ω2x)ω2dx

+

∫ 1

x=0

f(t+ ω1 + ω2 − ω1x)(−ω1)dx+

∫ 1

x=0

f(t+ ω2 − ω2x)(−ω2)dx).

By substitution y = 1 − x in the last two integrals, and since ω1 and ω2 are

periods, we have

1

2πi
(

∫ 1

x=0

f(t+ ω1x)ω1dx+

∫ 1

x=0

f(t+ ω2x)ω2dx

−
∫ 1

y=0

f(t+ ω1y)ω1dy −
∫ 1

y=0

f(t+ ω2y)ω2dy) = 0.

Corollary 2.2.3. There are no elliptic function of order N = 1.

Proof. Suppose f is elliptic of order N = 1. So we have a pole at z = b, and

the Laurent series has principal part
a−1

z − b
, with residue Res

z=b
(f(z)) = a−1 6= 0.

But by Theorem 2.2.2

0 =
∑

Res
z=b

(f(z)) = a−1

and we have the contraddiction.

Theorem 2.2.4. Let f(z) be a non constant elliptic function of order N . Then

the number of zeros of f(z), mod Ω, counted with multiplicity, equals the number

of the poles of f(z), mod Ω, counted with multiplicity.
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Let u be a period parallelogram with no zeros and no poles of f(z) on

∂u. Let z = a1, . . . , ar be the zeros of f(z) inside u with orders k1, . . . , kr

respectively. Let z = b1, . . . , bs be the poles of f(z) inside u with orders l1, . . . , ls

respectively. Then
r∑
i=1

ki =
s∑
j=1

lj = N.

Proof. f ′(z)
f(z)

is meromorphic, and since ∂u contains no poles or zeros of f , f ′/f

is analitic on ∂u. Since f ′/f is elliptic, from the previous theorem, we have∮
∂u

f ′(z)

f(z)
= 0 =⇒

∑
Res(

f ′

f
) = 0.

Now, f ′/f has poles at poles and zeros of f and nowhere else. Suppose f has

zeros at z = a with multiplicity k. So

f(z) = (z − a)kg(z)

where g is analytic and g(a) 6= 0, and

f ′(z) = k(z − a)k−1g(z) + (z − a)kg′(z) near z = a.

Then

f ′(z)

f(z)
=
k(z − a)k−1g(z) + (z − a)kg′(z)

(z − a)kg(z)
=

k

(z − a)
+
g′(z)

g(z)
,

so that f ′/f has residue k at z = a.

Let’s do the same for f with a pole z = a of multiplicity k.

f(z) = (z−a)−kg(z) =⇒ f ′(z) = −k(z−a)−k−1g(z)+(z−a)−kg′(z) near z = a

Then we have
f ′(z)

f(z)
=
−k

(z − a)
+
g′(z)

g(z)
.

So that f ′/f has residue −k at z = a. Since the sum of the residues in zero, the

number of zeros must be equal to the number of poles counting with multiplicity.

So f(z) = 0 has N solution, as required.

Corollary 2.2.5. If f has order N then f takes each value c ∈ Σ exactly N

times.
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Theorem 2.2.6. The sum of the places where f(z) has zeros (counted with

multiplicity) equals the sum of the places where f(z) has poles (counted with

multiplicity), i.e

r∑
i=1

kiai −
s∑
j=1

ljbj ≡ 0 mod Ω.

Proof. First we prove that

r∑
i=1

kiai −
s∑
j=1

ljbj =
1

2πi

∮
∂u
z
f ′(z)

f(z)
.

Since the poles of zf ′/f are at the zeros and poles of f , and if f has a zero of

multiplicity k at z = a, then

f(z) = (z − a)kg(z)

f ′(z) = k(z − a)k−1g(z) + (z − a)kg′(z)

near z = a and with g analytic, g(z) 6= 0.

z
f ′(z)

f(z)
=
zk(z − a)k−1g(z) + z(z − a)kg′(z)

(z − a)kg(z)
=

zk

(z − a)
+
zg′(z)

g(z)

so Res
(
z f
′(z)
f(z)

, a
)

= ka.

Suppose z = b is a pole of f(z) of order l, so

f(z) = (z − b)−lg(z), near z = b, g(b) 6= 0, g analytic

and with the same calculation Res
(
z f
′(z)
f(z)

, b
)

= −lb.
By the Residue Theorem

r∑
i=1

kiai −
s∑
j=1

ljbj =
1

2πi

∮
∂u
z
f ′(z)

f(z)
.
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Let’s calculate 1
2πi

∮
∂u z

f ′(z)
f(z)

in the same way we did in Theorem 2.2.2

1

2πi

∮
∂u
z
f ′(z)

f(z)
=

1

2πi
(

∫ 1

x=0

(t+ ω1x)
f ′(t+ ω1x)

f(t+ ω1x)
ω1dx+

∫ 1

x=0

(t+ ω1 + ω2x)
f ′(t+ ω1 + ω2x)

f(t+ ω1 + ω2x)
ω2dx

−
∫ 1

x=0

(t+ ω1x+ ω2)
f ′(t+ ω1x+ ω2)

f(t+ ω1x+ ω2)
ω1dx−

∫ 1

x=0

(t+ ω2x)
f ′(t+ ω2x)

f(t+ ω2x)
ω2dx)

=
1

2πi

{
−ω2

∫ 1

x=0

f ′(t+ ω1x)

f(t+ ω1x)
ω1dx+ ω1

∫ 1

x=0

f ′(t+ ω2x)

f(t+ ω2x)
ω2dx

}
=

1

2πi

{
−ω2

[
log(f(t+ ω1x))

]1
0

+ ω1

[
log(f(t+ ω2x))

]1
0

}
=

1

2πi
{−ω22πim+ ω12πin} = −ω2m+ ω1n, for some n,m ∈ Z

which is an element of Ω , as required.

Theorem 2.2.7. Let f and g be elliptic functions with respect to Ω , with zeros

and poles of the same orders at the same points of C . Then f and g differ by

a (non zero) multiplicative constant, i.e.

∃c ∈ C, c 6= 0, such that g(z) = cf(z).

Proof. Consider

h(z) =
g(z)

f)(z)
.

This is clearly elliptic. The only possible zeros and poles of h(z) are at zeros

and poles of f(z) and g(z). Suppose z0 is a zero (respectively pole) of order k

(respect. −k, k > 0) of f and hence of g.

f(z) = (z − z0)kf0(z)

g(z) = (z − z0)kg0(z)

where f0(z) and g0(z) are holomorphic near z = z0 and g0(z0), f0(z0) 6= 0

h(z) =
(z − z0)kf0(z)

(z − z0)kg0(z)
=
g0(z)

f0(z)
.

So z0 is a removable singularity of h(z) and h(z) is elliptic function without

poles. By Theorem 2.2.1 h(z) is a constant c.

c =
g(z)

f(z)
=⇒ g(z) = cf(z).
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Theorem 2.2.8. Let f and g be elliptic functions with respect to Ω , with poles

at the same points in C and with the same principal parts at these points, Then

f(z) and g(z) differ by an additive constant, i.e.

∃ c ∈ C such that g(z) = f(z) + c

Proof. Let

h(z) = g(z)− f(z).

h(z) is elliptic and has no poles since f(z) and g(z) have the same poles. So by

Theorem 2.2.1 h(z) is a constant c.

c = g(z)− f(z) =⇒ g(z) = f(z) + c.

2.3 Construction of elliptic functions of order

N ≥ 3 with prescribed periods

In this section we construct elliptic functions of order N ≥ 3 woth prescribed

periods using summation over the lattice Ω . To clarify the meaning of sum-

mation over Ω we must first describe a particular ordering of Ω . Let’s define

Ω0 = {0}

Ωr =
{
mω1 + nω2|m,n ∈ Z and max

{
|m| ,|n|

}
= r,

}
u0 = {0}

ur =
{
mω1 + nω2|m,n ∈ R and max

{
|m| ,|n|

}
= r,

}
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0

Figure 2.2: Summation over Ω

We have ur ⊇ Ωr∀r, Ω is a disjoint union Ω = {0}∪Ω1∪ · · · ∪Ωr ∪ . . . , and

for each r ≥ 1 we have

|Ωr| = 8r. (2.1)

We can order the elements of Ω by starting at 0 and then listing the elements of

Ω1,Ω2, . . . in turn, rotating around each Ωr, in the order rω1, rω1+ω2, . . . , rω1−
rω2 (spiralling order).

If we denote this ordering by ω(0), ω(1), ω(2), . . . , then ω(0) = 0, ω(1) = ω1, ω
(2) =

ω1 + ω2 and so on.

So we define the sum over a lattice

∑
ω∈Ω

=
∞∑
r=0

∑
ω∈Ωr

.

Notation:
∑′

ω∈Ω

means omit the term ω = 0, i.e.

∑′

ω∈Ω

=
∞∑
r=1

∑
ω∈Ωr

. (2.2)

Proposition 2.3.1. If s ∈ R, then
∑′

ω∈Ω

|ω|−s converges if and only if s > 2.

Proof. Let D and d be the greatest and the least distances of a point of the

parallelogram u1 from 0. Since ur =
{
rz|z ∈ u1

}
, the greatest and the least
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distances of a point in ur from 0 are rD and rd respectively. In particular, if

ω ∈ Ωr, then

rd ≤ |ω| ≤ rD

so, by (2.1) and (2.2) we have

r−smin
{
D−s, d−s

}
≤ |ω|−s ≤ r−smax

{
D−s, d−s

}
=⇒

8rr−smin
{
D−s, d−s

}
≤
∑
ω∈Ω

|ω|−s ≤ 8rr−smax
{
D−s, d−s

}
=⇒

∞∑
r=1

8rr−smin
{
D−s, d−s

}
≤
∑′

ω∈Ωr

|ω|−s ≤
∞∑
r=1

8rr−smax
{
D−s, d−s

}
=⇒

8min
{
D−s, d−s

} ∞∑
r=1

r1−s ≤
∑′

ω∈Ω

|ω|−s ≤ 8max
{
D−s, d−s

} ∞∑
r=1

r1−s.

From calculus, we know that

∑′

ω∈Ω

|ω|−s converges⇐⇒
∞∑
r=1

r1−s converges

i.e. if and only if 1− s < −1 =⇒ s > 2.

To prove the existence of meromorphic function with poles of order N ≥ 3

we shall use Weierstrass M-test, and so the convergence.

Definition 2.3.1. Let (un) be a sequence of functions un : E −→ C, defined

on some set E. We say that un converges uniformly to a function u : E −→ C
if, for every ε > 0, there exists n0 ∈ N such that |un(z) − u(z)| < ε ∀n > n0

and ∀z ∈ E.

Definition 2.3.2. Let R be a region in C , nd let (un) be a sequence of functions

un : R −→ C; then (un) converges uniforly on all compact subsets of R if, for

each compact K ⊆ R, the sequence of restrictions (un
∣∣
K

) converges uniformly

in K.

Theorem 2.3.2. Let (un) be a sequence if analytic functions on a region R ⊆ C,

uniformly convergent to a function u on all compact subsets of R. Then u is

analytic on R, and the sequence of derivatives (u′n) converges uniformly to u′

on all compact subsets of R.
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We can extend this result from sequences to series: we say that
∑∞

n=0 un(z)

converges uniformly to u(z) on a setE if the sequence of partial sums
∑m

n=0 un(z)

converges uniformly to u(z) on E as m −→∞.

Corollary 2.3.3. Let (un) be a sequence of analytic functions on a region

R ⊆ C; if
∑∞

n=0 un(z) is uniformly convergent to u(z) on all compact subsets of

R, then u(z) is analytic on R and
∑∞

n=0 u
′
n(z) is uniformly convergent to u′(z)

on all compact subsets of R.

Theorem 2.3.4 (Weierstrass M-test). let (un) be a sequence of functions un :

E −→ C, defined on some set E, such that

• for each n ∈ N there exists Mn ∈ R satisfying |un(z)| ≤Mn for all z ∈ E,

•
∑∞

n=0 Mn converges.

Then
∑∞

n=0 un(z) converges uniformly on E, and converges absolutely for each

z ∈ E.

Suppose that (un) is a sequence of meromorphic functions on a region R,

and for each compact subset K ⊆ R there exists Nk ∈ N such that:

• un(z) has no poles (and so it is analytic) in K for n > Nk,

•
∑

n>Nk
un(z) is uniformly convergent on K.

Then we say that
∑
un(z) converges uniformly on all compact subsets of R.

Since
∑

n≤NK un(z) is meromorphic on the interior
◦
K of K (being a sum of

finitely many meromorphic function), and since
∑

n>NK
un(z) is analytic on

◦
K,

the function
∞∑
n=0

un(z) =
∑
n≤NK

un(z) +
∑
n>NK

un(z)

is meromorphic on
◦
K, its poles being included among the poles of the functions

un(z) for n ≤ NK . Since each point z ∈ R has a neighbourhood with compact

closure K ⊆ R,
∑
un(z) is meromorphic on R.

Theorem 2.3.5. Let
∑
un(z) be a series of meromorphic functions on a re-

gion R ⊆ C, uniformly convergent to u(z) on all compact subsets of R. Then

u(z) is meromorphic on R, and the series
∑
u′n(z) of the derivatives converges

uniformly to u′(z) on all compact subsets of R.
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Theorem 2.3.6. For each integer N ≥ 3, the function

FN(z) =
∑
ω∈Ω

(z − ω)−N

is elliptic of order N with respect to Ω .

Proof. Let’s prove first that F (z) is a meromorphic function. Let K be a com-

pact set in C \ Ω (i.e closed and bounded).

Let’s suppose that |z| < R ∀z ∈ K. There are only finitely many ω ∈ Ω

such that |ω| < 2R.

