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Abstract

Con questo lavoro s’intende proporre un nuovo approccio per modellare la
diffusione di sorgenti rinnovabili di energia in ambito residenziale. A tal
proposito, abbiamo deciso di adottare un modello basato ad agenti, dove gli
agenti rappresentano le famiglie che risiedono nella regione in esame. Questo
implica uno studio del territorio per determinare quali sono le caratteristiche
delle famiglie che vi abitano. Il caso di studio è quello del Piano Energetico
della Regione Emilia-Romagna che mira ad aumentare la produzione di en-
ergia soprattutto da fonti rinnovabili come biomasse e solare. Siamo partiti,
quindi, dallo studio dei micro dati usati dalla banca d’Italia per ottenere le
statistiche rilevanti sulle famiglie residenti in Emilia-Romagna. Questi dati
ci hanno permesso di generare delle famiglie in modo artificiale e riprodurre
virtualmente gli aspetti socio-economici della regione. Le famiglie generate
per mezzo di un software sono collocate nel mondo virtuale associando ad
ognuna di esse un’abitazione. Queste abitazioni sono acquisite analizzando
i dati vettoriali degli edifici messi a disposizione dalla regione. Una volta
predisposto il mondo virtuale, il modello ad agenti determina il livello diffu-
sione simulando ogni anno la potenza installata dalle famiglie. La scelta di
un agente d’installare un impianto è influenzata dalle relazioni sociali, dalla
condizione economica, dai benefici ambientali derivanti dall’adozione e dal
periodo di recupero dell’investimento.

In this thesis, we propose a novel approach to model the diffusion of res-
idential PV systems. For this purpose, we use an agent-based model where
agents are the families living in the area of interest. The case study is the
Emilia-Romagna Regional Energy plan, which aims to increase the produc-
tion of electricity from renewable energy. So, we study the microdata from the
Survey on Household Income and Wealth (SHIW) provided by Bank of Italy
in order to obtain the characteristics of families living in Emilia-Romagna.
These data have allowed us to artificial generate families and reproduce the
socio-economic aspects of the region. The families generated by means of a
software are placed on the virtual world by associating them with the build-
ings. These buildings are acquired by analysing the vector data of regional
buildings made available by the region. Each year, the model determines
the level of diffusion by simulating the installed capacity. The adoption be-
haviour is influenced by social interactions, household’s economic situation,
the environmental benefits arising from the adoption and the payback period
of the investment.
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Introduction

Public policy making is a set of complicated process with the purpose of
addressing public problems that involve progressive and interactive environ-
ment. Factors such as globalization make our society ever more complex, so
the decision-making process must be adapted to the rapidly changing glob-
alised world. The cities are becoming larger; therefore, the decisions taken
by policy makers affect more and more individuals. This growth increases
the chance that entities involved have conflicting interests that impact the
achievement of goals. Policy makers must find a balance between the indi-
vidual interests and the global objectives. It is not always simple because
the amount of data to be examined, and the number of constraints to be
considered can be very high. However, if they are assisted by tools that can
provide predictive models, they could evaluate the consequences of their de-
cisions.

The ePolicy project is a FP7 STREP project funded by the European
Union, which is devoted to the development of Decision Support Systems
(DDS) for assisting decision-makers to design socially accepted and sustain-
able policies from the point of view of the environment. A Decision Support
System may employ several techniques from different fields such as artificial
intelligence, operations research, sociology, economics, etc.
ePolicy aims to help decision makers to evaluate social, economic and envi-
ronmental impacts during the policy making life-cycle. Of course, when the
problem is complex, and there are several requirements to be met, a DDS
can aid to get the most benefit from the available data to formulate a plan
able to produce the desired effect on the environment.
The ePolicy case study is the Emilia-Romagna Regional Energy plan. In
Emilia-Romagna, the regional government has set a target to increase the
production of renewable energy from sources such as solar and biomass.
In this work, we focus on the solar energy and we propose a model for the
residential PV system diffusion to evaluate public policies in this domain.
Many researchers have found that the diffusion of an innovation is strongly
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influenced by social aspects. In recent years, agent-based modeling has gen-
erated significant attention as a tool for modelling social and individual be-
haviours. Consequently, we propose an agent-based model that simulates
the micro-based behaviour of households in order to evaluate and explain
macro-level phenomena. In this work, we tackled the challenge of reproduc-
ing the households behaviours when they decide to estimate the opportunity
to utilize a PV system for their houses. Hence, an Agent Based Model is
an intuitive approach to addressing the problem since we can concentrate on
the factors that impact on the adoption of a PV system by analyzing the
behaviour of individuals.
To test our model we recreate the Emilia-Romagna environment by analyzing
data from the Survey on Household Income and Wealth (SHIW) provided by
Bank of Italy [2012]. However, the process described is valid for any region
or country.
The ultimate goal is to integrate our model in a DDS for the policy makers
to evaluate alternative plans.
In the first chapter, we introduce the ePolicy project and the Emilia-Romagna
Regional Energy plan case study. In Chapter 2, we provide the related works
overview. In Chapter 3, we present in detail the proposed model. In Chapter
4, we describe the household generation. Finally, in Chapter 5 we present
the model implementation, and we discuss the results obtained.
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Chapter 1

Overview

Policy makers have to deal with extremely complex environments that rapidly
change over time. Their decisions are transposed into a plan that is com-
posed of several actions in order to archive the objectives. These plans may
involve different entities and affect three pillars of sustainable development:
economics, social iteration and environment. So, It is necessary to reach an
appropriate balance between individual interests and the objectives of the
plan.
The complexity of the environment makes it hard to assess the long-term
effects of the plan. For this reason, the politicians must be able to get the
most benefit from the available data to formulate a plan able to produce the
desired effect. In addition, during the policy-making life cycle, policy makers
can provide several alternative plans, so they need to find a way to evaluate
different alternatives. A Decision support system (DSS) is often used to as-
sist policy makers in under- standing the consequences of complex decisions.

DSS means a vast class of software tools that aim to help decision makers
in case of complex problems by facilitating the analysis of large amounts of
data and suggesting strategies and policies to be adopted. Over the past 30
years, there has been a growing interest in the DSS among AI researchers,
which has led to incorporating artificial intelligence techniques to model prob-
lems and simulate decision impacts. DSS architecture contains three essential
components:

• the database or knowledge base,

• the model,

• the user interface.
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The model adopted in a DSS can be an agent-based model (ABM) when
is necessary to simulate the actions and interactions of autonomous individ-
uals. For example, political models cover more subjects who have different
characteristics and interests. These subjects are represented by agents in an
ABM model that interact with the environment and respond to changes that
are made in accordance with the decisions taken by politicians.
An ABM allows us to model the problem by defining the behaviour of enti-
ties involved. Normally, the behaviour of individuals is very simple but the
emergent behaviour from the interaction of many agents can be complex to
be modelled directly. So, ABMs are useful to understand emergent phenom-
ena by simulating the micro-based behaviour of agents.
The ePolicy project was created to demonstrate the contribution that the
DSS can give to politicians to make decisions when the problem is complex,
and there are several requirements have to be met. The purpose is to provide
an open source tool, easy to use and that it can supply useful indications for
the user.

1.1 ePolicy

The ePolicy project aims to support policy makers in their decision process
and to evaluate of social, economic and environmental impacts during policy
making. The project is coordinated by the University of Bologna, and it
involves nine partners from academia, research institutions, regional govern-
ments and the private sector of the European Union.
Policy makers have to deal with complex problems that have a large num-
ber of variables and constraints which concern different environmental, social
and economic aspects.
An important factor that can help policy makers in their decisions is the
feedback from citizens. Through social networks, blogs and other means, cit-
izens can judge the decisions and contribute to the creation of policies. So,
decision makers have the opportunity to know the social impacts through
opinion mining on e-participation data.
We can summarise the policy making life cycle as shown in Figure 1.1:

• the global level optimization produces plans and scenarios for policies
taking into account the objectives, the financial aspects and the envi-
ronmental and social impacts on a large scale.

• The individual level simulation reproduces the social behaviour based
on personal opinions.
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Figure 1.1: Policy making life cycle.

• The integration between the overall goal and personal goals is done
using the techniques of game theory.

• The feedbacks and opinions of the entities involved are obtained using
opinion mining techniques.

• Tools for visualization of the results can help decision makers.

Figure 1.2 shows the general scheme of the system. At the base, we have the
involved entities in the decision whose opinions are used in the policy making
life-cycle. Above the entities there is the individual level simulation. This
level consists in an ABM that simulates the behaviour and interaction of the
individual entities. At the top is the global level optimization that tries to
find a solution by taking as input financial aspects, impact, constraints and
objectives.

Thus, the ePolicy project aims to equip policy makers with integrated
models, optimization, visualization, simulation and opinion mining tech-
niques that improve the outcomes of complex global decision making. The
ultimate goal of the project is to provide tools that are capable of evaluating
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Figure 1.2: General scheme.

several alternative plans and to provide for each of them an analysis of costs
and benefits. These tools make use of the most advanced techniques of ar-
tificial intelligence for solving constraint satisfaction, optimization, planning
and other problems.
These ideas have been used to solve a particular problem: the energy plan-
ning in Emilia-Romagna. The regional government has set the target to
increase the production of renewable energy from sources such as solar and
biomass. Since 2009, these are also Italian and European goals with the
Directive 2009/28/EC of the European Parliament and of the Council of 23
April 2009 on the promotion of the use of energy from renewable sources
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(European Commission [2009]).
ePolicy seeks to develop a software system capable of supporting decision
makers in the development of an incentive system to increase the installed
number of photovoltaic systems with minimal effort for the region.
To illustrate the problem, in the next sections of the chapter, we are going
to introduce the situation of photovoltaics in Italy.

1.2 Photovoltaic systems in Italy

After the introduction of national incentives, the Italian photovoltaics (PV)
market has experienced a remarkable growth. The number of PV systems has
more than doubled each year from 2008 to 2011. However, the growth rate
in 2012 was lower than 2011, because in the 2012 the number of installed
systems was 45% more than 2011. The installed power increased from 87
MW in 2007 to 16.420MW in 2012. The power has grown more than the
number of installed systems because large plants came into operation, but
the average size of the plants has decreased from 38.7 kW in 2011 to 34.3kW
in 2012. The phenomenon is linked to a reduction in the installation of large
systems determined by Legislative Decree 1/2012, which has limited the size
of plants installed on the ground. Plants that came operation in 2012 have

Figure 1.3: Evolution of the Italian PV market.

an average power equal to 24.6 kW that is lower than the plants installed
in 2010 and 2011. During 2012, the operating power has increased to 3.646
MW.
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The distribution of power among the Italian regions is not homogeneous.
According to data from the Gestore dei Servizi Elettrici S.p.A. (GSE), the
highest number of plants is found in the North, especially in Lombardia and
Veneto (Figure 1.4). This fact is a strange because the number of installed
PV systems is much higher in the North, although the irradiation level is
lower than other areas of the country. In addition, most of the installed
systems in the North belong to households and are characterized by small
capacity. In the southern regions of Italy, a very substantial part of the power
is installed on the ground. This fact could suggest that more aspects other
than pure geographical or economical one should be taken into account.

Figure 1.4: The Italian average solar radiation between 1981-2000 (GSE
[2011]).

1.3 The Italian incentives for PV systems

The Italian mechanism to encourage the installation of solar systems is called
“Conto Energia” (CE). This mechanism, that rewards with tariffs the energy
produced by photovoltaic systems for a period of 20 years, became opera-
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tional in 2005 (First CE). Since then, the incentive scheme has been renewed
five times with a series of adjustments and changes. Unlike in the past, where
the incentive for the production of energy from renewable sources was done
by contributing non-repayable money, the CE introduces a funding system
to increase earnings from energy production. A necessary condition to ob-
taining the tariffs is that the system must be connected to the grid and must
have at least 1 kW of peak power. The CE does not provide an incentive for
stand-alone systems.
The main changes introduced by the Second CE was the application of the
incentive fee on all energy produced and not only on that produced and con-
sumed in place, the simplification of bureaucratic procedures for obtaining
the incentive and the differentiation of rates based on the type of architec-
tural integration.
Until the fourth CE, the feed-in tariff was applied on all the energy produced
by the plant. The fifth CE divides the tariff into two parts: the inclusive
tariff applied to the energy fed into the grid and the self-consumption tariff
applied to the energy consumed on site.
Figure 1.5 shows the CE results from 2007 to 2014. The CE considers two

Figure 1.5: The Italian PV installed power GSE [2014].

different support schemes. The first scheme is a net metering plan for plants
with a capacity of less than 200 kW. In this schema, PV-generated electricity
not consumed is fed into the grid. Then it can be retrieved by the household
when needed. Besides the payment for each produced kWh of electricity, the
GSE provides a contribution that guarantees the repayment of a portion of
the expenses incurred by the family for getting electricity from the grid.
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In the second scheme, the electricity produced in excess is sold to the GSE,
which guarantees a minimum purchase price. In this case, the GSE operates
as an intermediary between the producer and the market.
The following chart that was obtained by averaging the tariffs for all power
classes shows the trend of national incentives in Euro / kWh for the period
2006-2012. As you can see, from 2007 to 2010 the national feed-in tariffs

Figure 1.6: Trend of national incentives in Euro / kWh.

have declined gradually with the further reduction in the second half of 2011
and the first half of 2012 (Fourth CE) and again in the second half of 2012,
with the Fifth Conto Energia.

