
ALMA MATER STUDIORUM
UNIVERSITÀ DEGLI STUDI DI BOLOGNA

Scuola di Ingegneria e Architettura
Corso di Laurea in Ingegneria elettronica, informatica e

telecomunicazioni

AGENTS, NODES & RESOURCES: UNIVERSAL

NAMING SYSTEM FOR A COORDINATION

MIDDLEWARE

Elaborata nel corso di: Sistemi Distribuiti

Relatore:
Prof. ANDREA OMICINI
Co-relatori:
ING. STEFANO MARIANI

Tesi di Laurea di:
FEDERICO FOSCHINI

ANNO ACCADEMICO 2012–2013
SESSIONE II

PAROLE CHIAVE

TuCSoN

Cassandra

Naming

Locator

Research

”Don’t waste time living someone else’s life.

Stay hungry. Stay Foolish.”

Contents

Introduction xi

1 Background knowledge 1

1.1 What is TuCSoN ? . 1

1.2 Tuple Centre . 1

1.2.1 The tuple based coordination model 4

1.2.2 Tuple Spaces . 5

1.2.3 Limitations of Tuple Spaces 6

1.2.4 From Tuple Spaces to Tuple Centres 7

1.2.5 Tuple Centre Definition 8

1.3 Model, language, architecture and technology in TuCSoN . . 9

1.3.1 TuCSoN Model . 9

1.3.2 Naming in TuCSoN 10

1.3.3 TuCSoN Language 11

1.3.4 TuCSoN Architecture 12

1.3.5 TuCSoN Coordination Space 13

1.3.6 TuCSoN Technology 14

1.4 Background Knowledge for Cassandra 16

1.4.1 CAP Theorem . 16

1.4.2 Variation over CAP Theorem 18

1.4.3 Limits of RDBMS . 19

1.5 Cassandra . 21

1.5.1 Data Model . 22

1.5.2 Data Distribution Model 23

1.5.3 Client Requests . 24

vii

2 JADE 29
2.1 What is JADE . 29
2.2 JADE Architecture . 30

2.2.1 JADE & FIPA . 31
2.2.2 JADE Agents . 33
2.2.3 FIPA ACC . 37

3 Naming, Locator & Research Service
Structure & Interaction Model 41
3.1 Main Model . 42
3.2 Naming Service Model . 44

3.2.1 Outside Interfacing Layer 45
3.2.2 Internal Request Computation Layer 47
3.2.3 Data Storage Layer 51

3.3 Locator Service Model . 54
3.3.1 Outside Interfacing Layer 55
3.3.2 Internal Request Computation Layer 57
3.3.3 Data Storage Layer 61

3.4 Research Service Model . 64
3.4.1 Outside Interfacing Layer 65
3.4.2 Internal Request Computation Layer 67

4 Universal Naming Syntax 73
4.1 Syntax Definition . 75
4.2 Naming System Syntax Procedure 76

5 Case Studies 79
5.1 Naming Service System Case Study 81

5.1.1 Local Naming Service System Case Study 82
5.1.2 Distributed Naming Service System Case Study . . . 91

5.2 Locator Service System Case Study 100
5.2.1 Local Locator Service System Case Study 101
5.2.2 Distributed Locator Service System Case Study . . . 110

5.3 Research Service System Case Study 119
5.3.1 Local Research Service System Case Study 120
5.3.2 Distributed Research Service System Case Study . . 124

5.4 Fault Tolerance Case Study 128

viii

5.5 Fault Tolerance Case Study:
Internal Entities Crash . 130

5.6 Fault Tolerance Case Study:
Unavailable Connection between
Internal Entities . 132

5.7 Fault Tolerance Case Study:
Unavailable Network Connection 134
5.7.1 Fault Tolerance Case Study:

Temporary Unavailable Network Connection 136
5.7.2 Fault Tolerance Case Study:

Persistent Unavailable Network Connection 138
5.8 Fault Tolerance Case Study:

Server Updating Error . 140

6 Future Developments 143
6.1 Individual Tuple Space . 144
6.2 Customized Query Language 145

7 Conclusions 147

Ringraziamenti 151

ix

x

Introduction

The thesis aims at design a model, architecture, and technology for the
Naming System of the TuCSoN Coordination Middleware, including agents,
nodes, and resources. Universal identities accounting for both physical
and virtual mobility will be defined, moving towards a comprehensive, dis-
tributed Management System dealing also with ACC and transducers, fore-
seeing issues such as fault tolerance, persistence, consistency, along with
disembodied coordination in the cloud.

During the design of this Naming System we have decided to design
also a new Locator System in order to upgrade all functionalities about the
Naming and Locator System in TuCSoN . Will will also introduce a new Re-
search System in order to give to any consumer entity, a complete Research
Service that provides all data about the Naming and the Locator System.
Starting from this defined parts of the module that will be explained, we
have decided to give to this module a name: LoReNa; this is an acronym
standing for Locator, Research and Naming.

First of all we will introduce and define all the background knowledge
useful to understand all details about the system that has been designed;
in fact, the first chapter is dedicated to the TuCSoN description and all its
features in terms of model, architecture and technology with the description
of the concept of Tuple Centre and Tuple Space because these are very
important parts of that coordinated middleware.

Another foundamental part of the background knowledge is the descrip-
tion and definition of Cassandra because this is the data store distributed
model adopted in the designed system in the layer about the data store.

xi

After the background knowledge chapter we will describe all details
about JADE. This is a Java based framework for interoperable, intelli-
gent, multi-agent system. Like the other background knowledge, also for
this framework, all details about its model, architecture and technology
will be explained. This framework is foundamental because its model is an
important factor for the development of the designed model that will be
described; in fact, the LoReNa’s model has been designed basing on the
JADE’s one but, in the model of LoReNa we have introduced other func-
tionalities such as the Locator module. Also the architecture of LoReNa
has been studied starting from the JADE one but it’s more oriented to the
network distribution than the other one because it’s designed according to
the previously cited LoReNa’s model. Dealing with the fact that TuCSoN
is Java based, we have decided to give to LoReNa a Java base but, as will
be described in the relative chapter, this module can be adopted with any
programming language.

In the third chapter of this thesis the LoReNa’s structure and inter-
action model will be detailed described in all its parts, starting from the
Naming Service Model with all its details about the three layer structure.
Also for the Locator Service Model there is the complete description about
the same three layers because these two models are very similar in terms
of structure and interaction. The unique different model is the Research
Service one because it communicate with the others in order to sadisfy all
research requests and it’s divided in two layers.

In the next chapter the new Naming Syntax, described as Universal
Naming Syntax, is introduced and described in all its details, starting from
its definition. In this chapter also the procedure that an entity has to do
is explained in order to give a complete description of all aspects of this
syntax.

In the fifth chapter all the case studies will be introduced in all details
in order to give all aspects in terms of computation in all cases, both as
local and distributed one for all services contained in LoReNa (so, these
are Naming, Locator and Research services). In the second part of this
chapter all details about the Fault Tolerance Case Studies will be described
in order to give a complete useful description of all policies and procedures
relating to solve all faults, errors and issues.

xii

Logically, it’s impossible to treat all fault cases, so we have decided to
explain all details about the Fault Tolerance relating to the foundamental
issues (for example relating to the crash of internal entities or the connec-
tion unavailability, etc.) in order to provides a useful report of all relative
procedures of these main Fault Tolerance Cases.

The complete description of the main possibly future developments are
contained in the next chapter, the sixth one, in order to explain all future
development ways for LoReNa because this is an important aspect for a
new system as this one.

The last chapter of this thesis is dedicated to the conclusions of the
design and modelling phases in order to give a final and exhaustive report
for LoReNa. In this chapter will be described all aspects of this system
from different viewpoints so as to provide a complete vision of all positive
aspects about this module.

xiii

xiv

Chapter 1

Background knowledge

1.1 What is TuCSoN ?

TuCSoN (Tuple Centres Spread over the Network) is a general-purpose
multi-agent systems infrastructure (MAS) that allows the communication
and coordination between agents by making use of centers of tuples,
which are defined as programmable tuple spaces, shared and responsive, in
which the Agents can enter, read or consume tuples.

1.2 Tuple Centre

In multi-agent technology has become crucial the role of coordination to
allow heterogeneous mobile agents to work collectively in order to ”unify
separated activities in a set” [1]. Agents are defined as independent soft-
ware components, possibly distributed and concurrent, based on the goal.
Therefore agents are active entities organized in societies and inserted into
an environment. The agent systems differs from the object system because
they are not based on the controls, but on the goal; in fact in the object
system the controls is outside of them, and humans work as a kind of central
control authority, while in agent system, the control is inside the system and
agents’ goal is to driving control [2].

As objects of the OOP paradigm (Object Oriented Paradigm), agents
encapsulate a state and a behavior. Unlike objects, agents have control
over both, while objects do not have control over their behavior: to send

1

2 CHAPTER 1. BACKGROUND KNOWLEDGE

a message to an object causes the invocation and execution of a method.
The agents, however, do not interact via the invocation of methods, which
causes the shift of control from one object to another, but through some
interaction model / coordination, which can be based on messages passing
or other abstractions communication / coordination abstractions, such as
blackboard, tuple spaces, etc.

Generally speaking [3], we can define a coordinated system as a col-
lection of coordinables that live and interact in a coordination space. In a
software enviroment, coordinated entities are indipendent computational el-
ements whose mutual interaction is the global behaviour of the coordinated
system.

The coordination limits the interaction between communicating soft-
ware components [4]. Thus, the coordination model is modeling the space
of interaction between components, providing the mechanisms, protocols
and abstractions used by components to communicate. More precisely, the
specification of a model of coordination should include:

• The coordination space: the collection of interacting entities and
the space of their interactions. More precisely, it defines:

– What is a coordinated eligible entity (a component, an agent, a
process, an object, an application, etc.)

– What is a means of coordination (a channel of communication,
a connector, a blackboard, a space of tuples, etc.)

– What is a communication event, incoming or outgoing

An eligible coordinated entity is any computational entity that sees and
realizes both the communication language and coordination language, and
from the viewpoint of the coordination space, an entity is characterized by
its observable behavior, defined by generated communication events.

• The communication language: syntax used by the coordinating
entities to express the information exchanged between them.

• The coordination language: syntax used by the coordinating enti-
ties for communicating operations, and its semantics in terms of kind
of communication events (incoming or outgoing).

2

CHAPTER 1. BACKGROUND KNOWLEDGE 3

• The means of coordination: abstraction that govern the interaction
between coordinating entities. This is characterized by an observable
behavior (in terms of events in the input or output) and an execution
model, which sets the basic rules for the interaction of the components.

Being interactive machines [5], then taking incoming communication
events and generating new outbound events, means of coordination are
suitable to be described as interactive transitions systems, where the
communication state is the state of the system. Some transitions are
triggered by interaction events, and some transitions generate output
events.

While on the one hand, this approach makes it possible to work with
unfinished computations, on the other hand should keep the semantic
specification simple, and make it efficient in guiding the implementa-
tion process, considering a system of transitions such as a operational
characterization that can be directly mapped into the structures of
any programming language.

In the specific case of agent systems we are dealing with:

• the eligible coordinating entities are agents

• the means of coordination are Tuple Centres

• the communication language is the set of tuples and tuple templates
eligible in addition to the unification function that connects the two
sets

• the coordination language is given by the coordination primitives ex-
ecutable on the tuple centres

• communication events are the execution of the coordination primi-
tives or environmental events associated with the infrastructure (time
passing, external resources, etc.).

All these concepts will be discussed and described in detail in the following
sections.

3

4 CHAPTER 1. BACKGROUND KNOWLEDGE

1.2.1 The tuple based coordination model

In general, coordination is responsible for management of the interaction
between components [6], then in the context of a multiagent system it will
be directed to the problem of how agents interact. A model of coordination
for multi-agent systems [7] constitutes a structure with the goal of modelling
the interaction space of companies composed by agents (agent societies) [8].

The tuple based coordination models [3] were initially used in the field
of parallel programming, but their characteristics make them ideal for ad-
dressing the problem of coordination in open, distributed and heterogeneous
systems such as Internet agents [9].

In tuple based models, agents interact by exchanging tuples, which
are ordered collections of elements that contain information. The agents
communicate, synchronize and cooperate through tuple spaces, inserting,
reading and consuming tuples. The main benefits of these models based on
tuples are:

• Clear separation between computation and coordination [1]
(architecture neater)

• Generative communication [10] (the generated information has a
live time independent from the creation time)

• Associative access to the interaction space [11] (the access is
based only on the structure and content of information exchanged)

• Suspensive semantics

The main features of generative communication are forms of spatial and
temporal decoupling, based on the fact that anyone who sends and receives
informations doesn’t need to know each other in a reciprocal way and they
doesn’t need to coexist in the same space or at the same time to communi-
cate (in this case for exchange tuples).

The associative access based on the unification between tuples promotes
synchronization based on the content and structure of tuples; the coordina-
tion is information driven and allows the knowledge-based pattern ordering
implementation.
Finally, the semantic suspension allows pattern of coordination based on
the information availability, so an agent can suspend itself waiting for a

4

CHAPTER 1. BACKGROUND KNOWLEDGE 5

tuple in the tuple space.
However, the tuple spaces do not provide flexibility and control necessary
for complex multi-agent systems development, it’s necessary to take a step
forward towards the Tuple Centre to try to overcome the tuple spaces’ lim-
its. A Tuple Centre is a space of tuples whose behavior can be defined
in terms of reactions to communication events. To understand the Tuple
Centres functioning we have to start from the study of tuple spaces, which
are the basis.

1.2.2 Tuple Spaces

A tuple space is an implementation of the associative memory paradigm
for parallel and distributed programming, so the access to data (tuples) is
based on tuples ’s content and type, not to their physical location [19].

It consists of a repository of tuples, defined as a list of fixed size het-
erogeneous elements which can be accessed concurrently. As an idea you
can consider the example of producers and consumers, thinking about a set
of processors that produce data and a set of processors that consume these
data [20]. The producers put their data in the form of tuples in tuple spaces,
while consumers consume these tuples taking them from the space of tuples
in the case where these match a certain pattern. You can think about tuple
spaces as a form of distributed shared memory [19]. In fact, any processor
can refer to any tuple, regardless of its specific physical location: even if
you have the perception that you are working with a shared memory is not
necessary that there is a physical memory shared.

The concept of tuple space had as a pioneer David Gelernter, a pro-
fessor at Yale University. The first concurrent tuple space based model
is LindaTupleSpace, it is a coordination language to express the parallel
computation and its strength is the ability to describe parallel algorithms
without making any specific reference to an architecture [10].

Nowadays there are various tuple spaces based system wich have been
implemented for different programming languages.

The tuple spaces functioning is based on five basic fundamental primi-
tives:

• out(): insertion of a tuple (asynchronous)

• rd(): blocking read of a tuple, if the tuple is not present the process is

5

6 CHAPTER 1. BACKGROUND KNOWLEDGE

suspended waiting for a tuple that satisfies the request (synchronous)

• rdp(): non-blocking read of a tuple (asynchronous)

• in(): blocking read out and erase of a tuple, if the tuple is not present
the process is suspended waiting for a tuple that matches the request
(synchronous)

• inp(): non-blocking read out and erase of a tuple (asynchronous)

There are also four other primitives for bulk coordination to achieve sig-
nificant gains in terms of efficiency for many coordination problems that
involve managing more than one tuple in a single coordination operation
[18]: instead of returning a single tuple, bulk coordination operations return
an unified tuple list. In the event that is found no tuple, return with success
an empty tuple list: then bulk primitive are always successful.

An element can be updated before deleting it and then reinserting the
modified version. The out(Tuple) operation provides a key and the value
of the arguments of the new tuple, while the other four operations specify
the key and the arity (number of arguments) of the tuple to be read or
consume. You can have duplicated tuples, so read or consumed tuples
are not necessarily uniquely determined by provided key and arity. The
operations rdp(TupleTemplate) and inp(TupleTemplate) guarantee to find a
tuple that matchs with the request if this tuple has been inserted (but not
consumed yet) in the space of tuples before the request was generated. In
the Picture 1 you can see an example of a space of tuples in action [21].

1.2.3 Limitations of Tuple Spaces

One of the biggest advantages of the tuple spaces based interaction is that
coordination is information driven: agents synchronize themselves; they
also cooperate and enter into competition depending on the information
available in a shared data space, so agents access it in associative mode by
producing, reading or consuming information.

All this makes interaction protocols simple and expressive, but there is
a problem: there is no way to separate how information is represented by
how the informations are perceived by the agents (e.g. Dining Philosophers
Problem, [3]).

6

CHAPTER 1. BACKGROUND KNOWLEDGE 7

Figure 1.1: Example of use of a tuple space.

1.2.4 From Tuple Spaces to Tuple Centres

The limits described in the previous subsection can be overcome by main-
taining separated information’s representation from its perception in the
agents communication space.

This result can be achieved by keeping the standard interface of tuple
spaces and enriching it with the ability to define the behavior in terms of
state transitions as a result of certain communication events.

This is the motivation that led to the Tuple Centres definition, which
are tuple spaces whose behavior can be modeled in response to incoming
or outcoming communication events, in accordance with the coordination
requests specifications [12].

In this context, the Tuple Centres represent abstractions of general-
purpose coordination, which can be understood as the interaction-oriented

7

8 CHAPTER 1. BACKGROUND KNOWLEDGE

virtual machines to use as a base to build any kind of high-level abstraction
for coordination between the components of a system.

1.2.5 Tuple Centre Definition

The Tuple Centre takes the concept of tuple space, specialize and extend
it with a specific behavior which defines the behavior of the centers of
tuples in response to incoming or outgoing communication events. The
Tuple Centre’s behavior specification is expressed through a specific Turing
equivalent language [13] to define reactions (a series of activities to be
performed) that can be associated with any communication event which
can be present in the Tuple Centre. This allows to define any coordination
law by modelling the agents’s interaction space.

This language should allow:

• to define sets of operations (reactions) to run on a Tuple Centre

• to associate reactions to any incoming and outgoing communication
events that may arise in the Tuple Centre

Each reaction can change the status of the center of tuples, such as inserting
or consuming tuples, or access information related to the communication
event that has triggered the reaction, such as the agent involved or the type
of operation performed, etc. In this way you can model the Tuple Centre
behavior as a simple primitives’ result, in order to shape the Tuple Centre’s
semantics according to necessity.

Each event can trigger many reactions that will be performed before
serving another communication event request by another agent; in this way,
from the agent’s point of view, the result of a communication primitive exe-
cuted on a Tuple Centre is the sum of the primitives and of all the reactions
that it triggers, and this result is perceived as a single state transition in
the Tuple Centre. So, we can say that a center of tuple with an empty
behaviour specification set is reduced to a simple space of tuples.

Thus, the Tuple Centres are a means for data-driven communicating,
that keep all advantages resulting from it, and also provides some of the
characteristics of control driven models, such as the complete observability
of communication events, the ability to react in a selective manner to them,
and implement coordination rules by manipulating the interaction space

8

CHAPTER 1. BACKGROUND KNOWLEDGE 9

[12]. While the basic model of the Tuple Centre is not tied to any specific
language, to define the behavior in terms of reactions (or defining a set of
specification tuples) TuCSoN adopts a specific language called ReSpecT
[22].

1.3 Model, language, architecture and tech-

nology in TuCSoN

TuCSoN (Tuple Centres Spread over the Network) is a model for the co-
ordination of distributed processes, as well as autonomous, intelligent and
mobile agents [14].

The TuCSoN Tuple Centres adopt the ReSpecT language to define their
behavior in terms of reactions (ie to define the set of specification tuples)
[22].

1.3.1 TuCSoN Model

The TuCSoN ’s base entities are:

• TuCSoN Agents: the coordinables entities

• ReSpecT Tuple Centres: the means of coordination (by default in
TuCSoN model) [15]

• TuCSoN Nodes: represent the topological abstraction that host the
Tuple Centres

All agents, nodes and Tuple Centres have an universal identificator in a
TuCSoN system.

