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1 Introduction  

1.1 Oveview of feeding in vertebrates 

Feeding is a complex phenomenon, regulated by numerous central and peripheral endocrine 

factors, whose actions are modulated by both external and internal variables. Environment, season, 

time of day, but also circulating levels of nutrients, hormones and ontogeny affect food intake 

which, under optimum conditions, is adequate for basal metabolic needs, growth, development, 

reproduction and deposition of energy store.  

In all vertebrates, feeding is regulated by orexigenic (appetite stimulating) and anorexigenic 

(appetite inhibiting) factors, which act on feeding centers in the brain to mediate the regulation of 

short-term and long-term dietary intakes (Volkoff et al., 2009a). The  central nervous system (CNS), 

particularly the hypothalamus, has a central role in the regulation of energy homeostasis, but also 

peripheral organs, such as gastrointestinal tract (GI), pancreas, liver and adipose tissue, are involved 

in the regulation of feeding (Valassi et al., 2008). Peripheral hormones, in part released in response 

to the presence of food in the digestive tract, carry information to central feeding centers via the 

vagus nerve or by crossing the blood-brain barrier acting directly through central receptors and are 

integrated with other neuronal signals that reflect an animal’s energy status (Brightman & 

Broadwell, 1976; Holmgren & Olsson, 2009).  

During the late 1980s and the 1990s, many brain neuropeptides related to feeding regulation 

were identified and characterized in mammals and then, some of these hormones or their fish 

homologs were examined to determine their regulatory effects on feeding in fishes (Volkoff et al., 

2005; Gorissen et al., 2006). These peptides displayed similar appetite-regulating effects, showing 

that the regulation of food intake has been conserved along the vertebrate lineage, although 

differences exist: the presence of important anatomical and physiological differences between 

mammals (homeotermic) and fishes (ectothermic) (e.g. brain and gut morphology, caudal secretory 

organ in fishes) indicates that the endocrine control of feeding requires molecules and mechanism 

that may be specific to certain species of groups (Volkoff et al., 2009b).  

Furthermore, fish represent a vast phylogenetic group, that include agnathans (jawless fishes), 

chondrichthyans (cartilaginous fishes), sarcopterygians (lobe-finned fishes), and actinopterygians 

(ray-finned fishes, which are 97% composed of teleosts). Because of this extent it shows a 

noteworthy level of diversity regarding morphology, ecology, behaviour and genomes (Volff, 2004; 

Volkoff et al., 2009a). For example it displays differences in gastrointestinal morphology and gut 

hormone profiles which are related to different feeding habits (Holmgren & Olsson, 2009), and 

furthermore variation of brain distribution of neuropeptides has been demonstrated (Cerdá-Reverter 
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& Canosa, 2009). Fishes also undergo several environmental challenges, that may involve long 

term fasting, trade-off in resource distribution between reproduction and growth (Heino & Kaitala, 

1999) and this, added to indeterminate growth, has led to a number of feeding adaptations that 

suggests that the endocrine control of feeding in fish might also be diverse and involves species-

specific molecules and mechanisms (Volkoff et al., 2009a).  

Feeding might also display species-specific daily or circannual (seasonal) rhythms in fish, and 

can be affected by intrinsic factors (e.g., amount of energy stores and reproductive status) and by 

extrinsic factors (changes in environmental cues or holding conditions).   

1.2 Neuroendocrine regulation of energy homeostasis 

In mammals, stability of body weight and body composition over long periods of time requires 

that energy intake matches energy expenditure, that means that dedicated mechanisms are required 

to avoid changes in body weight, which in mature mammals mainly concerns adipose tissue mass, 

since protein and carbohydrate store slightly vary (Jéquier and Tappy, 1999; Lin et al., 2000). A 

renowned theory, the “Lipostatic model” (Kennedy, 1953), explains the well-regulated control of 

body weight an food intake: hormones produced from fat cells are the key signal to the brain centers 

that control eating behaviour and activity to regulate feeding an body-fat deposition (Inui, 1999; Lin 

et al., 2000). So, when body weight exceeds a certain value, eating behaviour is inhibited and 

energy consumption is increased. 

Leptin is thought to be the lipostatic factor that governs energy balance through a negative-

feedback loop that originates in adipose tissue and acts on hypothalamic centers in the brain. (Inui, 

1999). Leptin is a proteinic hormone encoded by the obese gene (ob) and its effects are feeding 

inhibition, decrease in body weight and increase in thermogenesis and locomotor activity, as 

showed in studies involving rodents (Campfield et al., 1995; Halaas et al., 1995; Pelleymounter et 

al., 1995). Leptin and its receptor system provide an afferent negative feedback signaling system 

reflecting the amount of adipose energy stores to the brain hypothalamic centers (Schwartz and 

Seeley, 1997). A feedback regulatory loop with three distinct steps has been hypothesized, that 

comprise a sensor that monitors the level of energy, hypothalamic centers that receive and integrate 

through specific leptin receptors the intensity of the signal, and effector systems that influence 

energy intake and energy expenditure (Jéquier and Tappy, 1999). Leptin targets in the 

hypothalamus include neuropeptides, such as neuropeptide Y (NPY), agouti-related peptides 

(AGRP), α-melanophore-stimulating hormone (α-MSH), corticotropin-releasing factor (CRF), 

galanin, melanocyte concentrating hormone (MCH), and orexins (Mercer et al., 1996; Cheung et 

al., 1997; Campfield et al., 1998; Håkansson et al., 1998, 1999), that modulate food intake and 
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energy expenditure. Also insulin has a similar effect on hypothalamus in the control of food intake 

(Inui, 1999; Schwarz et al.1992).  

As mentioned before, hypothalamic sites, such as the arcuate nucleus (ARC), the lateral 

hypothalamus (LH), the ventromedial nucleus (VMN), the dorsomedial nucleus (DMN) and the 

paraventricular nucleus (PVN) have always been considered the centers involved in the control of 

feeding behaviour. In particular, the LH and the VMN were thought to be respectively the “feeding 

center” and the “satiety center”, according to the “Dual Center Model” for regulation of feeding 

(Anand and Brobeck, 1951; Lin et al., 2000). Over the years, new studies, which didn’t employ 

only discrete lesions or surgical transections, have permitted to redefine the hypothalamic pathways 

involved in the regulation of feeding and body weight, discovering co-localization and co-

production of more than one signalling molecules in neurons belonging in the same neural area and 

a deep interconnection between neurons belonging to different areas (Lin, 2000).  

In LH, two orexigenic hormones are produced, MCH and orexins (Bittencourt et al., 1992; de 

Lecea et al., 1998; Sakurai et al., 1998), but also anorexigenic molecules are expressed in LH, i.e. 

CART (Cocaine and amphetamine regulated transcript) and CRF, which decrease food intake when 

is centrally administered (Koylu et al., 1997; Kristensen et al., 1998; Kelly and Watts, 1998). Also 

NPY terminals are abundant in the LH, in contact with orexin and MCH cells. (Williams, 2001).  

ARC is situated around the base of the third ventricle and it is indicated as the site which 

integrates circulating metabolic signals, such as adrenal and gonadal steroids, leptin and insulin 

(Kalra, 1999). In ARC neurons both orexigenic (e.g. NPY, opioids, galanin, AGRP) and 

anorexigenic peptides (CART, α-MSH, GABA and glutamate) are produced (Kalra, 1999), which 

extend into various hypothalamic sites, such as VMN, DMN, PVN, preoptic area (POA) and 

perifornical hypothalamus. This communication between hypothalamic pathways and the caudal 

brainstem, responding to meal-related satiety signals, is essential for the long-term regulation of 

energy homeostasis (Hillebrand, 2002). When ARC is reached by adiposity signals, anorexigenic 

peptides are released and thus a catabolic circuit is activated. On the contrary, the activation of 

anabolic pathway leads to the release of orexigenic peptides and this occurs when adiposity signal 

concentrations in the brain are low, thus indicating the urgency to eat  There is an intense 

innervation of both MCH and orexin neurons in the LH by axons containing NPY, AGRP and α-

MSH probably from the ARC (Broberger et al., 1998; Elias et al., 1998). The ARC also has 

extensively reciprocal connections with other hypothalamic regions, including the paraventicular 

nucleus (PVN), dorsomedial hypothalamic nucleus (DMH), ventromedial hypothalamic nucleus 

(VMH).  
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VMN is suggested to be a receptive field that transfers information to DMN-PVN for the 

releasing of orexigenic signal (Kalra, 1999), rather than a productive area.  

DMN is suggested as site for NPY production and for NPY and leptin interaction, it is also 

supposed to be involved in the attenuation or inhibition of feeding by leptin (Yokosuka et at., 1998). 

Along with leptin receptors (Ob-Rb), the DMN contains insulin receptors. Some ARC-NPY/AGRP 

neurones also terminate in the DMN.).  

 PVN is the area responsible for the integration and interpretation of the different peripheral and 

central signals that inform the hypothalamus of surrounding conditions (De Gortari, 2006). PVN 

receives connections from different hypothalamic areas such as the lateral, median preoptic, arcuate 

and dorsomedial nuclei and expresses receptors for orexigenic and anorexic peptide signals, such as 

neuropeptide Y (NPY), agouti related peptide (AGRP), cocaine and amphetamine regulated-

transcript (CART), α-MSH, CRH, orexins (De Gortari, 2006; Kalra et al, 1991, Dube et al.) 

In fish, as in mammals, several brain region are involved in the regulation of food intake. In the 

past, from the 1960s to the early 1980s, studies which used electrical stimulation and lesioning 

showed that also olfactory tracts (Peter, 1979; Demski, 1983), inferior lobes of the hypothalamus 

(Demski & Knigge, 1971; Demski, 1973 and 1977; Savage & Roberts, 1975; Roberts & Savage, 

1978), telencephalon (Grimm, 1960, Demski & Knigge, 1971; Stacey & Kyle, 1983) and optic 

tectum (Peter, 1979) are all substrates involved in feeding regulation. 

In fish, the main neuroendocrine regions producing appetite-regulating hormones are the 

telencephalon, preoptic area and hypothalamus (Cerda Reverter &. Canosa, 2009) but the relative 

distribution of the peptides/mRNAs varies with the hormone considered and the species examined. 

For example, orexin immunoreactive (OX-ir) cells are found in the anterior hypothalamus and 

along the third ventricle within the preoptic area (POA) in zebrafish (Appelbaum et al., 2009) and 

medaka (Amiya et al., 2007), whereas in the Australian lungfish, OX-ir cells are also found in the 

POA, the infundibular hypothalamus and within the telencephalon (Lopez et al., 2009; Hoskins et 

al., 2012). 

There is considerable variation in brain morphology and in the relative size of regions across 

species, which is often related to life history, ecology and behaviour. For example, it has been 

suggested that in cichlid fish, algal scrapers have small optic lobes and large telencephala whereas 

planktivores have enlarged optic lobes (Sylvester et al., 2010). 

As mentioned before, the neuropeptides produced by hypothalamic nuclei and involved in 

feeding intake are divided in two main groups, regarding their action towards feeding: orexigenic, if 

they stimulate feeding intake, and anorexigenic, if they inhibit it. From the early 1990s, several 

feeding-related neuropeptides have been identified in the brain of fish, both by isolation of the 
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peptide or by cloning of their cDNA sequences. Table 1.1 summarizes them and their effects. So far, 

studies on the potential regulatory effects of these neuropeptides on food intake are very limited. 

Generally, these studies indicate that the brain hypothalamic area is involved in the regulation of 

food intake by these neuropeptides, but little work has been carried out on the precise mapping of 

these neuropeptides in relation to their feeding effects (Volkoff et al., 2009a). 

1.2.1 Orexigenic hormones 

1.2.1.1 Neuropeptide Y (NPY) 

NPY is a 36-amino-acid peptide that belongs to the NPY-family peptides, which also includes 

peptide YY (PYY), pancreatic polypeptide (PP, found only in the pancreas of tetrapods), and 

peptide Y  (Hoyle, 1999). The most important characteristic for all NPY-family peptides is that they 

exhibit certain amino acid residues necessary to adopt a specific three-dimensional structure, named 

the pancreatic polypeptide fold (PP-fold) (Blundell et al. 1981).  

NPY was discovered in 1982, when Takemoto isolated it from pig brain homogenates, using a 

chemical assay that permitted identification of amidated peptides. The first member of this family to 

be discovered was the pancreatic polypeptide, but as Larhammar et al. (1993) showed, NPY had 

remained much more conserved throughout evolution than PP, and it seemed to be evolutionarily 

older than PP. Therefore, the family would be more appropriately called the NPY family than PP 

family, as it was at the beginning. (Cerda reverter and Larhammar, 2000). 