Let Φ =
{
ω ∈ Ω||ω| > 2R

}
∀z ∈ K and ω ∈ Φ. Then

|z| < R <
|ω|
2

and

|z − ω| ≥ |ω| − |z| ≥ 1

2
|ω|.

Thus

|z − ω|−N ≤ 2N |ω|−N .

For z ∈ K ∑
ω∈Ω

|z − ω|−N ≤ 2N |
∑
ω∈Ω

ω|−N which converges.

So, by the Weierstrass M-test, z ∈ K∑
ω∈Ω

|z − ω|−N converges absolutely and uniformly in K.

Since each term (z − ω)N is analytic on K, Corollary 2.3.3 implies that FN(z)

is analytic on C \ Ω. In the same way, using Theorem 2.3.5, we can show that

FN(z) is meromorphic at each ω ∈ Ω. This means FN(z) is meromorphic and

only has poles when (z − ω)−N has poles for some ω ∈ Ω, i.e a pole of order N

at each lattice point and no others.

Now we show that FN is doubly periodic.

Let ω0 ∈ Ω.

FN(z + ω0) =
∑
ω∈Ω

(
(z + ω0)− ω

)−N
=
∑
ω∈Ω

(
z − (ω0 − ω)

)−N
=
∑
ω′∈Ω

(z − ω′)−N = FN(z), where ω′ = (ω − ω0) ∈ Ω.

So FN(z) is doubly periodic with period lattice Ω . Hence it is elliptic, with

single pole of order N mod Ω. Thus FN has order N .
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Note we know that there exist elliptic functions of all orders N ≥ 3, and

none of order N = 1.

In the next section, we will discute about the Wieierstrass elliptic function,

that is an example of elliptic function of order N = 2.

2.4 Weierstrass functions

Let Ω = Ω (ω1, ω2) be a lattice with basis {ω1, ω2}, and let u be a fundamental

parallelogram for Ω with no elements of Ω on ∂u. By corollary 2.2.3 we know

that f cannot have just one simple pole in u, so the simplest non-constant

elliptic function has order 2, with either two simple poles or else a single pole

of order 2 in u. In this section we shall introduce the Weierstrass function ℘(z)

which is elliptic of order 2 in u. We shall derive ℘(z) from the Weierstrass

sigma-function σ(z).

Definition 2.4.1. The Weierstrass sigma-function σ(z) is defined by the fol-

lowing infinite product

σ(z) = z
∏′

ω∈Ω

g(ω, z)

where

g(ω, z) =

(
1− z

ω

)
exp

(
z

ω
+

1

2

(
z

ω

)2
)
.

σ(z) is holomorphic, is odd (σ(−z) = −σ(z)), and has simple zero at each

ω ∈ Ω and nowhere else.

Definition 2.4.2. The Weierstrass zeta-function ζ(z) is defined by

ζ(z) =
σ′(z)

σ(z)

=
d

dz
Log

(
σ(z)

)
=

1

z
+
∑′

ω∈Ω

(
1

z − ω
+

1

ω
+

z

ω2

)
.

(2.3)

Since σ(z) is an odd function, ζ(z) is also odd. It has simple poles at the

lattice-points, and is analytic on C \ Ω. As a series of meromorphic functions,

ζ(z) converges uniformly on compact subsets of C and so we may differentiate

term-by-term to obtain a meromorphic function ζ ′(z).
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Definition 2.4.3. The Weierstrass ℘-function is defined by ℘(z) = −ζ ′(z),

then we have

℘ =
1

z2
+
∑′

ω∈Ω

(
1

(z − ω)2 −
1

ω2

)
. (2.4)

Theorem 2.4.1. The Weierstrass ℘-function has the following properties:

1. ℘′(z) = −2F3(z) = −2
∑

ω∈Ω(z − ω)−3 ;

2. ℘(z) is even ;

3. ℘(z) is an elliptic function with period lattice Ω ;

4. ℘(z) has order 2, with double pole at each ω ∈ Ω ;

Proof. 1. ℘(z) converges uniformly on compact sets

℘′(z) = − 2

z3
+
∑′

ω∈Ω

(
−2

(z − ω)3

)
=
∑
ω∈Ω

1

(z − ω)3
= −2F3(z)

2. Since ℘(z) = −ζ ′(z) and ζ ′(z) is even, than ℘(z) is even.

3. We have seen that ℘(z) is meromorphic, so it is sufficient to prove the

doubly periodicity.

Since ℘′(z) is elliptic, we have ∀ω ∈ Ω

℘′(z + ω) = ℘′(z).

So, integrating,

℘(z + ω) = ℘(z) + c, ∀z ∈ C

where c is a constant.

Putting z = −ω/2 we have c = ℘(ω/2)−℘(−ω/2) = 0 since ℘(z) is even.

Thus ℘(z + ω) = ℘(z) ∀ z ∈ C and ω ∈ Ω. So ℘(z) is elliptic.

4. Clearly each point of Ω is a pole of order 2 and ℘(z)has not other poles.

So Ω is exactly the period lattice and ℘(z) has order 2.
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2.5 The Addition Theorems for the Weierstrass

functions

Definition 2.5.1. A meromorphic function f(z) : C −→ C∪
{
∞ = Ĉ

}
is said

to have the addition formula if there exixts a rational function in three variables

R : Ĉ3 −→ C so that

R(f(n), f(v), f(u+ v)) = 0 ∀u, v ∈ C.

For example:

• f(z) =
z

z + 1

f(u)

1− f(u)
+

f(v)

1− f(u)
=

f(u+ v)

1− f(u+ v)
;

• f(z) = ez

eu+v = euev;

• f(z) = tan(z)

f(u+ v) =
f(u) + f(v)

1− f(u)f(v)
.

Theorem 2.5.1 (Weierstrass Theorem). A meromorphic function has the ad-

dition formula ⇐⇒ it is:

• rational

• simply periodic or

• doubly periodic.

Also the Weierstrass functions ζ and ℘ are provided with the addition formula,

and are (see [2])

℘(u+ v) + ℘(u) + ℘(v) =
1

4

[
℘′(u)− ℘′(v)

℘(u)− ℘(v)

]2

(2.5)

ζ(u+ v) = ζ(u) + ζ(v) +
1

2

[
℘′(u)− ℘′(v)

℘(u)− ℘(v)

]
, (2.6)

where 2.6 comes from 2.5 since

℘′(u)− ℘′(v)

℘(u)− ℘(v)
= 2ζ(u+ v)− 2ζ(u)− ζ(v).
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2.6 The differential equation for ℘(z)

In this section we derive an important equation connecting ℘(z)and ℘′(z), ob-

tained from the Laurent series near ℘(z) = 0. We start by finding the Laurent

series for

ζ(z) =
1

z
+
∑′

ω∈Ω

(
1

z − ω
+

1

ω
+

z

ω2

)
. (2.7)

Let m = min
{
|ω| | ω ∈ Ω \ {0}

}
, and let D =

{
z ∈ C||z| < m

}
, the largest

open disc centered at 0 and containing no other lattice-points. Since

1

z − ω
+

1

ω
+

z

ω2
=

z2

ω2(z − ω)
,

we see, by comparison with
∑′|ω|−3, that

∑′ ( 1
z−ω + 1

ω
+ z

ω2

)
is absolutely

convergent for each z ∈ C \ Ω. Moreover, for each ω ∈ Ω \ {0}, the binomial

series
1

z − ω
= − 1

ω

(
1

1− z
ω

)
= − 1

ω

∞∑
j=0

(
z

ω

)j
is absolutely convergent for z ∈ D, so we may substitute this in 2.7 to obtain

ζ(z) =
1

z
+
∑′

ω∈Ω

− 1

ω

∞∑
j=0

(
z

ω

)j
+

1

ω
+

z

ω2


=

1

z
+
∑′

ω∈Ω

− 1

ω

∞∑
j=2

(
z

ω

)j
=

1

z
+
∞∑
j=2

zj
∑′

ω∈Ω

(
− 1

ωj+1

)
.

Define

Gk = Gk(Ω) =
∑′

ω∈Ω

1

ωk
, k ∈ Z, k ≥ 3

called the Eisenstein series for Ω , absolutely convergent for k ≥ 3, and Gk = 0

for k odd.

So the Laurent series for ζ(z) becomes

ζ(z) =
1

z
−
∞∑
n=2

z2n−1G2n
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and hence

℘(z) = −ζ ′(z) =
1

z2
+
∞∑
n=2

(2n− 1)z2n−2G2n; (2.8)

this is the Laurent series for ℘(z), valid for z ∈ D. From this we obtain

℘′(z) =
−2

z3
+ 6G4z + 20G6z

3 + . . . ,

and so

℘′(z)2 =
4

z6
− 24G4

z2
− 80G6 + z2φ1(z)

4℘(z)3 =
4

z6
+

36G4

z2
+ 60G6 + z2φ2(z)

60G4℘(z) =
60G4

z2
+ z2φ(z)

where φ1, φ2, φ3 are power series convergent in D. These last three equations

give

℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6 = z2φ(z)

where φ(z) = φ1 − φ2(z) + φ3(z) is a power series convergent in D. As ℘ and

℘′ are elliptic with respect to Ω , the function

f(z) = ℘′(z)2 − 4℘(z)3 + 60G4℘(z) + 140G6

is also elliptic. Since f(z) = z2φ(z) in D, with φ(z) analytic, f vanishes at 0

and hence at all ω ∈ Ω. However, by its construction f can have poles only

where ℘(z)or ℘′ have poles, that is, at the lattice-points. Therefore f has no

poles and so, by Theorem 2.2.1 , f(z) is a constant, which must be zero since

f(0) = 0. Thus we have proved the following

Theorem 2.6.1.

℘′(z)2 = 4℘(z)3 − 60G4℘(z)− 140G6. (2.9)

The equation 2.9 is the differential equation for ℘(z). If we denote with

g2 = 60G4 = 60
∑′

ω−4

g3 = 140G6 = 140
∑′

ω−6

we can write 2.9 like

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3. (2.10)
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2.7 Elliptic integrals

Definition 2.7.1. An integral of the form∫
R(z, w)dz, (2.11)

where R(z, w) is a rational function of its argument and

w2 = a0z
4 + 4a1z

3 + 6a2z
2 + 4a3z + a4

is a polynomial of third or fourth degree in z without multiple roots, is called

elliptic integral.

We saw the function x = ℘(u) satisfies the differential equation(
dx

du

)2

= 4x3 − g2x− g3 = 4(x− a)(x− b)(x− c).

Then

du =
dx

2
√

(x− a)(x− b)(x− c)
(2.12)

u(x) =

∫ ∞
℘

dx

2
√

(x− a)(x− b)(x− c)
. (2.13)

The integral 2.13 is called an elliptic integral of the first kind.

With the help of a suitable linear fractional transformation it is possible to

reduce the radical in the integral 2.11 to the form
√

4x3 − g2x− g3. This linear

fractional transformation has the form

z =
αx+ β

γx+ δ
, (αδ − βγ) = 1.

Then √
a0z4 + 4a1z3 + 6a2z2 + 4a3z + a4 =

√
4x3 − g2x− g3

(γx+ δ)2
,

and ∫
R(z,

√
a0z4 + 4a1z3 + 6a2z2 + 4a3z + a4)dz =

=

∫
R

(
αx+ β

γx+ δ
,

√
4x3 − g2x− g3

(γx+ δ)2

)
dx

(γx+ δ)2
.
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In particular∫
dz√

a0z4 + 4a1z3 + 6a2z2 + 4a3z + a4

=

∫
dx√

4x3 − g2x− g3

. (2.14)

So, instead of 2.11 we can consider 2.14.

If we introduce the function ℘ corresponding to the invariant g2 and g3, and let

x = ℘(u), then an elliptic integral∫
R(x,

√
4x3 − g2x− g3)dx =

∫
R(℘(u),+℘′(u)℘′(u)du =

∫
R1(℘(u), ℘′(u)du,

(2.15)

i.e- we arrive at the integral of an elliptic function.

Expanding the elliptic function R1(℘, ℘′) into partial fractions, and using the

addition theorems for the function ζ and ℘ it may be prove (see [2] for calcu-

lation) ∫
R1(℘, ℘′)du = Cu+

n∑
i=1

Ai log σ(u− ai) + Aζ(u) +R∗(℘, ℘′).

where A is a constant and Ai is the residue of our elliptic function with respect

to the pole ai. Since
∑n

i=1Ai = 0, this formula can be rewritten in the form∫
R1(℘, ℘′)du = Cu+

n∑
i=1

Ai log
σ(u− ai)
σ(u)

+ Aζ(u) +R∗(℘, ℘′). (2.16)

R∗(℘, ℘′) is an elliptic integral, but the other three terms on the right-hand side

are not.

Let us pass from the variable u to z = ℘(u). Then the last term on the RHS of

2.16 is written in the form R*(z,w), where w = 4z3 − g2z − g3, and this is the

algebraic part of the integral 2.14. The remaining part is constructed with the

functions

u =

∫
dz

w
, (2.17)

ζ(u) = −
∫
℘(u)du = −

∫
zdz

w
, (2.18)

and

ln
σ(u− a)

σ(u)
+ uζ(a) =

1

2

∫
℘′(u) + ℘′(a)

℘(u)− ℘(a)
du = (2.19)

1

2

∫
w + w0

z − z0

dz

w
(2.20)
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where we replaced z = ℘(u), w = ℘′(u) and so ℘(a) = z0 and ℘′(a) = w0.

The integral 2.17 an elliptic integral of the first kind, 2.18 is called elliptic

integral of the second kind, with a pole of order two, and 2.19 is called elliptic

integral of the third kind, and has two simple poles.

