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Sommario

Introduzione:La demenza consiste nel deterioramento, spesso progressivo,
dello stato cognitivo di un individuo. Chi è a�etto da demenza, presenta
alterazioni a livello cognitivo, comportamentale e motorio, ad esempio com-
piendo gesti ossessivi, ripetitivi, senza uno scopo preciso. La condizione dei
pazienti a�etti da demenza è valutata clinicamente tramite apposite scale e
le informazioni relative al comportamento vengono raccolte intervistando chi
se ne occupa, come familiari, il personale infermieristico o il medico curante.
Spesso queste valutazioni si rivelano inaccurate, possono essere fortemente
in�uenzate da considerazioni soggettive, e sono dispendiose in termini di
tempo. Si ha quindi l'esigenza di disporre di metodiche oggettive per val-
utare il comportamento motorio dei pazienti e le sue alterazioni patologiche;
i sensori inerziali indossabili potrebbero costituire una valida soluzione, per
questo scopo. L'obiettivo principale della presente attività di tesi è stato
de�nire e implementare un software per una valutazione oggettiva, basata
su sensori, del pattern motorio circadiano, in pazienti a�etti da demenza
ricoverati in un'unità di terapia a lungo termine, che potrebbe evidenziare
di�erenze nei sintomi della malattia che interessano il comportamento moto-
rio, come descritto in ambito clinico. Lo scopo secondario è stato quello di
veri�care i cambiamenti motori pre- e post- intervento in un sottogruppo di
pazienti, a seguito della somministrazione di un programma sperimentale di
intervento basato su esercizi �sici.
Materiali e Metodi: I dati per lo studio sono stati acquisti su 82 pazienti
a�etti da demenza e ricoverati nella clinica LVR di Colonia in Germania, di
età compresa tra i 55 e i 95 anni, tramite un sensore inerziale indossabile
indossabile posizionato in regione lombare, in prossimità di L5 e sviluppato
dall'Università di Bologna (sistema uSense). I segnali sono stati elaborati
in Matlab ed è stato sviluppato un software per la misura di diverse quan-
tità di interesse per la valutazione dell'attività motoria e per evidenziare la
struttura temporale del pattern di attività. Sono state estratte informazioni
sui periodi di riposo, di attività, di sedentarietà e di cammino e, dalla dis-
tribuzione e disposizione dei diversi periodi nelle ore del giorno, sono state
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calcolate misure di complessità (entropia di Shannon, complessità di Lempel e
Ziv, Sample Entropy, Recurrence Period Density Entropy); è stata applicata
l'analisi frattale (Fano Factor Analysis e Detrended Fluctuation Analysis), e
la Cosinor analysis. L'analisi della varianza è stata impiegata per il confronto
tra sotto-gruppi di pazienti.
Risultati:Attraverso opportuni criteri di inclusione ed esclusione, il campi-
one complessivo è stato ridotto a 64 pazienti per l'analisi della baseline e di
44 soggetti per il confronto tra pre e post intervento sperimentale. La classi-
�cazione clinica è apparsa da subito poco accurata e l'analisi si è concentrata
sui pro�li motori ottenuti tramite le metodiche di valutazione oggettiva per la
quale si sono ottenuti risultati coerenti con la descrizione e l'interpretazione
clinica delle diverse categorie di pazienti. Nel confronto dei pazienti pre e
post intervento non sono invece state evidenziate di�erenze signi�cative.
Conclusioni:A valle dei risultati ottenuti è possibile a�ermare che la valu-
tazione e la classi�cazione dei comportamenti motori dei pazienti a�etti da
demenza, tramite sensoristica inerziale indossabile, le metriche di entropia
e la struttura delle serie temporali, è possibile ed è in grado di evidenziare
le caratteristiche speci�che dei pro�li patologici descritti in clinica. Queste
metodiche possono essere impiegate come supporto alla decisione clinica.
L'analisi del pre e post intervento non ha invece mostrato e�etti signi�ca-
tivi; possibili fattori che hanno avuto un peso nello studio di intervento sono
la grande eterogeneità del campione e l'aderenza al trattamento che è stata
molto variabile tra i soggetti.
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Abstract

Introduction:Dementia involves deterioration, often progressive, of a per-
son's cognitive status. Those who su�er from dementia, present alterations
in cognitive and motor behavior, for example performing obsessive and repet-
itive gestures, without a purpose. The condition of patients su�ering from
dementia is clinically assessed by means of speci�c scales and information
relating to the behavior are collected by interviewing caregivers, such as the
family, nurses, or the doctor. Often it turns out that these are inaccurate
assessments that may be heavily in�uenced by subjective evaluations and are
costly in terms of time. Therefore, there is the need for objective methods
to assess the patients' motor behavior and the pathological changes; wear-
able inertial sensors may represent a viable option, so this aim. The main
objective of this thesis project was to de�ne and implement a software for a
sensor-based assessment of the circadian motor pattern in patients su�ering
from dementia, hospitalized in a long-term care unit, which could highlight
di�erences in the disease symptoms a�ecting the motor behavior, as described
in the clinical setting. The secondary objective was to verify pre- and post-
intervention changes in the motor patterns of a subgroup of patients, follow-
ing the administration of an experimental program of intervention based on
physical exercises.
Materials and Methods: Data for the study were collected on 82 patients
su�ering from dementia and admitted to the LVR clinic in Cologne, Germany,
between 55 and 95 years old, through a wearable inertial sensor developed
by the University of Bologna (uSense system) positioned on the lower back,
in proximity of L5. Signals were processed in Matlab and a software has
been developed for the measurement of di�erent quantities of interest, for
the evaluation of general mobility and to highlight the temporal structure of
the pattern of activities. Information about rest intervals, activity, sedentari-
ness and gait were extracted and, from the distribution and arrangement in
di�erent periods during the day, complexity measures were calculated (Shan-
non's entropy, Lempel-Ziv complexity, Sample Entropy, Recurrence Period
Density Entropy); the fractal analysis (Fano Factor Analysis and Detrended
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Fluctuation Analysis) and the Cosinor Analysis were applied. The analysis
of variance was used for comparison between subgroups of patients.
Results:Through appropriate inclusion and exclusion criteria, the �nall sam-
ple was of 64 patients for the baseline analysis and of 44 subjects for the
comparison between the pre- and post- experimental intervention. The clini-
cal classi�cation appeared immediately inaccurate and the analysis has been
focused on the motion pro�les obtained through the objective assessment, for
which results were consistent with the description and interpretation of the
di�erent clinical patients categories. However, in the comparison of patients
before and after the intervention, no signi�cant di�erences have been shown.
Conclusions:Based on obtained results, it can be stated that the assess-
ment and classi�cation of motor behavior in patients with dementia, using
wearable inertial sensors, metrics of entropy and the structure of time series,
is possible, and it is able to highlight the speci�c characteristics of patholog-
ical pro�les described in the clinic. These methods can be used to support
clinical decision. The analysis of pre- and post- intervention, instead, showed
no signi�cant e�ects; possible factors that played a role in the study of inter-
vention are the great sample heterogeneity and the highly variable adherence
to treatment among subjects.
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Chapter 1

Introduction

With the progress of medicine, an aging population and the prevalence of
age-related diseases are a rising factor in next decades. Among them, the
number of cases of dementia will continue to rise and the behavioral and
psychological symptoms, such as aggressive behaviors, day-night rhythm dis-
turbances, and restlessness are the most clinical features seen during the late
course of dementia. A handling of symptoms is required because they place
a particular burden on caregivers and family [47]. This project searches for
strategies that are more suitable to quantify the circadian behavior in people
su�ering from dementia who live in a long-term care unit, and which highlight
clinically relevant di�erences among the patients, providing an objective sup-
port to the current methods used by clinicians. Since a link between physical
inactivity and behavioral disturbances is described in literature [30, 51], it
is aimed also to �nd out whether it is possible to quantify, with the chosen
methods, a change in behavior after a physical exercise protocol. To answer
the questions, it has been chosen to use an inertial measurement unit (IMU),
worn by each subject analysed in the project and to develop a software in
Matlab, for the analysis of the collected data. The IMU recorded the motor
behavior for three days both at the baseline and in the post-intervention,
starting from the hour of the sensor placement on the lower back. Data
have been acquired from inpatients in the Department of Old Age Psychia-
try at the LVR-Hospital in Cologne, by means of a hybrid body worn motion
sensor, the uSense-sensor, developed by the University of Bologna, at the De-
partment of Electrical, Electronic and Information Engineering �Guglielmo
Marconi� (DEI). The project has been performed in collaboration with the
Institute of Movement and Sport Gerontology of the German Sport Univer-
sity (DSHS): as partners in FARSEEING EU project, DSHS and DEI investi-
gated the e�ects of tailored interventions on mobility and motor behavioural
disturbances in elderly people, with the aid of ICT. Ethical approval was
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obtained by the Ethical Committee of the German Sport University Cologne
and the North-Rhine Medical Chamber [30].

1.1 Project Background

1.1.1 Dementia

Dementia is not a speci�c disease, but a collective term to describe a wide
range of symptoms, associated with the decline of memory or other thinking
skills, severe enough to reduce a person's ability to perform activities of daily
living [3, 5, 7]. Dementia has multiple types: Alzheimer's disease, vascular
dementia, vitamin de�ciency and thyroid related problems; symptoms of
dementia can vary greatly. The illness is caused by damaged brain cells
and the di�erent types are associated to speci�c brain regions involved [17].
Therefore, di�erent kinds of behavioral and psychological symptoms occur,
not only related with cognitive skills, but also with motor skills, like pacing
back and forth, wandering around, night-time wakefulness, rummage around,
and restlessness.