Being agents proactive entities while Tuple Centres are reactive entities,
the coordinated entities require coordination operations in order to act
on the means of coordination: these operations are given by the TuCSoN co-
ordination language. The agents interact by exchanging tuples through
Tuple Centres using the TuCSoN coordination primitives that all together
define the coordination language. The Tuple Centres provide two distinct
tuple spaces:

• the communication tuple based shared space (ordinary tuples)

9

10 CHAPTER 1. BACKGROUND KNOWLEDGE

• the space to programming the behaviour of the tuple based coordina-
tion (specification tuples)

The TuCSoN model has the following characteristics [23]:

• agents and Tuple Centres are distributed over the network

• Tuple Centre belong to nodes

• agents can reside anywhere on the network, and thay can interact with
the centers of tuples hosted by any reachable TuCSoN node.

• agents can move regardless of the device where they are running [16]

• The Tuple Centres are associated in a permanent manner to a device,
possibly mobile (the mobility of the Tuple Centres depends on the
device on which they reside).

So, a TuCSoN system is a collection of TuCSoN nodes possibly distributed
and they are associated with agents in execution on mobile devices that
interact with Tuple Centres on the nodes.

1.3.2 Naming in TuCSoN

Each TuCSoN node in a TuCSoN system is uniquely identified by the pair

[NetworkID, PortNumber]

Where the parameters in the pair are described as follows:

• NetworkID : this is the IP address, or DNS address, of the device that
hosts the TuCSoN node

• PortNumber : this is the port number where the TuCSoN coordination
service listen the coordination operation invocations

So, the abstract syntax of a TuCSoN node ID hosted by a device connected
to the netword netid on the port with number portno is:

[networkid : portno]

10

CHAPTER 1. BACKGROUND KNOWLEDGE 11

An admissible name for a Tuple Centre is any logical ground(that
doesn’t contains variables) term of the first order. Each node contains at
most one center of tuples for each admissible name, then each Tuple Centre
is uniquely identified by its name associated with the admissible identifier
of the node.

So, the TuCSoN complete name of a Tuple Centre tname in a TuCSoN
node [networkid : portno] is:

[tname @ networkid : portno]

This works as a global identifier for a Tuple Centre in a TuCSoN system.
An admissible name for an agent is any ground(that doesn’t con-

tains variables) term of the first logic order [17]. When an agent enters
into a TuCSoN system, this system assigne an universally unique identifier
(Universally Unique Identifier - UUID [24]) to that agent.

So, the complete name agname for an agent who has been assigned the
UUID uuid turns out to be:

[aname : uuid]

1.3.3 TuCSoN Language

The TuCSoN coordination language allows agents to interact with Tuple
Centres by performing coordination operations. TuCSoN provides to coor-
dinated entities many coordination primitives that allows agents to write,
read and consume tuples in tuple spaces, and to synchronize with them.

The coordination operations are built starting from the coordination
primitives and communication languages [23] :

• the tuples language

• the tuple templates language

Both languages depend from the kind of Tuple Centre adopted by TuCSoN
, in fact the default means of coordination in TuCSoN are ReSpecT Tuple
Centres and the language of the tuples and tuple templates are both logic
based. More precisely:

• each Prolog Atom can be an admissible TuCSoN tuple

11

12 CHAPTER 1. BACKGROUND KNOWLEDGE

• each Prolog Atom can be an admissible TuCSoN tuple template

As a result, TuCSoN default languages about tuples and tuple templates
concide.

A TuCSoN coordination operation is invoked by a source agent on a
determined destination Tuple Centre, which is in charge of its execution.

Each TuCSoN operation has two phaases:

• invocation: the source agent request to the destination Tuple Centre,
the request transport all the informations about the invocation

• completion: the reply from the Tuple Centre destination to the
source agent, the response includes all the informations about the
execution

The abstract syntax of a coordination operation op invoked on the destina-
tion Tuple Centre who has the complete name tcid is:

[tcid ? op]

Given the structure of a complete name for a Tuple Centre, the general
abstract syntax for a coordination operation TuCSoN will be:

[tname @ netid : portno ? op]

Finally, the TuCSoN coordination language provides all the coordination
primitives (eg: basic coordination primitives [20], bulk coordination primi-
tives [18], uniform coordination primitives [23]) needed to build coordina-
tion operations.

1.3.4 TuCSoN Architecture

A TuCSoN system is characterized by a collection of TuCSoN nodes (possibly
distributed) on which it is running a TuCSoN service.

A TuCSoN node is characterized by a device connected to the network
on which it is running the service, and a network port where the TuCSoN
service is listening for incoming requests. In principle, many TuCSoN nodes
can running on the same device connected to the network, each of which is
listening on a different port [23].

The TuCSoN default port number is 20504. Thus, as seen above, an
agent can invoke operations by issuing the following request:

12

CHAPTER 1. BACKGROUND KNOWLEDGE 13

[tname @ netid ? op]

without specifying the port number portno, it means that the agent wishes
to invoke the operation op on the Tuple Centre tname of the default node
netid hosted by the device connected to the network netid on port 20504.

In principle, any other port can be used for a TuCSoN node. The fact
that a TuCSoN node is available on a device connected to the network does
not imply that a node is also available in the same unit on the default port
(in practice, it is no certain that there is the default node).

Given an acceptable name for a Tuple Centre tname, the Tuple Cen-
tre tname is an admissible Tuple Centre. The coordination space of a
TuCSoN node is defined as a collection that contains all admissible Tuple
Centres. Each TuCSoN node provides to agents a complete coordination
space, so any coordination operation can be invoked on any admissible Tu-
ple Centre belonging to any TuCSoN node.

Each TuCSoN node defines a default Tuple Centre, that reply to
all the invocations received by any node of any operation that does not
specify the destination Tuple Centre: the default Tuple Centre for each
TuCSoN node is called default. As result, agents can invoke operation by
the following request form:

[@ netid : portno ? op]

without specifying the Tuple Centre tname, it means wishing to make the
operation op on the default Tuple Centre node netids hosted by the device
connected to the network netid on the port portno.

Combining the concepts of default Tuple Centre and default port, agents
can also invoke operations of the following request form:

[@ netid ? op]

with the meaning intending to invoke the operation op on the default Tuple
Centre node netid hosted by the device connected to the network netid on
the port 20504.

1.3.5 TuCSoN Coordination Space

The TuCSoN global coordination space is defined at any time from the
collection of all available Tuple Centres on the network, and hosted by

13

14 CHAPTER 1. BACKGROUND KNOWLEDGE

an identified node by their full name [23]. A TuCSoN agent running on
any device connected to the network has at each instant the full TuCSoN
global coordination space available for its coordination operations through
invocations by the following form:

[tname @ netid : portno ? op]

that invoke the operation op on the Tuple Centre tname provided by the
node netid on the port portno.

Given a device connected to the network netid that hosts one or more
TuCSoN nodes, the TuCSoN local coordination space is defined at any
time from the collection of all Tuple Centre made available by all TuCSoN
nodes hosted by netid By exploiting the concepts of default node and default
Tuple Centre, any agent can exploit the local coordination space for all
request forms previously seen or any admissible request invocation [23].

1.3.6 TuCSoN Technology

TuCSoN is a Java and Prolog based middleware. TuCSoN relies on
Java tuProlog for:

• first order logic tuples

• analyze and identify primitives

• ReSpecT specification language and virtual machine

The TuCSoN middleware provides:

• Java APIs in order to exend Java programs with TuCSoN primitives

• Java Classes in order to program TuCSoN agents with Java language

• Prolog Libreries in order to exends tuProlog programs with TuCSoN
coordination primitives

Given any network-connected device that is running on a Java virtual
machine (JVM), on it you can start a TuCSoN node to provide a TuCSoN
service. The service on the node must:

• listen to the invocations of operations on the incoming port associated
with the device TuCSoN service

14

CHAPTER 1. BACKGROUND KNOWLEDGE 15

• send received invocations to the destination Tuple Centres

• return operations’ completions

A TuCSoN service running on a node provides the full coordination space.
The centers of tuples in a node can be in every moment actual or poten-

tial :

• actual Tuple Centres: eligible Tuple Centres that already have a
reification as an abstraction at runtime

• potential Tuple Centres: eligible Tuple Centres that have not yet
as a reification abstraction at run-time

The service on the node have to change potentials Tuple Centres to actuals
as soon as the first operation on them is received and served.

Details for using the TuCSoN infrastructure, both to initialize the ser-
vice agents to handle Java and Prolog or to take informations about tools
provided by TuCSoN package, can be found in the guide [23].

15

16 CHAPTER 1. BACKGROUND KNOWLEDGE

1.4 Background Knowledge for Cassandra

In this section will be described all background knowledge in order to un-
derstand Cassandra .

Cassandra will be used in the module’s model in order to give a tech-
nological solution to data storage issues that will be studied in following
chapter.

1.4.1 CAP Theorem

A distributed system cannot simultaneously provide more than two out of
the following three guarantees:

• Consistency

• Availability

• Partition Tolerance

In the following picture will be described the previous property about
distributed systems relating to following four important data storage dis-
tributed system:

• Big Table - MongoDB Redis : management system of non-relational
databases, document-oriented, type NoSQL [25]

• RDBMS : database management system (DBMS) that is based on the
relational model, the full description is Relational DataBase Man-
agement System [28]

• Cassandra : non-relational database management system optimized
for handling large amounts of data; it will be described in following
sections [27]

• Dynamo: fast, fully managed NoSQL database service that makes it
simple and cost-effective to store and retrieve any amount of data,
and serve any level of request traffic [26]

16

CHAPTER 1. BACKGROUND KNOWLEDGE 17

So, starting from these described distributed system, the graph that
explain better the main property is:

Figure 1.2: Table Data about Distributed Systems Properties.

As you can see in the above picture, there are three possibility about
the distributed system properties pair:

• CP: pair that explain that the distributed system has the consis-
tency and partition tolerance properties

• AC: pair that explain that the distributed system has the availability
and consistency properties

• PA: pair that explain that the distributed system has the partition
tolerance and availability properties

To understand and interpret this theorem you have to undestand what
are partitions. In a distributed system partitions are unavoidable.

Then you have to think to CAP as the following logic equation:

P = (A XOR C)

17

18 CHAPTER 1. BACKGROUND KNOWLEDGE

So, as you can see in the previous logic equation, as a partition occurs, the
tradeoff is between:

• A - availability: in terms of cost of inconsistency

• C - consistency: in terms of cost of downtime

1.4.2 Variation over CAP Theorem

A better classification for real-life systems have been introduced with a
variation over the CAP Theorem seen in the previous section.

This variation is based on the following condition: if there’s no partition,
the tradeoff is about how much Latency the system employs to achieve a
certain degree of Consistency.

Then, there is a logic equation better that the previous one and it is:

P ? ((A OR C) : (L OR C))

So, as you can see in this logic equation, there are two cases, dependently
from the presence of a partition, in the case of one partition, the tradeoff
is between Availability (A) and Consistency (C), while if there is no
partitions (so in otherwise cases), the tradeoff is between Latency (L)
and Consistency (C).

Starting from this variation about the seen theorem, there is a further
system classification, in fact you have the following policy:

Systems following P ? C depend on :C

So there is the following classification:

• [P ? C : C] : reliable systems (eg: DBMS) so this classification
relating to fully ACID systems and traditional RDBMS

• [P ? A : C] : systems that give up on Consistency as partitions
occur

• [P ? A : L] : high availability systems focused on low latency and
high scalability

The ACID property is related to a group of four properties that an
operation can have and the meaning is:

18

CHAPTER 1. BACKGROUND KNOWLEDGE 19

• A - atomic: operation that doesn’t break indivisible consistency (”all
or nothing”)

• C - consistent: committed updates don’t break domain constraints

• I - isolated: doesn’t break serializable consistency

• D - durable: committed updates are persistent

These properties are the same about the transaction operation in the
DataBase space because this section is related to systems that use database
and similar structures in order to storage data. There are also three property
that a system can have, relating to all properties previously seen; these
properties are:

• Basic Availability: availability is the main focus of the system

• Soft State: state of the system can change anytime, even without
inputs

• Eventually Consistent : system will become consistent after a long
enough timeframe without inputs

These properties are derived by all previously seen properties and condi-
tions and these are very important in order to obtain a better data storage
distributed system as we want to have in the module studied in the following
chapter.

1.4.3 Limits of RDBMS

The main limits of RDBMS are related to the Two Phase Commit
algorithm that put in evidence all limits and problems derived by most
system characteristics, like for example the huge quantity of data to storage.

In particular, will be explained all properties about the Two Phase
Commit and will be described all problem and all its limits because this
is the most used algorithm in RDBMS.

The Two Phase Commit is an algorithm taking place in a Distributed
Atomic Transaction (DAT). This algorithm has the aim to coordinate all
processes that participates in a DAT. This algortithm is a type of Consensus

19

20 CHAPTER 1. BACKGROUND KNOWLEDGE

Protocol in order to achieve the described aim and it tolerates a wide fraction
of failure configurations about participant processes.

The Two Phase Commit is composed by two phases:

• Phase 1 - Commit Request Phase : the Coordinator sends a query
to commit to each Participant of the transaction and waits for all
replies ; each Participant performs the transaction up to the point in
wich it’s asked to commit and send a reply, this reply can be a message
of:

– Agreement : which means that the Participant would commit
the transaction

– Abort : which means that the Participant would roolback the
transaction

• Phase 2 - Commit / Rollback phase : the Coordinator decides
wheter to commit or rollback the transaction, and issues the outcome
to each Participant ; each Participant follows the issued commit or roll-
back, releasing lock and resources ; in the end, each Participant sends
an acknowledgement back to the Coordinator. The Coordinator com-
pletes the transaction when all acknowledgements have been received

From this description it can be seen the Consistency costs a lot because

• it block the execution in many parts of each phase

• the Coordinator is a Single Point of Failure

• Horizontal Scaling is not so effective

All solutions in the RDBMS world are related to optimizations about
the recursive approach (2PC optimizations like Recursive 2PC, etc.) or a
variation of a known algorithm (for example the Three Phase Commit that’s
more resilient to failures but still blocking).

So, it’s evident that in some scenarios the ACID is too much for this
kind of DBMS and it needs to introduce a new architectural model that
have to be more efficient and more powerfull in actual scenarios.

20

CHAPTER 1. BACKGROUND KNOWLEDGE 21

1.5 Cassandra

In this section will be described Cassandra , a non-relational database man-
agement system optimized for handling large amounts of data that can work
in a distributed management system maintaining all its features [27].

A particular feature about this DBMS is that Cassandra ’s Data
Model is based on Google’s Bigtable and its Distribution Model is
based on Amazon’s Dynamo. This is a very important feature because
from these model derive all the following key properties about Cassandra :

• NoSQL Data Model : deriving from Google’s Bigtable this model
doesn’t adopt SQL Data Model so its data model can be seen as a
multidimensional hash-map that have to contain all system’s data

• Decentralized Model : deriving from Amazon’s Dynamo this
DBMS Model is optimized as a distributed system where nodes are
peers, each node can satisfy any request and there is no single-point
of failure

• Elastic Scalability : from two ”parents system” derive also this
property that give to the system the horizontally scalability, both up
and down, almost linearly

• Fault Tolerance : thanks to the mix of those two system model, this
property is giveng by data replication that allows to add and replace
any node without downtime

• High Availability : given from the reliability of this model and
its elastic runtime adapting to any distributed configuration given by
deriving from Amazon’s Dynamo

• Tuneable Consistency : in order to obtain the best kind of consis-
tency, this property ca be given by two diffent ways:

– by cluster configuration: working on many distribution factors
(eg replication factor)

– by client, per-operation: working on many model levels basing
the choice on many requirements and issues (eg consistency level)

21

22 CHAPTER 1. BACKGROUND KNOWLEDGE

1.5.1 Data Model

As previously seen, the Cassandra ’s Data Model derive from Google’s
Bigtable so it has almost all features about that model [29].

The most important entities in the Cassandra ’s Data Model are:

• Keyspace: outermost container for data, it is similar to the table
schema in Relational DataBase (RDB) world

• Column Family: collection of columns, it is similar to table in Re-
lational DataBase (RDB) world

• Column: map from row keys to values; values updates are times-
tamped and all timestamps are provided by clients that communicate
with the system

• SuperColumn: special kind of columns wich hold normal columns;
this special columns can have also special functions about data ma-
nipolation

There are also many characters to underline because these characters
make this model better thant many others; these characters are related to
the schema, to amount of data and to the sorting about data.

In the firse case you have that different rows can have different columns
in the same Column Family, this character allow to define this model’s
schema as a schema-less ”tables”, so it give to this schema many advantages
relating to constrains about columns and their families. In the second case
you have that the data growth is often in the ”column direction” while in
the RDB world the data growth is related in the ”rows direction”. The last
key character about this schema is related to the sorting of data, in fact, in
this schema columns are sorted by their name that make more efficient all
column-slice queries and it is heavily exploited in data design.

In the end, this data model is classified as JSON-ified because all en-
tities and features are represented and decoded by using the JSON lan-
guage because this language has many important features and advantages
in network communication in order to obtain a better efficency and a better
reliability in the distributed data storage system.

22

CHAPTER 1. BACKGROUND KNOWLEDGE 23

1.5.2 Data Distribution Model

As previously seen, the Cassandra ’s Distribution Model derive from
Amazon’s Dynamo so it has almost all features about that model [26].
This model’s Data Space is represented as a ring of tokens (this number
depends on the distributed system) where each token cooresponds to a row
key. This Data Space is sliced into ranges, where the number of ranges is
equal to the number of nodes, so there is a binary correspondance between
nodes and ranges. Thanks to that feature, each node covers a slice of the
token space and the mapping operation between row keys and tokens is the
aim of a component called Partitioner; consequently this mapping affects
data distribution among the nodes.

Figure 1.3: Example of Cassandra’s Data Distribution Model.

This distribution model is based on the Row Oriented Sharding and
Replication of Data that allows many important functionalities in order

23

24 CHAPTER 1. BACKGROUND KNOWLEDGE

to manipolate the Data Space.
In the end there are the following main knobs relating to the possible

configurations:

• cluster-wide configuration: in this configuration the Partitioner
controls how data is partitioned (for example: which node belongs
k-row key?)

• per-keyspace configuration: in this configuration the Replication
Factor controls how many replicas are stored and the Replication
Strategy controls in which nodes replicated data goes

1.5.3 Client Requests

First of all, if a client has to send a request to a node, it needs to connect to
the target node and after that operation, the client can perform the request.

The node plays the Coordinator role for this operation because the mes-
sage exchanging between these two entities will be managed by the entity
that have to sadisfy the request (the node).

Then, the node acts to fullfill the received request and notify the result
to the sender client if the request have been executed correctly or not. In
all these phases, the communication to other nodes is generally involved.

Each client request has an associated Consistency Level: the minimum
number of replicas that should respond. These levels are described for read
and write operations in the following table.

Figure 1.4: Clients - Nodes Operations’ Consistency Levels.

24

CHAPTER 1. BACKGROUND KNOWLEDGE 25

From the above picture you can see that the write operation has
following properties about its executions and the consistency level:

• the consistency level to ALL or QUORUM guarantee writes to a suf-
ficient number of replicas

• QUORUM statistically has a lower latency then others and is more
fault tolerant then ALL

• failed writes don’t cause roll-backs in any of the eventual nodes where
the write succeeded

• Cassandra guarantees atomic writes on a single node, row key basis

There is a particular situation when the Coordinator detects that a
replica node for the write operation is down and this write operation is
set to the ANY or higher consistency level. In this situation the Coordi-
nator writes down an hint for that operation that will be handoff to the
target node once it will become available again.

This operation is called Hinted Handoff and is executed because it
reduce the time required for a temporarily failed node to become consistent
again and provides extreme write Availability when Consistency is not
required (Consistency Level ANY).

Like any other operation, this one has some important issues to consider:

• When a failed node becomes available again, could be flooded by hints
from other nodes?

• It’s possible to disable Hinted Handoff or reduce its priority of over
”normal” writes?

In order to obtain an efficient Hinted Handoff operation you have to
consider these issues basing on requirements and use case.