Thus, every elliptic integral is the result of adding elliptic integrals of three

kinds and a certain function of z and w.

2.8 Real elliptic curves

We have seen that ℘ satisfies a differential equation (℘′)2 = p(℘), where p(x) is

the cubic polinomial 4x3− g2x− g3, so every point t ∈ C/Ω determines a point

(℘(t), ℘′(t)) on the elliptic curve

E =
{

(x, y) ∈ Σ× Σ|y2 = p(x)
}
. (2.21)

We can think of E as the graph of the equation y2 = p(x), for x, y ∈ Σ. As a

subset of Σ× Σ, E has a natural topology and is homemomorphic to a torus.

Let’s concentrate on the real points of E, those for which x, y ∈ R, under the

assumption thet the coefficients g2, g3 of p(x) are real. We define the real elliptic

curve ER to be
{

(x, y) ∈ R|y2 = p(x)
}

, the graph of y2 = p(x) as an equation

between real variables. Clearly ER is symmetric about the x-axis of R2.

First we examine the condictions under which the coefficients g2, g3 are real.

We define a meromorphic function f : C −→ Σ to be real if f(z) = f(z) for all

z ∈ C. We define a lattice Ω to be real if Ω = Ω (where Ω denotes
{
ω|ω ∈ Ω

}
).

Theorem 2.8.1. The following condictions are equivalent:

1. g2, g3 ∈ R;

2. Gk ∈ R, ∀k ≥ 3;

3. ℘ is a real function;

4. Ω is a real lattice.
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Proof. 1 =⇒ 2

Differentiating (℘′)2 = 4℘3 − g2℘ − g3, and then dividing by 2℘′ (which is not

identically zero) we have

℘′′ = 6℘2 − g2

2
. (2.22)

Now by 2.8, ℘(z) has Laurent expansion

℘(z) = z−2 +
∞∑
n=1

anz
2n,

valid near z = 0, where

an = (2n+ 1)G2n+2 = (2n+ 1)
∑′

ω

ω−2n−2.

The coefficient of z2n in the expansion of ℘′′(z) is therefore (2n+2)(2n+1)a2n+1,

while the coefficient of z2n in ℘(z)2 is 2an+1 +
∑

r+s=n aras. Equating the

coefficients in 2.22 we have, for each n ≥ 1,

(2n+ 2)(2n+ 1)an+1 = 12an+1 + 6
∑
r+s=n

aras

and hence

(2n+ 5)(n− 1)an+ 1 = 3
∑
r+s=n

aras.

So, for n ≥ 2 we have

an+1 =
3

(2n+ 5)(n− 1)

∑
r+s=n

aras.

By induction on n, we see that each coefficient an is a polynomial in a1 and a2,

with rational coefficients. Using an = (2n+1)G2n+2, g2 = 60G4 and g3 = 140G6,

we see that each Gk (k even,k ≥ 4), is a polynomial in g2 and g3 with rational

coefficients, so if g2 and g3 are real then so is Gk; since Gk = 0 for all odd k,

(2) is proved.

2 =⇒ 3

If Gk ∈ R∀k ≥ 3, then the coefficients of the Laurent series for ℘(z)are real,

so ℘(z) = ℘(z) near z = 0. Now ℘(z)and ℘(z) are meromorphic functions,

identically equal on a neighbourhood of 0, so they are identically equal on C .

Thus ℘ is a real function.
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3 =⇒ 4

Let ω ∈ Ω. Then ℘(z + ω) = ℘(z + ω) = ℘(z) since ℘ is real and has ω

as a period. Thus ω ∈ Ω, so Ω ⊆ Ω. Taking complex conjugates, we have

Ω = Ω ⊆ Ω, so Ω = Ω and Ω is real.

4 =⇒ 1

This follow immediately from g2 = 60
∑′

ω
ω−4 and g3 = 140

∑′

ω
ω−6.

Definition 2.8.1. We say that Ω is real rectangular if Ω = Ω {ω1, ω2}, where

ω1 is real and ω2 is purely imaginary.

We say that Ω is real rhombic if Ω = Ω {ω1, ω2}, where ω1 = ω2.

The fundamental parallelogram with vertices 0, ω1, ω2 and ω3 = ω1 + ω2 is

rectangular or rhombic respectively.

Theorem 2.8.2. A lattice Ω is real if and only if it is real rectangular or real

rhombic

Proof. ⇐= If Ω = Ω(ω1, ω2) is real rectangular, with ω1 ∈ R and ω2 ∈ iR, then

Ω = Ω(ω1, ω2) = Ω(ω1,−ω2) = Ω(ω1, ω2) = Ω, so Ω is real. A similar argument

applies to real rhombic lattices.

=⇒ Suppose that Ω is real. If ω ∈ Ω, then ω + ω, ω − ω ∈ Ω, so Ω contains

both real and purely imaginary elements, and these form discrete subgroups

Ω ∩ R = λZ and Ω ∩ iR = µiZ for certain λ, µ ∈ R, λ.µ > 0. Clearly

Ω ⊇ λZ+µiZ, and if we have equality, then there exists ω ∈ Ω\(λZ+µiZ). By

addind a suitable element of λZ+µiZ to ω we may assume that 0 ≤ Re(ω) < µ.

Now

2ω = (ω + ω) + (ω − ω),

with ω + ω ∈ Ω ∩ R = λZ and ω − ω ∈ Ω ∩ iR = µiZ, so we have

2ω = mλ+ nµi

for integers m,n, and the condictions on Re(ω) and Im(ω) force m and n to

take value 0 or 1. Since ω is neither real or purely imaginary, we must have

m = n = 1, and so ω = 1
2
(λ + µi). Thus every element of Ω \ (λZ + µiZ) has

the form

1

2
(λ+ µi) + aλ+ bµi = (a+ b+ 1)

(
λ+ µi

2

)
+ (a− b)

(
λ− µi

2

)
,
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for integers a, b, while every elememt of λZ + µiZ has the form

aλ+ bµi = (a+ b)

(
λ+ µi

2

)
+ (a− b)

(
λ− µi

2

)
.

Thus Ω = Ω(1
2
(λ+ µi), 1

2
(λ− µi)), which is a real rhombic.

2.9 The discriminant of a cubic polynomial

In this section we give a necessary and sufficient condiction for p to have di-

stinct roots. We saw that Weierstrass’elliptic function ℘ satisfies a differential

equation ℘′ =
√
p(℘), where p is a cubic polynomial on the form

p(z) = 4z3 − g2z − g3, (g2, g3 ∈ C). (2.23)

Any polynomial in this form is said to be in the Weierstrass normal form. By

means of a substitution θ : z 7→ az + b(a, b ∈ C, a 6= 0), any cubic polynomial

may be brought into this form; now θ : C −→ C is a bijection, preserving

multiplicities of roots, so without loss of generality we can restrict our attenction

to cubic polynomials p in the Weierstraiss normal form.

If e1, e2, e3 are the roots of the polynomial p in 2.23, then we can define the

discriminant of p to be

∆p = 16(e1 − e2)2(e2 − e3)2(e3 − e1)2 (2.24)
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and these roots are distinct if and only if ∆p 6= 0.

Theorem 2.9.1. ∆p = g3
2 − 27g2

3.

Proof. putting

p(z) = 4(z − e1)(z − e2)(z − e3), (2.25)

and equating coefficients between this and 2.23, we have

e1 + e2 + e3 = 0

e1e2 + e2e3 + e3e1 = −g2

4

e1e2e3 =
g3

4
.

(2.26)

The remaining symmetric functions of the roots may be obtained from 2.26:

e2
1 + e2

2 + e2
3 = (e1 + e2 + e3)2 − 2(e1e2 + e2e3 + e3e1) =

g2

2

and

e1e
2
2 + e2e

2
3 + e3e

2
1 = (e1e2 + e2e3 + e3e1)2 − 2e1e2e3(e1 + e2 + e3) =

g2
2

16
.

Differentiating 2.22 and 2.25 at z = e1, we have:

4(e1 − 4e2)(e1 − e3) = p′(e1) = 12e2
1 − g2,

with similar expressions for p′(e2) and p′(e3). Hence

∆p = −1

4
p′(e1)p′(e2)p′(e3)

=
1

4

∏
i

(12e2
i − g2)

− 1

4
(1728(e1e2e3)2 − 144g2(e1e

2
2 + e2e

2
3 + e3e

2
1)

+ 12g2
2(e2

1 + e2
2 + e2

3)− g3
2)

=
1

4
(108g2

3 − 9g3
2 + 6g3

2 − g3
2)

= g3
2 − 27g2

3.

Corollary 2.9.2. p has distinct roots if and only if g3
2 − 27g2

3 6= 0.
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Chapter 3

Lagrangian Mechanics

3.1 Calculus of variations

The calculus of variations is concerned with the extremals of functions whose

domain is an infinite-dimensional space: the space of curves. Such functions

are called functionals. An example of a functional is the length φ of a curve in

the euclidean plane:

if γ = {(t, x) : x = x(t), t0 ≤ t ≤ t1}, then

Φ =

∫ t1

t0

√
1 + ẋ2.

where ẋ = dx/dt.

In general, a functional is any mapping from the space of curves to the real

numbers.

We consider an ”approximation” γ′ to γ, γ′ = {(t, x) : x = x(t) + h(t)}. We

will call it γ′ = γ + h. Consider the increment of Φ, Φ(γ + h)− Φ(γ).

Definition 3.1.1. Let γ, h ∈ C∞([t0, t1] ,R2). A functional Φ is called differ-

entiable if

Φ(γ + h)− Φ(γ) = F (h) +R(h, γ), (3.1)

where F depends linearly on h (i.e. for fixed γ, F (h1 + h2) = F (h1) + F (h2)

and F (ch) = cF (h)), and R(h, γ) = O(h2), in the sense that if |h| ,
∣∣∣dhdt ∣∣∣ < ε,

then |h| < Cε2

The linear part of the increment, F (h), is called the differential or variation,

and h is called the variation of the curve.
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Theorem 3.1.1. Let L(u, v, w) be a C∞ differentiable function in three vari-

ables. Then the functional Φ(γ) =
∫ t1
t0
L(x(t), ẋ(t), t)dt is differentiable, and its

derivative is given by the formula

F (h) =

∫ t1

t0

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
hdt+

[
∂L

∂ẋ
h

]t1
t0

, (3.2)

with h ∈ C∞([t0, t1] ,R2)

Definition 3.1.2. An extremal of a differentiable functional Φ(γ) is a curve γ

such that ∀h F (h) = 0 .

Theorem 3.1.2. The curve γ : x = x(t) is an extremal of the functional

Φ(γ) =
∫ t1
t0
L(x(t), ẋ(t), t)dt on the space of the smooth curves passing through

the points x(t0) = x0 and x(t1) = x1 if and only if

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 along the curve x(t). (3.3)

Lemma 3.1.3. If a continuous function L(t), to ≤ t ≤ t1 satisfies
∫ t1
t0
L(t)h(t)dt =

0 for any continuous function h(t), with h(t1) = h(t0) = 0, then f(t) = 0.

Definition 3.1.3. The equation

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (3.4)

is called the Euler-Lagrange equation for the functional

Φ =

∫ t1

t0

L(x(t), ẋ(t), t)dt.

Written out explicitly (recall L = L(x, ẋ, t)), 3.4 is

∂L

∂x
− ∂2L

∂ẋ∂x
ẋ− ∂2L

∂ẋ2
ẍ− ∂2L

∂ẋ∂t
= 0 (3.5)

and it is a second order ordinary differential equation for the function x(t) of

the form

g1(x, ẋ, t)
d2x

dt2
+ g2(x, ẋ, t)

dx

dt
+ g3(x, ẋ, t) = 0. (3.6)

The two arbitrary constants in the general solution are fixed by the boundary

condictions.

If x is a vector in the n-dimensional coordinate space Rn, x ∈ C∞([t0, t1,Rn])

γ = {t,x = x(t), t0 ≤ t ≤ t1} a curve in the (n+ 1)-dimensional space R×Rn,

and f : Rn × Rn × R −→ R a differentiable function of 2n + 1 variables, as

before we have:
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Theorem 3.1.4. The curve is an extremal of the functional Φ =
∫ t1
t0
f(x(t), ẋ(t), t)dt

on the space of curves joining (t0,x0) and (t1,x1) if and only if the Euler-

Lagrange equation is satisfied along γ.

This a system of n second order equations, and the solution depends on 2n

arbitrary constants.

Given a solution of 3.4, the value of F is extremal but not necessary minimal.

There are two special cases of f = f(x, ẋ, t)):

i) f does not depend on x

f = f(ẋ, t). (3.7)

In this case, since ∂f
∂x

= 0, the Euler - Lagrange equation implies

d

dt

∂f

∂ẋ
= 0 =⇒ ∂f

∂ẋ
= const. (3.8)

ii) f does not depend on t explicitly

f = f(x, ẋ). (3.9)

We can write

ẋ =
dx

dt
=

1
dt
dx

:=
1

ṫ
(note ṫ =

dt

dx
). (3.10)

So ∫
f(x, ẋ)dt =

∫
f(x,

1

ṫ
)ṫdx =:

∫
F (ṫ, x)dx. (3.11)

Since F is independent of t, and using i) we put

∂F

∂ṫ
=

∂

∂ṫ
f(x,

1

ṫ
)ṫ = const =⇒ f(x,

1

ṫ
) + ṫ

∂f

∂
(

1
ṫ

) ( 1

−ṫ2

)
= const (3.12)

which may be rewritten in terms of x and ẋ as

f(x, ẋ)− ∂f

∂ẋ
ẋ = const. (3.13)

Corollary 3.1.5. The condition for a curve to be an extremal of a functional

does not depend on the choice of coordinate system.
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3.2 Lagrange’s equation

Lagrangian mechanics describes the motion of a mechanical system by means

of the configuration space. The configuration space of a mechanical system has

the structure of a differentiable manifold, on which its group of diffeomorphism

acts.

