
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze

Corso di Laurea in Fisica

Non-evolutive pattern recognition techniques.

An aplication in medical image diagnostics.

Relatore:
Chiar.mo Prof.
Fabio Ortolani

Presentata da:
Matteo Monti

Correlatore:
Chiar.mo Prof.
Renato Campanini

Sessione II

Anno Accademico 2012-2013

(Sayed Hegab, 1971)

Abstract

Lo studio dell’intelligenza artificiale si pone come obiettivo la risoluzione di una
classe di problemi che richiedono processi cognitivi difficilmente codificabili in un al-
goritmo per essere risolti. Il riconoscimento visivo di forme e figure, l’interpretazione
di suoni, i giochi a conoscenza incompleta, fanno capo alla capacità umana di in-
terpretare input parziali come se fossero completi, e di agire di conseguenza.

Nel primo capitolo della presente tesi sarà costruito un semplice formalismo
matematico per descrivere l’atto di compiere scelte. Il processo di “apprendimento”
verrà descritto in termini della massimizzazione di una funzione di prestazione su
di uno spazio di parametri per un ansatz di una funzione da uno spazio vettoriale
ad un insieme finito e discreto di scelte, tramite un set di addestramento che de-
scrive degli esempi di scelte corrette da riprodurre. Saranno analizzate, alla luce
di questo formalismo, alcune delle più diffuse tecniche di artificial intelligence, e
saranno evidenziate alcune problematiche derivanti dall’uso di queste tecniche.

Nel secondo capitolo lo stesso formalismo verrà applicato ad una ridefinizione
meno intuitiva ma più funzionale di funzione di prestazione che permetterà, per un
ansatz lineare, la formulazione esplicita di un set di equazioni nelle componenti del
vettore nello spazio dei parametri che individua il massimo assoluto della funzione di
prestazione. La soluzione di questo set di equazioni sarà trattata grazie al teorema
delle contrazioni. Una naturale generalizzazione polinomiale verrà inoltre mostrata.

Nel terzo capitolo verranno studiati più nel dettaglio alcuni esempi a cui
quanto ricavato nel secondo capitolo può essere applicato. Verrà introdotto il con-
cetto di grado intrinseco di un problema. Verranno inoltre discusse alcuni accorg-
imenti prestazionali, quali l’eliminazione degli zeri, la precomputazione analitica,
il fingerprinting e il riordino delle componenti per lo sviluppo parziale di prodotti
scalari ad alta dimensionalità. Verranno infine introdotti i problemi a scelta unica,
ossia quella classe di problemi per cui è possibile disporre di un set di addestra-
mento solo per una scelta.

Nel quarto capitolo verrà discusso più in dettaglio un esempio di applicazione
nel campo della diagnostica medica per immagini, in particolare verrà trattato il
problema della computer aided detection per il rilevamento di microcalcificazioni
nelle mammografie.

3

Contents

Abstract 3

1 Mathematical aspects of artificial intelligence 7
1.1 Introduction . 7
1.2 Mathematical paradigm . 8
1.3 Examples of choice functions . 10
1.4 Genetic algorithms . 11
1.5 Neural networks . 14

2 Non-evolutive techniques 17
2.1 Non-evolutive AI training . 17
2.2 Polynomial generalization . 21

3 Examples and optimization 25
3.1 Polynomial requirements . 25

3.1.1 Linear captcha recognizer . 25
3.1.2 Tic Tac Toe . 27

3.2 Computational considerations . 31
3.2.1 Precomputing data . 32
3.2.2 Zeros deletion . 35
3.2.3 Components sorting . 35
3.2.4 Fingerprinting . 37

3.3 Multipole expansion . 37
3.4 Single choice problems . 40

4 Medical image diagnostics 43
4.1 Microcalcifications . 43
4.2 Input selection and training set . 44
4.3 Image analysis . 46
4.4 Scanning results . 48
4.5 Conclusions . 50

5

6

Chapter 1

Mathematical aspects of
artificial intelligence

1.1 Introduction

A wide variety of cognitive processes can be described as the act of making choices.
The interaction of an agent, be it an animal, a human being or a simulated chess
player, with an environment that provides inputs and can affected by the agent’s
actions, is to a large extent representable by the set of the choices that agent makes
during its existence.

In the real world, such interaction implicitly determines the fitness of a bio-
logical agent to its environment: fit agents are those able to live long enough to
reproduce. The resemblance of the offspring to the parent, along with random
mutations introduced by reproduction, determines the evolution of a set of agents
towards the highest possible suitedness to their environment.

The high-level cognition human beings display is usually attributed to such
a process. While there is plenty of evidence that evolution is the main factor in
human intelligence, some distinction must be made to explain the subject of this
thesis.

Instinct will be referred to as the factor determining the agent’s choices a priori
from its interaction with the environment. Instinct can be viewed as a simple answer
to determined stimuli that the agent inherits from its parent. Experience does not
significantly affect instinct during the agent’s life span. Instinct may therefore be
seen as an intrinsic factor that evolves thanks to the supremacy of the fittest agents.

Intelligence will be referred to as the factor that, first, determines those choices
that can be affected even by a single experience, and, second, makes them change
during the agent’s lifespan, depending on that agent’s prior set of interactions with
the environment.

Note the difference between these paradigms: a human being does not need to
reproduce for thousands of generations to learn the alphabet!

A wide variety of problems that human intelligence has evolved to deal with is
very difficult to describe analytically. In particular, the ability to extract relevant
information from a noisy background, and to interpolate partial inputs as if they
were complete, is one generally not trivial to reproduce by means of an algorithm.
This, however, is a limitation of the human mind: computers have grown more and

7

more powerful and would have the computing capability to deal with many of those
problems.

The factors described as leading to evolution, are in no way linked with the
agent’s biological nature. A common approach to the problem of describing such
analytically complex algorithms is to create a virtual environment that provides
inputs to a ”black-box procedure”, lets this procedure interact with the environment
through its choices, and defines an evolutionary pressure in terms of the ability to
solve a specific problem. This, along with the definition of a (nearly) continuous set
of mutations that can be introduced at the time of reproduction, makes the system
evolve towards an increasingly accurate solution for the problem.

The process just described is strongly linked to the definition of instinct given
above. The evolutionary pressure is completely determined by the choices the agent
makes during its existence, so the instinct is the only factor affected by evolution.

The subject of this work is the description of a simple way to build algorithms
that reach their best (absolute) solution to a given problem without the need for a
long and computationally intensive iterative procedure like evolution.

1.2 Mathematical paradigm

The research for the best solution to a problem that is analytically complicated to
describe, can be described as the exploration of a parameters space over which a
fitness function is empirically defined. The problem is reduced, then, to the search
for the absolute maximum of the fitness function in that space. We will assume that
the fitness function is defined in terms of a training set, that is, a set of “example
correct choices” that will be provided for training purposes.

Note that all the following definitions are based on the assumption of a discrete
choice problem, i.e. a problem that can be fully solved by a choice function.

Definition 1. A choice function is a function from a vector space RN (we will also
refer to it as environment space) to a finite set of choices:

f : RN → S = {σ1, σ2 . . . σs} (1.1)

The definition of the environment and the set of choices is general; some exam-
ples will be given in the next section. Note that the definition of a choice function
can be easily extended on any function p : Υ ⊂ RN → S′ by adding a dump choice:

f : (R)N → S = S′ ∪ {d}

f(x) =

{
p(x), if x ∈ Υ

d, if x /∈ Υ

(1.2)

Since the space of all possible functions is obviously impossible to explore, an
ansatz will be needed for a choice function to reduce the problem to the exploration
of a finite dimensional space.

Definition 2. An ansatz choice function is a choice function completely determined
by a finite set of parameters, that is a vector in a K-dimensional parameters space:

f = fk,k ∈ RK (1.3)

8

Definition 3. A training set is a set

T = {t = (x, σ),x ∈ RN , σ ∈ S} (1.4)

of couples of environment vectors associated with “correct choices”. From here on
we will also refer to tσ as the choice component for the training set element, and
tx as its environment vector component:

A fitness function will be now defined on the parameters space, based on the
ability of the parametrized ansatz choice function to reproduce the choices for the
elements in the training set.

Definition 4. A fitness function for a parameters space RK is a function

ΦT : RK → R (1.5)

depending on a training set.

Example 1. The most simple definition for ΦT (k) is given by the fraction of correct
answers given by the function parametrized by k:

Φ
(r)
T (k) =

|{t ∈ T : fk(tx) = tσ}|
|T |

(1.6)

Where |T | is the cardinality of T.

Example 2. Given a positive error function

ε : S × S → R+, ε(σ, σ) = 0∀σ ∈ S (1.7)

assessing the error done by a function, Φ can be defined in terms of the average
error:

Φ
(ε)
T (k) = −

∑
t∈T (ε(tσi , fk(tx)))

|T |
(1.8)

That reduces to (1.6) with ε(σ, τ) = 1− δσ,τ .

To sum up: a choice agent can be described as a function from an environment
to a set of choices. Given a training set of couples of environment vectors and
corresponding correct choices, and given an ansatz for the choice function in a finite
number of parameters, one needs to define a fitness function over the parameters
space based on the ability of the choice function parametrized to reproduce the
training set. The fitness function therefore depends on the training set, and is
usually defined as the fraction of correct choices made by the choice function, or
the average error made.

