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1
I N T R O D U C T I O N

This thesis is motivated by the problem of constitution of perceptual

units in visual perception. The issue deals with the mechanism al-

lowing the information distributed in the visual areas to get bound

together into coherent object representations, and can be faced with

dimension reduction technique, as for example the diffusion maps, re-

cently introduced by R.R. Coifman and S. Lafon in [29],[12][11]. These

phenomena take place in the first layer of the visual cortex, which has

been modelled as contact structure with a subriemannian metric. The

main scope of this thesis will be to exploit instruments of potential

theory and spectral analysis in Lie groups to formalize dimensional-

ity reduction techniques in subriemannian context. The problem will

be reduced to the convergence of a graph Laplacian to the sublapla-

cian differential operator, whose eigenfunctions will be interpreted as

the objects present in the image.

When the brain processes the visual stimulus, it extracts meaning-

ful features from the image, such as spatial position, color, brightness,

orientation, movement, stereo. The acquisition of the visual stimulus

is an integrative process, taking into account the multi-level structure

of the visual cortex. Geometrical models of this structure have been

provided in [33], [34], [38], [28], [42], [15],[19],[20]. This thesis focuses

on the geometrical model of V1 proposed by Citti-Sarti in [8]. The 2D

retinal images are lifted to the higher dimensional manifold of the

cortex encoding both the physical variables and the engrafted vari-

ables such as orientation and velocity preferred. Any level line of the

image is lifted to a new curve in the cortical space, whose geomet-

ric properties will be encoded and described by the definition of a

subriemannian metric.

A subriemannian metric in Rn is defined by the the choice of

m 6 n vector fields X1, · · · ,Xm, called horizontal vector fields, at

1



2 introduction

every point. The selected subspace is called horizontal tangent space.

The horizontal vector fields satisfy the Hörmander condition of hy-

poellipticity when a bracket generating condition holds. Under these

assumptions, the differential calculus in subriemannian setting can be

introduced by replacing the derivatives with the vector fields. Follow-

ing the classical presentations of Nagel, Stein, Wainger [31] and [4],

the horizontal tangent space is endowed with an horizontal metric

which allows the definition of the length of curves and distance be-

tween points . The subriemannian differential operators are defined

by the horizontal vector fields. The gradient of a function f is defined

as ∇f = (X1, · · · ,Xm), laplacians and heat operators are accordingly

defined. Due to the strong degeneracy of the metric these operators

are totally degenerate at every point. However the existence of fun-

damental solution is well known, since the works of Hormander [21]

and Rothshild and Stein [35]. The results regarding subriemannian

geometry are collected in Chapter (3).

The cortico-cortical connectivity is described in terms of families of

integral curves of horizontal vector fields. The outcomes are compati-

ble with both the neurophysiological findings [17],[6] and the princi-

ples of proximity, good-continuation and co-circularity prescribed by

Gestalt pshycological theory [26].

Since the perceptual saliency is described in terms of stochastic dif-

fusion processes, a brief overview of stochastic calculus is presented

in chapter (4), following the classical presentation in [32]. The funda-

mental definitions of Brownian motion and Ito stochastic integrals are

stated. The transition probability of a stochastic process is recognized

as the fundamental solution of a parabolic second order differential

operator of Fokker Planck type or Heat type in the considered dy-

namic. The stochastic models of good continuation of contours were

proposed by Mumford [30]. Stochastic cortical connectivity models

are due to [1],[42]. These models are able describe the anisotropic dif-

fusion dynamics of the cortical brain. The present work concentrates

on diffusion by the heat operator on the rototranslation Lie group.
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Chapters (5) and (6) contain the original contribute of the work. The

previous result provides just an existence result for the fundamental

solution of the heat equation. In chapter (5) a fine approximation of

the fundamental solutions in the neighborhood of the pole is accom-

plished . The estimate is performed by an adaptation of the paramet-

rices method described in [24],[37], which will be adapted to the non

nilpotent setting of the motion group. The heat fundamental solution

on the motion group is locally approximated by the heat fundamental

solution on the Heisenberg group: the horizontal vector fields are ap-

proximated by frozen vector fields defined on a stratified Lie algebra.

The approximation is validated by homogeneity arguments. On the

other hand the fundamental solution of the Heisenberg heat operator

is explicitly known, providing a careful approximation of the SE(2)

heat kernel.

The fundamental solution local estimate is used in chapter (6) to

study the subriemannian version of the diffusion maps algorithm,

and to run it to constitution of perceptual units. The diffusion maps

method uses the spectral decomposition of a properly normalized

diffusion operator to embed the data and to recognize underlying

low-dimensional geometric structures inside the data. In [29] a graph

Laplacian is defined in terms of an average on a submanifold of

Rn, weighted with the heat kernel in the euclidean group. Then it

is proved the convergence of this operator to the Laplace-Beltrami

operator for Gaussian kernels on submanifolds of Rn. In chapter (6)

the analogous proof is performed in the subriemannian context. The

main difficulties are related to the strong degeneracy of the operator

and to the non nilpotency of the space. In addiction we restrict to

curves, since the definition of Laplace-Beltrami operator on a surface

is not totally known in the subriemannian setting. The approximate

heat kernel admits a spectral decomposition. Moreover the approxi-

mate eigenfunctions converge to the eigenfunctions of the heat oper-

ator on the motion group. Then the first few eigenfunctions are used

to perform clustering. In the end numerical results are presented and

allow to recover constitution of perceptual units.





2
T H E P R I M A RY V I S U A L C O RT E X A S A L I E G R O U P

The primary visual cortex is the best studied area in the brain. In re-

cent years formal models of the visual brain have been provided by

different authors: Koenderink [28], Hoffman [19], Zucker [42], Mum-

ford [30], Petitot [33][34], Citti Sarti [8] and Sarti, Citti, Petitot [38].

Here a brief excursus on the functional architecture of the visual cor-

tex, taking into account its multi-level structure, is given. A detailed

description of the Citti Sarti and Sarti, Citti, Petitot models is shown.

2.1 the functional architecture of the visual cortex

(a) (b)

Figure 1: The retinogeniculate visual pathways

2.1.1 Visual cortex areas

The primary visual cortex is divided into six functionally distinct lay-

ers, labeled from 1 to 6. The visual cortex shows a modular structure

which organizes many families of cells, according to their function-

ality. Each family is sensible to a specific feature of the image: po-

sition, orientation, ocular dominance, scale, color, curvature, move-

5



6 the primary visual cortex as a lie group

Figure 2: Visual cortex layers

ment, stereo. Hubel and Wiesel (see [23]) classified three types of

V1 neurons (simple, complex and hypercomplex cells), depending on

their response to visual stimuli. The recorded response decrease as

the orientation of the visual stimulus changes from the preferred ori-

entation. Moreover, the strength of perception increase of movement

is considered. We will focus on cells skilled in orientation and velocity

selectivity.

2.1.2 Receptive fields and receptive profiles

A visual neuron is connected to the retina through the neural con-

nections of the retino-geniculo-cortico pathways. The projection from

retina to the cortex is acted through the talamic way.

The receptive field (RF) of a visual neuron is classically defined as

the domain of the retina to wich the neuron is connected and whose

stimulation elicitate a spike response. Each RF is well-defined over

a small regions of the space. A RF is decomposed into ON (positive

contrast) and OFF (negative contrast) zones, referring to the type of

response to light and dark stimultions.

The receptive profile (RP) of a visual neuron is a real valued function

φ(x,y) which associates to each couple of points (x,y) of the retina

domain the response (positive or negative) to stimulus. There exist

different models for RF, changing with the type and the spatial orga-

nization of cells. Classically the RFs are modeled using derivatives of

Gaussians. Since each family of cells is sensible to a specific feature,
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Figure 3: The RP of a simple cell sensible to orientation

the receptive profile model also depends on a vector e enconding the

eingrafted variables. The the receptive profile is denoted by:

φ = φe(x,y) (1)

where e denotes the dependence on orientation and velocity.

The neural activity of the receptive profile (1) in response to a visual

stimulus is modeled as:

Oe =

∫
I(x,y)φe(x,y)dxdy (2)

where I(x,y) denotes the optical signal at retinal point (x,y).

2.1.3 The retinoptic map

The retinoptic structure of the visual cortex refers to the mappings

existing from the retina to the cortical layers. A retinoptic map is a

map:

ρ : D→M

which is an isomorphism and preserves the retina topology.

A mathematical model well fitting the empirical data is a logarithm

conformal map (see fig. (4)).

From now on we will identify the two planes.
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Figure 4: Retinoptic map

2.1.4 The hypercolumnar structure of V1

The columnar functional organization of the cortex, originally discov-

ered by Vernon Mountcastle, was framed by the Nobel Prize D. Hubel

and T. Wiesel [22],[23].

The cortex is organized in a modular structure consisting of repeat-

ing sets of functional columns. This functional structure has been ac-

curately described in the primary visual cortex. The V1 simple cells

are organized in columnar and hypercolumnar structure correspond-

ing to features such as orientation, ocular dominance and color. Over

every point (x,y) of the retinal plane there is an entire set of cells,

each one sensible to a particular orientation or, when movement is

considered, to a particular velocity. The set of simple cells will be

parametrized in order to take into account the the invariance by trans-

lation. Then (1) will denote the whole set of receptive profiles over the

point (x,y) and each column will be parametrized by varying the pa-

rameter vector e. Then:

φe(x− x0,y− y0) (3)
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Figure 5: Visualization of the hypercolumnar structure of V1 with the en-

grafted variable θ

will model the columnar structure over each other retinal point (x0,y0).

The action (2) turns into the convolution:

Oe(x0,y0) =
∫
I(x,y)φe(x− x0,y−y0)dxdy = (I ∗φe)(x0,y0) (4)

In presence of the visual stimulus centered at point (x0,y0) with edge

orientation and velocity e, all the hypercolumn over point (x0,y0) is

activated and the simple cells sensible to the values e show maximal

response. Even if the mechanism producing strong orientation and

velocity selectivity is controversial, it is an experimental evidence that

intracortical circuitry realizes the suppression of all the non-maximal

directions. Then each retinal point (x,y) is lifted to a point (x,y, e∗)

with e∗ such that:

Oe∗(x0,y0) = max
e
Oe(x0,y0) (5)

2.2 lifted curves and constrained dynamics

Since the RP of a visual neuron depends on both spatial variables and

engrafted variables, a reasonable assumption is to obtain the family
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φe of RPs simple cells sensible to the image features encoded by vec-

tor e as a rigid transformation of a mother profile φ0. The set of RPs

φθ with a preferred orientation θ is modeled as a rigid transforma-

tion of a mother profile φ0. The mother RP defined over the retinical

point (x,y) is given by:

φ0(x,y) = ∂y exp(−(x2 + y2)) (6)

Therefore the family φθ of RPs over point (x,y) is achieved by apply-

ing a counterclockwise planar rotation Rθ to φ0:

φθ(x,y) = φ0 ◦Rθ(x,y) = φ0(x cos θ+y sin θ,−x sin θ+y cos θ). (7)

The RP of preferred orientation θ over each point (x ′,y ′) of retinal

domain is simply obtained by applying a translation Tx ′,y ′ to φθ:

φθ(x
′,y ′) = φθ ◦ Tx ′,y ′(x,y) = φ0(x− x ′,y− y ′). (8)

Applying a rotation of an angle θ (6) becomes:

φθ(x,y) = X3 exp(−(x2 + y2))

where X3 is the vector field obtained by rotation of ∂y:

X3 = − sin θ∂x + cos θ∂y. (9)

The filtering output (2) is a function O(x,y, θ) obtained by convolu-

tion with the image I:

O(x,y, θ) =
∫
φθ(x− x

′,y− y ′)I(x ′,y ′)dx ′ dy ′ = (10)

= −X3 exp(−(x2 + y2)) ∗ I = −X3Is(x,y),

where Is is a smoothing of the image I:

Is = I ∗ exp(−(x2 + y2)).

In order to integrate the filtering process with the non-maximal sup-

pression mechanism, the direction of maximum response is consid-

ered. Applying (5) we impose the maximality condition:

O(x,y, θ∗) = max
θ
O(x,y, θ).
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Figure 6: Visualization of a lifted curve

Consequently the preferred orientation θ∗ is selected requiring:

∂θO(x,y, θ∗) = 0

Calling:

X1 = cos θ∂x + sin θ∂y

the following geometrical condition holds:

0 = ∂θO(x,y, θ∗) = ∂θX3(θ∗)I = −X1(θ
∗)I = −〈X1(θ∗),∇I)〉 (11)

The relation (11) imposes that the vector X1(θ∗) is orthogonal to the

gradient of I at every point, which means that it has the direction of

the level lines of I. Each point (x,y) is lifted to the 3D cortical point

(x,y, θ∗) ∈ R2 × S1. Then any level line of I is lifted to a curve in

R2 × S1.

By construction the tangent vector to the lifted curve can be ex-

pressed as a linear combination of the vector fields:

X2 = ∂θ

X1 = cos θ∂x + sin θ∂y

on the lifted space R2 × S1. The lifting process select at every point a

two-dimensional distribution of tangent planes, generated by X1 and

X2 in the three dimensional space R2 × S1.
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In the next section this mechanism will be mathematically formal-

ized in terms of a subriemannian contact structure defined on the

space R2 × S1.

2.2.1 V1 as a contact structure

The vector fields X1,X2 select a 2D-subspace of the 3D tangent space

at every point, prescribing a constrained dynamic on the tangent

space. The condition can be equivalently formulated in terms of a

contact 1-form defined on the cotangent space at every point. From

the vector field X3, we endow the cotangent bundle T∗RT with the

contact 1-form:

ωx,y,θ = − sin θdx+ cos θdy.

The geometrical condition (11) is reformulated by imposing that the

lifted curves lie in the kernel of ω, i.e. the subspace:

kerωx,y,θ = {(v1, v2, v3) ∈ T(x,y,θ)RT : − sin θv1 + cos θv2 = 0}

Note that kerω is the subspace orthogonal to X3, i.e. the plane spanned

by vector fields X1 and X2 at every point. In chapter (3) the con-

strained dynamic arising from the lifting model will be formalized

by the definition of a subriemannian contact structure on the lifted

space.

2.2.2 V1 as the rototranslation group RT

The result of lifting process is a costrained dynamic on the lifted space

R2 × S1. Since each cell is obtained by a rotation and a translation

from a fixed one, we will identify the space of cells with the structure

of the Lie group of translations and rotations.

The rototranslation Lie group RT is the space:

R2 × S1

equipped with the composition law:

(x,y, θ) +RT (x ′,y ′, θ
′
) =

(
((x,y) + Rθ(x ′,y ′))T , θ+ θ

′)
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Figure 7: Association Field of Field, Hayes and Hesse

where Rθ is a counterclockwise planar rotation of an angle θ.

