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Abstract 

Concrete is a material widely used in Civil Engineering due to its good resistance 
capacity and durability. Even thought engineers have designed the reinforcement 
of concrete structures for centuries, concrete material is still not well understood. 
This statement is particularly true outside the elastic range when fracture and 
other inelastic phenomena occur. The main reason for this hard behavior is due to 
the extreme complexity of concrete internal structure that is highly heterogeneous. 
To overcome this problem, in the past, several model have been formulated using 
different approaches. In this work, the goal is to study at first the Lattice Discrete 
Particle Model (LDPM) and then to develop one method that allows to study the 
FRC. 
The LDPM will be extended to include the effect of dispersed fibers with the 
objective of simulating the behavior of fiber reinforced concrete for armoring 
system applications. The developed model, named LDPM-F, is validated by 
carrying out numerical simulations of three-point bending tests on fiber reinforced 
concrete mixed characterized by various fiber volume fractions. Finally, LDPM-F 
is applied to the analysis o the penetration resistance of fiber reinforced slabs. 

In Chapter 1 the formulation of the LDPM is presented and explained, 
showing the geometry of the model. 

In Chapter 2 the constitutive law for interaction of fiber-concrete is described 
and explained. 

In Chapter 3 an experimental campaign of uniaxial compression tests and 
three point bending tests on plain concrete specimens are simulated.  

In Chapter 4 an experimental campaign of three point bending tests on FRC 
specimens is simulated and the calibration and validation phases are described, in 
order to clarify the LDPM-F. 

In Chapter 5 the results found in the previous chapters will be used for 
armoring system applications, in order to predict the FRC response. 
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 Chapter 1 

The lattice Discrete Particle  
Model (LDPM) 

 
Introduction 

Concrete is an heterogeneous material, constituted by three phases, with different 
property: aggregate, matrix and interfacial boundary. In order to investigate these 
aspects, a lot of models have been proposed in recent years, but although these 
allowed us to achieve good results, the concrete feature is not still completely 
understood. The principal reason of this, is the complexity of the internal 
structure, that is linked with the length scales of observation used for the model.  
By this point of view, changing the observation level, is possible to show, 
different aspects that are directly matched with the heterogeneity of the material.  
The scale length range from the atomistic scale (10-15 m), characterized by the 
behavior of crystalline particles of hydrated Portland, to the macroscopic scale 
(101 m), at which concrete has been traditionally considered homogeneous.  
In the last twenty years, several authors, have done materials models that use 
miniscale or mesoscale, to study this kind of material, in special way for the 
geological problems.  
Miniscale models in which concrete is treated as three-phase composites have 
been proposed by Wittmann (1988), and Carol (2001). They used finite element 
technique to model with different constitutive laws coarse aggregate pieces, 
mortar matrix, and inclusion-matrix interface. Another remarkable study is done 
by Van Mier and coworkers (1992), they proposed a model realized with finite 
elements but without continuum hypothesis. Concrete was modeled through a 
discrete system of beams. Important is also the experience by Bolander (1999), 
which realized a discrete miniscale model based on the interaction between rigid 
particles obtained though the Voronoi tessellation of the domain. 
The main advantage of miniscale models is they are able to reproduce realistic 
simulation of cracking, coalescence of multiple distribution cracks into localized 
cracks, and fracture propagation. The only problem that affect these kind of model 
is that they tend to be computationally intensive especially for 3D modeling.  
Mesoscale models appear because they are computationally less demanding than 
the miniscale models. For mesoscale model, concrete is modeled by the whole 
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aggregate pieces and the layer of mortar matrix between them. The technique used 
is finite element. Some examples are Cusatis et al (2003a,b), Cusatis et al (2006), 
Cusatis & Cedolin (2006). 
Summarizing every thing, the principal difference among these two approaches is 
that, miniscale model describe the concrete like three-phase material: cement 
paste, aggregate and interfacial transitional zone, and the length scale is of 10-4 m 
or less. The mesoscale, is fundamentally different, because this show only the 
mortar and the coarse aggregate, and the scale order is 10-3 m. Both approaches 
have the problem, which are very numerically expensive, but for the concrete has 
been seen that using the mesoscale model, that is relative expensive, and is also 
possible to achieve fairly good results like the miniscale. 
The old models, implemented for macroscale, allowed to obtain good result, but 
they are not able to simulate material heterogeneity and its effect on damage 
evolution and fracture. For solving these problems now, one possible manner is to 
use models, that are able to simulate the concrete at the level of the mesostructure, 
with discrete approach. In this way, it is possible to replicate damage and fracture, 
and to capture the phenomena related to the randomness of the material. 

Features of the model 

The model present in this work, use an analysis at the mesoscale level and is 
called Lattice Discrete Particle Model (LDPM). It is the result of the union by two 
different models: Discrete Particle Model (DPM) and Shear Lattice Model (CSL). 
The principals features of the model are: 
 

a) Concrete mesostructure is simulated by a lattice that match a system of 
particles that are in interaction into their through triangular facets. This 
lattice is obtained by a Delaunay triangulation of the aggregate centers. 

 
b) The specimen is created by a randomly distribution of particles, that is 

computed taking in account the basic properties and the granulometric of 
the aggregate. 

 
c) The geometrical interaction between the particles is obtained by three-

dimensional domain tessellation defining a set of polyhedral cells each 
including one piece of the aggregate.  

 
d) Two adjacent pieces of aggregates are connected by the generic lattice 

element, that transmits shear and normal stresses. These are assumed 
functions of normal and shear strains. Allotting the displacements the 
model works, and permit to find the stress field. 
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e) The stresses act on contact areas which are defined by constructing a 
barycentric dual complex of the Delaunay triangulation. 

 
f) Starting from the strains is possible, using the constitutive law to define 

the stresses, taking into account the stress-strain boundaries. 
 

g) The constitutive law give the following behavior: softening for pure 
tension, shear-tension and shear with low compression and it is hardening 
for pure compression and shear with high compression. 

 
h)  Friction and cohesion are shown into the shear response. 

 
LDPM has inherited from DPM the MARS computational environment that 
includes long range contact capabilities typical of the classical formulation of 
Discrete Element Methods (DEM). This feature is particularly important to 
simulate pervasive failure and fragmentation.  
LDPM allows to capture a number of new features that greatly improve its 
modeling and predictive capabilities. These new aspects can be explained as 
follows: 
 

1) The particles interaction is formulated by the assemblage of four aggregate 
pieces whose center are the vertex of the Delaunay tetrahedralization. This 
model geometry allows to include into the constitutive law the volumetric 
effects, that the other models are not able to capture.  

 
2) Each single aggregate is contained into one polyhedral cells that is made 

by different triangle facet. Stresses and strains are defined at each single 
facet. This configuration allows a better stress resolution in the 
mesostructure, which, in turn, lead to a better representation of mesoscale 
fracture and damage. 

 
3) The constitutive law simulates the most relevant physical phenomena 

governing concrete damage and failure under tension as well as 
compression. This law compared with the previously existed provides 
better modeling and predictive capabilities especially for the macroscopic 
behavior in compression with confinement effects. 

 
The LDPM is able to simulate all aspect of concrete response under quasi-
static loading, including tensile fracturing, cohesive fracture and also size 
effect, compression-shear behavior with softening zero or mild confinement, 
and high confined compression, and strength increase under biaxial loading. 
The following sections will explain before the geometrical characterization of 
the model and then equilibrium equation with constitutive law.  
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Geometrical Characterization of Concrete Mesostructure 

The geometrical structure of the concrete mesostructure is obtained with four 
divers steps. In these phases the objectives is define: 
 

1) Number and size of coarse aggregate pieces; 
 

2) Particle position; 
 

3) Inter-particle connections; 
 

4) The creation of a surface, into the two adjacent particles that permit to 
exchange the forces. 

First step: Number and size of coarse aggregate pieces 

The first step is to define the particles diameters and the respective number, that 
will be used for refill the specimen volume, and generate the its surfaces. In this 
sense, there are different practice to make this in the LDPM, first of all it will 
compute the particles and then the zero node point, that also will be explain in the 
following section. However, the first hypothesis is to consider the particles with 
sphere shape, under this assumption, the concrete granulometric distribution can 
be represented by particle size distribution function (Psd), proposed by Stroeven:  
 

( )
( )[ ] 1

0

0

1 +⋅−
=

qq
a

q

ddd

qddf  

 
where da is the maximum aggregate size and d0 represent the minimum particle 
size. 
The precedent Psd, can be interpreted as probability density function (Pdf), this 
will allow to find the percentage associated with a certain diameter, using the 
cumulative distribution function (Cdf), that is expressed as: 
 

( ) ( ) ( )
( )∫ −

−
==

d

d
q

a

q

dd
ddddfdP

0 0

0

1
1δ  

 
It may be shown that the Psd is associated with a sieve curve in this way: 
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( )
n

ad
ddF ⎟⎟
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⎞
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⎝

⎛
=  

 
where qn −= 3 . For 5.2=q , the relation represent the classical Fuller curve 
extensively used for the concrete. With this curve is possible to check the concrete 
granulometric, analyzing the percentage of passing in function of the diameter, in 
this way the concrete quality is guaranteed if this curve is contained into the Fuller 
range. This technique allows to have the best specimen refill and to avoid the 
empty space, as showed in the Cusatis (2001). 
The specimens used in the simulations have particles created with the 30% of the 
total curve granulometric (Fuller curve), starting from the coarse aggregate; this 
allows us to find good results, because the computational cost is lower and at the 
same time there are not big differences between results found using another 
percentage of generation.  
For simulate the specimen in terms of number and diameters of particles, it is 
important to know: c = cement content, w/c = water to cement ratio, V = specimen 
volume, da = maximum aggregate size, d0 = minimum particle size.  
The following procedure is used to find and then place the particles inside the 
specimen volume: 
 

a) Calculate the volume aggregate fraction as airwca vwcv −−−= ρρ1 , 
where ( )ccww =  is the water mass content per unit volume of concrete, 

33150 mKgc =ρ  is the mass density of cement, 31000 mKgw =ρ  is the 
mass density of the water, and airv  is the volume fraction of entrapped or 
entrained air, ( usually 3-4%); 

 
b) Compute the volume fraction of simulated aggregate using the following 

relation: ( )[ ] ( )[ ] a
n

aaoao vddvdFv ⋅−=−= 011 ; 
 

c) Compute the total volume of simulated aggregate as VvV aoao = ; 
 

d) Calculate the particle diameter by sampling the Cdf by a random numeric 
generator: ( )[ ] qq

a
q

ii ddPdd 1
00 /11 −

−−= , where Pi is a sequence of 
random numbers between 0 and 1.  

 
e) The total number of the particles is obtained by checking, for each new 

generated diameter in the sequence, that the total volume of the generated 
particles ( )6~ 3

0 ia dV πΣ=  does not exceed 0aV .When for the first time, 
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00
~

aa VV > occurs, the current generated particle is discarded and the particle 
generation is arrested, Cusatis and coworkers (2009). 

 
The graphical representation of the procedure explained before is shown in the 
Fig. 1.1, whereas in the Fig. 1.2 is represent the computational sieve curve 
obtained during the generation of a cube specimen characterized by c = 300 
kg/m3, w/c = 0.5, d0 = 4 mm and da = 12 mm. 
 

 
Figure 1.1: Cumulative distribution  

curve 
 
The diameters and number particles, found in this way, will be used to fill the 
specimen, now the procedure will be completed creating the zero-diameters 
particles (nodes), that will be placed over the external surfaces. That practice, is 
important, for the third step, when the tetrahedral will be generated.  
 

 
Figure 1.2: Computational sieve curve  
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The method used to search the number of surface nodes is the following, 
assuming that the external surface of the specimen volume can be described with 
a set of polyhedral face, and that is Le is the generic length of the edge specimen, 
and Ap the generic surface area, the number of the nodes will be given by these 
ratio se hL and 2

sp hA , where sh is the average surface mesh size, chosen such 
that the discretization resolution on the resolution on the surface is comparable to 
the one inside the specimen. This is done using this relation 0dh ss ξ= , by 
numerical experiment which showed that putting 5.1=sξ  leads to obtain good 
results. Clearly for each vertex on the external surface will be placed one node. 

Second step: Particle position 

The particle computed before, will be now placed in the volume specimen, using a 
random distribution, on vertexes, edges, surfaces, faces and interior volume. The 
following idea for the ranked, is first of all, set the vertex nodes, and after in the 
edges and surface created among these vertex nodes, place other particles, by 
allowing a minimum distance of 0dsδ  to minimize the geometrical error of the 
discretization. The typical value used for 1.1=sδ , permit to achieve good mesh. 
Using a procedure introduced by Bažant, it is possible to generate a statistically 
isotropic random mesostructure, where the center of particles are placed in the 
volume of the specimen one by one, from the largest to the smallest. 
When the procedure, for generate the particles position, is finished, one control is 
done, for avoid possible overlaps of this particle with the previously placed 
particles and with surface nodes. In this phase, at the surface nodes are assigned a 
fictitious diameter of 0dsδ  and a minimum distance of 022 ddd ji ξ++  among 
the center of the particles with diameters di and dj is enforced. The value of ζ, is 
very important, because it determines the concrete behavior, for ζ=0 or very small 
values, the particles distribution is not statically isotropic, and present areas where 
there are low particle density and others zones with high particle density. In the 
same manner using very large values of ζ, the specimen volume is saturated 
quickly and not all particles can be positioned. After several numerical 
experiments, the best value found is ζ = 0.2, using this, it is possible to avoid the 
volume saturation while leading uniform particle distribution. 

Third step: Inter-particle connection 

The third step lets to define the topology of the interaction among the particles. 
This is performed using a Delaunay tetrahedralization, that utilizing the nodal 
coordinates of the particles center allows to build three-dimensional tetrahedral, 
which does not overlap, fill all the volume of the specimen. In each vertex of the 
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tetrahedrals is placed a particle, generated in the first step, and permit to fill the 
total volume specimen. In this study, the Delaunay tetrahedralization is carried out 
by using the TenGen code.  