1.1.2 State of art and clinical assessment

In dementia care units, physicians assess patient's behavior interviewing care-
givers and the nursing sta�. The usual clinical assessment includes three
main evaluation scales: the Neuropsychiatric Inventory (NPI), the Cohen-
Mans�eld Agitation Inventory (CMAI), and the Clinical Global Impression
of Change (CGIC) that, together with other tests, provides an insight into
patient's behavior over a week spent in the ward. What is evaluated, is the
frequency and severity of pathological behavior (e.g. obsessions, restlessness,
wandering, aberrant motor behavior), and the caregiver's burden. Additional
details about the clinical assessment in dementia are given below:

� The NPI: the Neuropsychiatric Inventory is used for assessing neu-
ropsychiatric symptoms and psychopathologies in patients with neu-
rodegenerative disorders. The questionnaire has been developed for
providing a brief assessment of neuropsychiatric symptomatology in
clinical settings. Ten behavioral and two neurodegenerative areas are
included in the NPI, where two items are about the aberration in the
motor behavior (item 10: aberrant motor behavior, and item 1 in neu-
rodegenerative area: sleep and night-time behavior disorders) [2]. This
inventory is based on the answers of an informed caregiver, who is able
to observe the patient at least 4 hours a day, at least for 4 days per
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week, with the patient. Questions are about changes in behavior; fre-
quency and severity rating of the symptoms (1=rarely; 2=sometimes;
3=often; 4=very often and 1=mild; 2=moderate; 3=severe); neurode-
generative changes; and caregiver distress (0=not at all; 1=minimally;
2=mildly; 3=moderately; 4=severely; 5=extremely).

� The CMAI: The Cohen-Mans�eld Agitation Inventory is a 29-item scale
to assess agitation [19, 20, 21]. The CMAI is completed by interviewing
nursing sta� or family caregivers and the 29 items are rated on a 7-
point scale of frequency (1. Never; 2. Less than once a week but still
occurring; 3. Once or twice a week; 4. Several times a week; 5. Once
or twice a day; 6. Several times a day; 7. Several times an hour.).
Ratings pertain to the two weeks preceding the administration of the
CMAI [18, 19]. In addition, the rater is asked to give information
as to how disruptive each behavior is. The rating scale is a 5-point
scale of disruptiveness (1 = never, 5 = extremely). This scale relies on
subjective information given by the rater but inter-rater reliability is
not known for judging disruptiveness [25].

� The CGIC: the clinical global impression of change is intended to be
used as a measure of clinically meaningful change. The CGIC focuses on
clinicians' observations of change in the patient's cognitive, functional,
and behavioral performance since the beginning of a trial. Scoring is
based on an interview with the caregiver and examination of the patient
by an independent evaluator, without consulting other information such
as cognitive test results [17, 24].

� ICD-10: the �International Classi�cation of Diseases, Injuries and Causes
of Death� is used in statistic and epidemiologic studies. Description of
dementia patients is in chapter V, F00.1* (dementia in Alzheimer's
disease with late onset), sub-category G30.1+ (after the age of 65)
and F07.8 (Other organic personality and behavioural disorders due
to brain disease, damage and dysfunction: Right hemispheric organic
a�ective disorder) [31].

� The MMSE: The Mini-Mental State Examination is used to measure
cognitive impairment. It is also used as a screening tool for dementia,
and neuropsychological syndromes of di�erent nature. MMSE has been
designed for pathologies symptoms with cognitive impairment (such
as Alzheimer's disease) while subjects su�ering from diseases with ex-
ecutive impairment (such as Parkinson's disease) may not show any
deterioration, except in very advanced stages of the disease [32, 33].
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� B-ADL: the Bayer Instrumental activities for daily living evaluates sub-
jects' ability to perform daily life activities. It is mainly used to test
elderly people's social life or to determine their self-su�ciency, but is
also useful in home care [34]. A patient is classi�ed as disabled if he
does not perform or cannot perform the task analysed, or the inability
is due to health problems [35].

A limit of the above mentioned clinical tools is that the scoring is mostly
based on subjective observations. This could lead to an over- or underesti-
mation of pathological behaviours and aberration in patient's activity pat-
tern [7, 8]. Clinical decision-making could be strongly in�uenced by biased
or inaccurate information.

1.1.3 Quantitative assessment: The Inertial sensors

A possible way to monitor human motor behaviour in everyday life is the use
of one or more wearable inertial sensors placed on relevant body segments:
measurement of the segments' velocity, relative position and orientation al-
lows assessing users' mobility pattern and functional capacity [8, 11, 16, 44,
45]. Inertial measurement units (IMU) embed a triaxial accelerometer, gy-
roscope and magnetometer, to measure acceleration, angular velocity and
local magnetic �eld. A reliable sensor-based assessment would allow a con-
tinuous and objective monitoring of the patient's motor behaviour in real
life conditions. The use of wearable inertial sensors requires intelligent signal
processing and appropriate methods for activity recognition but outcomes
usually outdo those of the actigraphy approach. Indeed, actigraphy out-
comes are limited to the information on absence/presence of movement and
its intensity [46, 47, 48]. Moreover actigraphs are usually worn on the wrist
like a watch and demented patients often reacts badly removing it at the
earliest opportunity [49]. IMU are usually �xed on anatomical landmarks
such as the lower back, hip, thigh, leg [26, 27, 44, 45, 50]: the lower back is
a promising anatomical landmark since the patient does not see it and may
forget about it if it is small and comfortable enough. A detailed description
of the sensors embedded into an IMU is reported in the following paragraphs.

1.1.3.1 The Accelerometer

The accelerometer measures the proper acceleration and it behaves as a
damped mass on a spring: when the sensor is subject to acceleration, the
mass is displaced to the point that the spring accelerates it at the same rate
as the case. The displacement is measured and the acceleration is given by
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solving a second order di�erential equation:

Ks · x0 +B · ẋ0 = M · (a− ẍ0) (1.1a)

ẍ0 +
B

M
· ẋ0 +

Ks

M
· x0 = a (1.1b)

Where M is the mass; Ks is the spring constant; B is the damping constant;
x0 is the displacement and a, is the acceleration to be measured with the ac-
celerometer. Single and multi-axis models are available to detect magnitude
and direction of acceleration as a vector quantity and can be used to sense:

� Linear acceleration along the measurement axis;

� Inclination with respect to the gravity line;

� Vibration;

� Shock.

Figure 1.1: capacitive accelerom-
eter model

Figure 1.2: resistive accelerometer
model

Images from: Kinematic sensors � Prof. Angelo Cappello � teaching material of

�Bioengineering rehabilitation�

In resistive accelerometers (Figure 1.2), voltage output of the resistor bridge
changes proportionally with applied acceleration; in capacitive ones (Figure
1.1), frequency modulation technique is used through varying the capacitor
bridge. Nowadays accelerometers are usually small micro electro-mechanical
systems (MEMS, Figure 1.3), consisting of a cantilever beam with a proof
mass [26, 27].
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Figure 1.3: polysilicon MEMS

Images from: Kinematic sensors � Prof. Angelo Cappello � teaching material of

�Bioengineering rehabilitation�

1.1.3.2 The Gyroscope

The gyroscope is a device for measuring angular velocity based on the prin-
ciple of the angular momentum conservation. A MEMS gyroscope takes the
idea of the Foucault pendulum and uses a vibrating element: a vibrating
object tends to continue vibrating in the same plane as its support rotates
(Figure 1.4). This type of device is also known as a Coriolis vibratory gy-
roscope because, as the plane of oscillation is rotated, the response detected
by the transducer results from the Coriolis term in its equations of motion
(�Coriolis force�). The Coriolis E�ect is an apparent acceleration that arises
in a moving element in a rotating body: considering a particle traveling with
velocity v and the coordinate system rotating around the z-axis with angular
velocity Ω, a hypothetic observer sees the particle moving toward the x-axis
with acceleration:

~acor = 2v× Ω (1.2)

The Coriolis acceleration is a modulated signal: frequency range is from sev-
eral kHz to tens of kHz, while amplitude is in the sub-mg range. When a
mechanical element is made to oscillate by the application of an alternat-
ing force, and the oscillating body is placed in a rotating reference frame,
the Coriolis force produces a secondary oscillation perpendicular to the pri-
mary oscillation motion. The vibrating structure can be driven by electro-
static, electromagnetic or piezoelectric force, while capacitive, piezoresistive
or piezoelectric sensors can detect the Coriolis induced vibrations, so, the
transducer, needs to be driven into oscillation in order to function as a sensor.
The governing equation of motion for a gyroscope device with a resonating
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mass in the y-axis, rotated about the z-axis is given by the following second
order di�erential equation:

ẍ0 +
B

M
ẋ0 +

Ks

M
x0 = acor = 2Ωzẏ (1.3)

Where Ωz is the rate of rotation and y is the linear velocity of the structure
due to the drive.

Figure 1.4: example of vibrating gyroscopes

Images from: Kinematic sensors � Prof. Angelo Cappello � teaching material of

�Bioengineering rehabilitation�

MEMS gyroscopes present high impedance output and integrates measure-
ments obtained from accelerometers, increasing accuracy in detecting subject
shift.

1.1.3.3 The Magnetometer

Magnetometers are devices for measuring magnetic �eld and they can be di-
vided into scalar magnetometers, which measure magnetic �eld module, and
vector magnetometers, which measures one speci�c magnetic �eld direction
component. The de�nition of three components along three independent di-
rections allows de�ning a unique magnetic vector in the point where measure
is taken. Magnetometers are sensors able to generate a di�erence in poten-
tial, depending on the magnetic �eld they are subjected to, so the electric
signal in output will be proportional to its intensity. In absence of an ex-
ternal magnetic �eld, it is capable of measuring the Earth's magnetic �eld
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vector, that assumes orientation and di�erent intensities depending on the
location on the globe, but that can be considered a constant reference in the
laboratory environment. For example, the magnetometers whose operation
principle is based on the Hall e�ect in a crystal semiconductor, they are most
versatile and with greater sensitivity. Considering the charge carriers moving
longitudinally in a semiconductor crystal, with speed v, immersed in a mag-
netic �eld B, which acts perpendicularly to them, one can observe a cross
potential di�erence V, generated by the interaction of B with I (Hall e�ect).
The total force acting on the electric charge is given by:

~F = q ~E + q~v ∧ ~B (1.4)

which yields the electric �eld:

~E = −~v ∧ ~B = −
~J

nq
∧ ~B (1.5)

which produces a potential di�erence V proportional to current intensity and
to magnetic �eld and inversely proportional to the thickness and the charges
per volume unit:

V = ~E~I =
~B~I

nqs
(1.6)

So is possible to achieve high sensitivity:

S =
dV

dB
(1.7)

in samples of low thickness with high resistivity. Hall E�ect magnetic �eld
sensors are particularly a�ected by the temperature changes that alter mo-
bility of electrons in semiconductor crystal. It's also clear that, to make a
correct measurement of Earth's magnetic �eld, it should be avoided as much
as possible the presence of ferromagnetic materials and electronic equipment
in the proximity of the sensor [28, 29]. Magnetic sensors de�ne the component
of the local magnetic �eld along an axis heard, producing a signi�cant elec-
tric signal. In the analysis of movement, the measure of the Earth's magnetic
�eld is needed for horizontal detection to complete the detection of vertical
accelerometers, so to allow monitoring in three dimensions orientation.
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1.2 Project Purposes