1.4 The Emilia-Romagna incentives for PV

systems

The Emilia-Romagna region has been chosen as a case study by the ePolicy
project. The trend of solar installations in the area is shown in the following
charts. In Emilia-Romagna, there was a reduction in the percentage of in-
stallations between 2011 and 2012. This trend is the same as found in other
Italian regions.
Although the incentive rate has been decreasing over the years, the number
of plants instead has increased until 2011. So, the reduction of plants in the
2012 is not only due to the economic factor but also by other factors. An
explanation can be found to the limitation that the fourth CE imposed on
ground installations that are larger than those on the roof.
The ePolicy project evaluates the application of four incentive mechanisms
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(a) KW of installed PV power in Emilia-
Romagna [KW].

(b) Number of installed PV in Emilia-
Romagna.

that the region can put in place to provide a further incentive for the instal-
lation of PV (Borghesi et al. [2013]):

• Investment Grants - incentives are given as a grant, and no money
is returned to the Region. The grants that are provided represent a
proportion of the total plant cost. The financial requirement for the
Region would be front-loaded as funds would need to be provided in
advance of equipment installation.

• Fiscal Incentives - incentives are given as soft loans, including longer
repayment periods or interest holidays. Again the financial require-
ment on the Region would be front-loaded as funds would need to be
provided in advance of equipment installation. In this case the loan
would, eventually be paid back to the Region.

• Interest funds -incentives are given to pay all or part of the interests
on bank loans taken in order to purchase PV equipment. Again no
money is returned to the Region. In this case the financial burden on
the Region would be spread over the lifetime of the loans that are likely
to be a number of years.

• Guarantee fund - the Region provides a guarantee to the bank provid-
ing the loan to an investor who is purchasing PV equipment that the
loan will be repaid. This fund provides security to the bank that is,
therefore, more likely to approve the loan request and to charge a lower
interest rate than would otherwise be the case.

The goal is to find the best incentive that allows the greatest increase in
installations with less effort. This intention requires a simulator able to re-
produce the behaviour and interaction of families. This simulator must be
integrated into a system capable of providing the right support for policy-
makers to find the best solution to achieve the objectives. One important
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thing is that the simulator must provide a budget, for each type of incentive
considered, that the region must allocate in order to obtain the desired in-
crease of PV power.
The version of the software, which makes use of the model developed by
Borghesi [2013] for the diffusion of PV systems, compares these incentives.
The results are shown in the article Borghesi et al. [2013]. The purpose of
Borghesi et al. [2013] is to identify the relationship between the capacity of
PV systems installed and the budget allocated for regional incentives.
Each regional incentive was individually simulated multiple times for each
value of the regional budget from zero to e40 million, in steps of e1 million.
To learn the functions that govern the relationship between the available
budget and the installed capacity, Borghesi et al. [2013] have used machine
learning techniques. Figure 1.8 shows the simulation results. As you can see,
the regional incentive that provides the greatest increase in capacity is the
interest fund. In fact, the curve that relates the installed capacity and the
available budget is almost always above the other.
The Interest Fund incentives are the ones that require the least amount of
money for each installation. So, with this incentive mechanism the region
can satisfy the vast majority of requests from citizens. Furthermore, the
possibility of paying in installments allows the family to deal with the initial
price of the system.
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Figure 1.8: Comparison regional incentives Borghesi et al. [2013].
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Chapter 2

Background

In recent years, Agent-based model has become increasingly popular as a
modelling approach because it provides a systematical way to model the
environment. This kind of model is mostly used in social science research
to study how the environment evolves over time. In particular, ABMs are
adopted to study the diffusion of an innovation that is strongly influenced by
social aspects: people exchange information on the new idea (Rogers [2003]).
This information reduces the uncertainty about the innovation and influences
people in the decision whether or not adopt the innovation. An ABM can
be used to model this information exchange between potential adopters to
evaluate how the innovation spreads between them in different situations.
For instance, a company can use it to determine the amount of advertising
budget that should be allocated to reach the desired rate of spread.
For the reasons mentioned above, in this work we adopt Agent-based simu-
lations for modelling the entities involved in a plan. In this context, entities
can be individuals, companies, government agencies, etc., and then our model
tries to reproduce their behaviour and how it is affected by economical, social
and environmental factors.
Recently, ABMs were applied to model the diffusion of residential PV sys-
tems and evaluate the effectiveness of incentives. In this case, agents are
households whose behaviour is represented by the decision to buy or not a
photovoltaic system. An agent who has installed a plant increases the possi-
bility that agents in the same neighbourhood decide to make the same choice.
This interest in the ABMs has led to the emergence of specific programming
languages. These languages include constructs that facilitate the definition
of the kinds of agents involved, their behaviour and their interaction. For our
simulator, we used the development environment NetLogo (Wilensky [1999]).
NetLogo provides a multi-agent programmable modelling environment that
make easy to implement the model equipping it with GUI. The GUI allows
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the user to interact with the model parameter to explore the effects on the
virtual world.

This chapter provides the reasons that led us to use an agent-based model
for modelling the environment and an introduction to the related works.

2.1 Why an Agent-based model?

An agent-base model (ABM) is a computational model used to simulate the
actions and interactions between agents. Using an ABM you can model the
individual entities that populate the virtual world independently. Generally,
entities are very simple, if taken individually, but their actions and interac-
tions can reproduce complex phenomena.
ABMs provide a systematic approach for the development of a model. In fact,
it starts with the identification of entities that are part of the model. Then
development proceeds by determining the actions that an agent can perform
to interact with and manipulate the environment around them. Once the
environment where the agents operate has been defined the model is com-
plete. The global behaviour is not specified in the model but arises from the
behaviour of mere agents.
Of course, there are techniques that model the system at the macro level.
These models are called macroscale models while the ABMs are a kind of mi-
croscale model. ABMs are easier to implement because simple behavioural
rules leads each agent. In addition, the whole is greater than the sum of the
parts (Bonabeau [2002]).
A field of application of ABMs is the simulation of natural systems. An ex-
ample of natural systems is the ant colonies (Colorni et al. [1991]). The ants
are the agents and follow simple rules. They randomly search for food, and
upon finding it they return to the hive, dropping a pheromone trace which
marks their trail. If another ant finds a pheromone trail, it will likely follow
it. Ants that find the food source reinforce the pheromone trace in the track
and as time passes the pheromone traces evaporate.
Figure 2.1 shows the NetLogo virtual world where the ants carry food back
to the nest along the established route.

The emergent behaviour of the system is that the ants can find the short-
est path to reach the food. The evaporation of the pheromone encourages
the formation of a short path because in the long ones the pheromone has
more time to evaporate.
In the case study of ePolicy, an ABM is used to model the spread of solar
systems in the region Emilia-Romagna. As agents we considered the families
inhabiting in the Emilia-Romagna Region and which could be interested in
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Figure 2.1: Ant colony simulation - NetLogo world representation Wilensky
[1997].

the adoption of a PV system. The philosophy of the ABMs is K.I.S.S. (”Keep
it simple, stupid”), and then the families are modelled in an easy way. In
the proposed model, the agents calculate a utility function that determines
the level of desire to adopt a PV system.
The researchers showed that the diffusion of innovation is strongly influenced
by social aspects. People who have adopted an innovation spread their ex-
periences, strengths and weaknesses, related to the innovation (Abrahamson
and Rosenkopf [1997]; Chatterjee and Eliashberg [1990]). This communica-
tion reduces uncertainty about the innovative product and determines the
degree of penetration among potential adopters. Thus, the ABMs can be
used effectively to model this social aspect which is one of the main elements
that drives the diffusion of photovoltaic systems.

2.2 Literature overview

Many scholars have tried to model the diffusion of innovations. Rogers M.
claims that the diffusion of innovation is related with the communication
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between individuals, and the adoption is affected by the exchange of infor-
mation. So, the innovation diffusion is a social process, and the commu-
nications between people play an important role in the decision to adopt
or not the innovation. In this direction, Abrahamson and Rosenkopf [1997]
have implemented a threshold model based on “bandwagon effect”. In this
model, the increase of the adopters generates new information on innovation
that produces a greater pressure on people who have not yet adopted the
innovation. The potential adopters make an estimate on the profitability of
innovation. However, they are unsure about the correctness of the assess-
ment, so other people who have already adopted the innovation influence
their decision. Abrahamson and Rosenkopf [1997] express this relationship
with the following equation:

Bi,k = Ii + (Ai · Pk−1) (2.1)

Where Bi,k is the bandwagon assessment of innovation at cycle k of the poten-
tial adopter i, Ii is the assessment of profitability of innovation and Ai ·Pk−1
is the bandwagon pressure. Pk−1is the amount of information received that
create the bandwagon pressure after k − 1 cycles and Ai denotes how much
the potential adopter i weights this information. Also in the model proposed
by Chatterjee and Eliashberg [1990], people influence each other in their de-
cisions. The decision is based on two attributes: price and performance. The
price is known, but the performance is uncertain and based on the percep-
tion that the potential adopter has of the innovation. This uncertainty is
reduced over time because the potential adopter receives a stream of infor-
mation about the performance by word-of-mouth from adopters.

Many of these models are agent-based model (ABM) where the agents
are connected to form a small-world network. The small-world model was
proposed by Duncan J. Watts and Steven Strogatz in their joint 1998 Nature
paper. It consists of a random graph algorithm that produces graphs with
the small-world properties that have high clustering coefficient and low mean-
shortest path length. To prove the validity of this model, Stanley Milgram
and other researchers conducted the small-world experiment to examine the
average path length for social networks of people in the United StatesTravers
and Milgram [1969]. This research has shown that human society is a small
world network.
In a small-world network, most of the nodes are not neighbours, but most
of them can be reached from every other by a small number of hops. In
particular, the average distance between two nodes grows proportionally to
the logarithm of the number of nodes in the network (Watts and Strogatz
[1998]). This characteristic is obtained from a ring lattice where each node
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is directly connected to k immediate neighbours by random rewiring of some
links.
Recently, some researchers have proposed specific models to describe the
adoption of solar panels for domestic use. Zhao et al. [2011] have proposed
a two level threshold ABM where agents are households. The low level is
devoted to simulating each agent electric consumption and to provide and
estimated payback time. Instead, the high level is related to model the
customers’ behaviour on adopting PV systems for 20 years. The adoption
is based on four factors: payback period, household income, neighbourhood
and advertisement. These factors are combined to define the desire level of
a certain household for adopting a PV system. The model uses the following
linear equation:

Di = wppfpp + wincfinc + wneifnei + wadvfadv (2.2)

Where Di is the desire level for the household i and wpp,winc, wnei and wadv

are the weights associated with factors fpp,finc,fnei and fadv. Each factor
is represented by a value between 0 and 1. In order to have a desire level
between 0 and 1, the next constraint is added:

W = wpp + winc + wnei + wadv = 1 (2.3)

If the desire level of the household exceeds the threshold, the household
installs a PV system.
Palmer et al. [2013] proposed an ABM to estimate the PV system diffusion
among households living in Italy. In particular, each agent represents a
household characterised by eight attributes. These attributes are used to
assign a cluster to each family. The clustering is based on Sinus Milieu R©

groups formed by people that share similar characteristics. Moreover, agents
are linked to form a small world network in such a way those who are in the
same cluster are more likely to be linked together. The decision to invest
on PV system is based on desire level proposed by Zhao et al. [2011]. The
difference is that the weights used for each factor depend on the cluster of
the family. Thus, people in the same conditions weight the various factors in
the same way. The desire level (or utility function) U(j) is calculated as:

U(j) = wpp(smj)upp(j)+wenv(smj)uenv(j)+winc(smj)uinc(j)+wcom(smj)ucom(j)

(2.4)

Where smj is the Sinus Milieu R© group. As before, upp(j) is the payback
period factor, uinc(j) is the household’s income and ucom(j) represents the
influence of neighbourhood and advertisement factors. Finally, uenv(j) is

19



added to take into account the environmental benefit of investing in a PV
system.

Robinson et al. [2013] has proposed a model that uses a geographic in-
formation system (GIS) along with an ABM to study the diffusion of solar
systems in order to take into account the real topology of the area of interest.
In this case, an agent is mostly influenced by agents who have a similar opin-
ion on technology. Each agent i has the variable xi that represents its opinion
and the variable uj that represents its uncertainty. If an agent i has in its
social network agents who have installed a photovoltaic system, the agent i
randomly selects one of them, agent j, with a probability proportional to the
similarity of opinions on technology. The relative agreement is calculated as
follows:

hi,j

ui
− 1 (2.5)

where hi,j is the overlap of views between i and j and it is equal to:

hi,j = min((xi + ui), (xj + uj))−max((xi − ui), (xj − uj)) (2.6)

The agent i opinion increases/decreases according to hi,j. The opinion and
the uncertainty of an agent j are updated as follows:

xj = xj + µ((hij/ui)− 1)(xi − xj) (2.7)

and

uj = uj + µ((hi,j/ui)− 1)(ui − uj) (2.8)

where µ is the constant that controls the speed of convergence of opinions.
Next, if the intention of the agent i is greater than a threshold, the system is
compatible with its roof, the payback period is below the threshold and its
budget can cover the expense, then the agent i installs the PV system.
In the next session, we introduce the previous work that is the basis of the
proposed model.

2.3 Previous work

The original ABM, proposed by Borghesi [2013], simulates the diffusion of PV
systems in Emilia-Romagna to understand the impact of regional incentives
for a period between the first half of 2007 and the second half of 2036. During
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the simulation, new PV systems are installed by households until the second
half of 2016 and the simulation proceeds until 2036 to cover the average life
of a PV system that is estimated to be 20 years. On each step until the
second half of 2016, new agents are added to the environment in a random
position across the virtual world. The number of agents created each year is
a parameter of the model. Each agent is characterized by:

• ID - an integer value used to distinguish agents;

• Roof area - the surface available for installing a PV system;

• Budget - the amount available for purchase a PV system;

• Average annual consumption - the average electricity consumption per
year;

• The percentage of consumption that the agent wants to cover;

• Obstinacy - the agent’s desire level to purchase a PV system.