Finding the best ansatz choice function is now explicitly expressed in terms of
the fitness function: the best ansatz choice function is obviously the one parametrized
by the absolute maximum of k on the parameters space. Since the fitness function
is usually statistically defined in terms of the training set, it is impossible to give
a simple explicit definition for it. Furthermore, since the choice function maps on
a finite set, no notion of continuity nor derivability can be used to determine local
maxima on the fitness function. However, the values of the fitness function can be
computed at any point, so a finite difference gradient can be computed. We will
briefly review the main fitness maximization techniques in chapter (?).

9

1.3 Examples of choice functions

A wide variety of problems can be described in terms of a choice function mapping
an environment vector in a choice. We will hereby give some examples to show the
generality of this description.

Application 1. Optical character recognition
An image representing a character from the alphabet is a set of pixels that can be
codified in three components (red, green and blue, or alternatively hue, saturation
and brightness). An image can therefore be codified in three matrices (one for each
component) with values ranging in [0, 1], or simply in a vector I ∈ [0, 1]3p, p being
the number of pixels in the image. The set of choices here is simply represented by
the alphabet or, more generally, by the set of symbols represented.
A training set for this problem can be easily generated by randomizing a symbol,
representing it into an image, then adding noise.

Application 2. String recognition
By adding a dump choice to the previous example (a choice that is returned for any
image that doesn’t represent any symbol in the set), an OCR choice function can
be used to scan an image made of many characters in different positions by asso-
ciating with each pixel a vector of choices for sub-images of varying size (rescaled
if necessary), centered on that pixel. This multi-variate scan will ideally result in
a matrix of choices all composed by the dump choice, except for the pixels centered
on each character.

Application 3. Sound fingerprinting
By sampling a sound and representing it as a vector of fixed size (one sample per
component), or by operating a discrete Fourier transform over it (one frequency per
component), it is possible to distinguish a sound within a set, that will form the set
of choices.

Application 4. Spoken language recognition
By adding a dump choice to the previous example and scanning the sample in a way
similar to Application 2, single sounds can build up to form words and sentences.

Application 5. Stock prevision
The values of a cluster of interconnected stocks can be sampled over time and
grouped in an environment vector. A choice agent can be trained to predict the
evolution of those stocks, the choices being the trend for the next time step of a
specific stock (for example up, down, stable). Note that this can be highly non
trivial: since many factors can affect the evolution of stocks, different evolutions
can be found in the training set for the same environment vectors. Since a choice
function is singlevalued, the training set cannot be completely reproduced even by
ideal choice functions.

Application 6. Closed games (imitation)
In a closed game (like Poker) players have only a partial knowledge of the state of
the game, and the best choice usually cannot be determined by means of exploration
of a choice tree as in open games (like Chess). As long as the game status can be
codified in an environment vector, and there is a finite number of moves that can be
done at each turn, however, the game history of an human player can be recorded
to form a training set for a choice agent.

10

Application 7. Closed games (tree exploration)
Since a choice function is singlevalued, the behavior of a choice agent is completely
determined by the environment vector provided to it. Even in a closed game, the
full tree of choices can be analytically explored while playing against a choice agent.
Environment vectors and choices along the path to the best solution can be used as
a training set for a new choice agent, that will be effective against the previous.

In the second part of the present work several applications of AI techniques to
image analysis will be analyzed in greater depth.

1.4 Genetic algorithms

Among the AI techniques in current use are genetic algorithms. These algorithms
mimic the process of natural selection to solve non-trivial optimization problems.
At the beginning, a number of agents is randomly created (vectors in the parameters
space are randomly chosen to represent such agents, given an ansatz to make that
space finite-dimensional). The initial parameter values can be bonded if necessary.
The process goes under several iterations of the following steps:

• Evaluation: each agent undergoes an evaluation process to test its suitedness
to the environment (that is, its capability to solve the given problem). Math-
ematically, the fitness function is numerically evaluated on each parameters
vector.

• Selection: a fraction of the less fit agents gets deleted. This step realizes the
actual evolutionary pressure on the agents.

• Reproduction: fittest agents reproduce introducing random mutations to
their genetic pool. Crossing over can also be simulated. The offspring of
the fittest replaces the least fit in the population, and evolution takes place.

We will briefly focus on some mathematical aspects of reproduction and muta-
tion, and will try to discern those aspects given by theory, and those given by the
trainer’s experience.

Definition 5. Let k be a parameters vector for an ansatz choice function. The
asexual reproduction process simply adds a white noise vector to k:

R(k) = k + ρ


w1

w2

...
wK

 (1.9)

Where w1, · · · , wK are random real values satisfying the relation
|(w1 · · ·wK)| = 1. We will refer to ρ as evolutionary step.

This process is designed to mimic random mutation introduced by reproduction
in the set of genes of the offspring. Since the parameters vector uniquely determines
the agent’s response to an environment vector, such resemblance with the evolution
of biological systems should imply a form of continuity on the parameters space for
ansatz choice functions, so that agents can behave in a way more and more like to
their parents as the evolutionary step tends to vanish.

11

This would be mathematically expressed by requiring that ansatz choice func-
tions parametrized by close parameters vectors map the same environment vector
to close choices. Since choices form a discrete set, no notion of continuity can be
defined on it.

We will try to show that a weaker notion of continuity can however be defined
by asking that, for every environment vector, the choices corresponding to each
parameters vector in a bonded open set in the parameters space be grouped in a
finite number of maximal choice areas. Let’s see this in more detail.

Recall that every environment vector maps to a choice through an ansatz choice
function parametrized by a vector in a parameters space RK .

Definition 6. Be x an environment vector, RK , be M a bonded open set in a
parameters space RK . M is a choice area for x if it is connected and every ansatz
choice function parametrized by an environment vector in M maps x to the same
choice:

∃σ ∈ S : fk (x) = σ ∀k ∈M (1.10)

Definition 7. Be M a choice area for x. M is a maximal choice area if it cannot
be included in any other choice area:

@N : N is a choice area,M ⊂ N (1.11)

Maximal choice areas can be intuitively seen as states on a geographical map:
each mapping the same environment vector to the same choice. Note that there can
exist more than one distinct maximal choice area mapping the same environment
vector to the same choice. The weak form of continuity we are going to pose requests
that for a bonded open set in the parameters space there exists only a finite number
of distinct maximal choice areas.

Definition 8. An environment space is weakly continuous if, for every bonded
open set A in RK and for every environment vector x in RN , there is only a finite
number of maximal choice areas included in A.

This request assures that there isn’t a configuration vector around which the
choice corresponding to the same environment vector varies an infinite number of
times. Note that for problems of practical interest this request is almost always
satisfied.

Genetic algorithms mostly make use of fitness functions statistically based on
answers given by the agent to the environment vectors in the training set, compared
with the actual results that should be reproduced by the agent. The most common
examples of this were shown in Examples 1 and 2. An explicit definition should be
made for this kind of fitness functions.

Definition 9. A comparison fitness function is a fitness function which value is
uniquely determined by the values of the corresponding ansatz choice function, eval-
uated on the environment vectors from the training set:

ΦT (k) = ΦcT ({fk (tx) , t ∈ T}) (1.12)

An asexual reproduction and comparison based genetic algorithm iterates the
process described above to select those agents that randomly get to be more and
more fit to the evolutionary pressure determined by the comparison fitness function.

12

Step by step, parameters vectors will get closer and closer to local maxima of the
fitness function. The speed and the precision of the training is determined by the
evolutionary step: bigger steps introduce bigger changes on every new generation
of agents, but when the population gets close to the local maxima they will likely
oscillate around them with random local trajectories approximately of the size of
the evolutionary step.

This kind of algorithms pose several issues:

• Locality of maxima: there is, in general, no explcit information on the shape
of the fitness function. Therefore, even if this process is probabilistically
designed to asymptotically approximate a local maximum of the fitness func-
tion, there is no guarantee for this to be its absolute maximum. Once a
local maximum is reached, there is no chance for a trajectory to get out of
it, unless there is a better local maximum in the range of an evolutionary
step, which is very unlikely for evolutionary steps small enough to guarantee
a decent approximation of the maximum.

• Genetic poverty: the algorithm mathematically selects brownian discrete tra-
jectories in an highly dimensional space on which a fitness function is defined.
Since explicit evalutation of that function in an adequately dense set of points
is computationally unfeasible, trajectories are selected at each step on their
current fitness. There is no guarantee that initially better trajectories lead
to higher local maximum, therefore potentially better trajectories could be
cut.

• Plateaux: even if it could intuitively seem very unlikely, comparison fitness
functions generally have plateaux, on which size no assumption can be made.
As we already discussed, the discrete nature of choices imply that different
ansatz choice functions could yeld the same results not only on a specific
environment vector, but also on all environment vectors in the training set.
If we consider the request of weak continuity that has been made, we can
see that for finite training sets the fitness function is completely made up of
plateaux on whom sizes no assumptions can be made.

This can indeed be proved considering that for a finite training set a multiple
choice area can be defined.

