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1. Introduction  

 

1.1  Cardiorenal syndrome  

 

Cardiorenal  syndromes (CRS) represent an important chapter in the expenditure of 

health care plans worldwide. In the United States more than 1 million patients are 

hospitalized for heart failure (HF) each year.1 In most cases, dyspnea as a result of 

fluid overload dominates the clinical picture.  

Acute decompensated HF (ADHF) generally is  treated with intravenous (IV) 

diuretics, which have limited efficacy especially in patients with underlying 

chronic kidney disease (CKD).  

 

The simplistic view of CRS is that a relati vely normal kidney is dysfunctional 

because of a diseased heart , with the assumption that , in the presence of a healthy 

heart, the same kidney would perform normally. This concept has been recently 

challenged, and a more articulated definition of the CRS ha s been advocated. The 

CRS includes a variety of acute or chronic conditions,  where the primary failing 

organ can be either the heart or the kidney.  

 

Fig.1:  Cardiorenal syndromes circuit  

 

Previous terminology did not allow physicians to identify and fully characterize 

the chronology of the pathophysiological  interactions that characterize a specific 

type of combined heart/kidney disorder.   
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 A diseased heart has numerous negative effects on kidney function but,  at the 

same time, renal insufficiency can significantly impair cardiac function.  

 Thus,  direct  and indirect  effects of each organ that  is dysfunctional can initiate 

and perpetuate the combined disorder of the 2 organs through a complex 

combination of neuro -hormonal feedback mechanisms. For this reason, a 

subdivision of CRS into 5 different subtypes seems to provide a more concise and 

logically correct  approach 
[ 1 ]  [ 2 ]  [ 3]  [ 4]

: 

 

Acute cardiorenal syndrome (CRS Type 1)
[ 5 ]

:  acute decompensation of  cardiac 

function leading to acute renal failure.  This is  a syndrome of  worsening renal 

function that frequently complicates acute decompensated heart failure (ADHF) 

and acute coronary syndrome (ACS). Seven observational  studies  have  reported  

on  the  frequency  and outcomes  of   CRS  Type  1  in  the  setting  of   ADHF  

and five  in  ACS.  

Depending  on  the  population,  27% -40% of  patients hospitalized for ADHF 

develop acute kidney injury (AKI) as defined by an increase in serum creatinine  

of  ≥ 0.3 mg/dL.  

Risk predictors for this complication include reduced baseline renal function, 

diabetes, and prior HF.  

These patients experience more complicated hospital courses, longer inpatient 

stays, and higher mortality.  

In the Prospective Outcomes Study in Heart  Failure (POSH) study, only in those 

with ADHF and a hospital course  complicated  by  circulatory  shock,  

hypotension, cardiac arrest,  sepsis or ACS, a rise in serum creatinine did conf er a 

higher 6-mo mortality.   

Conversely,  those with an increase in serum creatinine of  ≥ 0.3 mg/dL but no 

other complications did not have higher mortality in the hospital , at 30 or 180 d. 

Thus, much of  CRS Type 1 mortality  is   confounded  by  a  compli cated  course  

and  AKI. Importantly,  it  has been noted that  CRS Type 1 in ADHF rarely  occurs  

in  the  prehospital  phase,  and  is  observed after hospitalization, implying that  

some factor associated with  hospitalization,  namely  diuresis,  precipita tes  CRS.  

The use of  loop diuretics, probably by further activation of   the renin -angiotensin 

system and possibly worsening intra -renal  hemodynamics,  have  been  identified  

as  one of the modifiable in -hospital determinants of CRS Type 1.  

Testani et  al  have recently shown in the Evaluation Study of  Congestive Heart 
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Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) trial that  

the use of  higher doses of  loop diuretics, causing emo concentration, resulted in a 

5-fold increased rate of  worsening renal function.  

However,  in this prospective trial  of  hemodynamic monitoring, aggressive 

diuresis was associated with a 69% reduction in mortality at  180 d.  Several  studies  

have now  linked  the  presence  of   an  elevated  central   venous pressure and 

renal venous congestion to the development of  CRS Type 1, thus, the relative 

balance of  venous and arterial  tone and congestion of  the kidney appear to be 

important in the drop in renal filtration that occurs during hospitalized treatment 

of  ADHF.  

The other major clinical scenario where CRS Type 1 develops is in the setting of  

urgent or elective coronary revascularization  for  acute  or  chronic  coronary  

disease.   

Acute contrast  induced and cardiopulmonary bypass surgery -associated AKI occur 

in 15% and 30% of  patients, respectively. Importantly,   iodinated  contrast  which  

causes renal vasoconstriction and direct  cellular toxicity to renal tubular cells is 

an important pre -existing factor in the few days before cardiac surgery.  

Cardiac surgery exposes the kidneys to hypotherm ic, pulseless reduced perfusion  

for 30-90 min, and thus represents a superimposed ischemic injury in the settin g of 

a pro- inflammatory state.  

 

       

     Fig.2:CSR Type1  

 

It  is possible that the extracorporeal circuit used in cardio -pulmonary bypass 

surgery activates systemic factors that further  induce  AKI;  however,  attempts  

to  limit  this  exposure have not resulted in significantly reduced rates of AKI.  
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Thus, these two scenarios are tightly l inked, since almost  every  cardiac  surgery  

patient  operated  upon  in the urgent setting undergoes coronary angiography in 

the hours to days before surgery. As with ADHF, CRS Type1 in acute and chronic 

coronary disease has a confounded relationship with outcomes. In those with 

complications, CRS Type 1 appears to be independently associated with a 3 to 4 -

fold increase in mortality despite the availabil ity of  dialysis in the hospital.  

In all forms of  CRS Type 1, there is a  risk of  advancing to higher stages of  CKD 

and ultimately the need for chronic renal replacement strategies.   

The incremental  and cumulative risk of  these renal outcomes  according  to  the  

clinical  scenarios  described above for an individual patient are unknown.  

Thus the important points concerning the epidemiology of  CRS Type 1 are: (1) the 

mortality risk appears to be confounded by other non renal complications 

occurring during the hospitalization; (2) intravascular iodinated contrast  alone, 

and in cases where cardiac surgery follows coronary angiography, direct  cellular 

toxicity from the contrast  itself  results in an observed rise in serum creatinine 

predominately in those with baseline reductions in renal filtration with additional 

risk factors, including diabetes,  heart  failure,  older age, and larger contrast 

volumes; and (3) in the setting of  ADHF, su perimposed use of  iodinated contrast  

or other cardiac procedures is  associated with longer lengths of  stay and higher 

mortality which is possibly in part, attributable to CRS Type 1.  

 

Chronic  cardiorenal  syndrome  (CRS  Type  2)
[ 5 ]

:   chronic abnormalit ies in 

myocardial function leading to worsened chronic kidney disease (CKD). This 

subtype implies that  chronic CVD can contribute to the development of  CKD.  

Six  observation  studies  have  reported  on  CRS  Type  2, with a minority of  

reports reporting on CVD contributing to an excess risk of  CKD.  

It  is  recognized that the risk factors for atherosclerosis, namely diabetes, 

hypertension, and smoking are independently associated with the development of  

CKD.  

In addit ion, chronic abnormalities in systo lic and diastolic myocardial  

performance can lead to alterations  in  neurohormonal  activation,  renal  

hemodynamics, and a variety of  adverse cellular processes leading to apoptosis 

and renal fibrosis.  Approximately 30% of those with chronic cardiovascu lar 

disease (CVD) meet a  

definit ion of CKD, and multiple studies have demonstrated the independent 
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contribution of  CVD to the worsening of  CKD.  

An important component of  CRS Type2  epidemiology  is   that   CKD  appears  to  

accelerate  the course  of   atherosclerosis  and  result   in  premature  CVD  

events  including  myocardial  infarction  and  stroke.  

Importantly,  CKD and its  metabolic milieu work to cause advanced  calcific  

atherosclerosis  through  CKD  mineral  and bone disorder characterized b y 

phosphate retention, relative vitamin D and calcium availability,  and secondary  

hyperparathyroidism.   

Of these factors,  phosphate  retention appears to be the crit ical pathophysiological  

component  stimulating  the  conversion  of   vascular  smooth m uscle cells to 

osteoblastic l ike cells which, via the Pit -1 receptor, are st imulated to produce 

extracellular calcium hydroxyapatite  crystals  in  the  vascular  smooth  muscle  

layer of  arteries.  

Thus, patients as a part  of  CRS type 2,  more commonly h ave vascular 

calcification, less vascular compliance, and a higher degree of  chronic organ 

injury related  to  blood  pressure  elevation  and  shear  stress.  

Despite these mechanisms specific to CRS, CRS Type 2 remains heavily 

confounded by the “common soil” of atherosclerosis and CKD.  

The cardiometabolic syndrome and neurohormonal activation affect both organ 

systems; thus,  it  is  difficult  to tease out the temporal  sequence of     

pathophysiological events for most individuals which are occurring over the period 

of  decades.  

 

 

 

Fig3: CSR Type2  
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Studies have shown that 45.0% -63.6% of  patients with chronic  HF  have  

evidence  of   CKD  defined  as  an  estimated glomerular fil tration rate (eGFR) < 

60 mL/min per 1.73 m2.  

Multiple studies have demonstra ted that CKD is  closely  linked  to  more  

frequent  hospitalizations  and complications from pump failure and arrhythmias.   

In addition, patients with CKD and end stage renal disease have higher 

defibrillation thresholds and may not have the protective b enefit of  implantable 

cardio defibrillators as those with normal renal function.  

Increased degrees of  left  ventricular  hypertrophy  and  cardiac  fibrosis  are  

believed to be the biologic basis for these electrophysiological findings.  

 

Acute renocardiac syndrome (CRS Type 3)
[ 5 ]

:  acute worsening of  renal function 

leading to cardiac events.  The most common scenario for CRS Type 3 is the 

development of  AKI  that  results  in  volume  overload,  sodium  retention,  

neurohormonal activation, and the development of  cl inical HF with the cardinal 

features of  pulmonary congestion  and  peripheral  edema.  Volume  overload  

alone  has been shown to induce cardiac failure and reflect CRS Type 3 most 

clearly in the pediatric population.  