Only agents that know PV technology perform an assessment, the others do
not become part of the system. The knowledge diffusion is defined by the
initial percentage of agents who are aware of PV technology and the yearly
increase of this rate. The increase could vary following a linear relationship, a
quadratic one or a cubic one. In the model proposed by Borghesi [2013], the
impact of knowledge diffusion is very high: the annual installed power varies
significantly by changing this parameter. Another factor that considerably
impacts the simulated results is the annual increase of the percentage of
agents who knows about PV panels. Using the different models for the
growth of knowledge change how fast the knowledge increase each year.
Thus, when the agent is generated, the simulator determines, using a simple
probabilistic model, if he knows or not the technology of solar panels, and if
he knows, he makes an assessment. First, the agent establishes the annual
kW that PV system must generate with the following equation:

annualkW = (Average annual consumption·percentage of consumption)

(2.9)

Hence, the size of the system:

dimension =
annual kW

Annual average solar radiation
·m2kWp (2.10)
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Figure 2.2: Decision algorithmBorghesi [2013].

Where m2Kwp is the constant that relates the square meters with kWp of
PV system. Once the size is determined, the price is calculated as follows:

price = kWp PV system · average price (2.11)
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The simulation is subdivided in steps that represent every single semester.
In each semester, the simulator creates a user-defined number of agents,
which are spread in the virtual world. After the creation of an agent, the
system proceeds to estimate its intention to buy or not a PV system. As
shown in Figure 2.2, the steps that lead to the decision are:

1. If the PV system is smaller than the size of the roof and its cost is
lower than the budget, the agent evaluates the possibility of increasing
the dimension of PV system;

2. If the system is bigger than the size of the roof and its cost is greater
than the budget, the agent leaves the system;

3. If the size of the plant is greater than the surface, but the budget is
sufficient the agent evaluates to scale down the power of PV system;

4. If the size of the system is less than the available surface, but the budget
is low, the agent evaluates the possibility to take out a loan.

In all cases, except in step two, the obstinacy of agent comes into play. The
obstinacy of an agent increases with the growth of the number of neighbours
who have installed a PV system. Agent’s neighbourhood consists of agents
whose distance is less than the radius specified as a parameter.The social
interaction between agents is modelled as the sensitivity of an agent to the
influence of neighborhood. The sensitivity is a value that can vary and a
higher values correspond stronger influence from the neighbourhood. Thus,
we expect higher probability to install PV panels.
In summary, each agent has a value (a component of obstinacy seen above)
that represents how significantly his behaviour is influenced by friends, trying
to reflect the human tendency to follow the group choice. In particular,
the decisions of each agent are modified by his sensibility to neighbour’s
behaviours and the size of the area of influence, which is the radius that
determines the circular area within the choices made by an agent may affect
the actions of others. Figure 2.3 shows the NetLogo virtual world where
the areas of influence are denoted by almost circular shapes centered on the
houses that represent the agents.

In step 1, if the obstinacy is greater than 50%, the agent evaluates the
possibility of increasing the PV system dimension. The dimension is set to
the roof area, and if the budget is greater than the new price, the system is
installed. Otherwise, the PV system is realized with the dimension calculated
by the equation 2.10. In step 3, the agent accepts to scale down the power if
the following constraint is verified:

(PV system size− roof area) ≤ (roof area · obstinacy) (2.12)
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Figure 2.3: Social interactions shown in the virtual world of NetLogo.

Instead, in step 4, the agent takes out a loan to cover the price if the next
constraint is verified:

(PV system price− budget) ≤ (budget · obstinacy) (2.13)

In both step 2 and 3, if the condition is not met the agent leaves the system.
Otherwise, if all the above conditions are met, the agent estimates the ROE
of investment. The assessment takes into account the PV system cost, the
national incentive (GSE price), the regional incentive, the energy price and
eventually the mortgage payment. The gains are calculated as the sum of
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the bill savings and the sale of energy. Thus, an agent installs a photovoltaic
system if the estimated ROE is greater than a threshold.
Besides parameters with significant influence such as knowledge diffusion and
agents interaction, the model has parameters that affect the results in a less
evident way, such as almost all the pure economic factors. As an example
of an economic parameter with a lesser influence than the previous ones is
the annual reduction of the cost of PV panels. This parameter represents
the reduction of prices due to technological advancements and in the model
is a variable given as a percentage that tell how much each year the cost of
a panel decreases in comparison to the last year price.
The plant comes into operation in the same year and semester in which the
agent makes a decision. Each PV system is characterized by year, semester,
type, technology, power band and dimension. The energy that can produce
a PV system is linked to the geographical location and orientation. As a
simplification, for all PV system the orientation is assumed to south with tilt
to 30 ◦.

Figure 2.4: The simulator GUI.

Once the execution of the simulation is finished, the GUI (Figure 2.4)
shows a variety of information, many of them are attractive to investors,
such as PBT and the average ROE for different semesters, others are useful
to determine the characteristic of the simulated environment, such as the
overall installed power, the total expenditure for the installation and the
percentage of plants built.
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2.4 Development tools

NetLogo (Wilensky [1999]) is a programmable modelling environment for
simulating natural and social phenomena. The development environment is
written in Java to be as independent as possible from the execution platform.
The NetLogo language inherits and extends the features of multi-paradigm
programming language Logo, made in the 60s at the Massachusetts Institute
of Technology and characterised by its derivation from Lisp and the numer-
ous applications in the field of education. The code that defines agent’s be-
haviours is interpreted, so the model is not previously compiled into machine-
language instructions.
The development environment consists of a graphical interface organised into
three tabs: interface, info and code. The interface tab allows you to interact
intuitively with the parameters that govern the model or perform actions
through the use of buttons, sliders, or other items. This interface has the
important function of showing the movements of the agents inside the vir-
tual world and present during and after the simulation information in the
form of charts, tables, etc. The info tab provides information on the model.
Besides the info tab there is the section that relates to the code, which de-
fines the behaviour of the entities that act in the virtual world. The code of
the simulation resides all within a single list, and it is divided into several
procedures. The agents, entities that can execute instructions, can be of four

Figure 2.5: NetLogo interface.
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types (Figure 2.6):

• Patches are organized in the grid to form the two-dimensional world;

• Turtles move on this grid;

• Links are agents that connect two turtles;

• The observer oversees everything that happens, and it does everything
that the turtles, links and patches cannot do.

Figure 2.6: The virtual world of NetLogo.

All agents can issue commands and procedures. A Command is a Logo
instruction that an agent can perform to interact with others or to change
its state. Instead, the procedures combine a series of commands in a new
command.
In NetLogo, you can define breeds of turtles or links. Breeds allow you to
divide agents and then define specific behaviours. For each type of agents,
NetLogo provides an agentset that is a set of agents. An agentset allows ex-
ecuting a series of commands to all or part of the agents in it. The agentset
makes the code cleaner and more readable and facilitates the implementation
of the model.
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NetLogo provides two ways to update the simulated time: continuous or
tick-based. The continuous mode updates the view a user-specified number
of times per second. In tick-based models, an update occurs when the in-
struction tick is executed. The continuous mode is more expensive because
the updates are more frequent than the tick-based, resulting in greater use
of resources. Also, since we are not able to manage when the model needs to
be updated, the system may be in an inconsistent state when the simulation
is stopped. Usually, the continuous mode is used for debugging because it
allows checking in detail how the system evolves.
NetLogo makes it possible to perform many times a simulation and try differ-
ent configurations of parameters to study the results. These results help to
understand the emergent behavior due to the interaction of multiple agents.
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Chapter 3

Proposed Model

This chapter describes the model proposed to simulate the diffusion of photo-
voltaic systems. First, we proceed to investigate the related works, and then
we are going to explain our solution to address the problem. In Italy has
been put in place a national feed-in-tariff to stimulate the installation of PV
systems. The region may apply a greater incentive to reach the 2020 target.
The 2020 climate and energy package (European Commission [2009]) is an
ambitious goal that aims to arise the share of EU energy consumption pro-
duced from renewable resources to 20% before 2020. We consider four types
of incentives that a region can implement for the adoption of PV systems:

• Investment Grants - money given by the region to a household so that
it can invest in PV system;

• Fiscal Incentives - the region provides loans with low-interest rates;

• Interest funds - the region pay part or all of the interest that the citizen
owes the bank;

• Guarantee fund - the region guarantees for those who want to take a
bank loan. In this way, it is easier to get a loan.

In this work, we propose a tool for decision makers to evaluate these regional
incentives. This tool requires a model that can predict the photovoltaic
system diffusion among households. Therefore, we propose an agent-based
model that simulates the micro-based behaviour of households in order to
evaluate and explain macro-level phenomena. We focused mainly on families
living in the region of Emilia-Romagna, but the process described below is
valid for any region or country.
The goal of proposed simulator is to recreate the phenomena of PV system
distribution, attempting to create a relationship among families to simulate
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the diffusion of knowledge about the advantages of PV systems. These fam-
ilies are placed through an actual density distribution on the virtual world.
The simulation consists of two major phases: the configuration phase, where
the simulator creates a virtual word that has features similar as possible to
the real and the running phase where the system simulates the degree of
adoption among the agents from the first half of 2007 to the second half of
2016.
In the configuration phase, households are generated. Each family is charac-
terized by attributes such as income, age and education level of main income
earner. The distributions of these attributes are obtained from the Survey
on Household Income and Wealth (SHIW) provided by Bank of Italy [2012].
After that, each family is assigned to a social group composed of families
who share similar conditions in order to have a similar behaviour on families
that have similar wealth. Then, each of them is assigned to a building on the
simulated world. These buildings were obtained by processing the shapefiles
that the region provides on the website Emilia-Romagna [2014].
In the running phase, the simulator simulates the behaviour of households for
a period from the first half of 2007 to the second half of 2036. Annually, each
household proceeds to evaluate the adoption of PV system. In the model,
the desire level for adoption of a PV system is estimated by means of a utility
function that an agent calculates according to its characteristics. In our sys-
tem every agent makes the best choice that is the PV system that maximise
its reward, in terms of the production and saving, because we want a generic
simulator that can simulate different incentive. Thus, we do not kwon what
is the best size of PV system a priori. Normally, families ask for advice from
installers and consultants, so it is fair to assume that in making the decision
a family makes the best choice. So, an agent estimates the optimal size of
the PV system that guarantees the best return on equity (ROE).
If the value of the utility function exceeds the threshold, the agent installs the
system. The utility function takes into account the income of the family, the
payback period, the environmental benefits and the relationships with other
families. These factors are weighted differently depending on the social group
of the family. The weights for each group are determined by calibrating the
model on real data over the 2007-2012 period.

3.1 Model description

In the proposed model, the agents represent the families living in the region
of Emilia-Romagna. As already mentioned, the simulation is divided into
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two phases. In the first phase, the households are generated. In the second
phase is simulated the behaviour of the agents.
The generation begins by establishing for each household age class, education
level, income, family size and budget. The distribution of each attribute is
obtained from the SHIW data. In addition, each agent is assigned to a class
that represents a group of people who share the same characteristics. This
class influences the value of the utility function.
The budget of a household for the purchase of a PV system is derived from
its income by the equation:

budget = eincnormap (3.1)

where:

• ap is the average price of a PV system;

• incnorm is normalized income obtained from log
income−m

v
;

• v =
√

2Φ−1(
Gini+ 1

2
) is the lognormal distribution variance;

• m = logminc −
1

2
v2is the lognormal distribution mean.

The equation states that if a family has the income around the mean, the
family expects to pay the average PV system price. Otherwise, if the family
income is lower or higher than the average, the family will aim to spend less
or more for a PV system.

Then each family is associated with a building on the territory of the
region taking into account the family size and income. Buildings are sorted
by their roof size and families with high income and high number of mem-
bers are assigned to the bigger ones. The buildings are obtained from Ersi
shapefiles that Emilia-Romagna region has released on the website Emilia-
Romagna [2014].
The Shapefile or simply shapefile is a geospatial vector data format for geo-
graphic information systems software. This format was developed and reg-
ulated by ERSI, in order to improve interoperability between GIS systems.
The shapefile describes points, polylines and polygons, which represent ob-
jects placed on the map. Normally, ”shapefile” refers to a set of files with
the extension Shp, Dbf, Shx and others that share the same name. As shown
in Figure 3.1, the shapefiles provided by region contain a polygon for each
building detected. Since the simulation requires only the positions and the
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Figure 3.1: Polygons of buildings contained in shapefiles.

areas of the roofs, it was necessary to preprocess these files. Using QGIS
(QGIS Development Team [2009]), a free and open source Geographic Infor-
mation System (GIS), it was possible to manipulate these shapefiles. QGIS
is a very powerful tool, which allows to capture, store, manipulate, analyze,
manage, and present all types of geographical data. It was possible to calcu-
late the area and the centroid of the vertices for each polygon.

Figure 3.2: Buildings preprocessing.

Figure 3.2 shows the preprocessing performed with QGIS. For each poly-
gon, we calculate the area, and we keep only the centroid (the point in purple)

32



of vertices (the points in red). In the model, the polygon area is assumed as
roof area, and the centroid is assumed as the location of the house on the map.

As said before, shapefiles alone are not sufficient to describe the buildings
because they contain only the geometries. So, the region also provides the dbf
files that describe each building with several attributes, including the TY
EDI that specifies the type of the building and STAT E, which indicates the
state of the building.

