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Capitolo 1
Introduction/Abstract

1.1 Abstract

La quantum biology (QB) è un campo di ricerca emergente che cerca di affronta-
re fenomeni quantistici non triviali all’interno dei contesti biologici dotandosi di dati
sperimentali di esplorazioni teoriche e tecniche numeriche. I sistemi biologici sono
per definizione sistemi aperti, caldi,umidi e rumorosi, e queste condizioni sono per
loro imprenscindibili; si pensa sia un sistema soggetto ad una veloce decoerenza che
sopprime ogni dinamica quantistica controllata. La QB, tramite i principi di noise
assisted transport e di antenna fononica sostiene che la presenza di un adeguato
livello di rumore ambientale aumenti l’efficienza di un network di trasporto,inoltre
se all’interno dello spettro ambientale vi sono specifici modi vibrazionali persistenti
si hanno effetti di risonanza che rigenerano la coerenza quantistica. L’interazione
ambiente-sistema è di tipo non Markoviano,non perturbativo e di forte non equi-
librio, ed il rumore non è trattato come tradizionale rumore bianco. La tecnica
numerica che per prima ha predetto la rigenerazione della coerenza all’interno di
questi network proteici è stato il TEBD, Time Evolving Block Decimation, uno
schema numerico che permette di simulare sistemi 1-D a molti corpi, caratterizzati
da interazioni di primi vicini e leggermente entangled. Tramite gli algoritmi numerici
di Orthopol l’hamiltoniana spin-bosone viene proiettata su una catena discreta 1-D,
tenendo conto degli effetti di interazione ambiente-sistema contenuti nello spettro(il
quale determina la dinamica del sistema).Infine si esegue l’evoluzione dello stato.
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6 CAPITOLO 1. INTRODUCTION/ABSTRACT

1.2 Introduction

The recently born approach towards some biological effects and their new ty-
pe of description it’s demonstrating to be quite challenging both theoretically and
experimentally. Recently the numerical approach of TEBD (Time Evolving Block
Decimation), inherited from quantum information, has assisted the idea (and so-
me experimental data) that typical quantum effects like the presence of coherence
and local entanglement play an important, even if partly still unclear, role in some
biological effects like the EET. Moreover the theoretical and numerical challenge to
interpret and modeling these phenomena, the great difficulties given from the experi-
mental data and their complex interpretation, at the light of our current knowledges
is still quite great. To begin with, biological systems are, almost by definition, open
systems, as they need to be continuously supplied with energy to maintain the out
of equilibrium state that life represents. Open systems, however, especially warm,
wet and noisy biological systems, are subject to environmental fluctuations that are
usually expected to result in fast decoherence and, as a result, the suppression of
well controlled quantum dynamics. Thus quantum phenomena may at first sight
seem unlikely to play a significant role in biology. These quantum phenomena are
not merely a by-product of the underlying quantum nature of chemical bonds but
are actually exploited by biological systems to enhance performance and achieve
novel functionalities. The extreme consequence of the basic principle of phonon
antenna have been found to underlie the fruitful interplay between vibrational en-
vironments and coherent quantum dynamics, which will provide an understanding
why optimal transport performance in proteic complex can arise at intermediate
noise levels.Let’s take two closely spaced energy levels are separated from a third
level to which excitations should be delivered. They are subject to dephasing noise
from an environment with a finite bandwidth that exhibits a maximum. A coherent
interaction between the upper two energy levels leads to dressed states |±〉 with
an energy splitting which, if matched to the maximum of the environment spectral
density, will optimize transport from the upper to the lower level. As will be shown
in the data chapter, the presence of sharp resonant peak into the spectra that, as in
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the case of EET , if it matches enough the difference in energy between two different
exciton produce a further tuning effect that will give raise to the reborn of the cohe-
rence in the system. Theoretically the most simple model is the Spin-Boson Model
(SBM) one of the simplest non-trivial models of open-system dynamics. This model
describes a single two-level system (TLS) coupled linearly to the coordinates of an
environment consisting of a continuum of harmonic oscillators and despite its sim-
plicity, this model shows a rich array of non-Markovian dynamical phenomena that
for picoseconds time become of relevant importance. This non Markovian backward
effects of interaction due to the system environment coupling are the key element
of the lasting of coherence into the system. Mapping the spin-boson model exactly
onto a 1D system permits the deployment of the time-adaptive density matrix where
renormalization group (t-DMRG), to which TEBD belongs, technique to integrate
the time evolution of the full system-environment dynamics efficiently

1.3 Biological Introduction

Following early speculations concerning the potential role of quantum physics in
biology, recent progress in science and technology has led to the rapid emergence of
a new direction of research whose aim is the experimental and theoretical explora-
tion of quantum effects in biology (see [1][2]) which are taking place on length and
timescales that allow quantum dynamics and environmental fluctuations to enter
an intricate and fruitful interplay. To begin with, biological systems are, almost by
definition, open systems, as they need to be continuously supplied with energy to
maintain the out of equilibrium state that life represents. Open systems, however,
especially warm, wet and noisy biological systems, are subject to environmental fluc-
tuations that are usually expected to result in fast decoherence and, as a result, the
suppression of well controlled quantum dynamics. Thus quantum phenomena may
at first sight seem unlikely to play a significant role in biology. There are arguments
however to counter this pessimistic view. At the level of molecular complexes and
proteins, processes that are of fundamental importance for biological function can
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be very fast (taking place within picoseconds) and well localised (extending across a
few nanometers, the size of proteins) and may therefore exhibit quantum phenomena
before the environment has had an opportunity to destroy them. Furthermore, early
work in quantum information science, for example, has shown that thermal noise in
stationary non-equilibrium systems may in fact support the existence of quantum
coherence and entanglement [3]. Hence the possible existence of significant quan-
tum dynamics is not only a question of sufficiently short length and time scales but
may also depend on a constructive interplay between a quantum dynamical system
and its environment such that quantum correlations are not simply washed out or
suppressed but may in fact be enhanced or regenerated by the interaction with the
environment. These arguments suggest that quantum effects in biology are possi-
ble at the right length- and time scales. We do expect however that in the course
of evolution Nature will have learnt to make use of quantum phenomena only if
these enable or make more efficient a useful biological function that provides an
evolutionary advantage. It is indeed well established from a quantum information
perspective that pure quantum dynamics of multi-component systems can provi-
de qualitative performance improvements over classical systems for example where
transport is concerned. This provides further support for the expectation that na-
ture has developed non-trivial quantum phenomena in the dynamics of biological
systems, possibly supported by their environment whose presence and influence is
unavoidable. These quantum phenomena are not merely a by-product of the un-
derlying quantum nature of chemical bonds but are actually exploited by biological
systems to enhance performance and achieve novel functionalities. The clear demon-
stration that Nature makes use of quantum effects would bring about the necessity
for a significant change of thinking for biologists as they would be required to grasp
quantum concepts in order to understand some fundamental biological processes. As
above stated when the biological system seems to take advantage from local quan-
tum properties and are able to handle them despite the presence of a surrounding
which, in truth, as we’ll be better explained in chapter 4, can become a resource
for the permanence and reborn of quantum properties, instead of the cause of the
death of these physical elements. Being so, we can start to think to apply technique



1.3. BIOLOGICAL INTRODUCTION 9

Figura 1.1: dimensions & correlated biological phenomena and complexity
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typical of the many body system into these kind of contests, but taking in mind that
the biological system can be treated uniquely as Open Quantum System and taking
in account of the very fast (picosecond time scale) time setting of these transient
phenomena,the perturbative approximation cannot suits our necessities.

Open Quantum Systems–Thanks to the insights of quantum physics some unre-
solved biological phenomena today can be deal with a new approach whereas the old
classical interpretations have seemed so far to fail. The energy transport mechanism
of clorosomes or into the reaction center of the leafs systems will be developed in
the next chapter (see chapter 4) , but today the quantum approach is trying to shed
light also onto other different biological phenomena. Needless to say the key com-
ponent supporting this interpretation is the presence of a environment composed of
vibration or spins that can be handled by the system in order to take advantage
in sustaining it’s quantum properties.Differently from the thermal fluctuations that
it’s exploited from classical systems in order to overcome potential barrier (a me-
chanism present in protein folding e.g.) the benefits of environment onto quantum
system is less evident and experimentally tasking to explore.

[ Structured active Environment]Structured active Environment

As repetitively claimed the environment is not a passive element and in biological
contest possess a well define,organized structure.These kinds of environment are not
a simple source of white noise and cannot be represented as a small perturbation
of any dynamics. All the informations of the environment effect are encoded inside
its spectra.The environmental spectral densities (e.g. see chapter 5) describing their
interaction with the system tend to display two principal structures:

1. a broad smooth back- ground which has a short memory time and interacts
with the system mainly through its fluctuations, i.e. causing noise,

2. sharp defined features corresponding to long-lived vibrational motion

the latter ones can lead to quasi-coherent dynamical non-equilibrium exchanges
between system and environment. The first smooth vibrational component of the
environment is due to the protein environment and noise processes caused by the
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solvents,while the sharp features originate from long lived vibration belonging to
molecules inside the protein scaffold. This reachness leads to a non-Markovian and
being the environment neither too much nor to weakly coupled compared to the
intra-systems dynamics, the total dynamics is also a non-perturbative one. Mo-
reover we must stress a fundamental concept: biological system can survive only
continuously managing an out-of-equilibrium state.