25

26 CHAPTER 1. BACKGROUND KNOWLEDGE

Like write operations there are many issues related to read operations
that can be done. In this phase the Coordinator contacts only a number of
replicas specified by the Consistency Level basing on the number of replicas
involved in that process, in fact:

• only one replica involed: a background thread performs Read
Repair operation to ensure Consistency with other replicas

• more then one replicas involed: if the involved replicas are incon-
sistent, a foreground (blocking) Read Repair is performed, a back-
ground thread performs Read Repair between all replicas and is
return the most recent value

The Read Repair is a timestamp-based way to achieve replica concil-
iation, as seen above, these timestamp are provided by clients and, because
they are part of the system, they must have low clock drifts (for example
this issue is solved by using vector clocks like in Dynamo [26]).

In the end, we have to answer to an important question:

Where to put latency?

For this issue Cassandra choose low latency writes over low latency reads
(Read Repair over Write Repair). The adopted model is the Cache
write-back model (Borrowed from BigTable [25]) where:

• writes are written to a commit log

• writes are written to in-memory tables (memtables)

• writes are flushed in persistent storage to read-only tables (SSTables:
Sorted Strings Tables) that are periodically optimized.

So, the Consistency can be:

• Weak: when you have that (Write + Read) is lesser then Replica-
tion Factor, in this case clients may read stale values

• Strong: when you have that (Write + Read) is greather then Repli-
cation Factor, in this case clients will always read the most recent
write

26

CHAPTER 1. BACKGROUND KNOWLEDGE 27

In the following pictures is showed an example of Strong Consistency
and the impact of the Consistency Level Choice on the system.

Figure 1.5: Strong Consistency Example.

Figure 1.6: Impact of the Consistency Level Choice.

All details about model and implementation of Cassandra can be found
in its website [27] like the other system seen in this chapter (Google’s
Bigtable [?] and Amazon’s Dynamo [26]).

27

28 CHAPTER 1. BACKGROUND KNOWLEDGE

28

Chapter 2

JADE

2.1 What is JADE

JADE (Java Agent DEvelopment Framework) [30] is a Java-based
framework to develop agent-based applications in compliance with the FIPA
specifications [31] for interoperable, intelligent, multi-agent systems.

As an agent-oriented middleware, JADE pursues the twofold goal of
being:

• a full-fledged FIPA-compliant agent platform. Hence, it takes
in charge all application-independent aspects (for example agents life-
cycle management, communications, distribution transparency, etc.)
needed to implement a MAS [32]

• a simple comprehensive agent development framework. Therefore
it provides Java developers a set of APIs (it stands for Application
Programming Interface, so all interfaces needed to developers) to build
their own customizations

Being fully implemented in Java, JADE is a notable example of a dis-
tributed, object-based and agent-oriented infrastructure, hence an
interesting example about how to face a design/programming paradigm shift.

Being compliant to FIPA standards, JADE is a complete and coher-
ent agent platform providing all the necessary facility to deploy MASs.

29

30 CHAPTER 2. JADE

As follows all main features about JADE are itemized, in fact, JADE
offers:

• a distributed agent platform, where distributed means that a single
JADE system can be split among different networked hosts

• transparent, distributed message passing interface & service

• transparent, distributed naming service

• white pages & yellow pages discovering facilities

• intra-platform agent mobility (contex, to some extent)

• debugging & monitoring facilities

All other details about JADE and FIPA can be found at the specific
websites: JADE Official Website [30] and the FIPA Official Website
[31]

2.2 JADE Architecture

The following picture represents the main JADE architectural ele-
ments.

An application based on JADE is made of a set of components (the
Agents) each one having a unique name. Agents execute tasks and interact
by exchanging messages.

Agents live on top of a Platform that provides them with basic ser-
vices such as message delivery. A Platform is composed of one or more
Containers each one can be executed on different hosts thus achieving
a distributed platform and each Container can contain zero or more
Agents.

For instance, with reference to the picture below, Container Container
1 in host Host 3 contains Agents A2 and A3. Even if in some particular
scenarios this is not always the case, you can think of a Container as a
JVM (it stands for Java Virtual Machine, the virtual machine that execute
the Java Platform) so there is the relation:

One JVM - One Container - Zero or Many Agents

30

CHAPTER 2. JADE 31

A special Container is the Main Container existing in any platform.
The Main Container is itself a container and can therefore contain agents,
but differs from other containers as:

• It must be the first container to start in the platform and all other
containers register to it at bootstrap time

• It includes two Special Agents:

– the AMS (it stands for Agent Management System) that rep-
resents the authority in the platform and is the only agent able
to perform platform management actions such as starting and
killing agents or shutting down the whole platform (normal agents
can request such actions to the AMS)

– the DF (it stands for Directory Facilitator) that provides the
Yellow Pages Service where agents can publish the services
they provide and find other agents providing the services they
need

It should be noticed that if another Main Container is started, as in
host Host 4 in the following picture, this constitutes a new platform.

All details about this architecture will be described in following sections.

2.2.1 JADE & FIPA

According to FIPA, the Agent Platform can be splitted on several hosts
given that:

• each host acts a container of agents, that is, provides a complete
runtime environment for JADE agents execution (for example the
lifecycle management, message passing facilities, etc.)

• (at least) one of these containers is the main container (actually,
the first started), responsible to maintain a registry of all containers
in the same JADE platform (through wich agents can discover each
other)

• hence, it promotes a P2P (it stands for Peer to Peer, the complete
description can be found at the specific Wikipedia web page [33])
interpretation of a MAS

31

32 CHAPTER 2. JADE

Figure 2.1: JADE Architectural Model

Then, after the Agent Platform description, we introduce the JADE
AMS, that is another particular part of a JADE system. So, for a given
JADE platform, a single AMS exists, wich:

• keeps track of all agents in the same JADE platform, even those living
in remote containers

• should be contacted by JADE agents prior to any other action (they
do not exist until registered by an AMS)

• hence, provides the White Pages Service, that is a location-transparent
naming service

Another JADE foundamental components is the DF (it stands for Di-
rectory Facilitator); a singleton DF exists for each JADE platform, that:

• keeps track of all advertised services provided by all agents in the same
JADE platform

32

CHAPTER 2. JADE 33

• should be contacted by JADE agents who wish to publish their capa-
bilities

• hence, provides the default Yellow Pages Service, according to the
publish & subscribe paradigm

The last JADE foundamental component is the ACC (it stands for
Agent Communication Channel) that is the agent that provides the
path for basic contact between agents inside and outside the platform; so
it is the default communication method which offers a reliable, ordered and
accurate message routine service and it must also support all functions for
interoperability between different agent platforms.

So, for a given JADE platform, a distributed message passing sys-
tem exists, which is the ACC:

• it controls all exchange of messages within the JADE platform, be
them local or remote

• it implements all the needed facilities to provide asynchronicity of
communications

• it manages all aspects regarding FIPA ACL (it stands for FIPA
Agent Communication Language) message format, such as se-
rialization and deserialization

In the end, the JADE FIPA Architecture is showed in the following
picture, that contains the normative and optionals services given by the
FIPA required services.

2.2.2 JADE Agents

Being JADE an object-based middleware, JADE agents are first of all
Java objects :

• user-defined agents must extend the specific Java class, thus inheriting
some ready-to-use method

• a JADE agent is executed by a single Java thread (there is an ex-
ception, though)

33

34 CHAPTER 2. JADE

Figure 2.2: FIPA required services

JADE agents have a wide range of features enabling their autonomy,
despite being still Java objects, so:

• all JADE agents must have a globally unique name (defined as
aid), which is, by default, the concatenation by simbol @ of their
local name and the JADE platform name

• agents bussiness logic must be expressed in terms of behaviours

• JADE agents can communicate by exchanging FIPA ACL mes-
sages

Thus, according to FIPA, a JADE agent can be in one of several states
during its lifetime:

• Initiated: the agent object has been built, but cannot do anything
since it is not registered to the AMS yet, so it has no aid even

• Active: the agent is registered to the AMS and can access all
JADE features, in particular, it is executing its behaviours

• Waiting: the agent is blocked, waiting for something to happen and
to react to, tipically this is an ACL message

34

CHAPTER 2. JADE 35

• Suspended: the agent is stopped, therefore none of its behaviours
are being executed

• Transit: the agent has started a migration process and it will
stay in this state until migration ends

• Unknown: the agent is dead, so it has been deregistered to the AMS

Thus, the lifecycle of a JADE agent can be described as the following
picture, where are described all states and transitions of an agent’s state,
according to the FIPA.

So, as follows, is showed the FIPA Agent Platform Life Cycle:

Figure 2.3: FIPA Agent Platform Life Cycle

After the agent lifecycle’s description, we will treat the description about
the agent behaviours description in order to explain all details about

35

36 CHAPTER 2. JADE

these entities. By definition, JADE agents are autonomous entities,
therefore they should act independently and in parallel with each other,
so the need for efficency drives toward the execution of JADE agents as a
single Java thread each but, however, agents need to perform complex
activities, possibly composed by multiple tasks, even concurrently.

Thus, theis contrasting needs to behaviours in order to conciliate them.
A behaviour can be seen as an activity to perform with the goal of
completing a task. It can be represented both as a proactive activity
started by the agent on its own, as well as a reactive activity performed
in response to some event (for example in response to a timeout event,
messages event or any other event relating to agents).

However, JADE implements behaviours as Java objects, which
are executed concurrently (still by a single Java thread) using a non-
preemptive, round-robin scheduler that is internal to the agent class
but hidden to the developer.

Thus, the JADE multi-tasking, non-preemptive scheduling policy
is described as showed in the following picture:

Figure 2.4: JADE multi-tasking, non-preemptive scheduling policy

36

CHAPTER 2. JADE 37

2.2.3 FIPA ACC

According to the FIPA specification, JADE agents communicate via asyn-
chronous message passing where:

• each agent has a message queue (a sort of mailbox) where the JADE
ACC delivers ACL messages sent by other agents

• whenever a new entry is added to the mailbox, the receiving agent is
notified so, it does not need to block nor to poll either

These specifications about the message passing are valid and must be
respected when the agent actually process a message is up to the agent itself
(or the programmer), for the sake of agents autonomy

Thus, the ACL compliant messages have a crucial role in order to
obtain the situation where each agent is able to understand each other. So,
they need to have a defined format and semantic relating to messages.

Hence, an ACL message contains the following foundamental informa-
tions:

• sender: the agent who sends the message; this field is automatically
set by the middleware component where the sender agent live

• receiver: the agent who the message targets ; this field is setted by
the sender agent because it may be many different target agents

• performative: the name of the communication act the agents want
to carry out ; this field is constrained by a FIPA ontology

• content: the actual information conveyed by the message

• language: the syntax used to encode to the content

• ontology: the semantics upon which the content relies

Logically, there are many other fields but they depend on the technology
progress of JADE so, the itemized fields are the foundamental fields that
must be present in all JADE versions.

37

38 CHAPTER 2. JADE

After the previous description about the FIPA communication model,
the following picture shows a model abstraction about it in order to repre-
sent all itemized foundamental fields about a message and its communica-
tion.

Figure 2.5: FIPA communication model abstraction

In the end, JADE agents have a couple of methods in order to guarantee
a stable interaction mode; these foundamental communication primitives
are:

• send: to send a message to a implicity specified recipient agent

• receive: to asynchronously retrieve the first message in the mailbox,
logically, if the mailbox contains only one message, this message will
be retrieved to the target agent involved in the communication

• timed receive: to perform a timed, synchronously receive on the
mailbox in order to obtain the situation where the timeout causes
agent to wake up, so it has to retrieve the messages contained in the
mailbox

38

CHAPTER 2. JADE 39

• selective receive: to retrieve a message from the mailbox which
matches a given message template, so the message queue order is by-
passed by the target agent involved in the communication because it
selects the message to retrieve

All these methods are distribution-transparent, that is they choose
the proper address and transport mechanism based upon sender and receiver
locations in order to obtain the best communication situation.

39

40 CHAPTER 2. JADE

40

Chapter 3

Naming, Locator & Research
Service
Structure & Interaction Model

In this chapter it will be introduced the general model for providing services
related to naming, location and research service.

These services are part of a separate module that can be used with any
middleware, less than small changes relative to the structural details of the
application context of the middleware considered. In the case treated, this
module is used with the middleware TuCSoN , introduced and described in
the first chapter.

This model has been studied starting from the previously seen JADE
system because that system is an efficient distributed middleware for dis-
tributed system. This system is JADE like in terms of layer vertical mod-
eling because it is a good solution relating to system network distribution.

Comparing with the JADE system, this model’s characteristics have
been increased in order to obtain a better model, in particular it has been
studied in order to increase the characteristics about the network distribu-
tion because, as described in the previous chapter, JADE has many con-
strains that limit the possible network distribution of that system. In fact,
this model is more distributed-oriented than JADE because all lower layers
can be distributed excep the upper layer because, as you can see in the fol-
lowing sections, it must be located on the consumer because it is the layer
that has the aim to manage the communication with the consumer.

41

42
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

Another advantage of this model compared to jade is the complete in-
dependence of the layers by their location in order to remove all the con-
straints that made jade less network distribution-oriented of internal parts
of the middleware, therefore this model has a higher efficiency in terms of
computational load.

Also there is another foundament characteristic of this model: the inde-
pendence of this module by the consumer middleware.

The decision to design this module as a separate module from the context
of specific use (varying the model that will be introduced for TuCSoN the
same logic can be adapted to any type of middleware) was taken to obtain
the maximum orthogonality between the consumer middleware (TuCSoN in
the considered case), and the service module introduced in this chapter.
The orthogonality is guaranteed by the characteristic malleability of the
structure of the considered module because this module template is suitable
for multiple contexts of use.

As you will see below, this module can be contained entirely on the
consumer, or may be distributed, in this case there will be only a part of
the module of a consumer (probably would be on the consumer only the
part of the module that it intends to use, or the module’s most used part)
and the rest of the module would be placed in another point of the system
and on demand from the consumer involved in the distributed architecture
of that specific instance of the module.

3.1 Main Model

The following picture shows the architectural main model of the considered
module. This model has been studied in order to have a common external
interface to customers and three specialized modules inside:

• a module related to the Universal Naming Service: service that
provides all functions about the naming system (for example: giving
an universal identificator to a customer)

• a module related to the Universal Locator Service: service that
provides all functions about the locator system (for example: register-
ing the current customer’s position)

42

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 43

• a module related to the Research Service: service that provides
all functions about the research system (for example: research the
customer’s position starting from its universal identificator)

All these modules will be described in details in following sections.

Figure 3.1: Main Architectural Model

As described above, a consumer can contain only a part of the module
(for example, if it uses most the location service then this part of the module
will be local on the consumer while the other could be distributed), and in
this case the module is distributed, or the consumer can contain the entire
module, so without any system distribution. In any case, the consumer is
coordinated by the individual services so you do not have problems with
latency and fault tolerance.

43

44
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

3.2 Naming Service Model

This module handles registrations and all claims relating to the naming
system. As shown in the description in the following picture, also some
components of this module’s part can be distributed, so there is a further
distribution of the model, this further distribution will be further detailed
later in this section.

The infrastructural model of this module is based on the three layer
vertical modeling and in one of these layers there is a further horizontal
subdivision in many layers as you can see in the picture below.

Figure 3.2: Naming Service Architectural Model

As seen in the picture there are the following three vertical layers:

• outside interfacing layer : this layer interface the module with the
external consumer (for example the TuCSoN middleware)

• internal request computation layer : this layer is designed to compute
the received requests from the above layer and return the results of

44

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 45

the received requests (for example ”OK” answer to a registration re-
quest received from an agent with a consequent return of an universal
identifier for that agent)

• data storage layer : this layer is designed to manage the data stor-
age relating to the naming service (for example the correspondence
between agents and their universal identifiers)

In the following subsections will be described all details about the three
above layers.

3.2.1 Outside Interfacing Layer

This layer is composed by a single entity: the Request Handler entity.
This entity has the aim to provide all primitives to the external cun-

sumers in order to allow them to use the naming service module. Logically,
this entity provides all primitives to external consumers, then the Request
Handler not only provides the naming service primitives but also all prim-
itives about the locator service and the research service. As previously seen,
the internal part of the naming service can be distributed over the network,
so in this case, the external consumer does not perceive any effect caused by
that because the Request Handler has also the aim to manage all those
issues related to the components distribution.

The Local Naming Service Outside Intefacing Layer’s functions
can be also extended by using external modules because it has been studied
in order to have an important extendibility, in fact, to extend this layer’s
functions a consumer has to comunicate with Request Handler using the
provided primitives. This design has been studied in order to maintain the
complete orthogonality of the Naming Service Module, consistently with the
full designed module model (as described in the initial section of the full
module in this chapter).

Starting from the previous considerations we have that this model ap-
pears suitable for use in multiple contexts, independently from the consumer
(in the studied case the TuCSoN middleware).

Then using local or distributed structural policy, the model can be de-
scribed in the following two pictures.

As you can see in the previous picture, there are two possible kind of
naming service outside interfacing layer : the local one and the distributed

45

46
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

Figure 3.3: Local - Distributed Naming Service Main Architectural Model

one.

The Picture A shows the Local Naming Service Outside Intefacing
Layer (logically referred to the Local Naming Service Model) where the
naming module is completely on the consumer, so in this case, the Request
Handler entity is in the same place of the rest of the naming module and the
interfacing layer doesn’t have to manage the distributed issues previously
described about the communication with the internal part of the naming
module.

The Picture B shows the Distributed Naming Service Outside In-
tefacing Layer (logically referred to the Distributed Naming Service
Model) where the naming module is not in the same place of the rest of
naming module, in fact, while the Request Handler in located on the
consumer, the rest of the naming service module is in another place in or-
der to have a distributed architectural model of the system. Logically, in
this case the interfacing layer has to manage the distributed issues about
network communication with the internal part of the naming module, so
this layer has to manage also all functions about the transmission and the
fault tolerance of this system.

46

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 47

3.2.2 Internal Request Computation Layer

This layer is composed by many entities in order to divide the managing
of all computational functions related to the naming service. This division
has also been made to reduce the entities’s complexity in order to obtain
an architectural model more extensible because it’s easier to extend the
entities’s functionalities when these have a lesser computation complexity.

This layer can be distributed like the previously described one because
the managing of network communication is the aim of the upper layer (the
Local Naming Service Outside Intefacing Layer).

The following picture described the architectural model of the Internal
Request Computation Layer.

Figure 3.4: Internal Request Computation Naming Service Architectural
Model

Starting from the previous picture we can describe all computational
entities composing the internal module of the naming service. All of these
entities will be described in relation to the presence of the TuCSoN mid-
dleware as naming service module’s consumer. Then, these entities will be
described in details in relation to the presence of TuCSoN Agents, TuC-
SoN Nodes and Resources (logically, resources are related to the TuCSoN
model).

All this layer’s entities are compatible with any consumer middleware
because the only change to do would be related to the characteristics of the
consumer entities.

The entities in the Internal Request Computation Layer are:

• Naming Servant: entity capable to serve each naming request (eg:
create a new universal name for an agent, update description of an

47

48
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

agent’s name, etc.) received from TuCSoN Agents, TuCSoN Nodes
and Resources. In details, there are the following specialized Naming
Servant entities:

– Agents Naming Servant: specialized naming servant entity
capable to serve all request received from a TuCSoN Agent

– Nodes Naming Servant: specialized naming servant entity
capable to serve all request received from a TuCSoN Node

– Resources Naming Servant: specialized naming servant en-
tity capable to serve all request received from a TuCSoN entity
that has to use a resource in a TuCSoN system; logically, this
TuCSoN system has to be a consumer of the naming service mod-
ule through TuCSoN middleware

• Naming Register Request Dispatch Handler: entity capable of
dispatching request about naming service received from all servant en-
tities (Agents Naming Servant, Nodes Naming Servant and Resources
Naming Servant) in order to forward all these requests to the broker
entity

• Naming Service Request Broker: entity capable of searching the
current free server in order to serve request about naming service in
order to manage all operations about naming storaged data. As you
will see in the next chapter, this entity is called also from Checker
Entity in order to check the existance of an universal identifier or in
order to execute any other naming service request.

The Naming Servant Entities has been designed in order to have a
three tired model because by adopting this design model these entities are
less complex (it refers to the computational complexity) such as previously
described and in order to obtain a better extensibility.

As previously said, this part of the naming service module can be dis-
tributed over the network or can be completely contained on the cunsumer.
In the next paragraph will be described the local version of this module’s
part, so the situation where the Internal Request Computation Layer
is completely contained on the consumer.