 

 

Fig.4:  CSR Type3  

 

However, in adults, when acute on chronic disease is a common occurrence, i t  is 

difficult to identify clear cases where AKI lead to  cardiac  decompensation.  It  is   

also  possible  that  CRS Type 3 could precipitate in an acute coronary syndrome,  

stroke, or other acute cardiac event. Thus the epidemiology of this CRS subtype is 

not well defined for individual CVD  events  such  as  ACS,  stroke,  cardiac  

rehospitalization, arrhythmias, pump failure, and cardiac death.  
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Chronic  renocardiac  syndrome  (CRS  Type  4)
[ 5 ]

:   chronic renal disease 

leading to the progression of cardiovascular disease. Over the past  several  decades 

there has been recognition  of   a  graded  and  independent  association between  

the  severity  of   CKD  and  incidence  a s  well   as prevalence  of   CVD.   

In  a  meta-analysis  of   39  studies (1 371 990  part icipants),   there  was  a  clear  

relationship between  the  degree  of   renal  dysfunction  and  the  risk for all 

cause mortality.   

The unadjusted relative risk o f mortality  in  participants  with  reduced  kidney  

function was in excess of  the reference group in 93% of  cohorts.   

Fourteen of  the 39 studies described the risk of  mortality  

from reduced kidney function, after adjustment for other established ris k factors. 

Although adjusted relative hazard ratios were on average 17% lower than 

unadjusted relative risks,  they remained significantly greater than unity in 71%  

of cohorts.   

The overall mortali ty was influenced greatly by excess cardiovascular deaths,  

which consti tuted over 50% of cases. Thirteen studies have been identified as 

specifically  reporting  on  CRS  Type  4,  most  of   which  were  in populations 

with end-stage renal disease.   

It  should also be recognized, that CKD contributes to CVD outcom es in CRS Type 

4 by complicating pharmacological and interventional  treatment.   

For  example,  azotemia  and hyperkalemia restrict  the use of  drugs that 

antagonize the renin -angiotensin system, thus fewer patients with CKD enjoy the 

cardiovascular benef its of angiotensin converting  enzyme  inhibitors,  angiotensin  

Ⅱ  receptor  antagonists, and aldosterone receptor blockers.   

It  has been shown that CKD also worsens the presentation, severity, response to  

treatment, and cardiorenal outcomes in acute and chronic hypertension.  

In addition, the perceived risks of  AKI lead patients with CKD towards 

conservative  management  strategies  which  have  been  associated with  poor  

outcomes  in  the  setting  of   both  acute  and chronic coronary artery disease . 

Finally,  a recent study of  silent brain injury (asymptomatic cerebral infarctions  

by magnetic resonance imaging) has been associated with a rapid decline in renal 

function in approximately 30% of  patients.  

This suggests the possibility that cerebrova scular disease could in some way 

contribute to more rapid progression of  CKD.  
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Fig.5:  CSR Type4  

 

Secondary cardiorenal syndrome (CRS Type 5)
[ 5 ]

:  systemic il lness leading to  

simultaneous heart and renal failure.  It is recognized that a systemic insult,  

particularly in a younger patient with no prior heart or kidney disease, can lead to  

simultaneous  organ  dysfunction.  This  is   almost  always in  the  setting  of   

cri tical   illness  such  as  sepsis,  multiple trauma, or burns.   

There are l imited data on the incidence and  determinants  of   CRS  Type  5,   in  

part  because  of  confounders such as hypotension, respiratory failure, liver 

failure,  and  other  organ  injury  beyond  the  cardiac  and renal systems.  

This results in a difficult  human model for investigation.   

Sepsis  as  a  precipitator  of   CRS  Type  5  is  common  and  its   incidence  is  

increasing,  with  a  mortal ity estimated at 20% -60%.  

Approximately 11% -64% of  septic patients develop AKI that is associat ed with a  

higher  morbidity  and  mortality.    

Abnormalit ies  in  cardiac  function  are  also  common  in  sepsis  including  wall  

motion abnormalities and transient reductions in left ventricular ejection fraction. 

Observational data have found approximately 30%-80% of  individuals with sepsis 

have measurable blood troponin I or T that are above the 99
t h

 detection limits. 

These elevated cardiac biomarkers have been associated with reduced left  

ventricular function and higher mortality even in patients w ithout known coronary  

disease.   

Importantly,  volume overload as a result of  aggressive  fluid  resuscitation  
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appears  to  be  a  significant determinant  of   CRS  Type  5.   Among  3147  

patients  en rolled  in  the  Sepsis  Occurrence  in  Acutely  Il l   Patients (SOAP), 

there was a 36% incidence of  AKI, and volume overload was the strongest  

predictor of  mortality.   

Iatrogenic  volume  overload  appears  to  play  an  important additional role, 

possibly along the lines described for CRS Type 1 and pass ive venous congestion 

of  the kidney, in the pathogenesis of  AKI. At the same time, volume overload 

increases left ventricular wall  tension and likely contributes to cardiac 

decompensation in those predisposed to both systolic and diastolic HF.  

In summary for CRS Type 5, both AKI and markers of  cardiac injury followed  

by volume overload are common in sepsis, with each being associated with 

increased mortality.  However,  there is a current lack of  integral information on 

the incidence of  bidirectional o rgan failure and its  pathophysiological correlates 

in a variety of  acute care settings.  

 

Fig.6:  CSR Type5  

 

1.2 Blood property and Ultrafiltration technique  

 

1.2.1  What is blood and what constitutes  

 

The blood is a tissue formed by a suspension of cells in a liquid called plasma. 

Blood accounts for 7% of the human body weight 
[ 7 ] [ 8]

,  with an average density of 

approximately 1060  kg/m3, very close to pure water 's density of 1000  kg/m3.
[ 9 ]  
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The average adult has a blood volume of roughly 5 liters  (1.3 gal), which is 

composed of plasma and several  kinds of cells.   

 

 

 

 

 

 

 

 

 

 

 

Fig7: blood sample  

 

These blood cells (which are also called corpuscles or "formed elements") consist 

of erythrocytes (Red blood cells, RBCs), leukocytes (white blood cells ), and 

thrombocytes (platelets). By volume, the red blood cells constitute about 45% of 

whole blood, the plasma about 54.3%, and white cells about 0.7%.  

Whole blood (plasma and cells) exhibits Non -Newtonian fluid dynamics;  its  flow 

properties are adapted to flow effectively through tiny capillary blood vessels with 

less resistance than plasma by itself. In addition, if all  human hemoglobin were 

free in the plasma rather than being contained in RBCs, the circulatory  fluid would 

be too viscous for the cardiovascular system to function effectively.   

              

→ Cells:  

One microliter of blood contains:  

 4.7 to 6.1 million (male), 4.2 to 5.4 million (female) herytrocytes
 [ 1 0 ]

 :Red 

blood cells contain the blood's hemoglobin and distribute oxygen. Mature 

red blood cells lack a nucleus and organels in mammals.  The red blood cells 

(together with endothelial vessel cells and other cells) are also marked by 

glicoproteins that define the different blood types.  The proportion of blood 

occupied by red blood cells is  referred to as the hematocrit, and is normally 

about 45%. The combined surface area of all  red blood cells of the human 

body would be roughly 2,000 times as great as the body's exterior surface 
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[ 11 ]
. 

 4,000–11,000 leukocytes 
[ 11 ]

:  White blood cells are part  of the body's 

immune system; they destroy and remove old or aberrant cells and cellular 

debris, as well as at tack infectious agents (patogens) and foreign substances.  

The cancer of leukocytes is called leukemia.  

 200,000–500,000 thrombocytes
 [ 1 2 ]

:  Also called platelets, thrombocytes are 

responsible for blood clotting (coagulation). They change fibrinogen into 

fibrin. This fibrin creates a mesh onto which red blood cells collect and clot, 

which then stops more blood  from leaving the body and also helps to prevent 

bacteria from entering the body  

 

→ Plasma  

 

About 55% of blood is blood plasma, a fluid that  is the blood's liquid medium, 

which by itself is straw -yellow in color.  The blood plasma volume totals of 2.7 –

3.0 l iters (2.8–3.2 quarts) in an average human. It is essentially an aqueous 

solution containing 92% water,  8% blood plasma proteins, and trace amounts of 

other materials.  Plasma circulates dissolved nutrients, such as glucose,  amino 

acids and fatty acids (dis solved in the blood or bound to plasma proteins), and 

removes waste products,  such as carbon dioxide, urea,  and lactid acid.  

Other important components include:  

 Serum albumin  

 Blood-clotting factors (to facili tate coagulation)  

 Immunoglobulins (antibodies )  

 lipoprotein particles  

 Various other proteins  

 Various electrolytes (mainly sodium and chloride)  

The term serum refers to plasma from which the clotting proteins have been 

removed. Most of the proteins remaining are albumin and immunoglobulins  

→ Narrow range of pH values  

Blood pH is regulated to stay within the narrow range of 7.35 to 7.45, making it 
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slightly basic.
[ 1 2 ] [1 3]

 Blood that has a pH below 7.35 is too acidic, whereas blood 

pH above 7.45 is too basic. Blood pH, partial pressure of oxygen (pO2),  partial 

pressure of carbon dioxide (pCO2), and HCO3− are carefully regulated by a 

number of homeostatic mechanisms, which exert  their influence principally 

through the respiratory system and the urinary system in order to control  the acid -

base balance and respiration. An arterial blood gas test will measure these.  Plasma 

also circulates hormones transmitting their messages to various tissues.  The l ist of 

normal reference ranges for various blood electrolytes is extensive.  

 

1.2.2 Erythrocyte deformability  

 

Erythrocyte deformability refers to the ability of erythrocytes (red blood cells, RBC) to 

change shape under a given level of applied stress, without hemolysing  (rupturing). 

This is an important property because erythrocytes must change their shape extensively 

under the influence of mechanical forces in fluid flow or while passing through 

microcirculation. The extent and geometry of this shape change can be affected by the 

mechanical properties of the erythrocytes, the magnitude of the applied forces, and the 

orientation of erythrocytes with the applied forces. Deformability is an intrinsic 

cellular property of erythrocytes determined by geometric and material properties of 

the cell membrane,
[14]

 although as with many measurable properties the ambient 

conditions may also be relevant factors in any given measurement.  