1.3.1 Electronic energy transfer in Photosyntetic complex

In physical terms an organised structured like that of the well studied FMO
antenna complex is no more than a transport network assigned to the convey of
electronic excitations (excitons) , that is composed of a set of highly absorptive
entities such bacteriochlorophyll molecules each of which may support an electronic
excitation (a Frenkel exciton). The protein scaffold role is to display them into the
space into a specific geometry,somebody has also argued that the protein scaffold
may give a further help to the transport ability of the network with little variations in
the inter-antenna distance and so modifying the dipolar strength between antennas
in order to improve the tuning between them. The full Hamiltonian describing the
exciton- vibrational interaction as well as the exciton-exciton interaction is given by
H = Hex +HI +HB where

Hex =
N∑
n=1

En|n〉〈n|+
1

2

∑
m 6=n

(|m〉〈n|+ h.c.) (1.1)

HB =
∑
i,k

}ωka†ikaik (1.2)

HI =
1

2

∑
n

(
∑
k

√
Snkωk(ank + ank†)|n〉〈n|+ h.c.) (1.3)

with |n〉 the excitation on site n,Jmn the dipolar interaction between excitations
on different sites, ank, a†nk the bosonic destruction and creation operators for kth

independent vibrational mode coupled to site n. In the end Snk is the Huang-Rhys
factor which determined the strength coupling between exciton and vibration mode.



12 CAPITOLO 1. INTRODUCTION/ABSTRACT

Figura 1.2: Two typical pictorial representation of the Fenna-Matthew-Olson complex.The cloro-
philla antenna are enveloped inside a structured ,complex, environmental scaffold (here represented
with a circular alpha sheet) that sustain the structure of the monomer.

1.3.2 Phonon-assisted electron tunneling & olfaction

Despite considerable progress concerning the under- standing of the structure of
olfactory receptors that involved in the early stages of the olfactory process, the de-
tailed mechanisms by which we are able to discriminate between the vast number of
odorants are not yet fully understood . This is emphasized by the fact that for nearly
100 years researchers have striven, with limited success, to identify principles that
allow for the prediction of smell. The standard idea behind the principles governing
the olfactory receptors is the lock-and-key principles, a standard typical approach
used also for cellular communication and membrana functions. For many receptors,
especially those binding only a very specific molecule, this appears to be a useful
and valid principle. Therefore it seems natural to adopt the very same principle also
for olfactory receptors. There are at least 100000 odorants but far fewer olfactory
receptors – several hundreds in humans, so that there is not a specific receptor for
each single odorant. The ability to differentiate such a large number of odorants
would thus require that each odorants may bind to a variety of receptors. This
would give rise to a vast number of distinct binding patterns and the subsequent
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sensation of smell, nonetheless an clear explication hasn’t been experimentally foun-
ded yet. Moreover has been noticed in recent experiments that Drosophila flies are
capable of discriminating between molecules in their hydrogenated and their deu-
terated form and, importantly, are able to generalize from deuterated molecules to
other molecules that exhibit a vibrational modes similar in frequency to the Carbon-
Deuterium stretch mode. These observations sustain the alternative theory based
on the physical-vibrational properties of the molecules rather then the standard
chemical lock-and key mechanism. The physical mechanism besides the olfactory
phenomena should be, as proposed by Luca Turin, the inelastic electron tunneling
spectroscopy, which allows to recognize the vibrational spectra of a molecula. In the
new perspective of noise assisted quantum effects the are the environmental phonon
who supported the the inelastic electron tunneling; there is on the one hand the
tunneling process of a massive particle, here the electron, and on the other hand
the fact that a vibrational mode, that is a quantized harmonic oscillator, can only
take up energy in discrete quanta proportional to the relevant vibrational frequency
ωodor. It is the second aspect that makes it possible for this process to discrimina-
te effectively between different vibrational modes and thus between the vibrational
fingerprints of different molecules.

1.3.3 Magneto reception in birds

Despitethe navigation and orientation ability of lot of mammals,birds reptiles
and amphibians is well documented, the mechanism behind this magneto sense of
lot of creatures it actually unclear. Recently behavioral experiments with birds
such as the Euro- pean robin to study avian magneto-reception have led to the
observation that the process of avian magneto- reception depends on the wavelength
of the ambient light and can be disrupted by very weak external oscillating magnetic
fields. These combined with independent experiments of magnetic field effects on
radical pair reaction at a earth magnetic fields provides evidences that support the
idea that the chemical compass (which is composed free radicals) may be involved in
magneto reception. A donor-acceptor pair is initially in its electronic ground state
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characterized by a paired electron in a singlet state. Absorption of a photon induces
an electron transfer of a single electron from the donor to the acceptor thus creating
a radical pair, that is, two molecules with an unpaired electron each. For simplicity
we assume that the electronic spin state remains unaffected in this step so that the
electrons remain in a singlet state. At this stage no magnetic field sensitivity can be
expected as the spin singlet state is rotationally symmetric and hence insensitive to
the orientation and magnitude of the external magnetic field. To break the symmetry
is the nuclear spin environment of the donor and acceptor moleculas. Due to the
distance dependence of the dipolar interaction between electron and nuclear spin the
unpaired electrons on donor and acceptor see dominantly uncorrelated interactions
which induce symmetry- breaking transitions from the singlet to the triplet manifold.
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Dynamical Simulation of 1-D

Quantum Many body Systems

2.1 Introduction

Biological systems are not so strictly bounded systems, they best suite the de-
finition of slightly entangled systems, but even if they’re not a standard strongly-
correlated systems as the usual ones utilized in condensed matter physics (e.g. Bose-
einstein condensate) as demonstrated by Vidal into they’re works it’s always possible
to perform a classical simulation of the evolution of the quantum state that descri-
bed these type of states if the computational cost it’s not exponential ; so some
specific quantum evolutions can be efficiently simulated by a classical computer ,
and therefore cannot yield an exponential computational speed-up. TEBD makes
use of a classical computer, pure-state quantum dynamics of n entangled qubits,
whenever only a restricted amount of entanglement is present in the system. Con-
sider, a pure state |Φ〉 ∈ H⊗n2 of an n-qubit system. Let A denote a subset of the n
qubits and B the rest of them. The Schmidt decomposition (SD) of |Φ〉 with respect
to the partition A:B reads

|Ψ〉 =

χA∑
α=1

λα|Φ[A]
α 〉 ⊗ |Φ[B]

α 〉 (2.1)

15
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where the vector |Φ[A]
α 〉, |Φ[B]

α 〉 is an eigenvector with eigenvalue |λα〉>0 of the re-
duced density matrix ρ[A], ρ[B] whereas the coefficient λα follows from the relation
〈Φ[A]

α |Ψ〉 = λα|Φ[B]
α . The Schmidt rank χA is a natural measure of the entanglement

between the qubits in A and those in B. Accordingly, we quantify the entanglement
of state |Ψ〉 by χ

χ ≡ max
A

χA (2.2)

that is, by the maximal Schmidt rank over all possible bi-partite splittings A:B of
the n qubits. We shall say that |Psi〉 is only slighlty entangled if χ is small. In
particular, here we are interested in sequences of states |Ψn〉 of an increasing number
n of qubits (corresponding, say, to quantum computations with increasingly large
inputs). In such a context we consider χ to be small if it grows at most polynomially
with n, χn = poly(n). If through a pure-state quantum computation χn is upper
bounded by poly(n), then the computation can be classically simulated with poly(n)
memory space and computational time, and so reproducible

2.2 1D Quantum systems

2.2.1 Definition

To begin we consider a quantum system composed of M subsystems (or sites)
each with an identical local finite d-dimensional Hilbert space Hd spanned by states
|j〉 The full state space of this system H = H⊗Md is then spanned by the product
basis of these local states |J[1,M ]〉 = |j1〉|j2〉⊗···|jM〉 and has dimension D = d which
grows exponentially withM . An arbitrary state |Ψ〉 of the system can be expanded
in this basis as

|Ψ〉 =
∑
|j[1,M ]〉

cj1,j2···jM |J[1,M ]〉 (2.3)

with D complex amplitudes cj1,j2···jM . While we have imposed a sequential labelling
to the subsystems we have not yet made any real constraint on the dimension of
the system. Indeed, the actual geometry of the system is only truly revealed by
the range and pattern (with respect to the labelling) of interactions between the



2.2. 1D QUANTUM SYSTEMS 17

underlying subsystems as determined by the Hamiltonian1 of the system. Thus,
to restrict our considerations to a genuine 1D quantum system the Hamiltonian Ĥ
governing the system must have short-ranged interactions only.

2.2.2 Basic Properties of 1D quantum systems

The knowledge of how entanglement is distributed within a 1D system permits
a parametrisation of low-lying excitation for 1D quantum system[8]. We consider
the 1D quantum Ising model with a transverse magnetic field

ĤIsing = −J
(M−1∑

i=1

σxi σ
x
i+1 + g

M∑
i=1

σzi

)
(2.4)

since it is exactly solvable. We ’ll consider two important properties of the ground
state. Firstly, the spin-spin correlations as a function of the distance between the
spins l which are of the form

Cab
l = 〈σai σbi+l〉 − 〈σai 〉〈σbi+l〉 (2.5)

Since correlation functions Cab
l vanish for all product spin states a change in their

behaviour is a signature of a corresponding change in the structure of entanglement
in the ground state. The second relevant property is the entanglement entropy SL of
a contiguous block of L spins, which is calculated from the block’s reduced density
matrix ρL = trM−L(|Ψgs〉〈Ψgl|) via the von-Neumann entropy

SL = −tr
(
ρLlog2ρL

)
(2.6)

and directly measures the amount of entanglement between the block and the rest
of the chain.