Definition 10. Be T a training set, and M a bonded open set in a parameters
space. M is a multiple choice area if it is connected and every environment
vector in the training set is mapped to a constant choice:

∃σ1 . . . σs ∈ S : fk (xi) = σi∀k ∈M (1.13)

Every multiple choice area is therefore an intersection of s choice areas (one
for each environment vector in the training set). If the training set is finite
and the parameters space is weakly continuous, it is completely made up of
multiple choice areas of finite size. From the definition of comparison based
fitness functions it is therefore obvious that such functions unavoidably have
plateaux.

Therefore if evolutionary pressure selects a population of agents whom pa-
rameters vectors lie in a plateau of the fitness function, there will be no evolu-
tionary pressure on it any more, and brownian-like trajectories will generally
randomly drift out of the plateau in a potentially very high number of steps.

13

• Efficiency: at each step, the best agents reproduce. Not only there is no
guarantee that each son will be the best son for each agent, but sons can
even have a fitness worse than their parent. Therefore this kind of algorithm
is not really efficient, and could be trivially substituted by a local finite-
difference evaluation of the gradient of the fitness function at the time of
reproduction.

We will show in chapter 2 that the choice of a particular non comparison based
fitness function solves many of the issues just described.

1.5 Neural networks

Neural networks are a particular type of ansatz choice functions designed to resem-
ble the behaviour of a set of biological neurons. They are widely used in pattern
recognition and non trivial data analysis, and usually treated as genetic algorithms
with comparison based fitness functions as evolutionary pressure.

Neurons are organized in layers (usually only three layers are used, and they
are called input, hidden and output layer). Each neuron is described by a real
activation function, and is “connected” to all neurons in the previous and in the
following layer by synapsis. Each synapsis has a “weight” describing how strongly
the signal generated by a neuron affects the input of another neuron.

The number of neurons in the layer is equal to the number of dimensions of
the environment space, while the number of neurons in the output layer is equal
to the number of choices. The number of neurons in the hidden layer is not given
by theory, but there are many practical rules in literature experimentally adjusted
on the efficiency of the neural network, and should approximately be between the
number of neurons in the other layers. We will refer to I, H and O as the number
of neurons in the input, hidden and output layer respectively.

The output is computed as follows:

• A linear endomorfism (represented by an I × I matrix) is operated on the
environment vector before reaching the input layer of neurons.

• Each component of the input vector is then passed through a real activation
function. Many kind of activation functions exist in literature. The most
common is the sigmoid function:

S(x) =
1

1 + e−x
(1.14)

• Synapsis between the input and the hidden layer operate as a linear operator
(represented by an I ×H matrix).

• Signal reaching each hidden neuron is passed through the same activation
function.

• Synapsis connect the hidden layer and the output layer (an H × O matrix
is used to represent them), and the signal is checked for activation one last
time.

• A final O × O linear transorm generates an output vector. The choice is
generally represented by the output component with the highest value.

14

The number of parameters given by this ansatz is given by the total number of
synapsis, each component of the parameters vector will define the strength of a link
between two neurons. Since every link is an element of the matrices representing the
linear transorms between the layers, the number of dimensions of the parameters
space will be given by:

K = I2 + IH +HO +O2 (1.15)

Note that since activation functions are monotonic, and upon continuous vari-
ations of values on the matrices vectors mapped vary continuously, this parameters
space complies with the request of weak continuity described in section 1.4.

15

16

Chapter 2

Non-evolutive techniques

2.1 Non-evolutive AI training

Let us summarize what has been explained in the previous chapters. We defined
an artificial intelligence as an ansatz function mapping from an environment space
(vectors numerically describing an input) to a finite set of choices. We have shown
how general such definition is, and how wide the variety of problems it can be
applied to is. We assumed that there exists a training set, that is a set of associations
between environment vectors and corresponding correct choices. We also defined a
fitness function as a real function defined on the parameters space, and described
the training process as the problem of finding the parameters vector maximixing
the fitness function.

Note that no explicit definition was given for the form of a fitness function,
except that it should practically describe the capability of the agent to solve a
problem, given the training set. Next, an explicit definition for comparison based
fitness functions has been given to emphasize the fact that usually fitness functions
treat ansatz choice functions as black boxes: an input gets in, an output comes
out, and the solution is evaluated comparing the answers for a set of inputs for
which the answers are known. We also highlighted that one of the main problems
posed by this kind of functions is, for finite training sets, the step nature of the
fitness function, which not only can’t have any analytical definition, but is also flat
everywhere, except for gap discontinuities. Therefore, if two parameters vectors
lie in the same multiple choice area (which is very likely to happen, if one wants
to define some sort of gradient for the fitness function), no distinction is done by
comparison based fitness functions between them, even if they could be intuitively
distinguished by their proximity to the closest correct choice area.

Even if this is a very common paradigm, this is not however the only way to
define a fitness function. We will give hereby a new ansatz for a choice function,
and a new definition of a non comparison based, continuous fitness function.

Definition 11. A vector choice function is a continuous function from an envi-
ronment space RN to a choice space R|S|, which dimension is equal to the number
of possible choices:

f̃ : RN → R|S| (2.1)

Definition 12. A selection function is a function that maps a choice vector in

17

a choice by selecting its component with the highest value, and yielding the corre-
sponding choice:

σ̃ : R|S| → S : σ̃ (c) = σi ⇔ ci = max ({cj , j = 1, 2 . . . , |S|}) (2.2)

We will now define an ansaz choice function in terms of the composition of a
vector choice function and a selection function. The vector choice function is re-
sponsible for the actual choice, we can interpret its output as some sort of likelyhood
for each choice, as extimated by the vector choice function. The actual choice is
then given by the selection function, that simply selects the most likely choice from
the choice vector. This decomposition has the great advantage of making it possi-
ble to define non comparison based fitness functions on the parameters space. We
will indeed define our fitness function directly on the output of the vector choice
function, easily gaining not only the advantage of continuity on the parameters,
but also an analytical definition for the fitness function, that will be nicely easy to
maximize.

We will start by using a simple ansatz for vector choice functions, and will
generalize it later. For now, we will use only linear functions as vector choice
functions:

f̃ (l) ∈ L
(
RN ,R|S|

)
(2.3)

The parameters vector will be naturally defined by the elements of the matrix
representing f̃ (l). Note that obviously each row of this matrix represents a vector in
the environment space, and each component of the choice vector is given by a scalar
product between the environment vector and the corresponding row of the matrix.
We will explictly refer to each of these parameters vectors in the environment space
labelling them yi, with i = 1, 2, . . . , |S|.

f̃ (l)
y1,...,y|S|

: RN → R|S| :
(
f̃ (l) (x)

)
i

= x · yi (2.4)

By observing that the selection function is scale independent:

σ̃(λc) = σ̃(c) forλ > 0 (2.5)

we make the ansatz of |yi| = 1. We will also refer to yi as choice versors. Moreover,
each vector in x in the training set T can be normalized as well.

There is now need for a fitness function, defiend on choice vectors, capable of
somehow representing the quality of an answer before the selection function is used.

If we interpret the choice vector as the likelyhood of each choice, a good vector
choice function should output a neat vector with a high likelyhood corresponding
to the correct choice, and no likelyhood at all for all the other choices.

The capability of the agent of correctly making a specific choice can then be
assessed by the average ratio on the training set restricted to that choice between
the component corresponding to that choice and the module of the choice vector.
That is, expressing the training set as:

T =

|S|⋃
i=1

(Ti = {(x, σi) ∈ T}) (2.6)

we can define a choice-specific fitness function Φi as:

18

Φi =

∑
(x,σi)∈Ti

(
(x·yi)√∑|S|
j=0(x·yj)2

)
|Ti|

(2.7)

Each of these fitness functions should be maximized in respect to the constraint
given to yi.

Since a scalar product is obviously maximized when its two operand vectors are
parallel, recalling the normalization condition for yi, Φi is maximum when

yi =

∑
(x,σi)∈Ti

(
(x)√∑|S|

j=0(x·yj)2

)
∣∣∣∣∣∣
∑

(x,σi)∈Ti

(
(x)√∑|S|

j=0(x·yj)2

)∣∣∣∣∣∣
(2.8)

The solution of this equation is highly non trivial. A solution for it can however
be approximated in a computationally efficient way.

Recall that if Ξ(x) is a contraction, that is:

|Ξ (y)− Ξ (p)| < |y − p| ∀y,p (2.9)

then Ξ has a fixed point, which is solution for Ξ(x) = y. Moreover, the sequence
defined by

yn = Ξ(n) (y0) (2.10)

converges to the fixed point for all y0.

This property is particularly useful when trying to solve big systems of equations
with such a complex analytical expression. Note that the whole system of equations
must define a contraction. In other words, the vector y must represent the whole
set of parameters that are to be determined by the system. In this case, we can
define:

y =


y1

y2

...
y|S|

 =



(y1)1

(y1)2
...

(y1)N
(y2)1

...(
y|S|

)
N


(2.11)

Ξ will be defined by (2.8) for each group of N components, that is for each yi.
We now have to prove that the map hereby defined is a contraction.