Fourth step: facets generation 

The last step, the forth has the aim to define the surface through which the forced 
are exchanged from one particle to another. There are different ideas proposed for 
describing this aspect of the problem, in previous works, the interaction between 
the particles were realized by the edge that was created as a strut. It connected the 
two adjacent particles, and the effective area of this strut was defined by 
performing a tessellation of the domain anchored to Delaunay tetrahedralization. 
This approach gives a good result in terms of fracture behavior and also for the 
concrete failure under unconfined compression. These methods have the lacuna 
that does not say something about the volumetric effects that are essential for 
description of the concrete behavior under high confining pressure.  
In the LDPM model, the principal thing is the elementary cell, that is the 
tetrahedral. There be possible, to see this like the union of four sub-domains, 
where each sub-domain contains one particle, see Fig. 1.7. The single facet of 
these sub-domains will be the surface, where will be applied the relation to allow 
the force exchange.  
The last phase will be realized for this local geometry for every elementary cell 
and for each particles. Starting from the tetrahedral, the tessellation will be 
construction of the following procedure: 
 

a) One point on each edge (edge-point) is defined at midway of the 
counterpart of the edge not belonging to the associated particles ( point Eij  
in the Fig. 1.3 ); 

 
b) One point on each triangular face (face point) of the tetrahedron is defined 

as follows. First points located on the straight lines connecting each face 
node to the edge point located on the edge opposite to the node under 
consideration are considered. Similarly to the edge points, these points are 
located at midway of the line counterpart not belonging to the associated 
particles. See point F*

kl in Fig. 1.4 . Later, the facet point is selected as the 
centroid of the F*

kl point. See point Fl, in Fig. 1.4. 
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c

Pi

Pj

Eij

di

dj

hij

hij

 
Figure 1.3: Construction for  

edge-point 

Pk

Pi

Pj

Eij

*Flk

d

k
ijE

k
ijh

k
ijh

 
Figure 1.4: Construction for  

face-point 
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c) One point in the interior of the tetrahedron ( tet-point) is defined by the 
centroid ( Tl in Fig. 1.5 ) of the points identified, similarly to what is done 
for the face points in item 2, on the straight lines connecting each node of 
the tetrahedron with the face points on the face opposite to the node under 
consideration ( points Tl

* in Fig. 1.5 ). Again, these point are located at 
midway of the line counterpart not belonging to the associated particles. 

 

Pk

Pi

Pj

Fl

Pl

*Tl

*Fl

e

l
ijkh

l
ijkh

 
Figure 1.5: Construction for  

Tet-point 
 

 
d) Finally, the tessellation of the tetrahedron is obtained by the set of 

triangles by connecting the tet-point with the one of the edge-points and 
one of the face-points. Each tetrahedron result tessellated with twelve 
triangular face ( Fig. 1.6). 

 
This is only one type of tessellation possible, basically different procedure could 
be realized but numerical experiments show that this is the best for minimize the 
intersection between the tessellating surface and the particles. Isolating one 
particle and its facets, a polyhedral cell is obtained. 
This is the sub domain that has irregular and also random shape, this characteristic 
is an important property that ensures a realistic representation of the kinematics of 
the concrete mesostructure, and it especially allows avoiding the excessive 
rotation. 
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Pk
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Pj

Eij
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Eik

Ejl

Fi

FkEil

Ekl

Fj

f

 
Figure 1.6: Tessellation of the tetrahedron. 

 
 
 
 

 
Figure 1.7: Particle sub-domain 
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Discrete Compatibility and Equilibrium Equations 

The tetrahedron formed by the basic four-particles, as showed in the Fig.1.7, is the 
primary element used to derive the governing equations of the model. Every 
particle, which forms this tetrahedron, is included in a sub-domains Vi ( i 
=1,….,4), and all together create the original element. Each sub-domain, has a 
portion of the three tetrahedron edges attached to the node and also, six triangular 
tessellation facet joint to the three edges, Fig. 1.8. One of the most important 
things is to describe, the displacement field in every domain, this is done by rigid 
body kinematics.  
 

a

x3
x2x1

Pi

ui1
θi1

ui2

ui3

θi3

θi2

Ck

Vi

 
Figure 1.8: Sub-domain geometry. 

 
In order to know the movement of the mid-point, situated over every tetrahedron 
edge, is important know the displacement and also the coordinates of the center 
for each particles. Describing [ ] i

T Vxxxx ∈= 3;21; , the vector that contains the 
node coordinates, one can write the following expression: 
 

( ) ( ) ( ) iiiii QxAxxθuxu ⋅=−×+=  
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where: 
 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

=
0100

0010
0001

1122

1133

2233

xxxx
xxxx
xxxx

ii

ii

ii

i xA  

 
In this equation, the vector xi contain the position coordinate of node i, the 
displacement field is described by [ ]TT

i
T
i

T
i θuQ = which is realized with the 

translation [ ]iii
T
i uuu 321=u , and the rotation [ ]iii

T
i 321 θθθ=θ , that are the degrees 

of freedom of node i. The displacement jump at the centroid C, of each face, is 
defined as: 
 

[ ] CiCjCk uuu −=  
 
where i and j, are the nodes adjacent to facet k, and: 
 

( )
( )⎩

⎨
⎧

=
=

−

+

CkCi

CkCj

xuu
xuu

 

 
represent the displacement field at the facet centroid Ck for +

Ckx  iV∈ and −
Ckx jV∈ , 

see Fig. 1.9. 
 
In order to find the facet strain vector, define as [ ]Ckel u⋅−1 , the displacement jump 
are divided by le, where: 
 

( ) ( )[ ] 2
1

ij
T

ijijel xxxxxx −⋅−=−=  
 
that represents the length of the edge e. To show the real behavior not 
symmetrical tension compression of concrete, and be able to formulate an 
appropriate constitutive law, the strain vector [ ]Cke ul ⋅−1  is decomposed in normal 
and shear components, (Fig. 1.10 ). This is done taking in the count the projection 
of the tessellation facets, into the planes that are orthogonal to the edge.  
The projected facets, are used for the definition of LDPM strain components to 
avoid non-symmetric behavior under pure shear. It is possible to understand this 
idea, seeing the Fig. 1.10, where the relative nodal displacement orthogonal to an 
edge, produce only shear on the projected face at the place of original facet where 
there also are tension or compression. 
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Proceeding in this way, the strain components are defined as: 
 

i
ik
Mj

jk
M

e

Ck
T
k

Mk

i
ik
Lj

jk
L

e

Ck
T
k

Lk

i
ik
Nj

jk
N

e

Ck
T
k

Nk

l

l

l

QBQB
um

QBQB
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QBQB
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−==

−==

ε

ε

ε

 

 
where ( ) eijk lxxn −= , mk and lk are two direction that are mutually and 

orthogonal in the plane of the projected facets, and ( ) ( )Ckp
T
ke

pk
N l xAnB 1= , 

( ) ( )Ckp
T
ke

pk
L l xAlB 1=  and ( ) ( )Ckp

T
ke

pk
M l xAmB 1= , p=i,j. 

 
 

b

Pi

Pj

xN

xL

xM

nk

n

 
Figure 1.9: Projection of the facets, into  

planes orthogonal to the edge. 
 
The equations shown here are the discrete compatibility equations of the LDPM 
formulation.  
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The normal and shear stresses for each facet is calculate by mesoscale constitutive 
law, usually is written ( )kkk ξFσ ,ε=  where kσ , kε  and kξ  are vectors collecting 
facet stresses, strain and internal variable, respectively. 
 

c

Tension

Pure 
Shear

Pi

Pj

Pi

Pj

nk

n
Shear

 
Figure 1.10: Tension and shear components. 

 
Employing the Principle of Virtual Work (PVW), the governing equations can be 
completed, with the imposing of equilibrium. Using the PVW, in the aspect of 
virtual displacement, in this case the internal work match with a generic facet can 
be expressed like: 
 

( )MkMkLkLkNkNkkek
T
kkek lAlW δεσδεσδεσδδ ++== Aεσ  

 
where Ak is the area of the projected facet. Substituting the previously equations 
into the virtual work relation is obtained: 
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This relation express the nodal force at the nodes i and j, associated with the facet 
k. 
Then putting all together the contributions of the several facets and comparing the 
total internal work with the total external work one can obtain the discrete 
equilibrium equations of the LDPM formulation. It is also possible, to prove that 
the equilibrium equations obtained through the PVW corresponds exactly to the 
translational and rotational equilibrium of each LDPM cell. 
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LDPM Constitutive Law 

The constitutive law, used for LDPM, allows us to put in match the strain vector 
with the stress vector at the facet level. For realizing the study over concrete 
behavior, it is better to divide it into: elastic and inelastic behaviors. The stress 
domain view two different regions that are the for tensile and compressive 
behavior, Fig. 1.11. This partition is very important because in the tensile field 
shear and compression are directly matched, but this relation changes completely, 
in the compression stage, where only the shear in connected with the compression.  
 

 
Figure 1.11: Total LDPM domain. 

Elastic behavior 

In the elastic behavior, the normal and shear stresses are assumed proportional to 
the corresponding strains: 
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where 0EEN = , 0EET α= , 0E  = effective normal modulus, and α  = shear 
normal coupling parameter. These parameters now presented, are the 
mesostructure parameters, and are assumed to be material properties. This can be 
demonstrated, looking at the experimental text result obtained in elastic regime.  
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As mentioned in the introduction, the concrete behavior changes with the 
observation scale. At the macroscopic level it is consider statistically 
homogeneous and isotropic material, and therefore the concrete elastic behavior is 
modeled in the literature by the classic theory of elasticity. The first objective 
now, is to find one relationship among mesoscale LDPM parameters (α  and 0E ), 
and the macroscopic Young’s modulus ( E ), and Poisson ratio. This may be 
obtained by considering the few case in which an infinite number of facets 
surrounds one aggregate piece.  
In the LDPM formulation, there is the kinematically constrained like the 
microplane model, that are without deviatoric/volumetric split of the normal strain 
component. Under these guesses one can write: 
 

oo EEEE
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These relations can be obtained by the kinematically constrained homogenization 
of a random assemblage of the rigid spherical particles of various sizes interacting 
through elastic contacts. The eqs. can be used for estimate the LDPM elastic 
parameters in correct way, starting from macroscopic experimental measuring of 
Young’s modulus and Poisson’s ratio.  

Inelastic behavior 

In this section the aim is to define the formulation of the non linear and inelastic 
part of the constitutive law, that is characterized by three different physical 
mechanisms of mesoscale behavior:  
 

a) Fracturing and cohesive behavior. 
 
b) Pore collapse and material compaction under high compressive stress. 
 
c) Frictional behavior. 

Fracturing and cohesive behavior 

The fracturing behavior is present for tensile normal strain when it is Nε > 0. As 
has just done in other papers publishing, is better to do, one kind of formulation 



Chapter 1: The Lattice Discrete Particle Model (LDPM)   
 

   
- 19 - 

that put in relationship the effective strain and effective stress, that are expressed 
by the following relations. This is convenient for formulate the fracture and 
damage evolutions. The principal relations are: 
 

( ) ( )
α
σσσσεεαεε

2
2222 LM
NLMN

+
+=++=  

 
The relation used as effective strain, is similar to the strain measured used in the 
interface element model of Camacho and Ortiz (1996), and supply a total measure 
of the material straining. The normal and shear strain can be calculated from 
effective and shear strain using the following relation, in a way similar to simple 
damage models: 
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The effective stress σ , is incrementally elastic, εσ && 0E=  and have to respect the 
inequality ( )ωεσσ ,0 bt≤≤ , where the E0 is the effective strain that is one of 
LDPM parameters. 
In according with the Cusatis (2008) the strain dependent boundary ( )ωεσ ,bt , 
may be written as: 
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In which the brackets •  are used in Macaulay sense: { }0,max xx = . 
These relations, are used for describe the elastic-softening concrete domain when 
it is over tension stress, looking the relation is possible understand how when the 

0max εε > , the strength drop for the softening effect, see Fig. 1.12. 
Now every behavior is summarized into the total domain of LDPM model, that is 
characterized by ω, the internal variable. This is written as following:  
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that is characterized by the ratio between normal strain Nε and the total shear 

strain Tε , obtained in this way 22
LMT εεε += , or equivalently using the ratio into 

the normal stress Nσ and the total stress, so defined as 22
LMT σσσ += .  

 

 
Figure 1.12: Tensile behavior, changing  

the internal parameter ω 
 
The inelastic behavior σbt is commanded with the exponentially relation, that also 
represent the boundary in the total domain, as a function of the maximum 
effective strain, which is a history dependent variable defined as: 
 

2
max,

2
max,max TN αεεε +=  

where: 
 

( ) ( )[ ]
( ) ( )[ ]⎪⎩

⎪
⎨
⎧

=
=

<

<

τεε
τεε

τ

τ

TtT

NtN

t
t

max
max

max,

max,
 

 
are the value of maximum normal and total shear strain, that are present during 
the loading history. It is worth noting that in absence of unloading εε ≡max . 
The point over the boundary in the total domain, are decrypted by the function 

( )ωσ 0  that is the strength limit for the effective stress and is defined as: 
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where: tssr σσ=  represent the ratio among the shear strength σs, and the tensile 
strength σt. In the total domain, or stress space σN – σT, the equation previously 
present describe a parabola with its axis coincident with the σN – axis.  
The transition between the two fields (elastic and inelastic domain) occurs, when 
the maximum effective strain achieves its elastic limit ( ) ( ) 000 Eωσωε = , in this 
circumstances, the boundary σbt start to decay in exponential way. The speed of 
this decaying is governed by the post peck slope (softening modulus), that is 
considered to be a power function of the internal variable ω: 
 

( )
nt

tHH ⎟
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⎜
⎝
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π
ωω 2

0  

 
Using this expression it is possible to have a smooth transition, from the softening 
behavior subject to pure tensile stress ( ,2πω =  ( ) tHH =ω0  ), to perfectly 
plastic feature under pure shear ( ( ) 0,0 0 == ωω H ). For avoiding problems with 
the dissipation energy during the mesoscale damage localization, this expression 
is used for the softening modulus in pure tension: ( )1//2 0 −= llEH crt , and where 
Gt represent the mesoscale fracture energy, 2

0 /2 ttcr GEl σ= , and l is the length of 
the tetrahedron edge associated with the current face. 