2.2.3 Schmidt decomposition

The essential mathematical tool we use to build a more efficient formulation is
the Schmidt decomposition. Starting from an arbitrary state |Ψ〉 in the Hilbert space
H of an M-site system, we begin by bipartitioning this system into two subsystems
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A and B which are composed of some subset of m and M −m sites respectively. By
using some orthonormal basis |iA〉 spanning the dm-dimensional Hilbert space HA

and similarly |jB〉spanning the dM−m dimensional Hilbert space HB this arbitrary
state can be expressed as

|Ψ〉 =
dm∑
i=1

dM−m∑
j=1

Cij|iA〉 ⊗ |jB〉 (2.7)

The amplitudes Cij of this expansion can then be interpreted as the elements of a
(dm × dM−m) matrix C. We then perform a standard operation of linear algebra,
called the singular-value-decomposition (SVD), which breaks C up into the product
C = UDV , where U and V are (dm × dm)and (dM−m × dM−m)unitary matrices
and D is a (dm × dM−m)diagonal matrix whose elements are real and non-negative
. We denote the diagonal elements of D as λα = Dαα, and the number of non-zero
λα’s as χ. This operation then brings the expansion into the form of a Schmidt
decomposition as

|Ψ〉 =

χ∑
α=1

λα

( dm∑
i=1

Uiα|i〉A
)
⊗
( dM−m∑

j=1

Vαj|j〉B
)

=

χ∑
α=1

λα|φ[A]
α 〉 ⊗ |φ[B]

α 〉 (2.8)

Since the unitary matrices U and V act solely on the corresponding subspaces, HA

andHB, respectively, they have been used to construct the orthonormal bases, called
Schmidt states, {|φ[A]

α 〉} and {|φ[A]
α }which span χ-dimensional subspaces of HA and

HB respectively. The diagonal elements λα are called the Schmidt coefficients which
we take from now on as being arranged in descending order so λα > λα + 1 and
satisfy

∑
α λ

2
α = 1, while χ is called the Schmidt rank. The reduced density matrices

for the two subsystems ρA = trB(|Ψ〉〈Ψ|)and ρB = trA(|Ψ〉〈Ψ|) then follow from the
Schmidt decomposition as

ρA =

χ∑
α=1

λ2α|φ[A]
α 〉〈φ[A]

α | ; ρB =

χ∑
α=1

λ2α|φ[B]
α 〉〈φ[B]

α | (2.9)
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which immediately demonstrates that both ρA and ρB are diagonal in their respective
Schmidt basis and have identical spectra. Important physical quantities follow from
the nature of the spectrum {λ2α}. In particular it allows entanglement between the
two subsystems to be measured via the entropy S[A|B], introduced earlier as SL,
which is computed via the Shannon entropy of spectrum

S[A|B] = −
χ∑
α=1

λ2α log2 λ
2
α (2.10)

Thus, with the total system in a pure state, entanglement between the two subsy-
stems appears as entropy in the resulting reduced density matrices.

2.3 Matrix Product Representation

The ground states of 1D systems have a several unique properties, so we now
come to the question of how to exploit these. The approach w will pursue is based
on parameterising the state in the form

|Ψ〉 =
∑
J[1,M ]

f
(
A[1]j1A[2]j2 · · · A[M ]jM

)
|J[1,M ]〉 (2.11)

where A[M ]jM are a set of d complex matrices of dimension (χm−1×χm) labelled
by the physical index jm. Each site m of the system therefore has a matrix assigned
to it dependent on which physical basis state|jm〉 it is in. The full set of amplitudes
cj1j2···jM for the state are then encoded into specific products of such matrices and
extracted by the function f(·) which maps (χ0 × χM) matrices to scalars. For this
reason Eq. (2.11) is called a matrix product representation.The exact form of the
function f(·) depends on the boundary conditions. In the case of periodic boundary
conditions (PBC) the matrix product representation of a state is

|Ψ〉 =
∑
J[1,M ]

tr
(
A[1]j1A[2]j2 · · · A[M ]jM

)
|J[1,M ]〉 (2.12)
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where the function f(·) is a conventional matrix trace. For open boundary conditions
(OBC) the expansion is

|Ψ〉 =
∑
J[1,M ]

〈
Φ0|A[1]j1A[2]j2 · · · A[M ]jM |ΦM

〉
|J[1,M ]〉 (2.13)

where |Φ0〉 and |ΦM〉 1are boundary states in the vector spaces Cχ0 and CχM , re-
spectively. In this case the function f(·) is then equivalent to the scalar-product
with these boundary states. Will make use of this properties.

2.3.1 Schmidt decomposition and canonical forms

Till now we have made no constraints on the form of the matrices A[m]jm . This
not only makes this description difficult to interpret, it also makes them harder to
handle numerically, but using the insertion of the identity (a gauge freedom) of any
non-singular square (χm× χm) matrix X along with its inverseX−1 into the matrix
product sinceA[m]jmA[m+1]jm+1 = (A[m]jmX−1)(XA[m+1]jm+1) we can solve this lack.
To begin we consider a system with OBC and split it after site k into two contiguous
blocks L = 1, · · ·, kand R = k + 1, · · ·,M . Using the gauge freedom we redefine the
matrix A[k]jk as A[k]jk → A[k]jkD−1 where D is a diagonal (χk×χk) matrix with real
elements λαk , and correspondingly introduce it into the product as

M∏
m=1

A[m]jm →
( k∏
m=1

A[m]jm
)
D
( M∏
m′=k+1

A[m′]j′m

)
(2.14)

By inserting the resolution of the identity
∑

αk
|αk〉〈αk| for the vector spaces Cχk

, on both sides of the diagonal matrix D the matrix product representation of |Ψ〉
can then be readily split up into the form

|Ψ〉 =

χk∑
alpha=1

λαk |φ[L]
αk
〉|φ[R]

αk
〉 (2.15)

1Note that for numerical calculation we can set χ0 = 1 and χM = 1 for convenience
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where the states of the blocks R and L are

|φ[L]
αk
〉 =

∑
J[1,k]

〈
Φ0|A[1]j1A[2]j2 · · · A[k]jk |αk

〉
|J[1,k]〉 (2.16)

|φ[R]
αk
〉 =

∑
J[k+1,M ]

〈
αk|A[k+1]jk+1 · · · A[M ]jM |ΦM

〉
|J[k+1,M ]〉 (2.17)

The corresponding scalar-products of these block states are

〈φ[L]
αk
|φ[L]
αk
〉 =

∑
J[1,k]

〈
αk|(A[k]jk)† · · · (A[1]j1)†|αk

〉〈
Φ0|A[1]j1 · · · A[k]jk |βk

〉
〈φ[R]

αk
|φ[R]
αk
〉 =

∑
J[k+1,M ]

〈
ΦM |(A[M ]jM )† · · · (A[k+1]jk+1)†|αk

〉〈
βk|A[k+1]jk+1 · · · A[M ]jM |ΦM

〉
The splitting of the state introduce another question : the right and left handedness
of the matrixes of our state. we introduce the notation A← and A→ to signify when
an A matrix obeys the corresponding left or righthanded orthonormality constraint.
The importance of distinguishing them will be clear in next chapters (especially for
handling numerical errors). For the boundary we impose

d∑
j1=1

(A[1]j1
← )†|Φ0〉〈Φ0|A[1]j1

← = 1 lefthanded (2.18)

d∑
jM=1

A[M ]jM
→ |ΦM〉〈φM |(A[M ]jM

→ )† = 1 righthanded (2.19)

To ensure ourseleves Eq. (2.15) to be a Schmidt decomposition of |Ψ〉 we impose
to the A matrices of the left ([L]) and right ([R])side to obey one of the following
constraints.

d∑
j1=1

(A[1]j1
← )†A[1]j1

← = 1 lefthanded (2.20)

d∑
jm=1

A[M ]jM
→ (A[M ]jM

→ )† = 1 righthanded (2.21)

If Eq. (2.20) applies to all matrices A[m]jm with 1 < m ≤ k, then the left block
states |Φ[A]

αk 〉 orthonormality can be established,by its successive use (after using the
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boundary 2.20). The same occurs for the right block states |Φ[B]
αk 〉, after applying

Eq. (2.21).Finally, we now require |Ψ〉 to be normalised, which is equivalent to
tr(D2) = 1 =

∑
αk
λ2αk = 1, allowing the diagonal matrix D to be identified with

the matrix of Schmidt coefficients
√

Λ[k].

2.4 Calculations with MPS

2.4.1 Density matrices

In order to produce any measure it’s necessary define the reduced density ope-
rators of a small subset of sites, such as ρk for a single site k or ρkl for two sites k
and l, and expectation values of the form 〈Ψ|O1 ⊗O2 · · ·OM |Ψ〉 where {Oj}Mj=1 are
operators acting in the Hillbert space Hj of site j. For convenience the description
given for the rest of this section utilises MPS with PBC and unconstrained matrices.
To begin the full density operator ρ = |Ψ〉〈Ψ| of the system is given by

ρ =
∑
J[1,M ]

∑
I[1,M ]

tr
( M∏
m=1

A[m]jm
)
tr
( M∏
m=1

A∗[m]jm
)
|J[1,M ]〉〈I[1,M ]| (2.22)

after using tr(XY Z)∗ = tr(X∗Y ∗Z∗).By applying the matrix identitiestr(X)tr(Y ) =

tr(X ⊗ Y ) = tr(Y ⊗X)and (ABC)⊗ (XY Z) =(A⊗X)(B ⊗ Y )(C ⊗ Z)we obtain
a more compact form

ρ =
∑
J[1,M ]

∑
I[1,M ]

tr
( M∏
m=1

E[m]jmim
)
|J[1,M ]〉〈I[1,M ]| (2.23)

where E[m]jmim = A[m]jm ⊗ A∗[m]im . To normalize the state we trace out all the
physical sites as tr(ρ) = 〈Ψ|Ψ〉 = tr(

∏M
m=1 I

[m]) where the contraction of the physical
indices labelling the set of matrix E[m]jmim is called the “transfer” matrix and is
denoted as I[m] =

∏d
jm=1E

[m]jmjm . By leaving out one site k from this trace we
obtain the reduced density operator

ρk =
d∑

jk=1

d∑
ik=1

tr
([ k−1∏

m=1

I [m]
]
E[k]jkik

[ M∏
m′=k+1

I∗[m
′]
])
|jm〉〈im| (2.24)
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which is reproduced in fig(2.1). Expressions for the reduced density operators of
larger numbers of sites then follow a similar form as a trace of products of appropriate
sets of I [m] and E[m]jmim matrices

〈Ψ|O1 ⊗O2 ⊗ · · ·OM |Ψ〉 = tr
( M∏
m=1

O[m]
)

(2.25)

with the observable matrices being defined as

O[m] =
d∑

jm=1

d∑
im=1

〈jm|Om|im〉E[m]jmim (2.26)

and noting that whenever Om = [1]m then O[m] = I [m].