Let’s start by noting that y lies in Ω|S|,N , where

ΩP,N =

v ∈ RP ·N ,
(k+1)N∑
i=kN+1

(vi)
2

= 1, k = 0, 1, . . . , (P − 1)

 (2.12)

19

is the set of points that lie in P N -dimensional circles in RP ·N . Note that each
vector in ΩP,N obviously satisfies:

|v| =
N ·P∑
i=0

v2
i = P ∀v ∈ ΩP,N (2.13)

That is, every vector defined as in (2.11) also lies in the |S|N dimensional sphere
of radius P 1/2.

Next, we note that the distance between two points lying on a sphere is a
monotonically decreasing function of their scalar product. Therefore:

∀x,y, z,w ∈ Ω|S|,N , |x− y| < |z−w| =⇒ x · y > z ·w (2.14)

So that condition (2.9) can be rewritten on the sphere as:

Ξ (y) · Ξ (p) > y · p (2.15)

Which, in terms of y as defined in (2.11) takes the following form:

|S|∑
n



|Tn|∑
i

 x
(n)
i√∑|S|

l

((
x
(n)
i ·pl

)2
)


∣∣∣∣∣∣∣
|Tn|∑
i

 x
(n)
i√∑|S|

l

((
x
(n)
i ·pl

)2
)

∣∣∣∣∣∣∣
·

|Tn|∑
j

 x
(n)
j√∑|S|

k

((
x
(n)
j ·yk

)2
)


∣∣∣∣∣∣∣
|Tn|∑
j

 x
(n)
j√∑|S|

k

((
x
(n)
j ·yk

)2
)

∣∣∣∣∣∣∣


>

|S|∑
n

(yi · pi)

(2.16)
This can be treated with some algebra. We need a chain of inequalities to prove

(2.16). We can use the triangular inequality on the denominator D of each term of
the sum in n:

D ≤
|Tn|∑
i


∣∣∣x(n)
i

∣∣∣√∑|S|
l

((
x

(n)
i · pl

)2
)

|Tn|∑
j


∣∣∣x(n)
j

∣∣∣√∑|S|
k

((
x

(n)
j · yk

)2
)
 = (2.17)

=

|Tn|∑
i,j

 1√∑|S|
l,k

((
x

(n)
i · pl

)2 (
x

(n)
j · yk

)2
)
 (2.18)

While each numerator can be easily expressed as:

∑
i,j

 x
(n)
i · x(n)

j√∑|S|
l,k

((
x

(n)
i · pl

)2 (
x

(n)
j · yk

)2
)
 (2.19)

20

Therefore (2.16) is bigger than:

|S|∑
n



∑
i,j

 x
(n)
i ·x

(n)
j√∑|S|

l,k

((
x
(n)
i ·pl

)2(
x
(n)
j ·yk

)2
)


|Tn|∑
i,j

 1√∑|S|
l,k

((
x
(n)
i ·pl

)2(
x
(n)
j ·yk

)2
)



(2.20)

So (2.8) is a contraction if:

|S|∑
n

|Tn|∑
i,j

x
(n)
i · x(n)

j >

|Tn|∑
n

pn · yn ∀p,y (2.21)

That is:
|S|∑
n

|Tn|∑
i,j

x
(n)
i · x(n)

j > S (2.22)

Note that this request expresses a need for locality of the vectors in the training
subset corresponding to each choice: no linear vector choice function can interpolate
points located at opposite sides of a sphere. This requirement, however, is for
practical purposes always fulfilled, since each vector in the training set contributes
to the sum in i and j with a scalar product with itself. We will not try to build
pathological examples of training sets not fullfilling (2.22).

Note that the only practical use where this inequality could be falsified is when
there is only one vector in the training subset corresponding to each choice, but
in this case no contraction is needed to solve (2.8): each choice versor equals each
training vector, normalized:

yn = x
(n)
1 (2.23)

In all cases compatible with the contraction condition, an arbitrarily accurate so-
lution for (2.8) can be computed as the limit of the succession defined as follows:

y0
i =

∑|Ti|
j x

(i)
j∣∣∣∣∑|Ti|j x
(i)
j

∣∣∣∣

y
(n+1)
i =

∑|Ti|
j

x
(i)
j√∑|S|

l

(
(x

(i)
j
·y(n−1)

l)
2
)

∣∣∣∣∣∣∣
∑|Ti|

j

x
(i)
j√∑|S|

l

(
(x

(i)
j
·y(n−1)

l)
2
)
∣∣∣∣∣∣∣

(2.24)

2.2 Polynomial generalization

To sum up: we attributed many of the problems connected with some existing AI
techniques to a non efficient definition of their ansatz and fitness functions. In
particular, we have shown how comparison based fitness functions are intrinsically
made up of plateaux, so that the very gradient of the function is everywhere null
of undefined. Through a new ansatz for the choice function, that expresses it as

21

the composition of a vector choice function and a selection service function, and by
defining the fitness function directly on the answers of the vector choice function
instead of doing the comparison on the output of the selection function, we have
built a fitness function that is continuous on the parameters space.

We then used a linear ansatz for the vector choice function itself. This made the
fitness function not only continuous, but also analytically defined in a simple form
on the parameters. A linear function can be expressed as a set of scalar products.
A fitness function was then separately defined on each choice as the ratio between
the component of the choice vector corresponding to each choice and the module
of the choice vector. The maximization of each fitness function therefore reduces
to the determination of the corresponding choice vector.

The functional form of Φi is in terms of a scalar product between yi and a
function of y1,y2, . . . ,y|S|. We then defined a vector y grouping all the choice
vectors. The set of equations in y1, . . . ,y|S| is now expressed as a vectorial equation
in the form y = Ξ(y). Since this equation has a complex form, it cannot be easily
solved analytically. But, if Ξ can be proven to be a contraction, the solution of
y = Ξ(y) can be expressed as limn→∞ Ξ(n)(y0) for any y0.

To prove that Xi is a contraction, we observed that each vector in y lies in
Ω|S|,N , which is a subset of the |S|N -dimensional sphere {y, |y| =

√
|S|}. Since on

the sphere the scalar product between two vectors is a monotonically decreasing of
their distance, we could put the contraction condition for Ξ in a nice form, that
could be easily reduced to (2.22).

Now, in first approximation, the i-th choice versor for the ansatz described
above is just the average of the environment vectors in Ti. Since this average must
lie on the sphere, there are obvious cases for which this is impossible.

In a three dimensional environment space, on example, it is possible to build
this pathologic training subset T p1 :

T p1 = {(0, 0, 1), (0, 0,−1))} (2.25)

Which obviously doesn’t comply with (2.22). In general a succession defined as
in (2.24) will oscillate without converging.

Practical examples of cases where this could happen actually exist. On example,
there could be need to train an agent to discern the axis of R3 to which a point
is closest. In this case, the training set for each axis would be in a form similar
to (2.25). Linear functions therefore are not capable of interpolating any kind of
training set, and a generalization to other kind of functions is needed. On example,
a good vector choice function for (2.25) could be given by:

(
f̃((x, y, z))

)
1

= z2 (2.26)

Recall that a general vectorial polynomial function p : Rn → R of degree P

22

takes the form:

p(x) =


y1

y2

...
yN




x1

x2

...
xN


T

+


x1

x2

...
xN




y11 y12 · · · y1N

y21 y22 · · · y1N

...
. . .

...
yN1 yN2 · · · yNN




x1

x2

...
xN


T

+

+ . . .+
∑

(a1,a2,...,aP)∈{1,2,...,N}P

(
ya1a2...aP

P∏
i=1

xai

)
(2.27)

Where each variable identified by y is a parameter for the ansatz. This in turn
can be put in the equivalent form:

p(x) =



y1

y2

...
yN
y11

y12

...
y1N

y21

...
yNN
y111

...
yNNN

...
yN . . .N︸ ︷︷ ︸

P times



·



x1

x2

...
xN
x2

1

x1x2

...
x1xN
x1x2

...
x2
N

x3
1
...
x3
N
...
xPN

notext



(2.28)

Where we explicited the polynomial function in x as a scalar product of a coefficients
vector and a polynomial vector function on x.

Note that the polynomial function that maps a vector in a vector in an higher
dimensional space making explicit all of its internal products up to a given degree
does not depend on any parameter.

Definition 13. A polynomial explicitation map up to a degree d is a function
p̃d : RN → RL, with L =

∑d
i=1N

i defined by:

p̃d((x1, x2 . . . xN)) =

(
x1, x2, . . . , xN , x

2
1, x1x2 . . . x1xN , x1x2 . . . x

2
N , x

3
1 . . . x

3
N . . . x

P
N

)∣∣(x1, x2, . . . , xN , x2
1, x1x2 . . . x1xN , x1x2 . . . x2

N , x
3
1 . . . x

3
N . . . x

P
N

)∣∣
(2.29)

There is therefore no difference between using a polynomial ansatz for vector
choice functions on an environment space, and using a linear ansatz instead, but
on a higher dimensional environment space, in which every training vector is the
polynomial explicitation map pd of the vectors in the original environment.