Measuring behavior provides important information on the patient's clin-
ical evaluation. As reported in section 1.1.2, such information is usually
obtained from a formal or informal caregiver who is familiar with the pa-
tient's behavior. Evaluator perception may introduce highly subjective fac-
tors, which have an impact on medical decisions. It is therefore important
to introduce novel objective tools for the assessment of dementia symptoms
and behavior [30]. A possible solution is the use of a wearable inertial sen-
sor for measuring the patient's mobility pattern in the long-term care unit,
and to identify speci�c symptoms like restlessness, wandering phenomenon,
and aberration in the circadian motor behaviour [49]. The need to have an
objective assessment tool becomes now even more relevant since clinicians
are starting to take into account the use of di�erent support therapies for
replacing antidepressants, antipsychotics and mood stabilizers, because of
their side e�ects. An alternative approach to pharmacological treatment,
currently explored at the LVR clinic in Cologne (Germany), is the physical
exercise; therefore, physical activity monitoring could address both needs:
assess the post-intervention motor changes and assess the circadian motor
behaviour [16, 50]. The main aim of the project is to develop and imple-
ment an objective, sensor-based assessment of the circadian motor patterns,
for evaluating patients' living habits in the hospital, and to classify di�erent
disease symptoms a�ecting the motor behaviour. The secondary aim is to
verify pre- and post-intervention changes in a subgroup of patients involved
in the experimental exercise program performed at the LVR clinic, after two
weeks of physical exercises in addition to Treatment as Usual (TaU) [30].
To address the main aim of the project, a software has been implemented
in Matlab, for the circadian rhythmicity evaluation and classi�cation of dif-
ferent motor behaviors in people with dementia. A statistical analysis has
been performed for addressing the secondary aim, to investigate the e�ects
of a day-structuring exercise program on dementia patients in the LVR hos-
pital in Cologne. The hypothesis of the experimental exercise program is
that the intervention group (IG), carrying out a 2-week-structuring exercise
intervention in addition to TaU, will show a reduction in the behavioural
and psychological symptoms of dementia in the post-intervention, while the
control group (CG), only receiving social stimulation in addition to TaU, will
not show such changes.
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Chapter 2

Materials and Methods

2.1 Overview

2.1.1 Clinical assessment and intervention

Eighty-two patients between 55 and 95 years old and with di�erent diagnosis
of dementia (table 2.1), were recruited based on the diagnosis of dementia,
according to ICD-10 criteria [31], and, after being screened by two external
psychiatrist, stayed one week in the clinic before the enrolment, to familiar-
ize with the environment and to exclude delirium. All patients enrolled were
able to perform the Timed Up and Go Test (TuG). Patients excluded from
the study presented non-vascular or non-neurodegenerative dementia, car-
diac diseases that deny exercise participation and aggressive behavior that
deny participation to group activities. The group allocation to create the
control (CG) and intervention (IG) clusters has been done with the free on-
line software Qminim, to minimize di�erences between the tested clumps.
Group allocation has been performed according to sex, age, MMSE [32, 33]
and B-ADL [34]. Baseline characteristics have been recorded within the geri-
atric assessment, carried out by nurses and doctors of the LVR-Hospital,
including age, sex, BMI, type of dementia [31], MMSE score [32,33], clock-
drawing-test score, cognitive reserve capacity, the 10 meter gate speed (TuG)
and B-ADL[34,35]. Patients who took part in the intervention with physical
exercises, had TaU (exercise therapy for 45 minutes twice a week) and an
additional 2-week exercise program: on three non-consecutive days of the
week, they were o�ered of 4-exercises sessions a day, but each session was
not compulsory. If patient refused or were unable to participate, instructor
invited him/her at the next scheduled exercise session, while if positive feed-
back was given, patient carried out a 20-minute session, followed by a rest
period of an hour (table 2.2). For participation to be rated as complete, more
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than 50% of scheduled exercise time, intensity and repetitions were required.
Two exercise sessions included endurance exercises on seated ergometers for
upper and lower limb; other two focused on strengthening, with wrist and
ankle worn weights. The sessions included 2 minutes of warm up at the be-
ginning and two minutes of cool down at the end [30]. The control group
followed psychosocial stimulation at the time the experimental one had the
physical activity (table 2.3).

Table 2.1: ICD-10 code explanation

Type of Dementia ICD-10 Code
Dementia in Alzheimer's disease F00/G30

Vascular Dementia F01
Dementia in other diseases classi�ed elsewhere F02

Unspeci�ed Dementia F03
Other speci�ed degenerative diseases of nervous system [Lewy-body Dementia] G31.8

Primary psychiatric diagnoses
Organic hallucinosis F06.0

Organic delusional [schizophrenia-like] disorders F06.2
Organic mood [a�ective] disorders F06.3

Organic anxiety disorder F06.4
Other organic personality and behavioral disorders due to brain disease, damage and disfunction F07.9

Severe depressive episode without psychotic symptoms F32.2

Secondary diagnosis
Progressive vascular leukoencephalopathy [Binswanger's disease] I67.3

Parkinson's disease G20.00

Table 2.2: example of scheduled activities

a.m. p.m.

Time 9:00 9:30 10:00 10:30 11:00 11:30 00:00 to 02:00 2:00 2:30 3:00 3:30 4:00 4:30

Groups

Group 1 I II Lunch Break III IV

Group 2 I II III IV

Group 3 I II III IV
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Table 2.3: example of participation

Int-day 1 Int-day 2 Int-day 3 Int-day 4 Int-day 5 Int-day 6
DD.MM 16.03 18.03 20.03 23.03 25.03 27.03

exerc. session 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

ID 25 X S X X X X X X X O5 O3 X O2 X X O4 O5 X O2 X O2 X O4 X

x = participation (20 min. net exercise time)
S = sleep/advanced tiredness
O2= overlap with other therapies
O3=overlap with nursing services
O4=overlap with visiting relatives
O5=overlap due to other

2.1.2 Dataset acquisition

After the feasibility assessment [49], the uSense sensor has been �xed in
proximity of L5, on the lower back, to avoid any sense of presence of the sen-
sor for the patients and for avoiding the early removal. The uSense recorded
each patient's activities for more than 60 hours at the pre-intervention (three
days before the start of the exercises) and additional 60 hours at the post-
intervention, the following three days after 2-weeks of exercises (Figure 2.1).
The sensor was attached to the patient in the period from 8:00 until 11:00 in
the morning, and the recording time was about 72 hours. A Java-compiled
software (WMU_sw8, Figure 2.2) and a docking station have been used to
download the raw data and convert them into a TXT format. Six or more .txt
�les were generated by the Java software containing eight hours of recording
each (Figure 2.4); log �les reported nine columns of values (Figure 2.5). De-
tails on the uSense system are reported in the next paragraph.

Figure 2.1: schedule of body-�xed sensor assessment of patient motion behavior:
T0=baseline; Int0=beginning of intervention; Int1=end of intervention; T1=after inter-
vention
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Figure 2.2: Java-compiled software GUI for downloading and raw data conversion

Figure 2.3: output from the java-compiled software for the raw data conversion
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Figure 2.4: log �le converted in 8-hours �les

Figure 2.5: data recorded
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2.1.2.1 The uSense sensor system

The printed circuit board of the wearable unit, designed and developed by
DEI at University of Bologna, mounts the following components:

� Microcontroller AT32UC3A4256-C1UR, manufactured by Atmel Cor-
poration (www.atmel.com);

� Memory MT29F8G08ABACA-H4 by Micron Semiconductor Products
(www.micron.com);

� SENSOR1 � MPU-9150 - manufactured by InvenSense Inc. (www.
invensense.com);

� Embedded temperature sensor;

� On-a-chip oscillator;

◦ Gyroscope features: user-programmable full-scale range of ±250,
±500, ±1000 and ±2000°/s, sensitivity 131-16.4 LSB/(°/s);

◦ Accelerometer features: programmable full scale range of ±2g,
±4g, ±8g, ±16g, sensitivity 16.4-2 LSB/g;

◦ Magnetometer features: Full-scale measurement range is ±1200
µT, resolution 0.3 µT

� SENSOR2 � LSM330DTR � manufactured by STMicroelectronics (www.
st.com)

◦ Gyroscope features: user-programmable full-scale range of ±250,
±500, ±1000 and±2000°/s, sensitivity 8.75-70 m(°/s)/digit FARSEE-
ING(288940);

◦ Accelerometer features: programmable full scale range of ±2g,
±4g, ±8g, ±16g, sensitivity 1-12 mg/digit;

� Battery � LP383560-PCM-LD � manufactured by EEMB (www.eemb.
com).

Accelerometer range is set at 2g, gyroscope range is set at 250°/s, sampling
rate is 100 Hz, battery life is between 69 and 72h. The case is made with
hypoallergenic material and is water-resistant, weight is 36g, dimensions are
10×42×68 mm. The uSense system is composed by three main components:
a software application, the sensing unit (uSense sensor) and a docking station.
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The docking station is used to connect the sensing unit with the software
application. The uSense software application is used to manage the Sensing
Unit and it allows performing the following actions:

- start/stop the data recording;

- download the data stored in the internal sensor memory;

- reset the memory (this operation is needed before starting a new mon-
itoring session);

- convert the raw data;

- turn o� the Sensing Unit.

The inertial raw data are collected and converted in .txt �les of 8 hours each,
formatted as a table with nine columns: each row contains nine comma-
separated values: three values for the 3-axis accelerometer, three values for
the 3-axis gyroscope and three values for the 3-axis magnetometer. Each row
is the equivalent of one single sample, i.e.:

acc X, acc Y, acc Z, gyro X, gyro Y, gyro Z, mag X, mag Y, mag Z .

acc X: accelerometer raw signal captured on the X axis;
acc Y: accelerometer raw signal captured on the Y axis;
acc Z: accelerometer raw signal captured on the Z axis;

gyro X: gyroscope raw signal captured on the X axis;
gyro Y: gyroscope raw signal captured on the Y axis;
gyro Z: gyroscope raw signal captured on the Z axis;

mag X: magnetometer raw signal captured on the X axis;
mag Y: magnetometer raw signal captured on the Y axis;
mag Z: magnetometer raw signal captured on the Z axis.