2.4.2 Two-sites gates

Now we can move forward the essential core method of the TEBD algorithm,
precisely how to update them after applying two-site gates. To begin we need only
consider an MPS with the initial form

ρk =
∑
J[1,M ]

〈Φ0|
( k−1∏
m=1

A[m]jmjm′
←

)
Ξjkjk+1

( M∏
m′=k+2

A[m′]
)
|Φm〉|J[1,M ]〉 (2.27)

where the A matrices are orthonormalised. The central set of matrices Θjkjk+1

spanning the two sites is defined in one of three ways

Ξjkjk+1


√

Λk−1A[k]jk
→ A[k+1]jk+1

→ Left ,

A[k]jk
←
√

ΛkA[k+1]jk+1
→ Center

A[k]jk
← A[k+1]jk+1

←
√

Λk+1 Right

(2.28)

depending on where the twist in the handedness is located. Since the remaining
matrix products give orthonormalised left and right Schmidt states the state can be
expressed in the basis

|Ψ〉 =
∑

[k,k+1]

χk−1∑
αk−1=1

χk+1∑
αk+k1=1

〈αk−1|Ξjkjk+1|αk+1〉|L[k−1]
αk−1
〉|jl〉|jjk+1

〉|R[k+1]
αk+1
〉 (2.29)
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Figura 2.1: (a) The graphical representation of the full density matrixρ = |Ψ〉〈Ψ| of the system with PBC. The shaded
triangular object represents the matrices A[m]jm . (b) Tracing out all sites, aside from site m, is equivalent to contracting (joining)
all the appropriate physical indices. The remaining (uncontracted) indices im and jm are then the rows and columns of the density
matrix ρm .The shaded objects represent the matrices E[m]jmim and I[m] .
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Figura 2.2: (a) An observable O acting on one site. (b) The graphical representation of the matrix O[m] formed by contraction
with O. (c) The contraction of indices required for the computation of 〈OmOm+l〉.

The utility of this two-site-two-block form is that the physical basis of sites k and
k + 1 appear explicitly and we may now apply exactly an arbitrary transformation

G =
∑

J[k,k+1]

∑
I[k,k+1]

G
jkjk+1

ikik+1
|jk〉|ik+1〉〈ik+1|〈jk+1| (2.30)

on these two sites directly. This transformation mixes up the set of Θjkjk+1matrices
as

Θjjjk+a =
∑
ik,k+1

G
jkjk+1

ikik+1
Ξik,ik+1 (2.31)

giving the new state |Ψ′〉 = G|Ψ〉 in the same basis as

|Ψ′〉 =
∑

[k,k+1]

χk−1∑
αk−1=1

χk+1∑
αk+k1=1

〈αk−1|Θjkjk+1|αk+1〉|L[k−1]
αk−1
〉|jl〉|jjk+1

〉|R[k+1]
αk+1
〉 (2.32)

which is shown in Fig. (a). In a similar way to Ξjkjk+1 the new quantity Θjkjk+1 is
a set of d2(χk−1 × χk+1) matrices indexed by the two physical indices jk and jk+1.
This matrix represents a set of anomalous two-site matrices in our MPS. To bring
the decomposition back into a standard MPS form we need to factorise Θjkjk+1 . A
technical description of this procedure can be found in the mathematical extra.
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Capitolo 3

Time Evolving Block Decimation

As stated at the beginning the biological system are slightly entangled one so we
only consider Hamiltonians with nearest neighbouring interactions,therefor we have
an explicit 1D geometry. The most general form of Hamiltonian we shall consider is

For OBC it is convenient both for notation and for calculations to reformulate
H(t) in terms of time-dependent two-site operators as

Hj,j+1 =
1

2

k1∑
ν=1

cνj (t)h
ν
j +

k2∑
ν=1

cνj (t)h
ν
j,j+1+

1

2

k1∑
ν=1

cνj+1(t)hj+1ν 1 ≤ j ≤M−1 (3.1)

which are defined symmetrically about site j, aside from at the boundaries where

H1,2(t) =

k1∑
ν=1

cνj (t)h
ν
j +

k2∑
ν=1

cνj (t)h
ν
j,j+1 +

1

2

k1∑
ν=1

cνj+1(t)hj+1ν

HM−1,M(t) =

k1∑
ν=1

cνj (t)h
ν
j +

k2∑
ν=1

cνj (t)h
ν
j,j+1 +

1

2

k1∑
ν=1

cνj+1(t)hj+1ν

giving in total H(t) =
∑M−1

j=1 Hj,j+1(t). We search for the dynamical evolution
of a system given by the integration of dimensionless time-dependent Schrodinger
equation ıδt|Ψ(t)〉 = H(t)|Ψ〉. For the case of a time-independent Hamiltonian H

this equation admits a formal solution |Ψ(t)〉 = exp(−iHt) |Ψ〉. Numerical calculations
proceed by discretising the total time T into T/δt steps where δt ≤ 1 as tn = (n−1)δt

with n = (1, · · ·, T/δt), obtaining the time-evolution operatorU(t) as the product

27
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U(t) =
∏t

n=1 exp(−iH(tn)δt) connecting the initial state|Ψ〉 to the state |Ψ(t)〉. The
computation of Un is further aided by the nearest neighbour hypothesis,the latter
enables H(tn) to be summed up into two operators H(tn) = F +G where

F =
∑
oddj

Hj,j+1(tn) and G =
∑

evenj+1

Hj,j+1(tn) (3.2)

leaving Un = exp[−i(F + G)δt]. Since no two terms within either F or G involve
the same sites they all commute amongst themselves. Given that the exponential
of each operators alone can be calculated exactly as the product of unitaries which
act exclusively on two neighbouring sites

e−iFδt =
∏
oddj

e−iHj,j+1(tn)δt and e−iGδt =
∏
evenj

e−iHj,j+1(tn)δt (3.3)

The complications in computing the unitary Un fully arise from the fact that F
and G do not in general commute. Thanks the Suzuki-Trotter expansion we ensure
the preservation of the norm of the state and we can overcome the problem of the
commutation of the exponential of our evolution operators.

The simplest and more common expansion follows by assuming F and G commu-
te and constitutes a first-order expansion of Un in δt as Un = exp(−iFδt)exp(−iGδt)+
O(δt2). If instead we define the symmetric product

s(F,G, y) = e−
1
2
iFye−iGye−

1
2
iFy (3.4)

then a second-order expansion follows as Un = s(F,G, δt) + O(δtt3). Important to
set: Trotter error is not the only source of error and in most cases is actually the
least important. For this reason using higher-order expansions can even become
counter-productive.

3.0.3 Suzuki-Trotter sweeps

The suzuki Trotter decomposition is performed applying a two-site gate to an
even and odd sites. In order to start the ST sweep and apply the gate operator we
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have to ensure that the handedness of all matrices A of the initial state is the same,
for example left-handed : A[1]j1

← A[2]j2
← · · ·A[M ]jM

← . Given that we can apply to the two
sites (eq 2.28,2.29) the gate of the formula 2.30 in order to compute the n− th time
step evolution of Fj,j+1 or Gj+1,j+2. Problem lies in the fact that after applying the
unitary gate the updated matrix A[k] posses the correct handedness (←)while the
A[k + 1] doesn’t(→), but it can be flipped to A′[k+1]

← via a right division by
√

Λ[k+1]

and a left multiplication by
√

Λ[k]. Despite it’s facility, this operation it’s numerical
unstable being the value of

√
Λ[k+1] very small. This means that a tentative of higher

our precision in the simulation raising the value of χ, if excessive, will enhance the
numerical instability. In every case this problem can be solved by applying the gates
in sequential zip.For example, in the case of a second-order decomposition acting
on a state which is entirely lefthanded we apply the gates within exp(−iFδt) from
left-to-right as

e−
1
2
iFδt = e−

1
2
iH1,2(tn)δt(12,3)e

− 1
2
iH3,4(tn)δt · (3.5)

·(14,5) · · · (1M−2,M−1)e−
1
2
iHM−1,M (tn)δt

where explicit identity operations k,k+1 have been inserted in between the usual
unitaries. The purpose of the identity operations is to shift the twist in handedness
one site to the right making the decomposition compatible for the next gate. We then
do precisely the same, but in the opposite direction, when applying exp(−iGδt), and
finally after applying the last zip exp(−iFδt) our MPS will be entirely righthanded.
We remark here that this kind of zipping is very close to the finite-system sweeps
used in DMRG.