One of the fundamental concepts of mechanics is that of particle. By this

we mean a body whose dimensions may be neglected in describing its motion.

The position of a particle in space is defined by a vector x = (x1, x2, x3). The

derivative

v =
dx

dt
≡ ẋ = (ẋ1, ẋ2, ẋ3)

of x with respect to the time t is called the velocity of the particle, and the

second derivative

d2x

dt2
= (ẍ2, ẍ2, ẍ3)

is its acceleration.

To define the position of a system of n particles in space, it is necessary to

specify n vectors, i.e. 3n coordinates. The number of independent quantities

which must be specified in order to define uniquely the position of any system

is called the number of degrees of freedom; here, this number is 3n. These

quantities don’t need to be the Cartesian coordinates of the particles, and the

condition of the problem may render some other choice of coordinates more

convenient. Any s quantities q1, q2, . . . , qs which completely define the position

of a system with s degrees of freedom are called generalized coordinates of

the system, and the derivatives q̇i are called generalized velocities. If all the

co-ordinates and the velocities are simultaneously specified, the state of the

system is completely determined and its motion can be calculated. The relations

between the accelerations, velocities and coordinates are called the equations

of motion. They are second order differential equations for the functions q(t),

and their integration makes possible the determination of these functions and

so the path of the system. The set (q1, q2, . . . , qs, q̇1, q̇2, . . . q̇s) = (q, q̇) is called

the state variable of the system.

Let’s us consider the equations for the one dimensional motion of a particle in
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a potential V (q)

mq̈ =
d

dq
V (q), (3.14)

and let’s express it in the Eulero-Lagrange equation. We want a function

L(q, q̇, t) that satisfies the variational problem∫ t2

t1

L(q, q̇, t)dt = extreme value

such that the Euler-Lagrange differential equation

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (3.15)

takes the same form as the equation of the motion 3.14.

Since only the second term in the Euler-Lagrange equation can contain q̈, by

comparing it with Newton’s equation, we immediately deduce the two equations

d

dt

∂L

∂q̇
= mq̈ (3.16)

∂L

∂q
= −∂V

∂q
. (3.17)

The solution of 3.17 give

L = T (q̇)− V (q)

for some unknow function T (q̇). This function T (q̇) can be determined from

3.16, which, after inserting L = T (q̇)− V (q), becomes

d

dt

∂T

∂q̇
= mq̈.

Integrating over t yields
∂T

∂q̇
= mq̇ (+const)

and further integration over q̇ shows that T is the kinetic energy of the particle

T =
1

2
mq̇2 (c1q̇ + c2).

Since the term c1q̇ + c2 does not contribute to the Euler-Lagrange equations,

we have c1 = c2 = 0. Hence, the Lagrangian L(q, q̇, t) becomes

L(q, q̇, t) =
1

2
mq̇2 − V (q) = T − V. (3.18)



50 3. Lagrangian Mechanics

Since L does not depend on time explicitely, according to 3.13 we have

L− ∂L

∂q̇
q̇ = const. (3.19)

Since
∂L

∂q̇
= 2T =⇒ ∂

∂q̇

(
1

2
mq̇2 − V (q)

)
= mq̈ = 2T

we have

L− ∂L

∂q̇
q̇ = L− 2T = T − V − 2T = −(T + V ) = −E = const.

So L is constant in time, and 3.19 are called a first integrals of the Euler-

Lagrange equation.

It follows that the total energy is conserved

E = T + V = const

If V = V (q, t), i.e. also depends on the time, then the Lagrangian is

L(q, q̇, t) = T − V (q, t) and the Euler-Lagrange equations take form 3.15.

However in this case, the energy T + V is not conserved anymore (since 3.19 is

not a solution of the Euler-Lagrange equation).

Definition 3.2.1. The derivative of the Lagrangian 3.18 with respect to the

generalized velocity q̇ is called generalized momentum pq

∂L

∂q̇
= mq̇ = pq. (3.20)

Definition 3.2.2. A coordinate q is called cyclic if does not enter into the

Lagrangian, i.e.
∂L

∂qi
= 0.

Theorem 3.2.1. The generalized momentum corresponding to a cyclic coordin-

ate is conserved: pi = const.

Proof.
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 =⇒ d

dt
pi = 0 =⇒ pi = const.
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3.3 Hamilton’s Principle

We now recall the variational problem, which leads to the Lagrange equations.

The most general formulation of the law governing the motion of mechanical

systems is the principle of least action or Hamilton’s principle, according to

which every mechanical system is characterised by a definite function

L(q1, q2, . . . , qs, q̇1, q̇2, . . . q̇s, t), or briefly L(q, q̇, t), and the motion of the system

is such that a certain condiction is satisfied.

Let the system occupy, at the instants t1 and t2, positions defined by q(1) =

(q1
1, q

1
2, . . . q

1
s) and q(2) = (q2

1, q
2
2, . . . q

2
s). Then the condiction is that the system

moves between these positions in such a way that the integral

S =

∫ t2

t1

L(q, q̇, t)dt (3.21)

takes the least possible values. The function L is called the Lagrangian of the

system concerned, and the integral 3.21 is called action.

Let us now derive the differential equations which solve the problem of minimi-

sing the integral 3.21. For simplicity, we shall first assume that the system has

only one degree of freedom, so that only the function q(t) has to be determined.

Let q = q(t) be the function for which S is a minimum. A variation δq(t) of

the function q(t) (we have called it h(t) in section 3.1)

q(t) 7−→ q(t) + δq(t), δq(t1) = δq(t2) = 0 (3.22)

causes the increase of the action

S[q + δq]− S[q] =

∫ t2

t1

[L(q + δq, q̇ + δq̇, t)− L(q, q̇, t)]dt.

Expanding the difference under the integral in Taylor’s series δq and δq̇ in the

integrand, the leading terms are of the first order:

S[q + δq]− S[q] =

∫ t2

t1

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt+O(‖δq‖2).

The necessary condition for S to have a minimum is that these terms (called

the first variation, or simply the variation, of the integral) should be zero:∫ t2

t1

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt = 0.
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So, since δq̇ = dδq/dt, we obtain, integrating the second term by parts

S[q + δq]− S[q] =

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt+

[
∂L

∂q̇
δq

]t2
t1

+O(‖δq‖2) = 0.

By 3.22,
[
∂L
∂q̇
δq
]t2
t1

= 0. So S[q + δq]− S[q] =0 only if

d

dt

∂L

∂q̇
− ∂L

∂q
= 0.

When the system has more than one degree of freedom, the s different functions

qi(t) must be varied independently in the principle of least action. We then

evidently obtain s equations of the form

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, (i = 1, . . . , s). (3.23)

These are the required differential equations, called Lagrange’s equations. If

the Lagrangian of a given mechanical system is known, the equations 3.4 give

the relations between accelerations, velocities and co-ordinates, i.e.they are the

equations of motion of the system.



Chapter 4

Hamiltonian mechanics

4.1 From Lagrangian’s equations to Hamilto-

nian’s equations

4.1.1 Legendre transformation

Let y = f(x) be a convex function, f ′′(x) > 0. The Legendre transformation of

the function f is a new function g of a new variable p, which is costructed in

the following way:

we draw the graph of f in the x, y plane. Let p be a given number. Consider

the straight line y = px. We take the point x = x(p) at which the curve is

farthest from the straight line in the vertical direction: for each p the function

px− f(x) = F (p, x) has a minimum with respect to x at the point x(p). Now

we define

g(p) = F (p, x(p)).

The point x(p)is defined by the extremal condiction
∂F

∂x
= 0, i.e. f ′(x) = p.

Since f is convex, the point x(p) is unique.

Theorem 4.1.1. The Legendre transformation is involutive, i.e. its square is

the identity: if under the Legendre transformation f is taken to g, then the

Legendre transformation of g will again be f .
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4.1.2 The case of many variables

Let f(x) be a convex function of the vector variable x = (x1, . . . , xn) (i.e.

the quadratic form ((∂2f/∂x2)dx, dx) is positive definite). Then the Legendre

transform is the function g(p) of the vector variable p = (p1, . . . , pn) defined as

above by the equalities g(p) = F (p,x(p)), where F (p,x) = (p,x)− f(x) and

p = ∂f/∂x.

Theorem 4.1.2. Let L ∈ C∞(Rn×Rn×R,R) be a Lagrangian function convex

with respect to q̇. We consider a system of Lagrangian’s equations ṗ = ∂L/∂q,

where p = ∂L/∂q̇. Then the system of Lagrange’s equations is equivalent to the

system of 2n-first order equations, called the Hamilton’s equations, with

ṗ = −∂H
∂q

q̇ =
∂H

∂p

where H(p, q, t) = pq̇ − L(q, q̇, t) is the Legendre transform of the Lagrangian

function viewed as a function of q̇.

So by means of a Legendre transformation, a Lagrangian system of second

order differential equations is converted into a symmetrical system of 2n first-

order equations called a Hamiltonian system of equations (or canonical equa-

tions).

Example

Let L(q, q̇) = 1
2
mq̇2− V (q). Let’s find the Hamiltonian. Let’s apply the Legen-

dre transform

F (p, q̇) = pq̇ − f(q̇)

with

p =
df

dq̇
(q̇).
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Then

H(p, q) = pq̇ − 1

2
mq̇2 + V (q).

The Hamiltonian equations are
dq

dt
=
∂H

∂p
dp

dt
= −∂H

∂q
= −∂V

∂q
.

Then from 3.14 we deduce that p = mq̇ ⇐⇒ q̇ =
p

m
, that is f(q̇) = 1

2
mq̇2 and

H =
1

2

p2

m
+ V (q).

4.1.3 Liouville’s theorem

For simplicity we assume that the Hamiltonian function does not depend ex-

plicitly on the time: H = H(p,q). Moreover, the space M where H is defined

M is a 2n-dimensional smooth manifold.

Definition 4.1.1. The 2n-dimensional space with coordinates p1, . . . , pn, q1, . . . qn

is called the phase space.

Proposition 4.1.3. The right-hand sides of the Hamilton’s equations give a

vector field: at each point (p, q) of the phace space there is a 2n-dimensional

vector (−∂H/∂q, ∂H/∂p).

Definition 4.1.2. The phase flow is the one parameter group of transforma-

tions of phase space

gt : (p(0),q(0)) 7→ (p(t),q(t)),

where p(t) and q(t) are solutions of Hamilton’s system of equations.

Theorem 4.1.4 (Liouville’s theorem). The phase flow preserves the volume:

for any region D ∈M we have

volume of (gtD) = volume of (D)
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4.2 Hamiltonian mechanical system

In this section we will define the Hamiltonian mechanical system, i.e. any triple

(M,ω,H) where:

• M is an even- dimensional manifold is the phace space and has the struc-

ture of symplectic manifold, i.e a closed non-degenerated differential 2-

form;

• ω is the symplectic structure and it is an integral invariant;

• H ∈ C∞(M.R) is the hamiltonian function.

On a symplectic manifold (phase space), there is a natural isomorphism between

vector field an 1-forms. A vector field on a symplectic manifold corresponding

to the differential of a function is called Hamiltonian vector field. A vector

field on a manifold determines a phase flow, i.e. a one-parameter group of

symplectic diffeomorphisms that acts on the phace space and preserves the

Hamiltonian function. Vector fields on a manifold form a Lie-algebra. The

Hamiltonian vector fields on a symplectic manifold also form a Lie algebra,

with an operation on it called the Poisson bracket.

4.2.1 Hamiltonian vector field

Definition 4.2.1. Let M2n be an even-dimensional differentiable manifold. A

symplectic form on M2n is a closed non degenerate differential form ω2 on M2n.

The pair (M2n, ω2) is called symplectic manifold.

According to the Darboux’s theorem, in a small neighborhood of each point of

M ω2 can be express in the standard (or canonical) form:

ω2 =
n∑
i=1

dpi ∧ dqi

where p1, . . . , pn, q1, . . . , qn are suitable coordinates.

Definition 4.2.2. To each vector ξ, tangent to a symplectic manifold (M2n, ω2)

at the point x, we associate a 1-form ω1
ξ on TxM by the formula

ω1
ξ (η) = ω2(η, ξ).
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We will denote by I the isomorphism

I = T ∗xM −→ TxM

ξ −→ ω1
ξ (η).

Definition 4.2.3. Let H be a function on a symplectic manifold M2n. Then

dH is a differential 1-form on M , and to every point there is a tangent vector

to M associated to it. In this way we obtain a vector field IdH on M .

The vector field IdH is called a Hamiltonian vector field ; H is called the Ha-

miltonian function.

If M2n = R2n =
{

(p, q)
}

, then we obtain the phase velocity vector field of

Hamilton’s canonical equation:

ẋ = IdH(x)⇐⇒ ṗ = −∂H
∂q

and q̇ =
∂H

∂p
.

4.2.2 Hamiltonian phase flow

Definition 4.2.4. Let (M2n, ω2) be a symplectic manifold and H : M2n −→ R
a function. Assume that the vector field IdH corresponding to H gives a 1-

parameter group of diffeomorphisms gt : M2n −→M2n:

d

dt
|t=0 g

tx = IdH(x).

The group gt is called the Hamiltonian phase flow with Hamiltonian finction

H.

Theorem 4.2.1. A Hamiltonian phase flow preserves the symplectic structure:

(gt)∗ω2 = ω2.

In the case n = 1, M2n = R2, this theorem says that the phase flow preserves

the area (Liouville’s theorem).