In addition we have recognized that the all curves of the space are

integral curves of two vector fields in a 3D structure. We will see that

this induces a Sub-riemannian structure.

2.2.3 Cortical connectivity and Association fields

Horizontal cortico-cortical connections link cells of similar orientation

and velocity in distinct hypercolumns. These connections are long

range (up to 6-8mm) and strickly anisotropic. The cortical connectiv-

ity seems at the basis of many visual phenomena as for example per-

ceptual completion. Indeed the phenomenological conterpart of corti-

cal connectivity are the so called association fields modelled by Field,

Hayes and Hesse (see fig. (7)). A stimulus at the retinical point (0, 0)

with horizontal tangent can be joined by a subjective boundary only

to a stimulus which is tangent to the association lines depicted in the

figures. The association field defines a notion which agrees with the

good-continuation, proximity and cocircularity principles prescribed

by Gestalt psychological theory.
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2.3 a spatio-temporal model

An extension of the Citti-Sarti model [8] is proposed in [1] to accom-

plish the processing of spatio-temporal visual stimuli.

In order to take account of both local orientation preference and

velocity-selectivity, we need to consider the temporal behaviour of

the simple cells. The Lie group properties allow to describe the mod-

ular structure of different families of cells, detecting more and more

engrafted variables, simply increasing the dimension of the underling

physical space. The receptive profiles are now defined in the joint do-

main of space and time. De Angelis et al. in [14] provide a description

of such RPs, distinguishing between space-time separable (if the spa-

tial spatial and temporal response characteristics can be dissociated)

and inseparable profiles. Slightly modifying the model of Barbieri et

al. in [1] we will choose a family of filters, which is able to fit very well

the experimental data of both separable and inseparable RPs. Under

this view we choose Gaussian RPs:

φθ,v(x,y, t) = (X3 − v∂t)e
−x2−y2−t2 ,

These filters act on a spatio temporal stimulus f = f(x,y, t) by convo-

lution:

Oθ,v(x,y, t) = φθ,v ∗ f(x,y, t),

In perfect analogy with the lower dimensional case, a non maximal

suppression mechanism associates to the action of these filters the

contact structure generated by the 1-form with the same coefficients

as the vector X3 − v∂t:

ω = − sin(θ)dx+ cos(θ)dy− vds

The vanishing condition ω = 0 identifies v as the velocity in the

direction of the vector X3. Since this is orthogonal to the boundaries,

v describes the perceived velocity. In perfect analogy with the lower

dimensional case, the connectivity among cells in this setting is de-

scribed in terms of admissible directions of the tangent space. The

contact structure provides a constraint on the dynamic, selecting a
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sub-algebra of admissible directions, namely the directions belong-

ing to the kernel of ω. The horizontal tangent space is spanned by

the frame {X1,X2,X4,X5} given by:

X1 = cos θ∂x + sin θ∂y

X2 = ∂θ

X4 = ∂v

X5 = −v sin θ∂x + v cos θ∂y + ∂s

The horizontal tangent space will be responsible of the neural connec-

tivity among cells. The lifted space

R2 ×R+ × S1 × R+ = {(x,y, t, θ, v)}

endowed with the contact structure prescribed by ω will define a 5D

subriemannian manifold which will be denoted by M.





3
T H E S U B R I E M A N N I A N G E O M E T RY O F V 1

We have seen in the previous section that the internal geometry of

the visual cortex V 1 is strongly anisotropic. The space is endowed

with a contact structure which models the constraint on admissible

connectivity among cells. Even if the tangent space to R 2 × S 1 is a

vector space of dimension 3 at every point, the V 1 neurogeometri-

cal model selects at every point of the 3D cortical structure a two

dimensional plane, subset of the tangent space at every point. The

induced metric structure on the tangent plane, which is an example

of sub-riemannian metric.

In this chapter we will depict the subriemannian geometry of the hor-

izontal distribution of vector fields. An overview on homogoeneous

Carnot groups is presented. Differential operators and calculus in

subriemannian setting are described (we refer to [4] for a detailed

presentation).

3.1 hörmander vector fields

Definition 3.1.1. Let N be a manifold of dimension n . A smooth distri-

bution H of costant rank m 6 n is a subbundle of dimension m of the

tangent bundle. That is, at every point, the distribution is a subspace of

dimension m of the tangent space.

Remark 3.1.1. The vector fields

X 1 = c o s θ∂x + s i n θ∂y (12)

X 2 = ∂θ (13)

constitute an horizontal frame for RT .

Then the vector space

H = s pan {X 1 , X 2 }

17



18 the subriemannian geometry of v1

is a distribution on RT .

Remark 3.1.2. The orthogonal vector fields:

X1 = cos θ∂x + sin θ∂y (14)

X2 = ∂θ (15)

X4 = ∂v (16)

X5 = −v sin θ∂x + v cos θ∂y + ∂s (17)

(18)

constitute an horizontal frame for M.

Obviously RT and M, being Lie groups, carry the structure of a

manifold.

An explicit computation shows that the non zero Lie bracket of the

vector fields X1 and X2 is the vector field X3. We remark that the com-

mutator is linearly indipendent of the horizontal distribution at every

point.

Due to the non commutative relation, the horizontal vectors together

with their commutators span the whole tangent space at every point.

That is, the Lie algebra structure on the horizontal distribution recov-

ers the missing dimension. This is the so called Hörmander condition.

Definition 3.1.2. A distribution is bracket generating, or verifying the Hör-

mander condition, or completely non integrable, if any local frame together

with a finite number of iterated Lie bracket spans the whole tangent space at

every point. Equivalently the vector fields X1, ...,Xk satisfies the Hörmander

condition iff:

span{[X1, [X2, ..., [Xk−1,Xk](q)} =TqN ∀q ∈ N

Vectors fields satysfing the Hormander condition are also called Hörmander

vector fields.
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Remark 3.1.3. The compute of all non-zero commutation relations between

the vector fields (14) yields:

[X1,X2] = −X3

[X2,X3] = −X1

[X4,X5] = X3

[X2,X5] = −vX1

Since X3 is linearly independent from the horizontal frame both in

RT and M, the horizontal vector fields together with their commuta-

tors span the tangent space at every point. The horizontal distribution

is naturally endowed with a metric structure.

Definition 3.1.3. Let H be a bracket generating distribution of dimension

m on a manifold N. An horizontal scalar product is a scalar product on H

which makes the vector fields X1, ...,Xm an orthogonal basis.

An horizontal norm on H is a norm induced by an horizontal scalar product

on H.

We note that the eucliden metric on the RT horizontal tangent

plane makes the vector fields X1 and X2 orthogonal. Analogously, the

eucliden metric on the M horizontal tangent plane makes the vector

fields X1,X2,X4,X5 orthogonal.

Definition 3.1.4. A subremannian manifold is a triple (N,H,g) where N

is a manifold, H is a smooth bracket generating distribution endowed with

a positive definite non degenerate metric g.

Such a metric is called a subriemannian metric or a Carnot-Charathodory

metric.

The Lie groups RT and M carries a natural structure of subrieman-

nian manifold.

Definition 3.1.5. Let N be a subriemannian manifold. An horizontal curve

is a curve γ having tangent vector at each point in the horizontal dis-

tribution, i.e. an absolutely continuous curve γ : [0, 1] → N such that

γ̇(t) ∈ Hγ(t).
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The subriemannian metric on the space enable us to define the

length of a horizontal curve.

Definition 3.1.6. Let γ : [0, 1] → N be a horizontal curve of a subrieman-

nian manifold N. The length l of γ is defined as:

l(γ) =

∫1
0

√
gγ(t)(γ̇(t), γ̇(t))dt.

3.2 connectivity property

The Hörmander condition is a meaningful geometric condition, as

the following result states

Theorem 3.2.1 (Chow 1939). Any two points in a connected subrieman-

nian manifold can be joined by a horizontal integral curve.

When Chow theorem applies, the horizontal vector fiels together

with all the commutators are able to reconstruct all the missing direc-

tions.

The CC metric and the consequences of the Chow theorem enable us

to define the distance between every couple of points. The distance

on the space is computed in terms of horizontal curves, in analogy

with the well known Riemannian case.

Definition 3.2.1. Let N be a subriemannian manifold. Let p,q be two points

on N. The C-C distance between p and q is the minimal lenght of horizontal

integral curves joining the two points, i.e.

dCC(p,q) = inf
γ

l(γ)

where the infimum is taken over all horizontal integral curves such that

γ(0) = p and γ(1) = q.

3.3 homogeneous metric on carnot groups

Definition 3.3.1. A Carnot group (or stratified group) H is a connected

and simply connected Lie group whose Lie algebra h admits a stratification,

i.e. a direct sum decomposition:

g = V1 ⊕ ...⊕ Vr
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such that
[
V1,Vi−1

]
= Vi if 2 6 i 6 r and

[
Vi,Vr

]
= {0}.

The stratification implies that the Lie algebra h is nilpotent of step

r. Every Carnot group is (isomorphic to) a homogeneous group.

Since the step r and the dimensions ni of the subspaces Vi are in-

dipendent from the stratification, the following definition is well-posed.

Definition 3.3.2. The homogeneous dimension of H is the integer:

Q =

r∑
i=1

ini

The homogeneous dimension Q plays the same role of Euclidean

dimension in the definition of the metric structure.

Since the Lie algebra is nilpotent, the exponential map is a diffeomor-

phism.

The Heisenberg group Hn, the most-studied among Carnot groups,

is the space R2n+1, equipped with the composition law:

(x,y, z)♦(x ′,y ′, z ′) = (x+ x ′,y+ y ′, z+ z ′ + 2〈y, x ′〉− 2〈x,y ′〉).

The group Hn equipped with the parabolic dilatations δλ(z, t) =

(λz, λ2t), λ > 0, carries the structure of homogeneous group.

A stratified basis of left invariant vector fields for the Lie algebra gn

of Hn is given by:

Xj = ∂xj + 2yj∂t j = 1, ...,n (19)

Yj = ∂yj − 2xj∂t

T = ∂t.

Let G be a Carnot group and, let g be its stratified algebra with dilata-

tions {σλ}λ>0.

Definition 3.3.3. A function f on G is homogeneous of degree r with respect

to the dilatations {σλ}λ>0 iff

f ◦ σλ = λrf

for each λ > 0.

Definition 3.3.4. An homogeneous norm f on G is a continuous function

ν : G→ [0,+∞) such that:
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(i) ν ∈ C∞(G − 0);

(ii) ν is homogeneous of degree 1;

(iii) ν(x) = 0 iff x = 0.

Moreover, ν is symmetric if ν(x) = ν(x−1) for all x ∈ G.

Let dH be the control distance defined on the Heisenberg group H.

Then

d0(x) := dH(x, 0)

is a symmetric homogeneous norm on H.

Remark 3.3.1. All the homogeneous norm on G are equivalent to the homo-

geneous norm:

|x|2r!
G =

r∑
j=1

|x(j)|
2r!
j . (20)

Consequently the distance induced by this norm is equivalent to the CC one.

3.4 subriemannian metric on RT

Even though the group RT is not a Carnot group, we can mimic the

homogeneous structure by the choice of a suitable metric depending

on the commutation properties of vector fields. The associated metric

balls are squeezed in the directions of the commutators, reflecting the

anisotropic nature of the distance (see [31]).

Definition 3.4.1. Let X be a vector field on RT. Then:

(i) X is a vector field of degree s if X is a commutator of length s;

(ii) The formal degree deg(X) of X is the minumum integer s such that X

has degree s, i.e.:

deg(X) = min{s : X = [Xi1 , [Xi2 , ..., [Xis−1 ,Xis ]]]}

where i1, ...is ∈ 1, 2, 3.
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Then the vector fields belonging to the horizontal distribution show

degree 1, while the commutator X3 is of degree 2.

Setting:

Vi = {X ∈ g : deg(X) = i},

then the stratification is replaced by the direct sum decomposition:

g = V1 ⊕ V2.

where the first layer V1 is the horizontal distribution. In analogy with

the stratified case, the homogeneous dimension is the integer:

QRT =
∑
i=1,2

idim(Vi)

Note that QRT = QH = 4. The horizontal norm can be extended to

an homogeneous norm to the whole tangent space. In analogy with

the stratified case, the norm is given by:

|x|
Q
RT =

3∑
j=1

|x(j)|
Q

deg(Xj) (21)

Note that the homogeneous dimension Q is greater than th euclidean

dimension n = 3. In order to single out the dimension n, the calcula-

tions will be performed in terms of the exponential mapping.

Let ξ0 ∈ RT be a fixed point and e = (e1, e2, e3) be the exponential

coordinates of a point ξ in the neighborhood of ξ0, such that:

ξ = exp
( 3∑
j=1

ejXj
)
(ξ0).

The norm (21) induces the following distance between ξ0, ξ ∈ RT:

dRT(ξ0, ξ) = |e|RT (22)

and this distance is locally equivalent to the CC one. The metric ball

centered in ξ0 of radius r > 0 is denoted by:

BRT = {ξ ∈ RT : dRT(ξ0, ξ) < r} (23)

Remark 3.4.1. Since the Lie groups RT and H show the same homogeneous

dimension Q, the metric balls are locally comparable. Precisely, the metric

balls BRT and BH of radius r show the same size:

|BRT | = |BH| = rQ
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3.5 riemannian approximation of the metric

A Riemannian metric on a manifold is a section of the cotangent bun-

dle. That is, a symmetric definite positive bilinear form at every point

of the tangent space is given.

A riemannian metric restricted to the horizontal distribution is a sub-

riemannian metric. Instead a subriemannian metric is not always in-

duced by a riemannian metric.

A direct computation shows that the subriemannian metric defined

on RT fails to induce a riemannian metric.

Let ‖‖ be the horizontal norm defined on the horizontal distribution

which makes X1 and X2 an orthonormal frame. As we have observed,

it is the standard euclidean norm.

We can extend it on all tangent space defining a norm of a vector as

the euclidean norm if its projection on the horizontal tangent space.

Let ξ0 = (x0,y0, θ0) be a point in RT. Let v = (v1, v2, v3) be a vector

in Tξ0RT represented in the standard basis ∂x,∂y,∂θ.

|v|2g = ||

cos θ sin θ 0

0 0 1



v1

v2

v3

 ||2 = ||
(
v1 cos θ+ v2 sin θ, v3

)
||2 =

=
(
v1 cos θ+v2 sin θ

)2
+v23 = v

2
1 cos2 θ+v22 sin2 θ+2v1v2 cos θ sin θ+v23

The formal inverse gij of the metric is given by the singular matrix:

gij =


cos2θ sin θ cos θ 0

sin θ cos θ sin2 θ 0

0 0 1


In several problems an useful task is to look for a riemannian ap-

proximation of the metric. Here the riemannian metric is constructed

adding a viscosity term in the direction X3.