3.1 Errors in TEBD

3.1.1 Trotter Error

For any single time-step δt the Trotter error εδt will be of order εδt ≈ (δt)p+1 for
a pth- order expansion. To evolve the state to some final time T we need to perform
T/δt time steps, and denote the state after these steps as |Ψst〉. If the exact time-
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evolved state is |Ψ(T )〉 then the Suzuki-Trotter overlap error is
εst = 1 − |〈Ψ(T )|Ψst〉 |. It has been found from numerical evidence [9] that εst ≈
MT (δt)p and therefore scales linearly with the overall evolution time T and the
system size M. This error is controlled entirely by δt and so requires δt << 1.

3.1.2 Truncation error

The most important source of error in TEBD is the truncation of this Sch-
midt decomposition to include only the χ Schmidt states with the largest Sch-
midt coefficients. This source of errors derive from the truncation approxima-
tion of the state |Ψ〉 = |Ψtr〉 − |Ψres〉, with |Ψtr〉 =

∑χ
αm
λ
[m]
αm |L

[m]
αm〉|R

[m]
αm〉 and

|Ψ⊥〉 =
∑

αm>χ
λ
[m]
αm|L

[m]
αm〉|R

[m]
αm〉.

At the first step we have εm = 1 − |〈Ψ|Ψres〉| =
∑

αm>χ
(λ

[m]
αm)2. At the next

step we will decompose the state |Ψres〉 in the same way obtaining a total error
εm+1 = 1− |〈Ψ|Ψ′res〉 = 1− (1− εm+1 − εm). So moving along all the sites the final
truncation error will be εtr =

∑M−1
m=1 εm which is additive in the individual truncation

errors. In practise the degradation of the norm of the MPS is a good measure of
the truncation error and we might tolerate it becoming 10−6.

The runaway time was empirically found to increase with χ, but decreases with
the number of two- site gates applied and with M. Obtaining an accurate simulation
for a desired time therefore requires a careful balancing of δt and the order of the
Suzuki-Trotter expansion.

Here a graph of the effects of the runaway time effects for an application of 1000
two-site gate application

Here we can see the direct effect of the refinement of the value of our basis trough
the rising of the χ parameter inside our simulation. As stated above a low value of
the Schmidt basis will give raise to numerical instability for a very low run away
time. A χ value of 30 just show to better preserve the norm (and so the dynamics)
from great instability.
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chi5-20-30.png

Figura 3.1: Populations for AR spectra + delta 180cm−1; rising up of population caused by
truncation error at a valuable runaway time for small χ and different effects on the dynamics by
the truncation error
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Capitolo 4

Mapping between system-reservoir quantum models and

semi-infinite discrete chains

4.1 Introduction

All quantum systems encountered in nature experience random perturbations
due to their coupling to degrees of freedom of their local environments. Information
about these degrees of freedom are not normally accessible, and to correctly predict
the results of experiments, these degrees of freedom must be averaged over. This
averaging introduces qualitatively new features into the otherwise unitary dynamics
of the quantum system, and typically induces an effectively irreversible dynamics
which drives the system towards an equilibrium with its environment.For quantum
systems, this evolution towards equilibrium not only involves energy transfer to the
environment, but can also cause the loss of coherence in the system state, often
on a much faster timescale than the energy relaxation. This latter process of de-
coherence destroys quantum mechanical effects arising from the existence of phase
coherence in the state of the system, and must be a part of the total correct dyna-
mics of every phenomena description.. The most simple model is the Spin-Boson
Model (SBM) one of the simplest non-trivial models of open-system dynamics. This
model describes a single two-level system (TLS) coupled linearly to the coordinates
of an environment consisting of a continuum of harmonic oscillators and despite its
simplicity, this model shows a rich array of non-Markovian dynamical phenomena

33
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that for so short time events can became of relevant importance. In the case of
Quantum Biology this non Markovian backward effects of interaction due to the
system environment coupling are the key element of the lasting of coherence into
the system (see next chapter).The action of the orthogonal polynomials is to pro-
ject by unitary transformation the Hamiltonian into the normal vibrational modes
coordinates and produce the 1D chain useful for our dynamical simulation without
any need of discretisation.

Figura 4.1: pictorial representation of the back scattering effect behind the reborn of coherence
into the system for an inhomogenous chain

As depicted in fig (3.1) the type of chain product from the projection operator
isn’t translationally invariant, in this way optical effect of reflection can take place
and produce back scattering energy that will come back into the system. Subsystem
initially injects excitations (shown as wave packets) into inhomogenous region of
the chain. Scattering from inhomogeneity causes back action of excitations on the
system at later times and leads to memory effects and non-Markovian subsystem
dynamics. At long times (yellow dots), after multiple scattering the energy landscape
smooths , excitations penetrate into the homogenous region and propagate away
from the system without backscattering. This leads to irreversible and Markovian
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excitation absorption by the environment. The inhomogeneity of the chain enter into
the local hamiltonian modifying the energy local parameters of the system through
a sort of

4.1.1 System Reservoir structure

The observables in an open quantum system are affected by the unavoidable
interaction with the environment. This environment may be described by an infinite
number (often called a reservoir) of bosonic or femionic modes labeled by some real
number. The internal dynamics of the reservoir is given by some Hamiltonian of the
form

Hres =

∫ xmax

0

dxg(x)a†xax (4.1)

where in a physical context x could represent some continuous real variable such as
the momentum of each mode, and xmax the maximum value of it which is present
in the reservoir (it could be infinity). In this picture g(x) represents the dispersion
relation of the reservoir which relates the oscillator frequency to the variable x. The
creation and annihilation operators satisfy the continuum bosonic [ax, a

†
y] = δ(x−y)

or fermionic {ax, a†y} = δ(x?y) commutation rules. We assume that the frequencies
g(x) and momenta x of the reservoir are bounded. The internal dynamics of the
open quantum system are described by a un- specified local Hamiltonian operator
Hloc and we assume that the interaction between the system and the reservoir is
given by a linear coupling

v =

∫ xmax

0

dhh(x)Â(a†xax) (4.2)

where Â is The internal dynamics of the open quantum system are described by a
un- specified local Hamiltonian operator Hloc and we assume that the interaction
between the system and the reservoir is given by a linear coupling.

H = Hloc +Hres + V = Hloc +

∫ xmax

0

dxg(x)a†xax +

∫ xmax

0

dxh(x)Â(a†x + ax) (4.3)

It has been shown that the dynamics induced in the quantum system by its inte-
raction with the reservoir is completely determined by a positive function of the
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energy (or frequency ω) of the oscillators called the spectral density J(ω). For the
continuum model of the reservoir we are considering, this function is given by

J(ω) = πh2[g−1(ω)]
dg−1((ω)

dω
(4.4)

where g−1[g(x)] = g[g−1(x)] = x. Physically dg−1((ω)
dω

can be interpreted as dω the
number of quanta with frequencies between ω and ω + δω as δω → 0 it represents
the density of states of the reservoir in frequency space. The spectral function thus
describes the overall strength of the interaction of the system with the reservoir
modes of frequency ω. This physical introduction motivate the next mathematical
definition.
Definition. It’s defined as spectral density of a reservoir as a real non- negative
and integrable function J(ω) inside of its (real positive) domain, which could be
the entire half-line ω ∈ [0,∞). Of course, given only a spectral density J(ω)), the
dispersion relation g(x) and the coupling function h(x) are not uniquely defined. We
shall make use of this freedom to implement a particularly simple transformation of
the bosonic modes, and we will chose the dispersion function to be linear g(x) = gx.
Our main theorem is
Theorem 3.1 A system linearly coupled with a reservoir characterized by a spectral
density J(ω) is unitarily equivalent to semi-infinite chain with only nearest-neighbors
interactions, where the system only couples to the first site in the chain. In other
words, there exist an unitary operator Un(x) such that the countably infinite set of
new operators

b†n =

∫ xmax

0

dxUn(x)a†x

satisfy the corresponding commutation relations [bn, b
†
m] = δnm for bosons, and

{bn, b†m} = δnm for fermions, with transformed Hamiltonian

H ′ =

∫ xmax

0

dxUn(x)H = Hloc+c0Â(b0+b†0)+
∞∑
n=0

ωnb
†
nbn+tnb

†
n+1bn+tb†nbn+1 (4.5)

where c0, tn, ωn are real constants.
Proof. The proof is by construction. Since J(ω) is positive, h(x) is real, this defines
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the measure dµ(x) = h2(x)dx. Then write

Un(x) = h(x)p̃(x) = h(x)
πn
||πn||

(x) (4.6)

where p̃n(x) are some set of orthonormal polynomials with respect to the measure
dµ(x) = h2(x)dx with support on [0, xmax]. Then it is clear that Un(x) is unitary
(actually orthogonal as it is also a real transformation) in the sense of∫ xmax

0

dxUn(x)U?
m(x) =

∫ xmax

0

dxUn(x = Um(x) =

∫ xmax

0

p̃n(x)p̃m(x) = δnm (4.7)

so the inverse transformation is just

a†x =
∑
n

Un(x)b†n (4.8)

Moreover for bosons

[bn, b
†
m] =

∫ xmax

0

∫ xmax

0

dxdx′Un(x)Um(x′)[ax, ax′†]

=

∫ xmax

0

∫ xmax

0

dxdx′Un(x)Um(x′)δ(x− x′)

=

∫ xmax

0

dxUn(x)Um(x) = δnm

and similarly it is proved that {bn, bdaggerm} = δnm for fermions. It remains to de-
termine the structure of the transformed Hamiltonian H, note that V is transformed
like:

V = Â
∑
n

∫ xmax

0

dxh(x)Un(x)(bn + b†n) = Â
∑
n

∫ xmax

0

dxh2(x)
πn(x)

||πn||
(bn + b†n)

since for monic polynomials π0(x) = 1 we find

V = Â
∑
n

∫ xmax

0

dxh2(x)
πn(x)

||πn||
(bn + b†n)

= Â
∑
n

||πn||2σn0
||πn||

(bn + b†n) = ||π0||Â(b0 + b†0)
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so c0 = ||π0||. For the Hres term, note that with the choice of lineaer dispersion
function g(x) = gx for the spectral density J(ω) one obtains

Hres =
∑
n,m

∫ xmax

0

dxg(x)Un(x)Um(x)b†nbm

=
∑
n,m

∫ xmax

0

dxh2(x)g(x)p̃n(x)p̃m(x)b†nbm

= g
∑
n,m

∫ xmax

0

dxxh2(x)p̃n(x)p̃m(x)b†nbm

With the recurrence relation we substitute the value of xp̃n(x) in the above integral
to find

H ′res = g
∑
n,m

∫ xmax

0

dxh2(x)
[ 1

Cn
p̃n+1(x) +

An
Cn

p̃n(x) +
Bn

Cn
p̃n−1(x)

]
p̃m(x)b†nbm (4.9)

then orthonormality yields

H ′res = g
∑
n

1

Cn
b†nbn+1 +

An
Cn

b†bbn +
bn+1

Cn+1

b†n+1bn

= g
∑
n

√
βn+1b

†
nbn+1 + αb†nbn +

√
βn+1b

†
n+1bn

where we have used the relation between monic and orthogonal recurrence coeffi-
cients. So finally we have

ωn = gαn

tn = g
√
βn+1

4.1.2 Applications

As a prototypical example let us consider the spin-boson Hamiltonian which
describes the interaction of a TLS with an environment of harmonic oscillators

HSB = Hloc +

∫ xMAX

0

dxg(x)a†xax +
1

2
σ3

∫ xMAX

0

dxh(x)(a†xax) (4.10)

where ax are bosonic operators, and the local Hamiltonina of the spin is ginve by

hloc =
1

2
ησ1 +

1

2
εσ3 (4.11)
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where σ1, σ2 are the corresponding Pauli matrices. Firstly we will consider spectral
functions bounded by a hard cut-off at an energy ωc, hence the cut-off xmax =

g?1(ωc) appearing in the integrals in, which are usually parameterized as

J(ω) = 2παω1−s
c ωs(ω − ωc) (4.12)

where α is the dimensionless coupling strength of the system-bath interaction and
θ(ω − ωc) denotes the Heaviside step function. In the SBM literature, spectral
functions with s > 1 are referred to as super-ohmic, s = 1 as Ohmic, and s < 1 as
sub-Ohmic. According to and our convention in taking linear dispersion relations,
this continuous spectral function is related to the Hamiltonian parameters by

g(x) = ωcx h(x) =
√

2αωcx
s/2 (4.13)

With this choice of g(x) and h(x), xmax = 1 and absorbing the common factor ωc
√

2α

in the system operator A = ωc
√

2ασ3, the following matrix elements generate the
mapping onto the chain

Un = xs/2P̄ (0,s)
n (x) (4.14)

here P̄ (0,s)
n = P

(0,s)(x)N−1
n

n is a (normalized) shifted Jacobi polynomial (from support [-
1,1] to support [0,1]) . The straight calculation can can be found in the mathematical
extras What we care in our simulation is the final result

ωn = ωc(2n+ 1 + s) (4.15)

tn = ωc
√

(n+ 1)(n+ s+ 1) (4.16)

that once introduced into our simulation performed the variation in local site energies
and hopping along the chain of normal modes. In this way we reproduce the local site
variation energy of the (quantum) system and the tunneling parameters along the
chain to reproduce the dynamics of the OQS. Obviously in a simulation the setting of
parameters can affect enormously the final result, and in order to correctly describe
the dynamic simulation of a system we must be aware of these effects. The two most



40CAPITOLO 4. MAPPING BETWEEN SYSTEM-RESERVOIR & SEMI-INFINITE DISCRETE CHAINS

Figura 4.2: backward propagation effects on the population dynamcs on sites 1 of the clorophilla
antenna of theBb820 RC, in the initial state as exciton state, due to different chain lenght. Initial
valueχ= 30, number of bosons=9

significant one are the variation of the total number of boson parameter applied in
our simulation and the total length of the chain we used in our modellisation.

In figure 3.1 we can see the great difference in the dynamics behaviours between
too much short chains (15 and 20 sites) which produce unavoidable border effect
(that resemble a lot the numerical instability of figure 2.3 for short appearances of
the runaway time) and longer chains (we can see great difference just starting with
a chain of length 100).

while here in fig 3.3 we can see how little variation doesn’t produce any particular
difference for certain time evolution. Usually the greater the number of projection
the better, if not the only problem connected are numerical one, in the maintenance
of numerical stability in the ORTHOPOL connected with the use of Stieltjes integral
in order to produce our desiderata new energies and tunnelings values. So we always
must make the correct compromise between parameters’ value inside the numerical



4.1. INTRODUCTION 41

Figura 4.3: backward propagation effects on the population on sites 1 of the clorophilla antenna
of theBb820 RC for comparable length chain.initial valueχ= 30, number of bosons=9

possibilities ours tools permit us. A shorter chain will not be affected from numerical
instability connected to the Stieltjes integrations but will suffer of great border
effects, while in the other case the dynamics will not suffer borders effects but
should be wrecked from previous instabilities.

Here we can check the numerical difference between physical systems treated
with a different number of bosons, but with same χ and length of 200
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Figura 4.4: dynamics with different boson number for the modellisation of the phonon
environment.χ=30 chain lenght of 200



Capitolo 5

Photosynthesis network transport

5.1 The phonon antenna mechanism

The extreme consequence of the basic principle of phonon antenna have been
found to underlie the fruitful interplay between vibrational environments and cohe-
rent quantum dynamics, which will provide an understanding why optimal transport
performance in proteic complex can arise at intermediate noise levels. As example
let’s use a 3 sites network where site 2 whose excitation energy, position and orienta-
tion, and hence dipolar interaction strength with sites 1 and 3 we are free to choose.
We assume that site 3 provides the zero of excitation energy, the question that we
would like to answer concerns the optimal choice of excitation energy, position and
orientation of site 2 or in other words the optimal choice of the excitation energy of
site 2 and its dipolar coupling strengths to sites 1 and 3 As such, this question cannot
be answered unambiguously as we are missing a crucial piece of information, namely
that of the structure of the environmental fluctuations. This structure is characteri-
zed by the spectral density of the environment which is a combination of the density
of environmental modes and their individual coupling strength to the system. Let’s
assume that the environmental spectral density has a single maximum , roughly as
depicted in fig.(4.1). We finds that the optimal position of site 2 is close to site 1
such that it exhibits a strong coherent dipolar interaction and close in excitation

43
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energy. these have been found by numerical results, now we can rationalize its origin
and thereby arrive at a very useful design principle of phonon antenna. Indeed, the

Figura 5.1: In the upper figure, two closely spaced energy levels are separated from a third level to which excitations should be
delivered. They are subject to dephasing noise from an environment with a finite bandwidth that exhibits a maximum. A coherent
interaction between the upper two energy levels leads to dressed states |±〉 with an energy splitting which, if matched to the maximum
of the environment spectral density, will optimize transport from the upper to the lower level. Hence the dressed states act as an
antenna to harvest environmental fluctuations to enhance transport.

strong coherent dipolar interaction between sites 1 and 2 suggests that we move to
a new basis made up of the eigenstates of the coherent part of the dynamics of these
two sites, that is the excitonic states of that system (for quantum opticians, the dres-
sed state). This change of picture leads us to rewrite the Hamiltonian that describes
the system-environment interactionHI = 1

2

∑
n

(∑
h

√
Snhωk(anh + a†nh|n〉〈n| in the

excitonic basis of eigenstates |en〉 of eq. (1), so that |i〉 =
∑

nC
i
n|en〉 and the coupling

terms

HI =
1

2

∑
n,m

(Qn,m|en〉〈em|+ h.c.) (5.1)

where

Qn,m =
∑
i,k

√
SkwkC

i
nC

i
m(aik + a†ik) (5.2)

This leads us to two insights. Firstly, in the exciton basis the action of the depha-
sing noise now leads to transitions between excitons, that is amplitude noise, which
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facilitates transport towards the lower of the two exciton states. Secondly, the two
excitons (dressed states) are separated by an energy difference that is related to
the coherent dipolar coupling strength and the energy difference of sites 1 and 2.
The dominant contribution to the transition between these excitons (dressed states)
arises from those environmental modes whose frequency closely matches the energy
difference between dressed states. Indeed, it was found that the physically impor-
tant relaxation pathway between sites 1 and 3 is mediated by pigments which are
spectrally and spatially positioned by the protein to efficiently sample the spectral
function of the proteins fluctuations

5.1.1 Non equilibrium long lived coherences

Experimental observations employing ultrafast 2-D spectroscopy on various pho-
tosynthetic complexes exhibited long-lived oscillatory features which were interpre-
ted as evidence for long-lived electronic coherence in the systems under investigation
[11][10]. Under this hypothesis electronic coherence appear to exhibit lifetimes that
can reach the picosecond range thus exceeding expectations from condensed matter
systems at least tenfold