Poor collapse and Material Compaction 

Another typically inelastic behavior is present when the concrete is under high 
compressive hydrostatic deformations, in this set is possible to see one strain-
hardening plasticity. This plastic field really can be divide into two different 
phases, the first is connected with the pores collapse under load and a second 
phase, when the pores are closed, and this give to the concrete structure one major 
density. Computing these two effect, in terms of stress-strain response, is showed 
for the first problem, one sudden decrease of the stiffness, that is in the second 
stage regained with a rehardening behavior.  
Experiments show that after the densification phases both the tangent plastic 
stiffness and the unloading elastic stiffness, can be even higher than the initial 
elastic stiffness, in the rehardening phase. However, in the case of present of a 
significant deviatoric deformations, the rehardening phase result limited or 
sometimes also negligible, this really produce a horizontal plateau in the measured 
stress versus strain curve, Fig. 1.13. 
The LDPM constitutive law, simulates this feature using a strain-dependent 
normal boundary ( )VDbc εεσ , , that is assumed function of volumetric strain Vε  
and the deviatoric strain Dε . These kind of deformation are computed respectively 
at the level of tetrahedron as ( ) 00 VVVV −=ε , where V is the current volume and 
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V0 is the initial volume of the basic element. For each tetrahedron there are twelve 
facets, for these is guessed that its are subjected at the same volumetric strain. 
Although, there is one think that change for every facets, this is the deviatoric 
strain characterized by several value. It computes as VND εεε −= , where Nε  is 
the normal strain.  
The definition of the volumetric and deviatoric strains are equivalent to the same 
quantities defined at each microplane in the microplane formulation. 
The compressive boundary is expressed as function of VDDVr εε=  (deviatoric 
strain to volumetric strain ratio), that when assume constant value give at 

( )VDVbc r εσ ,  an initial linear evolution ( modeling the pore collapse) followed by 
an exponential evolution. It is possible to write: 
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where: σc0 = yielding compressive stress, εc0 = σc0/E0 = volumetric strain at the 
onset of pore collapse, Hc( rDV ) = initial hardening modulus, εc1 = kc0 εc0 = 
volumetric strain at which hardening begins, kc0 = material parameter governing 
the onset of hardening, ( ) ( ) ( )DVccoccDVc rHr εεσσ ++= 101 . 

 
When there is a increment of rDV, the slope of the initial hardening modulus needs 
to go to zero, in order to the simulate the observed horizontal plateau featured by 
typical experimental data. One way for obtaining this is the following: 

 
 
 
 

For compressive loading, the normal stress is calculated imposing the inequality 
( ) 0, ≤≤− NVDbc σεεσ . Inside the domain, descript with the previously equation, 

the behavior is assumed to be incrementally elastic NNcN E εσ && = . In agree to the 
model the increased stiffness during unloading, the loading-unloading stiffness 

NcE is defined: 
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where Ed is the densified normal modulus. The Fig. 1.13 shows the typically 
hardening behavior for compression.   
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Figure 1.13: Elastic-hardening behavior under  

compression stress. 

Frictional behavior 

The concrete present when in compression stress stage one increasing of shear 
stress due the frictional effects, is possible to compute this effect using the 
classical incremental plasticity. The relation used for calculate the shear stress is 
the following:  
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Where the plastic strain increments are assumed to obey the normality rule: 
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The plastic potential is written as ( )NbsLM σσσσϕ −+= 22  in which shear 
strength bsσ  if formulated with a nonlinear frictional law: 
 

( ) ( ) ( ) ( )00000 exp NNNNNsNbs σσσµµσµσµµσσσ ∞∞∞ −−⋅−⋅++=  
 
Where sσ  = cohesion, 0µ  and ∞µ  are the initial and final internal friction 
coefficients, respectively, and 0Nσ  = the normal stress at which the internal 
friction coefficient transitions from 0µ  to ∞µ .  



Chapter 1: The Lattice Discrete Particle Model (LDPM)   
 

   
- 24 - 

Finally, equations governing the shear stress evolution must be completed by the 
loading-unloading conditions 0≤λϕ &  and 0≥λ& . 
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Numerical Implementation and Stability Analysis 

The LDPM model, is implemented into one software called MARS ( Modeling 
and Analysis of the Response of Structures), which is a multi-purpose structural 
analysis program based on a modern object-oriented architecture. The MARS uses 
one kind of the explicit dynamic algorithm for solving the analysis of structural 
problems. The dynamic algorithm take for the our problems is the central 
difference method, that is developed from central difference formulas for the 
velocity and acceleration. This is particularly important for the research presented 
in this model, because it is characterized by several thousands of degrees of 
freedom, and this permits to solve the problem using a standard computer, 
because it does not need more computational space. In any way the explicit 
scheme is not affected by the convergence problems that implicit schemes have in 
handling softening behavior. In fact, the explicit algorithms are not always stable, 
and these often need an accurate analysis on the numerical stability of the 
numerical simulation. In order to have the stability, it is possible to make this kind 
of approach. In the elastic regime, the stability condition may be expressed, with 
the respect of the following relation: max2 ω<∆t . In this relation maxω  represents 
the highest natural frequency of the computational system. The first step, for 
ensure the stability is to find this value, is possible demonstrate that 

( )Iωω maxmax < , where the Iω  is the natural frequencies of the individual 
unrestrained elements composing the mesh used in the simulation.  
Basically, the objective is to study every element and to find its natural frequency, 
then to take a higher value which will represent one limited for the our system. In 
this way is estimated maxω , which will be contained in the range that see Iω  like 
last value. The second step will be to compute the time step, using this relation: 

It ω2<∆ , this procedure permits to avoid every instable convergence problem.  
Knowing the correct time step, the following problem ( ) 0det 2 =− MK ω  is 
computed, where K is the stiffness matrix and M the mass-matrix. The elastic 
energy associated with the generic facet k is: 
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The total tetrahedron stiffness matrix is obtained by assembling the strain energy 
contributions of all twelve facet: 
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where the symbol Σ is used to identify the assembly operation.  
For a generic facet k, the kinetic energy associated is subdivided into two terms 
relative to the two nodes, that belonged at the facet. This may be showed in this 
way: kjkik III += . Each individual term read as: 
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The elements that appear in this matrix are: ρ = material density, Vkp = volume 
identified by the facet k and the node p. The others terms present in the matrix are: 
S = the volume first order , and I = the second order moments of the volume Vkp 
about the axes of the Cartesian system of the reference with origin at the node p. 
In the same way, the overall mass matrix is computed using the assemblage of the 
contribution for each facets: 
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Chapter 2 

Constitutive law for the concrete-fiber 
interaction  

 
Introduction 

Fibers, whose use can be traced back to the Roman Empire, are important to 
restrict and, in some sense, protect against the coalescence of microcracks, 
microvoids into wide cracks. Nowadays there are many types of materials with 
this structure among which Fiber-Reinforced Concrete (FRC) and the Engineered 
Cementitious Composites (ECC), whose function is exactly what I just pointed 
out.  
The main function of fibers, besides giving a moderate increase to the tensile and 
compressive strength, is to ameliorate the energy transmission and absorption 
capability that is fundamental in resisting impacts and different kinds of shocks. 
More specifically fibers limit crack width and permeability and have a substantial 
impact in reducing corrosion risk, Begnini, Bažant, Zhou, Gouirand and Caner 
(2007). 
Previous literature mainly focuses on uniaxial tension, Li et al. (1998), Nataraja et 
al. (1999), Ramesh et al. (2003). More recently, multiaxial loading models and 
experiments have been reported by Kullaa (1994), Nataraja et al.(1999), Grimaldi 
and Luciano (2000), Peng and Meyer (2000), Li and Li (2001), Kholmyansky 
(2002), Kwak et al. (2002), Cho and Kim (2003), Ramesh et al. (2003), and 
Kabele (2004), Yin et al. (1989), Traina and Mansour (1991), Chern et al. (1992), 
Pantazopoulou and Zanganeh (2001), Mirsayah and Banthia (2002).  
The objective is to create one constitutive law that permits to describe the 
relationship between the bridging stress fσ  transferred across a crack and the 
opening of this crack fw  and apply it to the LDPM. In this way it include the 
effects of randomly dispersed fibers in order to simulate the behavior of fibers.  
During the pre-processing phase, each individual fiber is inserted into the 
specimen volume. 
Fibers positions and orientations are randomly generated, and the intersections 
between fibers and LDPM facets are detected.  
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The stress on each LDPM facet can be computed as: 
 

( )lfsfff
Af

f
c

cfc LLd
A

c

,,,1 nwPσσσσ ∑
∈

+=+=  

 
This relation assume a parallel coupling between the fibers and the concrete 
matrix. The elements present in this relation are: [ ]TLMN σσσ=σ , 

[ ]TLcMcNcc σσσ=σ , [ ]TLfMfNff PPP=P , cA = facet area, fw = facet crack 
opening, fd = fiber diameter, sfL = short embedment length, lfL = long 
embedment length, and fn = fiber orientation with respect to the crack (facet) 
plane. The terms relative to the concrete stress are computed in according to the 
LDPM constitutive law. 
Basically, this construction starts from modeling a single pull-out fiber behavior 
against the surrounding matrix. The relationship ( )wσσ =  can be then obtained 
by averaging the contributions from fibers with different embedment length and 
orientation across the crack plane. In the theory that is proposed in this study the 
following aspects are considered: two-way fiber debonding-pullout due to a slip-
hardening interfacial bond, matrix micro spalling and also the Cook-Gordon 
effect.  
This constitutive law will be used so to describe the concrete-fibers interaction 
behavior, into the LDPM. The idea used to achieve this aim takes the formulation 
proposed for E.H. Yang, S. Wang, Y. Yang and V.C. Li (2008), as a base, and 
develops this idea for the mesoscale approach. In the following sections, will be 
shown the analysis that starts from the single fiber pull-out and later takes into 
account the total effects that are present in the fiber feature. In the next chapter the 
constitutive load will be verified using the results that are available from the 
experimental tests.  
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Modeling of the single fiber behavior 

A well-known technique to study fiber-matrix interfacial behavior is single fiber 
pull-out, Katz. A., Li V.C. (1996). In Fig. 2.1 is shown the typical pull-out curve. 
Three stages are identified: initial elastic stretching of the fiber free length, 
followed by debonding stage and at the end the pullout phase. 
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Figure 2.1: Single pullout curve of steel fiber. 

 
The fiber in pullout first is subject to debonding before the pulling out phase takes 
place. Basically, this can be described as a crack propagation from the 
surrounding matrix crack to the embedded end. This stage lasts until there is the 
load drop, that represents the transition to the pull-out stage, when we are left just 
with frictional bond that can actually increase, whereas the chemical bond, that is 
present during this first stage, is lost. Stress analysis and energy balance process 
are used to model the debonding and the pullout of a single fiber. The following 
are the main assumptions of this model by Z. Lin, T. Kanda and V.C. Li (1999): 
 

a) Fibers are high aspect ratios (>100), so that the final effect on the total 
debonding load is negligible;  
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b) During the debonding stage, the slip-dependent effect is negligible since 
relative slippage between the fiber and the matrix in the debonded portion 
is small. Hence, the frictional stress within the debonding zone remains at 
a constant 0τ ; 

 
c) Poisson’s effect is negligible. For flexible fiber-cement systems, Poisson’s 

effect is usually diminished due to inevitable slight misalignment and 
surface roughness of the fiber; 

 
d) Elastic stretch of the fiber after complete debonding is negligible, 

compared with slip magnitude. 
 
The relation between the load fP  and the displacement w  is written. This is 
divided in two different equations, matched with the different stages present in the 
single fiber behavior. At each stage, the fiber extending across the matrix 
microcrack is always in equilibrium. It is possible to say that the force exerted on 
the short embedment side and the long embedment side are equal: 
 

( ) ( )lflfsfsff vPvPP ==  
 
According to the previous statement, it is also true to declare that in absence of the 
different effects, the crack opening can be written as: 

 
lfsff vvw +=  

 
this is the case when the crack opening is done only by the fibers-matrix slippage. 
The crack opening, implemented into the code, is composed by three different 
contributions, given that the model allows to study 3d problems: 
 

[ ] 2
1222

LfMfNff wwww ++=  
 
In this way, is identified the vector identifying the crack opening created only by 
the fibers slippage. This crack opening vector is the result by sum of the slippages 
values, later when the other effects will appear there will be a new crack opening 
vector, called '

fw . This will be different than fw  for direction and modulus. 
Considering a crack crossed by straight fiber (Fig. 2.2), characterized by the 
embedment lengths sfL  and lfL . If one neglects the fiber bending stiffness and the 
elastic deformation of the crack-bridging segment, the length of such a segment 
(distance between points A and B in Fig. 2.2) can be computed as: 
 

ffff s nww 2' +=  
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where '

fw  is the crack opening vector and fs  the reduction of embedment lengths 
due to micro-spalling.  
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Figure 2.2: Schematic of inclined bridging  

with matrix spalling. 
 

In additional, the fiber force con be assumed to be coaxial with the crack-bridging 
segment and expressed as: 
 

'
fff P nP =  

 
where: '''

fff wwn = and 2'2'2''
LfMfNff wwww ++= . 

 
The Fig. 2.3 shows the best situation possible, characterized by fiber orthogonal to 
the crack plane. In this particular configuration the spalling and the snubbing, that 
will be later explained, are not present.  
In the next section, will be explained how the crack opening vector changes 
according to the other effect that the fibers issue shows. The new effect that will 
be considered is Cook-Gordon effect. According to the change just show before, 
will be explained also the micro-spalling.  
The different stages for a single fiber will be described using different relations 
that permit to find the link between vPf −  and also v−σ . In this first step, the 
relation between force and crack opening will be analyzed, assuming that the 
pullout force is always applied orthogonal to the crack plane. Later on, the same 
analysis will be performed but looking at most common cases.  
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In the second step, the strength relations will be introduced. In this way the 
constitutive law is done. 

P , v

L

b)

)  
Figure 2.3: Fiber pullout with force applied orthogonal 

 to the crack plane. 
 
Following the detailed derivation by the Z. Lin, T. Kanda and V.C. Li (1999), the 
equation for the debonding stage can be written as: 
 

( ) ( )
d

ffdff vv
dEG
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dE
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+

= 0
22

1 323
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2 πητπ
 

 
where dv is the crack opening that corresponds to the displacement at which full-
debonding is completed, and it is expressed as: 
 

( ) ( )
ff

d

ff
d dE

LG
dE

L
v

ηητ +
+

+
=

1812 22
0  

 
The elements that appear here are: mmff EVEV=η , this is a parameter expressing 
the ratio of the effective (accounting for the volume fraction) fiber stiffness to 
effective matrix stiffness, frictional stress 0τ and debonding fracture energy dG  
(also referred to as chemical bond). When the debonding phase is finished, it is 
possible to see a sudden drop due to unstable extension of the tunnel crack. 
Subsequently, the fiber is held back into the matrix only by frictional bonding. 
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The magnitude of the drop can be used to calibrate the chemical bond dG . During 
the debonding and pullout stage, the fiber may rupture if the load P  exceeds the 
fiber tensile strength. According to this effect, the study is developed under the 
assumption that the fiber rupture never happen. 
The relation that describe the force in the pullout stage is: 
 

( ) ( ) ( ) LvvvvL
d

vvdvP dd
f

d
f ≤≤+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+= βτπ 10  

 
The different elements present in this equation, are shown in Fig. 2.4. It is also 
possible to write the equation for the debonding stage in terms of the debonding 
length. In this case the debonding load P  can be also expressed as: 
 

( ) 232
0 ffdf dEGLdLP πτπ +=  

 
at the full debonding eLL = . The maximum debonding load is given by: 
 

232
ffdba dEGPP π+=  

 
where efb LdP 0τπ=  is the initial friction pullout load. This equation allows 
calibrating the chemical bond strength dG  and the frictional bond strength 0τ , 
from the maximum debonding strength load aP  and the initial frictional pullout 
load bP . The slip-hardening coefficient β , is obtained from the relation that is 
used for the pullout stage. 