TY EDI D TY EDI
1 Generic
4 Bell tower
6 Church / basilica
7 Industrial building
9 Rural building
12 Mill
13 Observatory
14 Palace tower / skyscraper
15 Sport hall
18 Palace tower / skyscraper
19 Villa
20 Townhouse
97 Not known
98 Not assigned
99 More
701 Shed
702 Hangar

STAT E D STAT E
1 Operational
2 Under construction
3 Abandoned / ruined

Table 3.1: The possible values for TY EDI and STAT E

Thus, through QGIS it was possible to obtain only buildings that are
mostly houses using the following query:

TY EDI = 1 or TY EDI = 19 or TY EDI = 20 and ( STAT E = 1)

Buildings with a roof surface too small were discarded because a one kWp
rooftop solar plant requires at least 8 square meters with the technologies
considered in the model.
The use of actual buildings allows us to reproduce the characteristics of
the area in the virtual world. The characteristics of the territory are the
arrangement and size of the buildings. Generate the buildings arranged as
the real ones and whose dimension reflects the real ones is not simple. In
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addition, the actual building allows us to spread the agents in the virtual
world assigning each agent to the home. In this way, we can build a social
network taking into account the position of the agents on the virtual world.
A small-world network is obtained from a regular lattice by adding some
random links. However, we have agents arranged in an almost ”random”
manner on the map. So, in the next section we explain how we create a
social network in order to get the small-world properties in our simulated
social network.

3.2 Network generation

Families are connected together to form an extensive social network. The net-
work of relationships plays an important role in the model because it specifies
how information is transmitted between the families. As mentioned earlier, it
is important that the generated social network has the small-world properties
because researchers have shown that the small-world network maps well the
real network of relationships that exists between people. Since the families
are geographically distributed on the region, we need to find a system to
generate a network in such a way that it gets high clustering and short paths
properties.

A technique for achieving this is the rank-based model proposed by Liben-
Nowell et al. [2005]. They analyzed roughly 500.000 users of the blogging site
LiveJournal, who provided a U.S. zip code for their home address and links
to their friends on the system. In this way, Liben-Nowell et al. [2005] were
able to discover that the probability that a node u is connected with another
w is related to the physical distance. Figure 3.3 shows the population density
in the LiveJournal data.
However, the population density is non-uniform so, if we define the proba-
bility that a node u is connected with a node v as 1/d2, an agent who lives
in a sparsely populated area is less likely to have links with other people.
Liben-Nowell et al. [2005] claimed that two people living 500 meters away
in a sparsely populated area are more likely to know each other than two
people who live at the same distance in a densely populated area. Therefore,
Liben-Nowell et al. [2005] defines the agent’s proximity as rank:

ranku(v) =| {w : d(u,w) < d(u, v)} | (3.2)

A node u ranks a node w as the number of other nodes that are closer
to v than w is. Now, the probability that the node u creates a link with
the node w is proportional to ranku(w). However, we have more information
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Figure 3.3: The population density of the LiveJournal Liben-Nowell et al.
[2005] (Image from Liben-Nowell et al. [2005].)

about nodes. As previously mentioned, nodes are heterogeneous, and they
are characterized by age class, education level, and income. Thus, we can use
this information to extend the ranked based model, so the rank that a node
attaches to another node does not depend only on the physical distance but
also on the attributes proximity of nodes. Hence, we can define the rank as:

ranku(v) =| {w : p(u,w)d(u,w) < p(u, v)d(u, v)} | (3.3)

where, p(u,w) is a proximity measure between the attributes. We use a
dissimilarity function defined as:

p(u,w) = 1 +

| uage − wage |
4

+
| uedu − wedu |

7
+ (1− e−|uinc−winc|)

3
(3.4)

In this way, as shown in figure3.4b, nodes that are different from the node
u are rejected and thus have a lower probability of having a link with u.
The rationale behind is that people who have similar age, a similar level of
education and similar economic opportunities are more likely to know each
other because they have more opportunity to meet. In Figure 3.4, the circles
represent the households, and the arrows represent the repulsion expressed
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(a) Original rank-based friendship. (b) Extended rank-based friendship.

Figure 3.4: Comparison of rank-based model with homogeneous and hetero-
geneous nodes.

by the equation 3.3 when two nodes do not have exactly the same attributes.
Using the equation 3.2 we do not consider the differences between the nodes.
The result of this method is shown in Figure 3.4a. But, if we use the equa-
tion 3.3 for calculating the rank, the result is what we can see in Figure 3.4b,
where the different nodes are moved away in proportion to p(u,w). This shift
causes a different ordering of the nodes, so the nodes that were closer to i
than j are now farther than j.

In a small-world network, there are two types of links: the homophilous
links and the weak ties (Easley and Kleinberg [2010]). The homophilous links
connect node that are similar. Instead, the weak ties connect in a random
way two nodes. The homophilous links are created by using the extended
rank-based friendship. Two nodes located close together, and similar are
more likely to share a link. In this way, we manage to get a high global
cluster coefficient that is a characteristic of small-world network. However,
this do not allow us to get a short average path length. So, we decide to
randomize the network after we have built a “regular” network (shown in
Figure 3.5) that is the network made by only homophilous links.
The network randomization adds to the network the weak ties that are long

range links. These links reduce drastically the average path length because
they connect distant parts of the network. The randomization process takes
every edge and rewires it with probability p.

Different values for p produce different results. Figure 3.6 shows the net-
works obtained from varying p. As the rewiring probability increases, the
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Figure 3.5: The resulting network made only with homophilous links

network becomes more irregular and then the clustering coefficient increases,
but the average path length decrease. In summary, high p values produce low
clustering coefficient and short average path length. Instead, low p values
produce high clustering coefficient and long average path length.
In the model, the clustering coefficient and the average path length affect the
speed of information spread and how information flow. In fact, a high clus-
tering coefficient value implies that the information is more easily exchanged
between nodes that are closer. On the other hand, a short average path
length allows information to reach a remote area of the network faster. This
results in a diffusion of information not limited to a portion of the network
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(a) p = 0 (b) p = 0.15 (c) p = 1.

Figure 3.6: The resulting networks from varying p.

but, the information can get out of a cluster of people and reach remote
areas.
As we will explain later, the adoption behaviour of an agent is affected by
choices made by its neighbours. In particular, as the number of agent’s
neighbours that have adopted a PV system increases, the agent’s pressure to
install a PV system increases as well. Since, the neighbourhood of an agent
i is defined as the agents that share links with i, another important factor
that affect the PV system diffusion is the maximum node degree, namely
the number of links that an agent has. The maximum degree determines
the maximum number of neighbours of an agent. So, if an agent has many
neighbours, it is less influenced by the choice made by a single neighbour.
Otherwise, if an agent has few neighbours, the adoption of the agent is most
affected by the choice made by a neighbour.
In addition, the network degree influences the clustering coefficient and the
average path length because, along with the number of agents, it also deter-
mines the number of links. A high number of agents worsens the clustering
coefficient and the average path length because many agents implies a large
network with multiple paths. Instead, a high node degree means that there
are more ways to reach a node. So, if we rewire a link of a node bringing it
in another zone of the network, in order to reduce the average distance with
nodes that are located there, the node may still have other links with nearby
nodes. Therefore, as the node degree increases, the clustering coefficient and
the average path length decreases.

In summary, we need to find a compromise between the number of agents,
node degree and rewiring probability in such a way to get high clustering co-
efficient e short average path. These small-world characteristics were also
found in the real social network by researchers, therefore, is important that
our generated networks have the same characteristics. We start the network
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generation by placing the households into the virtual world as the real one.
After that, we wire them by adding links in such a way that similar and
nearby families are more likely to share a link. Next, we randomize the net-
work by rewiring links with probability p. The rewiring allows us to add
some long range connections in order to reduce the average path length with
the cost of increasing the clustering coefficient. The result is a network that
allow the stream of information to reach all its parts quickly.

In order to create an element of uncertainty, an agent can break up a
link with a certain probability and randomly reconnect to another agent.
In this way, the network is not static but is dynamically changed during
the simulation to allow a flexible exchange of information between agents.
Since the interactions impact the agent adoption, the rewiring modifies the
social interactions thus it is a decisive factor in the final result. The rewiring
probability is identified by the model calibration.

3.3 The household behaviour

In the proposed model, the behaviour of the agent has been completely re-
vised. First, each agent determines the right size for a PV system that allows
him to get the maximum gains under the constraint on the size of the roof. To
measure this gain, we decided to use the return on common equity (ROE), a
measure of profitability that calculates the ratio between the net income and
equity. To determine if the ROE is good or bad, it is compared to the per-
formance of alternative investments such as BOT, CCT, bank deposits,etc.
The estimation of the ROE takes into account costs and gains for a period
of 20 years which is the estimated lifetime of a PV system. The procedure
for estimating the ROE calculates the cash flow for each year. The cash flow
is calculated as the difference between total earnings and total expenditure
related to the PV system for a period of one year. The expenses that are
taken into consideration are:

• The cost of the system is calculated by the equation 2.11;

• Maintenance costs;

• Interest to the bank / region.

The sources of income are:

• Electricity bill savings due to the self-consumption;

• Sales to the grid operator.
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Some of these costs and earnings are based on global model parameters. The
global variables that we use for the assessment of feasibility are:

• The electricity prices charged to final consumers (divided into five
bands of consumption);

• The annual change in electricity prices that is a dynamically modifiable
parameter;

• The average cost of PV panels per kWp;

• The incentives for the installation that are the principal mechanism by
which the region can influence the choices of the agents;

• The minimum prices guaranteed by the GSE for the dedicated with-
drawal that is an instrument for the sale of electricity on the market.
It consists in transferring the electricity to the GSE that recompenses
the producers by paying a price for each produced kWh.

The amount of energy that is sold to the operator and the amount of en-
ergy self-consumed depend on the energy produced by the plant and the
consumption of the household. In particular, the energy consumed econsumed

by an household i is assumed to remain constant over the period. Instead,
the energy produced eproduced by the plant p decreases over the years and it
is calculated as :

eproducedp,y = eproducedp,y−1 + (eproducedp,y−1 ∗ efficiencyloss) (3.5)

where efficiencyloss is the solar panel degradation rate. According to research
carried out by independent institutions in the field, the performance of a new
photovoltaic decreases by 1% per year, so after 20 years makes 80% of what
was initially. Then, using the equation 3.5, we can calculate the amount of
energy sold esold during the year y by the household i as follows:

essoldi,y =

{
eproducedp,y − econsumedi if eproducedi,y > econsumedi

0 otherwise
(3.6)

where eproducedp,y − econsumedi represents the difference between produc-
tion and consumption. If the production of energy exceeds the household
consumption, then the household sells the surplus to the grid operator. Sim-
ilarly, the energy self-consumedeself−consumed by the household i in the year
y is calculated as:

eself−consumedi,y =

{
econsumedi,y if eproducedi,y > econsumedi

eproducedp,y otherwise
(3.7)
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The amount of earnings depends on the year and semester of entry into
operation because it determines the Conto Energia applied. From the second
to the fourth CE, the incentive fee is applied to all the energy produced by
the plant. So, in this case, earnings are calculated as follows:

revenuei,y = eproducedp,y′∗incentivey′,s′+essoldi,y′∗GSEminprice+eself−consumed∗epricey
(3.8)

where y′ and s′ are, respectively, the year and the semester of installation
of the system, epricey is the price of electricity for the year y′ and GSEminprice

is the minimum price guaranteed by the GSE in the year y′ . The GSE
minimum price also depends on the power band of the system.
The Fifth Conto Energia redefines the incentives given for the production of
electricity from photovoltaic sources. In this case, for systems with nominal
power up to 1 MW is provided an all-inclusive tariff determined on the basis
of power. So the tariff payable is the sum of the all-inclusive tariff on the
share of production fed into the grid and the premium rate on the share of
production consumed.

revenuei,y = eself−consumed∗incentiveself−consumedy′,s′
+essoldi,y′∗incentiveall−inclusivey′,s′

(3.9)

Now we have the elements to calculate the cash flow for the year y:

Fi,y = revenuei,y − expensesi,y (3.10)

We can calculate the cumulative discounted cash flow (CDCF) as follows:

CDCF =
N∑
t=1

Fi,y

(1 + r)t
(3.11)

where r is the discount rate. The main reasons for which the series of future
cash flows are discounted to present value is related to the fact that earnings
close in time to the initial investment can be reused to obtain new profits.
So with the discount you give more weight to earnings closer in time.
A household solves the optimization problem 3.12 to find the size of the
system that provides the highest ROE.

max ROE

subject to size ≤ roofarea
(3.12)
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So, the size of the PV system is the one that maximizes the ROE. The
budget constraint is relaxed because the agent can take out a loan if it is
not enough. In order to solve the problem 3.12, we decided to use the sim-
ulated annealing algorithm because it is able to find a good solution in a
short time. Simulated Annealing is a metaheuristic paradigm that was pro-
posed by Kirkpatrick et al. [1983] in 1983 to solve optimization problems.
This paradigm aims at finding a global minimum when there are multiple
local minima. The name and inspiration come from annealing processes in
metallurgy. According to the laws of statics, a system where:

• s is a state

• f(s) is the energy of the state’s

• T is the temperature of the system

fluctuates from one state to another with probability given by :

e
−f(x)
kT (3.13)

where k is Boltzmann constant. This process is simulated starting from an
initial solution that represents the initial state of the system. Then the algo-
rithm generates a new solution starting from the current state and explores
the neighbourhood of the current solution and selects one. It then goes on
to calculate the value (energy state) of the new solution. The new solution
is accepted with probability:

e
−(f(snew)−f(sold))

T (3.14)

where f(snew) and f(sold) are respectively the energy of the new solution
and the old solution. At each cycle, the temperature is decreased, and the
process ends when it is lower than the threshold. It returns the best result
that has been found. The pseudo-code is:

s = s0 ; e = E( s )
sbe s t = s ; ebes t = e
k = 0
whi le k < kmax and e > emax

T = temperature ( k/kmax)
snew = neighbour ( s )
enew = E( snew )
i f P( e , enew , T) > random ( ) then

s = snew ; e = enew
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i f enew < ebes t then
sbe s t = snew ; ebes t = enew

k = k + 1
return sbe s t

Listing 3.1: Simulated anealing peseudo code Wikipedia [2004]

Note that the probability of accepting a worse solution is smaller than that
of accepting a better solution, however, is not zero. This aspect allows the
algorithm to circumvent the local minima partially.
We use the simulated annealing algorithm to find the best value for the ROE
function. The implementation of the algorithm applies the ROE function
to a new plant size for estimating its ROE. The ROE function takes into
account any regional incentives and any mortgage payments.
When the size of the system has been established, the agent calculates the
utility function which is based on the one proposed by Palmer et al. [2013].
In particular, the utility function used is the following:

U(v) = wpp(clsv)upp(v)+wbudget(clsv)ubudget(v)+wenv(clsv)uenv(v)+wcom(clsv)ucom(v)

(3.15)

where, wpp(clsv),wbudget(clsv),wenv(clsv) and wcom(clsv) are the weights asso-
ciated with each partial utility for each household class.