Data stored in the log �le are the raw signal captured from each sensor
(i.e. 16-bit resolution). Formulas to convert raw data are as follows:

Accelerometer:
Accelerometer Data range: +/- 2g
Accelerometer Raw Data range: +/- 32768
Conversion formula (for each axis):
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g = (Accelerometer_raw_value)/ (32768/2)

Gyroscope:
Gyroscope Data range: +/-250 degree/sec
Gyroscope Raw Data range: +/-32768
Conversion formula (for each axis):
ω [degree/sec] = (Gyroscope_raw_value) / (32768/250)

Magnetometer:
Magnetometer Data range: +/-1200 µT
Magnetometer Raw Data range: +/-32768
Conversion formula (for each axis):
H[µT] = 0.007629 µT × (Magnetometer_raw_value) [10].

2.2 Signal processing and feature extraction

The uSense log �les were loaded in Matlab and used as an input to a MatLab
software developed and validated by DEI at the University of Bologna. The
Matlab software performs signal processing and activity recognition distin-
guishing four categories: �lying�, �sedentary�, �active�, and �walking�. Soft-
ware output also includes: the time of the day, the activity duration and
other advanced parameters like the energy expenditure and gait cadence in
a matrix format (Figure 2.6). Two additional vectors are given as an output:
the time series of activity categories and the time vector with the time of the
day both sampled at 100 Hz. Since it is important to observe exactly the
same time frame for the analysis of the circadian motor behaviour and for
making statistical comparisons between di�erent patients groups, a Matlab
function has been implemented to cut the recording into blocks of exactly 48
consecutive hours from 12:00 to 12:00 (with apposite function cut_output.m).
Another function was used to select the subjects who were observed in this
time frame (with function select_48_hours.m). Patients without 48 hours
of continuous recording from 12:00 to 12:00 were excluded from the analysis.
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Figure 2.6: software output matrix

To understand and evaluate patients' circadian patterns, a review of the
scienti�c literature has been performed in order to select the most promis-
ing metrics and related algorithms have been developed and implemented
in Matlab. The use of fractal and cosinor analysis, barcoding, and com-
plexity measures has been studied and validated in di�erent clinical research
projects and their ability to discriminate di�erent patterns in motor behavior
or other biologic time-series have been proven [4, 6, 11, 12, 14, 16, 36, 37, 38,
39, 40, 41, 43, 52]. Anisoara Ionescu et al., with a di�erent inertial sensors
setup, developed an 18-levels encoding, with thresholds on acceleration of
body segments, gait cadence and duration of episodes (lying, sitting, stand-
ing and walking). Applying the Sample Entropy, Shannon's entropy and
Lempel-Ziv complexity algorithms to the encoding obtained from the anal-
ysed patterns, they were able to assess di�erences in circadian motor behavior
between healthy subjects and chronic-pain patients. As well, the barcoding
technique was useful in the visualization of the motor patterns, to have an
immediate understanding of di�erences [16]. In a di�erent study, Anisoara
Ionescu et al. used the fractal analysis, such as the Fano Factor Analysis and
the Detrended Fluctuation Analysis to analyse chronic pain patients treated
with spinal cord stimulation (SCS). Thanks to these mathematical tools, it
has been possible to see a signi�cant di�erence in the activities performed
by the chronic-pain patients, compared with the healthy subjects [11]. The
Cosinor Analysis has been widely used in the analysis of circadian behavior.
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Re�netti et al. and Cornelissen et al. de�ned the Cosinor technique as a
good mathematical tool to understand circadian phenomena with a 24 hours
periodicity [12], and applied it to several �eld. For what concerns the cir-
cadian rhythm, Re�netti et al. employed the Cosinor Analysis to study the
behavior of populations from several countries, to understand the socioeco-
nomic development [52].

Furthermore, the aforementioned analysis strategies have been used in the
�eld of biological phenomena. Nagarajan used the Lempel-Ziv complexity
to �nd sub-patterns in the uterine contraction during labour [14]. Rich-
mann and Moorman used the Sample Entropy to analyse the cardiovascular
time-series, �nding recurrences and discriminating pathological from healthy
cardiovascular pro�les [4]. Little et al. demonstrated that DFA and RPDE
are sensible in detecting speech disorders and pathologies, highlighting signif-
icant di�erences from the normal speech, and in detecting abnormal cardiac
patterns [36, 37]. Cornelissen et al. applied the Cosinor Analysis to the am-
bulatory blood pressure monitoring [39] and to the study of chronobiological
phenomena that occur in unicellular and multicellular organisms [38]. Peng
et al. utilized the DFA, while Viswanathan et al. the DFA and FFA, to
distinguish people with congestive heart failure from healthy subjects [40,
41]. Baddeley et al. applied the FFA in the �eld of neural networks, to study
neurons responses in primary and inferior temporal visual cortices, to videos
stimulation [43].

However, these methodologies have never been used for investigating the
motor behaviour of people su�ering from dementia. What is expected from
these metrics is the ability to discriminate di�erent motor pattern within the
patients group allowing identifying speci�c clusters with a clinical meaning.
Details about selected metrics are reported in the next paragraphs.

2.2.1 The encoding

The output matrix of the signal processing software (section 2.2, Figure 2.6)
is used for the encoding (or its visual representation, the barcode. See section
2.2.3) of the activities. In analogy to [16], di�erent features of the Physical
Activity (PA), type, intensity, and duration, were used to de�ne PA states:

� if the PA type was identi�ed as �lying�, two PA states were de�ned and
encoded with �0�,�1�:

◦ if patient has been inactive/resting for more than 30 minutes, than
the activity has been identi�ed by �0�;
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◦ if patient has been inactive/resting for less than 30 minutes, than
the activity has been identi�ed by �1�;

� if the PA type was identi�ed as �sedentary�, two PA states were de�ned
and encoded with �2�,�3�:

◦ if the patient has been poorly active/sitting for more than 5 min-
utes, than the activity has been identi�ed by �2�;

◦ if the patient has been poorly active/sitting for less than 5 min-
utes, than the activity has been identi�ed by �3�;

� if the PA type was identi�ed as �active�, then 4 PA states were de�ned
and encoded with digit from �4� to �7�:

◦ active for less than 5 minutes with mild to moderate intensity
(metabolic equivalent less than 2.5 , so less than 7000 counts/min)
= �4�;

◦ active for more than 5 minutes with mild to moderate intensity =
�5�;

◦ active for less than 5 minutes with moderate to high intensity =
�6�;

◦ active for more than 5 minutes with moderate to high intensity =
�7�;

� if the PA type was identi�ed as �walking�, then 4 PA states were de�ned
and encoded with digit from �8� to �11�:

◦ Mild to moderate gait intensity (MET < 3,5) for less than 5 minute
= �8�;

◦ Mild to moderate gait intensity for more than 5 minutes = �9�;

◦ Moderate to high gait intensity (MET > 3,5) for less than 5 min-
utes = �10�;

◦ Moderate to high gait intensity for more than 5 minutes = �11�.

Thresholds on activity duration have been suggested by the clinicians on the
basis of their experience in behavioural assessment considering a reasonable
time to distinguish between a brief rest or a sleep (thd1= 30 min), and a
reasonable duration for typical indoor activities like walking in the corridors,
going to the toilet, watching TV, etc. (thd2= 5 min). METs thresholds were
selected taking into account the metabolic equivalent range for gait (thmet2=
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3.5) and other activities (thmet1= 2.5); threshold for gait was higher than
for other activities because gait usually requires more energy for this kind
of patients. The time series of PA states was obtained encoding the data
from the 48 recording hours, from 12:00 to 12:00 (Matlab function named
12_levels_encoding.m). The encoded time series was used to measure the
complexity of the pattern and to measure the time-structure of the pattern.

2.2.2 Complexity measures

Complexity measures have been selected for their ability to reveal clinically
relevant features of movement behavior [16]. The meaningful information
resides in the variety, temporal dynamics, and duration of PA states and
these di�erences can be quanti�ed using structural complexity measures, as
structural-static and structural-dynamic measures[1]. Structural-static mea-
sures allow the quanti�cation of the amount of di�erent PA states while
structural dynamic measures are sensible to the order of PA states in the se-
quence, allowing the quanti�cation of the amount of di�erent subsequences,
and the description of transition between states. Four complexity measures
have been applied to the PA states time series.

2.2.2.1 Information Entropy

Information entropy is a structural-static complexity measure that has high/low
values when there are many/few types of PA states in the time series. The
information entropy is calculated as:

H =
a∑
i=1

p(i)log2(p(i)) (2.1)

where a is the amount of digit to de�ne states in the �alphabet� (in this case
a=12) and p(i) is the probability to have the i-th symbol. The normalized
entropy is de�ned as:

Hn = H/log2(a) (2.2)

and varies between 0 and 1. This measure is sensitive to the diversity of PA
states in the code but insensitive to the dynamical structure of it. Information
entropy is calculated for each time series by means of the Matlab function
named entropy.m expressly implemented for the purpose. This measure has
been applied to both the sequence of PA states (section 2.2.1) and the time
series of the PA state sampled at 100Hz (hence keeping the information about
the PA states duration).
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2.2.2.2 Lempel-Ziv complexity (LZC)

Lempel-Ziv complexity is a structural dynamic measure that takes into ac-
count the number of sub patterns identi�ed in the sequence as it evolves. It
is related to Kolmogorov complexity, but Lempel and Ziv linked the concept
of complexity to the generation rate of new sub patterns along a sequence
of symbols S, of length N, with an alphabet size a; the LZC measure is
calculated as:

LZC =
(c(S(N, a)))

(N/loga(N))
(2.3)

where c is the number of sub patterns in the decomposition of S [1, 6, 9, 14,
16]. The Lempel-Ziv complexity measure has been computed implementing
an algorithm that follows the �owchart provided by Kaspar and Schuster [6].
The Matlab function lzc.m created, implements the measure as it is reported
in the �owchart in Figure 2.7; �rst the number of sub patterns is identi�ed
as described in the �owchart and then the LZC formula is applied.

