Solaroli, Sonia
 
(2013)
Analisi combinatoria dei parchi d'attrazioni.
[Laurea], Università di Bologna, Corso di Studio in 
Matematica [L-DM270]
   
  
  
        
        
	
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
    
  
  
    
      Abstract
      Da oltre mezzo secolo i parchi di divertimento sono strutture complesse e altamente organizzate, entro cui si muovono migliaia di persone quotidianamente; in cui l'elettrificazione, la manutenzione, la sicurezza (sia come safety sia come security) non possono essere lasciate all'improvvisazione.
Fra i diversi modelli matematici con cui è possibile rappresentare un parco di divertimenti i grafi si adattano bene a rappresentare l'organizzazione "geografica" delle attrazioni e dei sentieri che le collegano. Fortunatamente
la teoria dei grafi si presta anche molto bene all'impostazione e risoluzione dei problemi di ottimizzazione, fornendo quindi uno strumento privilegiato
per miglioramenti strutturali nella direzione sia del risparmio economico, sia della fruizione ottimale delle strutture.
In questa tesi ho analizzato un aspetto particolare dei grafi associati a quattro parchi d'attrazione: le distanze reciproche tra attrazioni e in particolare la collocazione dei "centri", cioè di vertici del grafo per cui la massima
distanza da altri vertici sia minima. I calcoli sono stati eseguiti adattando un'implementazione esistente in Matlab dell'algoritmo di Dijkstra, utilizzando in ingresso le matrici di adiacenza dei grafi.
Dopo un capitolo dedicato ai richiami essenziali di teoria dei grafi, il capitolo due traccia una breve storia dei parchi d'attrazione concentrandosi sui quattro che sono l'oggetto di questo studio. Il terzo capitolo, fulcro teorico della tesi, descrive la sperimentazione riportata nel capitolo quattro.
     
    
      Abstract
      Da oltre mezzo secolo i parchi di divertimento sono strutture complesse e altamente organizzate, entro cui si muovono migliaia di persone quotidianamente; in cui l'elettrificazione, la manutenzione, la sicurezza (sia come safety sia come security) non possono essere lasciate all'improvvisazione.
Fra i diversi modelli matematici con cui è possibile rappresentare un parco di divertimenti i grafi si adattano bene a rappresentare l'organizzazione "geografica" delle attrazioni e dei sentieri che le collegano. Fortunatamente
la teoria dei grafi si presta anche molto bene all'impostazione e risoluzione dei problemi di ottimizzazione, fornendo quindi uno strumento privilegiato
per miglioramenti strutturali nella direzione sia del risparmio economico, sia della fruizione ottimale delle strutture.
In questa tesi ho analizzato un aspetto particolare dei grafi associati a quattro parchi d'attrazione: le distanze reciproche tra attrazioni e in particolare la collocazione dei "centri", cioè di vertici del grafo per cui la massima
distanza da altri vertici sia minima. I calcoli sono stati eseguiti adattando un'implementazione esistente in Matlab dell'algoritmo di Dijkstra, utilizzando in ingresso le matrici di adiacenza dei grafi.
Dopo un capitolo dedicato ai richiami essenziali di teoria dei grafi, il capitolo due traccia una breve storia dei parchi d'attrazione concentrandosi sui quattro che sono l'oggetto di questo studio. Il terzo capitolo, fulcro teorico della tesi, descrive la sperimentazione riportata nel capitolo quattro.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea)
      
      
      
      
        
      
        
          Autore della tesi
          Solaroli, Sonia
          
        
      
        
          Relatore della tesi
          
          
        
      
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          parchi divertimento teoria dei grafi analisi combinatoria
          
        
      
        
          Data di discussione della Tesi
          13 Dicembre 2013
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Solaroli, Sonia
          
        
      
        
          Relatore della tesi
          
          
        
      
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          parchi divertimento teoria dei grafi analisi combinatoria
          
        
      
        
          Data di discussione della Tesi
          13 Dicembre 2013
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        