P , v

L

(v – vd )

c)

 
Figure 2.4: Slippage effect and variable of the problem  
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β  is the parameter that controls the behavior in the tall of the curve vPf − . It can 
be hardening or softening according to the kind of fiber used in the specimen. 
These simple relations are the building blocks to construct the constitutive law for 
composite material like fibers-concrete. The next step will be the writing of the 
relations in terms of strength and displacement.  
The single fiber-bringing stress debondingσ  versus the fiber displacement (at exit 
point) relative to the matrix crack surface v  is given by: 
 

( ) ( )
f

f
ddebonding d

E
Gv

η
τσ

+
+=

12
2 0  

 
where fE and fd are fiber Young’s modulus and diameter, respectively of fiber. 
After the debonding is completed, the fiber is in the pull-out stage. In this stage, 
there is one load drop that represents the absence of chemical bonding. Here the 
strength is guaranteed by its frictional bond only. For some types of fibers, 
particularly PVA fibers, significant slip-hardening response was observed during 
long-range pullout. Assuming the linearity of the frictional stress with respect to 
the slip distance with the coefficient β  ( referred as slip-hardening coefficient , 
Lin, Z. and Li, V.C. (1997), the fiber stress pulloutσ  during the pullout stage can be 
expressed as: 
 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+−−=

f

d
de

f
pullout d

vvvvL
d

βτσ 10  

 
In the short fiber composite system, most fibers are oriented to an arbitrary angle 
ϕ  relative to the crack plane, which takes values in the range of 0 ÷π 2, with 

0=ϕ  for fibers perpendicular to the plane and 2πϕ =  for fibers parallel to the 
plane. Furthermore, the interaction with the matrix, when this last one exits the 
fiber puts the fiber under further stress. Specifically for the polymeric fiber as 
Morton and Groves (1979) and Z. Lin, T. Kanda and V.C. Li (1999) suggest the 
following holds:  
 

( ) ( ) ''
fsnfsn k

lflf
k

sfsff evPevPP ϕϕ ==  
 
Where 0>snk is referred to the snubbing coefficient. This relation accounts the 
increase of bridging force fP due to an inclination angle ϕ  by making analogy to 
an Euler friction pulley at the fiber exit point. As shown in Fig. 2.5, at the exit 
point, i.e. where the fiber begins to protrude beyond the crack face, there is a kink 
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in the fiber. At this point, the matrix acts as a “frictional pulley”. This 
phenomenon is typically called “snubbing effect”.  

φf’
φf

Pf 

d) Pf 

φf’

Psf or Plf

sf

e)

 
Figure 2.5: Snubbing effect geometry. 

 
Moreover different fibers reacts differently to bending and lateral stress. For 
instance, in order to study this effect, for the PVA fiber, Kanda and Li (1998) 
introduced a strength reduction coefficient: 
 

( ) ( ) ϕσϕσ rupk
fufu e−= 0  

 
where fuσ  is the ultimate tensile strength of the fibers associated with the 
theoretical situation where the fiber’s bridging segment and its embedded segment 
are collinear, and rupk  is a material parameter.  
Basically the previously relation can be written also in term of force. The 
previously equations are valid only if the fiber force does not cause fiber rupture. 
This can be checked by making sure that the fiber force magnitude is less than the 
rupture force: 
 

'225.0 frupk
uffuff edPP ϕσπ −=<  

 
Until this point I just tries to illustrate and explain the fibers behavior. Later on in 
my work I will focus on three important aspects: two-way fiber pullout, spalling 
effect and the Cook Gordon effect, according with E.H. Yang, S. Wang, Y. Yang 
and V.C. Li (2008).  
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Matrix micro-spalling  

An issue that should be taken into account is the misalignment of the pullout force 
with the orientation of the embedment segments at the fiber exit (Fig. 2.2). This is 
called, matrix micro-spalling, common in the case of random fiber reinforced 
brittle matrix composites, as PVA-ECC, Kanda and Li (1998). 
For the definition of the spalling length, fs , various models have been proposed 
in the literature, including Cailleux et al (2005) and Leung & Li (1992). Herein, 
the formula proposed by Yang et al. (2008) is adopted. 
The spalling length, expressed as a function of external load on the fiber, matrix 
strength, matrix stiffness, and inclination angle influences the size of the spalled 
matrix piece, that is estimated through the following equation: 
 

⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

=

2cos

2
2 ϕσ

ϕ

tfsp

fN

f
dk

senP
s  

 
where fNP  is the normal component of the external force acting on the fiber, ϕ is 
the fiber inclination angle, tσ  is the matrix tensile strength, spk  is a dimensionless 
constant related to the fiber geometry and matrix stiffness, calibrated through 
experimental observation and called spalling parameter. 
This specification, typical of LDPM, allows to consider the inclination crack, that 
is not possible by simply following Yang, S. Wang, Y. Yang and V.C. Li (2008) 
that only consider crack opening normal to the crack plane.  
In the above specification, the spalling size is considered as proportional to the 
external load on the fiber exit and inversely proportional to the matrix tensile 
strength and fiber diameter.  
For typical forces in PVA, fiber in ECC, the predicted spall size (for spk  = 3000), 
is in the range of the mµ280− , consistent with those observed experimentally.  
Matrix micro-spalling has an impact on stress concentration on strengthen 
bridging fibers and on the fiber inclination angle ϕ  to a smaller 'ϕ .  
In a PVA-ECC fiber, the spalling size fs  ranges from several micrometers to 
fiber diameter. Moreover, starting from a steady-state crack width of mµ60 , the 
maximum elastic stretch of the fiber segments freed from spalling will not exceed 

mµ2  at the peak load, which is negligible compared without significant influence 
on the modeling of single fiber-bridging behavior with consideration of both two-
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way pullout and matrix spalling can be reduced to the problem of two-way pullout 
with a modified '

fw , as is just shown before. 

Cook-Gordon effect 

The Cook-Gordon effect is linked to the tensile stress exerted on a blunt matrix 
describes a premature fiber/matrix interface debonding normal to the fiber axis 
caused by a tensile stress located ahead of blunt matrix crack propagating towards 
a fiber under remote tensile load as depicted in Fig.5. 
In the Fig. left is represented the induces fiber-matrix separation due to the tensile 
stress in the horizontal direction associated with the elastic crack tip field of the 
approaching matrix crack. Whereas the Fig. on the right leads to an additional 
crack opening vcg due to elastic stretching of the fiber segment. 

kcg

v’= v+vcg

 
Figure 2.6: Cook Gordon effect.  

 
In other words, we have the stretching of a free fiber segment cgk  (Cook-Gordon 

parameter), and additional crack opening cgv , as shown in Fig. 2.6, due to 
debonding ahead if the matrix crack. Following Li at al: (1993), cgv  can be 
directly computed from the bridging force fP  for all fibers without considering 
the orientation. 
Therefore, for a single fiber, the formula for the additional displacement is the 
following: 
 

ff

fcg
cg Ed

Pk
v 2

4
π

=  
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When fP  is independent of ϕ  and z , the integration of next relation gives the 
number of fibers bridging across the crack per unit area times fP . 
 

( ) B
f

f
f PNdzdzp

V
A

P ≡= ∫ φφσ ,  

where BN , the number of fiber-bridging across the crack per unit area, is: 
 

( ) B
f

f

f

f
B V

A
dzdzp

V
A

N ηφφ == ∫ ,  

and 
 

( ) φφη dzdzpB ∫= ,  
 

this is the efficiency of bridging in terms of the amount of fiber bridging across a 
crack with respect to orientation effect. The cgvP −  relationship for the single 
fiber, can be written also in this way: 
 

Bff

fcg
cg EV

k
v

η
σ

=  

 
In this way, the fiber-bridging stress fσ  is computed as a function of the 
numerical procedure for calculating the bridging stress vs. crack opening 
displacement relationship. 
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Two way pullout 

Once the crack opening takes place, the short embedment side of the fiber 
debonds. It is the pullout of this side that leads to an increase of the crack opening 
itself. Infact, at this point, the long embedment side is characterized only by an 
elastic stretch whose influence on the crack opening is minimal. Of course, the 
effects is different according to the type of fiber. Specifically for the PVA one, 
Redon and Li (2001) suggests that slip-hardening of PVA fiber in cement matrix 
is due to abrasion and to the jamming effect during the slip stage. 
The embedment length is also important: when it is small the fiber is completely 
pulled out from the matrix, whereas when the length is large there is a rupture of 
the fiber. Moreover, it should be pointed out, that the significant slip-hardening 
behavior causes the pullout load to be larger at full debonding rather than at the 
completion of the debonding. 
Looking at PVA fibers, we can witness a two-way fiber pull-out process, given 
that, when the short embedment sides goes through bridging, it is the long 
embedment side that starts the pull-out stage. This feature makes necessary, to 
have a complete and not biased picture, to include the effect that the slip 
displacement coming from both sides of the fiber has on the total crack opening 

'
fw . Wang et al (1988) were the first to suggest this two-way fiber pullout, shown 

in fig. Later, I will describe the different phases in more details. 
 

Analysis stages 

The aim is to divide the different stages and to analyze every stages so to have a 
complete picture of the problem. For each stages, the fiber is assumed to be no 
orthogonal to the crack opening, the snubbing and spalling effects for this reason 
will be always present. In this study, nothing will be said about these effects, the 
attention will be focus only on the two way pullout behavior. 

Stage 1: neither embedment ends completely debonded 

In this stage, the crack opening v  is started and the fiber begins to work. Here the 
magnitude of the crack opening is really and the relation that allows to write the 
compatibility equations is sfsflf vvvv 2=+= , where sflf vv ,  are respectively the 
slippage in the long and in the short embedment fiber. In this stage, lfsf vv = , 
because both sides are in the debonding stage. The next subsection shows how the 
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passage to the short embedment length in the pullout stage will change the above 
relation. It will also show that the slippage will significantly increase in this stage. 
For the debonding stage, the equation used to express the relation vPf −  is the 
following: 
 

( )
dff

ffdff
f vv

dEG
v

dE
P ≤≤+

+
= 0

22
1 323

0
2 πητπ

 

 
applied to both sides until there is complete debonding in the short side (Stage 2): 
 

( ) ( )
ff

sd

ff

s
df dE

LG
dE

Lv ηητ +
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+
=

1812 22
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where sL is the length for the short fiber. This is an assumption already seen in 
previous literature. It states that the pullout stage is achieved first in the short side 
and later in the other side. However, the fiber is always in equilibrium: the force 
in the fiber is independent of the embedment length, Yang at al. (2008). For a 
given crack opening v , the contribution Lv  and Sv  from the long embedment 
segment (length lfL ) and the short embedment segment (length sfL ), respectively, 
can be calculated from the fiber load balance. The upper bound on v  for this stage 
can be defined as: 
 

dff vv 2<  
 

where dv is the crack opening relative to the completely debonding for the short 
side 

Stage 2:short embedment end complete debonded 

In the new stage the short embedment length is at full debonding and the force 
suddenly weakens. Therefore, the bonding embedment is lost. However, the 
friction effect is still present and it also allows increasing the force in this stage. It 
should be noted that, if the frictional pullout is a hardening process, the fP  will 
increase until it reaches the value needed to debond the long side. Mathematically, 
this stage can be depicted using the following equations: 
 

( ) ( )
ff

ld

ff

l
dlflf dE

LG
dE

Lvv ηητ +
+

+
=<

1812 22
0  



Chapter 2: Constitutive law for the concrete-fiber interaction  
 

   
- 42 - 
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and the following relations are used to describe the problem for the force: 
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where sdv  corresponds to the displacement at which full-debonding is completed 
and it is given by: 
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The equilibrium in the fiber is assured in this way: 
 

( ) ( )ssfspflld LvPvP ,=  

Stage 3: both embedment ends completely debonded 

In this last stage, the debonding is achieved for both sides of the fiber that is in 
pullout stage. The relations that describe this stage are: 
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In this phase the relation for the crack opening changes, and the new form is: 
 

efffsflf vsvv =++ 2  
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Where fs  is the spall size that is included in the frictional pullout equation. It 
reduces the length of “cylinder”, where the fiber is in frictional contact with the 
“tunnel”. The term that includes β , which provides the magnitude of the 
frictional stress and which is dependent upon the occurrence of the relative slip 
between the fiber and the tunnel, does not change.  
 

( )( )( )sdfsfsfsdfsffps vvLdvvdP −−−+= βτπ 10  
 

( )( )( )ldflflfldflffpl vvLdvvdP −−−+= βτπ 10  
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Parameters analysis of the model  

The constitutive law implemented into the LDPM will be studied to check and 
understand how the different parameters allow to modify the curve form for fiber 
pullout.  
The single pullout fiber will be evaluated trying to change the values of the main 
parameters, that have a crucial impact on the way the fibers react. With this in 
mind, the several cases studied are: pullout force applied in the same fiber 
direction and not (present of spalling effect), different values for β (pullout 
hardening behavior), a geometrical study about the two different embedment 
lengths for the fiber, that bring the phenomenon of two way pullout and several 
more. In additional, the geometry of the problem is investigated. In this way 
taking fixed the parameters values, is studied how the fiber position affect the 
response. In brief, looking also at the findings of previous literature, for each of 
these cases just described, I will develop and test several hypotheses on the 
reaction behavior of the fibers. 

Presentation of fiber parameters 

The LDPM-F model for the fibers is governed for the 11 parameters. These ones 
are: 
 

fE = Elastic Modulus; 

spk = Spalling Parameter; 

fσ = Fiber Strength; 

rupk = Fiber Strength Decay; 

snk = Snubbing Parameter; 

0τ = Bond Strength; 
η = Volume Stiffness Ratio; 

dG = Debonding Fracture Energy; 
β = Pull Out Hardening; 

pk = Plastic Parameter; 

cgk =Cook-Gordon Parameter; 
 
The next paragraphs will be a discussion on the most important parameters, and 
the main effects of this constitutive law. The idea is to hypothesize the effect 
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connect to the different parameters, and then to check if the hypothesizes done are 
corrects. In this way the law is checked over.  