48

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 49

Figure 3.5: Local Naming Service Internal Architectural Model

As you can see in the above picture, when this naming module’s layer
is contained on the consumer, this level is directly connected with the Re-
quest Handler that’s contained on the consumer as described in the pre-
vious section. In this case, all naming service requests are directly sent
from the Request Handler to the Naming Servant entities without any
distributed transmission. So there is no problem related to the fault tol-
erance and communication problems. The managing of distribution issues
is related to the communication between the Naming Service Request
Broker and the lower layer, called Data Storage Layer.

In the next paragraph will be described the distributed version of this
module’s part, so the situation where the Internal Request Compu-
tation Layer is outside from consumer while the Request Handler is
contained on the consumer.

49

50
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

Figure 3.6: Distributed Naming Service Internal Architectural Model

As you can see in the above picture, in this case the naming module’s
layer is distributed over the network. In this case the Internal Request
Computation Layer and the Request Handler are in two different
places, in fact, while the Request Handler is cointained on the cunsumer,
the Internal Request Computation Layer is cointained in a different
place. These two layers comunicate through the connection between Nam-
ing Servant entities and the Request Handler entity. So there are two
kind of distribution issues:

• distribution issues related to the communication between Outside
Interfacing Layer and Internal Request Computation Layer

• distribution issues related to the communication between Naming
Service Request Broker entity and the lower layer: the Data Stor-
age Layer

50

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 51

The described distribution issues are managed by different entities, in
fact in the firse case (Outside Interfacing Layer - Internal Request
Computation Layer) the involved entities are the Request Handler
entity and Naming Servant entities because these are their layers’ bor-
derline entities. Second (Internal Request Computation Layer - Data
Storage Layer) the involved entities are the Naming Service Request
Broker and corresponding entity in the lower layer because these are their
layer’s borderline entities.

All distribution management policies has to prevent and solve any prob-
lem about the fault tolerance and communication problems. So all these
layers’ borderline entities are very important for the efficiency in network
distribution because if these mechanisms are not efficient there are prob-
lems related to the communicational and computational responsiveness and
reliability of the complete naming system module.

The naming system module’s lower layer and all its borderline entities
will be described in the following section.

3.2.3 Data Storage Layer

This layer has the aim to manage the data storage and provide all functions
about the naming service data storage.

This layer has been studied in order to have a better orthogonality be-
tween the naming system and the data storage system. In fact, the server
distribution is completely independent from the naming system and the
naming module.

The distributed architectural model about this layer has been studied in
order to allow to manage data servers and their technology details indepen-
dently from the naming service module, then, if the data servers’ technology
will be modified there are no changes to do about the naming system mod-
ule.

A naming server can be located on a TuCSoN node (related to TuC-
SoN middleware as external consumer) or in another place; in fact, as you
will se in following chapters, the Naming Service Request Broker saw
in the previous section has the aim to manage all distribution issues related
to the Data Storage Layer. All these distribution issues are also managed
by a particular entity contained in this layer that will be described in the
following paragraph (after the model picture).

51

52
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

The following picture described the architectural model of the Data
Storage Layer.

Figure 3.7: Data Storage Naming Service Internal Architectural Model

The entities in the Data Storage Layer are:

• Naming Server: entity capable of storing data about names and
references about Agents, Nodes and Resources’s universal identifiers

• Updating Server Handler - Consistency Data Respector: en-
tity capable of updating data about Naming Servers in order to have
consistent updates across all distributed servers in order to achieve
consistency in saved data; this entity also manage all the distribution
issues about the Naming Servers because it has the aim to check
the connectivity of distributed servers and their state

The broker architectural model related to the communication between
the Internal Request Computation Layer and the Data Storage
Layer has been studied in order to obtain a better efficency because the
latency will be lesser then other architectural models.

52

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 53

An excellent solution for the network distribution of Naming Servers is
Cassandra (described in the previous chapter) that provides all necessary
services in order to have a good data storage distribution.

In this case, the Coordinator role is set to the Updating Server Handler
because this is the entity able to manage and administrate all issues about
the Data Consistency (in fact, this entity is described as Consistency Data
Respector).

This role is very important for the correct execution of all functions
about the Data Storage Layer because it is the data storage’s core.

There is also another motivation for this choice about Cassandra; this
motivation is about the future evolution about the data storage system be-
cause, after specific studies, this model results completly independent from
the considered module, in fact, if Cassandra will be updated maintaining
all its interfacing primitives, the main infrastructural model won’t be mod-
ified because it’s not part of Cassandra (in fact, in this case study this
module is a consumer for Cassandra).

53

54
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

3.3 Locator Service Model

This module handles registrations and all claims relating to the locator sys-
tem. As shown in the legend in the following picture, also some components
of this module’s part can be distributed, so there is a further distribution of
the model, this further distribution will be further detailed later in this sec-
tion. The infrastructural model of this module is based on the three layer
vertical modeling and in one of these layers there is a further horizontal
subdivision in many layers as you can see in the picture below.

Figure 3.8: Locator Service Architectural Model

As seen in the picture there are the following three vertical layers:

• outside interfacing layer : this layer interface the module with the
external consumer (for example the TuCSoN middleware)

54

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 55

• internal request computation layer : this layer is designed to compute
the received requests from the above layer and return the results of the
received requests (for example ”OK” answer to a location registration
request received from an agent)

• data storage layer : this layer is designed to manage the data stor-
age relating to the locator service (for example the correspondence
between agents and their current location)

In the following subsections will be described all details about the three
above layers.

3.3.1 Outside Interfacing Layer

This layer is composed by a single entity: the Request Handler entity.
This entity has the aim to provide all primitives to the external cun-

sumers in order to allow them to use the locator service module. Logically,
this entity provides all primitives to external consumers, then the Request
Handler not only provides the locator service primitives but also all prim-
itives about the naming service (seen in the previous section) and the re-
search service. As previously seen, the internal part of the locator service
can be distributed over the network, so in this case, the external consumer
does not perceive any effect caused by that because the Request Han-
dler has also the aim to manage all those issues related to the components
distribution.

The Local Locator Service Outside Intefacing Layer’s functions
can be also extended by using external modules because it has been studied
in order to have an important extendibility, in fact, to extend this layer’s
functions a consumer has to comunicate with Request Handler using the
provided primitives. This design has been studied in order to maintain the
complete orthogonality of the Locator Service Module, consistently with the
full designed module model (as described in the initial section of the full
module in this chapter).

Starting from the previous considerations we have that this model ap-
pears suitable for use in multiple contexts, independently from the consumer
(in the studied case the TuCSoN middleware).

Then using local or distributed structural policy, the model can be de-
scribed in the following two pictures.

55

56
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

Figure 3.9: Local - Distributed Locator Service Main Architectural Model

As you can see in the previous picture, there are two possible kind of
locator service outside interfacing layer : the local one and the distributed
one.

The Picture A shows the Local Locator Service Outside Intefacing
Layer (logically referred to the Local Locator Service Model) where the
locator module is completely on the consumer, so in this case, the Request
Handler entity is in the same place of the rest of the locator module and the
interfacing layer doesn’t have to manage the distributed issues previously
described about the communication with the internal part of the locator
module.

The Picture B shows the Distributed Locator Service Outside In-
tefacing Layer (logically referred to the Distributed Locator Service
Model) where the locator module is not in the same place of the rest of
locator module, in fact, while the Request Handler in located on the con-
sumer, the rest of the locator service module is in another place in order
to have a distributed architectural model of the system. Logically, in this
case the interfacing layer has to manage the distributed issues about net-
work communication with the internal part of the locator module, so this
layer has to manage also all functions about the transmission and the fault
tolerance of this system.

56

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 57

3.3.2 Internal Request Computation Layer

This layer is composed by many entities in order to divide the managing
of all computational functions related to the locator service. This division
has also been made to reduce the entities’s complexity in order to obtain
an architectural model more extensible because it’s easier to extend the
entities’s functionalities when these have a lesser computation complexity.

This layer can be distributed like the previously described one because
the managing of network communication is the aim of the upper layer (the
Local Locator Service Outside Intefacing Layer).

The following picture describes the architectural model of the Internal
Request Computation Layer.

Figure 3.10: Internal Request Computation Locator Service Architectural
Model

Starting from the previous picture we can describe all computational
entities composing the internal module of the locator service. All of these
entities will be described in relation to the presence of the TuCSoN mid-
dleware as locator service module’s consumer. Then, these entities will be
described in details in relation to the presence of TuCSoN Agents, TuC-
SoN Nodes and Resources (logically, resources are related to the TuCSoN
model).

All this layer’s entities are compatible with any consumer middleware
because the only change to do would be related to the characteristics of the
consumer entities.

The entities in the Internal Request Computation Layer are:

• Locator Servant: entity capable to serve each locator request (eg:
register the current location of an agent, update the location of an

57

58
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

agent, etc.) received from TuCSoN Agents, TuCSoN Nodes and Re-
sources. In details, there are the following specialized Locator Servant
entities:

– Agents Locator Servant: specialized locator servant entity
capable to serve all request received from a TuCSoN Agent

– Nodes Locator Servant: specialized locator servant entity ca-
pable to serve all request received from a TuCSoN Node

– Resources Locator Servant: specialized locator servant entity
capable to serve all request received from a TuCSoN entity that
has to use a resource in a TuCSoN system; logically, this TuC-
SoN system has to be a consumer of the naming service module
through TuCSoN middleware

• Locator Register Request Dispatch Handler: entity capable of
dispatching request about locator service received from all servant en-
tities (Agents Locator Servant, Nodes Locator Servant and Resources
Locator Servant) in order to forward all these requests to the broker
entity

• Locator Service Request Broker: entity capable of searching the
current free server in order to serve request about locator service in
order to manage all operations about locator storaged data. As you
will see in the next chapter, this entity is called also from Checker
Entity in order to check the location of an agent or a node or in order
to execute any other locator service request.

The Locator Servant Entities has been designed in order to have a
three tired model because by adopting this design model these entities are
less complex (it refers to the computational complexity) such previously
described and in order to obtain a better extensibility.

As previously said, this part of the locator service module can be dis-
tributed over the network or can be completely contained on the cunsumer.
In the next paragraph will be described the local version of this module’s
part, so the situation where the Internal Request Computation Layer
is completely contained on the consumer.

58

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 59

Figure 3.11: Local Locator Service Internal Architectural Model

As you can see in the above picture, when this locator module’s layer
is contained on the consumer, this level is directly connected with the Re-
quest Handler that’s contained on the consumer as described in the pre-
vious section. In this case, all locator service requests are directly sent
from the Request Handler to the Locator Servant entities without any
distributed transmission. So there is no problem related to the fault tol-
erance and communication problems. The managing of distribution issues
is related to the communication between the Locator Service Request
Broker and the lower layer, called Data Storage Layer.

In the next paragraph will be described the distributed version of this
module’s part, so the situation where the Internal Request Compu-
tation Layer is outside from consumer while the Request Handler is
contained on the consumer.

59

60
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

Figure 3.12: Distributed Locator Service Internal Architectural Model

As you can see in the above picture, in this case the locator module’s
layer is distributed over the network. In this case the Internal Request
Computation Layer and the Request Handler are in two different
places, in fact, while the Request Handler is cointained on the cunsumer,
the Internal Request Computation Layer is cointained in a different
place. These two layers comunicate through the connection between Loca-
tor Servant entities and the Request Handler entity. So there are two
kind of distribution issues:

• distribution issues related to the communication between Outside
Interfacing Layer and Internal Request Computation Layer

• distribution issues related to the communication between Locator
Service Request Broker entity and the lower layer: the Data Stor-
age Layer

60

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 61

The described distribution issues are managed by different entities, in
fact in the firse case (Outside Interfacing Layer - Internal Request
Computation Layer) the involved entities are the Request Handler
entity and Locator Servant entities because these are their layers’ bor-
derline entities. Second (Internal Request Computation Layer - Data
Storage Layer) the involved entities are the Locator Service Request
Broker and corresponding entity in the lower layer because these are their
layer’s borderline entities.

All distribution management policies have to prevent and solve any prob-
lem about the fault tolerance and communication problems. So all these
layers’ borderline entities are very important for the efficiency in network
distribution because if these mechanisms are not efficient there are prob-
lems related to the communicational and computational responsiveness and
reliability of the complete locator system module.

The locator system module’s lower layer and all its borderline entities
will be described in the following section.

3.3.3 Data Storage Layer

This layer has the aim to manage the data storage and provide all functions
about the locator service data storage.

This layer has been studied in order to have a better orthogonality be-
tween the locator system and the data storage system. In fact, the server
distribution is completely independent from the locator system and the lo-
cator module.

The distributed architectural model about this layer has been studied in
order to allow to manage data servers and their technology details indepen-
dently from the locator service module, then, if the data servers’ technology
will be modified there are no changes to do about the locator system module.

A locator server can be located on a TuCSoN node (related to TuCSoN
middleware as external consumer) or in another place; in fact, as you will
se in following chapters, the Locator Service Request Broker saw in
the previous section has the aim to manage all distribution issues related to
the Data Storage Layer. All these distribution issues are also managed
by a particular entity contained in this layer that will be described in the
following paragraph (after the model picture).

The following picture described the architectural model of the Data

61

62
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

Storage Layer.

Figure 3.13: Data Storage Locator Service Internal Architectural Model

The entities in the Data Storage Layer are:

• Naming Server: entity capable of storing data about names and
references about Agents, Nodes and Resources’s current location

• Updating Server Handler - Consistency Data Respector: en-
tity capable of updating data about Locator Servers in order to have
consistent updates across all distributed servers in order to achieve
consistency in saved data; this entity also manage all the distribution
issues about the Locator Servers because it has the aim to check
the connectivity of distributed servers and their state

The broker architectural model related to the communication between
the Internal Request Computation Layer and the Data Storage
Layer has been studied in order to obtain a better efficency because the
latency will be lesser then other architectural models.

62

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 63

An excellent solution for the over network distribution of Naming Servers
is Cassandra (described in the previous chapter) that provides all necessary
services in order to have a good data storage distribution.

In this case, the Coordinator role is set to the Updating Server Handler
because this is the entity able to manage and administrate all issues about
the Data Consistency (in fact, this entity is described as Consistency Data
Respector).

This role is very important for the correct execution of all functions
about the Data Storage Layer because it is the data storage’s core.

There is also another motivation for this choice about Cassandra; this
motivation is about the future evolution about the data storage system be-
cause, after specific studies, this model results completly independent from
the considered module, in fact, if Cassandra will be updated maintaining
all its interfacing primitives, the main infrastructural model won’t be mod-
ified because it’s not part of Cassandra (in fact, in this case study this
module is a consumer for Cassandra).

63

64
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

3.4 Research Service Model

This module handles all claims relating to the research and checking func-
tions about the naming module and the locator module. Like other seen
modules, also this module’s internal part can be distributed as will be de-
scribed in following section. Unlike other modules, this module’s infrastruc-
tural model is not based on the three layer vertical modeling but it’s based
on the two layer vertical modeling and, unlike others two modules, there
is no module with a further orizzontal subdivision, as you can see in the
picture below.

Figure 3.14: Research Service Architectural Model

As seen in the picture, there are the following two vertical layers:

• outside interfacing layer : this layer interface the module with the
external consumer (for example the TuCSoN middleware)

64

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 65

• internal request computation layer : this layer is designed to compute
the received requests from the above layer and return the result of the
received requests(for example an agent’s current location)

In the following subsections will be described all details about these two
layer above introduced.

3.4.1 Outside Interfacing Layer

This layer is composed by a single entity: the Request Handler entity.
This entity has the aim to provide all primitives to the external cun-

sumers in order to allow them to use the research service module. Log-
ically, this entity provides all primitives to external consumers, then the
Request Handler not only provides the research service primitives but
also all primitives about the naming service and the locator service (both
seen in the previous sections). As previously seen, the internal part of the
research service can be distributed over the network, so in this case, the
external consumer does not perceive any effect caused by that because the
Request Handler has also the aim to manage all those issues related to
the components distribution.

The Local Research Service Outside Intefacing Layer’s func-
tions can be also extended by using external modules because it has been
studied in order to have an important extendibility, in fact, to extend this
layer’s functions a consumer has to comunicate with Request Handler using
the provided primitives. This design has been studied in order to maintain
the complete orthogonality of the Research Service Module, consistently
with the full designed module model (as described in the initial section of
the full module in this chapter).

Starting from the previous considerations we have that this model ap-
pears suitable for use in multiple contexts, independently from the consumer
(in the studied case the TuCSoN middleware).

Then using local or distributed structural policy, the model can be de-
scribed in the following two pictures.

65

66
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

Figure 3.15: Local - Distributed Research Service Main Architectural Model

As you can see in the previous picture, there are two possible kind of
research service outside interfacing layer : the local one and the distributed
one.

The Picture A shows the Local Research Service Outside Intefac-
ing Layer (logically referred to the Local Research Service Model)
where the research module is completely on the consumer, so in this case,
the Request Handler entity is in the same place of the rest of the locator
module and the interfacing layer doesn’t have to manage the distributed
issues previously described about the communication with the internal part
of the locator module.

The Picture B shows the Distributed Research Service Outside
Intefacing Layer (logically referred to the Distributed Research Ser-
vice Model) where the research module is not in the same place of the
rest of locator module, in fact, while the Request Handler in located on
the consumer, the rest of the research service module is in another place in
order to have a distributed architectural model of the system. Logically, in
this case the interfacing layer has to manage the distributed issues about
network communication with the internal part of the locator module, so
this layer has to manage also all functions about the transmission and the
fault tolerance of this system.

66

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 67

3.4.2 Internal Request Computation Layer

This layer is composed by many entities in order to divide the managing
of all computational functions related to the research service. This division
has also been made to reduce the entities’s complexity in order to obtain
an architectural model more extensible because it’s easier to extend the
entities’s functionalities when these have a lesser computation complexity.

This layer can be distributed like the previously described one because
the managing of network communication is the aim of the upper layer (the
Local Research Service Outside Intefacing Layer).

The following picture described the architectural model of the Internal
Request Computation Layer.

Figure 3.16: Internal Request Computation Research Service Architectural
Model

Starting from the previous picture we can describe all computational
entities composing the internal module of the research service. All of these
entities will be described in relation to the presence of the TuCSoN mid-
dleware as research service module’s consumer. Then, these entities will
be described in details in relation to the presence of TuCSoN Agents, TuC-
SoN Nodes and Resources (logically, resources are related to the TuCSoN
model).

67

68
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

All this layer’s entities are compatible with any consumer middleware
because the only change to do would be related to the characteristics of the
consumer entities.

The entities in the Internal Request Computation Layer are:

• Research Request Servant: entity capable to receive all search
requests in order to return the name or the location or any Naming
and Locator services’ data about an Agent, Node or a Resource; this
entity is also responsable to check if the received request is a valid
request or not (for example if the request’s syntax is correct)

• Research Request Dispatch Handler: entity able to dispatch any
received search request in order to check its validity and send it to the
broker entity (for example check if the received request has as target
the naming research service or the locator research service in order to
refuse all unknown request in terms of unknown type target because
this module can receive only request about naming research service
and locator research service)

• Research Service Request Broker: entity able to forward the
request to the specific servant entity after the received request type
checking (for example after the check if the received request is a nam-
ing or a locator service request)

• Naming Research Servant: entity able to compute any naming
service request from the external consumer (for example to check if
an universal identifier is related to an TuCSoN agent or a TuCSoN
node or to get the universal identifier about a TuCSoN agent); this
entity communicate with the Naming Service Request Broker and
forward the request to that entity in order to get the request result
and send it to upper layers, so to reply to external consumer

• Locator Research Servant: entity able to compute any locator
service request from the external consumer (for example to get the
current location of a TuCSoN agent or a TuCSoN node); this entity
communicate with the Locator Service Request Broker and for-
ward the request to that entity in order to get the request result and
send it to upper layers, so to reply to external consumer

68

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 69

• Validity Data Checker Servant - Consistency Data Respec-
tor: entity capable to check if the result data from the Research
Servant entities are correct; so this entity has the aim to mantain
data consistency between storaged data in other modules in relation
with the validity of the received research requests (for example if a
locator research request is received, this entity has to check if the re-
lated TuCSoN entity - an agent, a node or a resource - specified in
the request is really an agent, a node or a resource, relating to the
request’s target entity)

As previously said, this part of the research service module can be dis-
tributed over the network or can be completely contained on the cunsumer.
In the next paragraph will be described the local version of this module’s
part, so the situation where the Internal Request Computation Layer
is completely contained on the consumer.