In mammals, NPY is considered one of the most potent orexigenic agents (Halford et al 2004; 

Kalra et al 1999) and this action has been demonstrated also in fish, which also produce PYY 

whereas only some teleosts produce PY (Cerdá-Reverter et al., 2000). 

These peptides bind to a family of G-protein-coupled receptors that compose the Y family, 

which has seven cloned members, namely Y1, Y2, Y4, Y5, and Y6 (Larhammar et al., 2001).To 

date, seven NPY receptor subtypes that bind both NPY and PYY have been identified in fishes (Y1, 

Y2, Y4–Y8) (Salaneck et al., 2008). Y1-like receptors have been identified in several fish species 

(Larhammar et al., 2001), whereas Y2-like receptors have only been characterized in zebrafish 

Danio rerio and rainbow trout, Oncochynchus mykiss (Fredriksson et al., 2004). Fish NPY receptors 

are expressed in brain but also in peripheral tissues such as eye and intestine (Fredriksson et al., 

2004; Lundell et al., 1997). 

In mammals, NPY is abundant in the CNS, particularly in the hypothalamic nuclei involved in 

the regulation of feeding, such as arcuate nucleus (ARC) and paraventricular nucleus (PVN) 

(Halford et al. 2004).  
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Central	“Orexigenic”	agents	 Ingestive	effects	

Agouti-related	protein	(AgRP)		
(Cerdá-Reverter	and	Peter,	2003)	

Increases	food	intake	in	fish	(Schjolden	et	al.,	2009),	birds	(Strader	et	al.,	2003),	and	
mammals	(Rossi	et	al.,	1998;	Stark,	1998),	and	food	hoarding	in	hamsters	(Day	and	
Bartness,	2004)	

Galanin		
(Anglade	et	al.,	1994;	Unniappan	et	
al.,	2002;	Wang	and	Conlon,	1994)	

Increases	 food	 intake	 in	 fish	 (De	Pedro	 et	 al.,	 1995a;	 Lin	 et	 al.,	 2000;	Nelson	 and	
Sheridan,	2006;	Volkoff	et	al.,	2005)	and	rats	(Kyrkouli	et	al.,	1990)		

Neuropeptide	Y	(NPY)		
(Blomqvist	et	al.,	1992;		
Cerdá-	Reverter	et	al.,	2000a)	

Increases	food	intake	in	fish	(de	Pedro	et	al.,	2000;	Lopez-Patino	et	al.,	1999),	frogs	
(Crespi	et	al.,	2004),	 snakes	 (Morris	and	Crews,	1990),	birds	 (Strader	and	Buntin,	
2001),	 rats	 (Stanley	 and	 Leibowitz,	 1984)	 and	 food	 hoarding	 in	 hamsters	 (Dailey	
and	Bartness,	2009)	

Orexin	/	Hypocretin		
(Alvarez	and	Sutcliffe,	2002;		
Kaslin	et	al.,	2004)	

Increases	 food	 intake	 in	 fish	 (Lin	 et	 al.,	 2000;	 Volkoff	 et	 al.,	 1999;	 Volkoff	 et	 al.,	
2005),	and	rats	(Sakurai	et	al.,	1998),	but	not	in	birds	(da	Silva	et	al.,	2008)		

Central	“Orexigenic”	agents	 Ingestive	effects	

Cocaine-	and	Amphetamine-	
regulated	transcript	(CART)		
(Volkoff	and	Peter,	2000),	

Decreases	 food	 intake	 in	 fish	 (Volkoff	et	al.,	2005),	birds	 (Tachibana	et	al.,	2003),	 rats	
(Kristensen	et	al.,	1998)		

Cholecystokinin,	CCK	
(Peyon	et	al.,	1998),	

Decreases	 food	 intake	 in	 fish	 (Himick	 and	 Peter,	 1994;	 Volkoff	 et	 al.,	 2005),	 birds	
(Tachibana	et	al.,	2012),	rats	(Gibbs	et	al.,	1973)	and	food	hoarding	in	Siberian	hamsters	
(Bailey	and	Dela-Fera,	1995;	Figlewicz	et	al.,	1989;	Teubner	and	Bartness,	2010)		

Corticotropin-releasing	factor	(CRF)	
	(Ando	et	al.,	1999;	Bernier	et	al.,	
1999;	Okawara	et	al.,	1988)	

Decreases	food	intake	in	fish	(De	Pedro	et	al.,	1993;	Matsuda	et	al.,	2008),	amphibians	
(Crespi	et	al.,	2004),	birds	(Denbow	et	al.,	1999;	Furuse	et	al.,	1997),	rats	(Heinrichs	and	
Richard,	1999;	Levine	et	al.,	1983;	Morley	and	Levine,	1982;	Negri	et	al.,	1985)	and	food	
hoarding	in	rats	(Cabanac	and	Richard,	1995)	reviewed	by	(Carr,	2002)		

Melanin	concentrating	hormone	
(MCH)	(Baker	et	al.,	1995)	

Decreases	food	intake	in	fish	(Shimakura	et	al.,	2008),	but	increases	food	intake	in	rats	
(Presse	et	al.,	1996)	

	 	

Peripheral	Orexigenic	Hormones	 Ingestive	effects	

Grelin	(gut)	
(Unniappan	et	al.,	2002)		
	

Increases	food	intake	in	fish	(goldfish	and	tilapia),	but	decreases	food	intake	in	rainbow	
trout	(Jonsson,	2013;	Jonsson	et	al.,	2010),	decreases	food	intake	in	birds	(Kaiya	et	al.,	
2009),	 increases	 food	 intake	 in	 rats	 and	mice	 (Tschop	et	 al.,	 2000;	Wren	et	 al.,	 2000)	
and	food	hoarding	in	Siberian	hamsters	(Keen-Rhinehart	and	Bartness,	2005).	
	

Peripheral	Anorexigenic	Hormones	 Ingestive	effects	

Leptin (adipocytes,	liver)  
	

Decreases	 body	 weight,	 adiposity,	 and	 food	 intake	 in	 fish	 (Crespi	 and	 Denver,	 2006;	
Murashita	 et	 al.,	 2008),	 and	 mice	 (Campfield	 et	 al.,	 1995;	 Halaas	 et	 al.,	 1995;	
Pelleymounter	 et	 al.,	 1995)	 and	 food	 hoarding	 in	 Syrian	 hamsters	 (Buckley	 and	
Schneider,	2003)	while	increasing	energy	expenditure		
	

	 	

Table 1.1: a partial list of chemical messengers with effects on ingestive behaviour in fish and other vertebrate taxa. 
(Adapted from Schneider et al., 2013) 
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NPY sequences have been determined for several fish species and show strong evolutionary 

conservation among vertebrate species as the goldfish NPY has only five residues different from rat 

NPY (Blomqvist et al., 1992). NPY neurons are widely distributed in fish CNS of dipnoans 

(Trabucchi et al., 2000), elasmobranchs (Chiba, 2000) and teleosts (Cerdá-Reverter et al., 2000a; 

Doyon et al., 2003; Leonard et al., 2001; Peng et al., 1994; Silverstein et al., 1998). The presence of 

NPY in fish was first demonstrated in goldfish (Carassius auratus) by immunological and 

chromatographic studies (Kah et al., 1989). NPY immunoreactive neurons are present in the 

ventromedial-posterior hypothalamus and hypothalamic inferior lobes (Pontet et al., 1989). Further 

studies have shown that NPY mRNA is expressed in ventral telencephalon, POA, olfactory bulbs 

and also in optic tectum, locus coeruleus and other thalamic regions (Peng et al., 1994). A similar 

brain distribution of NPY mRNA has been described in coho salmon (Oncorhyncus 

kisutch )(Silverstein et al., 1998). NPY-immunoreactive fibers have also been identified in fish 

pituitary, pancreas and gastrointestinal tract, and nerve fibers surrounding blood vessels (Cerdá-

Reverter and Larhammar, 2000; Chiba et al., 1996; Danger et al., 1991)  

In Senegalese sole, Solea senegalensis, it has been demonstrated that NPY-like matter is widely 

distributed in the brain, with the highest density found in the forebrain, especially in hypothalamus 

and the ventral telencephalon, whose NPY-containing neurons constitute the major component of 

the NPY- system in the Senegalese sole (Rodriguez-Gomez et al., 2001).  

Several studies have demonstrated that NPY is involved in the regulation of food intake in 

teleosts, as central injections of mammalian or fish NPY cause a dose-dependent increase in food 

intake in goldfish (De Pedro et al., 2000; Lopez-Patino et al., 1999; Narnaware et al., 2000), salmon, 

(Salmo salar) and catfish, (Ictalurus punctatus) (Silverstein and Plisetskaya, 2000). From studies on 

goldfish it emerged that NPY may act centrally through Y1 and Y5 receptors, which act 

independently to stimulate food intake in goldfish, but not throught Y2 (Narnaware and Peter, 

2001b).   

A further demonstration that NPY is involved in feeding is the fact that brain NPY mRNA levels 

increase following fasting in goldfish (Narnaware and Peter, 2001), winter skate, Raja ocellata 

(MacDonald and Volkoff, 2009), and chinook and coho salmon (Silverstein et al., 1999a) and 

undergo periprandial variations in goldfish. An increase in NPY mRNA levels in the 

telencephalon–preoptic area and hypothalamus shortly before feeding was observed, followed by a 

decrease in brain NPY mRNA levels after feeding (Narnaware and Peter, 2001a). Similar variations 

were observed also in Atlantic cod, Gadus morhua (Kehoe and Volkoff, 2007) and tilapia, 

(Oreochromis mossambicus) (Peddu et al., 2009). Besides in goldfish, NPY gene expression in 
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brain seems to be influenced by macronutrient intake (Narnaware and Peter, 2002) and by the 

peripheral metabolic status (Lin et al. 2000).  

In fishes as in mammals, the actions of NPY on feeding occur in part by the modulation of other 

appetite regulators, e.g., corticotrophin-releasing factor (CRF) and cortisol (Bernier et al., 2004), 

cocaine- and amphetamine-regulated transcript (CART) (Volkoff and Peter, 2000), leptin (Volkoff 

et al., 2003), melanin-concentrating hormone (MCH) (Matsuda et al., 2008, orexins (OXs) and 

galanin (GAL) (Volkoff and Peter, 2001), growth hormone (GH) (Mazumdar et al., 2006) and 

ghrelin (Miura et al., 2006), and, in goldfish by estradiol a and testosterone (Peng et al., 1994). 

1.2.1.2 Agouti-related Protein (AgRP) 

Agrp1 and Agrp2 belong to the agouti family peptides, which also include the agouti signaling 

proteins (ASIP) and have potent and diverse functional roles in feeding, pigmentation and 

background adaptation mechanisms (Västermark et al., 2012).  

In mammals, AgRP is one of the most potent orexigenic peptides and is co-expressed together 

with NPY in the ARC. It functions by increasing appetite and decreasing metabolism and energy 

expenditure (Hagan et al., 2000; Sainsbury and Zhang, 2010).  

AgRP has been also identified in fish (Cerdá- Reverter and Peter, 2003; Klovins and Schiöth, 

2005; Kurokawa et al., 2006; Song et al., 2003b; Stütz et al., 2005). Phylogenetic analyses of the 

deduced proteins showed that tetrapods have two agouti family members, i.e. ASIP and AgRP, 

while some teleosts have four: ASIP1, ASIP2, AgRP1, and AgRP2 (Braasch and Postlethwait, 

2011).  

All the agouti family peptides are characterized by a C-terminal polycysteine domain (Klovins 

and Schiöth, 2005). Orthologs of ASIP, AgRP, melanocortin receptors MC1R and MC4R have 

been identified in mammalian, teleost fish and avian genomes, but not in invertebrate genomes. 

This may suggest that the agouti-melanocortin system evolved by gene duplication in the last 500 

million years.  

Studies on rats showed that stimulate hyperphagia when administered intracerebroventricularly, 

furthermore, it displays long-lasting effects on food intake, with animals displaying hyperphagia 

even 7 days following a single intracerebroventricular (i.c.v.) injection (Hagan et al., 2000a).  

The orexigenic function of AgRP is primarily performed through the antagonism of central 

melanocortin receptors (MCRs), specifically of melanocortin receptor 3 (MC3R) and melanocortin 

receptor 4 (MC4R), which are directly related to metabolism and body weight control (Oyama et al., 

2010; Ollmann et al., 1997; Robinson et al., 2000). Studies on the sea bass, Dicentrarchus labrax, 

revealed that AgRP antagonizes also the effect of the MC1R receptor in vitro (Sánchez et al., 2010). 
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However, the exact mechanism by which AgRP inhibits melanocortin-receptor signalling is not 

completely clear.  