3.3.1 Economic utility

The partial utility upp(v) is called by as economic utility. This function
estimates the expected payback period pp of a particular PV system for
agent j. The function value range is between 0 and 1, so we map the payback
period range [0,20] into the range [0,1]. The simplest method to do this is
to subtract the min(pp) considered, namely one year, and then divide the
value obtained by max(pp) − min(pp), where max(pp) is the maximum life
of the investment, which is 21 years because 20 years is the expected useful
life of the PV system. Thus, as Palmer et al. [2013], we calculate the upp(v)
as follows:

upp(v) =
21− pp(v)

20
(3.16)

where, pp(v) is the payback period for the PV system that an agent v wants
to install. The payback period is defined as the number of years required to
recover the initial investment in a photovoltaic system.To assess this period,
it is necessary to calculate the net present value (NPV) of the PV system.
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In fact, when the NPV value turns from negative to positive, a household
recovers from its initial investment. We calculate the NPV by subtracting
the initial investment I(v) to the CDCF calculated by the equation 3.11 as
follows:

NPV (v) = I(v)− CDCF (v) (3.17)

The regional and national incentives act on this factor because they reduce
the payback period.

3.3.2 Budget utility

The household’s budget factor is determined as follows:

ubudget(v) =
1

e

vequity

vbudget

(3.18)

where, wequity is the initial investment obtained by subtracting any incentives
that act on the initial outlay at the PV system price.
The ubudget(v) is based on the agent’s budget, which in turn is determined by
the agent’s income by the equation 3.1. As mentioned before, we suppose that
households with an income around the mean buy an ordinary PV system.

3.3.3 Environmental utility

This partial utility captures an agent’s attitude toward the ecological benefits
linked with the adoption of a PV system. The environmental factor (uenv) is
calculated as the oil not consumed, which is correlated with the amount of
CO2 emissions saved. For this reason, in equation 3.21 is used the conversion
factor from MWh of energy to TOE (tonne of oil equivalent). A TOE is
defined as the amount of energy released by burning one tonne of oil, or
0.187 TOE for each MWh produced (Autorità per l’energia elettrica e il gas
[2008]).

uenv(v) =
1

1 + eoilnotconsumed−oilconsumption
(3.19)

where,

oilconsumption =
averange annual energy consumption · 20

1000
· 0.187TOE

(3.20)
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and

oilnotconsumed =
kWp PV system · 20

1000
· 0.187TOE (3.21)

3.3.4 Communication utility

Finally, the impact of the social interaction on the adoption decision is de-
scribed by the partial utility ucom(v). The neighbourhood of an agent is
defined by agents who share a communication link with it. The communica-
tion factor is calculated as follows:

ucom(v) =
1

1 + e

1

2
Lv,tot−Lv,adopter

(3.22)

where, Lv,tot is the total number of links of the agent v and Lv,adopter is the
number of links with actual adopters.
At the beginning of the simulation, there are few adopters in the model, so

Figure 3.7: The communication utility values.

the interactions do not impact the initial adoption decision. In fact, as you
can see in Figure 3.7, the value of ucom(v) starts with a value close to zero.
Then, when the diffusion takes place, its value increase until neighbours in-
stall plants.
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If U(v) exceeds the threshold, the agent w installs the PV system. The
threshold and the weights are obtained by means of the parameter tuning
explained later.

In summary, the utility function takes into account the payback period,
the environmental benefit of the investment, the household’s budget, and
the influence of communication with other agents. The utility function takes
into account the relationships between agents whit the partial utility ucom(v).
The neighbourhood of an agent is represented by agents with which it shares
a link. If an agent installs a PV system, all agents in its neighbourhood
are affected creating a pressure to build a plant. The economic aspect is
described by the partial utility upp(v). An incentive has an impact on this
function because its value depends on the PBT of the plant. The agent’s
attitude toward the environmental/ecological advantages associated with the
adoption of a PV system is captured by the partial utility uenv(v). Finally,
the partial utility ubudget(v) defines the economic possibilities of an agent.
At each time step, the model computes the utility function for all the agents
who have not adopted a plant yet. To do this, it compute the best size of
the plant that guarantee the best ROE. The ROE estimation considers the
national and regional incentives, the loan with the bank and maintenance
costs. Furthermore, the simulator updates all statistics regarding the plants
installed, such as the year of life, energy produced and the yield.
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Chapter 4

Households Generation

In this chapter, we describe the first phase of the simulation, namely the gen-
eration of the families. This phase is crucial because it affects the outcome
of the simulation. Specifically, the characteristics of the families in the area
influence the diffusion of innovations.
Usually, an innovation has a very high price at the beginning due to the
high costs of production. However, the cost is reduced over time because the
technological improvements, especially those in the production phase, make
manufacturing more efficient. Indeed, many technologies follow an S-shape
curve that relates the investments made by the company with the perfor-
mance of the technology (Schilling and Izzo [2013]). In the first stage, the
performance improvement is slow because the technology has yet to be fully
understood. Later, when researchers have a better knowledge of the technol-
ogy, the improvement begins to be rapider. However, when the technology
reaches its natural limit of performance, the improvements slow down (Figure
4.1). Similarly, the diffusion of innovations follows an S-curve. In the initial
stage, the adoption is slow because the technology is poorly understood when
it is introduced to the market. When the knowledge about the technology
has spread, the innovation enters the mass market and the rate of adoption
increases. Finally, the adoption rate will begin to decrease when the market
has been fully saturated. Figure 4.2 shows the relationship between the S-
curve and the market segments. A possible classification of these segments
has been proposed by Rogers [2003]. Rogers has identified five categories of
adopters:

• Innovators are those who have the highest social status, have a high
level of education and economic availability. Their wealth allows them
to take risks of buying the innovation, even when it is not widespread.
The high level of education allows them to be up to date on front-end
technologies and interact with other innovators.
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Figure 4.1: Generic S-curve.

• Early adopters represent the second group. Who belongs to this cat-
egory is well-integrated into the social system and has a great potential
to influence the behaviour of others. Early adopters have a higher social
status, financial liquidity and high level of education.

• Early Majority represent the central part of the adoption curve. They
are slower and more cautious in the adoption process and anticipate
little the average consumer in the market. Early Majority have above
average social status. They play an important role in the diffusion
process.

• Late Majority have a skeptical attitude for innovations. They do
not adopt a new product until they do not feel social pressure from
their peers. They have below average social status and little financial
liquidity.

• Laggards represent the remaining share of the market. They base
their decision mainly on experience rather than on the influence of
social network. Who belongs to this class has the greatest degree of
skepticism for innovations.

The diffusion of photovoltaic plants in Italy has followed the S-curve shown
in Figure 1.3. The main reasons that discourage the purchase of a PV sys-
tem are the high initial investment and the long period of payback. These
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Figure 4.2: The diffusion of innovations according to RogersWikipedia [2014].

factors have implied that only families with financial liquidity and risk toler-
ance have purchased a plant in the early years. The introduction of national
incentives and the reducing of plant costs have increased the annual growth
rate, which has reached its peak in 2011. After 2011, there was a steady
decline in adoptions due in part to the continuous reduction of the incentive
fee.
The diffusion of photovoltaic systems in Emilia-Romagna has followed the
trend as the other regions. To model this curve is necessary to sample house-
holds whose characteristics reflect those of the entire population. Thus, it
is necessary to get families that fall into the classes identified by Rogers in
order to obtain the S-shape of the distribution. To classify these families, we
decided to describe each of them with the attributes: age class, education
level, income, family size and budget. In order to obtain the distributions
of these attributes, we used data from the Survey on Household Income and
Wealth (SHIW)Bank of Italy [2012]. The SHIW is a statistical survey con-
ducted by Bank of Italy. This survey has begun in the 1960s with the goal
of studying the economic behaviour of Italian households. The survey uses
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a sample of 8000 households distributed over 300 Italian municipalities. The
results of the investigations are given every two years through the Statistical
Bulletin Supplements. In addition, the Bank of Italy also provides microdata.
Through microdata, we derived a model for the generation of the households.
The result of generation is households that will be used to simulate the spread
of solar systems.

4.1 The microdata

The data are available in three different formats: ASCII, SAS and STATA.
The format of the data that we have decided to use is the ASCII. This
data are compressed into one single zip archive that contains a series of
comma-separated value files (csv). Each file represents a dataset of those
shown in Table 4.1. The primary key to merge household level information
is NQUEST (household ID). NQUEST must be considered together with
NORD (ID of each household member) to merge individual level information.
For our purpose, we are interested in the characteristics of the main earner
and the economic conditions of his family. For this reason, we use the datasets
CARCOM12 and RFAM12. The dataset CARCOM12 contains all the social-
demographic characteristics of each household member and other relevant
information:

• NQUEST - household ID;

• NORD - component ID;

• CFRED - head of household, defined as the major income earner;

• ETA - age (years);

• CLETA5 - age class (Up to 34 years, 35-44, 45-54, 55-64, more than 64
years);

• NCOMP - Number of household members

• NPERC - Number of household income earners

• PERC - Income earner;

• Q - working status (1=employee, 2=self-employed, 3=not-employed)

• QUAL - employment status (1= blue-collar worker, 2= office worker
or school teacher, 3=cadre or manager, 4= sole proprietor/member of
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Dataset Content Primary key
Q10A Households’ composition NQUEST
LAVORO Employment NQUEST NORD
Q10C1 Financial Assets and financial information NQUEST
Q10C2 Financial Assets and financial information NQUEST
Q10D Properties and debts NQUEST
Q10E Expenditures NQUEST
Q10F Insurance NQUEST
Q10G Information provided by interviewer NQUEST
CARCOM12 Characteristics of the individuals NQUEST NORD
USCITI Individuals that left the panel household NQUEST NORDP
ALLB1 Payroll employees NQUEST NORD
ALLB2 Self-employed worker NQUEST
ALLB3 Family business NQUEST
ALLB4 Working shareholder/parter NQUEST NORD
ALLB5 Pensions NQUEST NORD
ALLB6 Other income sources NQUEST NORD
ALLD1 Property, other than principal residence NQUEST
ALLD2 RES Loans for main residence NQUEST
ALLD2 AIMM Loans for properties other than principal residence NQUEST
ALLD2 FAM Loans for consumer credit NQUEST
ALLD2 PROF1 Loans for business purposes of family businesses NQUEST
ALLD2 PROF2 Loans for business purposes of self-employed NQUEST NORD

Derived datasets
RFAM12 Household Incomes NQUEST
RISFAM12 Household Expenditure and Savings NQUEST
RICFAM12 Household Wealth NQUEST
RPER12 Individual Incomes NQUEST NORD
PESIJACK12 Replication weights NQUEST

Table 4.1: Datasets available in the 2012 annual database

the arts or professions, 5=otherself-employed, 6=pensioner, 7=other
not-employed)

• AREA3 - geographical area (1=North, 2= Centre, 3=South and Is-
lands)

• AREA5 - geographical area (1=North-east, 2= North-west, 3=Centre,
4=South, 5=Islands)

• IREG - Istat code for region of residence (1=Piemonte, 2=Valle d’Aosta,
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3=Lombardia, 4=Trentino,5=Veneto, 6=Friuli, 7=Liguria, 8=Emilia-
Romagna, 9=Toscana, 10=Umbria, 11=Marche, 12=Lazio, 13=Abruzzo,
14=Molise, 15=Campania, 16=Puglia, 17=Basilicata, 18=Calabria,
19=Sicilia, 20=Sardegna)

• NASCREG - region of birth (Istat code)

• NASCAREA - geographical area of birth (1=North, 2= Centre, 3=South
and Islands)

• ACOM4C - town size (0-20.000 inhabitants, 20.000-40.000, 40.000-
500.000, more than 500.000 inhabitants).

• STUDIO - 1 none, 2 primary school, 3 lower secondary school, 4 voca-
tional secondary school (3 years of study), 5 upper secondary school, 6
3-year university degree/higher education diploma, 7 5-year university
degree, 8 postgraduate qualification.