The approximate riemannian norm of the tangent vector v is given

by:

|v|2gε =
(
v1 cos θ+ v2 sin θ

)2
+ v23 + ε

2
(
v2 cos θ− v1 sin θ

)2
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The inverse gijε of the riemannian metrics defined by the invertible

matrix:

gijε =


cos2θ+ ε2 sin θ (1− ε2) sin θ cos θ 0

(1− ε2) sin θ cos θ sin2 θ+ ε2 cos θ 0

0 0 1


More generally, if H = {X1, ...,Xm} is the horizontal distribution of a

n-dimensional subriemannian manifold, then by Hörmander condi-

tion there exist commutators Xm+1, ...,Xn such that X1, ...Xn span the

tangent space at every point. We can define the approximate basis:

Xεj = Xj j = 1, ...,m (24)

Xεj = εXj j > m (25)

where ε > 0 is a parameter.

A riemannian metric gε on the whole tangent space is defined by re-

quiring that the left invariant basis {Xεj }i=1,...,n is orthonormal.

Clearly the subriemannian inner product on H can be recovered by

restricting the inner product 〈〉gε to the horizontal directions.

The approximation scheme is a classical tool in the context of strati-

fied groups, especially in the case of Heisenberg groups.

In [7] it has been shown that the sequence of metric spaces (R2n+1,dε)

converges to (Hn,d) in the Gromov-Hausdorff sense as ε→ 0.

3.6 sub-riemannian differential operators

The sub-riemannian differential operators are defined by the vectors

fields of the horizontal distribution, in analogy to the well known

riemannian case.

Definition 3.6.1. Let M be a subriemannian manifold. Let H = {X1, ...,Xm}

be the horizontal distribution. Let f be a function. The horizontal gradient of

f is given by:

∇Hf =
(
X1, ...,Xm

)
Definition 3.6.2. A function f is said to be of class C1H if its horizontal

gradient is continuous with respect to the control distance.
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By inductive argument, a function f will belong to the class CkH if

its horizontal gradient is of class Ck−1H , for k > 1.

Note that a function can be of class C1H even though it is not differ-

entiable in the riemannian sense. However one can prove that if the

horizontal distribution is bracket generating, then a function of class

C1H is differentiable.

Definition 3.6.3. The riemannian gradient of the function f referred to the

approximate basis (24) is defined as:

∇εf = (Xε1, ...,Xεn)

Formally:

∇εf→ ∇Hf

as ε→ 0.

3.7 sublaplacians and heat operators

Definition 3.7.1. Let φ = (φ1, ...,φn) be a C1H section of the tangent

space of a subriemannian manifold N. Let H = (X1, ...,Xm) its horizontal

distribution. The divergence of φ is defined as:

divH(φ) =

m∑
i=1

X∗iφi

where X∗j is the formal adjoint of the operator Xj.

Definition 3.7.2. The sublaplacian operator is defined as:

∆H = divH(∇H)

Definition 3.7.3. The subriemannian heat operator is defined as:

LH = ∆H − ∂t

If the horizontal vector fields are self-adjoint, then the sublaplacian

operator turns into the sum of square:

∆H =

m∑
i=1

X2i .

In analogy with definition (3.6.3) the riemannian approximation of

the metric allows to define the riemannian counterpart of sublapla-

cians and second order operators.
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Definition 3.7.4. The riemannian laplacian referred to the basis (24) is

defined as:

∆εH =

m∑
i=1

X2i + ε
2

n∑
i=m+1

X2i .

The riemannian heat operator referred to the basis (24) is defined as:

LεH = ∆εH − ∂t

Note that the riemannian approximate laplacian turns into the sub-

laplacian as ε→ 0.

3.8 integral curves and association fields

We conclude this section with a model of Citti Sarti which proposes

integral curves of the vector fields X1,X2 as model of association

fields. The similarity between the phenomenological association field

and the integral curves validates the model of subriemannian metric

for the description of the structure of the visual cortex.

In [8] Citti-Sarti propose to model the local association field as a fam-

ily of integral curves of the horizontal distribution H = {X1,X2}. Such

a family of curves γ : [0, 1]→ RT is obtained as solution of the follow-

ing ODE:

γ̇ = X1(γ) + kX2(γ)

with a starting condition γ(0) = ξ0 ∈ RT.

By varying the parameter k ∈ R, we obtain the family of curves de-

picted in figure (8).

More explicitely, γ(t) = (x(t),y(t), θ(t)) satisfies:
ẋ(t) = cos θ(t)

ẏ(t) = sin θ(t)

θ̇(t) = k

(26)

The system describes a deterministic evolution process with the ori-

entation changing in accordance with the parameter k. The coefficient

k turns to be the curvature of the curve obtained by projecting γ on

the spatial plane.
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Figure 8: Integral curves of (26)

The connectivity property ensured by Chow theorem is carried on

the integral curves by the exponential mapping. Starting from a fixed

point ξ0 ∈ RT every point in RT is riched by a curve

γ(t) = exp
(
t(X1 + kX2)

)
(ξ0).

Due to the non-commutativity between vector fields X1,X2, the non-

vanishing difference between the two curves:

γ1(t) = exp
(
tX1

)
exp

(
tX2

)
(ξ0)

γ2(t) = exp
(
tX2

)
exp

(
tX1

)
(ξ0)

is estimated by the integral curve of the higher-order commutator X3:

γ3(t) = exp
(
t2X3 + o(t

2)
)
(ξ0).

The integral curves of the structure are depicted in figure (??). The

2D projections of the 3D integral curves fit the shape of association

fields and prove that the subriemannian model is efficient and capa-

ble of predicting the direction of diffusion of the visual signal.

In analogy with the low-dimensional case, the horizontal connec-

tions between points of M are modeled as a family of integral curves

satisfying:

γ̇ = a1X1(γ) + a2X2(γ) + a4X4(γ) + a5X5(γ).
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Figure 9: Visualization of the integral curves of (27) w.r.t. the variables

(x,y, θ) and projection on the (x, θ) plane

for suitable coefficients ai.

By varying the parameters ai we can describe different spatio-temporal

dynamics. In [1] two special cases of interest are described. The con-

tour motion detected at a fixed time (a5) = 0 is described by the

system:

γ̇ = X1(γ) + kX2(γ) + cX4(γ) (27)

where k is a parameter of curvature and c is the rate of change of

local velocity along the curve. By varying the parameters, we obtain

the family of curves depicted in fig. (9).

The evolution in time can be described by the equation:

γ̇ = X5(γ) +ωX2(γ) + aX4(γ) (28)

where the parameters ω and a represent respectively the angular ve-

locity and the tangential acceleration. The fan of curves is depicted in

fig. (10).
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Figure 10: Visualization of the integral curves of (28) w.r.t. the variables

(x,y, s) and projection on the spatial plane



4
S T O C H A S T I C A P P R O A C H T O C O RT I C A L

C O N N E C T I V I T Y

A stochastic approach to study general properties of boundaries of

images was proposed by Mumford (see [30]) and applied to corti-

cal connections in [40],[1]. The deterministic ODE system defined in

chapter (3) is replaced by a system of stochastic differential equations

(SDE) which takes into account the indeterminacy of the cortical con-

nections.

In this chapter the main properties of stochastic differential equations

are recalled and the transition probability of the process is recognized

as the fundamental solution of the associated heat operator (see [32]).

This property holds in a very general setting. When applied to the

group RT, it provides a kernel, the fundamental solution, which is

interpreted as a model of cortical connectivity.

4.1 sthocastic differential equations

In order to afford a probabilistic description of the association fields,

an essential background on the theory of SDE, based on the Ito cal-

culus, is reported. The starting point of the SDE theory is to find a

theoretical foundation of time-dependent differential equation:

dY

dt
= b(t, Yt) + σ(t, Yt)Wt (29)

where Yt is a stochastic process on a probability space (Ω,F,P), b,σ

are given functions and Wt is a stochastic process representing noise.

When σ(t, Yt) = 0 the (29) turns to an ordinary first order differential

equation. Indeed a stochastic evolution system can be view as a de-

terministic dynamic affected by some noise.

31
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4.1.1 White noise process and Brownian motion

Figure 11: Brownian motion

The noise term of a SDE is classically modeled as a generalized

stochastic process, called white noise process, which is constructed as

the generalized derivative of a stochastic process Bt called Brownian

motion or Wiener process.

Definition 4.1.1. A Brownian motion with starting point y ∈ R is a real-

valued stochastic process {Bt}t>0 satisfying the following properties:

(i) B0 = y almost surely;

(ii) Bt has independent increments, i.e. the increments {B(ti)−B(ti−1)}i=1,...,k

are independent random variables for all time sequences 0 6 t1 6

t2 6 ... 6 tk;

(iii) the increments Bt+h − Bt are normally distribuited with zero mean

and variance h for all t > 0,h > 0;

(iv) the function t→ Bt is continuous almost surely.

Definition 4.1.2. A n-dimensional Brownian motion is a vector valued

stochastic process:

Bt = (B
(1)
t , ...,B(n)

t )
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where {B(i)
t }t>0 is a Brownian motion for all i ∈ {1, ...,n}.

For a fixed ω ∈ Ω, the function defined by t → Bt(ω) is called

a path of B. The Brownian paths, which are continuous from (iv),

are almost surely not differentiable at any point. Indeed, almost all

Brownian paths are of unbounded variation on any time interval. As

we will see, this peculiarity reflects on the definition of stochastic

integral driven by Brownian motion.

4.1.2 Ito integrals and SDE

In order to define mathematically the differential of a stochastic pro-

cess according with equation (29), one needs a notion of stochastic

integral. Formally, the integral form of equation (29) is given by:

Yt = Y0 +

∫t
0

b(s, Ys)ds+
∫t
0

σ(s, Ys)dBs (30)

where the last integral is a stochastic Ito integral driven by the stan-

dard Brownian motion (starting at the origin) Bt.

A complete presentation of the Ito integral construction can be found

in [32]. Here we will point out some remarkable difference with the

Riemann integral. In analogy with the Riemann integral, the defini-

tion is stated for a class of elementary functions and then extended by

approximation procedure. The elementary approximation of a given

function f that is used to define its integral is:∑
j

f(t∗j ,ω)χ(tj,tj+1)(t)

where f is evaluated at fixed points t∗j ∈ [tj, tj+1]. Unlike to the Rie-

mann case, the presence of Brownian motion implies that the choice

of the point t∗j give rise to different definitions of stochastic integral.

Here we discuss the Ito choice t∗j = tj.

Following the Ito construction, we restrict to functions ω → f(tj,ω)

that are mesurable with respect to the natural filtration induced by

Bt up to time tj, i.e. which depend only on the past history of the

Brownian process. In order to do so, we will denote with Ftj the σ-

algebra generated by random variables {Bs}s6tj , that is the σ-algebra
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containing the preimages of Borel sets under the random variables

{Bs}s6tj . The Ito integral is defined for the class N = N(T) of func-

tions f : [0,∞)×Ω→ R such that:

• (t,ω)→ f(t,ω) is B×F measurable;

• the function ω→ f(t,ω) is Ft-measurable for each t > 0;

• E[
∫T
0 f(t,ω)2dt] <∞.

where B is the Borel σ-algebra on R+.

If φ ∈ N is an elementary function:

φ(t,ω) =
∑
j

ej(ω)χ(tj,tj+1)(t)

the Ito integral is defined as:∫T
0

φ(t,ω)dBt(ω) =
∑
j>0

ej(ω)
(
Btj+1 −Btj

)
(ω). (31)

If f ∈ N, there exists a sequence of elementary functions φn ∈ N such

that:

E
[ ∫T
0

|f−φn|
2dt
]
→ 0. (32)

The existence of such a sequence is achieved using the Ito isometry

for a function φ(t,ω) elementary and bounded:

E[
( ∫T
0

φ(t,ω)dBt(ω)
)2
] = E[

∫T
0

φ(t,ω)2 dt]

It is easy to show (32) when f ∈ N is continuous w.r.t. the first vari-

able, for each ω. Indeed in this case choosing φn as the elementary

approximation of f, for each ω the integral
∫T
0 |f−φn|dt→ 0 and (32)

can be deduced by dominated convergence. For a refined argument

that applies to general f ∈ N see [32].

Now we are ready to define the stochastic integral for a function

f ∈ N as limit operator.

Definition 4.1.3 (Ito Integral). Let f ∈ N and φn ∈ N be a sequence

satisfying (32). The Ito integral of the function f is defined as:∫T
0

f(t,ω)dBt(ω) = lim
n→∞

∫T
0

φn(t,ω)dBt(ω)

where the limit is intended in L2(Ω,P).
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The Ito isometry for elementary functions implies indeed that the

limit exists as an element of L2(Ω,P) and, moreover, that is indepen-

dent of the sequence φn. The isometry also holds in the limit giving:

E[
( ∫T
0

f(t,ω)dBt
)2
] = E[

∫T
0

f2(tω)dt].

Now we are ready to answer to the original question of this section.

The Ito integral is used to define stochastic differential calculus.

Definition 4.1.4. The stochastic process Yt is a solution of the SDE:

dYt = b(t, Yt)dt+ σ(t, Yt)dBt

if the following integral identity holds:

Yt = Y0 +

∫t
0

b(s, Ys)ds+
∫t
0

σ(s, Ys)dBs.

Up to now no requirement about the coefficients of a SDE has been

demanded. The next theorem shows, under reasonable conditions im-

posed on the coefficients, the well posedness of the initial value prob-

lem: 
dYt = b(t, Yt)dt+ σ(t, Yt)dBt t ∈ [0, T ]

Y0 = y0 y0 ∈ Rn

(33)

where σ is an n×m matrix, Bt is an m-dimensional Brownian mo-

tion and we have used the shorthand notation y0 to mean a random

variable which takes value y0 almost surely.

Theorem 4.1.1. Let T > 0 be a fixed time. Let

b : [0, T ]×Rn → Rn

σ : [0, T ]×Rn → Rn×m

be measurable functions such that for some constants C, D the following

growth conditions hold:

(i) |b(t,y)|+ |σ(t, x)| 6 C(1+ |y|);

(ii) |b(t, x) − b(t,y)|+ |σ(t, x) − σ(t,y)| 6 D|x− y|
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Then the stochastic initial value problem 33 admits a unique solution Yt con-

tinous in time with components belonging toN. where |σ| =
∑
i,j |σ

2
ij|, x,y ∈

Rn, t ∈ [0, T ].