An mRNA encoding AgRP has been identified in goldfish (Cerdá-Reverter and Peter, 2003), 

zebrafish (Song et al., 2003), and pufferfish (Klovins et al., 2004; Kurokawa et al., 2006). The 

goldfish AgRP gene encodes a 128 amino acid precursor and is expressed in a variety of tissues 

including brain and peripheral tissues. Moreover, AgRP expression was identified only in 

hypothalamus of goldfish, while in Takifugu rubripes  was detected throughout a wide region of 

brain in  which suggests a species-specific expression of AgRP (Cerdá-Reverter and Peter, 2003; 

Ollman et al., 1997; Wei et al. 2013). 

Several studies have revealed the involvement of AgRP in the control of food intake in fish: 

transgenic zebrafish overexpressing AgRP exhibited obesity, increased linear growth, and adipocyte 

hypertrophy, strongly suggesting that AgRP plays an important role in feeding control in teleost 

fish (Wan et al., 2012). Furthermore, AgRP levels are upregulated by fasting in different species of 

vertebrates, such as sheep (Adam et al., 2002), Japanese quail (Boswell et al., 2002), goldfish 

(Cerdá-Reverter and Peter, 2003) and zebrafish (Song et al., 2003), underlining a conserved role for 

AgRP in energy homeostasis. In goldfish, brain AgRP mRNA increases after 3 days of fasting, and 

it may exert its effect through MCRs (Cerdá-Reverter and Peter, 2003; Cerdá-Reverter et al., 2003). 

Fasting up-regulated hypothalamus AgRP mRNA levels in Danio rerio (Song et al., 2003. In 

Cyprinus carpio, fasting induces an initial reduction of expression and after the initiation of re-

feeding, there was a significant induction of AgRP mRNA expression (Wan et al., 2012) All 

together, the identification of AgRP in several teleosts and the effect of fasting on AgRP expression 

in goldfish, suggest that it plays a part in appetite regulation, possibly through MCRs. 

1.3 Influence of intrinsic factors on feeding behaviour 

1.3.1 Metabolic signals, energy reserve and feeding status 

Feeding behaviour and the expression of appetite-related peptides have been shown to be 

influenced by circulating metabolite levels, the ingestion of food and food deprivation (Volkoff et 

al., 2010). 

Variations in circulating metabolite levels alter food intake in fish. A decrease in food intake has 

been observed in trout fed with high-carbohydrate enriched diets (Banos et al., 1998) and in carp 

injected intraperitoneally with essential amino acids (Kuz’mina, 2005). Also, protein and lipids can 

modify feeding in fish. Intraperitoneal administration of amino acids decreases food intake in carp 

(Kuz’mina, 2005) and also a lipostatic control of food intake has been suggested after noticing that, 
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in chinook salmon and channel catfish, fat fish eat less than thin fish (Shearer et al., 1997; 

Silverstein and Plisetskaya, 2000). 

Gene expression of appetite regulators can be altered by meal consumption. Usually, the 

expression levels of orexigenic factors (NPY and Orexin) increase before or during a meal 

(Narnaware and Peter, 2001; Xu and Volkoff, 2007) while the expression levels of anorexigenic 

factors (CCK and CART) decrease after feeding (Peyon et al., 1999; Volkoff and Peter, 2001). 

Fasting generally induces an up-regulation of the expression of orexigenic factors, such as brain 

NPY, orexins and stomach ghrelin (Narnaware and Peter, 2001; Silverstein et al., 1999; Novak et 

al., 2005; Xu and Volkoff, 2007; Amole and Unniappan, 2008; Terova et al., 2008) and a down-

regulation of the expression of anorexigenic hormones, such as brain CART and gut CCK (Kehoe 

and Volkoff, 2007; Kobayashi et al., 2008; Volkoff and Peter, 2001; MacDonald and Volkoff, 2009; 

Murashita et al., 2006). However, contradictory results have been reported. Fasting increases NPY 

mRNA expression after 3 days in goldfish hypothalamus (Narnaware et al., 2000), after 2 and 4 

weeks in winter flounder hypothalamus (MacDonald and Volkoff, 2009), after 2-3 weeks in 

Chinook and coho salmon hypothalamus (Silverstein et al., 1999) and after 2 weeks in Brazilian 

flounder whole brain (Campos et al., 2010), whereas one-week fasting does not affect NPY mRNA 

expression in either cod forebrain (Kehoe and Volkoff, 2007) or tilapia whole brain (Riley et al., 

2008). The duration of food deprivation might influence the results since, for example, in goldfish a 

fast of 10 days, but not of 3, decreases the hypothalamic mRNA expression of CART1 (Abbott and 

Volkoff, 2011). Besides, variations could be due to species-specific differences in response to 

fasting, as fishes might have different sets or patterns of appetite-related peptides and might respond 

differently to nutritional challenges or might be due to different expression analysis in different 

parts of the brain, as different regions of the brain might respond differently to fasting. For example, 

although both hypothalamus and telencephalon are brain regions that have been implicated in the 

regulation of feeding in fish, in skate (Raja ocellata), a 2-week fasting period increases NPY 

mRNA expression in the telencephalon but not in the hypothalamus (MacDonald and Volkoff, 

2009). Moreover, different experimental conditions might influence the results (Hoskins & Volkoff, 

2012). 

Fish can also adapt their food intake to their energy needs and have been reported to respond 

with increased food intake when they are fed with low energy diets (Boujard and Medale, 1994; 

Geurden et al., 2006; Paspatis and Boujard, 1996; Yamamoto et al., 2000). The fact that brain NPY 

expression levels are influenced by macro-nutrient intake in goldfish suggests that these dietary 

adjustments in feeding might be mediated by variations in appetite-related hormones (Narnaware 

and Peter, 2002). 
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1.3.2 Ontogeny 

Appetite-regulating factors might play a role in embryogenesis (pre-hatch) as well as nutrient 

absorption/acquisition (pre- and post-hatch) in fish larvae, as they appear early in development. A 

later appearance of appetite-regulating factors, especially when associated with metamorphic events 

or mixed feeding phases (e.g., beginning of exogenous feeding), may reflect ontogenic shifts in 

feeding. Gastro instestinal  CCK immunoreactivity has been detected upon first hatch in herring, 

Clupea harengus (Kamisaka et al., 2005), and ghrelin has been detected 48h post fertilization in 

zebrafish (Pauls et al., 2007). A number of other signals involved in the regulation of feeding in 

fishes appear to be present prior to hatching, such as somatostatin (Xing et al., 2005; Xu and 

Volkoff, 2008), NPY (Volkoff et al., 2009), OX (Xu and Volkoff, 2007), α-MSH and AgRP 

(Forlano and Cone, 2007).   

1.3.3 Gender and reproductive status 

In fish, there is a close relationship between feeding, gender and reproductive parameters. 

Gender-specific differences in feeding behaviour have been noticed. During the spawning season, 

territorial male cunners (Tautogolabrus adspersus) feed less often and have different diets than 

females (Green et al., 1984). Sexual dimorphism in growth rates and size at maturity is common in 

fish and could be due in part to differences in feeding activity between sexes (Davis et al., 2008; 

Rennie et al., 2008; Shearer et al., 2006; Toguyeni et al., 1997). Differences in levels of appetite 

regulating hormones have also been noted in a few species. For example, in tilapia, gastric ghrelin 

mRNA levels are higher in females compared to males (Parhar et al., 2003), and in salmon the 

number of ghrelin cells per unit area in the stomach is higher in females than in males (Sakata et al., 

2004). These observations would suggest that gender, or more specifically sex steroids, might 

influence feeding. It seems likely that these influences would be more pronounced when fish are 

either breeding or preparing to breed (e.g., migrating) as a decline in feeding is often seen during 

spawning migrations or other reproductive behaviors (e.g. courtship, spawning, guarding, 

territoriality) (van Ginneken and Maes, 2005). This happens in both Atlantic cod (Fordham and 

Trippel, 1999) and winter flounder (MacDonald and Volkoff, 2009), as feeding is suppressed in 

both sexes during the spawning period and it increases after spawning. Also European eels (van 

Ginneken et al., 2005), Atlantic salmon (Miller et al., 2005) eat very little during spawning and 

spawning migration, and male domino damselfish reduce time spent feeding during courtship and 

nest guarding (Mann et al., 2007). 

Gonadal development also influences nutrient utilization. In Atlantic cod, the investment of 

energy in gonad maturation results in reduced whole body dry matter and protein levels (Hemre et 
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al., 2002.) Seasonal changes correlated to gonadal cycles have been shown for NPY in ayu (Chiba 

et al., 1996) and catfish (Mazumdar et al., 2007) and CCK (MacDonald and Volkoff, 2009), 

suggesting that appetite-related hormones mediate in part these seasonal changes. 

However, the exact roles of sex steroids on food intake are unclear as sex steroid treatment 

decreases food intake in some species, as seabass and eurasiatic perch (Leal et al., 2009; Mandiki et 

al., 2005), but increases feeding in others, as red sea bream (Woo et al., 1993). In goldfish, 

intracerebroventricular treatment with gonadotrophin-releasing hormone (GnRH) induces a 

decrease in food intake (Hoskins et al., 2008; Matsuda et al., 2008), which is in part due to down-

regulation of brain OX mRNA expression (Hoskins et al., 2008). Conversely, 

intracerebroventricular OX-A injections induce a decrease in spawning behaviour and a decrease in 

GnRH mRNA expression levels in the brain (Hoskins et al., 2008). Also testosterone is thought to 

have an anorexigenic role, as testosterone treatment decreases food intake in male perch (Mandiki 

et al., 2005) and elevates MCH mRNA expression in the hypothalamus of both male and female 

goldfish (Cerdà-Reverter et al., 2006). Besides, castration reduces the density of NPY-

immunoreactive fibers in the forebrain of tilapia (Sakharkar et al., 2005). 

1.3.4 Genetic influence 

In captive fish, food intake has shown genetic-based variations, such as in rainbow trout, in 

which different strains display variations in feeding activities and growth (Mambrini et al., 2004), 

feeding patterns (Boujard et al., 2007), nutrient utilization (Quillet et al., 2007) and body 

composition (Kause et al., 2002).  

These variations have been found also in cod (Case et al., 2006) and Atlantic salmon (Glover et 

al., 2009) regarding variations in feeding activities and growth, while in striped bass (Wang et al., 

2007) differences in body composition have been observed. However, since domestication selection 

has been achieved mostly empirically, very little is known about the genetic variations related to 

endocrine factors in these selected animals. Within the context of aquaculture, a better knowledge 

of these variations might lead to genetic improvement by selection for specific traits, such as better 

food efficiency and faster growth.  
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1.4 Influence of extrinsic factors on feeding behaviour 

In fish, variations in several extrinsic factors have been shown to induce changes in swimming 

activity, feeding rhythms and growth (Boujard, 2001). Temperature and photoperiod are probably 

the major abiotic factors affecting feeding.  

1.4.1 Temperature, salinity, hypoxia, pollutant and health status 

Fish tend to increase both their food consumption and growth rates with rising temperatures 

within a “tolerable” range (Bendiksen et al., 2002; Kehoe and Volkoff, 2008;) and the optimal 

temperatures for growth usually decrease with fish size (Bjornsson et al., 2001). It has been noticed 

that they tend to decrease their food intake when placed in extreme temperatures (Volkoff et al. 

2009). Little is known about the endocrine mechanisms regulating these temperature-induced 

changes in feeding. In Atlantic cod, brain NPY mRNA expression does not seem to be affected by 

temperature, but brain CART mRNA expression levels are higher in fish held at 2° C than in fish 

held at either 11° C or 15° C. This suggests that CART, but not NPY, may contribute to 

temperature-induced changes in appetite in this species (Kehoe and Volkoff, 2008).  

Also salinity affects feeding in several fish species (De Boeck et al., 2000) but little is known 

about the appetite-regulating factors that may be involved. It is presumed that the somatotropic axis 

might play a role in salinity-related alteration on feeding, since it is a regulator of growth and salt 

water tolerance in salmonids (Boeuf and Payan, 2001). In conditions of acute osmoregulatory 

disturbance, fishes often momentarily reduce food intake, which has been shown to be concomitant 

with increases in brain corticotropin-releasing factor (CRF) in trout (Craig et al., 2005).  

Hypoxia has distinct appetite suppressive effects (Buentello et al., 2000; Ripley and Foran, 2007). 

In rainbow trout, exposure to low oxygen levels increases forebrain CRF as well as plasma cortisol, 

suggesting that CRF-related peptides play a physiological role in mediating at least a portion of the 

reduction in food intake (Bernier and Craig, 2005).  