4.2.3 Canonical transformations

Definition 4.2.5. A differential k-form ω is called an integral invariant of the

map g : M −→M if the integrals of ω on any k-chain c and on its image under

g are the same.



58 4. Hamiltonian mechanics

Theorem 4.2.2. The form ω2 giving the symplectic structure in an integral

invariant of hamiltonian phase flow.

Corollary 4.2.3. Each of the forms (ω2)2, (ω2)3, (ω2)4, . . . is an integral in-

variant of the phase flow.

Definition 4.2.6. A map g : R2n −→ R2n is called canonical if it has ω2 as an

integral invariant. A canonical map is generally called a canonical transforma-

tion. Moreover g preserves the 2-form ω2 =
∑
dpi ∧ dqi.

Corollary 4.2.4. Canonical transformation preserve the volume element in

phase space:

the volume of gD is equal to the volume of D, for any region D.

In particular, let g : R2n → R2n be a canonical transformation of phase space

taking a point with coordinates (p,q) to a point with coordinates (P,Q). The

functions P(p,q) and Q(p,q) can be considered as new coordinates on phase

space.

Proposition 4.2.5. The 1-form pdq−PdQ is an exact differential:

pdq−PdQ = dS(p, dq). (4.1)

Definition 4.2.7. The coordinates (Q,q) are called free if in a neighborhood

of some point (p0,q0) we can take (Q,q) as independent coordinates, i.e. at

(p0,q0)

det
∂(Q,q)

∂(p,q)
= det

∂Q

∂p
6= 0.

In this case the function S can be expresses locally in these coordinates:

S(p,q) = S1(Q,q)

where S1(Q,q) is called generating function of the canonical transformation g.

4.2.4 The Lie Algebra of Hamiltonian functions

Hamilton’s equations can be written in a simple form if we define the Poisson

bracket of two smooth functions F and G on M . The Poisson bracket {F,G}
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of F and G is the smooth function ω2(IdG, IdH) and in the local coordinates

p,q

{F,G} =
n∑
i=1

(
∂G

∂pi

∂F

∂qi
− ∂G

∂qi

∂F

∂pi

)
. (4.2)

It has the following properties:

• {F +G,H} = {F,H}+ {G,H} (bilinearity)

• {F,G} = −{G,H} (skewsimmetry)

• {F1F2, G} = F1 {F2, G}+ F2 {F1, G} (Leibnitz rule)

•
{
{H,F} , G

}
+
{
{F,G} , H

}
+
{
{G,H} , F

}
= 0 (Jacoby identity)

• if x ∈M is not a critical point of F , then there exists a smooth function

G such that {F,G} (x) 6= 0 (nondegeneracy).

The Poisson bracket {F,G} may also be calculated by the formula dF (IdG),

i.e. as the value of the covector dF on the vector IdG. Therefore, the derivative

of function F in the direction of the Hamiltonian vector field IdH in in fact

{F,H}.
Thus, the Hamilton’s equation can be written in the equivalent form Ḟ =

{F,G}. Since the coordinate functions p1, . . . pn, q1, . . . qn form a complete set

of independent functions, the equations

ṗi = {pi, H}

q̇i = {qi, H}

with 1 ≤ i ≤ n, form a closed system. They are called Hamilton’s canonical

equations.

4.2.5 The Arnold-Liouville’s theorem on integrable sys-

tems

In the following sections, we will consider (M,ω) as a symplectic manifold, and

ω2 in the canonical form ω2 =
∑n

i=1 dpi ∧ dqi.
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Definition 4.2.8. A function F is a first integral of the phase flow with hamil-

tonian function H if and only if its Poisson bracket with H is identically zero:

{H,F} ≡ 0,i.e.

{H,F} =
n∑
i=1

(
∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi

)
= 0.

Theorem 4.2.6. The function H is a first integral of the hamiltonian phase

flow with hamiltonian function H.

Definition 4.2.9. Two functions F1 and F2 on the symplectic manifold are in

involution if {F1, F2} = 0.

Theorem 4.2.7. Arnold-Liouville’s theorem

If in a Hamiltonian system with n degrees of freedom (i.e., let (M,ω) a 2n-

dimensional phase space), F1, . . . , Fn, with F1 = H, n independent first integrals

in involution are known, then the system is integrable by quadratures.

Suppose there are given n functions in involution on a symplectic 2n-dimensional

manifold

F1 , . . . , Fn
{
Fi, Fj

}
≡ 0 , i, j = 1, . . . , n

and let Mf be a smooth manifold

Mf = {x : Fi(x) = fi , i = 1, . . . , n} .

Assume that the n functions Fi are independent on Mf (i.e., the n 1-forms dFi

are linearly independent at each point of Mf ). Then

1. Mf is invariant under the phase flow with hamiltonian function H = F1.

2. If the manifold Mf is compact and connected, then it is diffeomorphic to

the n-dimensional torus

T n = {(φ1, . . . , φn) mod 2π} .

3. The phase flow with hamiltonian function H determines a conditionally

periodic motion on Mf , i.e., in angular coordinates φ = (φ1, . . . , φn) we

have
dφ

dt
= ω , ω = ω(f) .
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4. The canonical equations with hamiltonian function H can be integrated by

quadratures.

Corollary 4.2.8. If, in a canonical system with two degrees of freedom, a

first integral F is known which does not depend on the hamiltonian H, then

the system is integrable by quadratures; a compact connected two-dimensional

submanifold of the phase space H = h, F = f is an invariant torus, and the

motion on it is conditionally periodic.

4.2.6 The action-angle variables

If M is compact and connected, we may choose angular coordinates φi on M

so that the phase flow with hamiltonian function H = F1 takes an especially

simple form:
dφ

dt
= ω(f) φ(t) = φ(0) + ωt .

We will now look at a neighborhood of the n-dimensional manifold Mf in 2n-

dimensional space.

In the coordinates (F,φ) the phase flow with hamiltonian function H = F1 can

be written in the form of the simple system of 2n ordinary differential equations

dF

dt
= 0

dφ

dt
= ω(F) , (4.3)

which is easily integrated: F(t) = F(0), φ(t) = φ(0) + ω(F(0))t.

Thus, in order to integrate explicitly the original canonical system of differential

equation, it is sufficient to find the variables φ in explicit form. It turns out

that this can be done using only quadratures. A construction of the variables

φ is given below.

We note that the variables (F,φ) are not, in general, symplectic coordinates.

It turns out that there are functions of F, which we will denote by I = I(F),

I = (I1, . . . , In), such that the variables (I,φ) are symplectic coordinates: the

original symplectic structure ω2 is expressed in them by the usual formula

ω2 =
∑

dIi ∧ dφi .

The variables I are called action variables; together with the angle variables φ

they form the action-angle system of canonical coordinates in a neighborhood
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of Mf .

The quantities Ii are first integrals of the system with Hamiltonian function

H = F1, since they are functions of the first integrals Fj. In turn, the variables

Fi can be expressed in terms of I and, in particular, H = F1 = H(I). In

action-angle variables the differential equations of our flow (4.3) have the form

dI

dt
= 0

dφ

dt
= ω(I) .

Construction of action-angle variables in the case of one degree of

freedom

A system with one degree of freedom in the phase plane (p, q) is given by the

hamiltonian function H(p, q).

In order to construct the action-angle variables, we will look for a canonical

transformation (p, q)→ (I, φ) satisfying the two conditions:

1. I = I(H) ,

2.

∮
Mh

dφ = 2π .
(4.4)

In order to construct the canonical transformation p, q → I, φ in the general

case, we will look for its generating function S(I, q):

p =
∂S(I, q)

∂q
φ =

∂S(I, q)

∂I
H

(
∂S(I, q)

∂q
, q

)
= h(I) . (4.5)

We first assume that the function h(I) is known and invertible, so that every

curve Mh is determined by the value of I (Mh = Mh(i)). Then for a fixed value

of I we have from (4.5)

dS = pdq + φdI

0 = ddS =
∂p

∂I
dq ∧ dI +

∂φ

∂q
dI ∧ dq ⇐⇒ ∂φ

∂q
=
∂p

∂I

=⇒ dφ =
∂p

∂I
dq +

∂φ

∂I
dI.

Since we are considering I = const, it followsdφ
∣∣
I

=
∂p

∂I
dq

dS
∣∣
I

= pdq
=⇒

φ =
∫ q
q0

= ∂p
∂I
dq

S =
∫ q
q0
pdq.
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Let’s call

u =

∮
Mn

pdq (area)

∆φ =

∮
Mn

∂p

∂I
dq (period).

We have

du
dI

∮
Mn

∂p

∂I
dq = ∆φ = 2π

=⇒ dI

du
=

1

2π
.

In this way, we have obtained the action variable

I =
1

2π
u =

1

2π

∮
Mn

pdq

and the angle variable

φ =

∫ q

q0

∂p

∂I
dq.

Definition 4.2.10. The action variable in the one-dimensional problem with

hamiltonian function H(p, q) is the quantity I(h) = 1
2π

Π(h).

Finally, we arrive at the following conclusion. Let dΠ
dh
6= 0. Then the inverse

I(h) of the function h(I) is defined.

Theorem 4.2.9. Set

S(I, q) =

∫ q

q0

p dq
∣∣
H=h(I)

.

Then formulas (4.5) give a canonical transformation p, q → I, φ satisfying con-

ditions (4.4).

Thus, the action-angle variables in the one dimensional case are constructed.

4.3 Examples

Let us apply the theory of Hamiltonian systems and elliptic integrals to a simple

example.
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4.3.1 Example 1

Let

H(p, q) =
1

2
p2 + V (q), where V (q) = −q

3

3
+ q

Figure 4.1: V (q) = − q3

3
+ q

Since p =
dq

dt
and H(p, q) = E

E =
1

2

(
dq

dt

)2

+ V (q) =⇒

dq

dt
= ±

√
2(E − V (q)) =⇒

dt = ± dq√
2(E − V (q))

=⇒

t− t0 =

∫ q

q0

dq√
2(E − V (q))

.

where

2(E − V (q)) = 2(E − q + q3/3) =
2

3
(q − q1)(q − q2)(q − q3)

and q1, q2, q3 are the turning point and are shown on the figure above

By a change of coordinate q −→ ax+ b

t− t0 = ±
∫ xa+b

x0a+b

adx√
2(E − V (ax+ b))

=

±
∫ xa+b

x0a+b

adx

a

√
2

3
ax3 + 2bx2 + (2b2 − 2)

x

a
+ (2E − 2b+

2

3
b3)

1

a2



4.3 Examples 65

We want the Weierstrass form is 4x3 − g2x− g3, so

2

3
a = 4 =⇒ a = 6

2b = 0 =⇒ b = 0

By substituting the values of a and b we obtain

t− t0 = ±
∫ 6x

6x0

dx√
4x3 − x

3
+
E

18

, with g2 =
1

3
, g3 = −E

18
.

Now, P (x) = 4x3 − x

3
+
E

18
has three distinct roots ⇐⇒ ∆ = g3

2 − 27g2
3 6= 0,

i.e. ⇐⇒ E 6= ±2

3
.

• Case E = −1 There is only one turnig point at q1

Figure 4.2: V (q) < −1

t− t0 = ±
∫ x

q1
6

dx√
4x3 − x

3
+ −1

18

=

=⇒ t = ℘−1(x, g2, g3)− ℘−1(
q1

6
, g2, g3)︸ ︷︷ ︸

=C

=⇒ t+ C = ℘−1(x, g2, g3)

=⇒ x = ℘(t+ c, g2, g3)

=⇒ q

6
= ℘(t+ c, g2, g3)

=⇒ q = 6℘(t+ c, g2, g3)
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where g2 = 1/3, g3 = 1/18

• Case E = −1/3

In this case we have three distinct inversion points q1, q2, q3.

Figure 4.3: V (q) < −1
3

Case q3 < q < q2

We have a periodic motion between q3 and q2.

The period T is given by

T = 2

∫ q3
6

q2
6

dx√
4x3 − x

3
− 1

54

= 2

[
℘−1(

q3

6
, g2, g3)− ℘−1(

q2

6
, g2, g3)

]

Case q > q1

t− t0 =

∫ x

q1
6

dx√
4x3 − x

3
− 1

54

=⇒ t = ℘−1(x, g2, g3)− ℘−1(
q1

6
, g2, g3)︸ ︷︷ ︸

=C

=⇒ t+ C = ℘−1(x, g2, g3)

=⇒ x = ℘(t+ C, g2, g3)

=⇒ q

6
= ℘(t+ C, g2, g3)

=⇒ q = 6℘(t+ C, g2, g3)
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with g2 = 1/3, g3 = 1/54, and where we have assumed the initial time

t0 = 0.

Action-angle variables

Let’s calculate the action-angle variables. By a canonical transformation

(p, q) −→ (I, φ)

where I = I(h)∮
dφ = 2π.

Let S(I, q) be its generating function s.t.

p =
∂S(I, q)

∂q
, φ =

∂S(I, q)

∂I
, , H(

∂S(I, q)

∂q
, q) = h(I).

then

S(I, q) =

∫ q

q3

pdq =

∫ q

q3

√
2(E − V (y))dy (4.6)

and

I =
1

2π

∮
pdq =

1

2π
2

∫ q3

q2

√
2(E − V (y))dy =

1

π

∫ q3

q2

√
2(E − V (y))dy

φ =
∂S(I, q)

∂I
=

1

2

∫ q3

q2

∂E

∂I√
2(E − V (y))

dy (4.7)

Imposing the condiction

∮
φ = 2π =⇒ 2

∫ q3

q2

∂E

∂I√
2(E − V (y))

dy = 2π

=⇒ ∂E

∂I
=

π∫ q3
q2

dy√
2(E−V (y))

=⇒ dI

dE
=

1

π

∫ q3

q2

dy

2(E − V (y))

=⇒ dI

dE
=

1

π
(℘−1(

q3

6
, g2, g3)− ℘−1(

q2

6
, g2, g3))

=⇒ dE

dI
=

π

℘−1( q3
6
, g2, g3)− ℘−1( q2

6
, g2, g3)

substituting on 4.7 we can find φ.
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4.3.2 Example 2

In this example we are going to show how to transform a polynomial of fourth

degree into the Weierstrass form. The calculation were made by the help of

Matlab, of which we report the codex in 5.7.