 

 

Fig.8:Erythrocyte shape  

 

Shape change of erythrocytes under applied forces (i.e., shear forces in blood flow) is 

reversible and the biconcave-discoid shape, which is normal for most mammals, is 

http://en.wikipedia.org/wiki/Erythrocytes
http://en.wikipedia.org/wiki/Fluid_flow
http://en.wikipedia.org/wiki/Microcirculation
http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Erythrocyte_deformability#cite_note-1
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maintained after the removal of the deforming forces. In other words, erythrocytes 

behave like elastic bodies, while they also resist to shape change under deforming 

forces. This viscoelastic behavior of erythrocytes is determined by the following three 

properties:
[15]

  

 

1. Geometry of erythrocytes; the biconcave-discoid shape provides an extra 

surface area for the cell, enabling shape change without increasing surface 

area. This type of shape change requires significantly smaller forces than 

those required for shape change with surface area expansion.  

 

2. Cytolasmic viscosity; reflecting the cytoplasmic hemoglobin 

concentration of erythrocytes. 

 

3. Visco-elastic properties of erythrocyte membrane, mainly determined by 

the special membrane skeletal network of erythrocytes.  

 

1.2.3  What is hematocrit  

 

Hematocrit  (HCT) is a dimensionless quantity that expresses the percentage of 

blood volume occupied by red blood cell component:  

 

 

Fig.9:  hematocrit measure  

 

 

http://en.wikipedia.org/wiki/Elasticity_%28physics%29
http://en.wikipedia.org/wiki/Erythrocyte_deformability#cite_note-2
http://en.wikipedia.org/wiki/Cytoplasmic
http://en.wikipedia.org/wiki/Hemoglobin
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𝑯𝑪𝑻 % =
𝑷𝑪𝑽

𝑻𝑶𝑻𝑨𝑳 𝑩𝑳𝑶𝑶𝑫 𝑽𝑶𝑳𝑼𝑴𝑬
 

 

Eq.1: Hematocrit formule  

 

 

The HCT normal values are shown in the next tab:  

 

 Range %  

Male  40,7 -  50,3%  

Female  36,1 -  44,3%  

Tab1: Hematocrit physiological range  

 

The HCT is a very important index in the evaluation of a possible anemic state, since 

in this case the hematocrit value is decreased.  

In contrast, this value increases in all those situations in which there is exuberant 

production of red blood cells and hemoconcentration, with consequent reduction of the 

plasma fraction of blood (polycythemia).  

There are physiological conditions, such as pregnancy, in which is established a so -

called "physiological anemia". By this term is meant to specify that the hematocrit, due 

to the increase of the plasma component of the blood, is "diluted", and which therefore 

to slightly lower values than those normally present in the blood of women outside of 

pregnancy.  

In some sports, such as cycling, the regulation imposes an upper limit on the 

hematocrit value of the athletes to protect their health and to prevent the practice of 

doping . 

In response to a loss of whole blood (as occurs in the hemorrhagic shock), an 

hematocrit change is not expected,  since the relative proportions of the volume plasma 

and red cell volume remain unchanged. The reduction hematocrit occurs after about 8 -

12 hours from hemorrhage when the kidney begins to retain sodium and water.  

Within 12 hours from acute bleeding, altera tions in hematocrit are therefore a 

reflection of resuscitation and not an index of the extent of blood loss.  

In contrast, the hematocrit will be increased in the early stages of shock from loss of 

fluids. 
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 1.2.3.1 Hematocrit: an important index in ultrafi ltration therapy  

 

Other situations where the monitoring of hematocrit play an important role,  are the 

Cardiorenal syndromes (CSR):  

In these circumstances,  extracorporeal  techniques of fluid removal may become 

an important rescue therapy.  

Ultrafiltration has been used to relieve congestion in patients with heart failure 

since the 1970s. In contrast to the adverse physiological  consequences of loop 

diuretics, numerous studies have demonstrated favorable responses to 

ultrafiltrat ion. Many studies have shown that  removal of large amounts of isotonic 

fluid relieves symptoms of congestion, improves exercise capacity, improves 

cardiac filling pressures, restores diuretic responsiveness in patients with diuretic 

resistance, and has a favorable effe ct on pulmonary function, ventilatory 

efficiency, and neurohormon levels.  

Newer simplified devices today permit performance of ultrafi ltration (UF) with 

low extracorporeal  priming volumes and low blood flows, makin g it  feasible at 

most hospitals
[ 1 6 ]

.   

Some machines currently used for ultrafiltrat ion are equipped with an optical  

sensor for the measurement of hematocrit .  

This sensor acts as an additional control  about the effectiveness of treatment and 

is installed in the withdrawal line.  

By monitoring HCT during UF treatment,  

 

  changes in blood volume can be estimated  

  volume depletion can be detected earl ier  

  drops in blood pressure or creatine rises can be prevented  

 

Blood volume measurement is  a useful tool to prevent major complications during 

extracorporeal,  a reduction in the circulating blood volume may further decrease 

cardiac output,  leading to a further impairment of organ perfusion.  

This can be avoided if the circulaiting volume is maintained and UF rate is driven 

by the refilling capacit y of the cardiovascular system of patient  

The sensor can show when critical thresholds are reached  (5%-7%), allowing 

modulation of the UF rate according to the speed of intravascular refil ling.  
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These devices can be programmed so that fluid  removal is stopped if the increase in 

hematocrit exceeds the threshold set by the treating physician (3% -7%) and resumed 

when the hematocrit value decreases to less than the pre  specified limit, which 

indicates that adequate refilling of the intravascular  volume from the interstitial space 

has occurred. 

The hydration status of the patient should be determined carefully and while fluid is 

removed.
[17]

 

 

1.2.4 Blood Ultrafiltration  

Ultrafiltration (UF) is a type of membrane fil tration in which hydrostatic pressure 

forces a liquid against a semipermeable membrane.  A semipermeable membrane is 

a thin layer of material capable of separating substances when a driving force is  

applied across the membrane.  

This separation process is used in industry and research for purifying and 

concentrating macromolecular (103 -  106 Da) solutions, especially protein 

solutions  

 

 

Fig.10: UF scheme  

 

→ Blood Ultrafiltrat ion  

 

An intravenous catheter is  placed using local anesthetic.  When treatment begins, 

the catheter will be connected to a blood circuit filter, which will withdraw blood 

from the patient’s vein and fil ter out excess water.   The filtered blood is then 
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returned to the patient.   To avoid any potential problems with blood filter circuit  

clott ing, patients may be given a blood thinner (anticoagulant) before and/or 

during treatment.  

The length of time of the treatment is determined by the amount of total fluid that 

needs to be removed.   Generally,  outpatients receive treatment for eight hours in 

one day or continuously for 24 to 72 hours as an inpatient.  

Following the treatment, some patients feel better right away, while others may 

require more time depending on their condition and amount of excess fluid that 

needs to be removed. For patients who have had shortness of breath, it  may 

improve or go away altogether.  

After the treatment i s complete, the catheters may be removed or they may be left 

in place to administer additional fluids and medications. The physician will  adjust  

medications as needed and may p rescribe additional UF treatments.
[ 1 8 ]  

 

 

 Fig.11: Extracorporeal cirucit  

 

The filter  consists of a bundle of hollow fibers coated with a semipermeable 

membrane of a synthetic type (polysulfone, AN69, polyamide, 

polymethylmethacrylate, etc..) formed by a thin layer of porous plastic material, 

with the specific features of selective pe rmeability to different solutes and water.  

Inside the filter, the blood is concentrated (hemoconcentration for removal of 
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plasma water) .   

 

 

Fig.12: UF fi lter section  

 

The blood flow in the circuit can range from 10 to 200 ml / min, second vascular 

access , choice and mode of RRT (Renal Replacement Therapy) of the purification 

requirements of the patient.   

 

 

Fig.13: filter description  

   

Usually an extracorporeal circulation requires anticoagulant therapy.  

This helps to prevent blood clotting in the circuit,  with a consequent reduction of 

system efficiency and loss of blood: the blood content of a complete circuit  (filter 

and piping system) can in fact  vary from 30 to 300 ml.  

 

 → The water transport  

 

The movement of water molecules through the membran e semipermeable filter is 

carried out for ultrafiltration, for displacement of fluid volumes following the 
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creation a hydrostatic pressure difference across the membrane (or transmembrane 

pressure TMP).  

Transportation will  be provided from the compartment  with higher pressures (in 

the compartment of the blood) to the one with lower pressures (in the subtion 

ultrafiltrate).  

 

 

Fig.14: Schematic water transportation  

 

The passage of fluid to the compartment at low pressure, is due to the presence of 

small holes located on the wall of the fibers which constitute the filter.  
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2. Rational  

 

The objective of this thesis is the characterization of an optical sensor for on-line 

measurement of hematocrit and implementation of the calibration algorithm.  

In other words, the algorithm target is to return the fitting curve that characterizes the 

optical device used for reading out the hematocrit value.  

The main steps of this work are as follows:  

 

1. Planning the calibration session with a useful acquisition of data necessary for the 

construction of a black box model 

 

 output: reading from the optical sensor (expressed in mV) 

 input: (Real value of hematocrit) This magnitude, expressed in percentage 

points, is obtained by a system of blood centrifugation system. 

 

2. Algorithm development 

 

The algorithm that  is  implemented and used offline aims at  returning the curves  

that  represent  the data regression.   

In addition, during the implementation of the code, a number of statistical aspects,  

such as data normalization, which are important for the evaluation of the  results, 

have been taken into consideration.  

 

The need for a normalization process arises in the presence of inconsistent data, 

and therefore not comparable between them.  

This heterogeneity is  caused by two aspects:  

 

 The hardware system that is  the basis of the acquisition system.  

 Each sensor is characterized by its own reference value which are   

 inevitably different from each other.  

 

In addition to the construction of a calibration algorithm, the objective of this study is 

to evaluate the influence of the operating state of the pump on the hematocrit reading.  

A further aspect relates to the speed of the pump flow on the reading by the optical 

sensor. In fact, in the light of the results from other research work, it is known that the 
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red blood cell undergoes a mutation of its morphology after mechanical stresses caused 

by changes in the blood flow. 
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3. Methods and materials  

 

3.1 Hematocrit measurement and wavelength determination  

 

The hematocrit reading is typically made using an optical sensor (photodiode) that 

emits radiation at  a specific wavelength. (λ).  

The physical process that is  the basis of this approach is known as the law of 

Lambert-Beer.  