Contaminants and disease agents also have impact on feeding but the responses vary depending 

on the species considered as well as on the agent and the method of exposure. For example, rainbow 

trout exposed to elevated waterborne concentrations of metals eats less (Todd et al., 2007), on the 

contrary coho salmon displays increased feeding rates, if fed with a high zinc diet (Bowen et al., 

2006). 
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1.4.2 Photoperiod, seasonal and circadian rhythms 

Photoperiod can affect feeding activity (Imsland et al.,2007; Noble et al., 2005; Sunuma et al., 

2007; Tucker et al., 2006) as well as the expression of appetite-regulating hormones. In fish, natural 

daily feeding rhythms vary among species: some species are diurnal feeders, e.g. Atlantic salmon 

(Paspatis and Boujard, 1996), whereas others are nocturnal feeders, e.g. catfish (Boujard, 1995). In 

addition, many fish species have been shown to display preferred times of feeding throughout the 

day or night and it’s been demonstrated that alteration of normal daily feeding rhythms can induce 

poor performance and eventually diseases and death (Lopez-Olmeda et al., 2011) 

Natural behavioural rhythms are often classified by their period, which is the interval needed to 

complete one cycle. Different rhythms have been studied in fish: tidal and lunar rhythms, circannual 

or seasonal rhythms (Bolliet et al., 2007; Boujard and Leatherland, 1992; Lall and Tibbetts, 2009).  

One of the most evident expressions of adaptation to the environment, and a major characteristic 

of living organisms, are the Circadian rhythms. As the etymology of the name stresses (from the 

Latin circa, meaning "around" and dies, "day", meaning "approximately a day”, name created by 

Halberg) these rhythms develop on periods close to 24 h (Menaker et al., 1997) and persist in 

constant conditions. The circadian rhythm can be divided into routine cycles during the 24-hour day: 

diurnal, which describes organisms active during daytime; nocturnal, which describes organisms 

active at nighttime; crepuscular, which describes animals primarily active during the dawn and dusk 

hours. 

Besides, rhythms that last longer than a day day (>28-hour) are defined infradian rhythms 

(annual migration or reproductive rhythms found in certain animals or the human menstrual cycle), 

while shorter ones, that last less than 20 hours, are called ultradian rhythms (the 90-minute REM 

cycle, or the 3-hour cycle of growth hormone production (Butler et al., 2005). 

External stimuli are able to entrain circadian rhythms, in particular photoperiod: the 24 hours 

light-dark cycle is the most consistent environmental signal, because of its stability in period and 

phase. In fact most of the circadian rhythms of species studied until now are are synchronized in a 

daily manner by this cue. However, periodical fluctuations exhibited by biochemical, physiological 

and behavioural parameters and rhythms persist in constant conditions, thus demonstrating that they 

arise within organism itself and are not imposed by the environment (Kulczykowska et al., 2010) 

The endocrine mechanisms regulating these rhythms are poorly known. Little is known about the 

fluctuations in circadian-related proteins or appetite-regulating peptides in fish. 
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1.4.2.1 Properties and parameters of biological rhythms 

Circadian rhythms are present in all eukaryotic and some prokaryotic organisms and their wide 

diffusion show evolutionary conservation. Circadian rhythms are temperature-compensated, 

genetically determined and thus generated by a self-sustained endogenous pacemaker. 

In vertebrates, a circadian timing system generates and regulates circadian rhythms; it consists in 

pacemakers and oscillators, entrainment pathways and pacemaker outputs connected to effector 

systems that express evident rhythms under circadian control (Guido et al., 2002).  

Circadian rhythms “free-run”, displaying a period of approximately 24 hours, when organisms 

are in constant conditions and without environmental cues. The periods of the endogenous rhythms 

actually differ from those in nature, but thanks to exogenous synchronizing cues, commonly called 

zeitgeber (“timegiver” in German), biological rhythms are adjusted in such a way that organisms 

remain synchronised with their environment (Kulczykowska et al., 2010), as zeitgebers help to reset 

the biological clock to a 24-hour day.  

Circadian rhythms can be graphically represented in cronograms, where a sine wave can be fitted 

(Figure 1.1. Diagram of an oscillatory proess characterized by its 4 parameters.). Within each cycle, 

the phase is a particular value of the rhythm in the cycle and the time period at which the cycle 

peaks is called the acrophase. When the process is less active, the cycle is in its bathyphase or 

trough phase. The highest value of the rhythmic biological variable is the peak or maximum and the 

lowest value is the nadir. The difference between the peak and the mean value of a wave is 

measured by the amplitude and the period of the rhythm is the time between two points in the same 

phase (close to 24 h in the case of circadian rhythms). 

 
 

 

 

 

 

Figure 1.1. Diagram of an oscillatory proess characterized by its 4 parameters. 
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1.4.2.2 Circadian system: structure and molecular base   

All circadian systems are composed of three basic elements: 

• an oscillator or clock that generates and sustains the endogenous rhythmic oscillations,  

• an input that allows the synchronization of the oscillator,  

• and an output by which the pacemaker regulates many physiological and behavioural 

processes (Guido et al., 2002).  

In vertebrates, three neural structures have been reported as oscillators or clocks: the retina, the 

pineal complex and the mammalian suprachiasmatic nucleus (SCN) of the hypothalamus or its 

analogous areas in other groups (Menaker et al., 2997). Nevertheless, independent or semi-

independent, light-entrainable circadian clocks appear to exist at all levels of organization from 

cells, through tissues to organs.  

Usually in animals, a master or central clock is present and it is located in the brain. Clocks 

located in other parts of the body are defined peripheral oscillators, in order to distinguish them 

from the central clock.  

In mammals, entrainment of circadian rhythms depends upon photic information provided 

exclusively by the lateral eyes through the retina (Bertolucci et al., 2004). This photic information 

reaches the central oscillator localized in the suprachiasmatic nucleus (SCN) via the 

retinohypothalamic tract, synchronizing SCN daily rhythmic neuronal activity (Doyle et al., 2007; 

Maywood et al., 2007). In turn, signals from the SCN regulate the activity of many other targets, 

including melatonin synthesis in the pineal gland (Korf et al., 2003), which is considered to be a 

peripheral oscillator (Vatine et al., 2011). In this system, oscillation signals produced by the SCN 

are relayed to the pineal gland via the multisynaptic efferent pathway (Falcon, 1999; Takahashi, 

1994).  

In non-mammalian vertebrates, the pineal complex contains all elements required for photic 

entrainment and circadian rhythm generation, as it is photoreceptive and contains an intrinsic 

circadian oscillator (Korf et al., 1998; Falcon et al., 2003). Fish pineal cells are classical 

photoreceptor cells with structural and functional similarities to retinal photoreceptors. Pineal and 

retinal photoreceptor cells share a similar set of genes, or, in certain cases, paralogues (Falcon et al., 

2003). In fish the pineal gland is considered to serve as central pacemaker, as transduce 

environmental light information into a neural and a neuroendocrine signal. It contains an intrinsic 

circadian clock that drives rhythmic synthesis of the hormone Melatonin, an indoleamine with well-

known effect on internal biological rhythms, whose levels are high at night and low during the day 

as a result of regulated transcription and stability of serotonin-N-acetyl-transferase (AANAT). 
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Activity of this enzyme is dictated by the circadian clock and also shows a rapid suppression in 

response to illumination during the night (Ziv et al., 2007; Applebaum et al., 2006). 

Internal biological clocks allow organisms to adapt their behavioural and physiological functions 

to daily and seasonal variation of environmental factors (Pevét, 2001). The basic clock mechanism 

is a feedback loop in which oscillating products of specific clock genes regulate their own 

expression. Each complete turn of the loop takes about 24 hours to accomplish, resulting in 

circadian oscillations of RNA and protein levels (Nanako et al., 2012).  

In vertebrates this regulatory loop consists of positive elements (clock and bmal) that drive the 

expression of negative elements (period or per and cryptochrome or cry) that, in turn, feedback to 

down-regulate their own expression and allow the start of a new cycle of the feedback loop. 

Furthermore, the existence of an additional feedback loop that directs the rhythmic expression of 

bmal tends to confer robustness and stability on the core loop (Emery et al., 2004).  

In fish, this clock machinery has been studied in goldfish (Carassius auratus), rainbow trout 

(Oncorhynchus mykiss), Atlantic salmon (Salmo salar), European sea bass (Dicentrarchus labrax), 

medaka (Oryzias latipes), the gilthead sea bream (Sparus aurata), the Senegalese sole (Solea 

senegalensis) and some reef fishes (Siganus guttatus and Halichoeres trimaculatus) (Davie et al., 

2009, 2011; Del Pozo et al., 2012; Hur et al., 2012; Martín-Robles et al., 2011, 2012b; Park et al., 

2007; Patiño et al., 2011; Sánchez et al., 2010; Velarde et al., 2009; Vera et al., 2013). Such studies 

has allowed identifying genes involved in many aspects of the circadian clock system, but much 

more work is needed in order to understand all aspects of temporal organization within each 

organism. 

1.4.2.3 Light entrainment and food entrainment 

Although light is the most noticeable zeitgeber, several non-photic stimuli, such as food, have 

been also shown to entrain circadian rhythms. Indeed, feeding time can act not only on the SCN and 

peripheral tissues, but also on an oscillator, called Food-Entrainable Oscillator (FEO), which is 

independent from the Light-Entrainable Oscillator (LEO) (Meijer and Rietveld, 1989) but not well-

defined yet, as its  anatomical location is still unknown (Stephan et al., 1979; Stephan, 2002; 

Davidson, 2006). In fish, datas on properties of feeding entrainment support the hypothesis of the 

existence of a FEO, even if it is still uncertain whether fish FEO and LEO are independent 

(Sánchez-Vázquez et al., 1997; Aranda et al., 2001). On the contrary in mammals studies suggested 

the independence of FEO from LEO (Stephan, 2002): lesions on SCN didn’t abolish feeding 

rhythms such as FAA (Food Anticipatory Activity), which is a phenomenon that displays an 

increase of activity in anticipation of an imminent meal, which is  maintained for at least 30 minutes 
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(Mistlberger, 1994) and it’s clearly connected with FEO. One of the main characteristics of FAA is 

its gradual development, with several feeding cycles being required for its significance appearance. 

Moreover, after a shift of the feeding time, the time that fish require to resynchronize their FAA is 

directly related to the quantity of hours that the mealtime has been shifted. Locomotor activity, that 

includes behavioural and physiological variables such as feeding, reproduction and territoriality, 

exhibits daily rhythms that can be entrained by a feeding cycle. These behavioural patterns in many 

species have been fixed genetically due to the pressure generated by stable selective forces such as 

avoidance of predators, the availability of preys or the optimization of food (Daan, 1981) and ) and 

it is often conditioned by the existence of special sensory requirements such as the dependence on 

the vision for the capture of preys (Madrid et al., 2001).  Anticipation of time meals has been 

reported for a wide variety of animals, from bees to higher vertebrates such as monkeys (Stephan, 

2002) and it brings several advantages. For instance, when food availability is predictable, the 

animal can use this information to anticipate it and maximize food intake and nutrient utilization 

(Sánchez-Vázquez and Madrid, 2001).  

In mammals behavioural/physiological parameters appeared to be controlled by the FEO, such as 

rinking behaviour can be synchronized to the periodic food access, increasing a few hours before 

mealtime or being maintained during food deprivation (Boulos et al. 1980; Clarke et al. 1986). 

Furthermore, along with an increase of locomotor activity, a rise of body temperature can also be 

measured prior to feeding time, which can be viewed as an adaptive mechanism that prepares an 

organism to ingest food efficiently  

1.5 The Senegalese sole: biology and development 

The Senegalese sole (Solea senegalensis, Kaup, 1858) is a marine teleost fish belonging to the 

Class Actinopterygii, Order Pleuronectiformes, Family Soleidae (Figure 1.2 

Figure 1.2: Solea senegalensis, Kaup 1858. (fishbase.org) 
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The Soleidae family, which consists of 22 genera and 89 species inhabiting brackish, marine and 

fresh waters, is characterized by flat bodies and unusual asymmetrical external appearance.  

The larval fish display a perfect symmetry, which is lost through a metamorphosis that takes 

place from a few weeks/months after hatching. This determines the migration of the left eye, that 

will take place on the right side of the skull/head, near the the other eye.  

Thus the adult fish is characterized by an oval-shaped and flattened body, strongly compressed, 

with an ocular side which is slightly rounded and pigmented and a blind side which is white and 

totally flat, facing the bottom.   

As benthic fishes, they normally lie down in the bottom/seafloor, usually covered by sand or 

mud, and they mimic their background by assuming a similar coloration. Their habit of burrowing 

in the sand represents an innate instinct of soles to avoid a possible aggression and it is kept also in 

individuals held in captivity. Soles can protrude the small eyes above the surface of the body, in 

such a way that the animal can see even if buried in the substrate.  
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The Senegalese sole inhabits mobile sand or muddy bottoms, around 100 m of depth, mainly in 

coastal areas, but they can also be found in salt or brackish lagoons connected to the sea, rivers and 

estuaries. They are located in subtropical climates, between 14°N-47°N and 1°W-19°W. The coasts 

of Senegal are the southern boundary in the Atlantic, the Canarian Islands represent the western 

limit and the shores of Brittany constitute the limit in the north. Its geographical distribution in the 

Mediterranean is fairly broad, covering the south and east of the Iberian Peninsula, the north of 

Africa and Middle East until the coast of Turkey (Errore. L'origine riferimento non è stata 

trovata.). 