Remark 4.1.1. If the coefficients of the SDE in (4.1.1) do not depend ex-

plicitely on time, i.e. the coefficients are functions:

b : Rn → Rn,

σ : Rn → Rn×m,

then the conditions (i) and (ii) of theorem (4.1.1) reduce to the requirement:

|b(x) − b(y)|+ |σ(x) − σ(y)| 6 D|x− y|.

for each x,y ∈ Rn.

4.1.3 The generator of an Ito diffusion

We will start this section defining the stochastic process which will

be used to model time-evolution connectivity equations.

Definition 4.1.5. Let b : Rn → Rn,σ : Rn → Rn×m be functions satis-

fying the condition of remark (4.1.1). Let Bt be an m-dimensional Brownian

motion. A (time-homogeneous) Ito diffusion is a stochastic process {Yt}t>0

satisfying a stochastic differential equation of the form:

dYt = b(Yt)dt+ σ(Yt)dBt t > 0

with initial condition Y0 = y ∈ Rn.

The functions b and σ are called respectively the drift coefficient

and the diffusion coefficient of the process.

Now we will state a milestone of stochastic calculus, which will be

used to effort the main theorem of this section.

Theorem 4.1.2 (Ito formula). Let Yt be a n-dimensional Ito diffusion:

dYt = b(Yt)dt+ σ(Yt)dBt.
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Let g ∈ C2
(
[0,∞)×Rn, Rp

)
. Then the stochastic process

Z(t,ω) = g(t, Yt)

satisfies the stochastic chain rule:

dZI =
∂gI
∂t
dt+

n∑
i=1

∂g

∂yi
(t, Yt)dYi,t+

1

2

n∑
i,j=1

∂2g

∂yi∂yj
(t, Yt)dYi,tdYj,t

(34)

for each I = 1, ...,p.

Proof. See [32].

The surprising term in (34) is the second order derivative in the

right side hand. This additional term is due to the non-differentiability

of brownian paths.

For our purpose we need to associate a second order partial differ-

ential operator A to an Ito diffusion Yt. The classical procedure is to

define a differential operator, called the infinitesimal generator of the

process, which encodes informations regarding the evolution process.

Definition 4.1.6. The infinitesimal generator A of a (time homogeneous)

Ito diffusion {Yt}t>0 is defined by:

Af(y) = lim
t→0

Ey(f(Yt)) − f(y)

t

The following theorem shows how to build the infinitesimal gener-

ator of a given stochastic Ito process.

Theorem 4.1.3. Let {Yt}t>0 be an Ito diffusion with drift coefficient b and

diffusion coefficient σ. Lef f ∈ C2 a bounded function with first and second

derivative bounded. Then the generator A of the Ito diffusion satisfies the

following second order differential equation:

Af(y) =
∑
i

bi(x)
∂f

∂yi
+
1

2

∑
i,j

(σσT )i,j(y)
∂2f

∂yi∂yj
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Proof. Setting Zt = f(Yt) the Ito formula yields:

dZt =
∑
i

∂f

∂yi
(Yt)dYi,t +

1

2

∑
i,j

∂2f

∂yi∂yj
(Yt)dYi,tdYj,t

=
∑
i

bi
∂f

∂yi
dt+

1

2

∑
i,j

∂2f

∂yi∂yj
(σdBt)i(σdBt)j

+

j∑
i

∂f

∂yi
(σdBt)i

From the properties of Brownian motion we have:

(σdBt)i(σdBt)j =
(∑
k

σikdBk
)(∑

l

σjldBl
)
=
(
σσT

)
ij
dt.

Then the stochastic integral turns into:

f(Yt) = f(Y0) +

∫t
0

(∑
i

bi
∂f

∂yi
+
1

2

∑
i,j

∂2f

∂yi∂yj

)
ds+

∑
i,j

∫t
0

σij
∂f

∂yi
dBj.

Hence:

Ey[f(Yt)] = f(y) + E
y
[ ∫t
0

(∑
i

bi
∂f

∂yi
+
1

2

∑
i,j

∂2f

∂yi∂yj

)
ds
]
+

+
∑
i,j

Ey
[ ∫t
0

σij
∂f

∂yi
dBj

]
.

To get the proof we need to show that the last term of the right hand

side vanishes. We recall that a family {fj}j∈N of measurable functions

is called uniformly integrable w.r.t. the probability measure P iff:

lim
l→∞ sup

j∈N

∫
{|fj>l}

|fj|dP} = 0.

Since the first derivative of f is bounded, for all k ∈N:

Ey[

∫t∧k
0

σij
∂f

∂yi
(Ys)dBs] = E

y[

∫k
0

χ{s<t}σij
∂f

∂yi
(Ys)dBs] = 0.
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Moreover:

Ey[(

∫t∧k
0

σij
∂f

∂yi
(Ys)dBs)

2] = Ex[

∫t∧k
0

(σij
∂f

∂yi
(Ys))

2 ds]

6M2Ey[t] <∞

for a suitable constant M.

It follows that the family {
∫t∧k
0 σij

∂f
∂yi

(Ys)dBs}k∈N is uniformly inte-

grable w.r.t. the probability measure P. As a consequence we obtain:

0 = lim
k→∞Ey[

∫t∧k
0

σij
∂f

∂yi
(Ys)dBs] =

= Ey[ lim
k→∞

∫t∧k
0

σij
∂f

∂yi
(Ys)dBs] = E

y[

∫t
0

vij
∂f

∂yi
dBj]

Then the expectation Ey[f] turns into:

Ey[f(Yt)] = f(y) + E
y
[ ∫t
0

(∑
i

ui
∂f

∂yi
(Ys) +

1

2

∑
i,j

∂2f

∂yi∂yj
(Ys)

)
ds
]

Combining with the definition of infinitesimal generator we get the

statement.

4.2 diffusion operators

Integration of a system of SDE produces random paths whose en-

semble defines time dependent probability distributions. In order to

study the dynamics of the system, it is convenient to consider the

time evolution of these probability distribution.

Theorem 4.2.1 (Kolmogorov backward equation). Let Yt an n-dimensional

Ito diffusion with generator A. Let f ∈ C20. Define:

u(t,y) = Ey[f(Yt)]

Then u satisfies the following second order differential equation:

∂tu = Au (35)
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Proof. See [32].

The equation (35) is called the Kolmogorov backward equation of

the process. The forward equation is obtained by replacing the oper-

ator A with its adjoint A∗ (see [32]).

4.3 stochastic models of connectivity

(a) Random walk (b) 1000 random walks

Figure 12: Mumford stochastic process (from [40])

Now we will go on the construction of the probabilistic association

fields. In the previous section a general method to relate a diffusion

process to a second order partial differential operator has been given.

The fundamental assumption we will make is that the prior proba-

bility distribution can be modeled by a random walk. The stochastic

counterpart of the deterministic process (26) is the Mumford process:


ẋ(t) = cos θ(t)

ẏ(t) = sin θ(t)

θ̇(t) = dB(t)

(36)

with starting point ξ0 = (0, 0, θ0) ∈ RT at time t0 = 0.

The process can be written in terms of the horizontal vector fields:

dγ(t) = X1(γ)dt+X2(γ)dB(t)
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where γ(t) = (x(t),y(t), θ(t)) with γ(0) = ξ0.

These equations describe the motion of a particle moving with con-

stant velocity in a direction randomly changing in accordance with

the stochastic process B(t). Here the cortical connectivity is modeled

as a variant of (36). Our purpose is to estimate the density of points

(x(T),y(T), θ(T)) reached at a fixed time T > 0 by the connectivity

process starting when t0 = 0 at point (0, 0, θ0). A single random

walk with start at position (0, 0, θ0) at time t0 and end at position

(x(T),y(T), θ(T)) gives the probability of transition from (0, 0, θ0) to

(x(T),y(T), θ(T)). Under the previous assumptions, the density func-

tion is evaluated by evolving in time the process from the initial state

up to time T .

A variant of the stochastic connectivity process (36) is considered

by evolving both the vector fields X1 and X2 in accordance with two

independent Brownian motions. Then the dynamic is driven by a fam-

ily of horizontal curves γ(t) = (x(t),y(t), θ(t)) satisfying:

γ̇(t) = X1(γ(t))dB1(t) +X2(γ(t))dB2(t)

or equivalently:
ẋ(t) = cos θ(t)dB1(t)

ẏ(t) = sin θ(t)dB1(t)

θ̇(t) = dB2(t)

(37)

This technique can be directly implemented, and the fundamental

solution is obtained solving numerically the system of stochastic dif-

ferential equations (37) and applying standard Markov Chain Monte

Carlo methods. The results are depicted in figure (13). By theorem

(4.2.1), the probability density evolves in time in accordance with the

heat equation. Precisely, the density p(ξ, t|ξ0, 0) of points reached at

time t by the sample paths of the process (37) is obtained as the fun-

damental solution of the operator:

∂t − L (38)

where L is the Laplacian L = X21 + X
2
2. The problem of local estimate

of the fondamental solution will be discussed in chapter (5).
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Figure 13: Heat kernels on RT with initial point ξ0 = (0, 0, π4 ) and decreas-

ing values of variance.



5
D I F F U S I O N K E R N E L S E S T I M AT E S

As we have seen in chapter (4), the fundamental solution of a parabolic

second order differential operator. In the special case of the subrie-

mannian visual cortex, we have considered a diffusion driven by the

subriemannian heat operator. In this chapter we will point out a pic-

ture of the fundamental solution of the subriemannian heat operator

on the group RT. A local estimate of the fundamental solution will

be achieved by lifting vector fields in the Heisenberg group H. The

explicit expression of the fundamental solution of the heat operator

on H will yield a parametrix of the fundamental solution of the heat

operator on RT.

5.1 fundamental solution of second order hypoellip-

tic differential operators

In this section we will point discuss the existence of the fundamental

solution of the subelliptic heat operator:

L = ∆RT − ∂t = X
2
1 +X

2
2 − ∂t (39)

where X1,X2 are the horizontal self adjoint vector fields defined in

remark (3.1.1).

The operator L belongs to a wide class of second order hypoellip-

tic operators, namely the Hörmander type operators. As we will see,

these operators admit a fundamental solution, even if they are af-

fected by strong degeneracy.

A presentation of the essential background concerning fundamental

solutions of hypoelliptic operators is reported below.

Let G be a Lie group. We will use the standard Schwartz notation

D(G),D
′
(G) for the space C∞

0 (G) of test functions and its dual space

43
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of distributions. The pairing of τ ∈ D
′

with u ∈ D will be indicated

〈τ|u〉.

We recall that in this setting the convolution of τ ∈ D
′
(G) and f ∈

D(G) is given by:

τ ∗ f(x) = 〈τ|lxf̌〉 =
∫

G

τ(y)f(y−1 � x)dy

where lx is the lef translation on G, f̌(x) = f(x−1), � is the group

law, dy is the Haar measure on G. Taking into account the time de-

pendence, the spatio-temporal convolution of τ ∈ D
′
(G× [0, T ]) and

f ∈ D(G× [0, T ]) is given by:

τ ∗ f(x, t) = 〈τ|lxf̌〉 =
∫

G

τ(y, s)f(y−1 � x, t− s)dyds

where ds is the Lebesgue measure on the real line.

Definition 5.1.1. A distribution E ∈ D
′
(G× [0, T ]) is called a fundamental

solution of 39 iff

L(E) = δ

wheere δ is the dirac mass defined by 〈δ,u〉 = u(0) for u ∈ D(G× [0, T ]).

Remark 5.1.1. If E is a fundamental solution for the operator L, then L ∗ g

is a solution u of the differential equation Lu = f.

In accordance with the findings of previous section, we will look

for solutions which can be expressed in terms of Green kernels.

Let Ωx1 ,Ωx2 ⊂ G open sets. A function k ∈ C(Ωx1 ×Ωx2) defines an

integral operator from C0(Ωx2) to C(Ωx1) given by

(Kφ)(x1) =

∫
k(x1, x2)φ(x2)dx2 φ ∈ C0(Ωx2), x1 ∈ Ωx1 .

The definition can be extended to arbitrary distributions k ∈ D(Ωx1 ×

Ωx2), as the following theorem states.

Theorem 5.1.1 (Schwartz Kernel Theorem). A distribution k ∈ D
′
(Ωx1×

Ωx2) defines a linear map K from D(Ωx2) to D
′
(Ωx1), according to:

〈Kφ,ψ〉 = k(ψ⊗φ) ψ ∈ D(Ωx1),φ ∈ D(Ωx2), (40)

where ψ⊗φ is the tensor product of ψ and φ. Such a linear map is contin-

uous in the sense that Kφj → 0 in D
′
(Ωx1) when φj → 0 in D(Ωx2).

Conversely, to every such linear map K there is one and only one distribution

k such that (40) is valid. k is called the kernel of K.
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From now on we we refer to fundamental solutions which are fun-

damental kernels of (39), i.e. distributions K ∈ D(G×G× [0, T ]) such

that:

Dx1K(x1, x2, t, τ) = δ(x2−1 � x1, t− τ).

where Dx means that D acts on the variable x.

The hypoellipticity answer the problem of existence of a funda-

mental solution of a given differential operator, as the theorem (5.1.2)

states.

Definition 5.1.2. If the vector fields X1, · · · ,Xm are of Hörmander type

and selfadjoint, the associated subriemannian Laplacian and the heat opera-

tor (also called subelliptic Laplacian and Heat) are called Hörmander type

operators.

Definition 5.1.3. A differential operator L is called hypoelliptic if for every

distribution u ∈ D
′
(Ω), u is C∞ in every open set where Lu is C∞.

Theorem 5.1.2. A second order differential operator L is hypoelliptic if and

only if there exist a fundamental solution of L which is C∞ outside the

origin.

The following theorem states the existence of a fundamental solu-

tion for the operator (39).

Theorem 5.1.3. (Hörmander 1967) An Hörmander operator is hypoelliptic.

The celebrated Hörmander theorem states that we can control the

the characteristic direction of a differential operators via conditions

involving commutators of vector fields. We recall that the vector fields

X1,X2,X3 do not depend explicitly on time, being the generators of

the tangent space to RT at every point. When Hörmander theorem

applies the existence of a fundamental solution is guarantee, even

though its explicit expression might be unknown.

Neverthless, also in this case, we can provide uniform estimates of

the fundamental solution and all derivatives in terms of the metric

balls measures.

The main difficult here is that RT is not equipped with a homoge-

neous structure. In the following, we will provide an approximate of
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the sub-riemannian heat kernel via parametrice method described in

[37].