Let’s assume V (q) = q4 − 1 = (q − 1)(q + 1)(q + i)(q − i).
H(p, q) = 1

2
p2 + V (q).

Figure 4.4

t− t0 =

∫ q

q1

dq√
−2x4 + 2E + 2

=∫ q

q1

dq√
(q − a)(q − b)(q − c)(q − d)

,

where

a =
4
√
E + 1

b = − 4
√
E + 1,

c = −1
4
√
E + 1,

d = i
4
√
E + 1.
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Let’s apply the transformation q −→ a+
1

t
. Then dq = − 1

t2
and t =

1

q − a
. So

our integral becomes

∫ 1
q−a

1
q1−a

−dt
t2√

− 2

t4
− 8(E + 1)−1/4

t3
− 8(E + 1)1/4

t
− 12(E + 1)1/4

t2

=

∫ 1
q−a

1
q1−a

−dt
t2

1

t2

√
−2− 8(E + 1)−1/4t− 8(E + 1)1/4t3 − 12(E + 1)1/4t2

We apply the second transformation t −→ −αs + β, with dt = αds and s =
1

α

(
−1

q − a
+ β

)
and the integral becomes

∫ 1
α

(
−1
q−a+β

)
1
α

(
−1
q0−a

+β
) ds√

4s3 + 4(E + 1)s
,

where 
α =

1

2(E + 1)3/4

β =
−1

2(E + 1)−1/4

This polynomial has distinct roots ⇐⇒ ∆ 6= 0 i.e. −4(E+ 1)3 6= 0 ⇐⇒ E 6=
−1.

Let’s assume E = 0.

The motion is periodic between q1 = −1 and q2 = 1. The period T is

T = 2

∫ 1
α

(
−1
q2−a

+β
)

1
α

(
−1
q1−a

+β
) ds√

4s3 + 4s
.

Let’s calculate the motion

t− t0 =

∫ s

1
α

(
−1
q1−a

+β
) ds√

4s3 + 4s
=

∫ f(q)

f(q1)

ds√
4s3 + 4s

=⇒

t = ℘−1(s, g2, g3)− ℘−1(
1

α

(
−1

q1 − a
+ β

)
, g2, g3)︸ ︷︷ ︸

=C

=⇒

s = ℘(t+ C, g2, g3).
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Chapter 5

Geodesic flow on an ellipsoid

and the mechanical problem of

C. Neumann

5.1 Constrained Hamilton system

Consider a constrained Hamiltonian systems on M in R2n, given by

M =
{
x ∈ R2n|G1(x) = 0, . . . , G2r(x) = 0

}
.

The dimension of M is 2n− 2r if dGi are linearly independent on M . We will

require more by assuming

det(
{
Gj, Gk

}
)j,k=1,...,2r 6= 0 (5.1)

which makes M a symplectic manifold.

If a given system
dx

dt
= JHx

defines a vector field tangential to M , then there is no difficulty in restricting

this system to M . The condictions for this to be so is

XHGj = −
{
H,Gj

}
= 0 for j = 1, . . . , 2r (5.2)

on M .

This can done in many ways, for example, using the mehod of Lagrange mul-

71
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Neumann

tipliers, by replacing XH by

XH −
2r∑
j=1

λj(x)XGj

where the multipliers λj are defined so that this vectorfield is tangential to M.

This requires that

{H,Gk} −
2r∑
j=1

{
Gj, Gk

}
= 0 (5.3)

which by 5.1 defines the λj = λj(x) uniquely on M .

If we set

H∗ = H −
2r∑
j=1

λjGj,

the constrained vectorfield is given by

XH∗ = XH −
2r∑
j=1

λjXGj .

5.2 Geodesics on an Ellipsoid

Let’s consider the geodesic flow on an ellipsoid{
x ∈ Rn,

〈
A−1x, x

〉
= 1
}
,

where A = AT is a positive definite symmetric matrix with distinct eigenvalues

0 < α1 < · · · < αn. For simplicity we assume, without loss of generality,

A = diag(α1, · · · , αn) =


α1 0 · · · 0

0 α2 · · · 0
...

...
. . .

...

0 0 · · · αn

 .

The differential equations are given by

d2x

ds2
= −vA−1x⇒


y =

dx

ds
= x′

dy

ds
= y′ = −vA−1x

. (5.4)
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Proposition 5.2.1. The multiplier v is determined so that

1

2

(
d

ds

)2 〈
A−1x, x

〉
= 0.

i.e.

v = |A−1x|−2
〈
A−1x, x

〉
.

Proof.

1

2

(
d

ds

)2 〈
A−1x, x

〉
=

1

2

(
d

ds

)2
 n∑

i=1

x2
i

ai

 = 0

⇒ 1

2

d

ds

 n∑
i=1

2
xix
′
i

ai

 =
n∑
i=1

(
x′ix
′
i

ai
+
xix

′′
i

ai

)
=

n∑
i=1

(
(x′i)

2

ai
+
xi
ai

(−vA−1x)

)
=
〈
A−1x, x

〉
− vx

2
i

a2
i

=

〈
A−1x, x

〉
− v|A−1x|2 = 0

⇒ v =

〈
A−1x, x

〉
|A−1x|2

.

We will show that this system is integrable and that the integrals can be

written as quartic polynomials in x and x′.

It’s usefull to represent this system by constraining the free Hamiltonian

H =
1

2
|y|2 (5.5)

to the tangent bundle of the ellipsoid

G1 =
〈
A−1x, x

〉
− 1 =

n∑
i=1

x2
i

ai
− 1,

G2 =
〈
A−1x, y

〉
=

n∑
i=1

xiyi
ai

.
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Neumann

Since

{G1, G2} =
n∑
i=1

∂G1

∂xi

∂G2

∂yi
− ∂G1

∂yi

∂G2

∂xi︸ ︷︷ ︸
=0

=

=
n∑
i=1

2
x2
i

a2
i

= 2|A−1x|2 6= 0,

then det({G1, G2}) 6= 0, so the condiction 5.1 is satisfied.

XHG1 = −{H,G1} = −


n∑
i=1

∂H

∂xi

∂G1

∂yi︸ ︷︷ ︸
=0

−∂H
∂yi

∂G1

∂xi

 =

= −

−2
n∑
i=1

yi
xi
ai

 = 2
〈
A−1x, y

〉
;

XHG2 = −{H,G2} = −


n∑
i=1

∂H

∂xi

∂G2

∂yi︸ ︷︷ ︸
=0

−∂H
∂yi

∂G2

∂xi

 =

=
n∑
i=1

y2
i

ai
=
〈
A−1y, y

〉
;

{H,G1} − λ2 {G1, G2} = 0⇒ 2
〈
A−1x, y

〉
− λ2(2|A−1x|2) = 0

⇒ λ2 =

〈
A−1x, y

〉
|A−1x|2

;

{H,G2} − λ1 {G1, G2} = 0⇒
〈
A−1y, y

〉
− λ1(2|A−1x|2) = 0

⇒ λ1 =

〈
A−1y, y

〉
2|A−1x|2

.

So we have

H∗ =
1

2
|y|2 − λ1(

〈
A−1x, x

〉
− 1)− λ2

〈
A−1x, y

〉
or

H∗ =
1

2
|y|2 +

µ

2
Φ0(x, y)− µ

2

〈
A−1x, y

〉2
, (5.6)
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where

µ = |A−1x|−2,

φ0 = (
〈
A−1x, x

〉
− 1)

〈
A−1y, y

〉
−
〈
A−1x, y

〉2
= n∑

i=1

x2
i

αi
− 1

 n∑
j=1

y2
j

αj
−

 n∑
i=1

xiyi
αi

2

.

Proposition 5.2.2. The constrained system is
dx

ds
= H∗y = y

dy

ds
−H∗x = −µ

〈
A−1y, y

〉
A−1x.

Proof.

H∗y =
∂

∂y

(
1

2
|y|2
)

+
µ

2

∂

∂y
(Φ0(x, y))− µ

2

∂

∂y
(
〈
A−1x, y

〉2
) =

y +
µ

2
(
〈
A−1x, x

〉
− 1︸ ︷︷ ︸

=0

)
∂

∂y

〈
A−1y, y

〉
− µ

2
[2
〈
A−1x, y

〉︸ ︷︷ ︸
=0

∂

∂y

〈
A−1x, y

〉
] = y.

H∗x =
1

2

∂µ

∂x
Φ0(x, y) +

1

2
µ
∂

∂x
Φ0(x, y)− 1

2

∂µ

∂x

2〈
A−1x, y

〉︸ ︷︷ ︸
=0

−µ
2

∂

∂x
(

2〈
A−1x, y

〉︸ ︷︷ ︸
=0

) =

=
1

2

∂

∂x
µ [(
〈
A−1x, x

〉
− 1︸ ︷︷ ︸

=0

)
〈
A−1y, y

〉
−

2〈
A−1x, y

〉︸ ︷︷ ︸
=0

]

︸ ︷︷ ︸
=0

+

1

2
µ[
∂

∂x
(
〈
A−1x, x

〉
)
〈
A−1y, y

〉
− ∂

∂x
(
〈
A−1x, y

〉2
)︸ ︷︷ ︸

=0

] =

1

2
µ2

n∑
i=1

xi
ai

〈
A−1y, y

〉
= µ

n∑
i=1

xi
ai︸ ︷︷ ︸

A−1x

〈
A−1y, y

〉
= µA−1x

〈
A−1y, y

〉
.

Hence they agree with 5.4.

With this approach we extend the system from a flow on the tangent bundle of

the ellipsoid to R2n, so we avoid the use of the local coordinates on the ellipsoid.
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Also, the extended system XH∗ has an interesting geometric interpretation.

The cone {
y ∈ Rn|φ0(x, y) = 0

}
when traslated by x represents the cone of vectors throught the point the point

x which are tangent to the ellipsoid.

Figure 5.1: Tangent cone

Proposition 5.2.3. We have that |y|2 and φ0 commute, i.e.{
|y|2 , φ0

}
= 0.

Proof. {
|y|2 , φ0

}
= 2

n∑
i=1

∂φ0

∂xi
yi =

2
n∑
i=1


2

xi
αi

n∑
j=1

y2
j

αj
− 2(

n∑
j=1

xjyi
αj

)
yi
αi

 yi

 =

4


 n∑

i=1

xiyi
αi

 n∑
j=1

y2
j

αj

−
 n∑

j=1

xjyi
αj

 n∑
i=1

y2
i

αi


 = 0.
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So, because of the proposition above, in the vectorfield

XH∗ =
1

2
X|y|2 +

µ

2
Xφ0

also the two summands commute, we can discuss the two vectorfields separately.

The first summand describes the free flow

(x, y) =−→ (x+ sy, y)

and the second is given by ẋ = µφ0y

ẏ = −µφ0x.

5.3 Confocal quadrics, construction of integ-

rals

Basic for the understing of the geodesics on the ellipsoid is the family of confocal

quadrics

Qz =
〈
(zI − A)−1x, x

〉
+ 1 = 0, with z ∈ R, z 6= αk

where the αk, k = 1, . . . n are the eigenvalues of the matrix A. Qz contains the

ellipsoid for z = 0.

For abbreviation we set

Qz(x, y) =
〈
(zI − A)−1y, y

〉
; Qz(x) = Qz(x, x),

and we introduce

φz(x, y) = (1−Qz(x))Qz(y)−Q2
z(x, y). (5.7)
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Figure 5.2: Confocal quadrics

The functions φz(x, y) are quartic polynomials as far as x and y are concerned,

and rational functions of z with simple poles at the eigenvalues αk of A.

φz(x, y) = (1−Qz(x))Qz(y)−Q2
z(x, y) =

Qz(y) +

 n∑
i=1

x2
i

z − αi

 n∑
j=1

y2
j

z − αj

−
 n∑

i=1

xiyi
z − αi

 n∑
j=1

xjyj
z − αj

 =

n∑
i=1

y2
i

z − αi
+

n∑
i,j=1
i 6=j

x2
i y

2
j − xiyjxjyi

(z − αi)(z − αj)
=

n∑
i=1

y2
i

z − αi
+

∑
1≤i<j≤n

x2
i y

2
j + x2

jy
2
i − 2xiyixjyj

(z − αi)(z − αj)
=

n∑
i=1

y2
i

z − αi
+

∑
1≤i<j≤n

(xiyj − xjyi)2

(z − αi)(z − αj)
=

n∑
i=1

 y2
i

z − αi
+

n∑
j=1
j 6=i

(xiyj − xjyi)2

(z − αi)(z − αj)


By using in the second summation the partial fraction decomposition method,

we obtain
n∑
j=1
j 6=i

(xiyj − xjyi)2

(z − αi)(z − αj)
=

n∑
j=1
j 6=i

Bi

z − αi
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where

Bi =
(xjyi − xjyi)2

αj − αi
.

So we can write

φz(x, y) =
n∑
i=1

Fi(x, y)

z − αi
, (5.8)

where

Fi(x, y) = y2
i +

n∑
j=1
j 6=i

(xjyi − xjyi)2

αj − αi
. (5.9)

Proposition 5.3.1. For any two numbers z1, z2 one has for the functions φz1,

φz2 defined by 5.7 the identity

{φz1 , φz2} = 0

hence also {
Fj, Fk

}
= 0.