5.1.2 Last overview on EET principles

The discovery of long-lived coherence between the singly excited electronic states
of photosynthetic antenna complexes has necessitated both a rethinking of energy
transfer in biological systems and, more broadly, a reconsideration of the role of the
surrounding environment and of coherent dynamics in the condensed phase. The-
se “persistent coherences” unexpectedly outlive coherences between the constituent
singly excited states and the electronic ground state. An ever-growing body of work
demonstrates the persistence of electronic coherence during energy transfer in a
multitude of antenna complexes across broad phylogenic boundaries , and coheren-
ce within the Fenna-Matthews-Olson complex (FMO) has been shown to be robust
to vibronic and structural modifications . This remarkable generality suggests that
persistent electronic coherences may be a general property of any system of dense-
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ly packed chromophores arranged in a nearly static relative geometry and coupled
to a common bath. Despite numerous observations of persistent electronic cohe-
rence in photosynthetic systems, no clear microscopic mechanism for the survival
of these coherences has been experimentally verified. Theoretical efforts to dissect
the atomistic mechanism are complicated by the size and complexity of photosyn-
thetic light-harvesting systems. Consequently, many competing models have been
introduced to explain the observed quantum beating. These models invoke a broad
range of physical mechanisms, including vibrational coherences , vibronic excitons,
nonadiabatic couplings , correlated protein motion , nonsecular coupling between
coherence and population , and long-range dielectric fluctuations [10]

The higher lying electronic levels, representing the various exciton eigenstates
of the electronic system, are not excited even at room temperature as the excita-
tion energy is in the range of eV. The initial (fast) injection of an exciton, either
coherently or incoherently, populates one of the exciton states of the system and
creates a sudden force on the electrons and nuclei and thus change their equilibrium
positions . Now the environment will start to react to these forces which initia-
tes transient oscillations of the modes at approximately their natural frequency wk.
The continuous background of the spectral density will relax very rapidly into the
new equilibrium state as it contains a broad range of frequencies and thus posses-
ses a very short correlation time. The well-defined long-lived vibrational mode will
oscillate for a considerable time (which can be up to several picoseconds) and will
interact with the electronic system. This in turn leads to oscillations between diffe-
rent exciton states. We make an observation: these oscillations will have the largest
amplitude between those exciton states whose energy difference is nearly resonant
with the frequency of the vibrational mode.
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5.2 TEBD simulation for Dimeric system

5.2.1 Introduction

We have to keep in mind that one of the key messages of the preceding sections is
the special role of the interplay between the quantum dynamics of a system and its
environment, in particular when this environment does not merely represent white
noise but possesses structure, and this is a typical characteristic of the biological
type of environment. Furthermore, it has become clear that the optimal operating
regime for quantum bio dynamics tends to favour parameter ranges in which the
interaction between system components is comparable to the interaction of these
system components and their environment. Both features are not well modeled by
the traditional perturbative treatments that lead to master equations of Lindblad
, Redfield or modified Red-field type . Indeed the essential importance of the non-
Markovian nature of the system-environment interaction calls for the development
of non-perturbative methods that can accurately, certifiably and efficiently model
the resulting dynamics. From a numerical point of view it’s important to remember
that also for a standard model of open quantum system, as the just well commented
spin-boson system, the dynamic induced in the quantum system it’s strictly corre-
lated to the structure of the distribution to which is coupled, which modellise all
the information about the interaction between the quantum system and the envi-
ronment. For the continuum model of the reservoire that we are considering i.e.
choosing g(x) = x this function is given by

J(ω) = πh2(ω) (5.3)

In other words the spectral function thus describes the overall strength of the inte-
raction of the system with the reservoir modes of frequency ω. Despite it’s relative
simplicity, the dynamic of this model it’s not exactly solveable and so we have to
resort to numerical methods. This is even more true when the environmental spec-
tral function exhibits considerable structure or when the coupling strength between
system and environment lies in a non perturbative regime. This is exactly the set of
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hypothesis we are moving on with our modelization, and even more. WE must re-
membering the reach and well structured environment of a biological system coupled
to a quantum system that lies inevitably in a non perturbative regime, however even
if the weighth2(x) is a complicated function, families of orthogonal polynomials can
be found by using very stable numerical algorithms such as the ORTHOPOL pac-
kage; in this way we are able to obtain a 1D system.This is the key that permit the
deployment of the time-adaptive density matrix renormalization group (t-DMRG)
technique to integrate the time evolution of the full system-environment dynamics
efficiently.So now thank the interplay of this two methods we are able to couple
our system (in this case our dimeric system) to environment which show different
properties onto each site or adding also the local static-Gaussian- disorder in the
site energies of the dimer,another quantity of of a certain relevance being used in
the calculation for the optical spectra absorption of these proteic systems citeAR.

All this element, thanks to possibility to obtain a numerical precise simulation
of the dynamics, concur to the simulation of a more and more realistic biological
environment able to take advantage of it’s quantum local properties.

5.2.2 Model parameters

All the data and simulations have been performed onto the modelisation of a
proteic dimer (synthetic one or not). The quantum initial state used as initial state
of the antenna sistem in the dimer was 1√

2

(
|e〉1 + |e〉2

)
(exciton state). The study

on our dimeric system has been carried on zero temperature effect, so it means
no thermal state is present, only the effect of the environmental spectral function
have been taken into account into the simulations.The time scale is expressed 1/ 5.3
picosecond.

5.2.3 The Adolf-Rengel optical spectral

As stated above all the information of the interaction between the reservoire
phonon bath and the local quantum system lies into the spectral density function
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J(ω) of the exciton-vibrational coupling defined as

J(ω) =
∑
ε

gεδ(ω − ωε) (5.4)

which is also a key quantity in the expressions for optical spectra and the rate
constants for exciton relaxation discussed below. IN the standard theory and cal-
culation the value J(ω) is assumed independent on the site index m; i.e., the same
local modulation of site energies by the vibrational dynamics is assumed. As we
will see through TEBD simulation it’s possible to introduce the effect of different
environment for each site, giving raise so to a broader variety of dynamics.

We will not undergo all the calculations developed to find the analytical form of
the optical spectra, but we will check ourselves to the peculiar aspect of it.

The optical linear absorption is obtained from the dipole-dipole correlation func-
tion as explained in detail in Renger and Marcus

α(ω) ∝
〈∑

M

|µM |2DM(ω)
〉
dis

(5.5)

where DM(ω) is the lineshape function and 〈 〉dis the denotes an average over
static disorder in site energies. A Gaussian distribution function of width (FWHM)
∆dis is assumed for these energies. The lineshape function DM(ω) was obtained
using a non-Markovian density matrix approach [13] . It is given as

DM(ω) = Re

∫ ∞
0

dteı(ω−ω̂)teGM (t)−GM (0)et/τ (5.6)

The value DM(ω) contains both vibrational sidebands GM(t) and the lifetime
broadening by the dephasing time τM .Both these quantities are related to J(ω).
OF importance is the quantity GM(t) which is defined as

G(t) =

∫ ∞
0

dw[(1 + n(ω)J(ω)e−ıωt + n(ω)J(ω)eıωt] (5.7)

Where n(ω) is the mean number of vibrational quanta with energy ~ω that are
excited at given temperature T.
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The ω̂ source is shifted from the purely electronic transition frequency ωM due
to the exciton-vibrational coupling

ω̂ = ωM − γMM
Eλ
~

+
∑
N 6=M

γMNC
Im(ωMN) (5.8)

Here above appears another important quantities, the local reorganization energy
Eλ defined as

Eλ = ~
∫ ∞
0

dωωJ(ω) (5.9)

In the present model, the spectral density J(ω) contains both a broad low fre-
quency contribution S0J0(ω) by the protein vibrations with Huang-Rhys factor S0

and a single effective high-energy vibrational mode of the pigments with Huang-Rhys
factor SH :

J(ω) = S0J0(ω) + SHδ(ω − ωH) (5.10)

For the normalized low-frequency function J0(ω) we assume that it has the same
form as the spectral density, extracted recently [13] from 1.6 oK fluorescence li-
ne narrowing spectra of B777-complexes. The final lineshape function DM(ω) so
become

DM(ω) = e−SHγMMRe

∫ ∞
0

dt
∞∑
k=0

(γMMSH)k

k!
xeı(ω− ˆωM+)teG

0
M (t)−G0

M (0)e−t/τM (5.11)

We obtained the typical figure.With Orthopol has been reproduced the shape of the
AR figure summing the two part of the (5.2)

With TEBD it’s also possible to handle the term ω of the purely electronic
transition frequencies(or energies), of the final function DM(ω) , introducing a
supplementary source of Gaussian static disorder into the local site energies.

Taking in account all the previous statements about structure environment and
phonon antenna tuned on resonant peaks , we can add sharp delta function onto
this standard function in order to take in account for all the resonant, local, typical
phenomena. This is a first ,basic,example of different environments that act on
different sites.
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Figura 5.2: Normalised standard Adolf Rengel distribution without delta. The delta peak
introduced for the simulations appear at point 0.18 and 0.36

5.2.4 the recoherence and the fundamental role of non-equilibrium

vibrational structure

The phonon antenna mechanism is at the basis of the fundamental role of the
reborn of coherence inside the quantum local site of our system. Locally the system
taking advantage of non equilibrium quantum properties in the pico second time
scale when the presence of a structured environment produce peaked value for the
phonon energies which are resonant (approximately of the same value) with the
difference in energy of two exciton (in the case of the dimer, the only two present).