Sole is an euryhaline and eurythermal species, adapting perfectly to changes in temperature and 

salinity (Rueda-Jasso et al., 2004). Sole can tolerate low levels of dissolved oxygen and grow 

optimally in under saturated environments (Salas-Leiton et al., 2008). Senegalese sole is a predator 

principally of benthic invertebrates and it feeds preferentially polychaetes (i. e. Hediste diversicolor, 

Capitella capitata), crustaceans (orders Tanaidacea, Amphipoda and Decapoda) and bivalve 

molluscs (i. e. Scrobularia plana). 

From a reproductive point of view, the Senegalese sole is a gonochoric species with separate sex 

and without apparent sexual dimorphism. The first sexual maturity is reached between the second 

and third year of life in males (first spermiation), and between the second and fourth year of life in  

females (first oviposition), when the size reaches 30 cm (Dinis et al., 1999). They have an 

asynchronic ovarian development, showing oocytes in different stages of development (García-

López et al., 2006, 2007). The Senegalese sole has an extended breeding season, which generally 

Figure 1.3: Computer generated distribution maps for Solea senegalensis (Senegalese sole), with modelled year 2100 
native range map based on IPCC A2 emissions scenario. www.aquamaps.org. Note: Distribution range colors indicate 
degree of suitability of habitat which can be interpreted as probabilities of occurrence. 
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occurs in spring and autumn, with peaks in May and, to a lesser extent in October (Anguis and 

Cañavate., 2005; Oliveira et al., 2009). Spawning has an endogenous rhythmicity that synchronizes 

with dusk periods. It starts after dusk and it peaks about 4 hours later. It also shows synchronization 

with lunar phases, peaking at the new moon (Oliveira et al., 2009b). Spawning takes place between 

13°C and 23°C, with higher fecundities between 15°C and 21°C (Anguís & Cañavate, 2005). 

Nocturnal habits are shown not only for spawning (Oliveira et al., 2009a), but also for locomotor 

activity (Bayarri et al., 2004), feeding (Boluda Navarro et al., 2009) and Solea senegalensis 

displayed even a higher metabolic rate during the dark phase (Castanheira et al., 2011). Senegalese 

sole exhibites clearly nocturnal self-feeding patterns under laboratory and farming conditions, with 

77% to 85% of feed demands occurring at night. Therefore, feeding during the photophase could be 

incompatible with the natural feeding rhythm of sole (Boluda Navarro et al., 2009). Nutritional 

requirements for sole larvae are still poorly known, and big efforts are being made to maximize 

survival and growth. Some experiments demonstrated the ability of sole to self- feed successfully 

and showed an accurate compensatory feeding behaviour by modifying their feeding activity 

accordingly to the reward level. (Boluda Navarro et al., 2009). 

1.5.1 Interest in acquaculture 

The Senegalese sole (Solea senegalensis) is a flatfish of high commercial importance that is almost 

indistinguishable by consumers from common sole (Solea solea, Linnaeus, 1758).  

Southern Europe countries have been more focused in Solea senegalensis aquaculture due to the 

lower spawning temperature requirements of Solea solea (Howell, 1997), and the high abundance 

of Solea senegalensis in Mediterranean and Southern Atlantic waters (Dinis et al., 1999), which 

makes of Solea senegalensis the only sole species reared in Spain or Portugal nowadays  

Ongrowing of sole is carried out under two major strategies: a traditional one and a more 

intensive one. Traditionally in Spain and in southern Portugal, soles were reared in earthen ponds in 

old salt marshes or other deltaic or estuarine environments. Fingerlings were either passively 

captured in these ponds. Feeding consisted in the occurrence of natural prey in the bottom of the 

ponds, with few or null effort from the aquaculturists, or supplementing or replacing these feed 

items with inert feed, hence taking a semi- intensive approach. On the other hand, the intensive 

approach is nowadays the leading trend although salt marshes are still used for semi-intensive and 

intensive sole aquaculture. Soles are stocked in fiberglass or concrete tanks, often in shallow 

raceways (Imsland et al., 2003), for the whole production cycle, and they are fed inert feeds in 

highly controlled environments.  
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Although interest in farming Senegalese sole intensively in southern Europe dates back to the 

early 1980s, it has failed to reach successful commercial development (Flos et al., 2001; Imsland et 

al., 2003; FAO Fisheries and Aquaculture Information and Statistics Service, 2011), mainly because 

of juvenile scarcity for stocking purposes, caused by the  lack of full control over spawning, poor 

fry quality and high mortality rates during the weaning stage (Cañavate & Fernández-Díaz, 1999; 

Anguís & Cañavate, 2005). Furthermore a high incidence of skeletal malformations and 

pigmentation abnormalities in post-larvae and juveniles (Gavaia et al., 2002; Soares et al., 2002; 

Villalta et al., 2005a) is exhibited, along with disease outbursts affecting all ontogenetic stages 

caused by multiple pathogenic agents (Zorrilla et al., 2003).  

Reproduction of Senegalese sole is one of the main difficulties that its domestication is still 

facing nowadays. There are several problems to obtain fertile spawning from second generation 

individuals, and this is a huge drawback, as broodstocks have to be collected from the wild as they 

loose reproductive performance or die (Cabrita et al., 2006; Guzmán et al., 2008, 2009a, 2011; 

Oliveira et al., 2011). Many approaches have been taken to investigate this problem. It has been 

seen that F1 females show normal vitelogenin steroid profiles and spontaneous spawning (Guzmán 

et al., 2008), with egg quality parameters within normal ranges (Guzmán et al., 2009a) but normally 

these eggs show no fertilization in the communal reproduction tanks.  

Good broodstock management practices are required so to maintain genetic variation within 

farmed strains at comparable levels to those of wild source populations, e.g. the use of adequate 

numbers of effective parents, broodstock from different locations, or even more local ones if 

significant differences are present in the wild (Exadactylos et al., 2007). There are only a few 

studies focusing on assessing the optimal ongrowing photoperiod for sole, although it has been 

observed that sole is strongly influenced by it, as it shows a evident nocturnal activity pattern, with 

locomotor activity peaking in the first part of the dark period, and progressively decreasing during 

the night. Recent studies show that keeping a constant photoperiod after winter solstice deters the 

increase in melatonin production, characteristic of shorter days and longer nights, and also increases 

the production of steroid hormones and vitellogenin in the prespawning phase, also advancing 

spawning (Oliveira et al., 2011). These findings point out to the possible practicability of 

advancing/controlling spawning season of Senegalese sole in fish farms. A crucial step in the 

rearing of an aquaculture species is the ability to control maturation and, ultimately, spawning. 

Spawning of Senegalese sole females have been successfully induced through hormonal 

manipulation, although results have not been conclusive in suggesting a dosage, administration 

method or administration timing. The steroid of choice is an analogue of the gonadotropin-releasing 
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hormone (GnRHa) administered either via repetitive injections or through sustained-release 

implants (Agulleiro et al., 2006).  

The Senegalese sole is acquiring an important relevance in chronobiological studies as the 

number of published works focused on the sole circadian system has increased in the last few years 

especially focused on rhythms of locomotor activity, feeding, melatonin, sex steroids in relation to 

temperature and photoperiod (Anguis and Cañavate, 2005; Bayarri et al., 2004; Boluda-Navarro et 

al., 2009; García-López et al., 2007; Guzmán et al., 2008; Oliveira et al., 2009). The molecular 

mechanisms underlying sole circadian rhythms have also been explored recently, both in adults and 

developing sole (Martín-Robles et al., 2011, 2012a, 2012b).  
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2 Objectives 

The general objective of this study was to investigate how  different photoperiods and feeding 

regimes modulate daily mRNA expression of three specific orexigenic  hormones, i.e. the 

Neuropeptide Y (NPY) and the paralogues Agouti-related Protein 1 (AgRP1) and  Agouti-related 

Protein 2, in adult specimens of Solea senegalensis, a flatfish species with a growing commercial 

interest in Southern Europe for marine aquaculture. 

It is important to increase knowledge on the endocrine mechanisms that regulate feeding and 

growth in cultured fish, so to improve fish holding conditions and feeding strategies in aquaculture 

practices. In order to achieve this and to support the development of new techniques that could 

enhance feeding, food conversion efficiency and growth in cultured fish, two main experiments 

were developed:  

• In a first experiment, adult fish, maintained under LD (12 h light:12 h dark) photoperiod, 

were divided in three different tanks, each one kept at a different feeding regime (feeding 

during daytime, feeding during night-time and feeding at random times).   

• In a second experiment, adult fish were maintained under a DD (0 h light: 24 h dark) 

photoperiod and  they were divided in two tanks, each one kept at a different feeding regime 

(feeding during the subjective daytime and feeding at random times).  

For both experiments, daily mRNA expression of selected orexigenic hormones (NPY, AgRP1 

and AgRP2) has been studied in different central areas, i.e. telencephalon, diencephalon and optic 

tectum, which previous studied suggested to be the main areas involved in feeding in fish and rich 

in neurons related to orexigenic hormones.  

This main objective also allowed to attain the following specific achievements:  

• To gain skills on molecular biology techniques such as RNA extraction, cDNA synthesis 

and real time quantitative PCR. 

• To gain skills on several bioinformatic tools and specific software such as the 

chronobiological software El Temps and the Bio-Rad CFX Manager v 3.1.   
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3 Materials and Methods 

3.1 Animals and rearing system 

This study was carried out on a total number of 128 Senegalese sole adult specimens (Solea 

senegalensis) which were collected from the “Laboratorio de Cultivos Marinos" of the University 

of Cádiz (Puerto Real, Spain). The animals had length between 20 and 25 cm in length and their 

weight spanned from 101 to 172 g. They were kept in five 250L tanks and maintained at constant 

temperature (19±1°C) and salinity (39 ppt), with continuous seawater renovation and gentle 

aeration. Each tank was equipped with an automatic feeder (EHEIM GmbH & co. KG, Germany) 

connected to a digital programmable timer (Data micro, Orbis, Spain), so to provide food at 

scheduled times. Commercial 3 mm dry pellets (Skretting S.A., Burgos, España) were supplied at a 

daily ration of 0,3% body weight. The tanks were also equipped with a lid containing two 

fluorescent lamps (Sylvania Gro-Lux, Germany) connected to an individual automatic photoperiod 

control system which allowed a light intensity of 400 lux at water surface level during the 

illumination period. 

The experimental procedures were approved by the Animal Experimentation and Ethics 

Committee of the University of Cádiz (Spain) and performed according to international ethical 

standards. 

3.2 Experimental design 

Two experimental groups with different photoperiod conditions were designed. The photoperiod 

for the “LD group” was set at 12 h light:12 h dark (12L:12D) with lights on at 08:00 h local time, 

(zeitgeber time 0 or ZT0), while the animals of the “DD group” were reared in constant dark 

conditions, i.e. 0 h light: 24 h dark (0L:24D). 

The animals reared in light-dark conditions, were subdivided in 3 groups, each one experiencing 

a distinct feeding regime:   

• ML group: this group received food at a fixed time during the day, at 14:00h (ZT6), i.e in the 

middle of the light phase (ML as mid-light); 

• MD group: this group comprised the animals that were fed at fixed time during the night, at 

02:00h (ZT18), i.e., in the middle of the dark fase (MD as mid-dark); 

• RND group, whose feeding was set at a random times, with an interval between 12 and 36 

hours so they received the same amount of food per 24 h, as the ML and MD groups. 
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The animals kept in constant darkness, i.e., “DD group", were divided in 2 groups with different 

feeding time: 

• sML group: this group received food at fixed time during the mid-light point of the subjective 

day, at 14:00h (circadian time 6 or CT6). 

• RND group: this  group was fed at random times, with an interval between 12 and 36 hours, 

as described previously for the LD group. 

3.3 Sampling 

Sampling was conducted after four weeks under these different feeding regimes. during a 24 h 

daily cycle. The soles were anesthetized in MS-222 (Sigma, St. Louis, MO; 100-200 mg/l of water) 

and sacrificed by decapitation.  

Animals held under LD conditions were sampled every 4 hours, starting at 8:00 h local time, 

which was considered ZT0 (zeitgeber time 0), at six different zeitgeber time points (ZT0, ZT4, ZT8, 

ZT12, ZT16, ZT20), where ZT0 corresponded to the light onset and ZT12 to the light offset. 