The Lambert-Beer law is an empirical relationship that  correlates the amount of  

light absorbed by a medium to the chemical nature , the concentration and the 

thickness of the medium traversed.  

When a beam of light (monochromatic) intensity I 0   passes through a layer of a 

thickness l of a medium, a part of it  is absorbed by the medium itself,  another one 

is scattered and another part is transmitted with residual intensity I1 .  

The ratio between the intensity of the transmitted light and incident on the medium 

traversed is expressed by the following relationship:  

 

𝐼0
𝐼1

= 𝑒−𝐾𝜆𝑙 = 𝑇 = 𝑒−𝐴 

Eq.2: Lambert -beer law  

 
 I0  and I1  are the intensity (power per unit  area) of the incident light and the 

transmitted light,  respectively.
[ 1 9 ]  

 Kλ:  Absorption coefficient
 

 l:  solution thickness
 

 T: Transmittance
 

 A: Absorbance
 

 

Fig.15: Beer Lambert law and acquisition chain (blood application)  
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For the measurement of hematocrit ,  i t  is  usually evaluated the absorp tion due to 

the following substances:   

>    hemoglobin (HbO2)  

    >   deoxyhemoglobin (Hb)  

 

 the Hb and HbO2 optical cha racteristics are very different, this is shown in the 

wavelength graphic:  

 

 

 Fig.16: Wavelength determination  

 

As we can see, the wavelength that  allows us to be independent from the ratio  

HbO2 /Hb, is:  805nm.  

This size is also known as “isosbestic point”  

The isosbestic point corresponds to a wavelength at which these spectra cross each 

other. 

The wavelength of 805 nm is also present in the surrounding environment even if 

this is not detectable by the human eye because it  belongs to the infrared 

spectrum.  

The Intensity of this  environmental radiation may be considered constant in 

presence of sun l ighting or up 120 Hz with fluorescence lamps.  

To allow the rejection of this environmental radiation, measurement is made in  

with pulsati le light.  
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A high pass -filter can be used to di scriminate two components.   

 

3.2 Calibration protocol  

 

Calibration set up  

 

Before beginning the process of acquisition, some steps are required to allow the 

detection of the reference value (HCT_ref_value) and the init ialization of the 

device:  

 

1.  Device programming in diagnostic mode  

1a. Boot loader execution (A boot loader is a computer program that loads the 

main operating system or runtime environment for the computer after completion 

of the self-tests. )   

1b. Program verify  

1c. Device reset  

2.  Restart of the device and acquisition of the reference value with the use of a 

dedicated filter.  

3.  Repeat steps 1a,  1b, 1c  

4.  line priming with saline  

5.  line installation following display instruction  

6.  test  data acquisition using serial  sniffer ( see below descript)  

 

  __Set-up__  

 

 The calibration of the sensor was carried out on bovine blood.  

1 -  Baker filled with 200ml of concentrate blood  (HCT0=51% )  

2 -  Turning the pump on and subsequent filling of the l ine. The filling saline 

solution was discarded.  

5 -  Priming terminated  

6 -  Start  of trial  

  └  periodic addition of saline  

  └  hematocrit  reading (real value):  centrifugation machine  

  └   mV in data acquisition from the sensor  
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     Fig.17: Calibration set -up  

 

Saline addiction:  

 

To obtain a decrease of hematocrit  equal to a percentage point of each period, an 

addition of saline solution is required to vary at each period, according to the 

following formula:   

 

𝑠𝑎𝑙𝑖𝑛𝑒_𝑎𝑑𝑑𝑒𝑑𝑖 =
[𝑉𝐵𝐿𝑂𝑂𝐷(𝐻𝐶𝑇𝑖 −𝐻𝐶𝑇𝑖+1)]

𝐻𝐶𝑇𝑖+1
 

 

Eq.3: Saline addiction formula  

 

cumulative_weight_increment ( i )=cumulative_weight_increment ( i -1 )+salin_added ( i )   
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The measures carried out by the photoreceptor are influenced by the amount of red 

blood cells in the visual field of the optical sensor.  

In this regard, in order to avoid non -homogeneous acquisit ions caused by an 

irregular passage of red blood cells, the blood was mixed continuously at  low 

speed.  

 

Hematocrit determination by centrifugation:  

 

Centrifugation is a separation method that enables the s eparation of two substances 

of a heterogeneous mixture by means of centrifugal force. It i s used for the 

separation of solid- liquid or liquid - liquid heterogeneous mixtures.  

In case the blood is used as a heterogeneous l iquid, you will get  a separation that  

will differentiate  plasma from the cellular component in a precise way 
[ 2 0 ]

.  

 

 

Fig.18: Physical  principle of blood centrifugation  

 

 

 

a)  Filling  

 

When fill ing the capillary,  take care not to close  the 

opposite end. For hematocrit determination the capillaries 

must be fully filled.  

For the capillary filling, this last is  positioned as shown in 

the image:  

When the capillary is in contact  with the b lood drop the fill  

is immediate.  
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b) Centrifuging  

 

Place the capillary with its  closed end pointing outwards (towards the rim of the 

rotor) horizontally into the hematocrit  rotor. Put the lid on the rotor and the 

centrifugation will start  automatically.  

 

The duration of the process lasts for about  ten minutes.  Subsequently, the 

hematocrit reading is done easily using a graduated scale:  

 

Fig.19: Hematocrit measure example  

 

 

Data acquisition  

 

As previously mentioned, the data is acquired on a PC via “Serial  Sniffer”.  

This device allows you to capture and view the entire data traffic circulating 

inside the machinery for ultrafiltration.  

Serial  sniffer is mainly composed of two parts,  both dedicated specifically for this 

application.  

 

 HW interface:  

 The data transmission protocol with which the machine  communicates 

internally is  RS485. This protocol is used in a wide range of computer and 

automation system.  

Through a dedicated circuit, this  transmission protocol is converted to 
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RS232.  

Finally,  the data reaches the PC through a simple cable  RS232-USB.  

 

 SW interface:  

The program interface allows you to se lect the port  on which to sniff , 

displays and finally logs all serial port activity.  

 

 

Fig.20: Serial Sniffer  

 

After selecting the target of interest, the application is launched and begins 

capturing data (Sniffing):  

 

 

Fig.21: Serial sniffer acquisition  
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Upon completion of the acquisition ,  a file (.csv) is automatically created, as shown 

in the example below.  

 

 
Fig.22: data acquired from serial sniffer process  

 

 

For each unit,  information of different kinds are acquired in hexadecimal 

encoding.  

 

3.3 Calibration algorithm  

  

In the following pages,  there is a description of the calibration algorithm using a 

flow chart.   

 

3.3.1 Serial Sniffer data processing  

 

In this first  scheme, there are described the steps used for the selection of the data 

belonging to the reading of the sensor and to the state of operation of the pump.  

The acquisition of both variables is  essential  to understand the evolution of the 

optical  reader according to the state operation of the pump.  

The result obtained from this acquisition step will be fundamental  for the choice 

of the data necessary for the realization of the regression curve.  
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START 

data= .csv data loading 

all = String splitting(data) 

all(i)= ”HCT” 

? 

No 

yes 

HCT_elements = all(i) 

all(i)= ”PUMP” 

? 

No 

PUMP_elements = all(i) 

HCT_elements_splt = strsplt(HCT_elements) 

PUMP_elements_splt = strsplt(PUMP_elements) 

yes 

 

p_ad_v = hex2dec(HCT_elements_splt) 

em_curr = hex2dec(em_curr_hex)  

PUMP_state= hex2dec(PUMP_elements_splt) 

 

p_ad_v_n = p_ad_v .* (100*ones(p_ad_v)) ./ em_curr   

STOP 

Explanation in sub-

chapter 3.3. 
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The second block diagram represents the main work done in this thesis, namely the 

selection of the data that  will be used for the implementation of the calibration 

curve.  

The data selected for the construction of the curve, were taken p_ad_v_n  values in 

correspondence of the withdrawal  phase of the pump, in particular:  

 

t_pull_finish -percent < p_ad_v_selection< t_pull_finish  

 

 

Fig.23: Sniffer processing plot  

 

 

For the collection of data,  this option is preferable  because the hematocrit  readings 

located at  the end of the sampling period should  be more truthful.   

This justifies the previous acquisit ion of data on the state of operation of the 

pump.  
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START 

pump_state(i+1)

=   pump_state(i) 

? 

starter = starter++ 

yes 

no 

indicates the instant  

from which to start 

 the calculation of the period 

pump_state(i)== 

   pump_state(i-1) 

? 

T_pp = T_pp++ 

no 

yes 

T_pp indicates the period 

 of push/pull.  

pump_period=2*T_pp 

percent=(T_pp/100)*60 
percent, it represents the portion of 

the pull period in which the  

p_ad_v_n  

values will be selected. 

pump_state(i+1) 

< 

    pump_state(i) 

t_pull_finish(K)= i 

yes 

p_adv_n_selection(f,:)=mean(p_ad_v_n(t_pull_finish(i):-1:t_pull_finish(i)-percent)) 

no 

th_var=45 
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abs(p_adv_n_selection

(i+1)- 

p_adv_n_selection(i)) 

<th_var 

p_adv_fix(P)= p_adv_n_selection(i) 

yes 

HCT_mean=mean(p_adv_fix) 

plot(p_adv_fix) 

plot(pump_state) 

STOP 

no 
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3.3.2 Data regression  

 

At this point, the data obtained were plotted as a function of hematocrit current and 

subsequently interpolated. 

Given the distribution of the data, it was decided to use two types of fitting: 

exponential and polynomial. 

 

3.3.2.1 Exponential  regression
[2 1 ]

 

 

The exponential curve is usually expressed in the form:  y=A*rx  

The idea is  to convert an exponential curve to a linear one using logarithms, as 

follows:  

Start with the exponential function:  

 

    y=Ar
x  

and take the logarithm of both sides:  

 

    logy=log(Ar
x
)  

The properties of logarithms give  

 

    log(y) = log(A)+log(r
x
)     or     log(y)  = log(A)+xlog(r)   

 

This expresses logy as a l inear function of x, with  

    

Slope = m = log(r)  

Intercept = b = log(A)  

 

Therefore, if we find the best -fit line using logy as a function of x, the slope and 

intercept will be given as above, and so we can obtain the coefficients r and A by:  

 

    r =10
m

   ;    A=10
b
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3.3.2.2 Polynomial regression
[2 2 ]

 

 

Given a set of m (xi;yi) data points and polynomial degree n polyfit finds the n  

coefficients for: 

y=a0+a1x+a2x
2
+…+anx

n
       (1) 

 

that best fit y (x) in the sense of minimizing the sum of the residuals  (yi-yi
calc

)
2
 

where yi
calc

 represents the value calculated with eq.1. By default, polyfit produces a 

Scilab polynomial representing eq.1. 