Figure 3.17: Local Research Service Internal Architectural Model

As you can see in the above picture, when this locator module’s layer

69

70
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

is contained on the consumer, this level is directly connected with the Re-
quest Handler that’s contained on the consumer as described in the pre-
vious section. In this case, all reseach service requests are directly sent from
the Request Handler to the Research Request Servant entity without
any distributed transmission. So there is no problem related to the fault tol-
erance and communication problems. The managing of distribution issues is
related to the communication between the Naming Request Servant and
the relative broker entity, the Naming Service Request Broker, only if
that entity is distributed because if the Naming Service Module is on
the consumer too, there are no problems related to network distribution.
There is the same situation about the other servant, in fact, if the Locator
Research Servant is placed on the consumer and the Locator Service
Request Broker is not on it, there are issues relating to network distribu-
tion, while there are no issues about distribution if the Locator Service
Module is on the consumer too, because they will be directly connected.

In the next paragraph will be described the distributed version of this
module’s part, so the situation where the Internal Request Compu-
tation Layer is outside from consumer while the Request Handler is
contained on the consumer.

70

CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE
STRUCTURE & INTERACTION MODEL 71

Figure 3.18: Distributed Research Service Internal Architectural Model

As you can see in the above picture, in this case the locator module’s
layer is distributed over the network. In this case the Internal Request
Computation Layer and the Request Handler are in two different
places, in fact, while the Request Handler is cointained on the cunsumer,
the Internal Request Computation Layer is cointained in a different
place. These two layers comunicate through the connection between Re-
search Request Servant entity and the Request Handler entity. So
there are three kind of distribution issues:

• distribution issues related to the communication between Outside
Interfacing Layer and Internal Request Computation Layer

• distribution issues related to the communication between Naming
Research Servant entity and the Naming Service Request Bro-
ker

71

72
CHAPTER 3. NAMING, LOCATOR & RESEARCH SERVICE

STRUCTURE & INTERACTION MODEL

• distribution issues related to the communication between Locator
Research Servant entity and the Locator Service Request Bro-
ker

The described distribution issues are managed by different entities, in
fact in the firse case (Outside Interfacing Layer - Internal Request
Computation Layer) the involved entities are the Request Handler
entity and Research Request Servant entities because these are their
layers’ borderline entities.

Second (Naming Research Servant - Naming Service Request
Broker) the involved entities are the Naming Research Servant and
the Naming Service Request Broker because they are distributed over
network and these entities are the borderline’s entities about the Inter-
nal Request Computation Layer related to each module: Research
Service Module and Naming Service Module.

In the end, in the last case (Locator Research Servant - Locator
Service Request Broker) the involved entities are the Locator Re-
search Servant and the Locator Service Request Broker because they
are distributed over network and these entities are the borderline’s entities
about the Internal Request Computation Layer related to each mod-
ule: Research Service Module and Locator Service Module.

This distributed model is very important because, with the possible dis-
tribution of the other module’s Internal Request Computation Layer,
it’s possible to implement the full module in many ways, so it can be im-
plemented with the distributed model or not depending on the case (for
example if an agent is on a mobile device, the distributed model for the full
module will be better because the computational load about it will be lesser,
while if an agent is on a powerfull pc, the local model for the full module
will be better because that machine’s computational power can sadisfy the
full module’s computational load without problems).

However, all distribution management policies have to prevent and solve
any problem about the fault tolerance and communication problems. So all
borderline entities previously seen are very important for the efficiency in
network distribution because if these mechanisms are not efficient there are
problems related to the communicational and computational responsiveness
and reliability of the complete research system module.

72

Chapter 4

Universal Naming Syntax

In this chapter a new syntax will be introduced for the Universal Naming
System used in the module seen in the previous chapter.

This syntax has been studied in order to obtain a new way to give
an UID (stand for Universal IDentifier) to a consumer entity of this
module. This choice is derived from the technology evolution of the network
distribution and the mobility of all entities associated with any device (for
example if an entity is located on a smartphone, this entity will be mobile
because there are many way to obtain a network connection associating to
the device mobility).

This new naming definition has been needed in order to solve many
problems and issues derived from the technology evolution of machines and
device, first of all the mobility characteristic that is a new foundamental
property of the modern devices and machines. These issues are related
to many middleware designed before the mobility technologic evolution like
TuCSoN , the consumer middleware considered in this study for the de-
scribed module.

TuCSoN has been designed when there was only the machine concept
about the network communication as described in the first chapter in the
related naming section, so the only need was about the static network nam-
ing like the syntax previously seen [NetworkID : PortNumber] because
a machine was identified in the network with only these two values. With
the introduction of the device concept was born the mobility property of a
device or a machine, that can move in the space so its old naming system
version identifier is out of date because in many cases it is not valid (for

73

74 CHAPTER 4. UNIVERSAL NAMING SYNTAX

example if an agent on a device change its location because the device it’s
moving, the agent’s ID changes!) because the identifier must be absolute
during all lifecycle of an entity.

Another foundamental evolution is the introduction of the Cloud Com-
puting, a variety of different types of computing concepts that involve a
large number of computers connected through a real-time communication
network [34]. The Cloud Computing is involved in all modern technologies
and middlewares, so it’s important to improve the efficiency of the nam-
ing system in order to obtain an universal unique identifier valid in all
modern situations described.

Nowadays many middlewares entities can be located on the Cloud (for
example in TuCSoN an agent can be located on the Cloud) so, it was decided
to study and design a new naming system that allows to give a valid unique
universal identifier to an entity when it is located on a mobile device, on a
machine or on the cloud. This need derive from the mobility issues relating
to the identifier validity of a name given by the previous naming system
because that naming system abstraction is not valid if an entity is located
on the cloud because its ID changes and this situation is not admissible like
the mobile device situation previously described.

This new naming system syntax has been studied based on the fact that
TuCSoN is programmed in Java because this is the consumer middleware
considerated in this study. It’s important the reference to Java because, as
will be described in the following section, this platform provides primitives
that give an unique universal identifier for an entity; this identifier is
valid in all crucial situations derived from the introduction of the mobility
property of devices and machines. In fact, all problems and issues previously
described about the old TuCSoN naming system are completely solved by
this new system because this identifier is valid during all lifecycle of an
entity.

Starting from the previous considerations and issues, the most impor-
tant advantage of this syntax is related to the compatiblity between it and
any location space (this is the space that describes the concept of location,
for example it can be the GPS-Location Space where all possible locations
are described by GPS coordinates) adopted in a system that use this mod-
ule because thanks to the separation between naming and locator system
modules, it’s possible to make all these characteristics less complex and
completly independent.

74

CHAPTER 4. UNIVERSAL NAMING SYNTAX 75

In order to achieve these goals (modules indepentent between their and
the separation of concerns) all parts of the complete studied module, the
Naming System Module has to maintain all UIDs separated from their
locations and viceversa the Locator System Module has to do the reverse
function. Another advantage derived from this Naming System Module,
as previously described, the module give the UID to the consumer entity
so, this entity has only to make and send the naming request to the specific
module, all details about requests will be explained in the following section.

4.1 Syntax Definition

From the introduction in the previous section, the following Universal
Naming Syntax can be adopted for any middleware by extending and
specializing some characteristics and primitives (for example the entities
that will be communicate with this module). In this case it will be explained
relating to the TuCSoN middleware as external consumer because it is the
particular coordinated middleware considered in this module.
So, this syntax is :

[entity UID]

Where this value is the Universal IDentifier given by the Naming
System Module (all details in the previous chapter at the second section)
through specified primitives.

In particular, the choosen consumer middleware is TuCSoN so this mod-
ule is Java based (because TuCSoN is Java based) but, extending some
properties and entities it’s possible to adapt this syntax with any middle-
ware because the only requirement is to have a method that allows to obtain
an unique UID like the TuCSoN primitive that returns an unique UID
related to the envolved entity; in fact, the Naming System Module calls
the specific TuCSoN primitive in order to obtain the UID and returns this
value to the consumer entity.

Now we have to introduce the concept about naming properties that is
related to the properties that a consumer entity can have. These properties
are linked with the entity description in terms of specific requirements (for
example a property can be the logical name of a consumer entity, used by
the developers in order to have a human universal identifier like for example

75

76 CHAPTER 4. UNIVERSAL NAMING SYNTAX

”AGENT PLUTONE”). However all these choices depend on the particular
use case about the consumer middleware so, they will be introduce in the
development because in this phase the correct execution of this module is
guaranteed by the only introduced UID, that is the basic requirement.

4.2 Naming System Syntax Procedure

Starting from the previous section, in this one it will be described the se-
quence of steps about the naming request procedure that a consumer entity
has to do. These steps that a consumer entity (relating to the TuCSoN
middleware as consumer) has to do in order to obtain an UID, through the
described module and adopting this syntax, are:

• the consumer entity has to make a naming request specifing the entity
type (eg: ”TuCSoN Agent”)

• the consumer sends the created request to the Outside Interfacing
Layer (contained on the same device)

• wait for the confirm about the request received from the Outside
Interfacing Layer; in case the request is not valid, it has to restart
this procedure

• if the sent request is valid, the answer from the module will be the
UID because, when the Outside Interfacing Layer receive a nam-
ing request, the specific servant entity of the module has to obtain
the UID through specific primitives (Java based because the TuC-
SoN environment is Java), the UID is also stored by the Internal
Request Computation Layer

• the received UID can be associated to the entity

As described in the previous paragraph, this syntax can be used for the
TuCSoN middleware as consumer but it can be used with any middleware
as consumer but, as previously described, the consumer middleware envi-
ronment has to give a primitive (or a specific produre) that allows to get
an unique UID (for example a primitive that return an UID given by
combination of MAC Address values).

76

CHAPTER 4. UNIVERSAL NAMING SYNTAX 77

All these characteristics are related to the goal of maintaining the com-
plete module malleability and the orthogonality between the module and
the consumer middleware in order to maintain this module completly inde-
pendent from the consumer.

77

78 CHAPTER 4. UNIVERSAL NAMING SYNTAX

78

Chapter 5

Case Studies

This chapter explains all details about the interaction model of the Nam-
ing, Locator & Research Module, with reference to the differences
between the local and the distributed scenario of the module.

The following picture shows the main scenario about the default situa-
tion of this module while it’s working on many devices.

Figure 5.1: Main Case Study Interaction Global Model

79

80 CHAPTER 5. CASE STUDIES

As you can see in the above picture, this module must be interfaced
with the entity who wants to use it in order to request its available services:
Naming Service, Locator Service and Research Service.

There are also requirements that the entities involved in a system which
use this module has to satisfy, in particular these are refered to the network-
oriented structure of that system in the case of the network distribution of
involved entities; in fact, all entities that want to use this module must be
connected to the network and, logically, to the module.

Another important requirement that must be respected is the require-
ment relating to the device environment because, as explained in the Nam-
ing System Syntax chapter, this module is Java Based so, in order to be
used from an entity, this entity must running on a device where is available
the Java Virtual Machine and the Java Environment.

Referencing to JADE , you can see that the main structure and the
main interction model are very similar to the JADE one; in fact, the main
differences between this model and the JADE ’s model are related to the
architecture in terms of internal entities. The most important is that while
in JADE there is a main container for the entities, in this model there is no
container because there was the need to have a module that could be used
by any entity, without the constrain about the entity location like JADE ,
where a consumer entity must be placed in a container.

The main model shown in the previous page picture does not show all
details about the possible network distribution of this mlodule but it shows
only the main situation of this module’s use.

All details about internal interactions between components (internal
components of this module) distributed or local will be explained in the
following sections.

Furthermore the interaction model about all considered use cases will be
divided in many parts, depending on the target service’s interaction model
to describe because this module is too extended in its structure. Also the
use cases about the fault tolerance will be explained in order to give a
complete overview about this module’s functioning both in the best working
situation as in the failure situation.

80

CHAPTER 5. CASE STUDIES 81

5.1 Naming Service System Case Study

In this section the naming service system’s interactions model will be
explained in order to give a complete overview about this module’s part
functioning. Particularly, all differences about the local and the distributed
scenario will be described in terms of components interaction and commu-
nication.

The following picture shows the internal main interaction between the
entities and the naming service part of the module, in fact, the white
colored components in the picture represent the active components involved
in the interaction while the grey colored components represent the unused
components.

Figure 5.2: Naming Service System Case Study

As you can see in the above picture, the network has a crucial role in
the system working cycle because this module works only if the network
communication is available (in the local case the network rule is given by
the local connection) so, this aspect about the module will be explained in
all its details in the following sections.

81

82 CHAPTER 5. CASE STUDIES

5.1.1 Local Naming Service System Case Study

In this section all details about the interactions between the local naming
service (so the module is completely contained on the consumer entity)
and the entities will be explained, dividing the cases based on the consumer
entity type (agent, node and resource, in this case it is agent).

The interaction description model between the naming service and an
agent is shown in the following picture and after it there is the complete
description about all interactions.

Figure 5.3: Local Naming Service System Case Study

82

CHAPTER 5. CASE STUDIES 83

As you can see in the above picture there are many interactions be-
tween the consumer entity and the naming service and many interactions
between the internal entities.

In details, the working steps are the following.

• the consumer agent makes a naming request in order to obtain an
UID (or with another goal, for example a request in order to set one
or many properties about itsel such as its current state, etc) specifing
its type (agent, node or resource)

• the consumer agent sends the created naming request to the entity
able to accept it: the Request Handler; so the consumer agent
waits for an answer

• the Request Handler forwards the received request to the specific
Naming Servant entity based on the consumer entity type (in this
case the consumer entity is an agent so the request will be forwarded
to the Agents Naming Servant entity)

• the Naming Servant entity builds the UID for the consumer entity
and makes a new request, so sends it to the Request Handler entity
in order to give the UID to the consumer entity

• while the Request Handler entity sends the request answer to the
consumer entity, the Naming Servant entity sends the created UID
and makes a new request to the Naming Register Request Dis-
patch Handler entity in order to store the previously created iden-
tifier

• the Naming Register Request Dispatch Handler accepts the
received UID and makes a new request in order to forward it to the
broker entity

• the Naming Service Request Broker search the current free server
in order to serve the received request from the upper entity; when a
server if available (so when a server answer to the free server search
request sent), this broker entity sends data to it

• the free Naming Server who answered to the broker’s search re-
quest store the received data (the created UID); when the Naming

83

84 CHAPTER 5. CASE STUDIES

Server finish to store the received UID, it sends a new request (that
contains the UID) to the Updating Server Handler entity (also
called Consistency Respector) in order to update this value in all
Naming Servers, so this entity has the aim to maintain updated all
naming data in each Naming Server thus this entity is a Con-
sistency Respector (this is the motivation for this entity’s second
name)

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Naming Servers are distributed, like the
Updating Server Handler.

The management of the communication between the Naming Service
Broker entity and the Naming Servers is aim of the involved entities
because they are the borderline entities of their parts of the module.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter
because it involves all case studies treated.

84

CHAPTER 5. CASE STUDIES 85

After the interaction between an agent and the naming service, this
paragraph contains the interaction description model between the naming
service and a node, that is shown in the following picture and after it
there is the complete description about all interactions.

Figure 5.4: Local Naming Node Case Study Interaction Model

As you can see in the above picture there are many interactions be-
tween the consumer entity and the naming service and many interactions
between the internal entities.

85

86 CHAPTER 5. CASE STUDIES

In details, the working steps are the following.

• the consumer node makes a naming request in order to obtain an
UID (like the previous described case about the consumer agent)
specifing its type (in this case it is node)

• the consumer node sends the created naming request to the entity
able to accept it: the Request Handler; so the consumer node
waits for an answer

• the Request Handler forwards the received request to the specific
Naming Servant entity based on the consumer entity type (in this
case the consumer entity is a node so the request will be forwarded
to the Nodes Naming Servant entity)

• the Naming Servant entity builds the UID for the consumer entity
and makes a new request, so sends it to the Request Handler entity
in order to give the UID to the consumer entity

• while the Request Handler entity sends the request answer to the
consumer entity, the Naming Servant entity sends the created UID
and makes a new request to the Naming Register Request Dis-
patch Handler entity in order to store the previously created iden-
tifier

• the Naming Register Request Dispatch Handler accepts the
received UID and makes a new request in order to forward it to the
broker entity

• the Naming Service Request Broker search the current free server
in order to serve the received request from the upper entity; when a
server if available (so when a server answer to the free server search
request sent), this broker entity sends data to it

86

CHAPTER 5. CASE STUDIES 87

• the free Naming Server who answered to the broker’s search re-
quest store the received data (the created UID); when the Naming
Server finish to store the received UID, it sends a new request (that
contains the UID) to the Updating Server Handler entity (also
called Consistency Respector) in order to update this value in all
Naming Servers, so this entity has the aim to maintain updated all
naming data in each Naming Server thus this entity is a Con-
sistency Respector (this is the motivation for this entity’s second
name)

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Naming Servers are distributed, like the
Updating Server Handler.

The management of the communication between the Naming Service
Broker entity and the Naming Servers is aim of the involved entities
because they are the borderline entities of their parts of the module.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter be-
cause it involves all case studies treated (as explained in the previous case
about consumer agents).

87

88 CHAPTER 5. CASE STUDIES

The last interaction description to do in the local naming case is the in-
teraction description model between the naming service and a resource,
that is shown in the following picture and after it there is the complete
description about all interactions.

Figure 5.5: Local Naming Resource Case Study Interaction Model

As you can see in the above picture there are many interactions be-
tween the consumer entity and the naming service and many interactions
between the internal entities.

88

CHAPTER 5. CASE STUDIES 89

In details, the working steps are the following.

• the consumer resource makes a naming request in order to obtain
an UID (like the previous described cases about the consumer agent
and the consumer node) specifing its type (in this case it is node)

• the consumer resource sends the created naming request to the
entity able to accept it: the Request Handler; so the consumer
resource waits for an answer

• the Request Handler forwards the received request to the specific
Naming Servant entity based on the consumer entity type (in this
case the consumer entity is a resource so the request will be forwarded
to the Resource Naming Servant entity)

• the Naming Servant entity builds the UID for the consumer entity
and makes a new request, so sends it to the Request Handler entity
in order to give the UID to the consumer entity

• while the Request Handler entity sends the request answer to the
consumer entity, the Naming Servant entity sends the created UID
and makes a new request to the Naming Register Request Dis-
patch Handler entity in order to store the previously created iden-
tifier

• the Naming Register Request Dispatch Handler accepts the
received UID and makes a new request in order to forward it to the
broker entity

• the Naming Service Request Broker search the current free server
in order to serve the received request from the upper entity; when a
server if available (so when a server answer to the free server search
request sent), this broker entity sends data to it

89

90 CHAPTER 5. CASE STUDIES

• the free Naming Server who answered to the broker’s search re-
quest store the received data (the created UID); when the Naming
Server finish to store the received UID, it sends a new request (that
contains the UID) to the Updating Server Handler entity (also
called Consistency Respector) in order to update this value in all
Naming Servers, so this entity has the aim to maintain updated all
naming data in each Naming Server thus this entity is a Con-
sistency Respector (this is the motivation for this entity’s second
name)

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Naming Servers are distributed, like the
Updating Server Handler.

The management of the communication between the Naming Service
Broker entity and the Naming Servers is aim of the involved entities
because they are the borderline entities of their parts of the module.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter be-
cause it involves all case studies treated (as explained in the previous cases
about consumer agents and nodes).

90

CHAPTER 5. CASE STUDIES 91

5.1.2 Distributed Naming Service System Case Study

In this section all descriptions about the interactions between the dis-
tributed naming service (so the module is partially contained on the con-
sumer entity and its internal part is located on another, network-reachable
device) and the entities will be explained, dividing the cases based on the
consumer entity type (agent, node and resource, in this case it is agent).

The interaction description model between the naming service and an
agent is shown in the following picture and after it there is the complete
description about all interactions.