Proof.

{φz1 , φz2} =
n∑
i=1

(
∂φz1
∂xi

∂φz2
∂yi
− ∂φz1

∂yi

∂φz2
∂xi

)
=

n∑
i=1

[
1

z1 − αi
∂Fi(x, y)

∂xi

1

z2 − αi
∂Fi(x, y)

∂yi
− 1

z1 − αi
∂Fi(x, y)

∂yi

1

z2 − αi
∂Fi(x, y)

∂xi

]
= 0

Let’s prove
{
Fj, Fk

}
= 0 in the case n = 2. We have

F1 = y2
1 +

(x2y1 − x1y2)2

α2 − α1

,

F2 = y2
2 +

(x1y2 − x2y1)2

α1 − α2

,

{F1, F2} =
2∑
i=1

∂F1

∂xi

∂F2

∂yi
− ∂F1

∂yi

∂F2

∂xi
=

2
(x2y1 − x1y2)

α2 − α1

(−y2)2
(x1y2 − x2y1)

α1 − α2

(−x2)− (2y1 + 2
(x2y1 − x1y2)

α2 − α1

x2)2
(x1y2 − x2y1)

α1 − α2

y2

+2
(x2y1 − x1y2)

α2 − α1

y1(2y2 + 2
(x1y2 − x2y1)

α1 − α2

x1)− 2
(x2y1 − x1y2)

α2 − α1

(−x1)2
(x1y2 − x2y1)

α1 − α2

(−y1) = 0.
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Since
n∑
i=1

Fi = |y|2

also commutes with the Fi, it follows that the Fi also are integrals for 5.6, and

hence the restrictions of the Fi to the tangent bundle of the ellipsoid Q0 are

integrals of the geodesic problem. By proposition 5.3.1 they commute, and

the dFi are linearly independent on an open set of R2n. This shows that the

geodesic problem is integrable on an open and dense set of the tangent bundle,

and the integrals are given by the restriction of the functions 5.9.

5.4 Iso-spectral deformations

The system 
x′j =

∂

∂yj
φ0

y′j = − ∂

∂xj
φ0

(5.10)

can be interpreted as iso-spectral deformation. The difficulty is to guess the

matrices L and B with whitch the above equation can be written in the form

dL

dt
= [B,L] = BL− LB.

Following Moser [11], let

L = L(x, y) = Py(A− x⊗ x)Py, |y| > 0,

where (x⊗ x) = xixj is the tensor product and

Py = δij − yiyj|y|−2

is the projection onto the orthogonal complement of y.

Since

A− x⊗ x =


α1 − x2

1 −x1x2 · · · −x1xn

−x2x1 α2 − x2
2 · · · −xnx2

...
...

. . .
...

−xnx1 −xnx2 · · · αn − x2
n


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and

Py =



1− y2
1

|y|2
y1y2

|y|2
· · · y1yn

|y|2
y2y1

|y|2
1− y2

2

|y|2
· · · ...

...
...

. . .
...

yny1

|y|2
yny2

|y|2
· · · 1− y2

n

|y|2


are both symmetric matrices, we have

(PyCPy)
T = P T

y C
TP T

y = PyCPy, where C = A− x⊗ x.

So L = Py(A − x ⊗ x)Py also is symmetric. Thanks to the Matlab codex 5.7,

we calculate L in the case n = 2

L =


−y2

2

[(x1y2 − x2y1)2 − α2y
2
1 − a1y

2
2]

(y2
1 + y2

2)
y1y2

[(x1y2 − x2y1)2 − α2y
2
1 − a1y

2
2]

(y2
1 + y2

2)

y1y2
[(x1y2 − x2y1)2 − α2y

2
1 − a1y

2
2]

(y2
1 + y2

2)
y1y2

[(x1y2 − x2y1)2 − α2y
2
1 − a1y

2
2]

(y2
1 + y2

2)

 =

=

−y2
2 y1y2

y1y2 y2
2


and it’s easy to verify that

Ly =

−y2
2 y1y2

y1y2 y2
2

y1

y2

 = 0,

i.e. y is eigenvector for the eigenvalue λ = 0.

Let B be a skewsymmetric matrix

B = −

(
xiyj − xyyi

αiαj

)
=


0 −x1y2 + x2y1 · · · −x1yn + xny1

−x2y1 + x1y2 0 · · · −x2yn + xny2

...
...

. . .
...

−xny1 + x1yn −xny2 + x2yn · · · 0


the differential equation L′ = [B,L] agrees with 5.10, and so the eigenvalues of

L are integrals for 5.10.
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Proposition 5.4.1. Since we have

|y|2

2

det(zI − L)

det(zI − A)
= φz(x, y) =

n∑
i=1

Fi(x, y)

z − αi

then the eigenvalues of L are related to the polynomials Fk and φz.

It follows that the eigenvalues of L are integrals for 5.10.

Proof. We proved it by using matlab for the case n = 2, see 5.7.1.

Therefore the eigenvalues λ1, λ2, . . . , λn, with λn = 0, and |y|2 can be viewed

as functions of the Fk and therefore commute also.

5.5 The mechanical problem of C. Neumann

The system in question describes the motion of a mass point on a sphere

Sn−1 =
{
q ∈ Rn,|q| = 1

}
under the influence of the force −Aq, where A is a symmetric matrix with

distinct eigenvalues. For simplicity we use A = diag(α1, . . . , αn) .

We can obtain the differential equations by constraining XH with

H =
1

2
〈Aq, q〉+

1

2
(|q|2|p|2 − 〈q, p〉2) = (5.11)

1

2

n∑
i=1

αiq
2
i +

1

2

 n∑
i=1

q2
i

n∑
j=1

p2
j −

 n∑
j=1

qjqj

2
 = (5.12)

1

2

n∑
i=1

αiq
2
i +

1

2

n∑
i=1
i 6=j

(
qipj − piqj

)2
, q, p ∈ Rn. (5.13)

In the following way.

There are n commuting integrals F1, . . . , Fn which are polynomials in q, p, of

which

F1 =
1

2
(|q|2 − 1)

is one. We constrain this system to the tangent bundle of the sphere

2F1 = |q|2 − 1 = 0

G1 = 〈p, q〉 = 0.
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Since

{F1, G1} =
n∑
i=1

∂F1

qi

∂G1

pi
− ∂F1

pi

∂G1

qi︸ ︷︷ ︸
=0

=
n∑
i=1

q2
i = 1 6= 0

and

{H,G1} =
n∑
i=1

∂H

qi

∂G1

pi
− ∂H

pi

∂G1

qi
=

n∑
i=1

[(
αiqi +

1

2

(
2qip

2
i − 2p2

i qi
))

qi −
1

2

(
2piq

2
i − 2piqiqi

)
pi

]
=

n∑
i=1

αiq
2
i = 〈Aq, q〉

from 5.3 we want

{H,G1} − λ1 {F1, G1} = 0 =⇒ λ1 = 〈Aq, q〉

so follows

{H,G1}︸ ︷︷ ︸
=〈Aq,q〉

−λ1 {F1, G1}︸ ︷︷ ︸
=1

= 0 =⇒ λ1 = 〈Aq, q〉 .

Then the constrained Hamiltonian system is

H∗ = H − λ1F1, with λ1 = 〈Aq, q〉 .

Therefore the differetial equations becomes

q̇ = H∗p = Hp − λ1F1p︸ ︷︷ ︸
=0

=
∂

∂p

1

2
〈Aq, q〉+

1

2
(|q|2|p|2 − 〈q, p〉2︸ ︷︷ ︸

=0

)

 =

∂

∂p

(
1

2
〈Aq, q〉

)
︸ ︷︷ ︸

=0

+
∂

∂p

(
1

2
(|q|2|p|2

)
= p;

ṗ = −H∗q = −Hq + λ1F1q = −Aq − q|p|2 + λ1q = −Aq + q(λ1 −|p|2)

where |q|1 and 〈q, p〉 = 0.

With v = λ1 −|p|2 = 〈Aq, q〉 −|q̇|2, we can rewrite the differential equations as

follows

ṗ = q̈ =
d2q

dt2
= −Aq + vq, (5.14)
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where vq is the force keeping y on the sphere.

Now we show that this system is integrable.

Expanding the rational function φz at z =∞, we find from 5.7

φz(x, y) =
|y|2

2
+

1

z2

{
〈Ay, y〉+|x|2|y|2 − 〈x, y〉2

}
+ . . .

or

φz(p.q) =
|q|2

z
+

2H(q, p)

z2
.

We have also

1

2

n∑
i=1

αiFk(p, q) =
1

2

n∑
i=1

αiq
2
i +

1

2

n∑
i=1

n∑
j=1
j 6=i

αi
(qjpi − qipj)2

αi − αj

1

2

n∑
i=1

αiq
2
i +

1

2

n∑
i=1

n∑
j=1
j 6=i

αi(qjpi − qipj)2 = H

so the functions Fk(p, q) being defined in 5.9 with (x, y) replaced by (p, q) are

the desired integrals of the system 5.11. Since |q|2 =
∑n

i=1 Fi also commutes

with the Fi, the constrained system is integrable.

5.6 The connection between the two systems

The geodesic flow on the ellipsoid
〈
A−1x, x

〉
= 1 and the Neumann’s problem

are closely related. There is also another connection between these problems,

found by Knorrer, that uses the Gauss map of the ellipsoid Q0 onto the unit

sphere in this way

Q0 −→ Sn−1

x 7−→ q = rA−1x
(5.15)

where r =
∣∣A−1x

∣∣−1
.

The Gauss mapping take solutions of
dx

ds2
= −vA−1x into solution of

d2q

dt2
=

−Aq + vq, where A is replaced by A−1.

We will change the independent variable s into t via s = ψ(t), so that
dx

ds2
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becomes

...
x =

dx(ψ(t))

dt2
=

d

dt

(
d

dt
x(ψ(t))

)
=

d

dt

dxds (ψ(t))
dψ(t)

dt︸ ︷︷ ︸
=ψ̇

 =

d2x

ds2
(ψ(t))ψ̇ψ̇ +

dx

ds
(ψ(t))ψ̈ =

−vA−1zψ̇2 +
dx

ds
(ψ(t))︸ ︷︷ ︸
=
ẋ

φ̇

ψ̈ = −vA−1xψ̇2 + ẋ
ψ̈

ψ̇
.

Choosing ψ(t) so that −vψ̇2 = 1 and writing B = A−1, the system becomes

ẍ = −Bx+ bẋ, where b =
ψ̈

ψ̇
. (5.16)

Since
〈
A−1x, x

〉
= 〈Bx, x〉 = 1, by differentiating once

d

dt

〈
Bx(t), x(t)

〉
= 0

d

dt

n∑
i=1

x2
i bi =

n∑
i=1

2xiẋibi = 2 〈Bx, ẋ〉 = 0

=⇒ 〈Bx, ẋ〉 = 0

two times we obtain

d2

dt2
〈Bx, ẋ〉 =

d2

dt2

n∑
i=1

2xiẋibi = 0

=⇒
n∑
i=1

(2ẋiẋibi + 2xiẋibi) = 2 〈Bẋ, ẋ〉+ 2 〈Bx, ẋ〉︸ ︷︷ ︸
=0

−2x|Bx|2 = 0

=⇒ 〈Bẋ, ẋ〉
|Bx|2

= 1
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and three times

d3

dt3
〈Bx, x〉 =

d

dt

 n∑
i=1

ẋ2
i bi + (xibi)

2

 = 0

=⇒
n∑
i=1

2ẋiẍibi + 2xibiẋibi = 0

replacing ẍ = −Bx+ bẋ
n∑
i=1

2ẋi(−bixi + biẋi)bi + 2 〈Bx, ẋ〉︸ ︷︷ ︸
=0

bi = 0

−2 〈Bx,Bẋ〉+ 2b 〈Bẋ, ẋ〉︸ ︷︷ ︸
=|Bx|2

= 0

=⇒ b =
〈Bx,Bẋ〉
|Bx|2

.

Theorem 5.6.1. The Gauss map of Q0 −→ Sn−1 takes the solutions of

ẍ−Bx+ bẋ, b =
ψ̈

ψ̇

satisfying

〈Bx, x〉 = 1, 〈Bx, ẋ〉 = 0, 〈Bẋ, ẋ〉 = |Bx|2 ,

into the solution of the Neumann problem

q̈ = −Bq + vq, v = 〈Bq, q〉 −|q̇|2 (5.17)

satisfying

|q̇|2 = 1, 〈q̇, q〉 = 0, Ψ0(q̇, q) = 0, (5.18)

where Ψz(x, y) is defined like φz(x, y) but with A replaced by B = A−1.

Proof. Differentiating q = rA−1x = rBx we have

q̇ = Bẋr + ṙBx = rB(ẋ+
ṙ

r
x), (5.19)

where

ṙ =
d

dt
|Bx|−1 = −|Bx|−2Bẋ = − Bẋ

|Bx|2

=⇒ ṙ

r
= − Bẋ

|Bx|2|Bx|−1 = −〈Bx,Bẋ〉
|Bx|2

,
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and

q̈ = Bẍr +Bẋṙ + r̈Bx+ ṙBx = ẍBr + 2ẋBṙ + r̈Bx =

Br(−Bx+ bẋ) + 2ṙBẋ+ r̈Bx = −BrBx+Brbẋ+ 2ṙBẋ+ r̈Bxr =

−Bq +Bẋr

(
b+ 2

ṙ

r

)
︸ ︷︷ ︸

=0

+
r̈

r
q = −Bq +

r̈

r
q.