23

It is then easily possible to generalize the findings from the previous section to
any polynomial degree, by adding p̃d to the composition:

f = σ̃ ◦ f̃ ◦ p̃d (2.30)

Where f̃ is a linear function from RL to RS , and the versors determined by the
maximization of Φi represent the set of polynomial coefficients for the most efficient
polynomial ansatz choice function for the given training set.

24

Chapter 3

Examples and optimization

3.1 Polynomial requirements

It is known from basic calculus that every continuous function defined on a compact
space can be arbitrarily approximated by a polynomial function. It is then obvious
that the technique described above offers an arbitrary precision solution for nearly
any problem of practical use. Since the dimension of the polynomial space on which
p̃d maps every environment vector exponentially increases in d, it is not however
computationally feasible to handle p̃ over some low degree. It is therefore important
to discern if a given problem requires a polynomial choice function of a minumum
degree, i.e. it cannot be solved by a lower degree polynomial choice function.

Two practical examples will be given to emphasize the simplicity and the effi-
ciency of this non evolutive training paradigm.

3.1.1 Linear captcha recognizer

The CAPTCHA (completely automated Turing test to tell computers and humans
apart) is a widely used test designed to prevent automation on many procedures
on the internet. Even if bots (software agents built to automize process like form-
filling, crawling, etc.) can emulate a user’s interaction with almost any service,
a Turing test validated request ensures that a human is specifically making such
request. Since the number of requests to be handled must be high enough to filter
even a huge number of automated requests, no human must be needed to create
the Turing problem.

The most common type of CAPTCHA problem is an image representing a
string. Thanks to high efficiency pseudo-random algorithms, an arbitrary quantity
of noise can be introduced. The noised image is shown to the user, and the in-
teraction is validated only if the user (which is human, and its perception is very
resilient to noise) enters the correct string.

In this example, one-char CAPTCHAs will be used for simplicity. 26 bitmap
images (50 × 50 pixels) were created to represent each letter in the latin alphabet
using Calibri (a commonly used font).

An image of a given size can be easily codified in a vector through a bitmap.
On a grayscale, each pixel of the image is represented by an integer in a given range
(usually [0, 255], 0 representing black and 255 white). Images were loaded in vectors

25

0 200 400 600 800 1,000
0.95

0.96

0.97

0.98

0.99

1

·105

Noise

C
o
rr

ec
t

a
n
sw

er
s

Figure 3.1: Efficiency vs. noise with linear captcha recognizer

(the environment space can be seen as a compact in R2500). Each image vector
has been normalized and was used as training set corresponding to each image (26
choices), so minimal size training sets have been used. Each image was then dimed
so that each pixel value ranged in [64, 192]. Once the parameters for each linear
ansatz vector choice function were determined, test were run as follows.

• A random character was chosen

• Its image vector was copied, and white noise in [−ξ,+ξ] was added, where ξ
was a parameter used to set the intensity of noise.

• The vector was normalized.

• A scalar product was computed with each choice versor.

• The choice corresponding to the highest scalar product was selected, and it
was compared with the actual character.

Efficiency was computed in terms of the number of correct answers over 105

tests (figure 3.1). Note that the amplitude of the signal itself was up to 128. This
algorithm shows an outstanding resilience for noise, with a 95% efficiency for a
noise 10 times bigger than the signal itself !

Figure 3.2: Characters with increasing noise: (V, 0), (W, 50), (N, 100), (R,
150), (T, 200), (Q, 250)

26

2,000 4,000 6,000 8,000

0.2

0.4

0.6

0.8

1

·105

Noise

C
o
rr

ec
t

a
n
sw

er
s

Figure 3.3: Efficiency vs. noise with linear captcha recognizer, higher noise

Figure 3.2 shows five examples of captchas generated with increasing noise.
The algorithm gets a 100% efficiency even on characters like the last in the
figure.

Figure 3.3 shows the results of an efficiency test on more noisy signals (from 10
to 80 times the signal). This Turing test is efficiently solved even for images that a
human isn’t able to recognize.

This efficiency, however, is due to a good compatibility between the input and
the agent. In other words, what is provided to the agent is an actual vector that
has been perturbed with noise. Many other problems in image analysis require the
agent, on example, to be resilient to distortion, scale, and rotation. But from a
mathematical point of view, a rotation, or a distortion, is a permutation over the
components of the input, altering its very structure. In these cases, transforms
must be applied to the input before analyzing it. As we will see, these transforms
are highly non injective functions on the raw image input, designed to map rotated,
scaled or distorted images to the same or close vectors.

3.1.2 Tic Tac Toe

Tic Tac Toe is a popular strategy, turn based, complete information game. Two
players take turns in placing their marks (usually a cross and a circle) over a 3× 3
grid. Two marks cannot be placed on the same square of the grid. If at any turn
there is a full row, coloumn or diagonal marked with the symbol of one of the two
players, that player wins the game. Obviously, several configurations of the game
grid can lead to a draw.

The small tree complexity of this game makes it a good pedagogical example
in the field of artificial intelligence. Since an optimal strategy is known, we will
determine the efficiency of an artificial intelligence in terms of the number of games
it wins against a random player.

Figure 3.4 shows two different configurations of the game grid and two possible
ways to represent them with vectors. Since each square can be either unmarked,

27

× ◦
× ◦
◦ ×

→



1
−1
0
1
0
−1
−1
1
0


or



1
0
0
1
0
0
0
1
0
0
1
0
0
0
1
1
0
0



◦ ◦ ◦
× ×
◦ × ×

→



−1
−1
−1
1
0
1
−1
1
1


or



0
0
0
1
0
1
0
1
1
1
1
1
0
0
0
1
0
0


Figure 3.4: Tic Tac Toe configurations, with two vector representations

marked with a circle or marked with a cross, the most compact way to describe the
configuration of a game table is using a 9-dimensional vector, each representing a
square. An empty square can be represented by a 0, a cross marked square with a
1, and a circle marked square with a −1.

This however makes two vectors representing the same play, only with circles
and crosses swapped, as opposite. Another way to represent the table that allows
one to not make this assumption is to use 18-dimensional vectors. The first 9
components are to tell if there is a cross in each square, the last 9 if there is a
circle. Obviously, there are vectors in this representation that don’t resemble any
actual configuration.

Using the second representation, a training set was generated based on random
games. Each game could be won, lost or drawn by the cross player. If the game
was won, each move was recorded, that is each couple (present configuration, move
done by the cross player as a random, but winning reaction to that configuration)
was added to the training set.

Choice versors were generated from the training set built as described, and the
agent obtained was tested against a random player. The selection function was
slightly modified to select only the valid choice represented by the component with
the highest value, so that the agent is forced to follow the rules of the game.

Figures 3.5 and 3.6 show the efficiency of two agents, trained with a growing
number of items in the training set, both generated the same way. The first plot
relates to a linear ansatz choice agent, while the ansatz for the second was a second
degree polynomial.

It is evident from the plots that while the growth of the training set of the first
doesn’t affect its efficiency, that stays approximately in a random neighborhood

28

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Training set dimension

G
am

es
w

on

Figure 3.5: Fraction of games won by linear Tic Tac Toe player vs. dimension
of the training set

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

Training set dimension

G
am

es
w

on

Figure 3.6: Fraction of games won by quadratic Tic Tac Toe player vs.
dimension of the training set

29

× ◦
× ◦

◦ ×
× ◦

◦ ×
× ◦

Figure 3.7: These three configurations are equally interpreted by a linear
player

of the 0.5 efficiency any random player would have, the efficiency of the second
significantly increases for the first hundreds of elements in the training set, until it
reaches a plateau.

First, the height of the second plateau (the asymptotic efficiency of the second
degree player doesn’t reach the 100% efficiency) can be easily justified in terms of
the random tree exploration done by the randomly playing opponent. Since there
are perfect games in Tic Tac Toe for the player starting the game, a perfect path
can be chosen at random leading to the defeat of the trained player.

The difference between the two efficiencies, in turn, can be justified by the very
nature of the Tic Tac Toe problem.

Figure 3.7 shows three configurations of the game table. It is evident that the
correct answer to the first two is placing a cross in the bottom left square to win
the game, while the correct answer to the last one is placing a cross in the bottom
right square, preventing the circle player from winning the game at the next move.

Now, if the first two elements were to use for a linear training set, both would
belong to the 7th training subset. If the ansatz for the vector choice function was
to be linear, this would mean:

• Squares number 1 and 4 if occupied by the cross player, should lead to the
choice of marking the square number 7.

• Squares number 3 and 5, if occupied by the circle player, should lead to the
choice of marking the square number 7.

• Squares number 3 and 5 if occupied by the cross player, should lead to the
choice of marking the square number 7.

• Squares number 1 and 6, if occupied by the circle player, should lead to the
choice of marking the square number 7.

Now, note that the linearity of the ansatz implies that the uncorrelated presence
of these marks should lead to the said choice. No additional value is given to the
contemporary presence of two marks at a time in two different squares, which is
what actually determines the choice.

Therefore, when shown the third configuration, the agent will react as it would
to a superposition of the first two, by putting its mark on the bottom left corner
and losing the game.