Figure 2.7: LZC algorithm by Kaspar and Schuster
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2.2.2.3 Sample Entropy

Sample entropy is a structural-dynamic parametric measure that quanti�es
the regularity of a symbolic sequence by analysing the presence of similar sub
patterns in data sequence. It is de�ned as the negative natural logarithm of
probability that two sub patterns similar for m points remain similar to the
next point m+1. To calculate the sample entropy, the symbolic sequence is
divided into overlapping sequences of length m and the probability that two
sub patterns are matched for m points is calculated taking into account the
average number of sub pattern pairs for which the Euclidean distance is lower
than a tolerance r. Same is applied to p(m+1). Sample entropy is calculated
as:

SampEn = −lnpm+1(r)

pm(r)
(2.4)

Algorithm description is provided by Richman and Moorman [4], and im-
plementation is available on Mathworks � �le exchange (Copyright I 2012,
Kijoon Lee � All rights reserved.). It provides a non-negative �nite index
(between 0 and 1) where high values are associated with high complexity,
irregularity and unpredictability in the sequence. Parameters m and r have
been set as m=2 and r=1, in analogy with [16], in order to speed up the
computation but also because the PA time series show many sub-patterns
and the tolerance r=1 is the best value for comparing two sub sequences [16].
The Matlab function SampEn.m implements this measure.

2.2.2.4 Recurrence period density entropy (RPDE)

It is applied in dynamical systems theory, stochastic processes and time series
analysis, for determining the periodicity or repetitiveness of a signal [36, 37].
It is useful for characterizing the extent to which a time series repeats the
same sequence, and is therefore similar to linear autocorrelation and time
delayed mutual information, except that it measures repetitiveness in the
phase space of the system, and is thus a more reliable measure based upon
the dynamics of the underlying system that generated the signal. It has the
advantage that it does not require the assumptions of linearity, Gaussianity
or dynamical determinism. The RPDE value Hnorm is a scalar in the range
from zero to one. For purely periodic signals, Hnorm = 0, whereas for
purely Independent and identically distributed random variables, Hnorm is
approximately near 1. The RPDE method �rst requires the embedding of
a time series in phase space, which, according to stochastic extensions to
Taken's embedding theorems, can be carried out by forming time-delayed
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vectors:
Xn = {xn, xn+t, xn+2t, ..., x(

n+(m−1)t
)} (2.5)

for each value xn in the time series, wherem is the embeding dimension, and t
is the embedding delay. These parameters are obtained by systematic search
for the optimal set; in this study, m has been set to 2 and t has been set to
1. For each point xn in the phase space, an epsilon-neighbourhood (an m-
dimensional sphere of epsilon radius) is determined, and every time the time
series goes inside the sphere, the time di�erence T between serial passages
is recorded in a histogram. This histogram is normalized to 1, obtaining
an estimate of the recurrence period density function P(T). The normalized
entropy of the density is calculated as:

Hnorm = −[ln(Tmax)]
−1

Tmax∑
t=1

P (t)ln(P (t)) (2.6)

where Tmax is the largest recurrence value (typically on the order of 1000
samples). RPDE has the ability to detect subtle changes in natural biological
time series such as the breakdown of regular periodic oscillation in abnormal
cardiac function, which are hard to detect using classical signal processing
tools such as the Fourier transform or linear prediction. The recurrence
period density is a sparse representation for nonlinear, non-Gaussian and
nondeterministic signals, whereas the Fourier transform is only sparse for
purely periodic signals [36, 37]. Algorithm for RPDE is available on �le
exchange on Mathworks (Copyright I 2007 Max Little). Calculation of RPDE
uses a set of Matlab functions: rpde.m, close_ret.c, close_ret.mexw64.

2.2.3 The Barcode

To visualize the behavioral pattern of each patient during the continuous
monitoring a colour code has been associated to PA states (section 2.2.1).
For each symbol, a colour has been selected (Figure 2.8) following the rule
that inactivity or sedentary activities is associated to cold colours (blue and
light blue), activities to transition colours (green, yellow), and gait to warm
colours (orange and red), and activity duration gives a di�erent shade and is
re�ected in the width of the colour bar. This visual strategy allows a quick
and intuitive representation of the motor pattern during the 48 hours of
recording; in the x-axis of the barcode was reported the time of the day. The
Matlab function 12_levels_barcode.m has been implemented for generating
all the �gures of the subjects' behavioural pattern. Figure 2.9 shows a couple
of examples of activity barcodes created with data recorded in two patients
with very di�erent behaviors.

29



Figure 2.8: color barcode legenda

Figure 2.9: Examples of barcodes: (top) sedentary inpatient subject with dementia and
no sleep problems or wandering behavior; (bottom) active inpatient subject with dementia
and wandering behavior during the day and sleep problems
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2.2.4 Fractal analysis

2.2.4.1 Detrended �uctuation analysis (DFA)

DFA is a method in fractal analysis that can quantify �uctuations in a given
nonstationary time series by a single scaling exponent α, the self-similarity
parameter that represents the long-range power-law correlation properties of
the signal [11, 40, 41]. Alpha is obtained by computing the root-mean-square
of the �uctuation F(n) of an integrated and detrended time series at di�erent
observation windows of size n and plotting F(n) against n on a log-log scale.
Fractal signals are characterized by a power law relation:

F (n) ∼ nα (2.7)

The slope of regression line relating log2(F (n)) to log2(n) determines the
scaling exponent alpha. For a value of α = 0.5, the signal is random; for
0.5 < α ≤ 1 indicates a rising power law scaling behaviour and the presence
of long-range correlations. According to [11,40], a proper scaling range for
assessment of a power law behaviour is 5 ≤ n ≤ L/10, where L is the
data length of the time series. This method allows detecting intrinsic self-
similarity embedded in a seemingly nonstationary time series and avoids
spurious detection of apparent self-similarity, which may be an artefact of
extrinsic trends [11]. This method has been used by Rutschmann et al. [11],
Little et al. [36, 37] and by Peng et al. [40]. The code was implemented
in two Matlab functions: DFA.m and DFA_main.m in agreement with the
description reported in literature [11, 36, 37, 40, 41].

2.2.4.2 Fano Factor analysis

The Fano Factor is a useful statistical measure to test whether the �uctu-
ations of activity-rest or rest-activity transitions counts N occur randomly
or are of fractal nature and so invariant in the time-scale. The Fano factor,
Ff(t), is de�ned as the event-number variance divided by the event number
mean:

Ff (t) =
< N2(T ) > − < N(T ) >2

< N(T ) >
(2.8)

where T is the time length of the window and N is the number of transition
between values of inactivity (�lying� and �sedentary�) and activity (�active�
and �walking�). The Fano factor curve is obtained by plotting Ff(T) as a
function of the window size T on a log-log scale. T is progressively increased
from a minimum of 5 seconds to 10 times Tmax, where Tmax is the block
data length, so that at least ten non overlapping windows are used for each
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measure of Ff(T). For a random Poisson process, Ff(T) is close to 1 for all
windows sizes; for a periodic process, Ff(T) is instead close to 0, due to the
decrease in variance as the windows size increases, while for a fractal-rate
stochastic point process, Ff(T) assumes a power law form for large T :

Ff (T ) = 1 +
T

T0

αF

(2.9a)

0 < α < 1 (2.9b)

where T0 is the fractal onset time and marks the lower limit for signi�cant
scaling behaviour in the Ff. The power law relationship appears as a straight
line on the log-log scale with a positive slope; the slope, αF is de�ned as the
fractal-scaling exponent. Linear regression is used to calculate αF [11, 41, 42,
43]. For the computation of the Fano Factor two Matlab functions (fano.m
and FanoFactor.m) have been implemented.

2.2.5 Cosinor analysis

The Cosinor analysis uses a cosine function (Figure 2.10) as a model for
biological and circadian rhythms [12, 38, 39, 52]; it is characterized by the
following parameters:

Figure 2.10: Cosinor wave explanation

M = MESOR: Midline Estimating Statistic Of Rhythm, that is the value
around which oscillation occurs;
A = amplitude: half the di�erence between the highest and lowest value, or
the distance between MESOR and the highest (lowest) value;
ω = angular frequency: the coe�cient to translate from hours to degrees;
φ = acrophase: the time at which the higher value occurs;
t= the time, which is the independent variable.
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In studies of circadian rhythms, it is indeed possible to assume that the
period is known, being synchronized to the external 24-hour cycle. The re-
gression model for a single component can be written as:

Y (t) = M + A · cos(ωt+ φ) + e(t) (2.10)

where e(t) is the error term and

ω = 2π

radians/24 hours. The model can be rewritten as:

Y (t) = M + βx+ γz + e(t) (2.11)

where:

β = Acosφ; γ = −Asinφ; x = cos(ωt); z = sin(ωt) (2.12)

The principle underlying the least squares method is the minimization of
the residual sum of squares (RSS ), that is the sum of squared di�erences
between measurements Yi (obtained at times ti, i=1, 2, . . . , N ) and the
values estimated from the model at corresponding times:

RSS =
∑
i

[Y i− (M̂ + β̂xi+ γ̂zi)]2 (2.13)

This approach is valid when all individual standard deviations are equal, as is
often the case. Estimates for M, β, and γ are obtained by solving the normal
equations, obtained by expressing that RSS is minimal when its �rst-order
derivatives with respect to each parameter are zero. Normal equations are:∑

(Y i) = MN + β
∑

(xi) + γ
∑

(zi) (2.14a)∑
(Y ixi) = M

∑
(xi) + β

∑
(xi2) + γ

∑
(xizi) (2.14b)∑

(Y izi) = M
∑

(zi) + β
∑

(xizi) + γ
∑

(zi2) (2.14c)

or, in matrix form: d = S · u, where u = [M β γ]′. Estimates of M, β and γ
are thus obtained as u = S−1d. Estimates for the amplitude and acrophase
can be derived from the estimates of β and γ by the following relations:

A = (β2 + γ2)1/2; (2.15)

ϕ = arctg(−γ/β) +Kπ; (2.16)

where K depend upon the sign of β and γ themselves:
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� if β is positive and γ is positive then K = 0

� if β is positive and γ is negative then K= -2π

� if β is negative and γ is positive then K = -π

� if β is negative and γ is negative then K = -π

Figure 2.11: Cosinor clock

Hours run clockwise, as usual, while degrees, that normally are measured
counter clockwise, here are from 0 to -2π, so acrophase is positive between π
and π/2 (corresponding to -3π/2) and between -3π/2 and -2π; while negative
between 0 and -π [39] (Figure 2.11). Acrophase is represented as the hand
of the clock showing at which hour of the day the patient has the peak of
physical activity. The model is statistically signi�cant when the model sum
of squares is large related to the residual sum of squares, as determined by
the F-test:

F0 = (MSS/2)/(RSS/(N − 3)) (2.17)

Where 2 and N-3 are the numbers of degrees of freedom attributed to the
model (k = 3 parameters � 1) and to the error term (N � k). The null
hypothesis (H0 ) that there is no rhythm (the amplitude is zero) is rejected
when F0 > F (1-α, 2, N-3), where α relates to the chosen probability level
for testing H0 (α=0.05). For this study, F(1-α, 2, N-3) taken from Fisher's
tables, is 3.69. Cosinor analysis is performed over each single continuous
recording of a patient's physical activity and becomes important for assess-
ing the circadian motor pattern since disruptions in a person's circadian
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rhythm are used for diagnostic purposes. Indeed, it must be performed on
every single monitoring in order to estimate the Mesor M and parameters β
and γ [39]. Cosinor Analysis has been implemented in Matlab in agreement
with Cornelissen's article [38]; the ad hoc Matlab function is named cosi-
nor3.m . Cosinor analysis has been applied to two datasets: the time series
of the 4 main activity categories (�Lying�, �Sedentary�, �Active�, �Walking�)
and on the 12 PA state time series (section 2.2.1) obtained by applying the
Matlab functions obtain_alphabet.m, obtain_12_levels_alphabet_mask.m,
�nd_beginning_and_end_indexes_of_integer_mask.m, andmeasures_on_
12_levels_mask.m, which give a 100Hz sampled vector of the encoding.