Figure 5.6: Distributed Naming Agent Case Study Interaction Model

91

92 CHAPTER 5. CASE STUDIES

As you can see in the above picture there are many interactions be-
tween the consumer entity and the naming service and many interactions
between the internal entities.

In details, the working steps are the following.

• the consumer agent makes a naming request in order to obtain an
UID (or with another goal, for example a request in order to set one
or many properties about itsel such as its current state, etc) specifing
its type (agent, node or resource)

• the consumer agent sends the created naming request to the entity
able to accept it: the Request Handler; so the consumer agent
waits for an answer

• the Request Handler forwards the received request to the specific
Naming Servant entity based on the consumer entity type (in this
case the consumer entity is an agent so the request will be forwarded
to the Agents Naming Servant entity). This entity has also to
manage the network communication because this is the borderline
entity of the consumer entity’s device

• the Naming Servant entity builds the UID for the consumer entity
and makes a new request, so sends it to the Request Handler entity
in order to give the UID to the consumer entity. This Naming
Servant has also to manage the network communication with the
Request Handler entity because this is the borderline entity of the
module core’s device

• while the Request Handler entity sends the request answer to the
consumer entity, the Naming Servant entity sends the created UID
and makes a new request to the Naming Register Request Dis-
patch Handler entity in order to store the previously created iden-
tifier

• the Naming Register Request Dispatch Handler accepts the
received UID and makes a new request in order to forward it to the
broker entity

92

CHAPTER 5. CASE STUDIES 93

• the Naming Service Request Broker search the current free server
in order to serve the received request from the upper entity; when a
server if available (so when a server answer to the free server search
request sent), this broker entity sends data to it

• the free Naming Server who answered to the broker’s search re-
quest store the received data (the created UID); when the Naming
Server finish to store the received UID, it sends a new request (that
contains the UID) to the Updating Server Handler entity (also
called Consistency Respector) in order to update this value in all
Naming Servers, so this entity has the aim to maintain updated all
naming data in each Naming Server thus this entity is a Con-
sistency Respector (this is the motivation for this entity’s second
name)

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Naming Servers are distributed, like the
Updating Server Handler, the Request Handler and the module core
entities.

The management of the communication between the Request Handler
and the Naming Servant is aim of these involved borderline entities as
described in the above working steps.

The management of the communication between the Naming Service
Broker entity and the Naming Servers is aim of the involved entities
because they are the borderline entities of their parts of the module.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter
because it involves all case studies treated.

93

94 CHAPTER 5. CASE STUDIES

After the interaction between an agent and the naming service, this
paragraph contains the interaction description model between the naming
service and a node, that is shown in the following picture and after it
there is the complete description about all interactions.

Figure 5.7: Distributed Naming Node Case Study Interaction Model

As you can see in the above picture there are many interactions be-
tween the consumer entity and the naming service and many interactions
between the internal entities.

94

CHAPTER 5. CASE STUDIES 95

In details, the working steps are the following.

• the consumer node makes a naming request in order to obtain an
UID (or with another goal, for example a request in order to set one
or many properties about itsel such as its current state, etc) specifing
its type (in this case it is node)

• the consumer node sends the created naming request to the entity
able to accept it: the Request Handler; so the consumer node
waits for an answer

• the Request Handler forwards the received request to the specific
Naming Servant entity based on the consumer entity type (in this
case the consumer entity is a node so the request will be forwarded to
the Nodes Naming Servant entity). This entity has also to manage
the network communication because this is the borderline entity of the
consumer entity’s device

• the Naming Servant entity builds the UID for the consumer entity
and makes a new request, so sends it to the Request Handler entity
in order to give the UID to the consumer entity. This Naming
Servant has also to manage the network communication with the
Request Handler entity because this is the borderline entity of the
module core’s device

• while the Request Handler entity sends the request answer to the
consumer entity, the Naming Servant entity sends the created UID
and makes a new request to the Naming Register Request Dis-
patch Handler entity in order to store the previously created iden-
tifier

• the Naming Register Request Dispatch Handler accepts the
received UID and makes a new request in order to forward it to the
broker entity

95

96 CHAPTER 5. CASE STUDIES

• the Naming Service Request Broker search the current free server
in order to serve the received request from the upper entity; when a
server if available (so when a server answer to the free server search
request sent), this broker entity sends data to it

• the free Naming Server who answered to the broker’s search re-
quest store the received data (the created UID); when the Naming
Server finish to store the received UID, it sends a new request (that
contains the UID) to the Updating Server Handler entity (also
called Consistency Respector) in order to update this value in all
Naming Servers, so this entity has the aim to maintain updated all
naming data in each Naming Server thus this entity is a Con-
sistency Respector (this is the motivation for this entity’s second
name)

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Naming Servers are distributed, like the
Updating Server Handler, the Request Handler and the module core
entities.

The management of the communication between the Request Handler
and the Naming Servant is aim of these involved borderline entities as
described in the above working steps.

The management of the communication between the Naming Service
Broker entity and the Naming Servers is aim of the involved entities
because they are the borderline entities of their parts of the module.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter
because it involves all case studies treated.

96

CHAPTER 5. CASE STUDIES 97

The last interaction description to do in the distributed naming case
is the interaction description model between the naming service and a
resource, that is shown in the following picture and after it there is the
complete description about all interactions.

Figure 5.8: Distributed Naming Resource Case Study Interaction Model

As you can see in the above picture there are many interactions be-
tween the consumer entity and the naming service and many interactions
between the internal entities.

97

98 CHAPTER 5. CASE STUDIES

In details, the working steps are the following.

• the consumer resource makes a naming request in order to obtain
an UID (or with another goal, for example a request in order to
set one or many properties about itsel such as its current state, etc)
specifing its type (in this case it is resource)

• the consumer resource sends the created naming request to the
entity able to accept it: the Request Handler; so the consumer
resource waits for an answer

• the Request Handler forwards the received request to the specific
Naming Servant entity based on the consumer entity type (in this
case the consumer entity is a resource so the request will be forwarded
to the Resources Naming Servant entity). This entity has also to
manage the network communication because this is the borderline
entity of the consumer entity’s device

• the Naming Servant entity builds the UID for the consumer entity
and makes a new request, so sends it to the Request Handler entity
in order to give the UID to the consumer entity. This Naming
Servant has also to manage the network communication with the
Request Handler entity because this is the borderline entity of the
module core’s device

• while the Request Handler entity sends the request answer to the
consumer entity, the Naming Servant entity sends the created UID
and makes a new request to the Naming Register Request Dis-
patch Handler entity in order to store the previously created iden-
tifier

• the Naming Register Request Dispatch Handler accepts the
received UID and makes a new request in order to forward it to the
broker entity

98

CHAPTER 5. CASE STUDIES 99

• the Naming Service Request Broker search the current free server
in order to serve the received request from the upper entity; when a
server if available (so when a server answer to the free server search
request sent), this broker entity sends data to it

• the free Naming Server who answered to the broker’s search re-
quest store the received data (the created UID); when the Naming
Server finish to store the received UID, it sends a new request (that
contains the UID) to the Updating Server Handler entity (also
called Consistency Respector) in order to update this value in all
Naming Servers, so this entity has the aim to maintain updated all
naming data in each Naming Server thus this entity is a Con-
sistency Respector (this is the motivation for this entity’s second
name)

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Naming Servers are distributed, like the
Updating Server Handler, the Request Handler and the module core
entities.

The management of the communication between the Request Handler
and the Naming Servant is aim of these involved borderline entities as
described in the above working steps.

The management of the communication between the Naming Service
Broker entity and the Naming Servers is aim of the involved entities
because they are the borderline entities of their parts of the module.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter
because it involves all case studies treated.

99

100 CHAPTER 5. CASE STUDIES

5.2 Locator Service System Case Study

In this section the locator service system’s interaction model will be
explained in order to give a complete overview about this module’s part
functioning.

Particularly, all differences about the local and the distributed scenario
will be described in terms of components interaction and communication.

The following picture shows the internal main interaction between the
entities and the locator service part of the module, in fact, the white
colored components in the picture represent the active components involved
in the interaction while the grey colored components represent the unused
components.

Figure 5.9: Locator Service System Case Study

As you can see in the above picture, the network has a crucial role in
the system working cycle because this module works only if the network
communication is available (in the local case the network rule is given by
the local connection) so, this aspect about the module will be explained in
all its details in the following sections.

100

CHAPTER 5. CASE STUDIES 101

5.2.1 Local Locator Service System Case Study

In this section all details about the interactions between the local locator
service (so the module is completely contained on the consumer entity)
and the entities will be explained, dividing the cases based on the consumer
entity type (agent, node and resource, in this case it is agent).

The interaction description model between the locator service and an
agent is shown in the following picture and after it there is the complete
description about all interactions.

Figure 5.10: Local Locator Agent Case Study Interaction Model

101

102 CHAPTER 5. CASE STUDIES

As you can see in the above picture there are many interactions be-
tween the consumer entity and the locator service and many interactions
between the internal entities.

In details, the working steps are the following.

• the consumer agent makes a locator request in order to register
its current location (or with another goal depending on the location
concept, for example a request in order to set its current GPS location,
etc) specifing its type (agent, node or resource)

• the consumer agent sends the created locator request to the entity
able to accept it: the Request Handler; so the consumer agent
waits for an answer

• the Request Handler forwards the received request to the specific
Locator Servant entity based on the consumer entity type (in this
case the consumer entity is an agent so the request will be forwarded
to the Agents Locator Servant entity)

• the Locator Servant entity accept the received request and create
the request to send to the consumer entity; so the Locator Servant
sends it to the Request Handler entity in order to give the answer
to the consumer entity

• while the Request Handler entity sends the request answer to the
consumer entity, the Locator Servant entity creates a new request
with all the location data to register and this servant sends it to the
Locator Register Request Dispatch Handler entity in order to
store the received location data

• the Locator Register Request Dispatch Handler accept the re-
ceived request with all location data and makes a new request in order
to forward it to the broker entity

• the Locator Service Request Broker search the current free server
in order to serve the received request from the upper entity; when a
server if available (so when a server answer to the free server search
request sent), this broker entity sends data to it

102

CHAPTER 5. CASE STUDIES 103

• the free Locator Server who answered to the broker’s search request
store the received data (all the location data); when the Locator
Server finish to store the received data, it sends a new request (that
contains the registered data) to the Updating Server Handler
entity (also called Consistency Respector) in order to update this
value in all Locator Servers, so this entity has the aim to maintain
updated all locator data in each Locator Server thus this entity
is a Consistency Respector (this is the motivation for this entity’s
second name)

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Locator Servers are distributed, like the
Updating Server Handler.

The management of the communication between the Locator Service
Broker entity and the Locator Servers is aim of the involved entities
because they are the borderline entities of their parts of the module.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter
because it involves all case studies treated.

103

104 CHAPTER 5. CASE STUDIES

After the interaction between an agent and the locator service, this
paragraph contains the interaction description model between the locator
service and a node, that is shown in the following picture and after it
there is the complete description about all interactions.

Figure 5.11: Local Locator Node Case Study Interaction Model

As you can see in the above picture there are many interactions be-
tween the consumer entity and the locator service and many interactions
between the internal entities.

104

CHAPTER 5. CASE STUDIES 105

In details, the working steps are the following.

• the consumer node makes a locator request in order to register its
current location (or with another goal depending on the location
concept, for example a request in order to set its current GPS location,
etc) specifing its type (in this case it is node)

• the consumer node sends the created locator request to the entity
able to accept it: the Request Handler; so the consumer node
waits for an answer

• the Request Handler forwards the received request to the specific
Locator Servant entity based on the consumer entity type (in this
case the consumer entity is a node so the request will be forwarded
to the Nodes Locator Servant entity)

• the Locator Servant entity accept the received request and create
the request to send to the consumer entity; so the Locator Servant
sends it to the Request Handler entity in order to give the answer
to the consumer entity

• while the Request Handler entity sends the request answer to the
consumer entity, the Locator Servant entity creates a new request
with all the location data to register and this servant sends it to the
Locator Register Request Dispatch Handler entity in order to
store the received location data

• the Locator Register Request Dispatch Handler accept the re-
ceived request with all location data and makes a new request in order
to forward it to the broker entity

• the Locator Service Request Broker search the current free server
in order to serve the received request from the upper entity; when a
server if available (so when a server answer to the free server search
request sent), this broker entity sends data to it

105

106 CHAPTER 5. CASE STUDIES

• the free Locator Server who answered to the broker’s search request
store the received data (all the location data); when the Locator
Server finish to store the received data, it sends a new request (that
contains the registered data) to the Updating Server Handler
entity (also called Consistency Respector) in order to update this
value in all Locator Servers, so this entity has the aim to maintain
updated all locator data in each Locator Server thus this entity
is a Consistency Respector (this is the motivation for this entity’s
second name)

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Locator Servers are distributed, like the
Updating Server Handler.

The management of the communication between the Locator Service
Broker entity and the Locator Servers is aim of the involved entities
because they are the borderline entities of their parts of the module.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter
because it involves all case studies treated.

106

CHAPTER 5. CASE STUDIES 107

The last interaction description to do in the local locator case is the
interaction description model between the locator service and a resource,
that is shown in the following picture and after it there is the complete
description about all interactions.

Figure 5.12: Local Locator Resource Case Study Interaction Model

As you can see in the above picture there are many interactions be-
tween the consumer entity and the locator service and many interactions
between the internal entities.

107

108 CHAPTER 5. CASE STUDIES

In details, the working steps are the following.

• the consumer resource makes a locator request in order to register
its current location (or with another goal depending on the location
concept, for example a request in order to set its current GPS location,
etc) specifing its type (in this case it is Resource)

• the consumer resource sends the created locator request to the en-
tity able to accept it: the Request Handler; so the consumer
resource waits for an answer

• the Request Handler forwards the received request to the specific
Locator Servant entity based on the consumer entity type (in this
case the consumer entity is a resource so the request will be forwarded
to the Resources Locator Servant entity)

• the Locator Servant entity accept the received request and create
the request to send to the consumer entity; so the Locator Servant
sends it to the Request Handler entity in order to give the answer
to the consumer entity

• while the Request Handler entity sends the request answer to the
consumer entity, the Locator Servant entity creates a new request
with all the location data to register and this servant sends it to the
Locator Register Request Dispatch Handler entity in order to
store the received location data

• the Locator Register Request Dispatch Handler accept the re-
ceived request with all location data and makes a new request in order
to forward it to the broker entity

• the Locator Service Request Broker search the current free server
in order to serve the received request from the upper entity; when a
server if available (so when a server answer to the free server search
request sent), this broker entity sends data to it

108

CHAPTER 5. CASE STUDIES 109

• the free Locator Server who answered to the broker’s search request
store the received data (all the location data); when the Locator
Server finish to store the received data, it sends a new request (that
contains the registered data) to the Updating Server Handler
entity (also called Consistency Respector) in order to update this
value in all Locator Servers, so this entity has the aim to maintain
updated all locator data in each Locator Server thus this entity
is a Consistency Respector (this is the motivation for this entity’s
second name)

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Locator Servers are distributed, like the
Updating Server Handler.

The management of the communication between the Locator Service
Broker entity and the Locator Servers is aim of the involved entities
because they are the borderline entities of their parts of the module.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter
because it involves all case studies treated.

109

110 CHAPTER 5. CASE STUDIES

5.2.2 Distributed Locator Service System Case Study

In this section all descriptions about the interactions between the dis-
tributed locator service (so the module is partially contained on the con-
sumer entity and its internal part is located on another, network-reachable
device) and the entities will be explained, dividing the cases based on the
consumer entity type (agent, node and resource, in this case it is agent).

The interaction description model between the locator service and an
agent is shown in the following picture and after it there is the complete
description about all interactions.

Figure 5.13: Distributed Locator Agent Case Study Interaction Model

110

CHAPTER 5. CASE STUDIES 111

As you can see in the above picture there are many interactions be-
tween the consumer entity and the locator service and many interactions
between the internal entities.

In details, the working steps are the following.

• the consumer agent makes a locator request in order to register
its current location (or with another goal depending on the location
concept, for example a request in order to set its current GPS location,
etc) specifing its type (agent, node or resource)

• the consumer agent sends the created locator request to the entity
able to accept it: the Request Handler; so the consumer agent
waits for an answer

• the Request Handler forwards the received request to the specific
Locator Servant entity based on the consumer entity type (in this
case the consumer entity is an agent so the request will be forwarded
to the Agents Locator Servant entity). This entity has also to
manage the network communication because this is the borderline
entitiy of the consumer entity’s device

• the Locator Servant entity accept the received request and create
the request to send to the consumer entity; so the Locator Servant
sends it to the Request Handler entity in order to give the answer to
the consumer entity. This Locator Servant has also to manage the
network communication with the Request Handler entity because
this is the borderline entity of the module core’s device

• while the Request Handler entity sends the request answer to the
consumer entity, the Locator Servant entity creates a new request
with all the location data to register and this servant sends it to the
Locator Register Request Dispatch Handler entity in order to
store the received location data

• the Locator Register Request Dispatch Handler accept the re-
ceived request with all location data and makes a new request in order
to forward it to the broker entity

111

112 CHAPTER 5. CASE STUDIES

• the Locator Service Request Broker search the current free server
in order to serve the received request from the upper entity; when a
server if available (so when a server answer to the free server search
request sent), this broker entity sends data to it

• the free Locator Server who answered to the broker’s search request
store the received data (all the location data); when the Locator
Server finish to store the received data, it sends a new request (that
contains the registered data) to the Updating Server Handler
entity (also called Consistency Respector) in order to update this
value in all Locator Servers, so this entity has the aim to maintain
updated all locator data in each Locator Server thus this entity
is a Consistency Respector (this is the motivation for this entity’s
second name)

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Locator Servers are distributed, like the
Updating Server Handler, the Request Handler and the module core
entities.

The management of the communication between the Request Handler
and the Locator Servant is aim of these involved borderline entities as
described in the above working steps.

The management of the communication between the Locator Service
Broker entity and the Locator Servers is aim of the involved entities
because they are the borderline entities of their parts of the module.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter
because it involves all case studies treated.

112

CHAPTER 5. CASE STUDIES 113

After the interaction between an agent and the locator service, this
paragraph contains the interaction description model between the locator
service and a node, that is shown in the following picture and after it
there is the complete description about all interactions.

Figure 5.14: Distributed Locator Node Case Study Interaction Model

As you can see in the above picture there are many interactions be-
tween the consumer entity and the locator service and many interactions
between the internal entities.

113

114 CHAPTER 5. CASE STUDIES

In details, the working steps are the following.

• the consumer node makes a locator request in order to register its
current location (or with another goal depending on the location
concept, for example a request in order to set its current GPS location,
etc) specifing its type (in this case it is node).

• the consumer node sends the created locator request to the entity
able to accept it: the Request Handler; so the consumer node
waits for an answer

• the Request Handler forwards the received request to the specific
Locator Servant entity based on the consumer entity type (in this
case the consumer entity is a node so the request will be forwarded to
the Nodes Locator Servant entity). This entity has also to manage
the network communication because this is the borderline entitiy of
the consumer entity’s device

• the Locator Servant entity accept the received request and create
the request to send to the consumer entity; so the Locator Servant
sends it to the Request Handler entity in order to give the answer to
the consumer entity. This Locator Servant has also to manage the
network communication with the Request Handler entity because
this is the borderline entity of the module core’s device

• while the Request Handler entity sends the request answer to the
consumer entity, the Locator Servant entity creates a new request
with all the location data to register and this servant sends it to the
Locator Register Request Dispatch Handler entity in order to
store the received location data

• the Locator Register Request Dispatch Handler accept the re-
ceived request with all location data and makes a new request in order
to forward it to the broker entity

114

CHAPTER 5. CASE STUDIES 115

• the Locator Service Request Broker search the current free server
in order to serve the received request from the upper entity; when a
server if available (so when a server answer to the free server search
request sent), this broker entity sends data to it

• the free Locator Server who answered to the broker’s search request
store the received data (all the location data); when the Locator
Server finish to store the received data, it sends a new request (that
contains the registered data) to the Updating Server Handler
entity (also called Consistency Respector) in order to update this
value in all Locator Servers, so this entity has the aim to maintain
updated all locator data in each Locator Server thus this entity
is a Consistency Respector (this is the motivation for this entity’s
second name)

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Locator Servers are distributed, like the
Updating Server Handler, the Request Handler and the module core
entities.