Pullout hardening behavior 

The fiber behavior after complete debonding is characterized by the presence of a 
sudden drop of the load caused by the lost of the chemical bond. In the next stage, 
called pullout phase, the fiber response can change significantly according to the 
kind of fiber used in the specimen.  
Several previous works showed that these parameters can be ranged into 

11 <<− β . The idea is to try now to change each parameter and to check that the 
reply the one expected. The behavior can be referred as softening when 0<β  or 
hardening 0>β .  
This kind of test is not affected by the fiber position respect to the crack plane. 
According to this aspect, the test is realized using one fiber positioned orthogonal 
to the crack plane, therefore the pullout force is applied coaxial to the fiber 
direction. This problem configuration is shown in the Fig. 2.3. 
It is defined as linear when β = 0. This is shown in the following image:  
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Figure 2.7: Influence of the pullout parameter on single 

 fiber pullout curve. 
 



Chapter 2: Constitutive law for the concrete-fiber interaction  
 

   
- 46 - 

Clearly this kind of parametric analysis is done, fixing the other parameters equal 
to zero, in this way the results are not affected by mixed of different phenomenon.  
Basically the pullout effect can be divided into three different groups. On of this, 
is shown a linear behavior, the remaining two are a no-linear trend.  

Two way pullout 

This effect is not matched with the parameters changing. The purpose is to 
understand how the two way pullout change the response of the fiber. As already 
said in this chapter, the fiber is always in equilibrium for both the debonding and 
pullout stages. The only difference is that in the short embedment length the full 
debonding crack opening is achieved before the long side, this shows that the 
slippage in the short time is bigger than the long side. Now in order to check that 
the model allows for a good description of this aspect, the test done will change 
the two embedment length. The tests will have embedment length very different 
in the first stage ( *

fv ), and almost equal in the second test fv .  
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Figure 2. 8: Two way pullout behavior due to the different 

 embedment lengths. 
 
The result expected is that in the test fv  the slippage for the two sides is the same 

until the full debonding crack opening is achieved, after the test *
fv . When this 



Chapter 2: Constitutive law for the concrete-fiber interaction  
 

   
- 47 - 

limit for the both tests is achieved, it is possible to see how to change the slippage 
magnitude in the short and length embedment sides.  

Debonding fracture energy  

In this analysis, the aim is to investigate the effect of the debonding fracture 
energy ( dG ). How is already said in this chapter the fiber can be in two different 
stage: debonding and pullout.  
When the fiber pass from debonding to the pullout stage is possible to see a 
sudden drop in the force. The magnitude of the drop is directly proportional to the 
value of dG . 
The approached used is to try several values of dG  and will check if the results 
expected will be captured from the model. The results obtained prove how 
increasing the value of dG  the drop increase. It is also shown one increasing in 
the force peak. This is reasonable because with a bigger value of dG  in the fiber is 
so increasing the force that is brought.  
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Figure 2. 9: Influence of the Debonding fracture energy 

 on single fiber pullout curve. 
 
This parameter is also not affected by fiber position. The angle realized between 
fiber direction and pullout force is not important to the analysis of the problem. 
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The parameters that are important for considering this angle are: spalling 
parameter and snubbing effect. They are shown later.  

Bond strength 

The bond strength 0τ  is a crucial parameter and it is matched with the frictional 
force, that it is assumed to be constant in the debonding stage. This parameter 
appears in both the relations for fP . It not only affects the elastic slope but also 
the peak force. Notably, its effect is more clear after the post peak, where the fiber 
is held in the concrete matrix only by the frictional strength. Starting from this 
idea, the value of the bonding strength will be increased step by step and later the 
results will be checked. As the graph shows the results found are in line with the 
expectations. 
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Figure 2. 10: The curves show how the single fiber pullout  

is affected by bond strength. 
 
This parameter is not affected by the fiber inclination respect to the pullout force 
direction. According to this, the single fiber is positioned orthogonal to the crack 
opening plane.  
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Snubbing effect 

The snubbing effect is present when the angle φ  between the fiber and force 
direction is different from zero. This phenomenon shows how the force brought 
by the fiber increases in this new configuration. We expect that the fP  value, 
particularly at the peak, increases with snk  fixed, and changes only the φ  angle. 
Using this approach, the force increases when the angle becomes larger. In this 
study, three values of angle will be used. The graph shows that again findings are 
in line with expectations. 
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Figure 2.11: Different response for snubbing effect  

caused by fiber orientation. 
 

According to this figure, the snubbing parameter has the same trend fixing the 
angle and increasing the value of the parameter. This parameter will be very 
important in the next chapter, when the model will be calibrated. It allows to fit 
the peak.  
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Spalling effect 

The spalling effect is present when the angle φ  between the fiber and force 
direction is different from zero (Fig.4). This phenomenon shows how the 
embedment length of the fiber is subject to one reduction caused by the rupture of 
the concrete matrix close to the fiber exit.  
The behavior will be the same in terms of force sustained, but I expect that the full 
debonding crack opening will be achieved earlier than in the case without 
spalling. 
Thus, three different values of the angle will be used. We expect that the value, in 
particularly at the peak, increases with the fixed, and a change in the  angle. Using 
this approach, the force increases when the angle is larger. In this study, three 
values of the angle will be used. As expected, when the angle value increases, the 
full debonding crack opening is achieved earlier. 
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Figure 2. 12: Different response for spalling effect  

caused by fiber orientation. 
 
The spalling parameter is too important in the processing phase because it 
determines the spalling length. According to this factor, the crack opening vector 
changes, and for this reason also the pullout force that the fiber can bring.  
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The inverse relation between spalling length and spalling parameter is important. 
In fact, the increasing of spalling parameter produces one reduction in the spalling 
length.  
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Chapter 3 

Numerical analysis plain concrete subject 
to tension and compression 

 
Introduction  

In this chapter will be explained how to calibrate the LDPM in order to fit the 
experimental results by Laps (Bologna), Buratti at al (2008). Following this idea, 
initially will be studied the 3PBT (three point bending test) and UC (uniaxial 
unconfined compression test) just focusing on the concrete. 
After that, in the next chapter, when the concrete is already calibrated, the fibers 
will be introduced in the specimens.  
The first calibration is done using the common mesostructure values of 
parameters, shown in previous works. Starting from here, will be run one 
parameter study to understand as the different parameters affect the model. 
The experience sais that usually there is no linear relationship among the different 
parameters. In order to obtain the best possible calibration, the following tests 
should be run: uniaxial unconfined compression, three point bending test, triaxial 
shear test and hydrostatic compression test. In such a way it will be possible to 
capture each kind of concrete behaviour: compressive and shear-tensile response. 
Is a common procedure not to run each one of these tests. It is enough to run two 
tests related to the study of the tensile and compression behaviour.  
The approach followed is aimed at calibrating how the model reacts to a change in 
the parameters for each type of available test while using for the rest of 
parameters the common values found for other kind of concretes. 
The structure will be as follow. I illustrate the calibration procedure first and then 
I will analyze the different topics matched with the LDPM model.  
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Presentation of the parameters 

The Lattice Discrete Particle Model (LDPM) is governed by the 16 meso-
structural parameters, that allow to describe the concrete behaviour. In the next 
chapter will be introduce additional parameters, specifically used for the fibers 
calibration in addition to the previous one. The parameters used for the fibers 
calibration that will be add to these. For the concrete calibration the parameters 
are: 
 

• 0E = Normal Modulus; 
• 0EEd = Densification Ratio; 
• α = Shear-normal coupling parameter; 
• tσ = Tensile Strength; 
• cσ = Compressive Strength 
• ts σσ = Shear Strength Ratio; 
• crl = Tensile Characteristic Length; 
• tn = Softening Exponent; 
• cH = Initial Hardening Modulus Ratio; 
• 01 cc εε = Transitional Strain Ratio; 
• 0µ = Initial Friction; 
• ∞µ = Asymptotic Friction; 
• 0Nσ = Transitional Stress; 
• β = Volumetric Deviatoric Coupling; 
• 1k = Deviatoric Strain Threshold Ratio 

• 2k = Deviatoric Damage Parameter. 

Model sensibility 

The LDPM allows to reproduce the concrete behaviours, showing tension, 
compression behaviour and also the shear effect. It will involve tests replicating 
both behaviours. Through these experimental tests, will be study few parameters. 
For calibrate the model all kind of test for the same concrete need. In this way will 
be able to fit each parameter. Using this approach, will be shown the parameters 
that affect the test behaviour for 3PBT and UC. However, I will refer to the 
precious works done in this field, in order to have a clear idea about the different 
values ranges in which the parameter fluctuate and for understand what kind of 
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parameter affect my test. In the recent years, the following links test parameters 
were identified:  
 

• Tensile test: the elastic part is linked with the 0E  and α . The peak is 
moved by tσ  and the inelastic part is a function of crl  that allows to 
change the post-peak slope and tσ , important in order to move the 
curve tail; 

 
• Uniaxial unconfined compression test: 0E  and α  represent the 

principal parameters needed to fit the elastic part. The peak is 
governed tσ , ts σσ  and 0µ . The post-peak by tσ  and crl ; 

 
• Hydrostatic compression test: the elastic part is function of 0E  and α . 

The limit pressure value of the elastic behaviour by cσ , the initial 
slope of the hardening part by cH . 

 
Looking at the previous literature according to Mencarelli (2007): 
 

• For tests like tensile and the uniaxial unconfined compression the 
curve is scaled proportionally to tσ  out of the elastic part (peak and 
post-peak); 

 
• crl  does not allow to scale in proportional way the curves out of the 

elastic part for the tensile and uniaxial unconfined compressive tests; 
 

• The ratio between the value of the peak of the Uniaxial Unconfined 
Compression Test and the value of the peak of the tensile test is 
governed by the ts σσ ; 

 
• The cσ  is the parameter that allows to scale the curve out of the elastic 

part for the hydrostatic test; 

Phases of the calibration 

Two types of tests are available in order to calibrate the LDPM only for the 
concrete. The tests used are 3PBT and UC. The calibration will be done, starting 
from the 3PBT Afterwards, will be checked if the results found in this first phase 
are in line with the experimental data for the UC test.  
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The difficulty of this calibration is the non-linearity of relationship among 
parameters. The final aim, then, will be that to find a fir compromise among 
successive calibrations, so to account for and understand the nonlinearity of the 
problem. The following section is divided into different subsections according to 
the different steps needed to perform the calibration.  

Specimens geometry 

The specimens used in these tests are the beam and the cube respectively for 
3PBT and UC. In general the approach is always characterize by these three 
phases, as I pointed out already in the first chapter of this work. In this subchapter 
the first stage will be explained. Basically, the Mars requires the only dimension 
of the specimen that can be directly assigned, when it has a common shape, as it is 
done for the UC test. 

Three point bending test (3PBT) 

The approach used for the 3PBT specimen is completely different from the one 
usually done. There are two main reasons: the beam is realized with the notch in 
the middle of the span, making the specimen geometry a no-easy shape.  

 

F

F/2 F/2

a

$

ab

 
Figure 3.1: Three point bending test  

specimen geometry. 
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The Mars allows to overcome this problem, by referring to the nodes coordinate 
of the solid that will be used later on in the second stage. The second problem that 
affect this test is the specimen dimension. The beam used has one span of 500 mm 
and the sectional area is 150x125 mm, in the middle section where the notch is 
present. 
In order to reduce the computational cost and to take into account that all cracks 
are in the central area, where the notch is done, the beam is divided into three 
zones. The two areas near the supports, indicated with a in the Fig. 3.1, will be 
realized with finite element. The central part, called b is the “LDPM volume”. The 
dimensions of these regions are: a=150mm and b=200mm. 
These dimensions are found according to the possibility cracks opening 
distribution, helping to get better clear scenario. In this way it is possible to realize 
a good numerical test without spending a lot of time, because the number of the 
particles has been reduced. The Fig. 3.1 shows the beam used in my test. 

Uniaxial unconfined compression test (UC) 

Cube, cylinder and prism are the common shapes of specimen used in this test. 
These specimens are positioned between a top and a bottom plate, where the 
vertically compression is applied by the top plate with no lateral confinement. 

D

D

F

F
 

Figure 3.2: Uniaxial unconfined compression specimen. 
 
In my test, the specimen used is a cube of dimension 150x150x150mm. The 
characteristic used for the contact plate-specimen is high friction; in the 
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experimental analysis sometimes this effect is reduced putting Teflon or an oil 
layer between the plate and the specimen. The Fig. 3.2 shows the specimen used. 
This volume will be later filled with the particles defined in the following 
subchapter. The image shows a triangle construction, that is realized in the last 
stage, when the particles and the zero-nodes are positioned into the volume, 
leading to the Delaunay triangulations is done. 

Aggregate generation 

The composition of the concrete, used into the LDPM model, is simulated starting 
from the parameters of the mix design. This is very important in order to 
reproduce the mesostructure of the concrete. 
The tables present in the Buratti N. at al (2008) show the concrete mix used in the 
Laps tests, this will be an obvious starting point. According to these tables, it is 
possible to rebuild the Fuller curve, that is expressed by this equation: 
 

n
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where n is the Fuller coefficient, that will be estimated. This function allows me to 
describe the granulometric distribution of the particles. By performing a study on 
the principles parameters, it is possible to find this distribution. 
The principles parameters are: the cement content c (mass/cubic length), the water 
to cement ratio w/c, the aggregate cement ratio a/c. 
At this stage, the main aim is to define the concrete characteristic and the 
diameters range used to generate the particles that the LDPM will use to fill the 
specimen volume. Basically, only the coarse aggregate are reproduced, these are 
defined as the particles with characteristic size greater that 5 mm. It should be 
noted that, in order to obtain a reasonable computational time, the whole sieve 
curve cannot be simulated and, therefore, very small size aggregates must be 
discarded. According to this idea, the range 10-22 mm is used in my simulations. 
This choice allows to respect the two criteria fundamentally empirically. First of 
all, later different years of simulation is been found that covering the 30% of the 
total Fuller curve. I am able to define one mixed design that allows to obtain good 
results, that are not affected by the choice itself. Different percentage coverages 
are considered, but given some slight difference in the results, the 30% is defined 
as the best value in terms of quality of reaction and computational time cost. The 
characteristics used in my test are: 
 

• Cement Content = 357 kg/m3 
• Water To Cement Ratio = 0.49; 
• Aggregate To Cement Ratio = 5.02; 
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• Min Aggregate = 10 mm; 
• Max Aggregate = 22 mm; 
• Fuller Coefficient = 0.5131; 

 
 
The following image shows the estimated Fuller curve, where the green part 
represent the percentage simulated 
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Figure 3.3: Computed sieve curve. 