The soles under DD conditions were sampled every 4 hours as well, at six different circadian 

time points: CT0, CT4, CT8, CT12, CT16, CT20. 

The selected neural tissues, i.e. telencephalon, diencephalon and optic tectum, were dissected 

from every specimen, rapidly frozen in liquid nitrogen and stored at -80° C until used. 

3.4 Selection and design of specific primers 

Several specific primer pairs for Senegalese sole npy, agrp1 and agrp2 genes analysed by real-

time quantitative PCR (RT-qPCR) were designed from the partial sequences available in the 

SoleaDB 

(http://www.juntadeandalucia.es/agriculturaypesca/ifapa/soleadb_ifapa/sessions/new?locale=es) 

server using the Primer3 Plus software (http://www.bioinformatics.nl/cgi-

bin/primer3plus/primer3plus.cgi).  

A gradient temperature RT-qPCR was run for each primer pair, in order to optimize PCR 

conditions, with the following temperatures: 58°C, 60,8°C, 62,5°C and 64,6°C. The resulting 

amplicons were analysed through agarose gel electrophoresis and DNA was extracted by using 

QIAquick Gel Extraction Kit (QIAGEN Group Inc, USA) following manufacturer instructions. 

Briefly, DNA fragments were cut out from the agarose gel with a clean, sharp scalpel, then put in a 

tube with 3 volumes of buffer QG available with the kit per 1 volume gel and incubated at 50°C for 

10 min. After complete dissolution of the gel slices, the mixture was put in a collection tube and 

centrifuged for 1 min, to let the DNA bind at the membrane of the QIAquick column. The flow-



 29 

through was discarded and the filter with DNA was washed with 750 µL of Buffer QC. 

Successively, 30 µL of Buffer EB (10 mM Tris Cl, pH 8,5) were added to elute the DNA. Total 

DNA yield and quality were determined by 260/280 nm absorbance ratio in a NanoDrop 2000 

Spectrophotometer (Thermo Fisher Scientific, Wilmington, De, USA). The DNA obtained was sent 

with the primers to the SCAI (Unidad de Genómica (Universidad de Córdoba, Campus de 

Rabanales) in order to be sequenced and confirm the identity of amplified products. Primer 

oligonucleotide sequences finally used are shown in Table 3.1 

 

Gene  Primer Sequence (5’→3’) 

NPY SsNPYqPCR-F1 
SsNPYqPCR-R1 

GAG GGA TAC CCG ATG AAA CC 
GCT GGA CCT CTT CCC ATA CC 

AgRP1 
SsAgRP1qPCR-F2n 
SsAgRP1qPCR-R2n 

CTGGTTCATGGAAACATTCCGC 
TGTCCTCTTTCGATGTCAGACAGG	

AgRP2 SsAgRP2q-F1 
SsAgRP2q-R2 

CAG GTC AGA CTC CGT GAG CCC 
GTC GAC ACC GAC AGG AGG CAC 

β-actin2 
qSsBact-Fw 
qSsBact-Rv 

TCT TCC AGC CAT CCT TCC TCG 
TGT TGG CAT ACA GGT CCT TAC GG 

3.5 RNA extraction 

Total RNA was extracted by using the TRIsure Reagent® (Bioline, London, UK), following the 

manufacturer protocol. Briefly, 1 ml of TRIsure was added to each sample, then homogenized in a 

mixer mill MM400 (Retsch, Haan, Germany) with the use of 4 stainless steel beads (2 mm 

diameter). After homogenization, 0,2 ml of chloroform D (AppliChem, Darmstadt, Germany) was 

added and samples were shaken by hand for 15 s and then incubated at room temperature for 3 min. 

Consequently, samples were centrifuged at 12.000 x g for 15 min at 4°C, causing the mixture to 

separate in three phases: a pale green phenol-chloroform phase, containing DNA, at the bottom of 

the tube; an interphase made up of protein and, at the top of the tube, a colourless aqueous phase, 

containing RNA, which was transferred into a new tube. Then RNA was precipitated by adding 0,5 

ml of isopropyl alcohol (Panreac, Barcelona, Spain), and letting the samples incubate at room 

temperature for 10 min. Samples were centrifuged at 12.000 x g for 10 min at 4°C, creating a gel-

like pellet at the bottom of the tube. The supernatant was completely removed and the RNA pellet 

was washed with 1 ml 75 % ethanol, prepared with diethylpyrocarbonate (DEPC)-treated water 

(Sigma-Aldrich, St. Louis, MO, USA) to avoid RNA degradation by RNAses. Samples were 

centrifuged at 7.500 x g for 5 min at 4°C and ethanol was removed. The RNA pellet was air-dried 

Table 3.1: Primer oligonucleotide sequences used for RT-qPCR analysis 
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for 5-10 min and re-dissolved in DEPC-treated water (from 15 to 50 µl) and incubated for 10 min at 

55-60ºC in a water bath. Total RNA yield and quality were determined by the 260/280 nm 

absorbance ratio in a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, 

De, USA). All ratios were between 1.8 and 2. 

3.6 cDNA synthesis 

Aliquots of 100 ng of total RNA were reverse transcribed into cDNA (20 µl final volume) using 

the QuantiTect Reverse Transcription Kit (Qiagen, Inc, USA). The procedure consisted of 2 main 

steps:  

1. Elimination of genomic DNA   

The purified RNA samples were incubated in gDNA Wipeout Buffer available with the 

kit, containing DNAse, at 42°C for 2 min. This step is required to effectively remove 

contaminating genomic DNA. 

2. Reverse transcription   

After genomic DNA elimination, the RNA samples were prepared for reverse 

transcription, adding a master mix prepared from Quantiscript Reverse Transcriptase, 

Quantiscript RT Buffer, and RT Primer Mix. The entire reaction took place at 42°C 

during 30 min followed by 2 min at 95°C for enzyme inactivation. Then cDNAs were 

stored at -20°C until used.  

3.7 Real Time quantitative PCR (RI-qPCR) expression analysis 

Real time quantitative PCR (RT-qPCR) was performed in a Bio-Rad CFX96 Touch detection 

system (Bio-Rad, Alcobendas, Spain), using the SensiFAST SYBR No-ROX Kit (Bioline). PCR 

reactions were developed in a 20 µl volume containing 5 ng of cDNA. Duplicates of each sample 

were analysed in the same assay. Specific primers for sole npy, agrp1, agrp2 and β-actin2 are 

shown in Errore. L'origine riferimento non è stata trovata.. 

The amplification protocol for the three genes was as follow (Errore. L'origine riferimento 

non è stata trovata.) 

1. Initial denaturation at 95°C for 2 min; 

2. 40 cycles of 95°C for 5 s and 60°C for 30 s for npy;  

40 cycles of 95°C for 5 s and 62,2°C for 25 s for agrp1;  

40 cycles of 95°C for 5 s and 64°C for 20 s for agrp2;  

3. Melting curve from 70°C to 95° C, with an increment of 0.5°C.  
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Melting curves were generated for each sample to confirm that a single product was amplified. 

Non-template controls were used as negative controls. The relative expression of all genes was 

calculated using the ΔΔCt method (Livak and Schmittgen, 2001) with Solea senegalensis β-actin2 

(Genbank accession number DQ485686) as housekeeping gene (Infante et al., 2004; Martín-Robles 

et al., 2012b). 

 

 

3.8 Data analysis 

3.8.1 Statistical analysis 

To evaluate statistical differences in the expression of orexigenic genes, mRNA levels of each 

gene were analysed, among different daily time points, by one-way ANOVA. Significant ANOVA 

analyses were followed by Tukey’s post hoc comparison test, to determine differences between 

means, with p<0.05 taken as the statistically significant threshold. When necessary, values were 

transformed to achieve normal distribution and homogeneity of variances. In all cases, statistical 

significance was accepted at p<0.05.  

All statistical tests were performed using Statgraphics Plus 5.1 software (Statpoint 

Technologies, Warrenton, VA, USA). All graphics were created by means of Microsoft Office 

Excel 2011 and 2016.  

3.8.2 Cosinor analysis 

Rhythmicity in daily gene expression values was evaluated by cosinor analysis using the 

chronobiological software El Temps (version 1.228; www.el-temps.com) developed by Prof. A. 

Díez Noguera (University of Barcelona). The Cosinor method is based on the least squares 

approximation of time series data with a cosine function of known period and was performed to 

determine whether the daily expression of the studied genes showed a regular fluctuation over a 

Figure 3.1: Example of the RT-qPCR amplification protocol (Bio-Rad CFX software screen) followed for the     
orexigenic gene NPY of Solea senegalensis. 
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defined period (24 h in the case of circadian rhythms). Cosinor analysis also provides the statistical 

significance of the rhythm through an F-test of the variance accounted for by the waveform, versus 

a straight line of zero-amplitude (null hypothesis). Therefore, if under a statistical significance of 

p<0.05 the null hypothesis was rejected, the amplitude could be considered as differing from 0, 

thereby constituting evidence for the existence of a statistically significant rhythm of the given 

period under consideration. Expression profiles were considered to display a significant daily 

rhythm when p<0.05. 
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4 Results  

4.1 Daily expression of NPY, AgRP1 and AgRP2 in Senegalese sole reared under 
light-dark (LD) conditions and different feeding schedules. 

In order to assess the influence of light and feeding time in central expression of orexigenic 

genes, daily mRNA expression of npy, agrp1 and agrp2 was investigated by real time qPCR in 

three different neural areas, i.e., telencephalon, optic tectum and diencephalon of Senegalese sole 

adult specimens maintained under LD conditions and different feeding schedules: fed at ML (ZT6, 

14h local time), MD (ZT18, 02h local time) and at RND (random) times. These areas where 

selected because they have been implicated in the neuroendocrine control of feeding behaviour in 

fish and previous studies have shown that these brain regions are rich in neurons producing these 

hormones (Rodríguez-Gómez et al. 2001). Moreover, these neural areas exhibited a high expression 

of anorexigenic genes crh, pomc_a and pomc_b in sole (Muñoz-Cueto et al. unpublished).   

4.1.1 Daily expression of NPY mRNA under LD conditions 

As stated before, daily expression of npy mRNA was analysed in three neural areas: 

telencephalon, diencephalon and optic tectum (Figure 4.1).  

In telencephalon and diencephalon, statistical analysis revealed that mRNA expression of npy 

did not show significant differences in any of the different feeding regimes used in this study 

(Figure 4.1). Cosinor analysis neither evidences rhythmic expression of npy in these central areas. 

However, in the optic tectum npy daily expression did not show statistically significant 

differences in groups fed at mid light (ML group) and mid dark (MD group) times, while it 

significantly differed in the group fed at random times (RND group). In this group, a significant 

increase in npy transcript levels was detected at the beginning of the dark phase (Figure 4.1). 

Moreover, npy expression was revealed as rhythmic by Cosinor analysis (Table 1.1), reporting a 

peak of expression (acrophase) near the day-night transition, at ZT11.18 (Table 4.1). The peak was 

followed by a significant decrease toward the end of the night. The lowest expression values were 

displayed around ZT4, in the first half of light period, and at ZT20, in the second half of the dark 

phase (Figure 4.1). 
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Figure 4.1 Relative expression of npy gene in telencephalon, diencephalon and optic tectum of Senegalese sole under 
LD 12:12 cycles and fed at mid light (ML), mid dark (MD) or at random times (RND). Different letters indicate 
statistically significant differences (ANOVA, p<0.05). The black and the white bars at the top of the graphics represent 
the light and dark phases. Asterisks represent rhythmic expression (Cosinor, p<0.05). ZT indicates zeitgeber time 
(hours). 
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NPY  LD Conditions 

ML	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 1.5206	 0.1453	 20.7533	 97.3207	 N.S.	
Diencephalon	 1.6537	 0.2065	 9.6794	 96.6170	 N.S.	
Optic	tectum	 1.4514	 0.1802	 16.4665	 95.5640	 N.S.	
MD	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 11.8502	 1.1691	 21.3975	 96.0389	 N.S.	
Diencephalon	 14.9723	 1.3930	 0.0897	 91.4069	 N.S.	
Optic	tectum	 4.6437	 0.8297	 10.1213	 53.0952	 N.S.	
RND	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 1.6017	 0.1369	 1.0081	 96.9177	 N.S.	
Diencephalon	 2.0316	 0.4115	 13.1619	 70.7865	 N.S.	
Optic	tectum	 1.7623	 0.3687	 11.1833	 95.2597	 0.0233	*	

 

4.1.2 Daily rhythms of AgRP1 mRNA expression  

As for npy, daily rhythms of agrp1 were analysed in telencephalon, diencephalon and optic 

tectum of Senegalese sole. (Figure 4.2). 

Statistically significant variations in agrp1 daily mRNA levels were not evident in the neural 

areas analysed. 