 

 Mathematical background 

 

Fitting of eq. 1 is based on the minimization of the objective function f obj defined as 

𝑓𝑜𝑏𝑗 = ∑[𝑦𝑖 − (𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖
2 +⋯+)]2

𝑚

𝑖=1

 

meaning that fobj = fobj (a0,a1,….,an). But instead of using eq. 9, the problem is 

recast in the generalized form: 

 

𝑦 = 𝑎0 0 + 𝑎1 1 +⋯+ 𝑎    

making  0 (𝑥) =  ,  1(𝑥) = 𝑥,…..,   (𝑥) =   , this way the minimization based on 

 

𝜕𝑓𝑜𝑏𝑗

𝜕𝑎𝑖
= 0 

 

for  i = 0,1,2,…..,n generates a matrix equation of the form : 

 

(   ) = (   )          (2) 

 

where the unknown values of 𝑎𝑖 grouped in A=[𝑎0  𝑎1    𝑎 ]’ depend on 

Y=[ 1   2     𝑚]’ and 

 

 = [

 10 ⋯  1 
⋮ ⋱ ⋮

 𝑚0 ⋯  𝑚 

] 
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Solution of eq. 2 using Scilab’s \ operator is not advisable because the sums of powers 

of x tend to produce terms in the matrix with considerable differences in order of 

magnitude. Instead, the QR factorization is used to transform eq. 2 into  

 

𝑅 = 𝑄(   ) 
 

where R is an upper triangular matrix, meaning that the 𝑎𝑖 values can be calculated 

recursively from an down to 𝑎0, with the definitions 

 

𝐵 = 𝑄(   ) = [𝑏0 𝑏1   𝑏 ]′ 

and  

 

𝑅 = [

𝑟0 0 ⋯ 𝑟0  
⋮ ⋱ ⋮
0 ⋯ 𝑟   

] 

 

the 𝑎  coefficient comes from 

𝑎 =
𝑏 
𝑟   

 

 

the 𝑎 −1 coefficient comes from 𝑎 : 

 

𝑎 −1 =
(𝑏 −1 − 𝑟 −1  𝑎 )

𝑟 −1  −1
 

 

and so on, down to 𝑎0 and filling the A variable.  

 

3.3.2.3 Segmented regression
[2 3 ]

 

 

The segmented regression joins the midpoints of the dependent variable Y 

corresponding to the different values of the independent variable X. In other words, it 

is the broken line whose nodes are the points of coordinates  (Xi, M (Y | Xi)) 
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Fig.24: Example of Broken regression  

 

The segmented regression allows you to guess how varied the mean of Y to change the 

mode of X.  

The pair of values (Xi, M (Y | Xi)) is used to make predictions for Y only at the values 

of X already observed.  

 

 

3.3.2.4 Coefficient of determination
[2 4 ]  

 

In statistics, the coefficient of determination (R
2
) indicates how well data points fit a 

statistical model – sometimes simply a line or curve. It is used in the context 

of statistical models whose main purpose is either the  prediction of future outcomes or 

the testing of hypotheses, on the basis of other related information. It provides a 

measure of how well observed outcomes are replicated by the model, as the proportion 

of total variation of outcomes explained by the model.
  

 

 Definition: 

 

A data set has values yi, each of which has an associated modelled value  f i (also 

sometimes referred to as ŷi). Here, the values yi are called the observed values and the 

modelled values fi are sometimes called the predicted values.  

In what follows, ȳ is the means of the observed data: 

 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Prediction#Statistics
http://en.wikipedia.org/wiki/Hypotheses
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 =  
 

𝑛
∑𝑦𝑖

 

𝑖=1

 

where n is the number of observations. 

The "variability" of the data set is measured through different sums of squares: 

 

𝑆𝑆 𝑂 = ∑(𝑦𝑖 −  )2

𝑖

 

 

the total sum of squares  (proportional to the sample variance); 

 

𝑆𝑆   = ∑(𝑓𝑖 −  )2

𝑖

 

 

 the regression sum of squares, also called the  explained sum of squares. 

 

𝑆𝑆   = ∑(𝑦𝑖 − 𝑓𝑖)
2

𝑖

 

 the sum of squares of residuals, also called the  residual sum of squares. 

The notations  and  should be avoided, since in some texts their meaning is 

reversed to Residual sum of squares and Explained sum of squares, respectively.  

The most general definition of the coefficient of determination is : 

 

  =  −
     
     

 

Interpretation 

 

R
2
 is a statistic that will give some information about the  goodness of fit of a model. In 

regression, the R
2
 coefficient of determination is a statistical measure of how well the 

regression line approximates the real data points. An  R
2
 of 1 indicates that the 

regression line perfectly fits the data.  

Values of R
2
 outside the range 0 to 1 can occur where it is used to measure the 

agreement between observed and modeled values and where the "modeled" values are 

not obtained by linear regression and depending on which formulation of  R
2
 is used. 

http://en.wikipedia.org/wiki/Sum_of_squares
http://en.wikipedia.org/wiki/Total_sum_of_squares
http://en.wikipedia.org/wiki/Explained_sum_of_squares
http://en.wikipedia.org/wiki/Residual_sum_of_squares
http://en.wikipedia.org/wiki/Goodness_of_fit
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3.3.3 Normalization  

  

Normalization is a statistical operation that compares different distributions.  

There are several ways to normalize data families, but in any case the ultimate 

objective is  to make them consistent and comparable.  

In our case, we have done two steps of normalization.  

The first step of normalization is  due to the hardware of the device, because the 

output of the LED emitter is expressed as a percentage of the maximum.  

 

Fig.24: HW normalization setup  

 

The value obtained with hardware normalization is calculated with the formula 

below:  

 

𝑝_𝑎𝑑_𝑣_𝐻𝑊𝑁 =   00
(𝑝ℎ𝑜𝑡𝑜_𝑎𝑑_𝑣𝑎𝑙𝑢𝑒)

𝐸
 

 

This formula is already implemented in the hematocrit sensor embedded software. 

 

The second step of normalization has the objective of standardizing readings from 

optical  sensors, inevitably characterized by a different reference value 

(REF_VALUE).  

The term "reference value" indicates  the value of the reading device made by 

placing a known density filter between  the transmitter and the receiver.  

For each sensor, a reading was made with the reference filter.  Figure 13 shows the 

block diagram of this second step of normalization:   
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Fig.25: second step normalization  

 

3667mV is the reference value of hematocrit sensor used in the first calibration 

session. This value will be called REF_VALUE1. 

In the second calibration session, a sensor with a reference value equal to 

2900mV(REF_VALUE2) has been used. 

 

The table below shows the values belonging to optical  sensors installed on these 

specific ultrafiltration devices.   

The serial  number indicates the ultrafiltration device:   

  

Factory Calibration  

Serial  number  ref_value [mV]  

2  2825  

3  3118  

4  3000  

6  3336  

7  3411  

8  3216  

9  2581  

10  2720  

 

Tab.2: Optical Reference values  

 

As we can see, the reference values can be rather rather different between them. 

Therefore, a normalization procedure is required to standardize the data obtained. 
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For the normalization procedure, there are two approaches:  

The first method consists of a simple addition or subtraction of a value (Delta), which 

represents the difference between the reference values: 

 

Delta=ref_value_perist - ref_value_C 

and then: 

𝑝_𝑎𝑑_𝑣_𝐻𝑊𝑁_ 𝑒𝑙𝑡𝑎𝑁𝑜𝑟 =  _  _ _              
 

Another technique used for data normalization is to provide a proportion of this type: 

 

p_ad_v_HWN: ref_value_C= X : ref_value_perist  

 

𝑋 =
𝑝_𝑎𝑑_𝑣_𝐻𝑊𝑁 ∗  r f_   u _  ris 

𝑟𝑒𝑓_𝑣𝑎𝑙𝑢𝑒_𝐶
 

 

X represents the normalized value in mV 

Data regression and normalization flow chart:  

 

1)  Delta Normalization  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Load CalibrationSession1.xls 

Load CalibrationSession2.xls 

 

 

Delta=Ref_value_perist-Ref_value_C 

 

p_ad_v_HWN_DeltaNorm = p_ad_v_HWN + 

Delta 

 

plot(p_ad_v_HWN_DeltaNorm) 

STOP 
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1)  Reference value normalization  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4 How the pump flow affects the hematocrit  reading  

 

In paragraph 1.2.4, there is a reference to a few concept about the deformabil ity of the 

red blood cells and its viscoelastic characteristics.  

These notions have been introduced because a further issue addressed in this work 

concerns the dependency of hematocrit reading by the speed of the pump. 

In literature, there are several studies concerning the modeling of red blood cell s and 

as its shape depends on the velocity of the flow.  

A common model for red blood cells is a vesicle,  which is a drop of liquid that is 

completely enclosed by a bilayer made from the same kind of phospholipid  molecules 

found in cell membranes. Red blood cells are different from vesicles in that they have a 

cytoskeleton protein network underneath the lipid bilayer membrane, which gives the 

system a shear elasticity and supports a biconcave shape (about 8 mm in diameter) 

under static conditions (top of Fig. 1). However, under flow conditions, the fact that 

the cell can deform contributes to the viscous energy dissipation of the flow.  

For example, a red blood cell can tumble, as a rigid body, and tank -tread, where the 

cell maintains a constant orientation in a flow while the membrane rotates around the  

Polyfit 

 

plot(p_ad_v_HWN_RefNorm) 

STOP 

Start 

Load CalibrationSession1.xls 

Load CalibrationSession2.xls 
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cell’s cytoplasm. There is also a symmetric “parachute” morphology where the cell 

deforms as a result of viscous forces, but  it keeps a symmetric shape and therefore 

cannot tank-tread. 

In vivo studies have already demonstrated that red  blood cells do form asymmetric 

shapes in vessels that are less than 20 mm, which is only a little larger than 

the cell itself 
[24]

. In the presence of large viscous forces, the cell deforms 

asymmetrically into a “slipper” shape  
[25]

.  