These two problems were shown to emphasize their intrinsic difference: while
the solution to the first problem, if distortion, scaling and rotation are exluded,
is given by a superposition of absolute values of each pixel, the solution for the
second is based on the relation between components of the environment vector. The
intrinsic polynomial requirement for a problem is to be considered as the maximum
number of interacting properties to be considered at the same time. This leads to

30

a reasonable upper bound for the polynomial degree of the choice function, which
should not be higher than the number of dimensions of the environment space.

3.2 Computational considerations

The exponential growth of the dimension of the parameters space with the degree
of the polynomial ansatz for the choice function can lead to three different kind of
problems:

• Space complexity: since the number of parameters per agent grows expo-
nentially with the polynomial degree of the agent’s ansatz, the first problem
is obviously space complexity. Once trained, an agent should be practical to
transfer and store.

• Time complexity (training): we have seen how the determination of the
choice versors is done through the iteration of a succession defined by induc-
tion. If the environment space has an O(exp(p)) dimensions, each step of the
iteration is going to need a proportional amount of time.

• Time complexity (execution): in general, once it has been trained, the
agent will be deployed and used massively. Its efficiency is going to be the
most crucial problem to deal with.

• Size of the training set (statistics). Unlike what has been done in the
CAPTCHA recognition example, training sets are generally constituted by
experimental data that is subject to error. If, instead of the original, noiseless
images we used, on example, the fifth kind of image from figure 3.2, we
would not have been able to use just one image, since it would have been
significantly different from the actual character that should be used as a
term of comparison. A statistical mass of examples is needed in general for
the training set, which size must be estimated in terms of the degree of the
ansatz.

Note that even if the set is randomly generated, since it originates from a
given signal the contraction condition (2.22) is guaranteed to be statistically
satisfied. It is known from basic statistics, however, that the standard de-
viation associated to the distribution of the average of a set of N randomly
distributed variables decreases with the square root of the number of vari-
ables:

σ ∝ σ̄√
N

(3.1)

where σ̄ is the standard deviation of the distribution of each variable. Be ∆̄x
the maximum acceptable error for the single component of the choice versor.
The probability of the average for a single component being within the error
range is:

P (∆x ≤ ∆̄x) = erf

(
∆̄x

σ

)
= erf

(
∆̄x
√
N

σ̄

)
(3.2)

The probability of all the M components of the choice versor being within
the error range (assuming them independent and with the same standard

31

deviation) is:

P ∗ =

(
erf

(
∆̄x
√
N

σ̄

))M
(3.3)

So, if χ is the confidence level required for P ∗, the following must be satisfied:

1− P ∗ < χ (3.4)

Upon expanding the error function in series in +∞:

erf(x) = e−x
2

(
− 1√

πx
+

1

2
√
πx3
− 3

4
√
πx5

+ . . .

)
+ 1 (3.5)

We obtain, as a first order valuation:

1−

− exp

(
−
(

∆̄x
√
N

σ̄

)2
)

√
π ∆̄x

√
N

σ̄

+ 1


M

< χ (3.6)

Which, upon expanding again in Taylor series for x→∞, becomes:

M

− exp

(
−
(

∆̄x
√
N

σ̄

)2
)

√
π ∆̄x

√
N

σ̄

< χ (3.7)

Now, by noting that, for x→∞:

e−x
2

x
= e−x

2−ln(x) ' e−x
2

(3.8)

We must have:

exp

(
−∆̄x

σ

)
<

√
πχ

M
(3.9)

Since, in turn, M ∝ ed, where d is the polynomial degree, we obtain:

√
N ∝ d (3.10)

Which makes the size of the training set only polinomial in respect to the
degree of the ansatz.

There are a few easy expedients one can use to tackle with some of these
problems.

3.2.1 Precomputing data

We have proven that it is possible to analytically determine the best polynomial
function to reproduce a training set. Each vector in the training set contains data
to be analyzed. For sufficiently big training sets (enough to show each and every
possible example of (input, choice)), and for a sufficiently high polynomials degrees,

32

an efficient function will be found. However, this doesn’t consider any efficiency
issue.

As an example for this, we will focus on one of the applications that have
already been discussed: optical character recognition for strings. An image with
text in it has to be analyzed to extract such text.

The easiest approach that can be used to tackle with this problem is to deputize
every analysis to the training algorithm. The entire image of the page is submit-
ted as environment vector, the choices being any combination of letters up to the
number of characters that can fit within a page. The training algorithm will need
to determine an equal number of choice versors, which in turn need at least an
equal number of elements in the training set. We are mathematically assured that
a solution for this problem exists, but it is impossible to generate such a training
set, and to train so many choice versors. Moreover, no assumptions can be done on
the degree of the agent needed for this problem.

Mathematically speaking, however, some assumptions can be made. We know
that the value of each letter is independent from the value of the others. There is no
need, then, to introduce in the polynomial all the internal products of independent
variables that we already know will statistically vanish.

Practically speaking, artificial intelligence algorithms should be used where no
simple analytical preprocessing can be done. We have already discussed an efficient
implementation for a single character optical recognition algorithm. An efficient,
but still quite error resilient technique that can be used is to scan portions of the
image trying to detect single characters in different positions.

The following procedure has ben followed:

• On a squared image (1000× 1000 pixels), 1000 random characters have been
drawn in random positions. The approximate size of each character was
50× 50 pixels. The value and coordinate of each character was recorded for
comparison.

• The signal was dimed reducing the gap between black and white.

• Noise has been introduced, obtaining an image like the one in Figure 3.8.

• Images representing single characters have been exported without noise to
be used as training set.

The scanning program has been then run with the following procedure:

• Images representing single characters where used as single-element training
sets, determining choice versors.

• Any 50 × 50 pixels image can be compared with the choice versors. Since
any portion of the test image of that size obviously complies with this re-
quirement, the single character recognition agent was run on each of them,
scanning the whole image. To each pixel was associated a character recog-
nized by the choice agent in the 50×50 square centered on it. Since no dump
choices as been put in the choices set, even those squares that don’t actually
represent any character are assigned some choice.

• As a further training, 10 coordinates of known letters on the image were
specifically scanned, and the value of the scalar product between each correct
choice versor and each square was computed.

33

Figure 3.8: Image generated for testing purposes on the OCR string recog-
nizer.

• Based on the values obtained, a threshold has been set on the minimum
value of the scalar maximum product to consider the corresponding choice
acceptable. We will justify this procedure more in detail in the following
chapters. The coordinates whose scalar product complied with the thresh-
old were selected, and compared with the original letters and coordinates
recorded.

Five tests were run on randomly generated sets of 1000 images. Characters were
considered correctly detected if the letter was correctly chosen and its coordinates
matched exactly with the values recorded. The following results were obtained:

Table 3.1: OCR scanning efficiency (noise / signal ' 0.5)

Characters detected False positives

1 951 24
2 963 17
3 952 17
4 962 30
5 946 26

34

The scanning procedure took approximately 3.4 seconds on an Intel Core i5,
2.3 GHz processor.

Tests were run also on lower levels of noise, recalibrating thresholds, with the
same procedure:

Table 3.2: OCR scanning efficiency (noise / signal ' 0.2)

Characters detected False positives

1 996 1
2 995 0
3 995 0
4 997 2
5 995 0

On an actual page of text, noise levels are usually lower than in the second test,
and characters are placed in a grid-like pattern, making it easier to detect false
positives. A further improvement (whose implementation will not be discussed
here) could be done if the language of the text was known. On example, if letters
could be codified in vectors in a fixed dimensional space (which is easy if one
introduces a null character at the end of the word), a dictionary could be used as
training set, with one choice versor per word, and a second choice agent could be
used to correct errors done by the first, increasing efficiency further.

3.2.2 Zeros deletion

On high degree polynomial choice versors, many zeros are likely to be present. Both
runtime and space efficiency can be improved if zeros are not explicitly stored. On
example, a vector with many null components like:

n = (0, 0, 0, 1.7, 0, 0, 4.3, 0, 0, 0, 0, 2.2, 0, 0, 9.9, 0, 0) (3.11)

Could be stored as:

n4 = 1.7,n7 = 4.3,n12 = 2.2,n15 = 9.9 (3.12)

Obviously, on problems of practical interests, components are unlikely to be exactly
null. This issue can be treated, however, noting that increasing the statistical mass
of the training set, the value of ideally null components will converge to zero with
an increasing confidence level.

3.2.3 Components sorting

Let’s take an N -dimensional choice versor c and compute its scalar product with a
normalized environment vector n. Their scalar product is defined by:

c · n =

N∑
i=0

cini (3.13)

35

Now, if the scalar product is computed up to a given component Y , one has:∣∣∣∣∣c · n−
Y∑
i=0

cini

∣∣∣∣∣ ≤ |(nY+1, . . . ,nN)|max({ck, Y < k ≤ N}) (3.14)

Which in turn can be expressed as:∣∣∣∣∣c · n−
Y∑
i=0

cini

∣∣∣∣∣ ≤
√√√√1−

Y∑
j=0

n2
j

max({ck, Y < k ≤ N}) (3.15)

This can lead to a significant efficiency improvement for many problems of practical
interest. In fact, the components of c can be sorted and the scalar product can be
computed in the new order.