In contrast, Cosinor analysis revealed a significant daily rhythm in agrp1 levels in optic tectum 

for the ML group, i.e., animals fed at mid light (ZT6), showing its acrophase during the early night 

at ZT14.49 (Table 4.2).  

  

 
Table 4.1: Parameters estimated by the Cosinor analysis for npy mRNA relative expression in telencephalon, 
diencephalon and optic tectum of Solea Senegalensis under LD conditions and fed at ML, MD and RND 
times. The variance indicates the percentage of experimental data explained by the cosine equation calculated 
by the Cosinor method. Significance, p-value. N.S., non significant rhythm (p>0.05). Asterisks indicate 
significant rhythms (p<0.05). 
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Figure 4.2: Relative expression of agrp1 gene in telencephalon, diencephalon and optic tectum of Senegalese sole 
under LD 12:12 cycles and fed at mid light (ML), mid dark (MD) or at random times (RND). Different letters indicate 
statistically significant differences (ANOVA, p<0.05). The black and the white bars at the top of the graphics represent 
the light and dark phases. Asterisks represent rhythmic expression (Cosinor, p<0.05). ZT indicates zeitgeber time 
(hours).   
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AgRP1 LD Conditions 
 

ML	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 2.6207	 0.8503	 18.4937	 78.2809	 N.S.	
Diencephalon	 1.6339	 0.3349	 12.1067	 91.1133	 N.S.	
Optic	tectum	 6.2146	 3.3481	 14.4906	 78.6266	 0.0180	*	
MD	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 5.2610	 4.5574	 14.5170	 30.9600	 N.S.	
Diencephalon	 356.9160	 136.0000	 19.2928	 67.1501	 N.S.	
Optic	tectum	 7.4784	 2.1157	 7.0512	 43.4575	 N.S.	
RND	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 4.7606	 1.4770	 4.5432	 68.3113	 N.S.	
Diencephalon	 3.7575	 0.4496	 13.1782	 75.3085	 N.S.	
Optic	tectum	 4.0920	 1.1765	 9.5759	 61.5924	 N.S.	

 

4.1.3 Daily expression of AgRP2 mRNA under LD conditions  

The daily expression of agrp2 transcript was analysed in telencephalon, optic tectum and 

diencephalon. (Figure 4.3) 

In both telencephalon and diencephalon ANOVA and Cosinor analysis did not reveal significant 

daily variations of agrp2 expression. 

In optic tectum, agrp2 daily profile displayed significant differences only in Senegalese sole 

specimens fed at mid light (ZT6). Also, Cosinor analysis showed a significant daily rhythm in 

agrp2 relative expression (Table 4.3). Transcript levels remained low during the day, until ZT12, 

when they rapidly increased, reaching a peak of expression at ZT16 (acrophase at ZT15.35), and 

then they significantly decreased quickly during the night. In groups fed at MD and RND times, no 

significant differences were observed neither by ANOVA or Cosinor (Figure 4.3). 

.  

 

 

 

  

 
Table 4.2: Parameters estimated by the Cosinor analysis for agrp1 mRNA relative expression in telencephalon, 
diencephalon and optic tectum of Solea Senegalensis under LD conditions and fed at ML, MD o RND times. 
The variance indicates the percentage of experimental data explained by the cosine equation calculated by the 
Cosinor method. Significance, p-value. N.S., non significant rhythm (p>0.05). Asterisks indicate significant 
rhythms (p<0.05). 
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Figure 4.3 Relative expression of agrp2 gene in telencephalon, diencephalon and optic tectum of Senegalese sole 
under LD 12:12 cycles and fed at mid light (ML), mid dark (MD) or at random times (RND). Different letters indicate 
statistically significant differences (ANOVA, p<0.05). The black and the white bars at the top of the graphics 
represent the light and dark phases. Asterisks represent rhythmic expression (Cosinor, p<0.05). ZT indicates zeitgeber 
time (hours).   
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AgRP2  LD Conditions 
 

ML	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 2.6207	 0.8503	 18.4937	 78.2808	 N.S.	
Diencephalon	 2.5298	 0.5499	 9.9755	 85.2463	 N.S.	
Optic	tectum	 5.2924	 3.5824	 15.3533	 67.6872	 0.0314	*	
MD	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 2.3524	 0.3136	 21.6353	 89.4243	 N.S.	
Diencephalon	 12.9068	 5.7720	 21.9450	 69.9576	 N.S.	
Optic	tectum	 2.0106	 0.6443	 5.0749	 80.4041	 N.S.	
RND	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 2.4748	 0.2552	 18.0434	 84.4484	 N.S.	
Diencephalon	 3.0065	 0.3907	 23.6290	 84.5050	 N.S.	
Optic	tectum	 2.9281	 0.7242	 7.6406	 83.0351	 N.S.	

 

4.2 Daily expression of NPY, AgRP1 and AgRP2 in Senegalese sole reared under 
constant dark (DD) conditions and different feeding schedules.  

As for LD conditions, daily expression of npy, agrp1 and agrp2 was analysed in telencephalon, 

diencephalon and optic tectum of Senegalese sole kept under DD conditions and different feeding 

schedules: animals fed during the subjective mid light period (CT6, sML group) and animals fed at 

random times (RND group).  

4.2.1 Daily expression of NPY mRNA under DD conditions 

In telencephalon, only animals fed at random times showed significant daily variations in npy 

mRNA expression, as revealed by ANOVA. It displayed the highest value at CT4, during the 

subjective day, and the lowest transcript levels at CT16, during the subjective night (Figure 4.4). 

On the other hand, Cosinor analysis showed a significant rhythm for both sML and RND groups, 

displaying the acrophases at CT 16.13 (subjective night) and CT5.48 (subjective day), respectively 

(Table 4.4).  

In diencephalon and in optic tectum of soles held in DD conditions, npy relative expression did 

not show any significant differences neither in animals fed at sML (subjective mid light) nor in 

those fed at random times (RND group). Significant daily rhythms were neither observed in these 

neural areas (Figure 4.4; Table 4.4).   

 
Table 4.3:	Parameters estimated estimated by the Cosinor analysis for agrp2 mRNA relative expression 

in telencephalon, diencephalon and optic tectum of Solea Senegalensis under LD conditions and fed at ML, 
MD o RND times. The variance indicates the percentage of experimental data explained by the cosine 
equation calculated by the Cosinor method. Significance, p-value. N.S., non significant rhythm (p>0.05). 
Asterisks indicate significant rhythms (p<0.05).  
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Figure 4.4 Relative expression of npy gene in telencephalon, diencephalon and optic tectum of Senegalese sole under 
DD constant darkness cycle and fed at subjective mid light (sML) or at random (RND). Different letters indicate 
statistically significant differences (ANOVA, p<0.05). The black bars at the top of the graphics represent the constant 
dark phases. Asterisks represent rhythmic expression (Cosinor, p<0.05). CT indicates circadian time (hours). 
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NPY DD Conditions 
 
sML	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 17,3523	 3.9938	 16,1384	 93.8581	 0.0305	*	
Diencephalon	 1.9020	 0.2082	 5.7924	 85.1544	 N.S.	
Optic	tectum	 1.5639	 0.3027	 23.9540	 83.0394	 N.S.	
RND	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 1.5585	 0.2959	 5.4854	 97.1229	 0.0066	
Diencephalon	 3.2428	 0.3416	 7.1579	 81.3781	 N.S.	
Optic	tectum	 1.6075	 0.4300	 5.1058	 90.1625	 N.S.	

 

4.2.2 Daily expression  of AgRP1 mRNA under DD conditions 

In telencephalon, diencephalon and optic tectum, no significant variations of agrp1 mRNA 

relative expression were observed neither by ANOVA nor by Cosinor analysis under DD conditions 

(Figure 4.5; Table 4.5). 

However, in sML groups in telencephalon and diencephalon, transcripts showed a similar trend 

with a rapid decrease after CT12 and a quick increase starting at CT16, which displayed the lowest 

expression (Figure 4.5).  

  

 
Table 4.4: Parameters estimated by the Cosinor analysis for npy mRNA relative expression in telencephalon, 
diencephalon and optic tectum of Solea Senegalensis under DD conditions and fed at the subjective midlight 
period (sML group) or at RND times (RND group). The percentage of variance indicates the percentage of 
experimental data explained by the cosine equation calculated by the Cosinor method. Significance, p-value. 
N.S., non significant rhythm (p>0.05). Asterisks indicate significant rhythms (p<0.05). 
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Figure 4.5 Relative expression of agrp1 gene in telencephalon, diencephalon and optic tectum of Senegalese sole under 
DD constant darkness condition and fed at subjective mid light (sML) or at random times (RND). Different letters 
indicate statistically significant differences (ANOVA, p<0.05). The black bars at the top of the graphics represent the 
constant dark phase. Asterisks represent rhythmic expression (Cosinor, p<0.05). CT indicates circadian time (hours). 
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AgRP1 DD Conditions 
 

sML	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 2.1776	 0.2802	 1.6293	 79.2689	 N.S.	
Diencephalon	 75.0459	 6.5330	 1.4828	 70.6290	 N.S.	
Optic	tectum	 17.1670	 23.1766	 5.1403	 28.7001	 N.S.	
RND	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 3.3912	 1.7228	 20.3842	 64.3412	 N.S.	
Diencephalon	 2.8453	 0.6001	 12.3792	 68.6344	 N.S.	
Optic	tectum	 36.9143	 21.3405	 0.5968	 18.8287	 N.S.	

 

4.2.3 Daily expression of AgRP2 mRNA under DD conditions 

agrp2 mRNA relative expression did not exhibit statistical differences in any neural area and in 

any of the examined groups, as revealed by ANOVA (Figure 4.6). Furthermore, Cosinor analysis 

did not reveal any significant rhythms in agrp2 transcript levels (Table 4.6).  

However, both in telencephalon and diencephalon (sML and RND), as well as on RND group 

from the optic tectum, agrp2 transcripts showed similar trends, with the lowest value of relative 

expression at CT4 (subjective daytime), and the highest mRNA levels in the subjective night time, 

at different time points (Figure 4.6). 

  

 
Table 4.5: Parameters estimated by the Cosinor analysis for agrp1 mRNA relative expression in 
telencephalon, diencephalon and optic tectum of Solea Senegalensis under DD conditions and fed at the 
subjective midlight period (sML group) or at RND times (RND group). The percentage of variance indicates 
the percentage of experimental data explained by the cosine equation calculated by the Cosinor method. 
Significance, p-value. N.S., non significant rhythm (p>0.05). Asterisks indicate significant rhythms (p<0.05). 
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Figure 4.6 Relative expression of agrp2 gene in telencephalon, diencephalon and optic tectum of Senegalese sole under 
DD constant darkness condition and fed at subjective mid light (sML) or at random (RND). Different letters indicate 
statistically significant differences (ANOVA, p<0.05). The black bars at the top of the graphics represent the constant 
dark phase. Asterisks represent rhythmic expression (Cosinor, p<0.05). CT indicates circadian time (hours). 
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AgRP2 DD Conditions 
 

ML	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 3.3492	 0.9250	 17.1737	 84.0141	 N.S.	
Diencephalon	 8.5507	 1.0233	 17.9040	 77.7249	 N.S.	
Optic	tectum	 3.2545	 0.3314	 10.6824	 76.7933	 N.S	
RND	GROUP	 Mesor	 Amplitude	 Acrophase	 Variance	%	 Significance	

Telencephalon	 2.0858	 0.4262	 14.4163	 85.0193	 N.S	
Diencephalon	 19.5552	 3.0451	 16.4631	 77.7618	 N.S	
Optic	tectum	 2.7870	 0.8339	 17.1097	 79.9316	 N.S	

 
Table 4.6:	 Parameters estimated by the Cosinor analysis for agrp2 mRNA relative expression in 

telencephalon, diencephalon and optic tectum of Solea Senegalensis under LD conditions and fed at the 
subjective midlight period (sML group) or at RND times (RND group).  The percentage of variance indicates 
the percentage of experimental data explained by the cosine equation calculated by the Cosinor method. 
Significance, p-value. N.S., non significant rhythm (p>0.05). Asterisks indicate significant rhythms (p<0.05).  
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5 Discussion 

In the present study, we have tried to expand our knowledge about the neuroendocrine 

mechanisms that regulate feeding and growth in cultured fish, which could be relevant for the 

improvement of fish farming conditions and feeding strategies. In order to reach this goal, we have 

investigated some orexigenic hormones (NPY, AgRP1, AgRP2) in Solea senegalensis, an important 

species for Mediterranean aquaculture. We focused on hormone synchronization to different 

feeding regimes (diurnal vs nocturnal and random feeding) and photoperiod conditions (light-dark 

cycle vs constant darkness). Therefore, the achieved results could also be relevant from a 

chronobiological perspective.  