These asymmetric cells tank-tread because asymmetric viscous forces, produced by the 

cell’s asymmetric shape or the non-symmetric position of the cell relative to the long 

axis of the vessel, act on the membrane. 

This “slipper” shape, which is a consequence of the confinement  of the cell in a close-

fitting channel, is believed to substantially reduce viscous dissipation 
[26]

. 

 

 

Fig.26: The shape of red blood cells depends on the flow environment 

 

Figure 26 shows that the deformation of the red blood cells vary the speed of the flow 

in different conditions: Symmetric shape and Asymmetric shape  

In both configurations assumed, there is a noticeable change in the geometric part of 

the red blood cell. 

In our thesis work, we investigated this phenomenon acquiring readings by varying the 

speed of the pump. 

The ultrafiltration device concerned, use an optical sensor for the measurement of 
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hematocrit; according to this study, it is reasonable to assume that this behavior can 

affect further the phenomenon of scattering already present.  
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4.Results  

 

4.1 Calibration Algorithm  

 

The calibration algorithm was run for each value of hematocrit. In the following pages, 

the graphs obtained are displayed: 

 

HCT = 29.5%  

 

 

HCT = 32%  
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HCT = 32.5%  

 

 

 

HCT = 34%  
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HCT = 35.5%  

 

 

 

HCT = 36%  
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HCT = 37%  

 

 

HCT = 38%  
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HCT = 39% (I)  

 

 

HCT = 39% (II)  
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HCT = 39% (III)  

 

HCT = 41%  
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HCT = 42%  

 

 

HCT = 43%  
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HCT = 43.5%  

 

HCT = 44%  
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HCT = 45%  

 

 

HCT = 46%  
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HCT = 47%  

 

 

HCT = 49%  
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HCT = 50%  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

4.2 Data regression and normalization:  

 

The table below shows the data obtained from the acquisition step.  

Every single value represents the output coming by Serial sniffer data processing 

algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab.3: Data processing output  

 

In the following graph, the red points represent the simple plot of data  contained 

in Tab.3.  

Every single point  identifies the result obtained by two m ain steps:  

-  During the first step, there is an average of photo and values placed in all  

sample windows of interest of the hematocrit acquisition:  

 

t_pull_finish -percent < p_ad_v_selection< t_pull_finish  

 

The second step is a simple average of the results obtained in the previous step.  

HCT p_ad_v_n 

29,5 5789,546 

32 5310,309 

32,5 5115,286 

34 4941,080 

35,5 4537,070 

36 4383,207 

37 4242,908 

38 4102,700 

39,5 3896,583 

41 3796,590 

42 3637,780 

43 3532,551 

43,5 3423,510 

44 3223,607 

45 3329,515 

46 3116,890 

47 3014,970 

49 2921,856 

50 2746,134 
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As described in the previous chapter, the values corresponding to each point of 

hematocrit were interpolated with polynomial and exponential  regression.  

In the graphs below the black curve repre sented the delta normalization.  

The last schematic show the trend obtained using a broken of regression.  

The black curve shown in the three graphs below is the result of the DELTA 

normalization.  

 

1)  Exponential regression  

 

 
 

𝑦𝑆2 = 14602.14 𝑒−0.026∗𝑋      𝑦𝑆3 = 16363.05 𝑒−0.035∗𝑋 
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𝑦𝐷𝐸𝐿𝑇𝐴_𝑁𝑂𝑅𝑀 = 15523.78 𝑒−0.029∗𝑋 

𝑅2 =0.9894  

2)  Polynomial regression  

 

 
 

𝑦𝑆2 = −0.084𝑥3 + 13.35𝑥2 − 787.24𝑥 + 20541.09 

𝑦𝑆3 = −0.098𝑥3 + 15.75𝑥2 − 922.93𝑥 + 21877.4 

𝑦𝐷𝐸𝐿𝑇𝐴_𝑁𝑂𝑅𝑀 = −0.098𝑥3 + 15.75𝑥2 − 922.93𝑥 + 22644.4 

𝑅2 =0.994 (third order)  

 

3)  Segmented regression  
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The black curve shown in the three graphs below is the result of the REF_VALUE 

normalization.  

 

1)  Exponential Regression  

 

 

𝑦𝑆2 = 14602.12𝑒−0.026∗𝑋  𝑦𝑆3 = 16363.05𝑒−0.026∗𝑋 

𝑦𝐷𝐸𝐿𝑇𝐴_𝑁𝑂𝑅𝑀 = 20690𝑒−0.026∗𝑋 

𝑅2 =0.9914  

 

2)  Polynomial Regression  
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𝑦𝑆2 = −0.084𝑥3 + 13.35𝑥2 − 787.24𝑥 + 20541.09 

𝑦𝑆3 = −0.098𝑥3 + 15.75𝑥2 − 922.93𝑥 + 21877.4 

𝑦𝐷𝐸𝐿𝑇𝐴_𝑁𝑂𝑅𝑀 = −0.12𝑥3 + 19.92𝑥2 − 1167.032𝑥 + 27663.69 

𝑅2 =0.994(third order)  

 

3)  Broken of Regression  

 

 

4.3 Hematocrit valuation during pump flow variation  

 

This test was performed for two different values of hematocrit: 29.5 and 39.5 
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HCT = 29.5 , PF = 60ml/min 

 

 

HCT = 29.5 , PF = 80ml/min 

 

 

 

HCT = 29.5 , PF = 100ml/min 
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HCT = 29.5 , PF = 120ml/min 
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HCT = 29.5 , PF = 160ml/min 

 
 

 

HCT=29.5 

PF [ml/min] p_ad_v 

60 5839,64 

80 5816,49 

100 5789,54 

120 5752,15 

160 5672,75 

 

Tab.3: HCT=29.5 pump flow variation 
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HCT = 39.5 , PF = 40ml/min 

 

 

HCT = 39.5 , PF = 80ml/min 
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HCT = 39.5 , PF = 100ml/min 

 

 

HCT = 39.5 , PF = 120ml/min 
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HCT = 39.5 , PF = 160ml/min 

 

 

 

 

 

 

 

 

 

 

 

Tab.4: HCT=39.5 pump flow variation 

 

The following graph shows the trend of the hematocrit reading as a function of flow 

velocity: 

HCT=39.5 

PF [ml/min] p_ad_v 

40 3889,84 

80 3904,12 

100 3896,58 

120 3812,87 

160 3721,31 
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5. Discussion  

 

- Calibration algorithm: Hematocrit data processing  

 

As it can be seen from the graphs obtained for each hematocrit value , the correlation 

between the state of operation of the pump and reading of the optical sensor is evident.   

In particular, for low values of hematocrit and just after the change of operation of the 

pump (push pull) photo_ad_value increase from a “low” stable value to a “high” 

stable value.  

This pattern is repeated periodically for all hematocrit values between 29.5 and 39. 

From this value, then up to a value of HCT equal to 50, data show a reversal in the 

level of stable values: a “high” value during push and a “low” value during pull. Thi s 

lead the photo ad value to decrease during the transition from the push phase to the 

pull phase. 

This behavior may be influenced by the following phenomenon: 

 

 Due to gravity: in the withdrawal line blood on which the reading is performed, 

the hematocrit sensor is positioned vertically and traversed by blood flow from 

bottom to top.  

During the return phase (push) of the pump the flow in withdrawal line is 

stopped, so there will be a precipitation of red blood cells which tend to fall 

within the reading cell and a simultaneous output of red blood cells from the 

bottom of the reading cell itself .  

 

o The balance of this input/output flow that involve the reading cell is also 

influenced by change of the section of the reading cell from its input to its 

output.  

 

o Dilution of blood. 

 

- Calibration algorithm: Fitting curve and data normalization  

 

In paragraph 4.4.2, the data obtained with the calibration algorithm subjected to 

exponential and polynomial regression are shown . 
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Looking at the two calibration curves :  

 

- Blue curve obtained with a calibration set-up, where a peristaltic pump was 

used. 

- Red curve obtained with a calibration set-up, where Chiara pump was used  

 

Qualitatively similar trends are noticed .  

Subsequently, the black curve was obtained through a normalization that involves the 

use of Reference value of the sensors used in the two sessions of calibration. 

It is also interesting to note that both calibration curves obtained with an exponential 

regression follow the Beer-Lambert law of absorption from the point of view of 

morphological analysis.  

Regarding the goodness of the regression, R
2
 indicates that the exponential model used 

performs an excellent data fitting.  

Given the distribution of the data, polynomial regression was employed as an 

additional interpolation technique.  

This choice was made in order to compare, in terms of computational cost, the 

exponential regression with polynomial regression. 

 

- hematocrit readings and pump flow variations.  

 

Looking at the results, we can say that the pump speed has an influence on the 

hematocrit reading. 

We shall consider now the first value of the hematocrit: 29.5 % 

Like the speed of the pump (range : 60ml/min ÷ 120ml/min ), the hematocrit reading 

undergoes a decrease of about 87.49 mV. Despite this variation, by analyzing the 

calibration curve in the vicinity of Ht = 29.5 % , this difference would result in a 

change in the hematocrit value of less than half a percentage poin t. 

The procedure applied in the vicinity of Ht = 39.5 % (range : 40ml/min ÷ 160ml/min ) 

has confirmed the decrease with increasing pumping speed which in this case is equal 

to 168mV, that corresponds to a ΔHct of 1,5%. 

A hematocrit value is almost doubled compared with the previous, there’s errors shall 

be taken in account for determination of sensor accuracy.  

As introduced above, the red blood cell is highly deformable in response to mechanical 
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stress; the phenomenon just described could then be attributed to the high erythrocyt e 

deformability associated with scattering phenomena. 
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6. Conclusions and future perspectives  

 

The hematocrit, also known as PCV (Packed Cell  Volume),  is a measure with a 

great clinical importance in the treatment of blood ultrafiltration.  

This thesis focuses on the elaboration of an algorithm that will be abl e to 

implement the calibration curve of the optical sensor of the hematocrit and the 

study has confirmed the results expected on the curve.  

Polynomial  regression has proven to be a good choice for data fitting. In fact,  R
2
 

being comparable,  polynomial regression presents a lower  computational cost .  

Furthermore, this project highlighted some interesting phenomena related to the 

flow and to the operational mode of the pump used in the study.  