2.2.6 Steps count and percentage of activities

In addition to the features described in previous paragraphs, other variables
have been included in the analysis: the number of steps and the percentage
of time spent in each activity type, which are traditionally used for the as-
sessment of physical activity. Those features are calculated on both daytime
and night-time. Daytime is de�ned as the period between 6:00 and 00:00
while night-time is de�ned as the period between 00:00 and 6:00. These
variable are implemented in the Matlab functions compute_steps.m and pro-
cess_data_without_encoding.m : the �rst function provide as output the
number of steps in 24 and 48 hours; the second function provide as out-
put the percentage of time spent in the four activities, �Lying�, �Sedentary�,
�Active�, and �Gait�, for both daytime and night-time.

2.3 Statistical analysis

Three groups of patients have been de�ned by clinicians on the basis of
clinical scores and scales: �aberrant and wandering motor behavior"; �sleep
problems�; and �normal motor behavior�. A �rst statistical analysis has been
performed on these three clinically de�ned groups by means of a one-way
anova for comparing the groups. Since clinical criteria allows patients to be
in more than one group, those patients exhibiting both aberrant/wandering
behaviour and sleep problems have been assigned to the �sleep problem�
group, to underline this last characteristic.

To pursue the main aim of the project, namely developing an objective sensor-
based criterion to assess patients' living habits in the hospital, and before
applying statistical analysis, subjects have been divided into 4 mutually ex-
clusive groups on the basis of activities revealed by the software: �Lying�
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activity, coded as 1, �Sedentary� activity, coded as 2, �Active�, coded as 3,
and �Gait�, coded as 4. The amount of each activity in the time series served
as criterion to classify the patients. Two thresholds have been de�ned on the
mean value of this time series for daytime (06:00 to 00:00) and night-time
(00:00 to 06:00). The threshold for the daytime activities has been set to 2
(equal to the value associated with the sedentariness) and the threshold for
night-time has been set to 1.3 (close to the value associated with lying periods
but allowing short active periods for usual visits to the bathroom). By means
of these two thresholds it was possible to de�ne four groups: �mostly regu-
lar�, patients who were active during the day and inactive during the night;
�poorly active�, patients who were mostly sedentary during the day and inac-
tive during the night; �always active�: patients who were active during both
the day and the night; and �day inactive/night active�, active during the night
and inactive/mostly sedentary during the day� (d. i. n. a.). One-way anova
with multiple comparison has been used for comparing these four groups.
The Matlab function subgroups_subdivision_of_included.m was used for as-
signing the patients to these four groups.

To pursue the secondary aim of the project, namely verifying pre- and post-
intervention changes in a subgroup of patients, statistical comparison (one-
way anova) has been performed between CG and IG in the pre-intervention
(baseline) and between CG and IG in the post-intervention. A cross-comparison
(one-way anova and multiple comparison correction) between pre and post
intervention of both CG and IG has been performed for investigating possible
trends in the output variables in these groups.

36



Chapter 3

Results

From the total starting sample involved in the project, 18 out of 82 patients
were excluded at the baseline: n=6 patients had more than 48 hours of
recording but it was not possible to select the time period between 12:00
and 12:00; n=8 patients removed the sensor before completing the 48 hours
starting at 12:00; n=3 patients had recording problems; and n=1 patient
refused to wear the sensor. A sample of 64 patients was available for the
analysis.

3.1 Results via clinical classi�cation criteria

With respect to the statistical comparison at the baseline among the groups
de�ned by means of the clinical criteria, n=38 patients were assigned to the
�aberrant + wandering motor behaviour� group; n=20 patients were assigned
to the �normal behaviour� group and n=6 patients were assigned to the �sleep
problems� group. Since the �sleep problems� group was too small, the anova
was performed only on the �rst two groups. Statistically signi�cant di�er-
ences were found only for two features (Figure 3.1 and 3.2): the number of
steps and the percentage of walking episodes at daytime (p < 0.05). Figure
3.1 shows the graph focused on the values of interest, for better observing
dissimilarities. Di�erences were not signi�cant for all the other features (p
> 0.05).
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Figure 3.1: one-way anova for gait activity (labeled as 4) during the day time frame
(06:00-00:00)
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Figure 3.2: one-way anova on the steps number during the 48 hours recorded
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As expected, the �aberrant + wandering motor behaviour� group had more
steps and spent more time walking during the day with respect to the �normal
behaviour� group. Anyway, mesor from the Cosinor analysis (on both the
time series of the four activity categories, Figure 3.3 and the time series of
the 12 PA states, Figure 3.4) and the time spent walking during night-time
(Figure 3.5) were not signi�cantly di�erent in the two groups (p > 0.05).
The �sleep-problems� did not show any di�erence with respect the other two
groups. Figures show the graphs focused on the values of interest, for a better
observation.
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Figure 3.3: one-way anova on mesor evaluated on the 4 activity categories
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Figure 3.4: one-way anova on mesor evaluated on the PA states
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Figure 3.5: one-way anova for gait activity (labeled as 4) during the night
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3.2 Results via classi�cation based on activities

With respect to the analysis of the four groups de�ned by the instrumen-
tal features, n=38 patients were assigned to the �poorly active� group, n=7
patients were assigned to the �mostly regular� group, n=9 patients were as-
signed to the �always active� group, and n=10 patients were assigned to the
�day inactive/night active� group (Figure 3.6). Statistics about the features
extracted from signals at the baseline are reported in Table 3.1 and 3.2. Cosi-
nor analysis applied to the time series of the 4 activity categories is signi�cant
for mesor, amplitude and F0 (p < 0.05, Figure 3.7, 3.8, 3.9); Cosinor analysis
applied to the time series of the PA states is also signi�cant (p < 0.05, Fig-
ures 3.17, 3.18, 3.19). The percentage of time for the four activity categories
at night-time (Figure 3.13, 3.14, 3.15, and 3.16) were all signi�cantly di�er-
ent among the groups; also the percentage of time for �Lying�, �Active�, and
�Gait� during daytime (Figures 3.10, 3.11, 3.12) were signi�cantly di�erent
among the groups (p < 0.05). Information entropy computed on the 100 Hz
sampled encoding of PA states (Figure 3.20) was signi�cantly di�erent (p <
0.05) as well as the number of steps (Figure 3.21). Looking at the speci�c
groups, in the multiple comparison, di�erences are found for the Cosinor
analysis of the time series of PA states regarding the amplitude (Figure 3.18)
and F0 (Figure 3.19) between the �poorly active� and the �day inactive/night
active� (d.i.n.a) groups, and between the �mostly regular� and the �d.i.n.a.�
groups; this means that the �tting of the model was better in those groups
with respect the �d.i.n.a.� group. Mesor was signi�cantly di�erent between
the �poorly active� group and the �always active� group meaning that the
latter had a higher activity level (Figure 3.17). Similar results have been ob-
tained for the Cosinor analysis applied to the time series of the four activity
categories (Figures 3.7, 3.8, 3.9): looking at table 3.2, signi�cant di�erences
in the model �tting are between the �poorly active� and �d.i.n.a.� groups, and
�mostly regular� and �d.i.n.a.� groups. Mesor is not signi�cant, for these two
comparisons, but it is between �poorly active� and �always active� groups.
During the day, the percentage of �Lying� activity is higher in the �poorly ac-
tive� group with respect to the �always active� group and the �mostly regular�
group (Figure 3.10). As expected, the �mostly regular� group had a higher
percentage of active time with respect to the �poorly active� group (Figure
3.11). Gait time is higher in the �mostly regular� group and in the �always
active� group with respect to the other two groups (Figure 3.12). During
the night, the �mostly regular� and the �poorly active� groups present about
the same amount of lying activity and are signi�cantly di�erent from the
�d.i.n.a.� and the �always active� groups (Figure 3.13); these last two groups
are usually awake at night, showing sedentary activities and gait episodes
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(Figures 3.14, 3.15, 3.16). In general, the �d.i.n.a.� group is similar to the
�poorly active� group during the day, but similar to the �always active� group
during the night (tables 3.1, 3.2 and 3.3). Information entropy computed on
the 100Hz sampled encoding is signi�cantly di�erent between the �poorly
active�, the �mostly regular�, and the �always active� groups: �poorly active�
group present a less complex behavioural pattern due to the poor variety of
activities (Figure 3.20); this is also con�rmed by the total number of steps
and percentage of each activity in this group, with respect the others. The
�mostly regular� group was the one walking more than the others followed
by the �always active� group (Figures 3.21 and 3.16). The graphs shown are
focused on the values of interest. No signi�cant di�erences were found for
the other metrics, see table 3.2.
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Table 3.1: mean values and standard deviations of outcomes in the total baseline dataset

Poorly active Mostly regular Day inactive/night active Always active
(n=38) (n=7) (n=10) (n=9)

Alpha FFA
Mean ± std 0.64±0.05 0.66±0.05 0.62±0.04 0.63±0.04
Alpha DFA
Mean ± std 0.48±0.08 0.53±0.06 0.51±0.07 0.53±0.06