 
 

The generation phase ends by positioning the particles into the specimens. This is 
done by using a random algorithm that replaces the particles according to the 
command “seed”. The seed is assigned into the mars input file, and allows to 
simulate the concrete randomness structure as well. This will be very interesting 
in the calibration stage, where the results will be affected by seed. this is in line 
with experimental date with the experimental data, where a scatter is always 
present for the same materials specimens.  
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At the end of this study, the specimens appear in this way: 
 

F

200 mm

F

150 mm

 
Figure 3.4: Specimens fill with the 

 generate particles. 

Parametric analysis 

The LDPM, as pointed out before, is governed by 16 parameters. These 
parameters are needed in analyzing of the concrete and in capturing the 
compressive and shear-tensile behaviour.  
The parameters will be calibrated according to the experimental tests available. 
The experience say that the principal parameters that affect these two tests are: 
tensile strength tσ , shear-strength ratio ts σσ , tensile characteristic length crl  
and initial friction 0µ . The reaming parameters affect strongly the others kind of 
tests, whereas, in my tests, they imply just a small change in the results. 
The main objective is to take averaged values of each of the parameters and then 
start studying them. In this way, I will be able to fit one concrete that can 
represent a good response also to other types of behaviour, for which the analysis 
cannot be performed.  
Basically, it is important understand how these parameters change the responses 
of the model. According to this goal, a parameter study is done. This is the reason 
why sometimes it is possible to run one test, for instance 3PBT, but lose the good 
calibration specific for the UC. In general, to have a good fit, is needed is to 
achieve a balance among the different effects.  

Three point bending test (3PBT) 

The 3PBT is a test dominated by tension where a load is applied vertically in the 
middle of a simple support beam specimen of span l with or without notch in the 
central section. The aim is to obtain the force-Crack Mouth Opening 
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Displacement (CMOD) curve, where the two magnitudes are measured 
respectively in the point where the load is applied and at the extremes of the 
CMOD, when the notch is done. In other situations, the displacement considered 
is vertically measured in the same point where the force is applied.  
The rupture starts vertically from the center of the specimen, where the notch is 
realized or in this central area when is without the notch. In this case, the area 
under the force-displacement curve divided by the area of the ligament is defined 
like the Fracture Energy fG . 
The 3PBT can be calibrated, by focusing the attention on two main parameters, 
that  are know to affect more this kind of test. The parameters are: tσ  (tensile 
strength) and crl  (tensile characteristic length). In order to this kind of approach, 
this parametric analysis is done: 
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Figure 3.5: Tensile characteristic length analysis for 3PBT 

 on plain concrete specimen. 
 

In this first image, is shown how the tensile characteristic length crl  affects the 
peak and the slope for the plastic stage and, then, the position of tail curve. 
According to these results, this parameter will be used to estimate the post-peak 
slope and then when this portion of the curve become fixed of curve is fixed the 
peak will be found. The peak is moved using other parameters. The image allows 
to understand how only one parameter affect different parts of the curve and also 
the behaviour. It is important to keep in mind this, because often changing a 
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parameter to fit one part of the curve, would imply a change in another portion 
that was fixed before. This can be very expensive in terms of computational time. 
The tensile strength tσ  is another important factor that is used for the 3PBT. By 
varying this, according to its three values realized, the results obtained are: 
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Figure 3.6: Tensile strength analysis for 3PBT 

 on plain concrete specimen. 
 
In this case, the tensile strength appears like a parameter that affect only the peak, 
and no-effect are shown for the post-peak slope. It allows to scale the curve out of 
the elastic part.  
As expected, by increasing the tensile, the strength increased the peak and at the 
same time also the curve tail went up.  
The method used for the calibration has been the following: starting from the 
3PBT and then I tried for different values of these two parameters. Later on in the 
study, when a good fit is achieved, the same parameters for the UC behaviour will 
be checked. 
How was clear to aspect the results found in this stage, was not good also for the 
UC.  
With this in mind, I re-start my analysis by checking for what values there is a 
good fit in the UC test, which has to be done by using shear strength ratio and 
initial friction. These changes affect also 3PBT. Thus, in order to explain this type 
of behaviour the following analyses are run: 
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Figure 3.7: Initial friction analysis. 
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Figure 3.8: Shear strength ratio analysis. 
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The initial friction µ0 does not affect the 3PBT and will be used later on to fit the 
pick in the UC test. Notable, this goal is achieved also by using the shear strength 
ratio σs/σt. This completely changes the curve, as it is shown in the next figure. 
Moreover this parameter is important for the triaxial test. For this reason it is 
preferred not to change this parameter value. Therefore, the common value shown 
by the experience is used. 
Notable, in order to solve the calibration problem and to cover UC and 3PBT 
experimental results, the initial friction will be used for the UC test. The next sub-
section show how these parameters affect the UC test. 

Uniaxial unconfined compression test (UC) 

It is a test where a prismatic, cubic or cylindrical specimen positioned between a 
top and bottom plate is compressed vertically by the top plate with no lateral 
confinement. For the prismatic and cylindrical specimen, the ratio between the 
dimension of the side L, of the square section or the diameter D of the circular 
section and the height H is usually 1:2 or 1:3. In both cases, the height of the 
specimens helps to decrease the confinement because the effect of the boundary 
plate does not influence the behaviour in the central part of the specimen for the 
De Saint Venant effect.  
Cube specimens are used in my tests. The goal is to obtain the stress- strain curve, 
that is found to divide the force and the displacement, as measured on the plate for 
the area of the section and for the height of the specimen. The rupture response is 
matched with the level of confinement and can be explosive in the case of high 
friction. 
Basically, the problem linked with the calibration stage, was to take the pick. This 
can be achieved by using with shear strength ratio σs/σt and the initial friction µ0. 
The elastic slope is already knew by the Bažant relations, that are the only 
relations that create a link into macro-parameters and meso-parameters. The 
results found changing different values for these parameters are the following. 
The first parameter used to fit the peak was the shear strength ratio σs/σt, from the 
parametric study is possible to see how, by increasing it, the value the peak goes 
down. The experience also says that there is a linear match into the value of this 
parameter and the compressive strength. According to this, it is possible to fit the 
curve, making a linear study.  
This method will create a problem into the 3PBT curve, because this kind of test 
is strongly influenced by the shear strength ratio. 
The solution used is to work with the initial friction that does not change the 
results found in the 3PBT. The sensibility of this parameter is shown in the Fig. 
3.10. 
 



Chapter 3: Numerical analysis plain concrete subject to tension and compression  
 

   
- 68 - 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-3

0

10

20

30

40

50

60

70

80

90

100

Shear strength ratio [σs/σt]

ε [-]

R
cm

 [M
Pa

]

 

 
σs/σt= 0.5

σs/σt= 0.3

σs/σt= 0.1

F

150 mm

 
Figure 3.9: Shear strength ratio analysis for UC test. 
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Figure 3.10: Initial friction analysis for UC test. 
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The remain two parameters that are important into the 3PBT calibration test are 
these types of responses in the UC. 
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Figure 3.11: Tensile characteristic length for UC test. 

 
Understand how the UC react when these two parameters are changed is very 
important in the last calibration phases, when both test are almost fit and small 
changes are needed to complete the model. In this way, the sensibility analysis 
permit to have just one idea also for this kind of study. 
Concluding this will be the order followed for fit the result: 
 

a) The 3PBT will be calibrated using tσ  and crl ; 
b) The UC will be checked with the calibration used for the 3PBT; 
c) If it is not correct this will be changed using ts σσ  and 0µ ; 
d) The new parameters values set will be checked for the 3PBT; 
e) If the curves found do not allow to reproduce both the behaviours, the 

loop restarts from “a” point, until to achieve a good calibration. 
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Figure 3.12: Tensile strength for UC test. 
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Calibration stage 

For the calibration of the model the 3PBT and UC, previously described, are used. 
The tests performed are. 
 

• the uniaxial unconfined compression test allows to fit the elastic part 
0E  and the peak cσ  for the compressive behaviour; 

• the three point bending test is the principal test used for to find the 
tensile reply of the concrete. 

 
The experimental data available are: two test for the 3PBT and six for the UC for 
the specimen made only by concrete. The approach used is divided in two 
different phases. 
The first step is the analysis of the experimental curves for both tests. One average 
curve will be generated to fit at the start the calibration. According with the 
heterogeneity of the concrete, the experimental tests present a certain scatter and 
this approach allows to fit the numerical curve on the average. Starting from this, 
the calibration begins by using a generic seed for the Mars file. It is a tool that is 
used for positioning the particle into the volume specimen. Changing this value, 
the randomness algorithm change the position and the heterogeneity of concrete 
can be reproduced also in the numerical model. 
The calibration starts using the common parameters values that are: Normal 
Modulus 43744 MPa, Densification Ratio 1, Alpha 0.25, Tensile Strength 4.03 
MPa , Compressive Strength 150 MPa, Shear Strength Ratio 2.7, Tensile 
Characteristic Length 120 mm ,Softening Exponent 0.2, Initial Hardening 
Modulus Ratio 0.4, Transitional Strain Ratio 2, Initial Friction 0.2, Asymptotic 
Friction 0, Transitional Stress 600 MPa, Volumetric Deviatoric Coupling 0, 
Deviatoric Strain Threshold Ratio 1, Deviatoric Damage Parameter 5. 
The idea is to initially look at how the model response is found and after that start 
changing the parameters that the previous study has identified has the most 
important. When a good calibration is found, the second phase start. 
In this second step, the idea is to realize one general study being able to show the 
heterogenic structure of the concrete. With this in mind I lock the parameters 
values of the previously step, and six tests are run with different seed values. The 
tables 3.1 and 3.2 summarize the particle and tetrahedrons number present for the 
different specimens, for both UC and 3PBT. The curves found are averaged and 
then compared with the experimental average curve. The magenta curve are the 
curve obtained by the model using different seeds.  
 
If the two curve are fitted the calibration phase is over. Otherwise, it should 
continue, following the same approach. 
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The results found for 3PBT are: 
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Figure 3.13: Comparison between numerical and  

experimental results, for 3PBT. 
 
In this figure is possible to see the complete study. The blue curves are the 
experimental test results and the cyan blue curve is the their average. This is 
compared with the red curve that is the model average response. As it is shown, 
the model allows to have a very good fit of the experimental data.  
 

Specimen Particles Tetrahedrons 
A 1278 5599 
B 1276 5610 
C 1267 5532 
D 1290 5721 
E 1258 5530 
F 1253 5513 

Table 3. 1: UC specimens. 
 
The objective for the UC test is different. In this case only numerical values are 
available, for fit the pick and the elastic part. These values are picked using 
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different seeds and then the average curve is used to check the final results. The 
calibration found for this test is shown here.  
 

Specimen Particles Tetrahedrons 
A 1656 7385 
B 1660 7427 
C 1641 7304 
D 1651 7340 
E 1632 7212 
F 1637 7263 

Table 3.2: 3PBT single notch specimens. 
 
The images shown how the LDPM allows to fit every part of the curve with an 
high quality. 
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Figure 3.14: Comparison between numerical and  

experimental results for UC test. 
 
The specimens for UC and 3PBT appear later the test respectively as show in the 
Fig. 3.15 and 3.16. In this images is possible to see the cracks patterns and also 
the fragmentation due to the compressive load in the UC specimen.  
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Figure 3.15: UC specimen damage. Cracks evolution. 

 

 
Figure 3.16: 3PBT specimen damage. Cracks propagation. 

 
The parameters value that allow this calibration are: 
 

• E0 = Normal Modulus  50655 MPa  
• Ed/Eo = Densification Ratio  
• α = Alpha 0.25  
• σt = Tensile Strength 2.21 MPa   
• σc = Compressive Strength 195 MPa 
• σs/σt = Shear Strength Ratio 2.5  
• lcr = Tensile Characteristic Length 900 mm  
• nt = Softening Exponent 0.2  
• Hc = Initial Hardening Modulus Ratio 0.2  
• εc1/εc0 = Transitional Strain Ratio 2.7  
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• µ0 = Initial Friction 0.25  
• µ∞ = Asymptotic Friction 0  
• σN0 = Transitional Stress 600 MPa  
• β = Volumetric Deviatoric Coupling 0  
• k1 = Deviatoric Strain Threshold Ratio 0.5  
• k2 = Deviatoric Damage Parameter 5  

 
These value are close to the common range shown by the experience. This allows 
to say that a good calibration is done. The only strange value is for the tensile 
characteristic length crl  = 900 mm. Normally, this value range into 120 mm. To 
check if this is a result acceptable, in the next sub-section one energy analysis is 
done. 

Fracture energy control 

The fracture energy control will be done to justify the large value found for the 
tensile characteristic length, because it is the first time that such large values are 
found. In line with this, a new test will be done. This test is a dog bone test, that is 
a test that allows to study the tensile behaviour. No experimental test are 
available, but the idea is to reproduce one specimen with my calibrate parameters 
value found and to calculate the Fracture energy . This test is necessary because 
generally the area under the curve force-displacement divided by the ligament 
represent the Fracture energy value. In my test, is not possible to done this, 
because force and CMOD are not two comparable magnitude. to solve this 
problem, dog bone test is done. 
Tensile test are the best for evidence the fracture energy, for this reason this is 
used. The dog bone specimen is generated with the same material of my 
calibration and later in the post processing phase the fracture energy is calculate. 
The Fig. 3.17 shown the specimen. 
The value of the fracture energy found calculating the area under the curve, 
divided by the ligament is: 
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The objective now, is to compare this value with the value of dG  that can be 
analytically found using the relation that match fracture energy and characteristic 
length, written in the first chapter. It is: 
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This control shows that the two Fracture energy found are comparable as value. 
The reason of this large change with a higher probability is due to the dimension 
of aggregate. In my test, the particles are arranged in the range of 10-22 mm. 
These are values bigger than the common values that the experience show. This 
will be the principle reason.  
 

W
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Figure 3.17: Dog bone specimen geometry. 