Be a(c)i the number of the i-th component of c in decreasing order of magnitude.
One can define:

τ(c,n, k) =

√√√√1−
Y∑
j=0

n2
a(c)j

 ca(c)j+1
(3.16)

By the triangular inequality one has (be b a choice versor):

c · n− b · n ≤

(
Y∑
i=1

ca(c)ina(c)i

)
−

(
W∑
i=1

ba(b)ina(b)i

)
+ |τ(c,n, Y)|+ |τ(b,n,W)|

(3.17)

So if∣∣∣∣∣
(

Y∑
i=1

ca(c)ina(c)i

)
−

(
W∑
i=1

ba(b)ina(b)i

)∣∣∣∣∣ > |τ(c,n, Y)|+ |τ(b,n,W)| (3.18)

One has:∣∣∣∣∣
(

Y∑
i=1

ca(c)ina(c)i

)
−

(
W∑
i=1

ba(b)ina(b)i

)∣∣∣∣∣ > 0 =⇒ c · n− b · n > 0 (3.19)

Since the choice is determined only by the highest scalar product with ver-
sors, and not by its value, being Yi the development of the scalar product of the
environment vector with the i-th choice versor one can proceed as follows:

• If a copule of choice versors ci, cj satisfies condition (3.18), delete the one
with the lower partial scalar product: by (3.19) the one with the lower partial
scalar product is never going to be the one with the highest scalar product
at the end, and there is no need to compute the scalar product any further.

• If no couple of choice versors satisfies (3.18), develop one more term of the
i-th scalar product, where i satisfies:

(ci)Yi = max
({

(cj)Yj , cj has not yet been deleted
})

(3.20)

36

3.2.4 Fingerprinting

An efficient way to significantly improve performace in change of a small chance
of random errors not determined by the choice agent is to preprocess data with a
fingerprinting function. A fingerprinting function maps with continuity an higher
dimensional environment vector in a lower dimensional one. Continuity assures that
“similar vectors” are mapped in “similar vectors” by the fingerprinting function.
However, the different number of dimensions of domain and codomain spaces for the
fingerprinting determine the possibility of also two “significantly different vectors”
being mapped to “similar vectors” by the fingerprinting, determining errors in the
input of the choice agent.

A good fingerprinting function is the one minimizing the probability of these
fingerprint matches happening on environment vectors of pratical interest.

Figure 3.9: These two images will have the same radial fingerprint. However,
fingerprint matches are very unlikely to happen for cases of practical interest.

As an example, we will introduce the radial sampling as a good fingerprinting
function for image analysis. As we have said in the previous chapters, an image
can be described by three matrices, one per color component (red, green, blue).

A radial fingerprint with a given bin width b for a given color component is
defined as the vector:

F
(r)
b (Mr,g,b)i =

∑
(j,k),(i−1)b≤

√
j2+k2<ib

Mij∣∣∣{(j, k), (i− 1)b ≤
√
j2 + k2 < ib

}∣∣∣ (3.21)

That is, the i-th component represents the average over the i-th circular crown
of internal radius radius (i − 1)b and external radius ib of the intensity of that
component. This has the advantage of being rotation independent: two images
that differ only by a rotation will have the same radial sample fingerprint.

3.3 Multipole expansion

Choice agents are mathematical objects that map environment vectors into choices.
We have seen that, for a linear ansatz to the choice space, the problem reduces to
the determination of a set of choice versors maximizing a fitness function, which
we report again:

37

Φi =

∑
(x,σi)∈Ti

(
(x·yi)√∑|S|
j=0(x·yj)2

)
|Ti|

(3.22)

It has also been proved that this fitness function, defined for the single choice,
can be maximized by the limit of the succession (2.24).

Figure 3.10: Bipole expansion for a bimodal distribution of environment
training vectors. Versor C would be the single choice versor, V1 and V2

are the two virtual choice versors maximizing the fitness function on the
splitting.

Once all choice versors have been determined, the answer to each environment
vector will be determined by the closer choice vector on the sphere.

Now, let’s take as an intuitive example a three dimensional environment space,
and the training set vectors for a given choice be half localized closely around the
ẑ axis, and half closely around the x̂ axis. Succession (2.24) will likely converge
somewhere between the two. Therefore, even if Φi is going to be maximized for the
single choice by that limit, its value is not going to be very high.

But if one introduces two virtual choices, both with the same meaining when
it gets to interpret them, but with two distinct choice versors to be determined
separately, and splits the original training in set in two complementary subsets, the
first with all and only the elements localized closely around the ẑ axis, the second
with the ones around the x̂ axis, Φi will boost significantly.

In a more formal way, we are modifying the ansatz for the choice function as a
whole adding a new composition. In its most general expression:

fk = γ̃ ◦ σ̃ ◦ f̃k ◦ p̃d (3.23)

Where now σ̃ maps from a more highly dimensional virtual choice space to a
bigger virtual choice set, that will be compressed to the actual choice set by γ̃, that
will map each virtual choice to an actual choice. γ̃ is obviously injective only when
no additional virtual choices are introduced, and the virtual choice space reduces
to the choice space.

A new fitness function can be defined, still on the actual choices. Being S the set
of actual choices and Vi = γ̃−1(σi) = {vin} the set of virtual choices corresponding

38

to the i-th choice, Tin the training set for the n-th virtual choice in Vi, and yin the
choice versor corresponding to the virtual choice vin the new fitness function can
be expressed as:

Φi =

|Vi|∑
n=1

∑
(x,vin)∈Tin

(
(x·yin)√∑
j,k(x·yjk

)
|Tin|

(3.24)

If we consider again the previous example, introducing two virtual choices and
splitting the training sets as described determines two virtual choice vectors, one
along the ẑ axis and the other along the x̂ axis. This significantly increases the
fitness function, since the scalar product in the numerator is going to increase while
the scalar product between the environment vectors in the first training set and the
second virtual choice versor are going to be perpendicular, so the denominator is
not going to be significantly affected.

In general, virtual choices should be considered as an alternative solution to
increasing the polynomial degree, since both time and space complexity are linear
in the number of virtual choices.

The determination of the training subsets for virtual choices, however, are not
trivial. The splitting should be done to maximize the total fitness function.

Since the number of ways one can split a training set in two or more subsets is
|Vi||Ti|, an explicit exploration of all the combinations is in general computationally
unfeasible.

Approximate methods however exist, based on the iteration of a potential min-
imization procedure that can be described as follows:

• At the beginning, elements in the original training set are randomly split
between the virtual training subsets. Virtual choice versors are determined,
and Φi is computed on the splitting as in (3.24) .

• Be n the number of virtual choices. Each item can be moved in n− 1 other
virtual training subsets. Be t the number of items in the original training set.
There are t(n − 1) ways of modifying the present configuration by moving
one item from its virtual training subset to another. Each of these operations
leads to a new configuration, on which the fitness function can be evaluated
as in (3.24) upon determining the new choice versors. We will refer to these
sets as reachable configuration

• Once the fitness function has been evaluated on all reachable configurations,
the one with the highest fitness is selected.

• If the best reachable configuration has a lower fitness than the previous, a
local maximum has been determined. Else, the best reachable configuration
is selected and the process is iterated until completition.

Note that this is an evolutive method, but applied to a discrete problem. The
efficiency of this iteration can be improved by considering the act of moving an
element from one virtual subset to another as a perturbation of the corresponding
virtual choice versors. Therefore the values of the choice versors of the two subsets
exchanging an element can be used as first elements of the succession iterating the
contraction (2.24).

39

3.4 Single choice problems

Some problems can be described as two choice problems (a.k.a. emphyes-or-no
problems), but no training set can be exhibited for one of the two choices. We will
see how the main example in this thesis can be described by this paradigm.

Figure 3.11: In a one choice problem there is a choice with an empty training
set. However, training vectors could be generated to cover up all the choice
sphere, and then multipole expanded.

Consider, for example, the problem represented in figure 3.11. Training vectors
are provided for choice 1 (here, two-pole expanded by the green virtual choice
versors), while choice 2 is defined as the other’s negative. If training versors are
not distributed over the whole sphere, training elements for choice 2 could however
be generated to cover up all the the choice sphere’s surface that is free from the
training versors of choice 1. The newly generated poles could then be multipole
expanded, and virtual choice versors would be obtained for choice 2.

An important issue to be considered, however, is the definition of “surface free
from training versors of choice 1”. In general, training sets do not cover the whole
surface of the sphere linked with the choice they belong to, that is, f(x) = σi 6=⇒
x ∈ Ti (if this happened, f would be obviously defined by its training set). It is
not trivial, then, to set a threshold, on the sphere, between the choices. Note that
that threshold is otherwise implicitly determined by the two training sets.

An approximate solution can be statistically determined as follows:

• Choice 1 is multipole expanded (if necessary) and its (virtual) choice versors
are determined.

• For each element in each virtual training subset, the scalar product with the
corresponding virtual choice versor is determined.