This shows that the solutions of the geodesic problem correspond to the

solutions of the Neumann problem.

Moreover, following Moser [11],

Ψ0(q̇, q) =

(
〈Bẋ, ẋ〉
|Bx|2

− 1

)
〈Aq, q〉 .

Definition 5.6.1. A solution q = q(t) of 5.17 is said non degenerate if

Φz(q̇, q) =

n−1∏
j=1

(z − µj)

det(zI −B)

has a zero, say µ1, which is not an eigenvalue of B.

Replacing B by B − µ1I

Φz(q̇, q) =

n−1∏
j=1

(z − µj)

det(zI −B + µ1I)
=

n−1∏
j=1

(z − µj)

det((z + µ1)I −B)
=

n−1∏
j=1

(z − µj)

n∏
j=1

(
(z + µ1)− bi

) .
The condition

Ψµ1(q̇, q) =

n−1∏
j=1

(µ1 − µj)

n∏
j=1

(
(µ1 + µ1)− bi

) = 0
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becomes

Ψ0(q̇, q) =

n−1∏
j=1

(−µj)

n∏
j=1

(µ1 − bi)
= 0

and the above reduction become possible, then the two problems are essentially

equivalent.

Theorem 5.6.2. Let φz(x, y) be the integrals of the geodesic problem and

Ψz(q̇, q) the integrals of the Neumann’s problem. If

〈Bx, x〉 = 1, 〈Bx, ẋ〉 = 0, 〈Bẋ, ẋ〉 = |Bx|2 , (5.20)

holds and (x, ẋ) are related to (q̇, q) by the Gauss map q = rBx

q̇ = rB
(
ẋ+ ṙ

r
x
)
,

(5.21)

then

φz(x, ẋ) = |Bx|4 Ψw(q̇, q), where w =
1

z
. (5.22)

Let’s introduce first a proposition that we will use in the proof

Proposition 5.6.3. We have the following identity

(wI −B)−1 +B−1 = −(zI − A)−1A2. (5.23)

Proof. Since

(−(zI − A)−1A2)−1 = −A−2(zI − A) =

−A−2zI + A−1 = A−1zI(wI − A−1) = BzI(wI −B)

i.e. (−(zI − A)−1A2)−1 = BzI(wI −B),

then we should have

BzI(wI −B)
[
(wI −B)−1 +B−1

]
= I

=⇒ BzI −BzI(wI −B)B−1 = I

=⇒ BzI +BB−1 −BzI = I =⇒ I = I.
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Proof. To verify the relation we introduce the abbreviations

Pw(p, q) =
〈
(w −B)−1p, q

〉
Pw(q = Pw(q, q))

% = − ṙ
r

=
〈Bx,Bẋ〉
|Bx|2

.

We find from 5.21q = rBx

q̇ = rBẋ+ rB(−%)x = rBẋ− q% =⇒ q̇ + q% = rBẋ

and from 5.20
P0(q) = −〈Aq, q〉 = −〈ArBx, rBx〉 = −r2 〈Bx, x〉 = −r2

P0(q, q̇ + %q) = −〈Aq, q̇ + %q〉 = −〈ArBx, rBẋ〉 = r2 〈Bx, ẋ〉 = 0

P0(q̇ + %q) = −〈ArBẋ, rBẋ〉 = −r2 〈Bẋ, ẋ〉 = −|Bx|−2|Bx|2 = −1.

Moreover, the identity 5.23 gives

Pw(q)− P0(q) =
〈
(w −B)−1q, q

〉
+ 〈Aq, q〉 =〈

(−(z − A)−1A2 − A)q, q
〉

+ 〈Aq, q〉 =

−
〈
(z − A)−1A2q, q

〉
− 〈Aq, q〉+ spAq =

−Qz(Aq) = −Qz(ArBx) = −r2Qz(x);

Pw(q, q̇ + %q)−P0(q, q̇ + %q) =
〈
(w −B)−1q, q̇ + %q

〉
+ 〈Aq, q̇ + %q〉 =〈

(−(z − A)−1A2 − A)q, q̇ + %q
〉

+ 〈Aq, q̇ + %q〉 =〈
(−(z − A)−1A2)q, q̇ + %q

〉
− 〈Aq, q̇ + %q〉+ 〈Aq, q̇ + %q〉 =〈

(z − A)−1A2rBx, rBẋ
〉

=

− r2
〈
(z − A)−1x, ẋ

〉
= −r2Qz(x, ẋ);

Pw(

rBẋ︷ ︸︸ ︷
q̇ + %q)−P0(q̇ + %q) =

〈
(w −B)−1rBẋ, rBẋ

〉
+ r 〈Bẋ, ẋ〉 =〈

(−(z − A)−1A2 − A)rBẋ, rBẋ
〉

+ r 〈Bẋ, ẋ〉 =〈
(−(z − A)−1A2)rBẋ, rBẋ

〉
− 〈ArBẋ, rBẋ〉+ r 〈Bẋ, ẋ〉 =

− r2Qz(ẋ)− r 〈Bẋ, ẋ〉+ r 〈Bẋ, ẋ〉 = −r2Q2(ẋ).
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Hence

Ψw(q, q̇) = Pw(q)(1 + Pw(q̇ + %q))− (Pw(q, ȧ+ %q))2 =

r4
[
(1 +Qz(x))Qz(ẋ)−Qz(x, ẋ)2

]
=

r4φz(x, ẋ) =
φz(x, ẋ)

|Bx|4
.

5.7 The Riemann surface

Consider the flow in the n− 1 dimensional manifold

M =
{
q, q̇| 〈q, q̇〉 = 0;Fk(q̇, q) = ck, k = 1, . . . n

}
,

where c1, . . . , cn are given so that

|q|2 =
n∑
i=1

ci = 1.

We will consider only the general case where the rational function

φz(q̇, q) =
n∑
i=1

Fi(q̇, q)

z − αi
=

n∑
i=1

ci
z − αi

has β1, . . . , βn−1 distinct roots, so α1, . . . , αn, β1, . . . , βn−1 are distinct and real,

so

φz(q̇, q) =

n−1∏
i=1

(z − βi)

n∏
i=1

(z − αi)
=
b(z)

a(z)
,

where

b(z) =
n−1∏
i=1

(z − βi), and a(z) =
n∏
i=1

(z − αi) = det(zI − A).

We prefer to use the elliptic coordinates as parameters on the manifold M.

Definition 5.7.1. µ1, . . . , µn−1 are called elliptic coordinates on the sphere if

they are the zeros of

Qz(q) =
n∑
i=1

q2
i

z − αi
.
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Let’s see how we can compute q, q̇ from them.

Since |q|2 = 1, we can write Qz as

Qz(q) =
n∑
i=1

q2
i

z − αi
=

n∑
i=1

q2
i

n−1∏
i=1

(z − µi)

n∏
i=1

(z − αi)
=

n−1∏
i=1

(z − µi)

n∏
i=1

(z − αi)
=
m(z)

a(z)

with

m(z) =
n−1∏
i=1

(z − µi).

With the residues method we recover the qi up to sign from µ1, .., µn−1:

q2
i =

m(αi)

a′(αi)
.

Let’s now compute q̇.

Since for z = µi, i = 1, . . . n− 1

φz(q̇, q) = (Qz(q̇) + 1)Qz(q)︸ ︷︷ ︸
=0

−Q2
z(q̇, q)

=⇒ Qz(q̇, q) =
√
−φz(q̇, q) =

√
− b(z)

a(z)

we have obtained n−1 linear equations for q̇ and these, together to 〈q̇, q〉, allow

us to recover q̇.

The differential equations theke the implicit form

n−1∑
i=1

µn−j−1
i µ̇i

2
√
−R(µi)

= δi,1, for j = 1, . . . , n− 1

where R(z) = a(z)b(z). These formulas are related to the Jacobi map given by

n−1∑
i=1

∫ (µi,wi)

(u0,w0)

zn−j−1dz

2
√
−R(z)

= sj

that takes the divisor class defined by (µi, 2
√
−R(z)) into a point s ∈ Cn−1 \Γ ,

where Γ denotes the period lattice of the differentials of the first kind.

The Riemann surface

w2 = −4R(z)
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is an hyperelliptic curve of genus n−1 with branch points at α1, . . . αn, β1, . . . βn−1,.

Then the differential equation becomes

ṡi = δi,1, or si = δi,1t+ si(0).

In the case n = 2 we are on an ellipse and

R(z) = a(z)b(z) = (z − α1)(z − α2)(z − b1)

i.e it is a third degree polynomial, so we can easier calculate the differential

equation since ∫ (u,w)

(u0,w0)

dz√
−4R(z)

= s

is an elliptic integral of the first kind that we studied in 2.6.
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Example 1

clc

clear

% To convert a polynomial of third degree into the Weierstrass form

syms x E a b t q

%V=input(’inserire potenziale V(q)\’)

% In our case

V= -q^3/3+q;

p=2*(E-V) % polinimio sotto radice

P1=subs(p,q,a*x+b);

P1=expand(P1);

P1=collect(P1,x);

P2=collect(expand(P1/(a^2)));

C = coeffs(P2,x);

a1=C(1,4);

a2=solve(a1==4,a)

b1=C(1,3);

b2=solve(b1==0,b)

P3=subs(P2,a,a2);

P3=subs(P3,b,b2)

p =

(2*q^3)/3 - 2*q + 2*E

93
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a2 =

6

b2 =

0

P3 =

4*x^3 - x/3 + E/18

Example 2

clear

clc

r=[1 -1 i -i];

syms x a b t s E;

V=poly(r);

E=[0 0 0 0 E];

P=2*(E-V);

v=roots(P);

P=poly2sym(P,x);

P1=subs(P,x,v(1)+1/t);

P1=expand(P1);

P2=expand(t^4*P1);

P3=expand(subs(P2,t,-a*s+b));

P4=collect(P3,s);

p4=expand(P4/a^2);

C = coeffs(p4,s);
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a1=C(1,4);

a2=solve(a1==4,a);

b1=C(1,3)

b2=solve(b1==0,b);

P5=subs(p4,a,a2);

P6=subs(P5,b,b2)

P6 =

4*s*(E + 1) + 4*s^3

Some chapter 5 proofs

• confocal quadrics

• Iso-spectral deformations

clc

clear

syms y1 y2 y a1 a2 x1 x2 z z1

a=sym(’a’,[1 2]);

x=sym(’x’,[1 2]);

y=sym(’y’,[1 2]);

A=[a1 0; 0 a2];

A1=inv(A);

confocal quadrics

We set

• Qx = Qz(x)
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• Qy = Qz(y)

• Qxy = Qz(x, y)

• Pz = φz(x, y)

Qx=x*inv(z*eye(2,2)-A)*x.’;

Qxy=x*inv(z*eye(2,2)-A)*y.’;

Qy=y*inv(z*eye(2,2)-A)*y.’;

format rat

P_z=(1+Qx)*Qy-Qxy^2

simplify(P_z)

Let’s proof proposition 5.3.1, with Pz1 = φz1

P_z1=subs(P_z,z,z1)

fprintf(’vediamo che {P_z,P_z1}=0\n’)

% Let’s calculate the Poisson bracket Pb

Pb=0;

for j=1:2

Pb=Pb+diff(P_z,x(j))*diff(P_z1,y(j))-diff(P_z,y(j))*diff(P_z1,x(j));

end

Pb=simplify(Pb)

fprintf(’è uguale a 0\n’)

Iso-spectral deformations

Let’s construct the matrix Py

Y=[y1^2 y1*y2; y1*y2 y2^2];

Y=1/(y1^2+y2^2).*Y;

P=eye(2)-Y

X=[x1^2 x1*x2; x1*x2 x2^2];
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X=A-X

L=P*X*P;

L=simplify(L)

We proof the symmetry of L by calculating the transpose matrix and then

doing the difference. If the difference is 0, the matrix is symmetric;

L1=L.’; % L1 is the transpose

fprintf(’L-L1=\n’)

simplify(L-L1)

fprintf(’L-L1=0, so L is symmetric\n’);

fprintf(’vediamo che Ly=0 )\n’);

Ly=L*y.’

fprintf(’Vediamo com’’è fatta B\n’);

B=[0 (x2*y1-x1*y2)/(a1*a2);(x1*y2-x2*y2)/(a1*a2) 0 ]

L2=simplify(B*L-L*B)

w=(-x1^2*y2^2+2*x1*x2*y1*y2-x2^2*y1^2+a2*y1^2+a1*y2^2)/(a1*a2*(y1^2+y2^2)^2);

L2=L2/w % we devide by w since matlab doesn’t do it

P_0=(x*A1*x.’-1)*(y*A1*y.’)-(x*A1*y.’)^2

5.7.1 Proof Proposition 5.4.1.

fprintf(’Let’s proof 5.4.1\n’)

N=((y1^2+y2^2)/z)*det(z*eye(2,2)-L)/det(z*eye(2,2)-A)

N=simplify(N)

simplify(P_z-N)

fprintf(’P_z-N=0, so 5.4.1 is verified\n’)

℘ Weierstrass function

The following Matlab function enable us to calculate the Weierstrass function.

function [P] = weierstrassfunc(z,g2,g3)

C=zeros(1,20);
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C(1)=g2/20;

C(2)=g3/28;

for j=3:20

b=zeros(1,j-1);

for m=1:j-2

b(m)=C(m)*C(j-1-m);

end

s=sum(b);

M=3/((2*(j+1)+1)*(j-2));

C(j)=s*M;

end

C;

cz=zeros(1,20);

for i=1:20

cz(i)=double(C(i)*z^(2*i)) ;

end

P=double(z^(-2)+ sum(cz));

end
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