 
In the next chapter, using this concrete calibration found, the fibbers will be 
introduced. 
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Chapter 4 

Numerical analysis fiber reinforced 
concrete (FRC) subject to tension 

 
Introduction  

The goal of this chapter is to introduce the fiber into the LDPM and calibrate this 
new model. The constitutive law that is applied for the relations among concrete-
fiber is explained in the second chapter of the thesis. In brevity, the methods used 
to achieve the objective of this study will be discussed herein. 
The developed model is called Lattice Discrete Particle Model for Fiber 
Reinforced Concrete (LDPM-F). Starting from the results found for the plain 
concrete, using 3PBT and UC, the fibers are introduced into the specimen, this 
can be considered the first step. The second step is to calibrate the typical 
parameters of the constitutive law, followed by validating the results of the 
analysis.  
 

 
Figure 4.1: Steel fibers used in the 

 experimental specimens. 
 

The two steps, calibration and validation, are done utilizing experimental data 
from Buratti, Mazzotti, Savoia and Thooft (2008). The tests done are 3PBT. The 
specimen is of the same geometry as that shown in the previous chapter, with the 
same plain concrete plus random distribution of fiber. There are two percentages 
of fiber distribution for the test. The specimen called SF1B_20 have 0.26 % of 



Chapter 4: Numerical analysis fiber reinforced concrete (FRC) subject to tension  
 

   
- 79 - 

fiber and the group SF1B_35 is characterized by 0.45% of fibers randomly 
distributed into the specimen. This parameter is identified as fV . These two 
groups will be very important for the study, in fact the first is used for the 
calibration and then the second group allows the validation of the result. In Fig. 
4.1 are shown the fibers used in the experimental tests.  

Phases of pre-calibration  

The pre-calibration phases are the same as those just described in the previous 
chapter, however the only difference is that there is one more step. According to 
the order just shown, the new step is introduced after the aggregate generation. 
This stage is called “fiber generation”. 

Fiber generation 

At the global level, the distribution of fiber-facet intersections is accomplished by 
generating a uniform distribution of fibers throughout a simulated specimen. From 
a geometry point of view, physical fiber can be described using a few parameters: 
fiber density, length, diameter, and tortuosity. The latter parameter is used to 
characterize the fiber shape: a straight fiber has no tortuosity while a fiber with 
many “kinks” is very tortuous. These geometric parameters are used in MARS for 
generating random fibers inside a control volume, which can either be the volume 
of the entire specimen or a larger volume that contains the specimen. Each fiber is 
modelled using a sequence of one or more segments linked together. Single 
segments are sufficient for generating straight fibers. Multiple segments are 
necessary for generating “tortuous” fibers. Fiber location and orientation are 
assumed to be randomly distributed. All fibers are completely contained in the 
control volume. For cast FRC parts, the control volume should be equal to the 
volume of the simulated specimen. For machined parts, the control volume should 
be larger than the simulated specimen. The fibers that intersect the external 
surface of the part are treated as cut. The portion of a cut fiber which lays inside 
the part is shorter than the length of original fiber and this affects the mechanical 
characteristics of the fiber-facet interaction near the external surfaces. In the spirit 
of the discrete, multi-scale physical character of LDPM, the occurrences of fiber-
facet intersection are determined by computing the actual locations where fibers 
cross inter-cell facets. This computation can require significant resources for large 
models in terms of both time and memory. For this reason, an efficient bin-sorting 
algorithm was developed for computing these intersections. For each intersection, 
the fiber length on each side of the facet and the orientation at which the fiber 
intersects the facet (crack plane) are computed. These parameters are saved in the 
facet data structure and used during the simulation for calculating the fiber 
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contribution to the LDPM facet behaviour. It is worth noting that the uniform 
distribution of fibers throughout a volume is sometimes not realistic due to the 
intrinsic technical difficulties of dispersing the fibers evenly in an actual concrete 
specimen. This issue needs to be taken into account carefully when calibrating 
and validating the model, G.Cusatis, and co-worker (2009). In these tests used 
steel fibers for calibrating the model. The values of the principle characteristics 
implemented in the code to represent and describe the fibers characteristics are: 
 

• Fiber Length=5 cm 
• Element Size=5.01 cm 
• Fiber Section Area=0.785 mm2 
• Tortuosity=0.0 
• Volume Fraction=0.0026 
• Elastic Modulus=210 GPa 
• Fiber Strength=1100 MPa 
 

According to these properties the specimens can be generated. The geometry is 
the same as that used for the plain concrete test, in other words a prismatic 
notched specimen with span of 500 mm. Fig. 4.2 shows the specimen, where it is 
possible to see the fibers presence. They are represented in blue colour and the 
particles are plotted in transparent way to show a better view of the fibers. 
 

F

200 mm

 
Figure 4.2: 3PBT specimen with fibers. 

 
In this Fig. 4.2 it is possible to see that the only central part, where damage is 
expected to occur due to the presence of notch, is modelled thought LDPM-F, 
while the two lateral parts are modelled with standard elastic finite elements. All 
of the specimens have an out of plane thickness of 150 mm. 
The second step is to define the parameters that will be calibrated to make the 
model usable. The tests done for calibrating the model were 3PBT. 
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Presentation of parameters 

The Lattice Discrete Particle Model for Fiber Reinforced Concrete (LDPM-F) is 
governed by 11 parameters that allow the description of the concrete-fibers 
behaviour. These parameters that are now shown will be added to the other 16 
meso-structure parameters that are calibrated for plain concrete. The strain and 
strength that are measured on the generic triangular face of model are the 
combination of concrete and fiber contribution. The parameters are: 
 

fE = Elastic Modulus 

spk = Spalling Parameter 

fσ = Fiber Strength 

rupk = Fiber Strength Decay 

snk = Snubbing Parameter 

0τ = Bond Strength 
η = Volume Stiffness Ratio 

dG = Debonding Fracture Energy 
β = Pullout Hardening 

pk = Plastic Parameter 

cgk =Cook Gordon Parameter 

Model sensibility  

The LDPM-F allows reproducing the concrete-fiber behaviour. The fibers are 
designed to work when the cracks initiate, for this reason their effects on tests 
characterized by tension are more important compared to tests characterized by 
compression and shear. Accordingly, only this kind of tests are reproduced. The 
calibration phase for concrete-fiber specimens starts by conducting a sensibility 
analysis of the model. 
This is the first work done with this model, since there are no available results or 
examples from the literature. In the sensibility analysis a specific study over the 
parameters was done. For each parameter three numerical tests were done by 
changing the number of the parameters analyzed. Clearly the other parameters 
excluding Debonding Fracture Energy dG , Bond Strength 0τ , Elastic Modulus 

fE  and Fiber Strength fσ , are put equal to zero. The results found are presented 
in the next series of figures. 
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These figures 4.3 and 4.4 show how the curve for 3PBT change in according to 
the different values of the parameters. In the second chapter only one sensibility 
analysis was made for the only one fiber pullout case, but it can not take 
completely the “big” test in account, in which the number of fibers is bigger than 
single pullout and also the force which is applied in different ways.  
The results found shows that in some cases, for example for the Pullout Hardening 
β  the model response is almost the same as that which was found in the single 
fiber analysis. Worth noting is that it is possible to divide these parameters in two 
groups, according to the relative importance that they have in the calibration 
process. The first group is formed by Debonding Fracture Energy dG , Pullout 
Hardening β , Bond Strength 0τ , Fiber strength fσ  and Elastic Modulus fE . The 
sensibility of these parameters is obvious from the following figures.  
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Figure 4.3: Parametric analysis of the  

principle parameters 
 
The second step is done by the remaining parameters. The aim is to work over 
parameters that allow the calibration the model for the 3PBT, and also for other 
kinds of tests to achieve a calibration that permit to reproduce the behaviour for 
every kind of steel fibers.  
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Following this target, the work will be developed using values of parameters, that 
allow to fit also tensile tests. Parameters like Volume Stiffness Ratio η  and Cook 
Gordon Parameter cgk  are assumed to be equal to zero, because their effect can be 
considered negligible.  
Following are shown the remaining parameters which govern the fiber-concrete 
behaviour, Fig. 4.4.  
Taking in consideration all the results from this sensibility analysis, the calibration 
was done. 
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Figure 4.4: Parametric analysis of the  

remaining parameters 
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Calibration stage 

The experimental data presents two different group of specimens characterized by 
different percentages of fibers dispersed into the specimens, this parameter is 
called fV . The SF1B_20 is used for the calibration. 
This group presents fV  = 0.26 % of fiber and seven experimental tests are done. 
The table 4.1 shows the number of particles and tetrahedron present in the 
different specimens.  
 

Specimen Particles Tetrahedrons 
A 1656 7385 
B 1676 7465 
C 1634 7238 
D 1660 7376 
E 1617 7151 
F 1687 7609 
G 1658 7362 

Table 4.1: 3PBT single notch specimens 
 with Vf = 0.26% of fibers. 

 
According to the approach used in the concrete calibration stage, one average 
curve will be generated to fit the start the calibration. The experimental tests show 
a certain scatter among the seven curves, which is very big. Two causes can be 
attributed to this scatter: the heterogeneity of the concrete and the different 
position that the fibers have in the specimen. For example one specimen that 
present more fiber in the central section allows to have more stress than another 
specimen where the fiber are close to the support. The fiber distribution is another 
important random effect that needs to be considered for this material.  
The model was built taking into account these two effects. For simulating real 
situations, the MARS is equipped with two different seeds. One that is positioned 
in the Gen.mrs allows the reproduction of the heterogenic structure of the 
concrete, and the other located in the Run.mrs allows to change the random 
distribution of the fibers. By changing the seeds the randomness algorithm change 
the position of the particles and the fibers. The two files, nominated before, are 
the typical input files used in the numerical analysis. 
Starting from the average experimental curve the calibration begins by using a 
generic seed for the Gen.mrs and Run.mrs files.  
The idea is to initially look at how the model responds and after that start 
changing the parameters, defined in the previous section, to identify the most 
important ones. When a good calibration is found the second phase starts.  
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In the second step, the idea is to define a general study and to be able to show the 
heterogenic structure of the concrete and also the random distributions of fibers. 
Accordingly, utilizing the parameters values from the previous step, seven tests 
were run with different seed values. Clearly both the seeds in Run.mrs and in 
Gen.mrs were changed.  
The curves found are averaged and then compared with the experimental average 
curve. 
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Figure 4.5: Comparison between numerical and experimental  

results, for 3PBT with Vf = 0.26% of fibers. 
 
The agreement between the numerical results and the experimental data is very 
good. The values found for the parameters are: 
 

• Elastic Modulus [ fE ]=210 GPa; 
• Spalling Parameter[ spk ]=150 MPa; 
• Fiber Strength[ fσ ]=1100 MPa; 
• Fiber Strength Decay[ rupk ]=0.0; 
• Snubbing Parameter[ snk ]=0.5; 
• Bond Strength[ 0τ ]=6.0 MPa; 
• Volume Stiffness Ratio[η ]=0.0; 
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• Debonding Fracture Energy[ dG ]=5.0; 
• Pull Out Hardening[β ]=0.0; 
• Plastic Parameter[ pk ]=1.0; 
• Cook Gordon Parameter[ cgk ]=2.0; 
 
 

 
 

 
Figure 4.6: Comparison between of the damage of experimental  

and numerical beams subject to 3PBT.  
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Validation stage 

In this stage the validation is done. The experimental group characterized by 0.45 
% fV  is used to check if the model works. The idea is to have new numerical test 
using the same parameters set and changing only the fiber percentage distribution 
to fit the experimental curve. Accordingly, seven specimen were run.  
 

Specimen Particles Tetrahedrons 
A 1611 7057 
B 1646 7270 
C 1617 7149 
D 1656 7385 
E 1635 7247 
F 1619 7115 
G 1650 7311 

Table 4.2: 3PBT single notch specimens 
 with Vf  = 0.45% of fibers. 
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Figure 4.7: Comparison between numerical and experimental  

results, for 3PBT with Vf = 0.45% of fibers. 
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The results obtained in this case produce a post-peak load carrying capacity higher 
than the experimental one. For a CMOD of 0.8 mm the difference between the 
average numerical and experimental curves is about 45%.  
In order to clarify this apparent discrepancy, it is useful to compare the actual 
number of fibers bridging the crack in the experimental and in the numerical 
simulations. During the experimental campaign, post-mortem evaluation was 
performed and the number of fibers on the crack surface was counted for all 
specimens of both FRC mixes. For the experimental test, the number of fibers in 
each third of the ligament length (i.e. the reduced cross-section with associated 
notch, as shown in Fig. 4.8). 
The different areas identified in this way are named bottom, middle and top, 
respectively. Defining them is very important to understand the fibers response. 
The same information was clearly extracted from the numerical simulations. 
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Figure 4.8: Crack opening isosurfaces.  