The fundamental solution of L can be locally estimated with a suit-

able adaptation of the freezing method.

If L is an elliptic operator, the frozen approximating operator is sim-

ply obtained evaluating the coefficients of L at a fixed point. Here the

approximate is achieved by a first order Taylor expansion of the coef-

ficients of L. The Taylor developement is computed in the directions

prescribed by the vector fields X1,,X2,X3.

Firstly we will define a frame of first order operators with polynomial

coefficients which locally approximate the vector fields X1,X2,X3 in

the neighborhood of a given point ξ0 = (x0,y0, θ0) ∈ RT.

The resulting Lie algebra will admit a 2-step stratification. As a con-

sequence, the approximation will be performed in a Carnot group of

dimension three, namely a group isomorphic to the Heisenberg roup.

It will be shown that, up to a change of variables, the approximate

operator is the heat operator attached to the Kohn laplacian on the

Heisenberg group, which will mimic the subelliptic heat operator on

the RT group. The fundamental solution of the heat operator on the

Heisenberg group is explicitly known and much about its properties

has been already studied.

The explicit fundamental solution Γξ0 of the approximate operator

will be the the candidate local approximation of the fundamental so-

lution Γ of the operator L.

5.1.1 Heat kernels on Carnot groups

Let

LG = ∆G − ∂t (41)

be the heat operator defined on the Carnot group G. The heat kernel

ΓG defined on G×G× [0, T ], like its sublaplacian, satisfies some homo-

geneity properties, which can be stated in terms of the homogeneous

dimension Q.
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Definition 5.1.4. A differential operatorD is homogeneous of degree r w.r.t.

the dilatations {σλ} iff

D(u ◦ σλ) = λr(Du) ◦ σλ

for all u ∈ D and λ > 0.

Definition 5.1.5. A distribution τ ∈ D
′
(G) is a kernel of type α iff

(i) τ ∈ C∞((G − 0));

(ii) τ is homogeneous of degree α−Q.

Remark 5.1.2. If D is homogeneous of degree r and K is a kernel of type α,

then DK is a kernel of type α− λ.

Definition 5.1.6. (Parabolic dilatations) G × [0, T ] is equipped with the

family {σLλ}λ>0 of parabolic dilatations given by:

σLλ(ξ, t) = (σλ(x), λ2t)

where {σλ}λ>0 is a family of homogeneous dilatations on G.

Theorem 5.1.4. There exists a smooth function Γ on G× [0, T ] − 0 such

that the fundamental solution of (41) is given by:

ΓG(ξ, t,η, s) := ΓG(η
−1 ◦ ξ, t− s).

The kernel ΓG satisfies:

(i) ΓG is homogoeneous of degree −Qw.r.t. the parabolic dilatations {σLλ}λ>0,

i.e:

ΓG(σ
L
λ(ξ, t)) = λ−QΓG(ξ, t);

(ii) ΓG(ξ, t,η, s) = ΓG(η,−s, ξ, t) = ΓG(η
−1 ◦ ξ, t− s, 0, 0);

(iii) There exists a positive constant C such that:

ΓG(ξ, t) 6 C
(
dG(ξ, 0) + |t|

1
2
)−Q,

where dG is a control distance on G and Q is the homogeneous dimen-

sion of G;
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(iv) (Reproduction property)

ΓG(ξ, t+ s) =
∫

G

ΓG(η
−1 ◦ ξ, t)Γ(η, s)dη

for every ξ ∈ G, t > 0, s > 0.

Proof. See [5].

Then ΓG is a kernel of type 0w.r.t. parabolic dilatations (5.1.6). From

the homogeneity behavioural of the fundamental solution, uniform

gaussian estimates in terms of the control distance dG are inferred.

Theorem 5.1.5 (Uniform Gaussian estimates). There exist positive con-

stants C1,Cp,q such that the fundamental solution ΓG of the heat operator

LG and its derivatives satisfies:

(i) |ΓG(x, t)| 6 C1t−
Q
2 exp

(
−d2H(ξ,0)
C1t

)
;

(ii) |Xi1 ...Xip(∂t)
qΓ(ξ, t)G| 6 Cp,qt

−Q+p+2q
2 exp

(
−d2H(ξ,0)
C1t

)
;

for every p,q ∈N, i1, ..., ip ∈ {1, 2, 3}.

Proof. See [5].

As the above theorem shows, we can control the homogeneity of

the fundamental solution and its derivatives in terms of metric balls

defined by vector fields.

If BG(ξ, r) is the metric ball induced by the control distance dG, with

center in ξ ∈ G and radius r > 0, we define the exponential term:

E(ξ, t) =
exp

(
−
Cd2G(ξ,0)

t

)
|BG(0,

√
t)|

.

where C is a positive constant.

Remark 5.1.3. There exist a positive constant M such that the following

inequality holds:

dG(ξ, 0)E(ξ, t) =
√
t
dG(ξ, 0)√

t

exp
(
−
Cd2G(ξ,0)

t

)
|BG(0,

√
t)|

(42)

6M
√
t

exp
(
−
Cd2G(ξ,0)
2t

)
|BG(0,

√
t)|

(43)

6M
√
tE(ξ, 2t) (44)
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As a consequence, the gaussian estimates of theorem (5.1.5) can be

refurmulated as:

(i) |ΓG(ξ, 0, t)| 6 C0E(ξ, t)

(ii) |XiΓG(ξ,η, t)| 6 C1√
t
E(ξ, t)

for suitable positive constants C0,C1.

5.2 approximate vector fields

We will look towards the homogeneity behavioural of vector fields in

RT in terms of the homogeneity properties of the stratified group of

same dimension, namely the Heisenberg group H.

Let X1,X2,X3 ∈ RT the vector fields defined in section (2.2). Let

ξ0 = (x0,y0, θ0) ∈ RT be a fixed point.

Definition 5.2.1. The vector fields frozen at ξ0 are defined as:

X1,ξ0 = cos θ0 − (θ− θ0 sin θ0∂x + sin θ0 + (θ− θ0) cos θ0)∂y

X2,ξ0 = X2 = ∂θ

X3,ξ0 = − sin θ0∂x + cos θ0∂y

The vector fields {Xiξ0}i=1,2,3 are Hörmander vector fields defined

in terms of the first order Taylor development of the coefficients of

the vector fields {Xi}i=1,2,3.

Remark 5.2.1. The only non-zero commutation relation between the frozen

vector fields is:

[X1,ξ0 ,X2,ξ0 ] = X3,ξ0

Then the Lie algebra spanned by X1,xi0 ,X2,ξ0 ,X3,ξ0 is nilpotent of step two.

Up to isomorphism, it is the Heisenberg algebra defined in (19).
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5.2.1 Exponential coordinates turning the approximate vector fields into

the Heisenberg algebra

Let ξ = (x,y, θ) a point in the neighborhood of ξ0. Let e = (e1, e2, e3)

the exponential coordinates of ξwith respect to the basis X1ξ0 ,X2ξ0 ,X3ξ0 ,

such that:

ξ = exp
(
e1X1ξ0 + e2X2ξ0 + e3X3ξ0

)
(ξ0)

By definition of exponential mapping, ξ = (x,y, θ) = γ(1), where

γ(t) = (γ1(t),γ2(t),γ3(t)) solves the Cauchy problem:
γ̇ = e1X1ξ0 + e2X2ξ0 + e3X3ξ0

γ(0) = ξ0

A trivial computation yields:

γ1(1) = x = x0 + cos θ0e1 −
1

2
sin θ0e2e1 − sin θ0e3 (45)

γ2(1) = y = y0 + sin θ0e1 +
1

2
cos θ0e1e2 + cos θ0e3 (46)

γ3(1) = θ = θ0 + e2 (47)

Plugging-in e2 = θ− θ0, one obtain the linear map:y− y0
x− x0

 =

sin θ0 + 1
2(θ− θ0) cos θ0 cos θ

cos θ0 − 1
2(θ− θ0) sin θ0 − sin θ0


e1
e2

 .

The inverse is:e1
e2

 =

 sin θ0 cos θ0

cos θ0 − 1
2(θ− θ0) sin θ0 − sin θ0 − 1

2(θ− θ0) cos θ0


y− y0
x− x0

 .

The regular change of variables
e1 = sin θ0(y− y0) + cos θ0(x− x0)

e2 = θ− θ0

e3 = cos θ0(y− y0) − sin θ0(x− x0) − 1
2e1e2

(48)

provides a diffeomorphism:

Φξ0(ξ) = Φx0,y0,θ0(x,y, θ) = (e1, e2, e3) (49)
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turning the coordinates (x,y, θ) into the coordinates (e1, e2, e3).

For a function u : RT → R we set

uH = u ◦Φ−1
ξ0

.

Using the diffeomorphism, we can express the distance between two

points in terms of the control distance attached to the Heisenberg

group.

Definition 5.2.2. The distance attached to the frozen metric in the neigh-

borhood of ξ0 ∈ RT is given by:

dξ0(ξ,η) = dH(Φξ0(ξ),Φξ0(η))

The metric ball induced by the distance dξ0 , with center in ξ ∈ RT

and radius r > 0, will be denoted by Bξ0(ξ, r).

5.2.2 Approximate heat kernel

Definition 5.2.3. The approximate subelliptic heat operator is defined as:

Lξ0 = X
2
1,ξ0 +X

2
2,ξ0 − ∂t.

This operator admits an explicit fundamental solution Γξ0 which,

up to the change of variables 48, is the well-known fundamental so-

lution of the Heisenberg heat operator.

If

LH = ∆H − ∂t = X2H + Y2H − ∂t

is the canonical Heisenberg heat operator in the standard basis (19),

the related fundamental solution ΓH is given by:

ΓH((x,y, θ), t) =
1

(2πt)4

∫
cos
(yτ
t

)
exp

(
1

2
τ coth 2π

x2 + θ2

t

)
2τ4

sinh(2τ)4
,dτ

(50)

The fundamental solution Γξ0 satisfies the gaussian estimates pre-

scribed by theorem (5.1.5), in terms of the distance dξ0 defined in

(5.2.2):

(i) |Γξ0(ξ, t)| 6 C0E(ξ, t);
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(ii) |Xiξ0Γξ0 | 6
C1√
t
E(ξ, t).

i = 1, 2, 3

where E(ξ, t) is the exponential term:

E(ξ, t) =
exp

(
−
Cd2ξ0

(ξ,0)
t

)
|Bξ0(0,

√
t)|

.

In order to make a comparison between the frames {Xi}i=1,2,3 and

{Xi,ξ0}i=1,2,3, we will now introduce a definition related to kernels on

RT.

Definition 5.2.4. A distribution K ∈ D
′
(RT) is a kernel of class Fλ iff

(i) k ∈ C∞
0 (RT − {0});

(ii) |Xj1ξ0 ...Xjsξ0k(ξ, t)| 6 Cst
λ−s
2 −1E(ξ, t).

where Cs is a constant and j1, ..., js ∈ {1, 2, 3}.

For istance, a fundamental solution Γ belongs to the class F2, while

its gradient belongs to the class F1.

5.3 parametrices method

The parametrices method is a classical iterative method which will

provide estimates of the fundamental solution Γ by homogeneity ar-

guments. The following cumputations are inspired by [37],[24]. The

paper [37] describes a procedure to lift a frame of vector fields into

a (model) Carnot group. As a result, the fundamental solution of

the sum of squares defined by these vector fields is written as a

parametrix of the fundamental solution of the lifted operator. In [24],

the method is adapted to the parabolic case. The following results are

very close to the contents of lemma 3 and theorem 2 in [37].

We will start with some inequalities achieved by homogeneity argu-

ments.

From now on we adopt the easier notation k = O(f) meaning that

there exists a constant C > 0 such that |k| 6 C|f|.

The Xiξ0 ’s appriximate the Xi’s in the sense of the following lemma.
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Lemma 5.3.1. There exists constants C1,C2 such that the following esti-

mates hold:

(i) |(Xi −Xiξ0)Γξ0(ξ, t)| 6 C0E(ξ, t) ;

(ii) |XiΓξ0(ξ, t)| 6 C1√
t
E(ξ, t).

for i = 1, 2.

Proof. When i = 2 the statement is trivial. Let i = 1.

(X1 −X1ξ0)Γξ0(ξ, t) =

=
(

cos θ− cos θ0 + (θ− θ0) sin θ0
)
∂xΓξ0(ξ, t)+

+
(

sin θ− sin θ0 − (θ− θ0) cos θ0)∂yΓξ0(ξ, t) =

=
(

cos θ− T1,θ0 cos θ
)(

cos θX1ξ0 −
(

sin θ0 + (θ− θ0) cos θ0
)
X3ξ0

)
Γξ0(ξ, t)+

+
(

sin θ− T1,θ0 sin θ
)(

sin θX1ξ0 −
(

cos θ0 + (θ− θ0) sin θ0
)
X3ξ0

)
Γξ0(ξ, t) =

= O(Γξ0(ξ,η))

where T1,θ0f(θ) = f(θ0) + f
′(θ0)(θ− θ0) is the first order truncated

Taylor series of f at θ0.

As the above computation shows, the vector field X1 − X1ξ0 applied

on Γξ0 shows the same homogeneity of Γξ0 . As a consequence, it acts

as a derivative of order zero. From the comparison with theorem

(5.1.5) we conclude (ii).

The operator L0 approximates the operator L in the sense of the

following lemma.

Lemma 5.3.2. There exists constants C1,C2 such that the following esti-

mates hold:

(i) |X2iξ0Γξ0(ξ, t)| 6 C0
t E(ξ, t) ;

(ii) |(L− Lξ0)Γξ0(ξ, t)| 6 C1√
t
E(ξ, t).

for i = 1, 2.
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Proof.

(X2i −X
2
iξ0

)Γξ0(ξ, t) =

=
(
X2i −XiXiξ0 +XiXiξ0 −X

2
iξ0

)
Γξ0(ξ, t) =

= X
(
X−Xξ0

)
Γξ0(ξ, t) +

(
X−Xξ0

)
Xξ0Γξ0(ξ, t) =

=
(
X−Xξ0 +Xξ0

)(
X−Xξ0)

)
Γξ0 +

(
X−Xξ0

)
Xξ0Γξ0 =

=
(
X−Xξ0

)2
Γξ0 +Xξ0

(
X−Xξ0

)
Γξ0(ξ, t) +

(
Xξ0

)
Xξ0Γξ0(ξ, t) =

= O
( 1√
t
E(ξ, t)

)

We conclude that L− Lξ0 acts on Γξ0 as a differential operator of

order 1.