To avoid the curse of dimensionality, we do not use all the attributes to de-
scribe a household. The curse of dimensionality refers to the phenomenon
that many data analysis become significantly harder as the dimensionality
(the number of attributes) of data increases. Since, the data are more scat-
tered in the space, it is more difficult to create a model that assigns the right
class to each object. In order to overcome this problem we characterize the
families with four attributes: education level, age class, number of members
and income. The RFAM12 contains for each household the sources of in-
come. The attributes of this datasets are shown in Table 4.2. These data are
linked to the main earner through a join with the key attribute NQUEST
(family ID). It was possible to derive the probability distribution for age,
education level and income of the primary earner by analysing CARCOM12
and RFAM12 datasets. The attributes that we used for this purpose are
CFRED, CLETA5, STUDIO, NCOMP, NPERC, PERC, QUAL, AREA3.
We use CFRED to get the family members that are head of household. The
heads of families are defined as primary income earners. So we use their
attributes to determine the income of a family. In particular, we use the
attribute CLETA5 to get the age class of the head of household and estimate
its school level. From the data, we found that the salary of an individual
is correlated to its age. Another evidence is that the income of a family is
linked to the education level of the major income earner. Thus, we use the
attribute STUDIO to calculate its income.
It is obvious that the number of household income earners (NPERC) affect
the income of a family because a larger number of earners means a higher
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Variable name Description
Y Net disposable income
YL Payroll income
YL1 Net wages and salaries
YL2 Fringe benefits
YT Pensions and net transfers
YTP Pensions and arrears
YTP1 Pensions
YTP2 Arrears
YTA Other transfers
YTA1 Financial assistance (wage suppl. etc.)
YTA2 Scholarships
YTA3 Alimony and gifts
YTA31 Received
YTA31 paid(-)
YM Net self-employment income
YMA1 Self-employment income
YMA2 Entrepreneurial income
YC Property income
YCA Income from real-estate
YCA1 Actual rents
YCA2 Imputed rents
YCAF Income from financial assets
YCF1 Interest on deposits
YCF2 Interest on government securities
YCF3 Income from other securities
YCF4 Interest payments
Y = Y L+ Y T + YM + Y C

Table 4.2: Variables of RFAM12

family income. Moreover, the NPERC is related to the number of members
of the family. It is clear that a family composed by a single element can have
at most one income earner. The employment status (QUAL) it is another
parameter that changes the person’s income. Finally, the attribute AREA is
used to get only the people who reside in the area of interest.
We start by selecting the elements that are heads of families (CFRED = 1),
live in the north (AREA3=1) and are workers or pensioners (QUAL<7). We
did not select only families that live in Emilia-Romagna because the sample
was too small to obtain meaningful data. Then, to generate the families, we
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determine the age class of the principal earner.
In our analysis, we used Weka (Hall et al. [2009]): free software written in
Java that provides a collection of visualization tools and algorithms for data
analysis.

4.1.1 The age class

The age class is a discrete ordinal attribute, which can take five values: up
to 34 years, 35-44, 45-54, 55-64, more than 64 years. In the dataset, these
classes are represented as integers from 1 to 5 in such a way that the order
is preserved.

Figure 4.3: Age class frequencies.

Figure 4.3 shows the frequencies of these values. We estimate the prob-
ability of occurrence for age class value by dividing each frequency by the
total number of family’s heads. Table 4.3 shows the probability distribution
in which each outcome for each age class is linked with its probability. Once
the age class has been assigned, we proceed to assign an education level.
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Age Class Probability
1 0.061
2 0.149
3 0.211
4 0.184
5 0.395

Table 4.3: Age Class: probability distribution

4.1.2 The education level

The education level is represented by mapping the level of study with an in-
teger value. Levels of education that we consider are: (1) none, (2) primary
school, (3) lower secondary school, (4) vocational secondary school (3 years
of study), (5) upper secondary school, (6) 3-year university degree/higher ed-
ucation diploma, (7) 5-year university degree, (8) postgraduate qualification.
The education level is affected by the age class attribute. This relationship
can be observed in the following table that shows the distribution of proba-
bility of the education level attribute. For example, if we look at the level of
education 5, we can observe that the age affect the probability that a person
belong to this level. Indeed, the probability P (EDU = 5|AGE = 3) is about
0.40, but P (EDU = 5|AGE = 5) is about 0.20. The conditional probability
P (EDU = 5|AGE) is not equal to the a priori probability P (EDU = 5), so
there is a dependency between the age class and education level attributes.
This aspect is made even clearer by the scatter plot 4.4.

4.1.3 The number of members and annual energy con-
sumption

We need to establish the number of family members for defining the energy
consumption. The probability distribution is shown in Table 4.5. These
probabilities were derived from the frequencies shown in the bar chart 4.5.
The average number of members in the dataset is 2.3. The average annual
consumption of energy is estimated according to the number of family mem-
bers. Enel computes consumption as shown in Table 4.6. Then, we use these
estimates to determine the average annual consumption of a family. For in-
stance, the consumption is estimated equal to 6000 kWh/year for a family
of four.
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Figure 4.4: Age class frequencies.

4.1.4 The income of a family

We decided to use the regression to assign an income to the family. Tan et al.
[2007] defines the regression as a predictive modelling technique where the
target variable to be estimated is continuous. Let D denote a data set that
contains N observations,

D = {(xi, yi)|i = 1, . . . , N} (4.1)

Each xi corresponds to the set of attributes of the i-th observation (also
known as the explanatory variables) and yi corresponds to the target (or
response) variable. Regression is the task of learning a target function f
that maps each attribute x into a continuous valued output y. We seek a
function f that can predict the family income from the characteristics of
the major income earner. To find this function we used a linear regression.
Thus, the function f is a linear combination of a set of coefficients and
explanatory variables, whose value is used to predict the outcome of the
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Figure 4.5: Number of members frequencies.

dependent variable.

f(x) =
N∑
i=1

wixi (4.2)

Moreover, to the value of the function is also added an error term ε.

y = f(x) + ε (4.3)

This random noise ε is used to capture measurement errors of the at-
tributes or factors that were not included in the model. The target variable
y is treated as random variable and it may assume different values even when
considering the same attribute. We use the Ordinary Least Squares (OLS)
method for estimating error term ε.
As explanatory variables we decided to use STUDIO, CLETA5, NCOMP,
NPERC to predict the income, where NPERC is the number of recipients of
the family. The value of NPERC is related to NCOMP and it is obtained
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from the probability distribution 4.7. The linear regression model is derived
from data contained in CARCOM12 and RFAM12. To evaluate the goodness
of the fit we use the R-squared measure. R-squared measure is defined as:

R2 =
SSM

SST
=

∑
i[f(xi)− ȳ]2∑

i[yi − ȳ]
(4.4)

The R-squared value is between 0 and 1. If the value of R2 is close to 1
there is a linear relationship between the attribute set and the the target
variable. Through the explanatory variables STUDIO, CLETA5, NCOMP,
NPERC the R-squared value obtained is 0.415. This value is not very high,
but for our purpose it is more than enough because our goal is to provide an
estimate of the income.

4.2 The subdivision of families in social classes

As mentioned in the chapter, households are divided into social classes to
assign a similar behaviour to the families that share similar characteristics. In
our model, the social class of a family is reflected in the different weights used
to calculate the utility function. In fact, the weights are selected according
to the social class of the family. These weights are obtained by means of
parameter tuning, but households should be subdivided well to fit the curve
of diffusion of PV system in Italy. In this section, we will explain how we
got the division into social classes of families.
The objective is to identify the types of families according to the classification
of Rogers so that we can obtain the S-curve. We start to simulate from
2007. In that year, the adoption rate was very low: only who had financial
liquidity and attitude to explore decided to purchase a photovoltaic system.
Rogers classifies these individuals as innovators and they are only 2.5% of
the market. The decrease in the cost of the plants and the introduction of
national incentives contributed to increase the rate of diffusion.
Since we do not have a classification model for households who purchased a
solar panel, it is difficult to make the exact subdivisions identified by Rogers.
However, we do not want to fit the curve by grouping the families, but
we want to help the parameter tuning to identify the weights that allow
us to obtain the same curve of diffusion in the virtual world. Specifically,
the combination of the clustering, which attempts to group similar families,
and the different weights found by parameter tuning leading the simulation
towards our goal. Thus, the clustering is a method that allows us finer control
for mapping the diffusion curve.
Each family can be considered as a point in three-dimensional space: age
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class, education level and income. We used the K-means clustering technique
to subdivide these points in 5 groups. The K-means is a prototype-based
technique that attempts to find a user-specified number of cluster (k). Each
cluster Ci, with i = 1, . . . , k, is represented by its prototype ci , defined as
the centroid of the group of points. The K-means algorithm attempts to
minimise the total intra-cluster variance repositioning the centroid at every
step until the centroids do not change. It starts with a random set of centroids
c1, . . . , ck and then assigns each point x to the nearest centroid. After that,
it calculates the new centroids by averaging the points in a cluster as follow:

ci =
1

mi

∑
x∈Ci

x (4.5)

where mi is the number of points in the cluster Ci. The result obtained
by applying K-means clustering to generated households is shown in Figure
4.6. It is is difficult to evaluate the goodness of a clustering because we do

Figure 4.6: Clustering of households.

not have the ground truth class labels to be used as a reference. When the
ground truth is unknown, unsupervised techniques can be used to evaluate
the clustering. Unsupervised techniques measure the goodness of a cluster-
ing structure without using external information. A common unsupervised
method is the silhouette coefficient that relates the cohesion of a cluster with
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the separation between clusters (Tan et al. [2007]). The silhouette coefficient
is defined for each sample i and it is composed of two scores:

• The cohesion a(i) - the mean distance between the sample i and all
other points in the same cluster.

• The separation b(i) - the mean distance between the sample i and all
other points in the next nearest cluster.

for the sample i, the coefficient is:

s(i) =
(b(i)− a(i))

max(a(i), b(i))
(4.6)

The value of the silhouette coefficient can vary between −1 and 1. If the
value is negative that means that a(i) is smaller than b(i), so the sample i is
closer to the objects of another cluster than other objects of the cluster to
which i belongs. Samples with a large s(i) (almost 1) are very well clustered.
An overall measure of the goodness of a cluster can be obtained by computing
the average silhouette coefficient of all samples.
Using k means clustering we got a silhouette coefficient of 0.35.

4.3 Implementation

For the generation of the necessary data to the simulator, we have imple-
mented a set of tools in Python. We use Python because it is a dynamic
object-oriented language, easy to learn and with a large community of users.
Many modules have been developed for Python and this has made the de-
velopment of tools really simple. We developed several tools to analyse mi-
crodata, sample households respecting the probability distributions, perform
the clustering, sample buildings and organize the social network. The process
that leads to an instance for the simulator is shown in Figure 4.7. The set
of tools reflecting the process 4.7. A program called Learner has the task to
analyze microdata and provide the probability distributions and the regres-
sion model as output. The dataset CARCOM12 and RFAM12 are loaded
by the Python module Pandas (pandas community [2012]). In particular,
the data are loaded in memory into DataFrames objects: a two-dimensional
size-mutable, heterogeneous potentially tabular data structure with labeled
axis (rows and columns). It provides many features, including the ability
to make the join between two tables, to select the data and do operations
on them. These features have greatly simplified the implementation of the
Learner. Indeed, it was easy to make the join between the CARCOM12 and
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Figure 4.7: Households generation steps.

RFAM12 datasets using the key NQUEST, select families with the required
characteristics and calculate the probability distributions of attributes.
The regression model was obtained using the implementation of OSL con-
tained in the Statsmodels module.
The Learner program is run only once because the probability distributions
are saved in pickle files for efficiency. The pickle file is used for serializing
and de-serializing a Python object structure. Thus, using the pickle file is
possible to save the DataFrame objects structures that contain probability
distributions, save the income model and load them at a later time.
The Python module Generator loads pickle files generated by the Learner.
The Generator module uses the probability distributions and the income
model to sample households. This module is imported by the Clustering
module, which provides the procedure get households. This procedure takes
as input the number of households to be sampled and returns families with
the labels of their clusters. As mentioned in the Section 4.2, the clustering
technique used is K-means. We decided to use the implementation of K-
means provided by the Python module sklearn. This module provides many
data mining techniques, so it was possible to try different clustering methods
and find the one that provided the highest silhouette coefficient.
The main program is instance generator.py. This program reads a configu-
ration file which contains the following information:

• sample size - the number of families to be sampled for each instance;
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• inputfile - The shapefile that contains the buildings;

• outputpath - The output folder. This folder will contain the shapefile
and dbf files generated;

• num instances - The number of instances that the program will create;

• degree - The maximum number of links for each family in the social
network.

As a first step, instance generator reads the shapefile and loads buildings in
memory. Then, For each instance:

1. it samples a number of buildings equal to sample size;

2. it generates sample size households using the cluster module;

3. it assigns each family to a building;

4. it invokes the setFriends method of socialnetwork module to build the
social network.