 
To study the CMOD-Force in the fibers case, another approach will be used. The 
idea is to analyze the increment of load due to the fibers effect and finds a relation 
among this increment and the position of fibers in terms of bottom, middle or top 
area.  
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The new parameter introduced is the load increment, it is expressed by this 
relation: ( )01100 PPLi −= , where P  is the load for the FRC specimens and 0P  is 
the average load for the plain concrete specimens.  
Accordingly, plots of the load increment versus the number of fibers considering 
the bottom, bottom-middle and total regions were done. The results shows that 
this relation is very good for only the bottom region and also if the bottom-middle 
area is considered. Following this results the only two-thirds of the ligament 
length is plotted.  
This choice is motivated by analyzing the crack pattern in the numerical 
simulations. Fig. 4.8 shows a gray-scale isosurfaces from a typical mesoscale 
crack opening. Each surface corresponds to a different crack opening value.  
The minimum value that was plotted (very light gray) corresponds to a crack 
opening magnitude of 2 dv . This corresponds to a situation at which a straight 
fiber, orthogonal to the crack surface, would experience full debonding (onset of 
the frictional pull-out phase). At this level of crack opening, fibers can be 
considered fully active. As it can be seen from the Fig. 4.8, the zone characterized 
by fully active fibers extends to approximately two-thirds of the ligament length 
above the notch. This indicates that the results are not perfect if the total section is 
considered. To highlight this finding, the relation among Number of Fibers and 
Load Increment due to fibers is plotted in Fig. 4.9. In this figure the Load 
Increment Due to Fiber is plotted for CMOD = 0.8mm.  
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Figure 4.9: Load increment due to fiber versus  

number of active fibers. 
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This Fig shows clearly that there is a linear relationship between the load and 
number of fiber detected, and that both the experimental data and the numerical 
results have a similar trend. Looking with depth to the figure, it is possible to note 
that one inconsistency is present. This is matched with the number of the detected 
fibers from the experimental specimens.  
For the numerical specimens, the range of detected fibers increases from (22-39) 
to (47-70) as the reported fiber volume fraction is nearly doubles from fV =0.26% 
to fV =0.45%. In the experimental tests, the increase in the number of detected 
fibers from (17-39) to (17-50) is not consistent with the near doubling of fV . For 
the higher fV  the numerically simulated specimens feature more active fibers than 
the experimental ones. This explains the discrepancy in the curves shown in the 
Fig. 4.7, while confirming the validity of the fiber-matrix interaction strategy 
adopted in this study.  
The different between the number of active fibers within the experimental and 
numerical crack ligament is due to the fact that in the numerical model a uniform 
fiber distribution was obtained, while such uniformity apparently was not 
obtained in the experimental specimens with higher fV . Based on the fact that 
fiber dispersion can be significant in terms of load carrying capacity, LDPM-F 
should be extended to include non-uniform fiber distribution and, in addition, 
experimental data should be provided and more information about the actual fiber 
distribution obtained during specimen casting should be provided, G.Cusatis and 
co-worker(2009). 
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Chapter 5 

Numerical analysis of projectile 
penetration for FRC slabs 

 
Introduction  

The goal of this chapter is to investigate the dynamic loads exerted on plain 
concrete slabs and FRC slabs by impacting objects. Examples of these problems 
include icebergs impacting floating concrete drilling platforms in the North 
Atlantic, aircraft crashing into concrete structure, missile impact. For concrete 
under quasi-static loading conditions, the failure mechanisms and constitutive 
relations for concrete under impact and high strain rate loading are not well 
known yet; partly because of the experimental and analytical difficulties involved, 
also relatively few studies of these relationships have been carried out under 
impact loading (Midness 1993). Considering the experimental tests described in 
Hanchak (1992), where impact tests where simulated using steel bullet, the 
numerical analysis in this study was developed. 
The objective of this study is to investigate the response of FRC slabs under 
impact loading, and the effect of the slab thickness, the striking velocity of the 
bullet, and the percentage fibers in the concrete mix on the slab response. The 
results will be presented in terms of the bullet striking velocity and residual 
velocity just after exiting the slab.  
The approach used herein to simulate these tests is to start by investigating the 
response of plain concrete slabs and to check if the model yields the same 
behaviour for experimental tests. The slabs were subjected to different shots to 
understand the controlling factors of the response. FRC slabs were then used and a 
parametric study was done to investigate the different parameters affecting the 
slab response. 
Thus, the ballistic limit is the fundamental parameter that will be monitored to 
understand how the slab response change accordingly, for each test.  
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Geometry of the test 

In order to simulate the impact test on the slab, two elements will be generated 
utilizing MARS; the slab and bullet elements. In this paragraph the geometry and 
the techniques used in generating both elements will be discussed.  
The slab elements are 508 mm squares with two different thicknesses, t =50.8 mm 
and 101.6 mm. The slab is modelled using LDPM-F assigned the material 
parameters previously described. Fig. 5.1 shows the layout of the slab element. 
 

50
8

508

t

 
Figure 5.1: Slab geometry realized by 

LDPM and LDPM-F 
 
The bullet is simulated in accordance with the geometry and material properties 
described in the Hanchak (1992); The bullets were implemented in the numerical 
model as a rigid body where its steel properties were assigned according to 
“Vascomax t-250 Maranging Steel”.  
The geometry of the problem was chosen such that the bullet was placed at 25.4 
mm from the slab, where the shot is positioned. Basically, this parameter doesn’t 
affect the numerical test results, but it was found a reasonable value with respect 
to the computation time. The Fig. 5.2 shows the bullet geometry. 
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Figure 5.2: Bullet geometry, realized 

 with finite element. 
 
Starting with this configuration the simulations were performed. 

Penetration test of concrete slab 

Plain concrete slabs with two different thicknesses were subjected to penetration 
tests under the bullet impact loading. The slab was subjected to impact velocity of 
up to 450 m/sec . This range of impact velocity was chosen in order to check how 
the ballistic limit, expressed as the highest strike velocity associated with zero 
residual velocity, increases with increasing t .  
The first step was to check that the rs VV −  curve presents the same trend obtained 
from experimental results. To asses this comparison, different shots were done 
using different strike velocity sV . For each velocity six numerical analyses were 
run by changing the “seed” parameters according to the reproduced heterogenic 
structure of the concrete. This approach allows to reduce the local effects caused 
by the internal structure of the concrete. The points used to create the rs VV −  
curve were obtained by averaging the values from the six point, previously 
discussed.  
The table 5.1 gives the bullets velocities used in the different shots. These lists of 
velocities fundamentally are chosen considering that the curve trend close to the 
ballistic limit is nonlinear. For this reason, large number of shots are selected in 
this zone. This region is identified as: velocity of ballistic limit- sV = 150 m/sec. 
However, it is important to highlight that this range is valid only for plain 
concrete slabs. The following table shows how the residual velocity change with 
respect to the slab thickness, where the ballistic limit is linked to. 
Based on these data, the ballistic limit was found to increase with increasing t . 
For plain concrete slabs with t = 101.6 mm the ballistic limit was found to be 
approximately 95% higher than that for slabs with t = 50.8 mm. 
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t =50.8 mm t =101.6 mm 

Vs [m/sec] Vr [m/sec] Vs [m/sec] Vr [m/sec]
30 0.00 100 -57.528 
33 0.9651 110 -5.036 
35 12.499 120 -3.871 
40 24.932 126 0.00 
48 46.726 130 0.9933 
50 51.375 140 76.747 
60 93.556 150 16.663 
75 17.585 160 24.718 
85 25.387 170 33.916 
100 38.679 180 44.314 
150 93.175 200 63.912 
250 192.48 250 112.84 
450 390.31 450 317.04 

Table 5.1: Results in term of Vs and Vr for  
t=50.8 mm and t=101.6. 

 
 
The results can be represented in a plot format as follows: 
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Figure 5.3: Striker velocity versus Residual velocity for 

plain concrete test for two thickness. 
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As can be seen, the trend of the curves is nonlinear in the zone close to the 
ballistic limit, and is linear for shots characterized by striking velocity higher than 
150m/sec. Based on this response, the tests were done using more shots in the 
limit zone to capture the best possible value for the ballistic limit. This Fig. 5.3 
also demonstrates the capability of the numerical model in capturing the concrete 
behaviour, compared to the results found in Hanchak (1992). 
Naming *

sV  the striker velocity that produces zero rV , which is the condition 
identifying the ballistic limit. It is worth noting that the residual velocity can 
become negative value if *

ss VV < . Although it seems unreasonable, this case 
represents a real situation. Basically, this curve is the ballistic limit, which is the 
point characterized by the coordinate rs VV ;* = 0 m/sec, that represents a boundary 
dividing three different behaviours.  
 

 
Figure 5.4: Numerical simulation of penetration 

 into Plain Concrete Slab. 
 
First behaviour is when *

ss VV > ; the bullet will penetrate the slab and the residual 
velocity is proportional to the impact velocity. The second behaviour can be taken 
as the ballistic limit which is the point that divides two completely different 
responses. Here the projectile impacts the slab and it stays inside the slab, in this 
case the residual velocity is equal to zero. 
The last situation possible is not shown in the Fig 5.3 . The curve in this case is 
placed in the second face. The behaviour gives residual velocity that has a 
negative value. In this case the physical phenomenon can be seen that the bullet 
can not penetrate the slab and it rebounded after collision. The slab was obviously 
damage, but its integrity is guaranteed. In this case there are also fragments in the 
other side of the slab due to the bullet impact but the number of these fragments is 
less than before.  
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According to this study it is possible to say that increasing the slab thickness 
allows to increment the ballistic limit. The effect of the thickness is kept the same 
also for high striking velocities.  
Later will be shown that this relation was not found for the FRC slabs. 

Penetration test of FRC slab 

In this section, the simulations of steel projectile impacts on FRC slabs are 
studied, for different impact velocities. The numerical simulations were 
performed using the same material parameters defined in the previous chapter. 
The slabs used for this material have the same dimensions and also two different 
thicknesses were used. Using the same approach as in plain concrete slabs, both 
the thickness values and the fiber volume fractions where changed in the different 
simulations. To investigate the effect of fibers on the impact problems, three 
different volume fraction were examined: fV = 1%, 2%, and 3%.  
 

0 100 200 300 400
0

100

200

300

400

Projectile Penetration Analysis: FRC

Vs [m/sec]

V r[m
/s

ec
]

 t=50.8 mm

 

 

Plain concrete
Vf=1%
Vf=2%
Vf=3%

 
Figure 5.5: Striker velocity versus Residual velocity for 

FRC slabs test for t = 50.8 mm. 
 
 
The Fig. 5.5 shows for FRC slab with t  = 50.8 mm the obtained trends. Here is 
also plotted the curve for plain concrete in order to point out the fibers effect on 
the penetration problem. 
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Plain concrete Vf = 1% mm 
Vs [m/sec] Vr [m/sec] Vs [m/sec] Vr [m/sec]

30 0.00 35 -0.8465 
33 0.9651 53 0.00 
35 12.499 60 0.3382 
40 24.932 80 0.8214 
48 46.726 100 11.575 
50 51.375 120 43.563 
60 93.556 125 51.261 
75 17.585 140 70.047 
85 25.387 150 83.068 
100 38.679 160 95.241 
150 93.175 170 107.17 
250 192.48 250 184.85 
450 390.31 450 400.24 

Table 5.2: Results in term of Vs and Vr for  
t=50.8 mm and different Vf. 

 
Vf = 2% mm Vf = 3% mm 

Vs [m/sec] Vr [m/sec] Vs [m/sec] Vr [m/sec]
70 -1.5256 118 0.00 
90 -2.6334 120 4.4465 
110 -2.8813 125 3.454 
125 31.467 130 15.676 
140 57.949 140 47.703 
150 71.491 150 62.875 
170 98.807 165 85.166 
190 122.51 180 105.46 
200 134.34 200 128.36 
225 160.94 215 146.46 
230 163.67 230 162.62 
250 180.85 250 177.85 
450 396.24 450 395.24 

Table 5.3: Results in term of Vs and Vr for  
t=50.8 mm and different Vf. 

 
It is worth noting that the ballistic limit increase with increasing fV . The FRC 
slabs with 1% fV  have ballistic limits that are approximately 50% higher than that 
for plain concrete. The slabs with 2% fV  showed an increase of 90 % higher than 
that for plain concrete slabs. Increasing the fibers percentage further does not 
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increase the ballistic limit. Everything can be summarized in the table 5.2. and 
5.3. 
 
The second step will be to perform the same study for t = 101.6 mm. 
The following Fig. 5.6 gives the results from all tests: 
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Figure 5.6: Striker velocity versus Residual velocity for 

FRC slabs test for t = 101.6 mm. 
 
As it can be seen, the ballistic limit increases with increasing fV . The FRC slabs 
with 2% fV  have ballistic limit that are roughly 175% and 80% higher than that 
for plain concrete, for t  = 50.8 mm and 101.6 mm, respectively. The results are 
summarized in the following table 
 
The 3% fV  simulations show, however, that an additional increasing in fiber 
content does not necessarily correspond to a significant additional increasing of 
the ballistic limit. Finally, the effect of the fibers becomes less and less significant 
for high striking velocities. This is due to the fact that at very high striking 
velocities, the penetration phenomenon is governed more by the mass of the 
system and the confined compressive resistance, rather than by the tensile 
fracturing behaviour, which is significantly influenced by the presence of the 
fibers.  
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Figure 5.7: Snapshots of the penetration event characterized 

 by the formation of entrance craters. 
 

Design of Armoring System 

 
The study that is proposed in the previous section allows to explore different 
application for concrete and FRC structure. The idea of this paragraph is to 
present some of these applications. One example is found in Cusatis and al 
(2009). Here is shown the research developed by Engineer Research Development 
Center (ERCD). They are performing research towards the innovative design of 
lightweight and low-cost armoring systems. Within this effort, experimental 
characterization of very high strength ( '

cf  = 157 MPa) FRC mix was performed 
both quasi-statically and dynamically, Akers et al (1998).  
In this work, the dynamic experiments consisted of impacts from a Fragment 
Simulating Penetrator (FSP) into FRC panels. The principle parameters that are 
considered for these tests are: FSP velocity and target panel thickness. These are 
chosen to generate extreme deformation of surface craters and perforation through 
the target. Of concern are the damage generated by the FSP to the target plates 
and the residual velocity when the projectile exits the target. 
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Figure 5.8: Snapshots of the penetration event characterized 

 by the formation of exit craters. 
 

The fibers used were steel fibers of 25.4 mm length and bent ends, and were 
randomly distributed during the casting phase. Penetration experiments were 
conducted to measure the FRC’s resistance to ballistic projectile penetration. 
Panels tested were 304.8 mm squares of 25.4, 50.8, and 76.2 mm thickness.  
 
The LDPM-F is used to reproduce these experimental tests. Some preliminary 
results are reported herein. The LDPM-F was used to model the target panels, and 
the FSP was modeled with hexahedral finite elements. The principle data for these 
simulations are now shown. A typical LDPM-F mesh for 50.8 mm thick panel 
contained approximately 20,000 fibers, 115,000 LDPM particles, and 670,000 
tetrahedral elements.  
The Figs. Show snapshots of the penetration event characterized by the formation 
of entrance and exit craters. The Fig. shows the comparison between the post-
penetration damage observed during the experiments (left) and that predicted by 
the simulation (right).  
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Figure 5.9: Comparison between the post-penetration damage 

 of experimental and numerical slabs. 
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Conclusions 

 
In this thesis the Lattice Discrete Particle Model was calibrated in order to 
reproduce the experimental tests realized in the Laps, over concrete specimens.  
In the same campaign, FRC specimens were performed and subjected to different 
tests. 
Starting from these results, the goal was to extend the LDPM to include the effect 
of randomly dispersed fibers, using these experimental results to calibrate the new 
model. To achieve this aim fiber-matrix interaction was modeled by using an 
earlier formulated micromechanical theory providing the fiber crack bridging 
force as a function of the crack opening.  
This law was coupled to the LDPM constitutive behavior at the facet level. The 
contribution of each individual fiber is taken into account by detecting the 
intersection between the fibers and the LDPM facets.  
The formulated model, named LDPM-F, is able to reproduce the fiber toughening 
mechanisms and, once calibrated, is able to predict the macroscopic fracturing 
properties as a function of different fiber volume fractions.  
The LDPM-F was used to investigate the effect of fibers on the penetration 
resistance of FRC slabs. Preliminary numerical results show that fibers influence 
significantly the penetration response for striking velocities close to the ballistic 
limit, whereas their effect tends to become less significant as striking velocity 
increases. 
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