Theorem 5.3.1. If L is the subelliptic heat operator (39) and Γξ0 is the

fundamental solution for Heisenberg heat operator (5.2.3), then there exists

a kernel H1 such that:

(i) LΓξ0(ξ, t) = δ(ξ, t) +H1(ξ, t);

(ii) |H1(ξ, t)| 6 CE(ξ,t)√
t

;

where C is a positive constant.

Proof. As a direct consequence of lemma (5.3.2) we have:

LΓξ0 = Lξ0Γξ0 +
(
L− Lξ0

)
Γξ0 = δ+H1

where H1 =
(
L− Lξ0

)
Γξ0 = O

(E(ξ,t)√
t

)
.

Γξ0 is an approximate of the fundamental solution Γ in the sense of

theorem (5.3.1). Indeed we have:

LΓ = δ

LΓξ0 = δ+H1

As a consequence, the kernel H1 is a remainder term.

The parametrices method yields an iterative procedure to improve

a better approximation. In order to expose the procedure, we begin

with a theorem related to the behavioural of kernels under convolu-

tions.
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Theorem 5.3.2. Let H1, Hs be kernels such that:

(i) |Hβ(ξ, t)| 6 C0
(
tβE(ξ, t)

)
;

(ii) |Hs(ξ, t)| 6 C1
(
tsE(ξ, t)

)
;

for positive constants C0,C1.

Then there exists a positive constant M such that:

|Hβ ∗Hs(ξ, t)| 6M
(
tβ+s+1E(ξ, t)

)
.

Proof. The reproduction property of theorem (5.1.4) yields:

Hβ ∗Hs(ξ, t) =

=

∫
Γξ0(ξ,η, t, τ)Γξ0(η, ξ, τ,σ)(t− τ)β(τ− σ)s dηdτ

= Γξ0(ξ,η, t,σ)
∫
(t− τ)β(τ− σ)s dτ

since τ ∈ [0, T ] by t− τ > 0, τ− σ > 0.

If we set (τ− σ) = (t− σ)r, then

τ− σ = (1− r)(t− σ)

dτ = (t− σ)dr

Therefore a change of variables yields:

Hβ ∗Hs(ξ, t) = Γξ0(ξ,η, t,σ)(t− σ)β+s+1
∫1
0

rs(1− r)β dr

6MΓξ0(ξ,η, t,σ)(t− σ)β+s+1

The following theorem ends the presentation of the approximation

scheme. We will show that a sequence of approximate of the funda-

mental solution can be constructed by convolution. As the following

theorem shows, the step incresing can achieve any order of the re-

mainder.

Theorem 5.3.3. Assume the hypothesis of the corollary 5.3.1 and let Hs be

a kernel such that:

|Hs(ξ, t)| 6 C1
(
t
s
2−1E(ξ, t)

)
. (51)
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where C1 is a positive constant. Then the kernel Γs+1 given by

Γs+1 = Γs − Γξ0 ∗Hs

satisfies

LΓs+1 = δ+Hs+1

with Hs+1 ∈ Fs+1.

Proof. Let H1 be the kernel defined in corollary 5.3.1. By induction, if

there exists Hs satisfying (51) then the following identities hold:

LΓs+1 = L(Γs − Γξ0 ∗Hs)

= LΓs − LΓξ0 ∗Hs

= LΓs − (L− Lξ0 + Lξ0)Γξ0 ∗Hs

= δ+Hs − (L− Lξ0)Γξ0 ∗Hs −Hs

= δ− (L− Lξ0)Γξ0 ∗Hs

If we set:

Hs+1(ξ, t) = −(L− Lξ0)Γξ0 ∗Hs(ξ, t)

then we have:

(L− Lξ0)Γξ0(ξ, t) = O
(
t−

1
2E(ξ, t)

)
;

Hs(ξ, t) = O
(
t
s
2−1E(ξ, t)

)
.

By theorem (5.3.2) we conclude that there exists a positive constant

M such that:

Hs+1(ξ, t) 6Mt
s−1
2 E(ξ, t)

Then Hs+1 ∈ Fs+1.

5.3.1 A diffeomorphism turning Lξ0 into the Heisenberg heat operator LH

By the applying of parametrices method, we have shown that the fun-

damental solution Γ of the heat operator L is locally approximated by

the fundamental solution Γξ0 of the operator Lξ0 . Following [9], we

will show that the fundamental solution Γξ0 can be written in terms of

the fundamental solution ΓH on the Heisenberg group, whose expres-

sion is explicitly known. As the following theorem shows, the change
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of variables (49) provided by exponential coordinates, turns the the

approximate operator Lξ0 into the heat operator LH.

Theorem 5.3.4. The diffeomorphism Φξ0(ξ) = e changes the heat operator

Lξ0 into the Heisenberg heat operator ŁH.

Precisely the following identities hold:

(ii) Xi,ξ0u(ξ) = Xi,HuH(Φξ0(ξ)) i=1,2

(iii) Lξ0u(ξ) = ŁHuH(ξ)

Corollary 5.3.1. For every given point ξ0 ∈ RT the fundamental solution

Γξ0 of the operator Lξ0 is explicitly known and is given by:

Γξ0(ξ, t) = ΓH(Φξ0(ξ), t) (52)

where ΓH is the fundamental solution reported in (50).





6
D I M E N S I O N A L I T Y R E D U C T I O N

In this chapter we will go on the problem of dimensionality reduction

in the specific context of visual brain. When the brain develops the vi-

sual stimulus, it performs grouping and categorization in perceptual

units. Natural images are complex data sets which we depict as high-

dimensional matrices of pixels, encoding features like color, position,

brightness. Such a complex structure is decomposed into simpler fig-

ures corresponding to specific features of the natural image.

We will present framework of diffusion map methods ([11],[12],[29]).

The main argument is the adaptation of the technique to the subrie-

mannian structure of the visual brain. The convergence of a discrete

averaging operator to a diffusion operator on subriemannian curves

is proved. Then, this discrete operator will be used to perfom spectral

clustering driven by the visual brain. The chapter will end with the

numerical simulations.

6.1 the problem of dimensionality reduction

The problem of finding a simpler description of complex data sets is

often tied to the problem of finding a low-dimensional embedding

of the data. In many fields like information theory, machine learning,

statistical analysis, computer vision, the understanding of the data go

through the discovering of low-dimensional units which carry a great

deal of information about the data.

Let us consider an input composed of l points ξ1, ..., ξl where each

ξj = (ξ
(1)
j , ..., ξ(n)j ) (j = 1, ..., l) belongs to a n-dimensional manifold

N, whose global geometry might be quite complicate.

The reduction of the data deals with two aspects:

59
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Figure 14: Visual stimulus composed of randomly oriented segments with

the emergency of perceptual units

• to represent the data Ξ = {ξ1, ..., ξl} ∈ N by Y = {y(1), ...,y(l)} ∈

Z where Z is a m-dimensional manifold such that m � n (di-

mensionality reduction);

• to cluster the data into a small number r of groups based on the

similarity between points, in order to discover low-dimensional

meaningful geometric structures inside the data (clustering and

grouping).

The two problems are strickly related with the problem of changing

the representation of the data into an easier description which in-

volves a low-dimensional number of free parameters.

Several techniques have been proposed to answer the problem of di-

mensionality reduction. We will focus on spectral methods, based on

the spectral decomposition of a given kernel representing some no-

tion of affinity or similarity between points. The grouping is driven

by the affinities between points prescribed by the kernel. Then, the

choice of the kernel is crucial: it defines the local geometry of the

data.
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6.2 graph laplacian

The clustering problem can be riformulated in terms of graph theory.

Let Ξ = {ξ1, ..., ξl} ⊂ N the given data points. Let k : N×N → R be

the kernel encoding the affinities between points.

The kernel satisfies the following assumption:

• k is positively preserving: k(ξi, ξj) > 0;

• k is symmetric: k(ξi, ξj) = k(ξj, ξi).

for all i, j = 1, ..., l.

The informations carried from the initial datum are collected in a

similarity graph.

A graph on the space N is a pair (V ,E) where V ⊂ N is a discrete set

of points, called nodes, and E ⊂ N×N is a set of couples of points of

V , called edges.

The graph (E,V) is weighted if each edge between two vertices vi and

vj carries a non-negative entries kij, called the weight of the edge.

The matrix K = kij is called the adjacency matrix of the graph.

The degree di of a vertex vi ∈ V is defined as:

dij =
∑
j

kij

The degree matrix D of the graph is defined as:

D = diag{d11, ...,dnn}

We build a similarity graph with the data points as nodes and the

kernel entries as the weights of edges connecting points. The assump-

tion of symmetry of the kernel implies that the graph is undirected.

For data assembled in a similarity graph, the clustering problem is

restated in terms of partitioning the similarity graph. A partition of a

graph (V ,E) is a collections of nonempty subsets A1, ...,Ar of V , such

that Ai ∩Aj = ∅ if i 6= j and A1 ∪ ... ∪Ar = V . The clustering prob-

lem on the graph can be formulated as follows: to find a partition of

the graph such that the edges between differents groups have a very

low weight, while the edges within a group have high weight. That is,
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points in different clusters are dissimilar from each other and points

within the same cluster are similar.

The starting point of spectral clustering on the graph is the construc-

tion of a matrix representation called graph Laplacian matrix. In liter-

ature there exist different variants of graph Laplacians. The main dis-

tinction lies in normalized and unnormalized versions. In a large va-

riety of problems one needs to consider suitable normalized versions

of graph Laplacians. These matrices show spectral properties similar

to the spectral properties of the unnormalized version and are able to

approximate anisotropic dynamics. The most pupular choices are the

symmetric graph Laplacian and the random walk graph Laplacian.

We refer to [10],[41] for a detailed presentation of the topic. Let (V ,E)

be a weighted graph with adjacency matrix K symmetric and positive

definite and degree matrix D.

Definition 6.2.1. The "random walk" normalized graph Laplacian is de-

fined as:

Lrw = D−1L = 1 −D−1K

If f is a bounded function defined on the data points ξ1, ..., ξl, set-

ting fk = (f1, ..., fl) = f(ξ1, ..., ξl) ∈ Rn, the quadratic form associated

to the linear operator Lrw acts on fl is:

fTl Lrwfl =
1

2

l∑
i,j=1

k(ξi, ξj)(fi − fj)2 (53)

The "random walk" normalized graph Laplacian models a random

walk on the graph, i.e. a stochastic Markov process which randomly

jumps from node to node. The random walk on the graph is a dis-

crete approximation of a continuous brownian motion. The transition

matrix P of the random walk is just the Laplacian Lrw renormalized

to represent a probability matrix:

P = 1 − Lrw = D−1K. (54)

The element (P)ij represents the transition probability of jumping in

one step from node ξi to node ξj. The evolution of the process is

driven by the iterates {Ps}s∈N of the transition matrix. The element

(Ps)ij represents the transition probability of jumping in s steps from
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node ξi to node ξj. In this context the step increasing admits a dou-

ble interpretation. On one hand, the step is the discrete time step at

which the random process jumps from one state to another state. On

the other hand, the step can be viewed as a threshold of resolution

on the data.

The graph Laplacian is strickly related to the continuous Laplace op-

erator. Setting k(ξi, ξj) = 1
d(ξi,ξj)2

, where d is the euclidean distance

defined on the data points, the graph Laplacian (53) turns into:

fTl Lrwfl =
1

2

l∑
i,j=1

( fi − fj
d(ξi, ξj)

)2
Then the operator Lrw looks like the discrete analogous of the Laplace

operator ∆. Indeed the quadratic form associated to Laplace operator

acting on functions defined on a metric space endowed with a inner

product 〈〉 is defined as:

〈f,∆f〉 =
∫
|∇f|2.

The formalization of this intuition has only been provided in spe-

cial cases. In [29],[3] it has been shown that the graph Laplacian

constructed on a similarity graph of randomly sampled data points

converges to some continuous Laplace operators. In [29] it is proved

that a graph Laplacian properly rescaled converges to the Laplace-

Beltrami operator on compact submanifolds of a riemannian man-

ifold. In order to adapt the proof to the subriemannian context of

visual brain, in the following section we will show that the graph

Laplacian converges to the sublaplacian differential operators com-

puted along horizontal curves.

The spectral clustering we are going to perform is based on the ap-

proximation of a given diffusion operator, namely the heat subrie-

mannian operator on the group RT. This operator will be achieved as

a continuous limit of a suitable discrete diffusion operator. In order

to construct the diffusion operator, we will focus on the generator of

the diffusion, in the sense of definition (4.1.6).

The graph Laplacian acts on functions as a discrete averaging oper-



64 dimensionality reduction

ator. If f is a function defined on the data points, we consider the

averaging operator defined by L:

Lf =

l∑
j=1

f(ξj)k(ξi, ξj)

The choice of the kernel is crucial. In a large variety of problems the

euclidean distance between points is not representative of the geom-

etry of the data. For instance, in figure (14) we perceive as grouped

elements with comparable alignement, polarity, or frequency. An eu-

clidean neighborhood of a fixed point x of the image will include

both points which are similar to x and points dissimilar from x. As a

consequence, the choice of the euclidean distance will make the clus-

tering meaningless, while it is necessary to introduce cortical inspired

distances encoding the related eingrafted variables. The recognition

of perceptual units takes into account the Gestalt principles of good

continuation, proximity and co-circularity. The notion of similarity

we will use is encoded in the connectivity kernel modeling the associ-

ation field mechanism. The partition in perceptual units is a integrate

process locally driven by the diffusion connectivity kernel. In the

neighborhood of a fixed point x, the similarity between points is es-

tablished by the connectivity kernel starting at x. The clustering prob-

lem applied to the visual brain deals with the connection between

the peculiar geometry of the perceptual connectivity model and the

spectral clustering features techniques. We will look for a dimension-

ality reduction algorithm skilled in diffusion processes, namely the

diffusion maps algorithm.

6.3 diffusion maps

Diffusion maps is a machine learning algorithm introduced by R. R.

Coifman and S. Lafon (see [29],[12],[11]).

Given the data set defined on a smooth manifold N, the diffusion map

algorithm embeds the data into a low-dimensional euclidean space.