Unlike other devices, which feature a traditional peristaltic pump, in the 

ultrafiltrat ion device examined, a two-phase volumetric pump has been employed.  

Clearly,  this type of pump had a strong influence on the elaboration of the 

algorithm, leading us to choose the withdrawal phase in the selection of  the photo 

ad values that are necessary for the implementation of the curve.  

Important information has also been gathered in the reading tests of the sensor in 

relation to the flow speed of the pump. As regards both hematocrit values  

analyzed, it  can be observed that there exi st a repeatabil ity of the phenomenon and 

a correlation between the two findings.  

Further developments of this study may be focused on the selection of data 

collected by the algorithm of data processing. 

In this respect,  an interesting  application of the study may be the comparison 

between the calibration curve already produced and the curve obtained through the 

use of the photo ad values that have been selected in the thrust  phase of the pump.  

In addition, the implementation of fluid dynamic numerical model s able to 

describe blood dynamics represents another effective tool that would integrate all 

information gathered in the previous tests.  

Furthermore, hemolysis  (a process of rupturing of erythrocytes, due to chemical, 

thermal and mechanical stress ) might be taken into consideration during further 

analysis,  although  hemolysis is very limited in ultrafiltration treatment.  
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7. Appendix: listed  

  

p_adv-HCT.sce  

clc;   
clear ; 
close;  
stacksize('max') 
tab1=[]; 
tab2=[]; 
///////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////-- S N I F F E R___D A T A__P R O C E S S I N G -//////////////////////////// 
/////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
p_ad_v_n_mean=[] 
add=1;     //tables counter 
 
////////////////////////////////////////// data loading  ///////////////////////////////////////////// 
 
for M=1 

t=msprintf('C:/Users/gabriele/Desktop/tesi medicon/Hct 
Hgb/Calibrazioni_su_sangue_bovino/Session03/2013.12.18/2013_12_18_hct%i_PF100_
W.csv') ;  

 fd_r = mopen(t,'rt') 
 data=mgetl(fd_r); 
 s=size(data) 
 print(%io(2),s) 
 proc_lenght = s(1,1) 
 
dir_magn = 500 // pump direction magnify value  
 
//////////////////////////////////////// string splitting ////////////////////////////////////////////// 
 
for i=1:proc_lenght           // “strsplit” perform the  string splitting in presence of                   
    all(i,:)=strsplit(data(i,:),',')'    ;        //  comma. 
end                                                                    
 
/////////////////////////////// Find "HCT" and "PUMP" sequences  //////////////////////////////// 
 
//  The matrix  “all” is scanned by the “strcmp” command to find the interest sequences: PUMP  
//  and  HCT.  The elements are collected in dedicated vectors: HCT elements, PUMP elements   
 
j=4; HCT_count=1;                        
for i=1:proc_lenght 
       if(strcmp(all(i,j),'HCT'))==0      
              HCT_elements(HCT_count,:)=all(i,:); 
              HCT_count=HCT_count+1; 
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       end 
end 
l=size(HCT_elements) 
 
PUMP_count=1 
for i=1:proc_lenght 
       if(strcmp(all(i,j),'PUMP'))==0      
              PUMP_elements(PUMP_count,:)=all(i,:); 
              PUMP_count=PUMP_count+1; 
       end 
end 
l1=size(PUMP_elements) 
 
////////////////////////////////// separation of all elements in HTC row /////////////////////////// 
for i=1:l(1,1) 

HCT_elements_splt(i,:)=strsplit(HCT_elements(i,5),'')' 
end 
 
for i=1:l1(1,1) 

PUMP_elements_splt(i,:)=strsplit(PUMP_elements(i,5),'')' 
end 
 
/////////////////////////////////// selection of items to be converted   ///////////////////////////// 
 
for i=1:l(1,1) 
             k(i,:)=[HCT_elements_splt(i,19:20) HCT_elements_splt(i,17:18)]; 

p_ad_v_hex(i,:)=strcat(k(i,:)); 
end 
 
for i=1:l(1,1) 

str_em_cur(i,:)=HCT_elements_splt(i,13:14);  ////////  concatenates character strings     
hex_em_cur(i,:)=strcat(str_em_cur(i,:)); 

end 
 
for i=1:l1(1,1) 
    k1(i,:)=PUMP_elements_splt(i,10); 
    pump_state_hex(i,:)=strcat(k1(i,:)); 
end 
      
p_ad_v=hex2dec(p_ad_v_hex);  // p_ad_v_hex end hex_em_cur elements are 
em_curr=hex2dec(hex_em_cur);  // converted in double from hexadecimal 
p_ad_v_n = p_ad_v .* (100*ones(p_ad_v)) ./ em_curr    // HW normalization 
pump_state=(hex2dec(pump_state_hex) - 3*ones(pump_state_hex)) * (max(p_ad_v_n) - 
min(p_ad_v_n)) + min(p_ad_v_n)*ones(pump_state_hex);  
 
tab1(:,add)= mean(p_ad_v_n); 
tab2(:,add)= mean(pump_state);      //// pump action 
add=add+1; 
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end 
//////////////////////////////////// calculating period length ////////////////////////////////////// 
 
starter=0 
for i=1:length(pump_state) 
    if pump_state(i+1)==pump_state(i) 
        starter=starter+1 
    else 
        break    // starter is the starting point 
end              // from this point is then calculated the number of samples corresponding 
end              // to half the period pump 
T_pp=0 
for i=(starter+3):1000           // Increase the T_pp counter that represent half-life 
    if pump_state(i)==pump_state(i-1)  
        T_pp=T_pp+1; 
    else 
       break; 
end 
end 
 
/////////////////////////// selection of  the elements in the PULL range //////////////////////////// 
 
pump_period=2*T_pp; 
percent=(T_pp/100)*60 
K=1;f=1; 
t_pull_finish=[]; 
p_adv_n_selection=[] 
 
// the target of the iteration below is find end collect the samples time that represent the pump  
// state change: pull push 
 
for i=starter:length(p_ad_v_n)-2 
        if pump_state(i+1)<pump_state(i) 
            t_pull_finish(K)=i; 
            K=K+1; 
        end 
end 
if starter-percent>0 
    V=1 
    else 
    V=2; 
end 
 
for i=V:length(t_pull_finish) 
    p_adv_n_selection(f,:)=mean(p_ad_v_n(t_pull_finish(i):-1:t_pull_finish(i)-percent)); 
    f=f+1; 
end 
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// p_adv_n_selection contain the optical reading presents in the pump preset range 
 
th_var=45 
P=1 
clear p_adv_fix 
 
/////////////////////////////////////////// fix iteration /////////////////////////////////////////////// 
 
// This cycle represent a control that remove the mean value of a single pump period if this value 
// is out of a range imposed. This check it’s performed setting a constant: th_var 
// If the difference between a mean value contained in the “p_adv_n_selection” vector and its  
// subsequent is higher than “th_var”, the iteration is stopped and this last value will be removed .  
 
for i=1:length(p_adv_n_selection)-1 
    if abs(p_adv_n_selection(i+1)-p_adv_n_selection(i))<th_var  
       p_adv_fix(P)= p_adv_n_selection(i); 
       P=P+1 ; 
    else 
        p_adv_fix(P)= p_adv_n_selection(i); 
    break 
end 
end 
 
////////////////////////////////////////////// HCT mean ///////////////////////////////////////////// 
 
HCT_mean=mean(p_adv_fix) 
print(%io(2),HCT_mean) 
 
higher=max(p_ad_v_n) 
lower=min(p_ad_v_n) 
print(%io(2),higher,lower) 
 
tdir = 'C:/Users/gabriele/Desktop/tesi medicon/Hct-Hgb/scliab'; /// save a matrix as csv file format 
fprintfMat(tdir+"/values" ,tab1); 
 
/////////////////////////////////////////////   plot  /////////////////////////////////////////////////// 
set(gca(),"auto_clear","off") 
plot(p_ad_v_n,'-b') 
T=1; H=1; 
 
for i=1:length(pump_state) 
    if(pump_state(i)<tab2) 
        push_mode_time(T)=i; 
        T=T+1; //push 
    else 
        pull_mode_time(H)=i; 
        H=H+1; //pull 
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    end 
end 
 
W=1 
for i=1:length(push_mode_time) 
    push(W)=pump_state(push_mode_time(i)); 
    W=W+1; 
end 
Y=1 
for i=1:length(pull_mode_time) 
    pull(Y)=pump_state(pull_mode_time(i)); 
    Y=Y+1; 
end 
plot(push_mode_time,push,'.g',pull_mode_time,pull,'.y') 
vect=(starter:T_pp:length(pump_state)); 
range_val=min(pump_state):max(pump_state); 
for i=1:length(vect) 
    plot(vect(i),range_val,'.c'); 
end 
 
mtlb_hold 
title("Snif processing",'fontsize',3); 
xlabel("sample",'fontsize',3);  
ylabel("ph_ad_value",'fontsize',3);  
legend(['Photo_ad_v';'push state';'pull state';'state changing'],[[2;1]], opt=6, font_size=5 ) 
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regression.sce  

 

clc; 
clear all;  
stacksize('max') 
 
//////////////////////////////////////////// Session 02 /////////////////////////////////////////////// 
 
HCT=[25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 
55 56 57 58 59 60 61 62 64.5] 
Avg=[8148.95 7731 7356.51 7046 6757.25 6518.46 6302 6120.37 5941.94 5782.63 5612.15 
5444.38 5305.92 5178.19 5054.92 5274.11 5157.06 5044.54 4714.06 4601.43 4491.72 4376.57 
4260.56 4143.38 4030.56 3916.11 3807.32 3707.04 3594.8  3502.9 3420.71 3333.68 3256.73 
3180.63 3101.9 3021.45 2946.2 2855.42 2690.54] 
minimi=[8014 7594 7242 6910 6626 6382 6176 6010 5826 5678 5502 5316 5180 5062 4946 5160 
5052 4936 4657 4545 4428 4325 4198 4081 3968 3861 3753 3651 3545 3447 3372 3286 3207 
3124 3049 2953 2880 2800 2634] 
massimi=[8278 7848 7478 7154 6880 6636 6412 6226 6050 5904 5698 5552 5404 5298 5150 5386 
5258 5140 4770 4652 4550 4428 4315 4213 4086 3968 3861 3768 3655 3553 3470 3388 3304 
3230 3157 3071 2996 2908 2751] 
dev=[68.74 67.55 71.91 72.84 91.85 67.25 65.86 62.3 73.43 71.5 79.3 62.01 68.42 65.85 54.8 67.72 
63.11 62.38 32.12 32.63 36.76 33.7 30.91 37.14 34.64 31.93 32.91 33.6 32.06 32.76 32.91 32.32 
31.54 3268 32.79 31.69 31.35 34.55 34.9 ] 
 