4-states Mesor
Mean ± std 1.63±0.08 1.91±0.09 1.74±0.09 2.02±0.17
4-states

Amplitude
Mean ± std 0.60±0.14 0.74±0.09 0.38±0.05 0.51±0.34
4-states

Acrophase
Mean ± std 2.44±0.94 2.56±0.20 1.95±1.84 1.48±2.32
4-states F0
Mean ± std 3.88e+6±1.89e+6 3.95e+6±1.09e+6 1.41e+6±4.63e+5 2.33e+6±2.85e+6

12-levels Mesor
Mean ± std 1.92±0.86 2.44±0.24 1.92±0.22 2.67±0.48
12-levels
Amplitude
Mean ± std 1.50±0.45 2.00±0.26 1.01±0.16 1.43±0.92
12-levels
Acrophase
Mean ± std 2.23±1.20 2.55±0.19 1.91±1.81 1.49±2.28
12-levels F0
Mean ± std 3.49e+6±1.86e+6 4.22e+6±1.22e+6 1.42e+6±4.97e+5 2.67e+6±3.17e+6
Information
entropy

Mean ± std 0.48±0.03 0.47±0.01 0.47±0.02 0.48±0.01
Lempel-Ziv
complexity
Mean ± std 0.27±0.04 0.28±0.01 0.26±0.04 0.28±0.02

HRPD
Mean ± std 0-28±0.04 0.27±0.01 0.28±0.04 0.28±0.02

Sample entropy
Mean ± std 0.47±0.11 0.51±0.04 0.43±0.11 0.49±0.04

Entropy on 100Hz
sampled encoding

Mean ± std 0.53±0.046 0.59±0.04 0.55±0.03 0.58±0.05
Day: Lying
Mean ± std 38.2%±10.36% 20.6%±7.53% 31.9%±8.37% 21.4%±6.57%

Day: Sedentary
Mean ± std 50.7%±11.82% 58.5%±10.59% 59.2%±8.82% 58.8%±14.82%

Day: Active state
Mean ± std 2.6%±1.34% 4.2%±1.48% 2.5%±1.19% 3.9%±2.07%
Day: Gait
Mean ± std 8.5%±3.46% 16.7%±5.02% 6.4%±1.89% 16.0%±10.90%
Night: Lying
Mean ± std 92.0%±5.80% 90.1%±5.44% 60.3%±10.11% 46.8%±28.33%

Night: Sedentary
Mean ± std 6.4%±5.34% 8.0%±5.70% 34.7%±11.24% 46.2%±25.15%

Night: Active state
Mean ± std 0.5%±0.40% 0.7%±0.64% 1.6%±1.36% 2.3%±2.63%
Night: Gait
Mean ± std 1.1%±1.08% 1.2%±1.08% 3.4%±3.52% 4.6%±4.58%

Steps in the 48 h
Mean ± std 16'108±7'083 29'160±8'479 13'716±5'041 31'841±26'423
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Figure 3.6: Total dataset layout
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Figure 3.7: one-way anova on mesor evaluated on the 4 activity categories
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Figure 3.8: one-way anova on amplitude evaluated on the 4 activity patterns
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Figure 3.9: one-way anova on F0 evaluated on 4 activity patterns
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Figure 3.10: one-way anova on lying activity during the day
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Figure 3.11: one-way anova on �active� state during the day
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Figure 3.12: one-way anova on gait activity during the day
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Figure 3.13: one-way anova on the lying activity at night-time
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Figure 3.14: one-way anova on sedentariness at night-time
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Figure 3.15: one-way anova on state �active� at night-time
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Figure 3.16: one-way anova on gait activity at night-time
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Figure 3.17: one-way anova on mesor evaluated on the PA states
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Figure 3.18: one-way anova on amplitude evaluated on the PA states
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Figure 3.19: one-way anova on F0 evaluated on the PA states
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Figure 3.20: one-way anova on information entropy computed on the 100 Hz sampled
encoding of PA states
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Figure 3.21: one-way anova on the number of steps
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Table 3.2: p-value from multiple comparison on the complete baseline dataset

Poorly Poorly Poorly D. inac./N. Always D. inac./N.
active(n=38) active(n=38) active(n=38) act.(n=10) active(n=9) act.(n=10)

vs vs vs vs vs vs
Mostly D. inac./N. Always Mostly Mostly Always
regular act. active regular regular active
(n=7) (n=10) (n=9) (n=7) (n=7) (n=9)

Alpha DFA 0.39 0.69 0.17 0.95 0.99 0.84

Alpha FFA 0.77 0.25 0.80 0.15 0.47 0.89

4-states
Mesor 5.20e-8 0.02 3.76e-9 0 0.13 5.96e-7
4-states

Amplitude 0.22 0 0.49 6.20e-4 0.05 0.39

4-states
Acrophase 0.99 0.73 0.22 0.79 0.38 0.86

4-states
F0 0.99 0 0.12 0.03 0.32 0.69

12-levels
Mesor 0.28 1.00 0.03 0.45 0.92 0.11

12-levels
Amplitude 0.07 0.03 0.98 9e-4 0.11 0.27

12-levels
Acrophase 0.95 0.92 0.51 0.81 0.47 0.92

12-levels
F0 0.79 0.01 0.65 0.02 0.38 0.49

Day:
Lying 1.70e-4 0.25 6.42e-5 0.08 0.99 0.08

Day:
Sedentary 0.39 0.19 0.26 0.99 1.00 0.99

Day:
Active state 0.04 0.99 0.08 0.09 0.97 0.16

Day:
Gait 0 0.65 0 7.40e-4 0.99 8.10e-4
Night:
Lying 0.98 7.17e-9 3.77e-9 3.11e-5 1.36e-8 0.08

Night:
Sedentary 0.98 1.21e-8 3.77e-9 5.12e-5 3.56e-8 0.12

Night:
Active state 0.96 0.03 4.11e-4 0.39 0.03 0.55

Night:
Gait 0.99 0.04 8.12e-4 0.24 0.02 0.63

Information
entropy 0.95 0.97 0.99 0.99 0.94 0.97

Lempel-Ziv
complexity 0.96 0.98 0.84 0.91 0.99 0.78

HRPD 0.92 0.99 0.99 0.98 0.98 1.00

Sample entropy 0.68 0.83 0.88 0.42 0.98 0.61

Entropy
on 100Hz

sampled encoding 0.01 0.31 0.01 0.53 0.99 0.66

Steps in the 48 h 0.04 0.93 0 0.04 0.96 0
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Figure 3.22: Qualitative summary of the obtained results

3.2.1 Results from patients included in the experimen-

tal protocol

Out of 64 patients, 44 had the follow up available and it was possible to
perform the pre-post intervention analysis. Groups de�ned by means of the
instrumental features were: n=27 patients in the �poorly active� group; n=5
patients in the �mostly regular� group; n=6 patients in the �d.i.n.a� group;
and n=6 patients in the �always active� group (Figure 3.23). Statistics about
the features extracted from the signals are reported in Table 3.3.
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Table 3.3: mean values and standard deviations at the baseline of included sample in the pre/post analysis

Poorly active Mostly regular Day inactive/night active Always active
(n=27) (n=5) (n=6) (n=6)

Alpha FFA
Mean ± std 0.65±0.05 0.66±0.05 0.60±0.05 0.64±0.04
Alpha DFA
Mean ± std 0.48±0.08 0.51±0.07 0.53±0.09 0.53±0.06

4-states Mesor
Mean ± std 1.63±0.08 1.93±0.09 1.74±0.06 1.98±0.17
4-states

Amplitude
Mean ± std 0.60±0.11 0.74±0.11 0.40±0.05 0.58±0.37
4-states

Acrophase
Mean ± std 2.33±1.09 2.51±0.21 1.55±2.33 2.66±0.24
4-states F0
Mean ± std 3.84e+6±1.72e+6 4.18e+6±1.24e+6 1.53e+6±4.59e+5 2.92e+6±3.31e+6

12-levels Mesor
Mean ± std 1.82±0.69 2.49±0.26 1.93±0.19 2.55±0.47
12-levels
Amplitude
Mean ± std 1.57±0.36 2.00±0.32 1.07±0.17 1.63±1.00
12-levels
Acrophase
Mean ± std 2.17±1.30 2.50±0.19 1.53±2.30 2.65±0.25
12-levels F0
Mean ± std 3.78e+6±1.78e+6 4.45e+6±1.39e+6 1.62e+6±4.82e+5 3.34e+6±3.68e+6
Information
entropy

Mean ± std 0.48±0.03 0.47±0.01 0.47±0.03 0.48±0.01
Lempel-Ziv
complexity
Mean ± std 0.27±0.04 0.28±0.01 0.27±0.04 0.29±0.02

HRPD
Mean ± std 0.28±0.04 0.27±0.01 0.28±0.04 0.29±0.02

Sample entropy
Mean ± std 0.48±0.09 0.52±0.04 0.41±0.11 0.51±0.04

Entropy on 100Hz
sampled encoding

Mean ± std 0.54±0.04 0.59±0.04 0.57±0.02 0.59±0.05
Day: Lying
Mean ± std 38.0%±10.20% 17.5%±6.36% 32.4%±8.91% 23.7%±3.83%

Day: Sedentary
Mean ± std 51.0%±12.25% 61.8%±10.79% 58.6%±9.72% 55.6%±14.73%

Day: Active state
Mean ± std 2.5%±1.21% 3.7%±1.27% 2.8%±1.37% 3.6%±1.82%
Day: Gait
Mean ± std 8.5%±3.56% 17.0%±5.94% 6.1%±2.09% 17.1%±13.02%
Night: Lying
Mean ± std 91.7%±5.20% 88.8%±5.13% 59.4%±6.77% 54.9%±24.82%

Night: Sedentary
Mean ± std 6.8%±4.99% 9.8%±5.60% 35.7%±10.12% 41.5%±25.74%

Night: Active state
Mean ± std 0.4%±0.31% 0.5%±0.38% 1.8%±1.63% 1.1%±0.78%
Night: Gait
Mean ± std 1.1%±0.98% 0.9%±0.68% 3.1%±3.88% 2.5%±1.97%

Steps in the 48 h
Mean ± std 15'878±7'076 29'192±1'006 12'973±5'782 33'589±32'431
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Figure 3.23: layout of included sample for the pre-post intervention analysis