The embedding is realized computing the first few eigenvectors of

the graph Laplacian matrix. The eigenvectors are used as coordinate

set. The mapping from the data points space to these eigenfunctions
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is denoted as the diffusion map. The affinities between points are mea-

sured by a suitable distance called the diffusion distance. In order to

introduce the approach, consider a set Ξ of points on a n-dimensional

manifold N. The local geometry is inferred by a symmetric definite

positive matrix k ∈ Rn
2
. Starting from the data Ξ and the matrix k,

the method constructs a normalized averaging kernel k∗ and a diffu-

sion operator A such that:

Af(ξ) =

∫
Y

k∗(ξ,η)f(η)dσ(η) (55)

where dσ is a probability measure on Ξ and f is a real-valued bounded

function defined on Ξ. The integral operator A, properly renormal-

ized, admits a spectral decomposition. Then the kernel k∗ can be

written as:

k∗(ξ,η) =
∑
i>0

µ2φi(ξ)φi(η) (56)

where {φ}i>0 is an orthonormal basis of L2(Ξ). The eigenfunctions

{φi}i>0 define a family of diffusion maps {Φ}m,m ∈ N, as follows:

Φm(ξ) =


µ
(m)
0 φ0(ξ)

µ
(m)
1 φ1(ξ)

...

 (57)

The diffusion maps induce a family of diffusion distances {d}m de-

fined as:

d2m(ξ,η) = k∗(m)(ξ, ξ) + k∗(m)(η,η) − 2k∗(m)(ξ,η) (58)

where k∗(m) is the kernel of the operator A(m). The kernels k∗ and

k∗(m) can be interpreted as the transition probabilities of a diffusion

process define on Ξ. Then the diffusion distance measures the rate of

connectivity in accordance with the paths of the diffusion process. As

the following identity shows:

d2(m)(ξ,η) =‖ Φm(ξ) −Φm(η) ‖2

the diffusion map Φm realizes an embedding of the data into an Eu-

clidean space. The diffusion distances, underlying the geometry of
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manifold Ξ, can be easily computed as the euclidean distance on the

embedding space. The relevant feature is that the diffusion distance

dm can be accurately approximate by the first few eigenvectors. Up

to a permutation, we can assume µ0 > µ1 > µ2 > .... The method se-

lects an integer m0 and a small number of eigenfunctions φ0, ...,φj0
corresponding to eigenvalues {µi}i=0,...,j0 which are numerically sig-

nificant in terms of a fixed resolution threshold. Precisely, it can been

shown (see [29]) that there exists an integer m0 and a constant C > 0

such that for all m > m0 the diffusion map embeds the data into Rj0

and:

d2m(ξ,η) = C ‖ ξj0 − ηj0 ‖
(
1+O(eCm)

)
where ξj0 = (µ

(m)
0 φ0, ...,µ(m)

j0
φj0).

6.4 convergence proof

Now we will go on the proof that a suitable graph Laplacian discrete

operator converges to the infinitesimal generator of the heat subrie-

mannian diffusion. Similar computations have been pointed out by S.

Lafon [29] in the case of diffusion processes on submanifolds of Rn.

The proof needs to be adapted to the subriemannian geometry of the

space RT.

The proof consists of two steps. Firstly, we will show the convergence

of a properly normalized averaging operator to the sublaplacian op-

erator on compact submanifolds. The, the outcome will be used to

approximate the heat kernel.

We will start estabilishing an asymptotic expansion as ε → 0 for

the following averaging operator:

Aεf(ξ) =
1

ε

∫
Λ

kε(ξ,η)f(η)dη (59)

where kε is a kernel satisfying the hypothesis (6.2). We will consider

the special case of diffusion along compact submanifolds such as

curves ad surfaces. This restriction simplifies the computation and

is sufficient to simulate a large variety of problems of interest. We
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will expose the proof in two different settings. Firstly, we will con-

sider an asymptotic expansion along 2-dimensional hypersurfaces on

R3 endowed with the euclidean standard metric. Firstly, we will con-

sider an asymptotic expansion along 2-dimensional hypersurfaces on

R3 endowed with the euclidean standard metric. The proof in this

setting was originally due to Lafon. Here we present a new, simpli-

fied proof. Then, we will consider the expansion along an horizontal

curves on the subriemannian space RT In this setting we use as a

kernel of similarity the fundamental solution of the heat kernel, stud-

ied from a stochatic and deterministi point of view in the previous

chapters.

6.4.1 Asymptotics for averaging kernels in Euclidean setting

Let G = R3 with the euclidean group structure. Let θ be a real func-

tion.The smooth immersion:

i : R2 → R3

(x1, x2)→ θ(x1, x2)

defines a 2-dimensional hypersurface Λ. Let x = (x1, x2) be a point

on Λ. Up to a change of variables we can suppose that x is the origin.

Let B√ε(0) an euclidean ball centered in x. Since we are interested

in modeling the heat diffusion, we make the following assupumption

on the kernel:

kε(ξ,η) = h
( |ξ− η|2

ε

)
where h is any differentiable function vanishing at infinity, ξ = (x1, x2, θ(x1, x2)),η ∈

R3.

The operator (59) turns into:

εAεf(0) =

∫
Λ

h(
|ξ|2

ε
)f(ξ)dξ = (60)

=

∫
B√ε

h(
|(x1, x2, θ(x1, x2)|2

ε
)f(x1, x2, θ(x1, x2))

√
1+ |∇θ|2 dx1 dx2
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Since ∇θ(0) = 0 by the choice of coordinates, a Taylor expansion near

the origin gives:

∂xiθ(x) = ∂xiθ(0) +∇∂xiθ(0)x+O(x
2) =

2∑
j=1

xj∂xjxi
2θ(0) +O(x2)

|∇θ(0)|2 =
2∑
i=1

(

2∑
j=1

xjθij(0))

2

+O(x2)

where θij = ∂2θ
∂xi∂xj

.

The expansion of the squared term is given by:

√
1+ |∇θ(0)|2 = 1+ 1

2

2∑
i=1

xi
2(

2∑
j=1

θij(0))

2

+O(x2) (61)

We Taylor expand the kernel h at |x|2

ε with respect to increment
|θ(x)|2

ε :

h(
|(x, θ(x))|2

ε
) = h(

|x|2

ε
) +

1

ε
|θ(x)|2h ′(

|x|2

ε
) +O(ε

3
2 )

= h(
|x|2

ε
) +

1

2ε
(

2∑
i=1

2∑
j=1

xixjθij)

2

h ′(
|x|2

ε
) +O(ε

3
2 )

We Taylor expand the function f near the origin:

f(x, θ(x)) = f(0) +
2∑
i=1

xifi(0) +
1

2

2∑
i=1

2∑
j=1

xixjf
2
ij(0) +O(ε

3
2 )

Therefore the integral operator turns into:

εAεf(x) =

∫
B√ε

[
h(

|x|2

ε
) +

1

2ε
(

2∑
i=1

2∑
j=1

xixjθij)

2

h ′(
|x|2

ε
) +O(ε

3
2 )

]
[
f(0) +

2∑
i=1

xifi(0) +
1

2

2∑
i=1

2∑
j=1

xixjf
2
ij(0) +O(ε

3
2 )

]
[
1+

1

2

2∑
i=1

xi
2(

2∑
j=1

θij(0))

2

+O(x2)

]
dx

The simmetry of the kernel gives:∫
B√ε

xih(
|x|2

ε
) = 0∫

B√ε

xixjh(
|x|2

ε
) = 0 i 6= j
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Consequently the integral operator turns into:

εAεf(0) = f(0)

∫
B√ε

h(
|x|2

ε
)dx+

∫
B√ε

h(
|x|2

ε
)f(0)

1

2

2∑
i=1

xi
2(

2∑
j=1

θij(0))

2

dx+

∫
B√ε

h(
|x|2

ε
)
1

2

2∑
i=1

xi
2f2ii(0) +

∫
B√ε

1

2ε
(

2∑
i=1

2∑
j=1

xixjθij)

2

h ′(
|x|2

ε
)f(0)dx+O(ε

3
2 )

εAεf(0) = f(0)

∫
B√ε

h(
|x|2

ε
)dx+ f(0)

1

2

2∑
i=1

(

2∑
j=1

θij(0))

2 ∫
B√ε

xi
2h(

|x|2

ε
)dx+

−
1

2
∆f(0)

∫
B√ε

x1
2h(

|x|2

ε
)dx+

1

2ε
f(0)

2∑
i=1

2∑
j=1

θ4ij

∫
B√ε

xi
2xj

2h ′(
|x|2

ε
)dx+O(ε

3
2 )

Now we set:

m0 =

∫
B√ε

h(|x|2)dx

m2 =

∫
B√ε

x1
2h(|x|2)dx

mij =

∫
B√ε

xi
2xj

2h ′(|x|2)dx

The integral expansion simplifies:

Aεf(0) = m0f(0) + ε
1

2
f(0)

2∑
i=1

(

2∑
j=1

θij(0))

2

m2 −
ε

2
∆f(0)m2

+
ε

2

2∑
i=1

2∑
j=1

θ2ijmij +O(ε
3
2 )

Integration by parts yields:

mij = −
1

2
m2 i = j

mij = −
3

2
m2 i 6= j
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The integral operator turns into:

Aεf(0) = m0f(0) −
ε

2
∆f(0)m2 +

ε

2
f(0)

[ 2∑
i=1

θ4iimii +

2∑
i=1

∑
j6=i

θ2ijmij
]
+O(ε

3
2 ) =

= m0f(0) −
ε

2
∆f(0)m2 +

ε

2
f(0)

[ 2∑
i=1

θ4ii
[
−
1

2
m2
]
+

2∑
i=1

∑
j6=i

θ2ij
[
−
3

2
m2
]]

+O(ε
3
2 )

= m0f(0) −
ε

2
∆f(0)m2 +

ε

2
f(0)m2

[
−
1

2

2∑
i=1

θ4ii2−
3

2

2∑
i=1

∑
j6=i

θ2ij

]
+O(ε

3
2 )

Now we set:

E(x) = −
1

2

2∑
i=1

θ2ii(x) −
3

2

2∑
i=1

∑
j6=i

θ2ij(x)

The averaging integral turns into:

Aεf(0) = m0f(0) +
ε

2
m2

[
−∆f(0) + E(0)f(0)

]
+O(ε

3
2 )

Eventually we effort the following statement.

Proposition 6.4.1. The averaging integral operator (59) admits the follow-

ing asymptotic expansion:

Aεf(z) = m0f(z) +
ε

2
m2

[
−∆f(z) + E(z)f(z)

]
+O(ε

3
2 ) (62)

for each z ∈ R3,ε > 0.

6.4.2 Asymptotics for the weighted graph Laplacian

In order to model diffusion processes, we need to consider a properly

normalized version of the averaging operator of the previous section.

Precisely, we will look for a normalized graph Laplacian.

We set:

vε
2(z) =

∫
Λ

kε(z, ξ)p(ξ)dξ.

The normalized averaging operator is defined as:

Aεf(z) =
1

vε2(z)

∫
Λ

kε(z, ξ)f(ξ)p(ξ)dξ (63)
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From (62) we have:∫
Λ

kε(z, ξ)f(ξ)p(ξ)dξ = ε

[
m0f(z)p(z)+

ε

2
m2

[
−∆f(z)p(z)+E(z)f(z)p(z)

]]
+O(ε

3
2 )

Now plugging-in f = 1 yields:∫
Λ

kε(z, ξ)p(ξ)dξ = ε

[
m0p(z)+

ε

2
m2

[
−∆p(z)+E(z)p(z)

]]
+O(ε

3
2 )

Taking the ratio yields:

Aεf(z) =

ε

[
m0f(z)p(z) +

ε
2m2

[
−∆f(z)p(z) + E(z)f(z)p(z)

]]
+O(ε

3
2 )

ε

[
m0p(z) +

ε
2m2

[
−∆p(z) + E(z)p(z)

]]
+O(ε

3
2 )

A Taylor expansion yields:[
m0p(z) +

ε

2
m2

[
−∆p(z) + E(z)p(z)

]
+O(ε

3
2 )

]−1
=

(
m0p(z)

)−1(
1+

εm2
2m0p(z)

[
−∆p(z) + E(z)p(z)

]
+O(ε

3
2 )

)−1

=(
m0p(z)

)−1(
1−

εm2
2m0p(z)

[
−∆p(z) + E(z)p(z)

]
+O(ε

3
2 )

)
=

The integral operator turns into:

Aεf(z) =
1

m0p(z)

(
m0f(z)p(z) +

ε

2
m2

(
−∆f(z)p(z) + E(z)f(z)p(z)

))
(
1−

εm2
2m0p(z)

(
−∆p(z) + E(z)p(z)

))
+O(ε

3
2 ) =

Aεf(z) =

(
f(z) +

ε

2

m2
m0p(z)

(
−∆(f(z)p(z)) + E(z)f(z)p(z)

))
(
1−

εm2
2m0p(z)

(
−∆p(z) + E(z)p(z)

))
+O(ε

3
2 ) =

=f(z) +
ε

2

m2
m0

−
ε

2

m2
m0p(z)

∆(f(z)p(z))

+
ε

2

m2
m0p(z)

f(z)∆p(z) −
ε

2

m2
m0

f(z)E(z) +O(ε
3
2 ) =

=f(z) +
ε

2

m2
m0

(∆p(z)
p(z)

f(z) −
∆(f(z)p(z))

p(z)

)
+O(ε

3
2 )

Now plugging-in p = 1 yields the following statement.

Proposition 6.4.2. The normalized averaging operator (63) admits the fol-

lowing asymptotic expansion:

Aεf(z) = f(z) −
ε

2

m2
m0

∆f(z) +O(ε
3
2 ) (64)

for each ε > 0.
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6.4.3 Asymptotics for averaging kernels on RT

Now we will go on the main content of this chapter. Arguing as in

[29], we will show an asymptotic expansion for the graph Laplacian

operator along integral curves defined on the motion group RT.

Let ξ0 be a fixed point on RT. Let Γ be the fundamental solution of

the heat operator (39) and Γξ0 its local approximate (see chapter 5).

In accordance with the the definition of horizontal curves we have

introduced, we will look for a diffusion along an integral curve γ :

[−
√
ε,
√
ε]→ RT satisfying:

γ̇(t) = X1(γ(t)) + k(t)X2(γ(t))

with γ(t) = (x(t),y(t), θ(t)) and θ̇(t) = k(t). We will start estabilish-

ing an asymptotic expansion as ε → 0 for the following averaging

operator:

Aεf(ξ) =
1

ε

∫
γ

Γξ0(ξ,η, ε)f(η)dσ(η) (65)

By theorem (5.3.4), the operator (65) turns into:

εAεf(ξ0) =

∫
γ

ΓH

(
Φξ0(ξ0),Φξ0(η)

)
f(η)dσ(η)

=

∫
γ

ΓH

(
0,Φξ0(η), ε

)
f(η)dσ(η)

=

∫
γ

ΓH

(
0,Φξ0(x(t),y(t), θ(t)), ε

)
f(x(t),y(t), θ(t))

√
ẋ2 + ẏ2 + θ̇2 dt

where Φ is the diffeomorphism (49).