There is a growing number of studies on neural control of feeding in fish (Peter, 1979; Demski, 

1983; Volkoff et al. 2005). Nonetheless, fish are a diverse phylogenetic group and relatively few 

species have been studied to date, with regards to feeding regulation. Information concerning the 

possible influence that external cues can have on the daily expression of food intake related 

hormones is rather scarce...In particular, studies regarding the effects of light and feeding time on 

the daily expression of orexigenic/anorexigenic hormones are really limited, although light is 

considered the most prominent zeitgeber, and together with other non-photic stimuli such as feeding 

time, have been proved to be responsible for entraining circadian rhythms. Moreover, the 

hypothesis of the existence of a FEO, along with a LEO, has been supported in fish by data on 

properties of feeding entrainment, but its anatomical location and its independence from LEO are 

still unknown (Sánchez-Vázquez et al., 1997; Aranda et al., 2001). 

In fish, daily rhythms regarding orexigenic hormones have been described along with 

phenomena of Feeding Anticipatory Activity (FAA), )(Vera et al., 2007; Yan et al., 2011; Hoskins 

and Volkoff, 2012; Nisembaum et al., 2014), but only a few studies were about their modulation by 

restricted food access in different feeding regimes and different photoperiods, as most of them 

regarded their modulation by fasting. Moreover, the interpretation of experiments of circadian 

endocrine rhythms is limited by the collection of samples only from animals held in a LD cycle. 

This approach does not allow to determine whether daily rhythms are triggered by circadian 

endogenous clocks or driven by environmental cues, being necessary to hold animals in constant 

darkness as well, so to assess if hormone rhythms are entrained by feeding time and /or photoperiod 

as external cues. Therefore, in this experiment Solea senegalensis specimens were reared in two 

different photoperiods, i.e. LD or light-dark conditions and  DD or constant dark conditions along 

with different feeding regimes (fed at ML, MD and RND times), so to determine if mRNA 

expression of orexigenic hormones (NPY, AgRP1 and AgRP2) is controlled by the endogenous 

clock and is entrained by feeding time and/or photoperiod.  
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Under LD conditions, NPY mRNA expression was rhythmic and showed statistical differences 

in optic tectum of animals fed at random times (RND group). The acrophase occurred at ZT 11.18, 

at the beginning of the dark phase, which is coincident with the active phase of this species, as the 

Senegalese sole shows a nocturnal behaviour (Bayarri et al. 2004). In telencephalon and 

diencephalon, no significant variations of NPY mRNA relative expression were observed neither by 

ANOVA nor by Cosinor analysis. Our results are not coincident with previous studies concerning 

NPY daily variations performed on animals held in natural or LD conditions, that suggest that NPY 

relative expression displays periprandial variations in fish brain. In goldfish and in Atlandic cod, 

NPY expression increased a few hours before mealtime (Narnaware et al. 2000; Kehoe & Volkoff, 

2007). Besides, studies on Brazilian flounder (Paralichthys orbignyanus) demonstrated that 

hypothalamic NPY augmented at mealtime and decreased significantly after two hours (Campos et 

al, 2012). This does not coincide with NPY variations in sole, which do not exhibit statistical 

differences in diencephalon under LD conditions. According to our results, no daily variations in 

NPY expression after a meal was observed in the telencephalon of snakesin gourami, Trichogaster 

pectoralis (Boonanuntanasarn et al., 2012). However, in this latter species a reduction in NPY 

expression was found after a meal in the diencephalon and mesencephalon while no daily 

differences were observed in our study in sole in these brain areas. After better exploring the 

expression in all feeding conditions, it is possible to notice that in MD groups of each neural tissue 

the relative expression was slightly increased at mealtime (ZT 18). This profile was not evident in 

ML groups and it might suggest that light is interfering with feeding cues; as sole is a strictly 

nocturnal fish, receiving food during the light phase might create a masking effect that does not let 

NPY to express properly. This could be stressed also by the differences exhibited in the optic 

tectum of RND group, in which NPY showed clear daily rhythms and variations that reflect the 

nocturnal behaviour of sole, this is, it peaked in the dark phase, independently from the feeding time. 

The fact that in the optic tectum under LD conditions NPY mRNA expression peaked during the 

dark phase in the RND group suggests that this rhythm is entrained by the light-dark cycle and 

exhibit some independence from the feeding time. However, under DD conditions, the rhythms in 

optic tectum were not evident in both sML and RND groups, suggesting that these rhythms are not 

circadian. The crosstalk between two external cues light and feeding cycles could lead to the 

disappearance of the NPY rhythms in the optic tectum of ML and MD groups. Further experiments 

are needed to firmly conclude the circadian nature of NPY rhythms in the optic tectum in sole.  

In animals kept under DD conditions, NPY expression displayed statistical differences in 

telencephalon in the RND group and daily rhythms were observed in both sML and RND groups, 

with the acrophases placed at CT16.13 and CT5.48 respectively. This result suggest a circadian 
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nature of NPY rhythms in the telencephalon of sole, i.e, rhythms in NPY expression are driven by 

the endogenous clock in this cerebral area, as no synchronizing external cues are present in the 

RND group. However, the different acrophases observed in both groups suggest a role of feeding 

time in the expression of NPY in sole telencephalon. This is consistent with previous studies that 

affirmed that telencephalon is the main brain area involved in NPY expression in fish (Narnaware et 

al., 2000; Cerda-Reverter et al. 2000). Cosinor analysis revealed an acrophase of NPY expression 

10 hours after feeding in the sML group, which is not consistent with its orexigenic role. In general, 

orexigenic factors (NPY and Orexin) increase before or during a meal (Narnaware and Peter, 2001; 

Xu and Volkoff, 2007) while the expression levels of anorexigenic factors (CCK and CART) 

increase after feeding (Peyon et al., 1999; Volkoff and Peter, 2001). An increase in NPY mRNA 

levels in the telencephalon–preoptic area and hypothalamus shortly before feeding has been 

observed in goldfish, followed by a decrease in brain NPY mRNA levels after feeding (Narnaware 

and Peter, 2001a). Similar variations were also observed in Atlantic cod (Kehoe and Volkoff, 2007) 

and tilapia (Peddu et al., 2009). In Senegalese sole, the acrophase of NPY in the telencephalon of 

the sML group is coincident with the active phase of this species, even when animals were fed 

during the subjective day (Bayarri et al., 2004). A combination of light and feeding cues seem to 

mask expression and rhythms in NPY under some particular photoperiod conditions and feeding 

schedules. Moreover, the duration of food deprivation might influence the expression of 

orexigenic/anorexigenic factors in fish. It has been reported that for example in goldfish, a fast of 

10 days, but not of 3, decreases the hypothalamic mRNA expression of CART1 (Abbott and 

Volkoff, 2011). Besides, variations could be due to species-specific differences in response to 

fasting, as fishes might have different patterns of appetite-related peptides and might respond 

differently to nutritional challenges or might be due to different expression in different parts of the 

brain, as different regions of the brain might respond differently to fasting. Further studies on food 

deprivation will be carried out and in other brain areas related to feeding behaviour in sole. 

Interestingly, in this study the diencephalon, which contains the light-entrainable oscillator (LEO) 

in mammals, did not exhibit significant daily NPY rhythms in sole at any of the feeding regimes 

analysed under LD and DD conditions, suggesting that this area is not responsible for NPY 

rhythmicity in this species. It has been demostrated that fish can exhibit several paralogues of 

encoding genes, as a result of duplication events during fish evolution. It is known that Senegalese 

sole displays 7 paralogues for the CART genes (Bonacic et al., 2015) and in Takifugu rubriceps 2 

paraloques of NPY has been confirmed (NPYa and NPYb), but only one was related to food intake, 

showing variations associated to mealtime (Kamijo et al.; 2011). According with this fact, and also 

considering that in this study NPY showed neither variation in expression, nor rhythms in 
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diencephalon, which is usually strictly connected with feeding behaviour, further studies concerning 

the presence of NPY paralogues could be suggested in Senegalese sole. 

AgRP is present in Solea senegalensis in two different forms: AgRP1 and AgRP2. In this study, 

both genes showed similar profiles. Regarding AgRP1, its expression did not show differences in 

any of the groups or brain area examined, but it exhibited a significant daily rhythm in optic tectum 

in ML group under LD conditions, showing the acrophase during the night (ZT14.49). ML group 

was fed at ZT6 and the acrophase at ZT14.49 might suggest that AgRP1 expression is more related 

to photoperiod than feeding time as the active phase of sole coincide with the dark phase (Bayarri et 

al., 2004) This could also be stressed by the common tendency in showing a slight increase in the 

AgRP1 transcripts in ML group at the beginning of the dark phase. AgRP1 expression of animals 

held under DD conditions showed neither statistical differences nor rhythms in any of the examined 

brain areas and groups. The absence of daily variations in AgRP1 indicates that its expression is not 

related with feeding time in sole brain, at least in this experimental conditions. However, the 

involvement of AgRP in the control of food intake should not be discarded in sole. AgRP levels are 

upregulated by fasting in different fish species such as goldfish Carassius auratus (Cerdá-Reverter 

and Peter, 2003), zebrafish Danio rerio (Song et al., 2003) and Cyprinus carpio (Wan et al., 2012) 

and different approaches taking into account several fasting periods should be carried out in 

Senegalese sole. 

AgRP2 exhibited statistical differences and significant rhythms in ML group in optic tectum 

under LD conditions. The peak of expression was displayed at ZT15.35, during the dark phase. As 

for AgRP1, this could suggest that AgRP2 expression is linked with the nocturnal nature of sole and 

is related with photoperiod.  AgRP2 expression of animal under DD conditions did not exhibit 

statistical differences and rhythms in any of the neural tissues. This result indicates that also AgRP2 

expression is not entrained by feeding time and that there are no endogenous rhythms of this gene. 

Our results on Senegalese sole AgRP1 and AgRP2 showed the same pattern of expression, 

exhibiting statistical differences and significant rhythms only in the optic tectum of the ML group. 

As mentioned before, this fact could indicate that expression of AgRPs is related to photoperiod in 

this visually related area, instead to feeding time. Previous studies on goldfish demonstrated that 

AgRP increased in animals fasted from 3 to 7 days (Cerda-Reverter and Peter, 2003); other studies 

on Schizothorax prenanti suggested that AgRP expression is not affected by less than 14 days of 

studying, suggesting as well a species specific regulation (Wei et al., 2013). This reinforce the need 

to perform different approaches taking into account several fasting periods in Senegalese sole. 

Surprisingly, no significant variations or daily rhythms were observed in diencephalon, as it 

contains hypothalamus that is usually considered the homeostatic and feeding center (Forlano and 
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Cone, 2007). In this study the diencephalon, which also contains the light-entrainable oscillator 

(LEO) in mammals, did not exhibit significant daily NPY, AgRP1 and AgRP2 rhythms in sole at 

any of the feeding regimes analysed under LD and DD conditions, suggesting that this brain area 

could be less involved in the neuroendocrine control of food intake in fish than previously thought.  

In summary, our findings have shown that daily expression of orexigenic factors NPY, AgRP1 

and AgRP2 is related to photoperiod in visually related structures such as the optic tectum, 

exhibiting peaks of expression during the active phase of the animal (nocturnal). Moreover, our 

results reinforce the role of the telencephalon as the main neural area involved in the 

neuroendocrine control of food intake in fish, where endogenous NPY rhythms have been found. 

The involvement of AgRP1 and AgRP2 in feeding behaviour should not be discarded in sole, as 

further research will be carried out with specimens maintained under different fasting conditions. 	
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6 Conclusions 

 

1. Under LD conditions, NPY mRNA expression was rhythmic and showed statistical 

differences in optic tectum of animals fed at random times, peaking during the dark phase. 

This suggests that this rhythm is entrained by the light-dark cycle and exhibit some 

independence from the feeding time. In animals kept under DD conditions, NPY 

expression displayed statistical differences in telencephalon in the RND group and daily 

rhythms were observed in both sML and RND groups, suggesting a circadian nature of 

NPY rhythms in the telencephalon of sole.  

 

2. Our results on Senegalese sole AgRP1 and AgRP2 showed the same pattern of 

expression, exhibiting statistical differences and significant rhythms only in the optic 

tectum of the ML group. This fact could indicate that expression of AgRPs is related to 

photoperiod in this visually related area, instead to feeding time. 

 

3. Surprisingly, no significant variations or daily rhythms were observed in diencephalon, 

which is usually strictly connected to feeding behaviour . In this study the diencephalon 

did not exhibit significant daily NPY, AgRP1 and AgRP2 rhythms in sole at any of the 

feeding regimes analysed, suggesting that this brain area could be less involved in the 

neuroendocrine control of food intake in fish than previously thought 
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