The socialnetwork module implements the extended rank-based friendship
explained in section 3.2.
The attributes of households are stored in dbf file that, along with the shape-
file, is written in the output folder at the end of execution. Figure 4.8 shows

Figure 4.8: Tool chain

the toolchain described above. The DBF files and SHP files are loaded by
the NetLogo model.
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In summary, these Python scripts allow us to generate one or more scenarios
for our model. A scenario consists of an SHP file that contains the buildings
position and a DBF file that contains the household’s characteristics and the
building’s characteristics. These files are loaded in the model to spread the
agents in the virtual world and reproduce the area of interest. In order to
get an accurate parameter tuning, we create more scenarios for the same
number of agents. These scenarios were used to fine-tune the parameters in
our model as we are going to see in the following chapter.
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Age Class Education level Probability
1 1 0.009
1 2 0.009
1 3 0.244
1 4 0.201
1 5 0.335
1 6 0.067
1 7 0.120
1 8 0.014
2 2 0.010
2 3 0.279
2 4 0.113
2 5 0.398
2 6 0.019
2 7 0.160
2 8 0.021
3 1 0.003
3 2 0.028
3 3 0.342
3 4 0.108
3 5 0.372
3 6 0.005
3 7 0.126
3 8 0.016
4 1 0.006
4 2 0.096
4 3 0.335
4 4 0.119
4 5 0.277
4 6 0.005
4 7 0.144
4 8 0.017
5 1 0.042
5 2 0.428
5 3 0.204
5 4 0.074
5 5 0.172
5 6 0.001
5 7 0.073
5 8 0.006

Table 4.4: Age Class: probability distribution
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Number of members Probability
1 0.301
2 0.341
3 0.173
4 0.136
5 0.038
6 0.008
>6 0.002

Table 4.5: Number of members: probability distribution

Number of members Average annual consumption (kW/year)
1 2700
2 3500
3 4500
4 6000
>5 7500

Table 4.6: Number of members: probability distribution
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NCOMP NPERC Probability
1 1 1
2 1 0.287
2 2 0.713
3 1 0.218
3 2 0.524
3 3 0.264
4 1 0.212
4 2 0.559
4 3 0.139
4 4 0.090
5 1 0.277
5 2 0.423
5 3 0.192
5 4 0.069
5 5 0.038
6 1 0.296
6 2 0.370
6 3 0.148
6 4 0.148
6 5 0.037
7 2 0.667
7 3 0.333
9 2 0.5
9 3 0.5
11 4 1

Table 4.7: Number of earners: probability distribution
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Chapter 5

Model Simulation and
Calibration

In this chapter, we explain the model simulation and calibration. The sim-
ulation has been designed with the aim to analyze the requirements related
to the development of a new photovoltaic project in the planning stage and
test the feasibility of the idea. Therefore, the simulator provides a useful as-
sessment tool for individual investors, but at the same time allows to obtain
global information such as the total amount of energy produced by photo-
voltaic technologies or the costs incurred from the region. Then, it is possible
to integrate the simulation results into the optimization problem which has
the goal to create the regional energy plan.
To correctly model the dynamics of the complex system studied was necessary
to introduce a number of parameters that govern various aspects of the sim-
ulation. For example, the electrical energy that each system can generate is
closely linked to the geographic position, and orientation of the photovoltaic
panels that make it up (to simplify the model, the orientation and the angle
of inclination of the panels were considered optimal, i.e. to the south and
30 inclination). In order to create a model that simulates the installation of
new PV panels in any area the annual average solar irradiation is a global
parameter of the model whose value can be changed through the graphical
interface. Again, the user can control the average cost of a PV system via
the GUI so, it can be dynamically changed during the simulation. Other
variables related to the plant are the loss of efficiency of the photovoltaic
panels and the annual maintenance cost.
Once you have established basic parameters, every year the simulator per-
forms the economic evaluation that is linked to the performance of PV sys-
tems installed. This phase takes into consideration factors closely related
to the cost of electricity as well as the incentive tariff recognized for the
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energy produced by the plant. In fact, the revenues derive from either the
self-consumption or the sales to the GSE.
In the direction of simplify and speed up the model calibration, all previously
mentioned parameters are kept constant during the parameter tuning. We
set these parameters to reflect the condition that we can found in Emilia-
Romagna; during the model calibration, we focus only on the weights of the
utility function.
As mentioned previously, we use NetLogo to provide an implementation of
our model. We started by loading the household data generated from the
developed tools in the NetLogo model. Loading data from outside allow us
to reproduce any area of interest without change the NetLogo model.

Once the data has been loaded, the model proceeds to evaluate, for each
semester, the dissemination of photovoltaic systems in the area.
In order to obtain the same PV system diffusion occurred in the Emilia-
Romagna we calibrate the model on real data computed using the historical
PV power installation trends provided by the GSE using the irace pack-
age (López-Ibáñez et al. [2011] for R language R Development Core Team
[2008]). irace generates many configuration of weights for the utility func-
tion 2.4 that are tested on instances. An instance consists in a DBF file and
in an SHP file that are generated according to the process described in the
Chapter 4. At the end, irace returns the best configurations found during
the “race”. In this way, we obtained the weights for the utility function 2.4
that guarantee a similar diffusion of residential PV systems in the virtual
world.
This calibration process took a long time since each simulation involves a
large number of agents. However, once we had the weights, performing ex-
periments on the virtual world was quite simple.

5.1 Model simulation

In our NetLogo model, we have a breed ( a kind of agents) called household
that contains all the attributes relative to the family. Households are loaded
from the shapefile when a user presses the setup button. The shapefile and
the associated DBF are read using the GIS extension. For each building, the
simulator creates a household with the values for the attributes contained in
a row of the DBF.
The households are placed in the virtual world mapping WGS84 coordinates
with the coordinates of patches and are connected together by means of links.
These links are read from the DBF file that contains for each family a list of
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Figure 5.1: The NetLogo simulator screenshot.

IDs of friends.
So, the social network is generated a priori and loaded into the model. In
this way, the setup of the virtual world is faster. Figure 5.2 shows the result.
After households are loaded, the simulation is performed for the first half
of 2007. We use tick-based mode to update the simulated time. Each tick
represents a semester in which all the agents that have not installed a solar
system decide whether to install a PV system or not. In addition, for each
step and for each adopter the simulator updates the energy produced by the
plant taking into account the annual reduction of efficiency and the earnings
from energy production.
In the code, there is the report called utility-function 5.1 that calculates the
desire level to install a photovoltaic plant of the family who invokes it.

to−r epo r t u t i l i t y−f unc t i on
l e t winc 0
l e t wpbt 0
l e t wenv 0
l e t wcom 0

i f c l a s s = 0 [
s e t winc a0
s e t wpbt (1 − winc ) ∗ b0
s e t wenv (1 − ( winc + wpbt ) ) ∗ c0
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Figure 5.2: World view after household are loaded.

]
i f c l a s s = 1 [

s e t winc a1
s e t wpbt (1 − winc ) ∗ b1
s e t wenv (1 − ( winc + wpbt ) ) ∗ c1

]
i f c l a s s = 2 [

s e t winc a2
s e t wpbt (1 − winc ) ∗ b2
s e t wenv (1 − ( winc + wpbt ) ) ∗ c2
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]
i f c l a s s = 3 [

s e t winc a3
s e t wpbt (1 − winc ) ∗ b3
s e t wenv (1 − ( winc + wpbt ) ) ∗ c3

]
i f c l a s s = 4 [

s e t winc a4
s e t wpbt (1 − winc ) ∗ b4
s e t wenv (1 − ( winc + wpbt ) ) ∗ c4

]

s e t wcom (1 − ( winc + wpbt + wenv ) )

l e t uf wpbt ∗ economic−u t i l i t y + wenv ∗ enviromental−u t i l i t y
+ winc ∗ income−u t i l i t y + wcom ∗ communication−u t i l i t y

r epo r t uf
end

Listing 5.1: NetLogo report that calculates the utility function

The report utility-function extracts the weights for the utility function from
the irace parameter acls, bcls, ccls where cls is the agent class. We use these
parameters because the utility function value is between 0 and 1. So, with
this trick we can specify parameters whose values are dependent on irace.
After that, the function 5.1 call all the partial utilities to compute the desire
level of a household.

As mentioned before, the agents calculate the size of the system that
ensures the best investment. The simulated annealing algorithm solves this
optimization problem. To make the code more readable and efficiently, we
decided to implement this algorithm as an extension of NetLogo using the
API that developers make available. So, the algorithm was written in Java
and then loaded by the primitive extension.
The model has many global parameters that are used to estimate the ROE
of the investment and other statistics. Global parameters are used to sim-
plify the model and, at the same time, to make it general. In fact, these
parameters are the cost of PV panels, PV technology, electricity prices for
household consumers, the GSE minimal price, BOT yield, maintenance costs,
etc. Many of these parameters can be set by the user via the graphical inter-
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face before and during the execution. Others, such as guaranteed minimum
prices by the GSE and electricity prices are read from external files.
Different values for the global parameters can produce different results. For
instance, high PV system installation cost reduce the value of ROE and so
discourage a household to adopt a PV system.
Usually, we use the same values for the global parameters to simulate the
behaviour of the agents in order to study the phenomenon of diffusion of res-
idential PV system having the same boundary conditions. Indeed, we focus
our attention on the weights for the utility function and the number of agents.

In addition to the household breed, we have define the region breed that is
devoted to managing the incentive system. We add one region agent during
the setup phase. The region agent allocates a budget for an incentive system.
The various types of incentives are exclusive, and it is necessary to choose
which one to apply before the simulation starts. Therefore, it is not possible
to study through the simulator the interactions between different incentives.
An agent can not take advantage of regional incentives, for example, it may
not be aware of these incentives, or may have no intention to take out a
loan. To simulate this aspect, the agent has a probability to know about
the regional incentive. The region also has the task to update the incentive
statistics, such as the budget used, during the simulation.
Once the setup phase is finished, and the model has been populated with the
agents, the user can press the button Go to start the simulation. The model
simulates the creation of new photovoltaic systems from the first half of 2012
to the second half of 2016. Since the incentive applied to energy produced by
plants is guaranteed for a period of 20 years, the duration of the simulations
is extended until the second half of 2036. During the simulation, the model
updates the plants’statistics such as years of life, yield and energy produced.
Moreover, the model calculates the agent’s statistics such as revenues, ROE
and PBT.
The graphical user interface show useful information to understand how the
virtual world changes over time. Each semester, the simulator updates data
on the installed kW, the average payback time and regional incentive. This
information is very important for politicians or companies to assess what
would be the response of investors to changes in model parameters.

5.1.1 Model calibration

Most of the algorithms for optimisation problems need the setting of many
parameters. Usually, there isn’t an optimal setting of these parameters for
every problem that the algorithm can handle, but the optimal configuration
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depends on the problem under consideration.
Normally, the calibration process runs the model many times and, at the end
of each execution, the output generated by the model is compared with the
real-world data. The model is adjusted automatically based on the difference
before the next execution. The objective is to find the optimal parameters
that provide a good fit. For simple mathematical functions with limited
number of variable, the calibration process is based on the assumption that
the function includes one or more error terms, and then to fit the function to
the data the calibration process minimizes the error term. Generally, when
we are dealing with agent-based models, the number of parameter involved
and the computational resources needed do not allow us to try all param-
eter combination. Moreover, the solution spaces involved are complicated
and the variables are often interdependent in non-linear manner, rendering
the mathematical optimization inappropriate. In these cases, we can use IA
techniques to calibrate the model. Evolutionary algorithms (EA) and swarm
algorithms may provide a sufficiently good solution without exploring the en-
tire search space. For instance, genetic algorithms (GA) that belong to the
larger class of EA try to refine the initial population of random individuals
by applying the mutation and the crossover operators (two basic operators
of GA). At the end of each step, a new generation of individuals is created
from the best individuals of the previous generation by modifying and com-
bining their chromosomes. The new generations also contain the previous
best individuals and their sizes remain constant; thus the number of model
evaluations remains constant or decrease over time.
In our model, it is necessary to determine the weights of the utility function
to map the actual diffusion curve of photovoltaic plants in Emilia-Romagna
over 2007-2012 period. For this reason we decided to use the irace pack-
age (López-Ibáñez et al. [2011] for R language R Development Core Team
[2008]) that implements the iterated racing procedures proposed by Bal-
aprakash et al. [2007] and further developed by Birattari et al. [2010].
Assume that we have an algorithm with N parameters, xd with d = 1, · · · , n.
The parameters tuning problem consists in finding a configuration θ = {x1,
· · · , xNparam} of these parameters that minimizes the measure cost c(θ, i),
where i is an instance of the problem López-Ibáñez et al. [2011].
The iterated racing method consists in three steps: in the first step the new
configurations are sampled from a particular distribution, in the second step
these configurations are tested on instances of the problem, and in the last
step the distribution is adjusted with the best configurations. At the end, it
returns the best configurations found during the race.

In our case, the configuration is a set of weights for the utility function
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2.4, the instance is a sample of households and the measure cost is the dis-
tance between simulated diffusion curve and actual curve.
Since, each test requires a long time and the model has many parameters,
it was necessary to use a cluster of computers to cover the parameter space
quickly. The architecture for parameters tuning is the one used by Belletti
[2014] shown in figure 5.3. In the architecture, there is a central server for
coordinating the test and a set of clients for performing the NetLogo simu-
lations. The server communicates with clients via ssh to setup the tests and
retrieve the results. To be more precise, the central server executes irace
and chooses the clients to perform tests on instances. Each client performs a
NetLogo simulation with the parameters provided by the server. When the
simulation ends on a client, the result is returned to the server that is respon-
sible for selecting the best configurations. On startup, all machines load the

Figure 5.3: Parameters tuning architecture.

same disk image through the process of network booting. This image con-
tains the Ubuntu 12.04 operating system in which NetLogo 5.0.5 and Java
Runtime Environment 7 are installed. The file system is mounted read-only,
so it is not possible to make changes to any file. However, for temporary
file is provided a RAM disk with a capacity of 100 MB. The Ubuntu image
is configured to mount the shared NFS directory from the server. Technical
specifications for the client machines: Intel R© CoreTMi5-2400@3.1 GHz and 4
GB of RAM.
The server side is a Linux machine where is installed irace and the NFS sever.
Technical specifications for the server machine: Intel R© Xeon R© X5570@2.93
GHz and 48GB of RAM.
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Figure 5.4: Scheme of irace flow of information.

The program irace requires four main inputs:

• A description of the parameter space X: the parameters to configure,
their types, ranges and constraints;

• The set of tuning instances;

• The configuration of irace itself;

• A function or an auxiliary program called hookRun.