The management of the communication between the Request Handler
and the Locator Servant is aim of these involved borderline entities as
described in the above working steps.

The management of the communication between the Locator Service
Broker entity and the Locator Servers is aim of the involved entities
because they are the borderline entities of their parts of the module.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter
because it involves all case studies treated.

115

116 CHAPTER 5. CASE STUDIES

The last interaction description to do in the distributed locator case is the
interaction description model between the locator service and a resource,
that is shown in the following picture and after it there is the complete
description about all interactions.

Figure 5.15: Distributed Locator Resource Case Study Interaction Model

As you can see in the above picture there are many interactions be-
tween the consumer entity and the locator service and many interactions
between the internal entities.

116

CHAPTER 5. CASE STUDIES 117

In details, the working steps are the following.

• the consumer resource makes a locator request in order to register
its current location (or with another goal depending on the location
concept, for example a request in order to set its current GPS location,
etc) specifing its type (in this case it is resource).

• the consumer resource sends the created locator request to the en-
tity able to accept it: the Request Handler; so the consumer
resource waits for an answer

• the Request Handler forwards the received request to the specific
Locator Servant entity based on the consumer entity type (in this
case the consumer entity is a node so the request will be forwarded
to the Resources Locator Servant entity). This entity has also
to manage the network communication because this is the borderline
entitiy of the consumer entity’s device

• the Locator Servant entity accept the received request and create
the request to send to the consumer entity; so the Locator Servant
sends it to the Request Handler entity in order to give the answer to
the consumer entity. This Locator Servant has also to manage the
network communication with the Request Handler entity because
this is the borderline entity of the module core’s device

• while the Request Handler entity sends the request answer to the
consumer entity, the Locator Servant entity creates a new request
with all the location data to register and this servant sends it to the
Locator Register Request Dispatch Handler entity in order to
store the received location data

• the Locator Register Request Dispatch Handler accept the re-
ceived request with all location data and makes a new request in order
to forward it to the broker entity

• the Locator Service Request Broker search the current free server
in order to serve the received request from the upper entity; when a
server if available (so when a server answer to the free server search
request sent), this broker entity sends data to it

117

118 CHAPTER 5. CASE STUDIES

• the free Locator Server who answered to the broker’s search request
store the received data (all the location data); when the Locator
Server finish to store the received data, it sends a new request (that
contains the registered data) to the Updating Server Handler
entity (also called Consistency Respector) in order to update this
value in all Locator Servers, so this entity has the aim to maintain
updated all locator data in each Locator Server thus this entity
is a Consistency Respector (this is the motivation for this entity’s
second name)

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Locator Servers are distributed, like the
Updating Server Handler, the Request Handler and the module core
entities.

The management of the communication between the Request Handler
and the Locator Servant is aim of these involved borderline entities as
described in the above working steps.

The management of the communication between the Locator Service
Broker entity and the Locator Servers is aim of the involved entities
because they are the borderline entities of their parts of the module.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter
because it involves all case studies treated.

118

CHAPTER 5. CASE STUDIES 119

5.3 Research Service System Case Study

In this section the research service system’s interaction model will be
explained in order to give a complete overview about this module’s part
functioning.

Particularly, all differences about the local and the distributed scenario
will be described in terms of components interaction and communication.

The following picture shows the internal main interaction between the
entities and the research service part of the module, in fact, the white
colored components in the picture represent the active components involved
in the interaction while the grey colored components represent the unused
components.

Figure 5.16: Research Service System Case Study

As you can see in the above picture, the network has a crucial role in
the system working cycle because this module works only if the network
communication is available (in the local case the network rule is given by
the local connection) so, this aspect about the module will be explained in
all its details in the following paragraphs.

119

120 CHAPTER 5. CASE STUDIES

5.3.1 Local Research Service System Case Study

In this section all details about the interactions between the local research
service (so the module is completely contained on the consumer entity)
and the entities will be explained, dividing the cases based on the consumer
entity type (agent, node and resource, in this case it is agent).

The interaction description model between the research service and
a consumer entity (there are no differences deriving from the consumer
entity type so the schema contains the generic consumer entity) is shown
in the following picture and after it there is the complete description about
all interactions.

Figure 5.17: Local Research Main Case Study Interaction Model

As you can see in the above picture there are many interactions between
the consumer entity and the research service and many interactions be-
tween the internal entities.

120

CHAPTER 5. CASE STUDIES 121

In details, the working steps are the following.

• the consumer entity makes a research request in order to obtain
informations about another entity about its naming or location data,
the consumer entity has also to specify its type (agent, node or
resource).

• the consumer entity sends the created research request to the entity
able to accept it: the Request Handler; so the consumer entity
waits for an answer

• the Request Handler forwards the received request to the Research
Request Servant entity).

• the Research Request Servant entity accepts the received request,
so it creates a particular answer to send to the consumer entity in
order to communicate to it that the request has been accepted (when
the consumer entity will receive this confirm answer, it will wait the
request data answer); in the end the Research Request Servant
sends the confirm answer to the Request Handler entity in order to
give it to the consumer entity.

• while the Request Handler entity sends the request answer to the
consumer entity, the Research Request Servant entity creates a
new request with all data about the received request and sends it to
the Research Service Request Broker entity in order to satisfy
the received request

• the Research Service Request Broker creates two requests:

– a request that will be sent to the Naming Research Servant
in order to check the naming informations about the involved
entities in the received request from the consumer entity

– a request that will be sent to the Locator Research Servant
in order to check the location informations about the involved
entities in the received request from the consumer entity

• the Naming Research Servant receive the request from the Re-
search Service Request Broker and creates a new request to send

121

122 CHAPTER 5. CASE STUDIES

to the Naming Service Request Broker that contains all data to
check the informations of the involved entities. The Naming Ser-
vice Request Broker answer to the Naming Research Servant’s
request by interactions with the current free Naming Server. In the
end the Naming Service Request Broker sends all data to the
Naming Research Servant

• the Locator Research Servant receive the request from the Re-
search Service Request Broker and creates a new request to send
to the Locator Service Request Broker that contains all data to
check the informations of the involved entities. The Locator Ser-
vice Request Broker answer to the Locator Research Servant’s
request by interactions with the current free Locator Server. In the
end the Locator Service Request Broker sends all data to the
Locator Research Servant

• the Naming Research Servant and the Locator Research Ser-
vant send the received data from each Service Request Broker to
the Validity Data Checker Servant; that entity has to check the
validity of each received data about the Naming Informations and
the Location Informations and communicates to each Research
Servant the answer in order to check each information (this entity
check the data validity so it checks also the consistency of all informa-
tions, then this entity is also called Consistency Data Respector)

• each Research Servant create the answer that will be sent to the
Research Service Request Broker; this answer contains all infor-
mations and all data in order to create the answer to the consumer
entity’s research request

• the Research Service Request Broker creates the answer that
will be sent to the Research Request Servant in order to give all
informations requested in the consumer entity’s received reseach
request

122

CHAPTER 5. CASE STUDIES 123

• the Research Request Servant sends the received answer from the
Research Service Request Broker to the Request Handler after
the checking of all informations contained in the received message

• the Request Handler sends the answer to the consumer entity in
order to satisfy its initial received research request

In these working steps are described also network interactions between
the Service Request Broker entities and its specific Server entity that
we have not to describe in this section because they are explained in the
previously seen sections about the Naming Service and the Locator Ser-
vice.

All details about the fault tolerance issues due to communication prob-
lems (for example the crash of an entity, etc) or request problems (for ex-
ample if a received request has an invalid syntax, etc) will be described in
the last part of this chapter because it involves all case studies treated.

123

124 CHAPTER 5. CASE STUDIES

5.3.2 Distributed Research Service System Case Study

In this section all details about the interactions between the distributed
research service (so the module is completely contained on the consumer
entity) and the entities will be explained, dividing the cases based on the
consumer entity type (agent, node and resource, in this case it is agent).

The interaction description model between the research service and
a consumer entity (there are no differences deriving from the consumer
entity type so the schema contains the generic consumer entity) is shown
in the following picture and after it there is the complete description about
all interactions.

Figure 5.18: Distributed Research Main Case Study Interaction Model

As you can see in the above picture, the network has a crucial role in
the system working cycle because this module works only if the network
communication is available (in the local case the network rule is given by
the local connection) so, this aspect about the module will be explained in
all its details in the following paragraphs.

124

CHAPTER 5. CASE STUDIES 125

In details, the working steps are the following.

• the consumer entity makes a research request in order to obtain
informations about another entity about its naming or location data,
the consumer entity has also to specify its type (agent, node or
resource).

• the consumer entity sends the created research request to the entity
able to accept it: the Request Handler; so the consumer entity
waits for an answer

• the Request Handler forwards the received request to the Research
Request Servant entity). This entity has also to manage the network
communication because this is the borderline entity of the consumer
entity’s device

• the Research Request Servant entity accepts the received request,
so it creates a particular answer to send to the consumer entity in
order to communicate to it that the request has been accepted (when
the consumer entity will receive this confirm answer, it will wait the
request data answer); in the end the Research Request Servant
sends the confirm answer to the Request Handler entity in order
to give it to the consumer entity. This Research Request Servant
has also to manage the network communication with the Request
Handler entity because this is the borderline entity of the module
core’s device

• while the Request Handler entity sends the request answer to the
consumer entity, the Research Request Servant entity creates a
new request with all data about the received request and sends it to
the Research Service Request Broker entity in order to satisfy
the received request

• the Research Service Request Broker creates two requests:

– a request that will be sent to the Naming Research Servant
in order to check the naming informations about the involved
entities in the received request from the consumer entity

125

126 CHAPTER 5. CASE STUDIES

– a request that will be sent to the Locator Research Servant
in order to check the location informations about the involved
entities in the received request from the consumer entity and
that request has also the aim to obtain all location informations
to satisfy the received request

• the Naming Research Servant receive the request from the Re-
search Service Request Broker and creates a new request to send
to the Naming Service Request Broker that contains all data to
check the informations of the involved entities. The Naming Ser-
vice Request Broker answer to the Naming Research Servant’s
request by interactions with the current free Naming Server. In the
end the Naming Service Request Broker sends all data to the
Naming Research Servant

• the Locator Research Servant receive the request from the Re-
search Service Request Broker and creates a new request to send
to the Locator Service Request Broker that contains all data to
check the informations of the involved entities. The Locator Ser-
vice Request Broker answer to the Locator Research Servant’s
request by interactions with the current free Locator Server. In the
end the Locator Service Request Broker sends all data to the
Locator Research Servant

• the Naming Research Servant and the Locator Research Ser-
vant send the received data from each Service Request Broker to
the Validity Data Checker Servant; that entity has to check the
validity of each received data about the Naming Informations and
the Location Informations and communicates to each Research
Servant the answer in order to check each information (this entity
check the data validity so it checks also the consistency of all informa-
tions, then this entity is also called Consistency Data Respector)

• each Research Servant create the answer that will be sent to the
Research Service Request Broker; this answer contains all infor-
mations and all data in order to create the answer to the consumer
entity’s research request

126

CHAPTER 5. CASE STUDIES 127

• the Research Service Request Broker creates the answer that
will be sent to the Research Request Servant in order to give all
informations requested in the consumer entity’s received reseach
request

• the Research Request Servant sends the received answer from the
Research Service Request Broker to the Request Handler after
the checking of all informations contained in the received message

• the Request Handler sends the answer to the consumer entity in
order to satisfy its initial received research request

Now we have to introduce all details about the management of the net-
work communication in these described interactions because, as you can
see in the above picture, the Research Service Core and the Research
Service Interfacing Module are distributed, in fact the only network
communication contained in this module is the communication between the
Request Handler and the Research Request Servant because other
communications are related to the Service Request Broker entities that
depend on other modules (the naming service module and the locator
service module).

The management of the communication between the Request Handler
and the Research Request Servant is aim of these involved borderline
entities as described in the above working steps.

All details about the fault tolerance issues due to communication
problems (for example the network connection of a device is temporarily
unavailable, etc) or request problems (for example if a received request has
an invalid syntax, etc) will be described in the last part of this chapter
because it involves all case studies treated.

127

128 CHAPTER 5. CASE STUDIES

5.4 Fault Tolerance Case Study

The last case studies section is devoted to fault tolerance’s analysis.
The goal of this section is to explain all details about the fault tolerance

in order to provide guidelines to solve all the problems related to the relia-
bility and responsiveness of the system in case of failure or malfunction of
the module or network.

The fault tolerance is the ability of a system does not suffering failures
(ie intuitively service interruptions) even in the presence of faults. Fault
tolerance is one of the aspects that define the reliability. It is important to
note that the fault-tolerance does not guarantee immunity from all faults,
but it only guarantee the manage of faults in order to provides a minimun
service level in all situation.

The first main aspect that we have to consider is that in each fault
tolerance case the presence of these contingencies is signaled to the other
modules distributed on the network on the other devices to communicate
with other consumer entities that there is a critical situation due to an error
or a fault; this situation is shown in the following picture.

Figure 5.19: Fault Tolerance Main Case Study Interaction Model

128

CHAPTER 5. CASE STUDIES 129

After the fault tolerance’s introduction, we have to describe all case
studies with all details in order to give a detailed description of all issues.

In this section only the main general fault tolerance case studies will
be described; these case studies are:

• Internal Entities Crash: this situation is related to the crash of an
internal entity of the module

• Unavailable Connection between Internal Entities: this situ-
ation is related to the unavailability of the connection between the
internal entities of the module

• Unavailable Network Connection: this situation is related to the
network connection’s unavailability. This connection’s unavailability
can be:

– Temporary: in this case the network connection is unavailable
for a short limited time

– Persistent: in this case the network connection is unavailable
for a long time, so the connection can’t be restored

• Server Updating Error: in this case the updating process of data
(based on Cassandra , as seen in the first chapter) generates an error
due to a Database Updating Error, so in this case the updating of
a data on the database generates an error

An important aspect to explain is the concept of connection because
in this section it is a foundamental concept. In this section with the term
of connection we mean the general connection, not only the internet one
because this module can be distributed on the network across internet or
across a local network. So, when we will talk about the connection, it is
related to these kind of connection.

129

130 CHAPTER 5. CASE STUDIES

5.5 Fault Tolerance Case Study:

Internal Entities Crash

This section contains all details about the fault tolerance case study
relating to the crash of the internal entities contained in this module.

First of all we need to explain all details about the creation and the
lifecycle of the internal entities. An internal entity starts when the module
starts and it creates a child entity that has the aim to serve the incoming
requests.

This paradign has been adopted in order to prevent failures due to en-
tities crash because if an entity crashies, this entity is a child entity so,
the father entity can replace the crashed entity by creation of a new child
that will serve the pending reques.

The described main internal entity’s life cycle will be shown in the
following picture.

Figure 5.20: Fault Tolerance Internal Entities Life-Cycle Crash Case Study
Interaction Model

130

CHAPTER 5. CASE STUDIES 131

In details, the working steps are the following:

• an Internal Entity has been created, this entity is the ”father”
entity of the server entity that will have the aim to serve all requests
that will be received. When this entity is created, it starts, so it creates
a ”child entity”. The father entity will pass to the child entity the
eventually pending request (this request derives by a previous crash
of another child entity)

• ”child entity” starts and waits for requests. If there is a pending
request received from the father entity, this entity will go to the next
step (in that step it will serve the request). If there isn’t a pending
request, it will wait for an incoming request

• when the child entity serves the target request, if there is a fault due
to a crash of that entity, this event will be communicated to the
father entity in order to create a new child entity with the aim to
serve requests. Else, if the request has been successfully served, this
event will be communicated to the father entity that will delete its
pending request (this request is the child entity’s served request)

• if the father entity receives a notification of the child entity crash,
it will create a new child entity that will do the previous steps starting
from the second one described

This paradigm is the one used by servers in order to guarantee a better
efficiency of the server system (in this case it is represented by the internal
entities that have the aim to serve all incoming requests).

Those working steps are related to any module’s internal entity,
so each entity has the role of father entity that has to create all needed
child entities because there can be many child entities created by a single
father entity in order to serve many incoming requests concurrently.

In any case of Internal Entities Crash, a notification will be sent
to the Outside Interfacing Layer (composed by the Request Handler
entity) in order to manage all problems do to this critical situation. In fact,
the Request Handler can maintain a cache where all pending requests are
inserted while the internal critical situation continues in order to maintain
the module’s reliability.

131

132 CHAPTER 5. CASE STUDIES

5.6 Fault Tolerance Case Study:

Unavailable Connection between

Internal Entities

This section contains all details about the fault tolerance case study
relating to the connection unavailability between internal entities
contained in this module.

This issue is foundamental because if an entity runs normally, it can
work only with a connection with others because this is a requirements due
to the request and data passing between all involved entities.

First of all we need to explain all details about the initializing and es-
tablishment of the connection between the internal entities because this
discussion is related to the previously seen life cycle of the father and child
entities. When each entity starts (both father entity and child entity) it has
to establish a connection with others entities which it has to communicate
(for example in order to forward received requests).

This procedure has the aim to guarantee the correct communication
between the internal entities in order to guarantee the correct working of
the module. The described main procedure will be shown in the following
picture.

Figure 5.21: Fault Tolerance Unavailable Connection between Internal En-
tities Case Study Interaction Model

132

CHAPTER 5. CASE STUDIES 133

In details, the working steps are the following:

• an Internal Entity starts and it try to establish a connection with
other entities (for example if this entity is a Naming Servant, it will
try to establish a connection with the Naming Request Broker and
the other entities that it needs)

• if it’s impossible to establish a connection with other entities, this
entity will restart from the step relating to the trying to establish
the connection and it will communicate the establish connection
failure to the Outside Interfacing Layer (composed by the Re-
quest Handler entity described in the chapter relating to the mod-
ule’s structure). That entity will manage all issues relating to the
internal connection unavailability (for example it can save the pend-
ing requests in a cache in order to forward them to the internal entities
when all the internal connections will be established)

• if the connection has been successfully established, the entity will run
normally as described in the Internal Entities life cycle

The described working steps are valid for any Internal Entity, so it is
valid both if it’s a ”father” entity as it’s a ”child” entity.

The decision to adopt this paradigm derives from the need for reliability
because with this interaction model, if there is a failure relating to the
unavailability of the connection between the internal entities, the Outside
Interfacing Layer can manage the critical situation.

Then, if there is a connection problem between the internal entities, the
Request Handler can maintain all pending requests in a cache in order to
forward them when the module will be able to work normally (like described
in the previous list).

133

134 CHAPTER 5. CASE STUDIES

5.7 Fault Tolerance Case Study:

Unavailable Network Connection

This section contains all details about the fault tolerance case study
relating to the network connection unavailability.

This is a very important issue because if there is no network connec-
tion (this term is related to the local connection and the internet connec-
tion), this module can’t work. This is an important aspect because, like
described in the previous chapter, this module is vertical layered and dis-
tributed (each layer works separately) but it can be also distributed in many
parts based on the network distribution.

This model has been designed basing on the main concept adopted in the
interaction model about the connection unavailability between the internal
entities.

The introduced model will be shown in the following picture.

Figure 5.22: Fault Tolerance Unavailable Network Connection Case Study
Interaction Model

134

CHAPTER 5. CASE STUDIES 135

All problems and issues due to the unavailability of the network connec-
tion can be solved by restore of the network connection but this is not an
aim of this module. The only operation that this module can do is retrying
to establish the connection.

As you will see in the following sections, the connection to the network
is independent from this module. In each network connectivity problem if
the problem can’t be solved, this question will be notified to the consumer
entity in order to inform it that there is a critical situation and that the
network connectivity can’t be restored.

All interactions that will be described are valid for any part of this mod-
ule but the fault tolerance complete working steps depend on two different
case: the temporary unavailable network connection and the per-
sistent unavailable network connection that will be described in the
following sections in order to give a specific fault tolerance solution for any
critical situation related to this issue.

135

136 CHAPTER 5. CASE STUDIES

5.7.1 Fault Tolerance Case Study:
Temporary Unavailable Network Connection

This is the case study relating to a temporary unavailability of the
network connection.