// [k2, c2] = polyfit(HCT, Avg, 3) 
// print(%io(2),k2) 
 
[k2 c2] = reglin(HCT, log(Avg)) 
B2=exp(c2) 
y2=B2*exp(k2*HCT) 
//print(%io(2),B2,k2) 
plot(HCT,Avg,'*') 
plot(HCT,y2)  
 
////////////////////////////////////////////// Session 03 //////////////////////////////////////////// 
 
 [fd,SST,Sheetnames,Sheetpos] = xls_open('C:/Users/gabriele/Desktop/tesi medicon/calibr. 
curve/CalibrazioneSession03bovino.xls') 
[data,TextInd] = xls_read(fd,Sheetpos) 
 
//  you choose whether to print the data processing carreid out in the process of choosing the pull  
// or push. 
// The data are loaded from CalibrazioneSession03bovino.xls 
HCT_C=data(3:21,2) 
p_ad_v_C=data(3:21,3) 
// HCT_C=data(3:21,9) 
// p_ad_v_C=data(3:21,10) 
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[k3 c3] = reglin(HCT_C', log(p_ad_v_C')) 
B3=exp(c3) 
y3=B3*exp(k3*HCT_C) 
// [k3, c3] = polyfit(HCT_C, p_ad_v_C, 3) 
// print(%io(2),k3) 
// print(%io(2),B3,k3) 
plot(HCT_C,p_ad_v_C,'g*')   ////////Session 03 
plot(HCT_C,y3,'g') 
 
////////////////////////////////////////// DELTA NORM ///////////////////////////////////////////// 
Ref_value_C=2900; 
Ref_value_perist=3667; 
Delta=Ref_value_perist-Ref_value_C 
 
for i=1:length(p_ad_v_C) 
    p_ad_v_C_DeltaNorm(i)=p_ad_v_C(i)+Delta 
end 
 
// [k4 c4] = reglin(HCT_C', log(p_ad_v_C_DeltaNorm')) 
// B4=exp(c4) 
// y4=B4*exp(k4*HCT_C) 
// print(%io(2),B4,k4) 
// [k4, c4] = polyfit(HCT_C, p_ad_v_C_DeltaNorm, 3) 
//print(%io(2),k4) 
//plot(HCT_C,c4,'k') //HCT_C,p_ad_v_C_DeltaNorm,'k*', 
 
///////////////////////////////////// REF VALUE NORM black curve /////////////////////////////////     
 
alfa=Ref_value_perist/Ref_value_C 
p_ad_v_C_RefNorm=alfa*p_ad_v_C' 
plot(HCT_C,p_ad_v_C_RefNorm,'k*') 
[k5 c5] = reglin(HCT_C', log(p_ad_v_C_RefNorm)) 
B5=exp(c5) 
y5=B5*exp(k5*HCT_C) 
plot(HCT_C,p_ad_v_C_RefNorm,'k*') 
plot(HCT_C,y5,'k') 
 
legends(['Session 2';'Session 3';'RefNorm'],[2,3,1], opt=3 ) 
 
mtlb_hold 
 
title('calibration: Session02, Session03','fontsize',3) 
xlabel('HCT %','fontsize',3) 
ylabel('sensor output [mV]','fontsize',3) 
mtlb_grid 
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//////////////////////Regression coefficient/////////////////////// 
 
e=p_ad_v_C_DeltaNorm-c4   // e: error or residual -- yh: fitted value   
SSE=e'*e   // sum square error  
ybar=mean(p_ad_v_C_DeltaNorm);  // mean value of y 
SST=sum((p_ad_v_C_DeltaNorm-ybar)^2); //Total sum of squares 
R2=1-SSE/SST; 
print(%io(2),R2) 
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pump_flow.sce  

 

clc; 
clear; 
close; 
[fd,SST,Sheetnames,Sheetpos] = xls_open('C:/Users/gabriele/Desktop/tesi medicon/calibr. 
curve/CalibrazioneSession03bovino.xls') 
[data,TextInd] = xls_read(fd,Sheetpos) 
 
//////////////////////////////////////////////// PULL  //////////////////////////////////////////////// 
 
PF_pull_29=data(27:31,2)            // column select 
HCT_pull_29=data(27:31,3) 
 
PF_pull_39=data(35:39,2) 
HCT_pull_39=data(35:39,3) 
set(gca(),"auto_clear","off") 
 
subplot(121) 
plot(PF_pull_29,HCT_pull_29,'-*r') 
plot(PF_pull_39,HCT_pull_39,'-or') 
mtlb_grid 
title("PF variation- PULL mode",'fontsize',3);  
xlabel("PF",'fontsize',3);  
ylabel("ph_ad_value",'fontsize',3);  
legend(['HCT 29.5';'HCT 39.5'],[[2;1]], opt=6, font_size=5 ) 
//////////////////////////////////////////////// PUSH  //////////////////////////////////////////////// 
 
PF_push_29=data(27:31,9) 
HCT_push_29=data(27:31,10) 
 
PF_push_39=data(35:39,9) 
HCT_push_39=data(35:39,10) 
 
subplot(122) 
plot(PF_push_29,HCT_push_29,'-*b') 
plot(PF_push_39,HCT_push_39,'-ob') 
mtlb_grid 
title("PF variation- PUSH mode",'fontsize',3); xlabel("PF",'fontsize',3); 
ylabel("ph_ad_value",'fontsize',3);  
legend(['HCT 29.5';'HCT 39.5'],[[2;1]], opt=6, font_size=5 ) 

 

 

 



 

86 

 

 

 

 

 



 

87 

 

8.Bibliography  

 

[1].Cardiorenal Syndrome. Claudio Ronco, Mikko Haapio, Andrew A. House, Nagesh 

Anavekar, Rinaldo Bellomo. 

 

[2]. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (November 2008). 

"Cardiorenal syndrome". J. Am. Coll. Cardiol . 52 (19): 1527–39. 

doi:10.1016/j.jacc.2008.07.051. PMID 19007588.  

 

[3]. Ronco C, Chionh CY, Haapio M, Anavekar NS, House A, Bellomo R (2009). "The 

cardiorenal syndrome". Blood Purification.   

 

[4].Ronco C, McCullough P, Anker SD, et al. (December 2009). "Cardio-renal 

syndromes: report from the consensus conference of the Acute Dialysis Quality 

Initiative". 

 

[5]. Cardiorenal Syndromes(2011). Peter A McCullough, Aftab Ahmad  

 

[6]. Extracorporeal Ultrafiltration in Heart Failure and Cardio -Renal Syndromes MR 

Costanzo Seminars in Nephrology 2012 

 

[7]. The Franklin Institute Inc. “Blood – The Human Heart” Retrieved 19 March 2009.  

 

[8]. Alberts, Bruce (2012). "Table 22-1 Blood Cells". Molecular Biology of the Cell. 

NCBI Bookshelf. Retrieved 1 November 2012.  

 

[9]. Jump up to: Elert, Glenn and his students (2012), "Volume of Blood in a Human", 

The Physics   Factbook, archived from the original on 2012-11-01, retrieved 2012-11-

01  

 

[10]. Shmukler, Michael (2004). "Density of Blood". The Physics Factbook. Retrieved 

4 October 2006.  

 

[11]. "Medical Encyclopedia: RBC count". Medline Plus. Retrieved 18 November 2007.  

 

[12]. Waugh, Anne; Grant, Allison (2007). "2". Anatomy and Physiology in Health and 



 

88 

 

Illness (Tenth ed.). Churchill Livingstone Elsevier. p. 22.  

[13]. Acid-Base Regulation and Disorders at Merck Manual of Diagnosis and Therapy 

Professional Edition 

 

[14].Chien S (1987). "Red cell deformability and its relevance to blood flow". Annual 

Review of Physiology  49: 177–192. 

 

[15].Mohandas N, Chasis JA (1993). "Red blood cell deformability,membrane material 

properties and shape: regulation by transmembrane transmembrane, skeletal and 

cytosolic proteins and lipids". Seminars in Hematology 

 

[16]. Fiaccadori E. - Ultrafiltrazione ed emofiltrazione nel paziente cardiologico 

 

[17]. Ronco C. et al Cardiology 2001; 96:196-201 

 

[18].Acquapheresis – The answer for many heart failure patients  

 

[19]. J. D. J. Ingle and S. R. Crouch, Spectrochemical Analysis , Prentice Hall, New 

Jersey (1988) 

 

[20]. Blood Plasma Pooling   

 

[21]. Finite Mathematics by Stefan Waner and Steve R.Costenoble  

 

[22]. R. Skalak and P. I. Branemark, Science 164, 717 (1969). Appunti di calcolo 

numerico. Capitolo 5. Servizio Editoriale universitario Pisa – Azienda Regionale 

Diritto allo studio Universitario. 

 

[23]. Statistica 1 - F.Bartolucci – Università di Urbino 

 

[24].  Steel, R.G.D, and Torrie, J. H.,  Principles and Procedures of Statistics with 

Special Reference to the Biological Sciences. , McGraw Hill, 1960, pp. 187, 287.) 

 

[25]. P. Gaehtgens, C. Dührssen, and K. H. Albrecht, Blood Cells 6, 799 (1980). 

 

http://en.wikipedia.org/wiki/McGraw_Hill


 

89 

 

[26]. P. Gaehtgens and H. Schmid-Schönbein, Naturwissenschaften 69,294 (1982). 



 

90 
 

Ringraziamenti 

 

 

 

 

 

Dedico questo mio lavoro alle persone che durante questi anni hanno sempre 

creduto in me e mi sono state vicino durante momenti difficili. 

A tal proposito, un grazie di cuore è rivolto alla mia famiglia e a Claudia: la mia ragazza. 

Ringrazio chiaramente la Prof.ssa Marcelli e l’Ing.Comai (Medicon Ingegneria) per avermi dato la 

possibilità di svolgere questa bellissima esperienza.  
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