3.3 Results of pre-post intervention analysis

The pre-intervention dataset was divided into CG (n=20) and IG (n=24) by
means of randomization. Sub-groups were de�ned as CG pre-intervention
(CG pre), CG post-intervention (CG post), IG pre-intervention (IG pre),
and IG post-intervention (IG post). As regards the statistical comparison,
CG pre and IG pre were not statistically di�erent (p > 0.05 for all the
measures), con�rming the two groups were properly randomised; as expected
CG pre was not statistically di�erent from CG post (p > 0.05 for all the
measures). However, this remained valid also for the comparison between
IG pre and IG post and between CG post and IG post (p > 0.05 for all the
measures). Results from the multiple comparison are reported in table 3.4.
Possible reasons for this lack of di�erences in the two groups could be the
relatively short duration of the intervention, the di�erent participation among
the patients or the e�ectiveness of the intervention itself. Another possible
explanation could be the groups' heterogeneity. In order to investigate further
this last hypothesis CG and IG were also divided into the four motor behavior
groups (�mostly regular�, �poorly active�, �always active�, and �d.i.n.a.�); in
this way, eight subgroups were de�ned for both pre- and post-intervention.
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Looking at the trends in the features pre and post the intervention, in both
CG and IG, an interesting trend was present only in two of the instrumental
features: the �poorly active� IG increased sedentary activities and decreased
the lying activity during the day in the post-intervention with respect to the
pre-intervention (Figure 3.24, 3.25). As it is possible to observe from the
barcoding of PA and the Cosinor analysis (Figures 3.26 (a) and (b)) some
patients show a more time-structured circadian behavior, while, for other
patients, activities are spread in the 48 hours also at the night-time. If we look
at the barcode images in Figure 3.26(a), at the post intervention (right side),
illustrated subjects present more light blue and green bars respect to the
baseline (left side on the same row), meaning an increase in activities, while
the dark blue bars stating the lying activity, are less than in pre-intervention,
or are almost absent. However, the light blue and green bars are illustrated
in the window belonging to the daytime, but in the window belonging to
the night-time as well. This means patients are probably awake in a period
during which lying position, meaning rest, was expected. Barcodes results
are con�rmed from the Cosinor images: the 4 activity patterns �tted by the
cosine wave (in the top of each cosinor picture), underline some activities
during the night. Indeed, the lying position (value 1) was expected, but
the signal in the top of the image shows values 2 (sedentariness), 3 (active
state) and 4 (gait episodes) frequently. The clock in the bottom of each
cosinor picture states the time with the peak of activities, obtained from the
cosinor model. Looking at �gure 3.26(b), patients illustrated are, contrary
to Figure 3.26(a), improved in their activity patterns, showing more lying
activity when expected, namely the night. Indeed, barcodes show wider
dark blue bars (meaning rest) and less light bars (meaning activities) in the
night, reporting activities during the day, while cosinor has value 1 in the
night-time and values 2, 3, and 4 during the day, meaning an improve in the
sleep and night behavior. Therefore, a unique trend is not present among
the experimental group; the exercise program procures di�erent results in
the IG.
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Table 3.4: p-value from multiple comparison on CG-IG comparison

CG pre vs. CG post CG pre vs. IG pre CG post vs. IG post IG pre vs. IG post

Alpha FFA 0.69 0.67 0.98 0.97

Alpha DFA 0.82 0.99 0.99 0.84

4-states
Mesor 0.99 0.99 0.99 0.78

4-states
Amplitude 0.99 0.99 0.99 0.98

4-states
Acrophase 0.50 0.98 0.99 0.78

4-states
F0 0.97 0.99 0.99 0.98

12-levels
Mesor 0.89 0.69 0.73 0.47

12-levels
Amplitude 0.99 1.00 0.93 0.95

12-levels
Acrophase 0.18 0.70 0.99 0.74

12-levels
F0 0.96 1.00 0.93 0.99

Information
entropy 0.15 0.21 0.99 0.98

Lempel-Ziv
complexity 0.42 0.60 0.99 0.96

HRPD 0.30 0.33 0.99 0.99

Sample entropy 0.86 0.81 0.95 0.96

Entropy
on 100Hz

sampled encoding 0.94 0.97 1.00 0.99

Day:
Lying 0.67 0.99 0.93 0.40

Day:
Sedentary 0.36 0.86 0.97 0.48

Day:
Active state 0.77 0.43 0.98 0.99

Day:
Gait 0.89 0.92 0.98 0.99

Night:
Lying 0.95 1.00 0.96 0.99

Night:
Sedentary 0.94 1.00 0.96 0.99

Night:
Active state 0.75 0.93 0.98 0.85

Night:
Gait 0.99 0.98 0.99 0.93

Steps in the 48 h 0.88 0.92 0.99 0.99
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Figure 3.24: pre-post intervention comparison of lying activity during the day in the
CG and IG subgroups
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Figure 3.25: pre-post intervention comparison of sedentariness during the day in the
CG and IG subgroups
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Figure 3.26: Example of barcodes (images with coloured bars) and cosinor images (with
clock and cosine �tting wave) from a few patients belonging to IG. Each cluster of 4

images represents a patient: on the left side is reported the pre-intervention (de�ned as
T000 on the title of each image) barcode and cosinor images; on the right side, the

post-intervention (T101). IDs 22, 47 and 48 (group a) worsen at the post intervention,
becoming more active also in the night; IDs 25, 59 and 2 (group b) become more regular,

improving the night behavior
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Chapter 4

Discussion

The potentials of the sensor-based assessment are already clear looking at
the characteristics of the previously de�ned groups of patients. The division
of the sample into the clinically de�ned groups �aberrant and wandering mo-
tor behaviour", �sleep problems� and �normal motor behaviour�, on the basis
of the information reported from the caregivers, gives overlapping results,
even though two features were found statistically signi�cant. The number of
steps and the percentage of walking time during the day, showed signi�cant
di�erences, coherently with the clinical observation, but any other feature
reported a statistically signi�cant result.
On the contrary, the division of the sample into four sub-groups by means of
the instrumental features, it allowed de�ning groups which are in agreement
with the clinical description of dementia symptoms. Outcomes of the sta-
tistical analysis suggest that the Cosinor analysis on both the four activities
time series and the PA states time series; percentages of daytime and night-
time activities; the number of steps, and the Information Entropy on the
100 Hz sampled PA time series, are able to identify speci�c motor patterns
with a clear clinical description. These measures are sensitive to di�erences
in the circadian motor behaviour of patients who belong to the same clinical
category. The other metrics selected for the analysis, like the fractal analysis
and the complexity measures, do not seem to have the same discriminative
ability, at least not in this speci�c group of patients.
Clinical judgment is central for the assessment and management of dementia
patients; a caregiver familiar with the patient is able to assess the severity
of the symptoms and the distress connected to those symptoms. However,
the project provides evidence that an objective PA monitoring tool is able
to characterise and measure the patient's motor behaviour, overcoming the
limits of over- or underestimation of symptoms due to a subjective evalua-
tion and discrepancies with the e�ective behavior of the analysed subjects.
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Following the patient in his daily movements with an IMU would allow a
better insight in the progression of the disease, and could be helpful for the
diagnosis and prognosis stated by physicians. Results are in agreement with
the clinical understating and interpretation of the disease. Mesor values are
higher in patients assigned to the �mostly regular� and the �always active�
groups; cosinor model �ts better the �mostly regular� and the �poorly active�
groups since they have a more time-structured pattern, while who is mostly
active at night-time (Sundowning e�ect) and who is always active did not
show time structure. Patients in the �d.i.n.a� group have a motor behaviour
which is similar to the �always active� group in the time frame 00:00-06:00
but more similar to the �poorly active� group during the time frame 06:00-
00:00; the �mostly regular� group has high values of activity and gait during
the day and long resting period at night; as expected the �poorly active�
group was the most sedentary and the �always active� group was the most
active during the night.
With regard to the secondary aim in the project, the comparison between
the CG and IG, the division into the four di�erent sub-groups was useful
for assessing speci�c trends of the instrumental feature but no signi�cant
di�erences between the two groups were found. Therefore, it is not possible
to conclude that interventions bring to speci�c e�ects in the experimental
group (IG), since there are many confounding factors in the study: the sam-
ple was very heterogeneous (table 2.1), the duration of the intervention was
relatively short (2 weeks with exercise sections on alternate days), interven-
tion was not patient-speci�c [30], and, from information provided by the
physiotherapy personnel, the exercise program was not compulsory and ad-
herence varied greatly. To understand the intervention e�ectiveness these
confounding factors should be avoided.
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Chapter 5

Conclusions

The main objective in the project was to develop and implement a sensor-
based assessment tool of the circadian pattern to determine objectively the
motor behaviour and to classify dementia patients based on the PA monitor-
ing. A review of the scienti�c literature has been performed in order to select
the most promising metrics, and algorithms have been developed and imple-
mented in Matlab. Complexity measures and metrics associated with the
Circadian rhythm have been selected for their ability to reveal clinically rele-
vant features of movement behaviour. All the metrics selected for the project
are validated and described in the literature but are usually applied to other
biological signals like EKG, EEG, speech recording or other pathologies, but
they have never been applied to the study of dementia and its related motor
behaviour. The selection of the same period for every subject was neces-
sary, even the exclusion of some patients from the analysis was required.
Indeed, it was important to avoid time-dependent artefacts and biases in the
measures; it is also intuitive that selected variables depend on the activity
pattern and the pattern depend on the speci�c hour of the day. In addition to
the clinical classi�cation of the patients, which is based on the information
provided by caregivers, a sensor-based classi�cation criterion has been ap-
plied. Results suggest that the sensor-based criterion can better distinguish
between di�erent motor behaviors with respect to the clinical one. Outcomes
of the statistical analysis are in agreement with the clinical understating and
interpretation of the disease providing evidence that, instrumental features
derived from the PA monitoring, are able to assess the circadian motor pat-
tern and are sensitive to di�erent patients' pathological pro�les.

The secondary objective was to verify pre- and post-intervention changes
in a subgroup of patients involved in the experimental exercise program per-
formed at the LVR clinic in Cologne (Germany). No signi�cant di�erences
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between the intervention and the control group have been found. This means
that is not possible to assess clear e�ects of the scheduled physical exercises,
because there were many confounding factors in the study such as a high
heterogeneity in the pathologies and the adherence to the exercise carousel
varied greatly within the intervention group. Future studies should focus on
well de�ned patient's pathological pro�les and pathology-speci�c exercises.
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