• Remember that, on a finite dimensional sphere, the scalar product can be
interpreted as the cosine of the angle between two versors:

x · y = cos(θxy) (3.25)

• For each virtual training subset, then, the dispersion beween the training ver-
sors can be determined by evaluating the angular standard deviation between

40

the virtual choice versor and the elements of its virtual training subset:

σθ =

√√√√√√
|T1n|∑
i=0

(cos−1(xi · y1n))
2

|T1n|
(3.26)

σθ can be used as a parameter to evaluate the probability that an environment
versor belongs to choice 1. Assuming that versors for each virtual choice versor are
normally distributed, one has (be x an environment versor and y the virtual choice
versor maximizing x · y):

p(1)(x) = e
(cos−1(x·y))

2

2σ2
θ (3.27)

Where p(1) represents the probability density that x belongs to choice 1. Note that
this is no longer a deterministic solution. We will see a practical usage for this in
the next chapter.

41

42

Chapter 4

Medical image diagnostics

4.1 Microcalcifications

Breast calcifications are small areas of calcium that can be found in female breast.
While macrocalficitations are in general harmless, microcalcifications can be a sign
for a pathologic cell replacement rate. Since high cell replacement rates could be
determined by cancer, women over a certain age should be screened yearly for
microcalcifications.

Figure 4.1: A cluster of microcalcifications

Since calcium is radiodense, microcalcifications appear as small white spots
on a radiography (figure 4.1). The analysis of radiography is manually done by
the radiologist. As an example application for non-evolutive pattern recognition
techniques, a simple CAD (computer aided detection) system has been developed.

43

0 2 4 6 8 10
0

50

100

150

200

250

Radius

G
ra

y
sc

a
le

lu
m

in
os

it
y

Figure 4.2: Example radial sampling. Pixels marked in yellow will be sam-
pled when sampling along the axis marked in orange. An example set of
sampling values is shown on the plot on the right.

4.2 Input selection and training set

All the images processed were obtained from the Digital Mammography Database
of the University of South Florida. This database contains high-definition images
for both normal breasts and breasts with cancer. All the images of breasts with
cancer come along a meta file with the coordinates of every zone of lesions.

However, the dimension of lesions significantly varies between different images.
A scanning procedure is therefore needed like in the optical character recognition
example, to detect single microcalficitations instead of zones containing microcal-
cifications.

Since a microcalcification appears as a small, brighter dot on the mammography,
and since it has an approximate radial simmetry, grayscale radial sampling was
chosen as an efficient fingerprinting method. Note that fingerprint matches coincide
in this case with actual image matches: two samples with a similar fingerprint will
both represent small, white dots.

Due to the high variability of both microcalcification sizes and image luminosity,
the radial fingerprinting method was modified to make it also scale independent
and intensity independent. Based on the resolution of the radiography machine
(information are included in metafiles of each image in the database) an upper
bound to a microcalcification radius was empirically set to 20 pixels.

Given an (x, y) integer coordinate of a pixel, a radial sample is a 20-components
vector determined as follows:

• An angle step is empirically determined so that every pixel on the most
external circular crown of the sample is accounted for.

• For each angle step θ, a raw sample ρ(θ) is taken as follows:(
ρ(θ)

)
i

= I(x+ i cos θ, y + i sin θ) (4.1)

Where I(x, y) assesses the grayscale luminosity of the image in (x, y).

Note that there is no need for x+ i cos θ and y + i sin θ being integers, since
each pixel (x, y) can be considered as an open set [x, x + 1[×[y, y + 1[over

44

Figure 4.3: An example on how the heuristics method to find the cut position
works on a sample. The point marked with “H” is the cut position

which I is constant (figure 4.2).

• A raw round sample is then defined as the sum over all the angle steps of
each raw radial sample:

ρ =
∑
θ

ρ(θ) (4.2)

• The round sample obtained is now the average over circular crowns of in-
creasing size of the grayscale luminosity of the image. However, since 20
pixels is in general an overshoot for a microcalcification radius, even if (x, y)
represents the center of a microcalcification the sample will be affected by
surrounding image elements on its most external circular crowns. Samples
should be cut at the outer border of the microcalcification, i.e. at the first
minumum of luminosity from the center. A simple heuristic method has been
implemented to determine a cut position c:

c = min{i ∈ [1, 19[} : ρi < ρi+1, ρi < ρi−1, (ρ0 − ρi) >
maxj ρj −minj ρj

δ
(4.3)

Where δ is an empirical parameter efficiently performing when set to 5.

The cut position (figure 4.3) is therefore defined as the first minimum lower
than the first element of the sample by more than one fifth of the amplitude of
the sample. Adding the requirement of ρi being lower than the first element
by more than one fifth of the amplitude makes the method more resilient to
noise. Note that such c could not exist, since the condition in (4.3) is not
said to be satisfied by any i. If this happens, (x, y) are not centered on a
bright dot in the image and further tests can be skipped.

• Due to the fixed dimensionality needed for environment vectors, an interpo-
lation function λ is defined on ρ:

λ(x, ρ) = ρ[x] + (ρ[x]+1 − ρ[x])(x− [x]) (4.4)

45

where x ∈ R and [x] represents the integer part of x. This function linearly
interpolates the values of the sample between two components. ρ can now
be resampled keeping unvaried the number of its components:

ρ∗i = λ

(
ρ,
ic

20

)
(4.5)

• The luminosity independence condition can now be satisfied by introducing
a normalized round sample defined as follows:

(ρ̃)i = 2
ρ∗i −minj ρ

∗
j

maxj ρ∗j −minj ρ∗j
− 1 (4.6)

Note that this condition linearly transforms each round sample forcing its
components values to lie between −1 and 1.

This procedure generates a 20-components vector that describes in a scale and
luminosity independent way the average value of luminosity of a circle centered in
(x, y). A training set is now needed. For this purpose, an image has been manually
analized, and 50 microcalcifications have been highlighted by placing a red pixel
at the center of them. The image has then been scanned for these pixels, and the
procedure described above has been run on them to determine training set elements,
from which a single choice versor has been computed.

This scanning problem represents a single choice problem, since no training set
has been generated for non-calcifications. As described in section 3.4, an angular
standard deviation has been determined on the training set elements.

4.3 Image analysis

Now that a choice versor has been defined to represent the “radial luminosity shape”
of a disk centered in (x, y), it is possible to scan the image. For each pixel of the
image, the disk centered on it has been radial sampled and its angular deviation
from the choice versor has been computed. A score has been then associated to every
pixel based on the gaussian probability density of three variables: the luminosity
shape angular deviation, the size of the calcification (that is, the value of the cut
position c) and the luminosity amplitude. The average and standard deviation for
the last two variables have been determined on the training set elements.

Sxy = exp

(
− (θs)

2

2σ2
θ

− (c− c̄)2

2σ2
c

− (l − l̄)2

2σ2
l

)
(4.7)

Where θs is the luminosity shape angular deviation from the choice versor, σθ is
the angular standard deviation for the luminosity shape, c and c̄ are the local and
average cut positions respectively, σc the standard deviation for the cut position, l
and l̄ the local and average luminosity amplitude, and σl the luminosity amplitude
standard deviation.

This algorithm, however, poses an issue. If only the average luminosity shape
factor is considered, filaments of proper thickness can be detected as dots. Re-
member that the average luminosity shape factor is given by the sum of several
radial samples. Now, for a sampling centered on a dot in a filament, most of the
raw radial samples will cross the filament, therefore resulting in a luminosity shape

46

very similar to the one of a dot. The few radial samples along the filament are
characterized, however, by a nearly constant luminosity, therefore their influence
on the round sample is filtered by the normalization procedure.

This can be worked around by introducing a new term to the score. Note
that the heuristic procedure, described in the previous section, to determine a cut
position is going to fail if applied to a nearly constant luminosity sample. Since
that procedure can be run also on single raw radial samples, a new parameter n
has been introduced as the fraction of raw radial samples on which the heuristic
procedure to determine a cut position fails. Once the average n̄ and the standard
deviation σn have been computed on the training set, the score has been redefined:

Sxy = exp

(
− (θs)

2

2σ2
θ

− (c− c̄)2

2σ2
c

− (l − l̄)2

2σ2
l

− (n− n̄)2

2σ2
n

)
(4.8)

This score expresses the probability density of (x, y) being the center of a micro-
calcification.

47

Figure 4.4: Two crops from the same area of a lesioned portion. Note the
correspondence between spots on the right (score) and calcifications on the
left image.

Figure 4.5: Two different, bigger lesions

4.4 Scanning results

The scan described in the previous section has been run over several images. For
rendering purposes scores have been renormalized, so that the highest score is
always represented as white and the null score is represented as black. Several tests
were run both on normal and cancer images.

However, since no information could be extracted from the Digital Mammogra-
phy database on the exact position of single calcifications, no significant tests could
be done to assess the efficiency of this algorithm.

48

Figure 4.6: A portion of sound tissue. Note how no score is displayed.

49

4.5 Conclusions

Non-evolutive artificial intelligence training has proved to be an efficient, noise re-
silient, computationally light procedure to tackle a wide variety of problems. More-
over, its generality, along with the fact that it derives from a solid mathematical
base, makes it more trustworthy than techniques based on empirical knowledge of
the problem. The simplicity of the various examples shown proved it to be also
applicable with nearly no programming effort.

All the research on the subject was brought on by the author on his own,
nonetheless some significant results were obtained. This branch of non-evolutive
artificial intelligence training has just been opened, but proved itself prolific enough
to be explored more in depth.

50