In this case the detection of the connection unavailability is aim of the
Outside Interfacing Layer because it has to communicate to the con-
sumer entity that the network is unavailable.

In this situation there are a definend numer of tries to restore the network
connection. If a try to restore has success, the restored network connection
state is to be communicated to the consumer entity in order to notify to
it that the module can run normally.

The main interaction model will be shown in the following picture.

Figure 5.23: Fault Tolerance Temporary Unavailable Network Connection
Case Study Interaction Model

136

CHAPTER 5. CASE STUDIES 137

In details, the working steps are the following.

• the Outside Interfacing Layer (composed by the Request Han-
dler entity) try the network connection. This procedure will be done
for a defined number of times (signed with n in the above picture)

• if the current try has success, the module will run normally without
problems and the module working will start (or continue if the critical
situation is after the module starts)

• else, if the try has no success, the Request Handler entity will
restart the connection procedure described in the previous list item

If the number of attempts reaches the defined massimum number (the
number n showed in the previous picture), the network connection can’t
be restored, so you will have the situation related to the next section: the
Persistent Unavailable Network Connection Case.

However, if the network connection is unavailable, all entities and all
parts of this module won’t run until the network problem will be solved
because each layer of this module needs a connection to the other layers.

137

138 CHAPTER 5. CASE STUDIES

5.7.2 Fault Tolerance Case Study:
Persistent Unavailable Network Connection

This is the case study relating to a persistent unavailability of the
network connection.

This situation derives from the previosly seen case study because if the
defined number of trying (described in the previous section) has no success,
the network becomes marked as persistent unavailable so, this module
can’t run.

Logically, this situation is related to the solution of the connectivity
problem that was harnessing the network connection.

After the solution to the described problem, the module has to be
restarted in order to check if any problem is solved. If everything works
correctly, the module will run normally, else, the module won’t work so this
procedure has to be repeated until the module detects the correct network
connectivity in order to work normally.

The main interaction model will be shown in the following picture.

Figure 5.24: Fault Tolerance Persistent Unavailable Network Connection
Case Study Interaction Model

138

CHAPTER 5. CASE STUDIES 139

In details, the working steps are the following.

• the Outside Interfacing Layer (composed by the Request Han-
dler entity) try the network connection. This procedure will be done
for a defined number of times (signed with n in the above picture)

• if the current try has success, the module will run normally without
problems and the module working will start (or continue if the critical
situation is after the module starts)

• else, if the try has no success, the number of attempts already done
will be checked. If the attempts’ number is lesser than the maximum
(signed with n in the above picture), the Request Handler entity
will restart the connection procedure described in the previous list
item

• else, so the total number of the attempts is greater than the defined
maximum value, the procedure to try the network connection will be
stopped and a connection error will be notified to the consumer
entity. This notification step is an aim of the Outside Interfacing
Layer because it is the layer that can communicate with the con-
sumer entity without network connection (these entities are on the
same device)

However, if the network connection is unavailable, all entities and all
parts of this module won’t run until the network problem will be solved
because each layer of this module needs to the connection with other layers
that, like described in the previuos section, are network connected.

139

140 CHAPTER 5. CASE STUDIES

5.8 Fault Tolerance Case Study:

Server Updating Error

This section contains all details about the fault tolerance case study
relating to the error events during the server updating phase.

Each Server Updating Error is due to data updating process (the
server system is based on Cassandra , as seen in the first chapter) and it
generates an error due to a database updating error, so in this case the
updating of a data on the database generates an error.

This is a foundamental case study because each function of this module
can’t work correctly if the Storage Layer entities don’t work normally, so
if there are many problems relating to the servers updating operations.

This issue is composed by many factors, basing on the nature of the
problem but the only kind of problem related to this specific case study is
that due to the database updating error because all other aspects (for
example if a server entity crashes, etc) have been treated in the previous
sections about the fault tolerance.

The main interaction model of this case is shown in the following picture.

Figure 5.25: Fault Tolerance Updating Database Error Case Study Interac-
tion Model

140

CHAPTER 5. CASE STUDIES 141

In details, the working steps are the following.

• the Server Entity that has received a data update request starts
to update the database

• if all target data have been successfully updated, the Database Sys-
tem sends a notification to the Server Entity and Coordinator En-
tity; Logically, the Coordinator Entity will notify to other Server
Entities to update the target data (this process is not contained in
the above picture because it has been described in the previous chap-
ters)

• else, so if any part of the target data has not been successfully up-
dated, a Database Updating Error is detected and the Database
System sends a notification to the Server Entity and Coordinator
Entity; This notification process is needed in order to give to other
entities of the Data Storage Layer all informations about the store
process state. When the Server Entity receives this error notifica-
tion it will restart the updating process in order to retry to update
the received target data

In the above description we have introduced the concept of Database
System because this is the internal computation part of the data store
system.

This system is the set of operations and entities that have the aim to
manage the phisical store of the target data (for example an entity of this
system is the database entity able to update the target column related to
the received data).

All details about the Database System are related to the Cassandra
’s model because the complete model about Data Storage Layer is based
on that model (it has been described in the first chapter related to the
background knowledge).

141

142 CHAPTER 5. CASE STUDIES

142

Chapter 6

Future Developments

All details about the future developments of the treated module will be
explained in this chapter.

The first future developments that will be described is the development
relating to the possibility of having an Individual Tuple Space so, a
Tuple Space for each active entity (the agents) that use this module;
this development is very important because this characteristic allows to all
entities to communicate to each entity’s Individual Tuple Space.

The second and last future development that will be introduced is the
customized query language about the Data Storage Layer. This
development is very important because it will increase the efficiency of the
data store operations; this more efficiency is given from the lower response
time of each database operation. This development is possible because
Cassandra allows to use a custom query language for all operations, so
basing on the needs it’s possible to create a new query language in order to
increase the data store system efficiency (like Facebook where the adopted
query language is a custom one, the FQL that stands for Facebook Query
Language).

All these future developments will be treated and described in details in
the following sections.

143

144 CHAPTER 6. FUTURE DEVELOPMENTS

6.1 Individual Tuple Space

This future development is very important because this module allows to
each active entity (agents) to communicate directly with another one with-
out a central Tuple Space, so all agents will have an Individual Tuple
Space.

Given these needs, the abstract syntax of an operation op can be invoked
on the destination active entity who has the name eid is:

[enid ? op]

So, using that syntax, the operation op will be made on the Individual
Tuple Space of the target entity who has the name eid.

This syntax doesn’t replace the previous one introduced in the first chap-
ter because this one integrated with the previous one and joined with the
new naming syntax will increase the system functionalities.

An example of use of this new type of Tuple Space is shown in the
following picture where an entity make an operation on the Individual
Tuple Space of another entity, the target entity.

Figure 6.1: Example of use of an individual tuple space.

In the end we have to explain that this future development will increase
the system efficiency and it will improve all interactions and operations

144

CHAPTER 6. FUTURE DEVELOPMENTS 145

between all the consumer entities because it will make possible to have
a sort of direct message passing between all entities.

145

146 CHAPTER 6. FUTURE DEVELOPMENTS

6.2 Customized Query Language

This is the second and last future development that we will introduce.
This is a very important development because nowadays one of the most

important problem in distributed system is related to the data store opera-
tions efficiency, so this development is related to the Data Storage Layer
because this layer contains all entities relating to the data store and the
database.

This development is possible because Cassandra (the Distributed Data
Storage Model adopted in this module) allows to adopt a custom query
language in order to allow to the developers to create a query language
ad-hoc to satisfy all requirements of the designed system.

Then, we have decided to explain this future development because with
this custom query language it’s possible to increase the efficiency and
decrease the response time of all operations that the entities make on the
database. This improvement is given by a foundamental important factor: if
there is an ad-hoc query language, all requests can be less complex because
the data store system needs only to receive the data and the operation type
(for example update, replace, etc.) without any other information that in
many cases is an overhead data.

One of most important custom query languages introduced in the last
years is the FQL that stands for Facebook Query Language; this query
language has been introduced during the Facebook development because
this service adopts a not relational database model like the database model
adopted in this module.

The Facebook developers were having the problem of the too high re-
sponse time to database operations so, they decided to adopt a new data
store model based on Cassandra . That model allows to adopt a custom
query language, so the developers decided to create a new one in order to
increase efficiency in accessing to the database and decrease the response
time to all operations.

Then, after the study of this query language and the main problems
that this module’s Data Storage Layer has in common with the Facebook
Data Store Model we have decided to advise this one as an important future
development.

146

Chapter 7

Conclusions

All conclusions about this thesis will be described in this chapter in order
to give a complete view of the work done.

First of all, we have studied all details about the model, architecture and
technology of TuCSoN because it is the considered coordinated consumer
middleware for LoReNa. This does not mean that the designed system is
TuCSoN -specific because, as described in the previous chapters, this system
can be adopted for any kind of middleware as consumer. The reason of the
choice about TuCSoN as consumer derives from the need to give a complete
naming system to that middleware updated with the nowadays technologies.

After the study about TuCSoN , we have decided to analyze JADE
because it has a model and structure that can be adopted in this module.
Starting from JADE we have designed a new model that can be more
efficient and oriented to the network distribution. Then, we have designed
the model of LoReNa that has many feature in common with JADE but
that it is more extendible and dynamic than the other one because the
studied one has many features that allow to distribuite the module on the
network in many different ways; for example LoReNa can be distributed
both dividing one or more layer from the others both as a vertical layer
division as in an orizontal layer division without problems about interactions
or reliability. This is a very important characteristic of it because this
different division possibilities make LoReNa compatible with any kind of
device regardless of the power and computational capacity.

147

148 CHAPTER 7. CONCLUSIONS

After these cited studies, we have designed the structure of the two up-
per layers: the Outside Interfacing Layer and the Internal Computa-
tional Layer. That design has been made in order to obtain all distribution
and dynamic features. During this phase we paid attention particulary to
all different distribution cases and interactions, so the design has been made
in a very detailed way in order to give a complete useful description from
many viewpoints.

The last layer designed is the lower one: the Data Storage Layer.
This layer is not used by all services but only by two services: the Naming
Service and the Locator Service. The reason is that the Research Service
does not need of a data store service because the functionalities of that
service are related to the communication with the other services. During
the design phase of this layer we have decided to study a particular data
store model: Cassandra . This decision has been made because that model
is very efficient and used by many internet services (the most famous one is
Facebook), so it is a great choice because an important requirement given
by the initial study of LoReNa was the need to have a distributed data
store system.

After the design of all layers we have studied and defined a new naming
syntax: the Universal Naming Syntax. We have studied this syntax
in order to provide a universal one, based only on the utilization of an
Universal Identifier that can provide an unique name to any consumer
entity. We have also defined all procedure steps that an entity has to do to
obtain an identifier.

In the final part of the case studies chapter we have explained all case
studies relative to LoReNa dividing them by type; in fact, the main di-
vision that we made is between the service type: Naming Service, Locator
Service and Research Service. After this division we made a further internal
case study division by the distribution case: Local and Distributed. These
divisions have been foundamentals in order to explain all details about the
interactions and communications between all entities involved in all services
working.

The Fault Tolerance case studies have been explained in details in the
last part of the case studies in order to give a detailed description of all
policies and procedures to solve all issues related to faults, errors or any
kind of problems.

148

CHAPTER 7. CONCLUSIONS 149

Logically we have explained only the cases relating to the main fault
cases (for example related to the crash of any entities, etc.) because it’s
impossible to give a solution to any kind of problems during the design phase
because many problems are related to the technology or to the environment,
then they will be treated during the implementation and testing phase.

The last chapter of this thesis contains the description of the most impor-
tant future developments of LoReNa in order to give a guideline to many
aspects that can improve its functionalities and characteristic in terms of
efficiency, optimization and performance. In fact, we have described the two
most important future development: the Individual Tuple Space and the
Customized Query Language.

At last we have to give the description of another important aspect of
LoReNa: the high compatibility of this module with any consumer mid-
dleware. Thanks to the dynamic and extendible structure of this module, it
is able to adapt itself to any middleware because the only entities involved
in this changing are the Servant Entities because the lower entities are
completely independent from the consumer middleware and communicate
with it through these Servant Entities who has the aim to check and
forward any received request.

In the end, after all the descriptions of LoReNa we can define it as a
complete, dynamic and extendible module that can be improved by the de-
scribed future developments. It can be also implemented in many program-
ming languages and adopted in many various system with any middleware
as consumer.

149

150 CHAPTER 7. CONCLUSIONS

150

Ringraziamenti

Grazie ai miei genitori e a tutti i miei parenti che mi sono stati vicini in
questi tre anni di impegno assiduo e continuo. Per il loro supporto e la loro
spinta a continuare e non arrendermi mai, davanti a qualunque imprevisto
e problema. Ringrazio particolarmente i miei genitori perchÃ¨ mi hanno
dato la possibilita’ di focalizzarmi a tempo pieno nello studio grazie ai loro
sacrifici. Spero di averli ripagati almeno in parte per la fiducia e il supporto
datomi in tutti questi anni.

Grazie a Giulia, la mia fidanzata, che ha avuto la forza di starmi accanto
in ogni momento in questi anni, sopportando anche i momenti in cui lo stress
che mi affliggeva di continuo e le preoccupazioni che a volte mi assalivano.
Grazie soprattutto della spinta a dare sempre il mio massimo, senza arren-
dermi mai, e a sforzarmi sempre piu’ per riuscire il meglio possibile negli
studi. Grazie davvero di cuore.

Grazie a Francesco, un grande amico con cui ho passato momenti dev-
astanti durante vari progetti per alcuni esami. Grazie soprattutto per i
preziosissimi consigli professionali e non, datemi durante questi anni e per
i momenti di relax e divertimento che non sono mancati per fortuna.

Grazie a tutti i miei amici che mi hanno aiutato in questi anni a diver-
tirmi e svagarmi nei momenti di non-studio, per le serate passate insieme a
divertirci. Per tutti quei momenti di gioia che mi hanno regalato anche nei
periodi di ansia tremenda che mi assaliva per gli esami che dovevo dare.

Grazie ai miei compagni di corso e a tutti coloro che ho conosciuto e con
cui ho allacciato un rapporto di amicizia durante questi tre anni. Grazie
per i momenti di relax, per i momenti divertenti e per i momenti di ansia
e stress, per i momenti di sostegno che davamo ognuno all’altro durante lo
studio e i progetti.

151

152 CHAPTER 7. CONCLUSIONS

Grazie al mio relatore, il Prof. Andrea Omicini, e al mio correlatore,
l’Ing. Stefano Mariani, che mi hanno supportato durante questo inter-
minabile periodo di tesi. Grazie per avermi anche sopportato durante le
innumerevoli pagine scritte e per il supporto datomi durante i vari ricevi-
menti per concordare le vie da seguire per lo sviluppo della tesi.

Grazie ai professori che mi hanno insegnato molto durante questi tre
anni, che mi hanno spinto a non arrendermi mai e ad impegnarmi sempre
di piu’ per passare tutti gli esami che ho sostenuto, che non sono di certo
una passeggiata ad ingegneria.

152

Bibliography

[1] David Gelernter and Nicholas Carriero. Coordination languages and
their significance. Commun., ACM, 35(2):97-107, 1992.

[2] Andrea Omicini. On the semantics of tuple-based coordination models.
In Dan C. Marinescu and Craig Lee, editors, Process Coordination and
Ubiquitous Computing, chapter 12, pages 187-200. CRC Press, Boca
Raton, FL, USA, October 2002.

[3] Andrea Omicini. Towards a notion of agent coordination context. In
1999 ACM Symposium on Applied Computing (SAC’99), pages 175-182,
San Antonio, TX, USA, 28 February - 2March 1999. ACM. Special Track
on Coordination Models, Languages and Applications.

[4] Peter Wegner. Coordination as constrained interaction. 1996.

[5] Peter Wegner. Why interaction is more powerful than computing. Com-
munications of the ACM, 40(5):80-91, 1997.

[6] Thomas W. Malone and Kevin Crowston. The interdisciplinary study
of coordination. ACM Comput. Surv., 26(1):87-119, 1994.

[7] Paolo Ciancarini and Chris Hankin. Coordination Languages and Mod-
els, First International Conference COORDINATION ’96, Cesena,
Italy, April 15-17, 1996, Proceedings, volume 1061 of Lecture Notes in
Computer Science, Springer, 1996.

[8] Paolo Ciancarini, Andrea Omicini, and Franco Zambonelli. Coordina-
tion technologies for internet agents. Nordic J. of Computing, 6(3):215-
240, 1999.

153

154 BIBLIOGRAPHY

[9] Paolo Ciancarini, Robert Tolksdorf, Fabio Vitali, David Rossi, and An-
dreas Knoche. Coordinating multiagent applications on the www: A
reference architecture. IEEE Trans. Softw. Eng., 24(5):362-375, 1998.

[10] David Gelernter and Paolo Cianciarini. A distributed programming
environment based on multiple tuple spaces. International Conference
on Fifth Generation Computer Systems, pages 926-933, 1992.

[11] David Gelernter and Paolo Cianciarini. A distributed programming
environment based on multiple tuple spaces. In Proceedings of the In-
ternational Conference on Fifth Generation Computer Systems, pages
926-933, Tokyo, Giappone, 1992. Institute for New Generation Com-
puter Technology.

[12] Andrea Omicini and Enrico Denti. From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277-294, November 2001.

[13] Enrico Denti, Antonio Natali, and Andrea Omicini. On the expres-
sive power of a language for programming coordination media. In 1998
ACM Symposium on Applied Computing (SAC’98), pages 169-177, At-
lanta, GA, USA, 27 February-269 1 March 1998. ACM. Special Track
on Coordination Models, Languages and Applications.

[14] Andrea Omicini and Franco Zambonelli. Coordination for Internet
application development. Autonomous Agents and Multi-Agent Systems,
2(3):251-269, September 1999. Special Issue: Coordination Mechanisms
for Web Agents.

[15] Andrea Omicini and Enrico Denti. Formal ReSpecT. Electronic Notes
in Theoretical Computer Science, 48:179-196, June 2001. Declarative
Programming - Selected Papers from AGP 2000, La Habana, Cuba, 4-6
December2000.

[16] Andrea Omicini and Franco Zambonelli. Coordination of mobile infor-
mation agents in TuCSoN. Internet Research, 8(5):400-413, December
1998.

[17] John W. Lloyd. Foundations of Logic Programming, 1st Edition,
Springer, 1984.

154

BIBLIOGRAPHY 155

[18] Antony Ian Taylor Rowstron. Bulk Primitives in Linda Run-Time
Systems, PhD thesis, The University of York, 1996.

[19] C2 webpage. Tuple Space.
http://c2.com/cgi/wiki TupleSpace.

[20] Wikipedia webpage. Tuple Space.
http://en.wikipedia.org/wiki/Tuple space.

[21] Argonne national laboratory webpage. Tuple Space.
http://www.mcs.anl.gov/itf/dbpp/text/node44.html.

[22] APICe Webpage. ReSpecT.
http://apice.unibo.it/xwiki/bin/view/ReSpecT.

[23] Andrea Omicini and Stefano Mariani. The TuC-
SoN coordination model and technology: a guide.
http://www.slideshare.net/andreaomicini/

the-tucson-coordination-modeltechnology-a-guide.

[24] UUID: Universally unique identifier javadoc.
http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html.

[25] MongoDB Web Site. http://www.mongodb.org.

[26] Dynamo Web Site. http://aws.amazon.com/dynamodb/.

[27] Cassandra Web Site. http://cassandra.apache.org/.

[28] RDBMS Web Site. http://en.wikipedia.org/wiki/
Relational database management system.

[29] Google’s BigTable Wikipedia Webpage.
http://en.wikipedia.org/wiki/BigTable.

[30] Jade Web Site. http://jade.tilab.com/.

[31] FIPA Web Site. http://www.fipa.org/.

[32] Multi-Agents System Wikipedia Webpage.
http://en.wikipedia.org/wiki/Multi-agent system.

155

156 BIBLIOGRAPHY

[33] Peer to Peer Wikipedia Webpage.
http://en.wikipedia.org/wiki/Peer-to-peer.

[34] Cloud Computing Wikipedia Webpage.
en.wikipedia.org/wiki/Cloud computing.

156