As we can see the presence of the noisy environment does not destroy totally
the coherence into the system, but the sharp resonant peak permits the continuous
regeneration of that coherence into the sites population for a very longer time. Both
values more or less asimptotically verge at the same plateau value for very long
time of the state evolution,as expected. The plateau limit is a consequence of the
presence of the phonon both into with the local systems are inserted.
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Figura 5.3: Population in the dimer site 1 obtained with a standard Adolf-Rengel distribution
and with a standard with delta peak in 180cm−1

5.2.5 the coupling with the environment

The environment plays a fundamental role into these type of system, so another
useful quantities of relevance is the strength coupling between the system and the
environmnt. As we can easily expect variation into this value produce great variation
into the dynamics of the system.The presence of the resonant peak will always
support the reborn of the coherence in a way or another,but because of the different
value of the value of the coupling with the environment, the population dynamics
will move from a more dumped one or to toward a more isolated dumped Raby-like
system that show an oscillatory behave (see the oscillatory term into equation (4) )

As we can see from figure 5.4 the presence of delta always substains the reborn
of coherences inside the system, but the coupling with the environment greatly
modify the dynamics. A strong coupling with the bath produce, as expected, a
strong dumping that appears in a double exponential decay and second a plateau in
the value of population lower, while a weaker coupling first of all induce an higher
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Figura 5.4: Population in the dimer site 1 obtained with an Adolf-Rengel with a delta peak on
180cm−1 and 360cm−1

value of the population asymptotic limit and a softer decay of the population, and
moreover a net oscillating term.

5.2.6 Additional random noise

In order to take in account other additional random effects above which average
(e.g. see the optical spectra formula) we can add some static randomness inside our
system modifying our initial site value of energy. We start with this hypothesis:
being that a general mode of the molecula it’s always in the range of 1013, 1014

seconds,each of this mode can be considered static respect the energy transfer, which
moves in the picosecond timescale, so it will produce a static variation into the
excited energy level of each site. Here a first result with the presence of the resonant
mode and without
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Figura 5.5: Different dynamics resulting from different strength coupling with the
environment
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Figura 5.6: Averaged simulation for populations for the Adolf Rengel distribution with a settings
value of the Smith cut-off Chi=20 and for each chain of 200 sites

The graph shows some features:

1. in the first picosecond the behave it’s quite similar to a non random population
(see fig(5.1))

2. a sudden high amplitude reborn of population which is very similar both for
the spectral distribution with resonant and no resonant mode.

3. After around 0.25×10−3 picosecond we have a loss in the structure of the
coherence;to be sure this qeffect arise from the introduction of randomness into
the system we first have to take in account the accumulation of error inside
our simulation,the lost of the norm of the state at a certain runaway time
(see paragraph2.6.2 and fig 2.5) caused by a insufficient Schmidt truncation;
in other word in order to investigate properly a random normal effects to
compare with some experimental spectra first of all we must produce a more
detailed simulation.
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(a)

Higher energie antennacm−1 lower energie antenna cm−1

1051.2219117333091 993.5408611683903
1062.7355617394030 995.6801148476144
1050.6039684374250 1000.040518614079
1057.9278694405500 1004.4171138793954
1047.2970555313029 1003.432906300135
1052.2562514848751 1010.7741960189685
1065.2139014795459 996.9832360422838
1051.005637134137 994.6951834486741

(b)

Higher energie antenna cm−1 lower energie antenna cm−1

1053.2913431155830 998.6862714451294
1052.6506925406741 1001.569531780249
1029.3402825750420 1002.7196623122578
1037.1049564797320 1009.1629190416658
1059.4935570340319 1005.6390848901821
1052.8911763378601 1001.8801763736036
1062.8445222092330 993.93108508055831

Then we have refined our simulation in a more proper way,using a standard set of
random number for both the spectral distribution and rising the numerical precision
setting the value of the Schmidt cut-off Chi=38 to be sure to avoid the runaway time
effects,and in order to take also in account border effects,a value of a total chain
length of 480 sites ( normal mode). Here the set of random number putted into the
energy sites parameter for each simulation

and the new populations graph (5.7) which shows how the artifact effects disap-
pear after the correction.
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Figura 5.7: Averaged simulation for populations for the Adolf Rengel distribution with a settings
value of the Smith cut-off Chi=38 and for each chain of 240 sites

5.2.7 Entanglement Measure: Von Newman entropy

The TEBD techniques possesses another powerful advantage which is the possi-
bility to produce during our temporal evolution a direct, full, dynamical landscape
of the terms of the total Schmidt decomposition of the state that derive from the
application of the SVD for each time evolution on the total state; in this way we are
able to obtain a direct measure of the two-blocks(subsystems) Von Newman entropy
evaluated in each inter-site value (as stated in chapter 1 the tensor into which the
λ are putted it’s the matrix of basis transformation from one local site of the chain
to another).

AS we can infer from image the difference in Entanglement production in the
two time step consider,it’s quite a few but present. Of a certain relevance is the
presence of a peak in fig(5.6,5.7) in the inter-site near the central part of the chain,
more precisely where lay the (protein antenna) system, .Despite we may expect this
peaks follows from the contribute of the presence of the delta into the distribution
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Figura 5.8: Adolf-Rengel spectral distribution + delta 180 cm−1 Von Newmann Entorpy graph
for a timestep of 2000-2024
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Figura 5.9: Standard Adolf-Rengel Von Newmann Entorpy graph for a timestep of 2000-2024
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Figura 5.10: Adolf-Rengle + delta 180 cm−1 Von Newmann Entorpy graph for a timestep of
4000-4024
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Figura 5.11: Standard Adolf-Rengel Von Newmann Entorpy graph for a timestep of 4000-4024

at a first glance the even seems to be very similar if not identical; despite of this
in fig(4.10) we can see a little difference between the two distribution in the flux
of Entropy between the environment modes,but not so showy. This may sound a
bit unexpected, but taking a better look the the spectral distribution of the two
Adolf-Rengel above considered, we can see that the role for the delta in terms of
Entanglement production it’s quite irilevant in this position,may be because of the
presence of a phonon background that overlaps the delta peak contribute a lot.
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Figura 5.12: Graphical difference between the Von Newmann Entropy obtained without the
resonant peak and resonant peak at 180cm−1
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Figura 5.13: Graphical difference between the Von Newmann Entropy obtained in a timestep
4000-4024
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5.2.8 The Double Environment

Thank to the agility of TEBD algorithm supported by the Orthopol algorithm,
we can build simulation adding to each system (our protein antenna of the dimer
in our case)a different chain projection (into the normal mode of the interaction
hamiltonian) ,in other word a different spectra distribution which means to couple
to each system an environment with different structural properties. This is another
(important) step forward into the simulation of more realistic biological system , o
more complicated system of every type,in general. Here the population graph for
one site of the dimer
And the Von Newmann Entropy dynamics for two time step (1000,1024),(2000,2024)

Figura 5.14: population of site 1 with a dimer coupled to two different structured environment
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Figura 5.15: population of site 1 with a dimer couplde to two different structured environment
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Figura 5.16: population of site 1 with a dimer couplde to two different structured environment
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As we can see the presence of two different environment produce another dyna-
mics more, into the flux of entanglement along the chain. The population dynamics
shows the maintenance of the persistent oscillation due to the phonon antenna effect,
even if only one environment site contributes to it. This shows a certain robustness
of this phenomenology whereas a quantum system can take advantage of it. On
the other hand the entanglement (Von newmann entropy) present a very peculiar
behavior showing a non diffusive behavior.
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Capitolo 6

Conclusion

The aim of this thesis. First the presentation of the numerical outcome concer-
ning the local population dynamics of the excitons inside the antenna sites of our
dimeric system via our TEBD algorithm, at the light of the paradigms of the quan-
tum biology above exposed. Thank to the principles of the noisy assisted transport,
an intermediate degree of environmental noise which, as demonstrated into quan-
tum network simulation, sustains the flux along a general transport chain , and the
phonon antenna principle, which explains how the system take advantage of some
specific long lived environmental vibrational modes, is possible shed light into the
deeper mechanism of how a coherent transport of energy along the chain of an ex-
citonic system (a chain composed of two level systems of protein in excited state
which produce site Frenkel excitons). As shown in fig 5.5 the coupling strenght with
the environment produce a great variation into the dynamic of the local population,
so only an intermediate level of noise is permitted in order to obtain performant
dynamics; higher level of noisy will produced an unavoidable quantity of dephasing
that will suppress the coherence while on the other hand a too low level of noise will
give raise to a stronger effect of localization (Anderson effect) which will obstruct
the transport dynamics Alongside with this principle, as is evident in fig 5.3, the
phonon antenna principle that lasts for time of the order of the picosecond; a time
scale which permit to the transport chain the transport of energy without losses.

Second aim was an overview of the technique, it’s methods , and its potential in

69



70 CAPITOLO 6. CONCLUSION

order to present its agility in showing some global features like the Von Newmann
and how modifications to the structure of the objects modeled can be easily handled
with the numerical tool of the TEBD. Thank to the ORTHOPOL algorithm that
makes use of the orthonormal polynomials we can map an open system of the type
of continuous spin-boson model into a (theoretically) semi infinite chain of normal
modes. Being the spectral function the description of the overall strength of the
interaction of the system with the reservoir modes of frequency ω we can produce
the new energy parameters for the chain, and the associated hopping parameters
of the 1-D projected chain, in order to simulate in the TEBD code the system-
environment interaction. This straightforward technique shows the potential of a
full non-equilibrium, non-perturbative, non-Markovian (inhomogeneous chain) de-
scription of the system-environment dynamics. The agility of the TEBD technique
also permit us the visualization of global information as the von Newmann entropy
of the 1-D chain for every time step.It is even possible easily inserting static local
random effect or modification in the conformational structure of our dimer, that
from an informational point of view means the contemporary use of different envi-
ronmental spectras. This agility makes straightforward simulation of more and more
complicated structures, far beyond a simple dimeric structure. This will be another
very useful trait in the future for the modeling of more structured and reach protein
complexes as the FMO and others even more complicated as the Photosystem II
light harvesting systems.
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