These inputs can be passed as either R data structures or as files. The pack-
age irace provides a command-line wrapper for Unix environments, called
irace, which invokes R and executes irace. By default, irace searches the
required files in the current working directory.
We first define the parameter file, parameter.txt, that describes the parameter
space as follow:

# rew i r i ng p r o b a b i l i t y
rp ”−−rewi r ing−p r o b a b i l i t y ” r ( 0 . 0 , 1 . 0 )

# c l u s t e r u t i l i t y func t i on weights
# c l u s t e r 0
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a0 ”−−a0 ” r ( 0 . 0 , 1 . 0 )
b0 ”−−b0 ” r ( 0 . 0 , 1 . 0 )
c0 ”−−c0 ” r ( 0 . 0 , 1 . 0 )

# c l u s t e r 1
a1 ”−−a1 ” r ( 0 . 0 , 1 . 0 )
b1 ”−−b1 ” r ( 0 . 0 , 1 . 0 )
c1 ”−−c1 ” r ( 0 . 0 , 1 . 0 )

# c l u s t e r 2
a2 ”−−a2 ” r ( 0 . 0 , 1 . 0 )
b2 ”−−b2 ” r ( 0 . 0 , 1 . 0 )
c2 ”−−c2 ” r ( 0 . 0 , 1 . 0 )

# c l u s t e r 3
a3 ”−−a3 ” r ( 0 . 0 , 1 . 0 )
b3 ”−−b3 ” r ( 0 . 0 , 1 . 0 )
c3 ”−−c3 ” r ( 0 . 0 , 1 . 0 )

# c l u s t e r 4
a4 ”−−a4 ” r ( 0 . 0 , 1 . 0 )
b4 ”−−b4 ” r ( 0 . 0 , 1 . 0 )
c4 ”−−c4 ” r ( 0 . 0 , 1 . 0 )

Listing 5.2: Parameter space

As you can see in the listing 5.2, we define five groups of parameter that
are used to obtain the utility function weights. Each parameter is a real
number whose range is between 0 and 1. Since the sum of the weights must
be 1, we calculate the weights with the equations:

wbudget(cls) = acls (5.1)

wpp(cls) = (1− wbudget(cls))bcls (5.2)

wenv(cls) = (1− (wbudget(cls) + wpp(cls))ccls (5.3)

wcom(cls) = 1− (wbudget(cls) + wpp(cls) + wenv(cls)) (5.4)

76



where cls is the cluster of a household. We also create a configuration
file, tune-conf, to overwrite some default options of irace. In particular, we
set the number of digits to 3, the execution directory as netlogo-arena and
the number of calls to the hook-run script equal to the number of available
clients. We also set the instance directory to a folder in the NFS share di-
rectory; in this way, the instances are available to the clients.
The evaluation of the candidate is done by means of the auxiliary program
hook-run. This program gets as input the instance path, the candidate index
and the configuration of parameters. As output, it returns a numeric value
that represents the cost of the candidate for a given instance. In addition,
the hook-run has the task of selecting a client from those available on which
to run a simulation. To avoid that two hook-run processes select the same
client a lock is used. Each client available is represented by a file with its
IP address as name. A new process attempts to acquire the lock on clients
and if it is available, selects a client by deleting the corresponding file. At
the end of the execution, it recreates the client file to make it available for
future simulations.
The hook-run establishes a ssh channel with a client to launch an execution
of netlogo-exp-sim.py. This python script takes as input the parameters con-
figuration and the instance path. Then, it creates a xml file that contains the
parameters for the NetLogo model that is used to launch a simulation. When
the NetLogo simulation is finished, netlogo-exp-sim.py script reads the file
created by the NetLogo code that contains the results of simulation. Then,
it calculates the sum of squared errors (SSE) between the simulated values
and actual values. The SSE is returned using the same channel opened by
the hook-run. This value is used by irace as cost measure.

5.2 Results

In this section, we are going to summarize the results obtained with the
proposed model for the adoption of PV systems. As mentioned before, our
goal is to obtain a simulated trend as close as possible to the real PV power
installation rate which took place between 2007 and 2012. Thus, to verify the
correctness of the model, we decided to provide a NetLogo implementation
of the model and then to perform various tests. These tests were carried out
in an automatic way by means of the irace package for the R language. As
described in the section, irace needs instances to evaluate each configuration
of parameters produced during the race. An instance consists of a Shapefile
and a DBF file generated by the process described in Chapter 4. For each
execution of irace, we decided to use instances with the same number of
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agents, which differ in the sample of households. Each simulation, which
uses the same instance and the same parameters for the model, can produce
different results. During parameters tuning, we used the same seed for the
pseudo-random generator in such a way that the different candidates have
the same situation. If we do not set up a seed, each simulation can produce a
slightly different result, and then each candidate should be evaluated multiple
times on the same instance in order to obtain a meaningful measure.
We started with instances of small size to find out the relationship between
the diffusion and the number of agents. The number of agents affects the
execution time of a single simulation. Figure 5.5 shows the relationship
between the number of agents and the execution time.

Figure 5.5: The worst-case execution time increasing the number of agents.

The Chart 5.5 was obtained by computing, for each semester and year,
the best PV capacity for each agent in the social network. The PC with an
intel R© CoreTMi5-2400 with clock frequency of 3.1 GHz and 4 GB of RAM was
used to calculate these execution times. As you can see, the time required
grows linearly as the number of agents increases. At first glance, these times
do not seem excessive. For example, instances of 100 families require a sim-
ulation time of 20-30 seconds of seconds. But, if we decide to use instances
that consist of 5,000 agents the running time increases to 8 minutes. This
execution time means that the race to find the best configuration with 10000
experiments requires about 13 hours to be carried out with 100 PCs.
At the end of each run of irace, we have the configurations of parameters
that produced the best results.
In the remainder of this chapter, we show the results obtained with different
configurations and different number of agents. These results are interesting
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because, as explained before, the number of agents affects the execution time
and therefore it is necessary to know the relationship between the number of
agents and the results. If we use a small number of agents, the simulation
is faster but also more susceptible to environmental changes. Using a large
number of agents the simulation is slower but the results are more significant.
The following result refers the period between 2007 and 2012 where the in-
stalled capacity in Emilia-Romagna is shown in Figure 5.6. We have to ma-

Figure 5.6: The installed capacity in Emilia-Romagna during the period from
the first half of 2007 to the second half of 2012 .

nipulate the values shown in Figure 5.6 to compare the simulated installed
capacity with the actual installed capacity over the period. Because the ca-
pacity installed depends on the size of roofs and the number of agents, we
normalize the installed PV power. Therefore, we divide the installed capacity
of each year by the installed capacity of 2007. Figure 5.7 show the growth
rate for each semester under consideration.

Thus, once the simulation is finished we can compute the simulated
growth rate for each year and compare this values to the real ones. The
measure that we use to evaluate the fit is the sum of squared error (SSE)
that is computed as follow:

SEE =
6∑

i=1

(aci − sci)2 (5.5)

where aci is the actual installed capacity in the year i and sci is the simulated
installed capacity in the same year. It is important to obtain the smallest
possible value of SSE. SSE value is affected by the weights chosen and by
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Figure 5.7: The capacity growth rate in Emilia-Romagna.

the sample of households. Further, we show the result obtained with the
parameters tuning by changing the sample size.
From the simulations conducted we found that results are highly variable
when the sample sizes are too small. This variability is because the sample
is not statistically significant. The sample is representative when it reflects
the characteristics of the population. If we create too few agents with the
developed tools, we are not able to get the same distribution for attributes
that are observed in SHIW data. So in this section we focus on samples with
a size at least 100 families.
Figure 5.8a shows the arrangement of the families in the virtual world and
the network of relationships when the sample size is 20. If we increase the
sample size to 200, the result is that shown in Figure 5.8b. In this case, the
shape of the region is clearer.

An important parameter for irace is the number of experiments, namely
the maximum number of invocations of hookRun that will be performed by
irace. The number of experiments determines how profoundly irace ex-
plores the parameter space. A low number, especially when we have a large
number of parameters, doesn’t allow irace to explore adequately the search
space with the result that the parameter configurations found are not the
best. Obviously, we tested various values for this parameter until we have
obtained satisfactory results. In theory, high value for this parameter allows
to get best results, but the time to complete a race increases and becomes
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(a) The virtual world with 20 agents. (b) The virtual world with 200 agents.

Figure 5.8: Comparison of virtual world with 20 and 200 agents.

unsustainable.

Figure 5.9: Calibration result.

Figure 5.9 shows the calibration results for 2000 agents. The weights
found are shown in Table 5.2. These weights are calculated using the equa-
tions 5.1, 5.2, 5.3 and 5.4. The utility function threshold is set to 0.5 for all
classes.
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Agent class Weight type Value

Class 0

wcom 0.5409
wpp 0.0746
wenv 0.0062
wbudget 0.5399

Class 1

wcom 0.9301
wpp 0.0625
wenv 0.1173
wbudget 0.2497

Class 2

wcom 0.9421
wpp 0.0535
wenv 0.0349
wbudget 0.1463

Class 3

wcom 0.8630
wpp 0.0078
wenv 0.0040
wbudget 0.1488

Class 4

wcom 0.8533
wpp 0.1176
wenv 0.0100
wbudget 0.2743

rewiring probability 0.1846

Table 5.1: Model parameters.

82



Year Percentage error
2007 0.0
2008 0.513
2009 -2.399
2010 -1.317
2011 5.011
2012 1.522

Table 5.2: Annual percentage errors.

As previously mentioned, the execution time is reasonable if we execute
the model one time, but the calibration model requires more than one exe-
cution. Thus, we decide to calibrate the model on 2000 agents that allow us
to obtain an SSE of 35.18. The annual percentage errors are shown in Table
5.2. The growth rate errors are relative small, and this allow us to fit well
the curve in Figure 5.7. Even if the rate error in the 2011 is about 5%, the
simulated curve has a similar trend as the real curve. As shown in Figure
5.4, the proposed model allow us to replicate in the virtual world the actual
diffusion of PV systems in Emilia-Romagna. The results are very encour-
aging because the system that is populated by autonomous and interacting
decision-making entities was able to recreate the conditions of diffusion. A
surprising result is the reduction of PV power capacity installed after 2011
that reflect the actual pattern. In fact, the installed capacity in the virtual
world between the 2007 and 2011 has a positive trend, but in 2012, we re-
ported a brusque reduction. This characteristic of the curve is difficult to
reproduce with pure mathematical methods. For this reason, the described
process has proven to be valuable for modeling the diffusion of residential
PV systems. However, the followed process can be used to model many of
diffusion patterns that involve social interactions.
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Conclusions

In this work, we have set ourselves the aim of studying the diffusion of resi-
dential PV systems in Emilia-Romagna. To this end, we have developed an
agent-based model to replicate the interactions and behaviours of households,
in order to reproduce and understand the dynamics that lead these families
to invest in a PV panel. We started by analysing data on the incomes, sav-
ings, wealth and other aspects of Italian households. These data has allowed
us to get the statistics regarding the family living in Emilia-Romagna and de-
velop tools that can generate representative samples of families. In addition,
these tools arrange the families in the territory by placing them in build-
ings obtained by preprocessing the vector data file provided by the region.
Next, these families are linked together to form a small-world network. To
accomplish this, we have proposed a ranked based technique that consider
the distance and the attribute proximity to establish a link between two
nodes. After that, devised a simulation in order to reproduce and evaluate
the residential PV systems diffusion in Emilia-Romagna over the 2007-2036
period. Each year and semester, the model implemented in our simulator
estimates the PV power capacity and others important statistics, evaluat-
ing the desire to purchase a PV system for each family considered in the
simulation.The desire level takes into account the household’s economic con-
dition, the payback period of investment, the influence of neighbours and the
environmental benefits deriving from the adoption. After an accurate and
automated fine-tuning of the parameters used in our model, we were able
to achieve good results in terms on PV installed power, i.e. the adoption
rate obtained through our simulator closely resembles the historical Emilia-
Romagna PV plants installation trend.

Further improvements can be made on the model. For example, we can
improve the estimation of household’s consumption. Now, the consumption
of a family is estimated simply through mapping the number of members to
average annual consumption provided by Enel. This assessment is static and
does not consider many aspects such as the dimension of the house, the type
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of job, the number of children, etc. In addition, it would be interesting being
able to analyse the real data on installed systems and their owners because it
can help to better understand the relationships between the characteristics of
the system and the attributes of the owner. Also, studying the reasons that
led an adopter to purchase a PV system could help us to get more insights
and better understand the underlying social phenomena. Others factors can
be found and therefore they can be taken into account to evaluate the desire
level of purchasing a PV system. However, it is necessary to keep the model
simple because it must be able to respond to changes of the environment. If
we introduce many factors, the model may become too complex and difficult
to verify.
This project have helped me to realise that the public politics are complex.
Decision makers have to deal with various constraints and have to analyse a
large amount of data. I came to the conclusion that the DDS are valuable
tools that can help policy makers to design plans able to meet the require-
ments and achieve the objectives. Moreover, this work has allowed me to
understand the power and flexibility of ABMs as tools to model social and
other aspects. The entities and behaviours that are contemplated by ABMs
are almost always simple, but the resulting systems can produce surprising
outcomes, thanks to the emergence of unpredicted behaviours. In addition,
this thesis has permitted me to know the R package irace for the parameter
tuning. Many optimisation algorithms have various parameters that we need
to set before apply them on an instance of the problem. irace allows to find
a good configuration for these parameters in order to have better results. A
configuration may resolve the problem faster than another one. Therefore,
learning about parameter tuning tools is crucial when we are dealing with
optimisation problems often.

86



Bibliography

Abrahamson, E. and Rosenkopf, L. (1997). Social network effects on the ex-
tent of innovation diffusion: A computer simulation. Organization science,
8(3):289–309.
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