Taking into account the explicit expression of Γξ0 (50) the kernel Γξ0
can be written as:

ΓH

(
0,Φξ0(x(t),y(t), θ(t)), ε

)
= h

(
e21(t) + e

2
2(t)

ε
,
|e3(t)|

ε

)
where h is a differentiable function vanishing at infinity and e1, e2, e3

are the coordinates defined by the change of variables (48). Therefore

the operator (65) turns into:

εAεf(ξ0) =

∫
γ

h

(
e21(t) + e

2
2(t)

ε
,
|e3(t)|

ε

)
f(x(t),y(t), θ(t))

√
ẋ(t)2 + ẏ(t)2 + θ̇(t)2 dt
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Plugging-in the change of variables (48), a Taylor expansion around

t = 0 gives:

x(t) − x(0) = tẋ(0) +
t2

2
ẍ(0) +O(t3) = t cos θ0 −

t2

2
sin θ0 +O(t3)

y(t) − y(0) = tẏ(0) +
t2

2
ÿ(0) +O(t3) = t sin θ0 +

t2

2
cos θ0 +O(t3)

Then:

e1(t) = sin θ0(y− y0) + cos θ0(x− x0) =

= t sin2 θ0 +
t2

2
cos θ0 sin θ0 + t cos2 θ0 −

t2

2
cos θ0 sin θ0 =

= t+O(t3)

e2(t) = θ(t) − θ0 =
t2

2
θ̈(0) +O(t3)

e3(t) = cos θ0(y− y0) − sin θ0(x− x0) −
1

2
e1e2 =

= t cos θ0 sin θ0 +
t2

2
cos2 θ0 − t cos θ0 sin θ0+

t2

2
sin2 θ0 −

1

2

(
t+O(t3)

)(t2
2
θ̈(0) +O(t3)

)
=

=
t2

2

(
1− θ̇(0)

)
+O(t3)

We Taylor expand the kernel h at e1(t)
2+e2(t)

2

ε with respect to incre-

ment |e3(t)|
ε :

h

(
e21 + e

2
2

ε
,
|e3|

ε

)
= h

(
e21 + e

2
2

ε

)
+

|e3|

ε
h ′
(
e21 + e

2
2

ε

)
+O(ε

3
2 ) =

= h

(
t2
(
1+ θ̇2(0)

)
ε

,
t2|1− θ̇(0)|

2ε

)
+
t2|1− θ̇(0)|

2ε
h ′
(
t2
(
1+ θ̇2(0)

)
ε

,
t2|1− θ̇(0)|

2ε

)
+O(ε

3
2 )

A Taylor expansion of the function f gives:

f
(
γ(t)

)
=
(
f ◦ γ

)
(0) =

(
f ◦ γ

)
(0) + t

(
f ◦ γ

) ′
(0) +

t2

2

(
f ◦ γ

) ′′
(0) +O(t3) =

= f(ξ0) + t
(
X1 + θ̇(0)X2

)
f(ξ0) +

t2

2

(
X1 + θ̇(0)X2

)2
f(ξ0) +O(t

3)
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We Taylor expand the derivative θ̇(t):

θ̇(t) = θ̇(0) + tθ̈(0) +
t2

2

...
θ(0) +O(t

3)

θ̇2(t) = θ̇2(0) + t2θ̈2(0) + 2tθ̇(0)θ̈(0) + 2t2θ̇(0)
...
θ(0) +O(t

3)

A Taylor expansion of the squared term gives:√
ẋ(t)2 + ẏ(t)2 + θ̇(t)2 =

√
1+ θ̇(t)2 =

= 1+
1

2
θ̇2(0) + tθ̇(0)θ̈(0) +

t2

2
θ̈2(0) + t2θ̇(0)

...
θ(0) +O(t

3)

The averaging kernel (65):

εAε =

∫
γ

h

(
e21(t) + e

2
2(t)

ε
,
|e3(t)|

ε

)
f(x(t),y(t), θ(t))

√
ẋ(t)2 + ẏ(t)2 + θ̇(t)2 dt

turns into:

ε

∫
B√ε

[
h

(
t2(1+ θ̇2(0))

ε
,
t2|1− θ̇(0)|

2ε

)
+
t2

2ε

(
θ̇(0)

)
h ′
(
t2(1+ θ̇2(0))

ε
,
t2|1− θ̇(0)|

2ε

)]
[
f(ξ0) + t

(
X1 + θ̇(0)X2

)
f(ξ0) +

t2

2

(
X1 + θ̇(0)X2

)2
f(ξ0) +O(t

3)

]
[
1+

1

2
θ̇2(0) + tθ̇(0)θ̈(0) +

t2

2
θ̈2(0) + t2θ̇(0)

...
θ(0) +O(t

3)

]
dt

=

The simmetry of h gives:∫
B√ε

th

(
t2(1+ θ̇2(0))

ε
,
t2|1− θ̇(0)|

2ε

)
dt = 0
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The operator (65) simplifies:

εAεf(ξ0) =

∫
B√ε

h

(
t2(1+ θ̇2(0))

ε
,
t2|1− θ̇(0)|

2ε

)
dt

+
1

2

(
X1 + θ̇(0)X2

)2
f(ξ0)

∫
B√ε

t2h

(
t2(1+ θ̇2(0))

ε
,
t2|1− θ̇(0)|

2ε

)
dt

+
1

2
f(ξ0)θ̇

2

∫
B√ε

h

(
t2(1+ θ̇2(0))

ε
,
t2|1− θ̇(0)|

2ε

)
dt

+ f(ξ0)
(1
2
θ̈2(0) + θ̇(0)

...
θ(0)

) ∫
B√ε

t2h

(
t2(1+ θ̇2(0))

ε
,
t2|1− θ̇(0)|

2ε

)
dt

+
1

2ε
f(ξ0)

(
1− θ̇(0)

)(
1+

θ̇2(0)

2

) ∫
B√ε

t2h
′
(
t2(1+ θ̇2(0))

ε
,
t2|1− θ̇(0)|

2ε

)
dt

Now we set:

m0 :=

∫
B1

h
(
t2(1+ θ̇2(0)),

t2

2
|1− θ̇(0)|

)
dt

m2 :=

∫
B1

t2h
(
t2(1+ θ̇2(0)),

t2

2
|1− θ̇(0)|

)
dt

m3 :=

∫
B1

t2h
′(
t2(1+ θ̇2(0)),

t2

2
|1− θ̇(0)|

)
dt

A change of variables yields:∫
B√ε

h

(
t2(1+ θ̇2(0))

ε
,
t2(1− θ̇(0))

ε

)
dt = εm0∫

B√ε

t2h

(
t2(1+ θ̇2(0))

ε
,
t2(1− θ̇(0))

ε

)
dt = ε2m2

The expansion turns into:

εAεf(ξ0) = εm0f(ξ0) +
1

2
ε2m2

(
X1 + θ̇(0)X2

)2
f(ξ0) +

1

2
θ̇2(0)εm0f(ξ0)

+ f(ξ0)
(1
2
θ̈2(0) + θ̇(0)

...
θ(0)

)
ε2m2 +

1

2ε
f(ξ0)

(
1− θ̇(0)

)(
1+

θ̇2(0)

2

)
ε2m3

Aεf(ξ0) = m0f(ξ0) +
1

2
εm2

(
X1 + θ̇(0)X2

)2
f(ξ0) +

1

2
θ̇2(0)m0f(ξ0)

+ f(ξ0)
(1
2
θ̈2(0) + θ̇(0)

...
θ(0)

)
εm2 +

1

2
f(ξ0)

(
1− θ̇(0)

)(
1+

θ̇2(0)

2

)
m3

Plugging-in θ̇(0) = 0 the integral operator turns into:

Aεf(ξ0) = m0f(ξ0) +
1

2
εm2∆γf(ξ0) +

1

2
εm2f(ξ0)θ̈

2(0) +
1

2
f(ξ0)m3
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Now we set:

m1 = m0 +
1

2
m3 (66)

E(ξ0) = θ̈
2(0) (67)

The computations yield the following statement.

Proposition 6.4.3. For each ε > 0, the averaging integral operator (65)

admits the following asymptotic expansion:

Aεf(ξ0) = m1f(ξ0) +
ε

2
m2
(
−∆γf(z) + E(ξ0)f(ξ0)

)
+O(ε

3
2 )

where ∆γ is the Heisenberg sublaplacian computed along the integral curve

γ, m0,E are the terms defined in (66),(67).

6.4.4 Asymptotics for the weighted graph Laplacian on RT

As in the euclidean case, we will consider a normalized version of the

averaging kernel.

Setting:

vε
2(ξ0) =

∫
γ

kε(ξ0, ξ)dξ,

the normalized averaging operator is defined as:

Aεf(ξ0) =
1

vε2(ξ0)

∫
γ

kε(ξ0, ξ)f(ξ)dξ (68)

Arguing as in section (6.4.4), we effort the following statement.

Proposition 6.4.4. The normalized averaging operator (68) admits the fol-

lowing asympotics expansion:

Aεf(ξ0) = f(z) −
ε

2

m2
m1

∆γf(ξ0) +O(ε
3
2 ) (69)

for each ε > 0.

6.5 heat kernel approximation

The outcomes of previous section are collected in the following theo-

rem.
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Theorem 6.5.1. Let Aε be the normalized graph Laplacian integral operator

(68).

Let

∆ε =
I−Aε

ε

be the approximateLaplace operator defined by Aε. Then for all f ∈ C∞
0 (RT):

lim
ε→0

∆εf = ∆0f

where ∆0 = 2m2

m1
∆γ.

Proof. The statement is a direct consequence of proposition (6.4.4).

Following [29], we will go on the approximation of the heat op-

erator along an horizontal integral curve, starting from the explicit

expression of the associated infinitesimal generator.

Theorem 6.5.2. Let T > 0 be a fixed time. For any t ∈ [0, T ]:

lim
ε→0

A
t
ε
ε = e−t∆0

where e−t∆0 is the heat operator on RT.

Proof. By proposition (6.4.4):

Aε = I− ε∆0 + ε
3
2Rε

where Rε is a bounded operator.

Let 1ε = 2l, with l ∈ N. If l is sufficiently large, for each m such that

1 6 m 6 l the following expansion hold:

A2
m

ε = (I− ε∆0)
2m + ε

3
2R

(m)
ε

with ‖ R(m)
ε ‖6 2m+1 ‖ Rε ‖.

Indeed by induction:

A2ε =
(
I− ε∆0 + ε

3
2Rε

)2 (70)

=
(
I− ε∆0

)2
+ ε

3
2
(
(I− ε∆0)Rε + Rε(I− ε∆0) + ε

3
2R2ε

)
(71)

=
(
I− ε∆0

)2
+ ε

3
2R

(1)
ε (72)
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where

R
(1)
ε =

(
(I− ε∆0)Rε + Rε(I− ε∆0) + ε

3
2R2ε

)
satisfies the estimate:

‖ R(1)ε ‖6 2 ‖ Rε ‖ +ε
3
2 ‖ Rε ‖2

since ‖ I− ε∆0 ‖6 1 if ε is sufficiently small.

Now suppose that:

A2
m

ε = (I− ε∆0)
2m + ε

3
2R

(m)
ε .

Then:

A2
m+1

ε = (I− ε∆0)
2m+1

+ ε
3
2
(
(I− ε∆0)

2mR
(m)
ε + R

(m)
ε (I− ε∆0)

2m + ε
3
2R

(m)2
ε

)
= (I− ε∆0)

2m+1
+ ε

3
2R

(m+1)
ε

with R(m+1)
ε satisfying for ε sufficiently small:

‖ R(m+1)
ε ‖6 2 ‖ R(m)

ε ‖ +ε
3
2 ‖ R(m)

ε ‖2 .

Let rm = 2−m ‖ R(m)
ε ‖. Then the following inequality holds:

rm+1 6 rm + 2m−1− 3
2 lr2m

Now suppose that um 6 2r0 for all m 6 m0 6 l. Summing the

previous inequality yields:

rm0
6 r0 + 2

−1− 3
2 l4r20

m0−1∑
j=0

2j

6 r0 + 2
1− 1

2 l2m0−lr20

6 r0 + 2
1− 1

2 lr20

6 2r0

if l is sufficiently large. Then rm 6 2r0 for all m 6 i. It follows:

‖ R(m+1)
ε ‖6 2m+1 ‖ Rε ‖

with Rε bounded as ε→ 0. Taking m = l we conclude:

lim
ε→0

A
1
ε
ε =

= lim
ε→0

(I− ε∆0)
1
ε + 2ε

1
2Rε = e

−∆0
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Since we are interested in spectral grouping on RT, we need to

ensure that the eigenfunctions of the approximate heat operator con-

verge to the eigenfunctions of the heat operator e∆0 .

Theorem 6.5.3 (Heat eigenfunctions approximation). The averaging op-

erator Aε is compact, then by spectral theorem admits the the following de-

composition:

A
t
ε
ε =

∑
j>0

µ
t
ε

ε,jPε,j

where Pε,j is the orthogonal projector on the eigenspace corresponding to

µε,j. Moreover, if

e−t∆0 =
∑
j>0

e−tν
2
j Pj

is the spectral decomposition of the heat operator, then:

lim
ε→0

µ
t
ε

ε,j = e
−tν2j (73)

lim
ε→0

Pε,j = Pj (74)

Proof. See [29].

6.6 numerical experiment

Numerical simulations will test the grouping performances of the

heat kernels of connectivity. The discretization of the kernel k is per-

formed via the stochastic method described in chapter (4). The oper-

ator Aε is discretized on the set of points (x,y, θ) of the stimulus:

Aε(xj,yj, θj) =
∑
i

k((xj,yj, θj), (xi,yi, θi)f(xi,yi, θi)

Since the operator acts on a finite dimensional space, we will idetify

Aε with the matrix K obtained restricting k on the data set. We will

call this matrix K the affinity matrix. The matrix K will be normalized

in accordance with formula (54), in order to keep its probabilistic

meaning. The first eigenvalues of K cluster the stimulus in r = 3 per-

ceptual groups.
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Consider a stimulus composed of oriented segments labeled with

both spatial coordinates (x,y) and orientation θ. The input data set is

of size [nx,ny,nθ] = [200, 200, 64]. The data set is perceptually orga-

nized in three groups, as shown in fig. (15): two perceptual units and

a third group composed of noise segments.

(a) (b)

(c)

Figure 15: Original stimulus with j = 10 noise segments with increasing

values of curvature

The output is depicted in fig. (16).
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(a) (b)

(c)

Figure 16: Spectral clustering performed with diffusion maps

Figure 17: Visualization of the block diagonal affinity matrix K
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