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Abstract

Le tecniche di next generation sequencing costituiscono un potente strumento per
diverse applicazioni, soprattutto da quando i loro costi sono iniziati a calare e la
qualità dei loro dati a migliorare.
Una delle applicazioni del sequencing è certamente la metagenomica, ovvero
l’analisi di microorganismi entro un dato ambiente, come per esempio quello
dell’intestino. In quest’ambito il sequencing ha permesso di campionare specie
batteriche a cui non si riusciva ad accedere con le tradizionali tecniche di coltura.
Lo studio delle popolazioni batteriche intestinali è molto importante in quanto
queste risultano alterate come effetto ma anche causa di numerose malattie, come
quelle metaboliche (obesità, diabete di tipo 2, etc.).
In questo lavoro siamo partiti da dati di next generation sequencing del microbiota
intestinale di 5 animali (16S rRNA sequencing) (Jeraldo et al.[35]). Abbiamo ap-
plicato algoritmi ottimizzati (UCLUST) per clusterizzare le sequenze generate in
OTU (Operational Taxonomic Units), che corrispondono a cluster di specie bat-
teriche ad un determinato livello tassonomico.
Abbiamo poi applicato la teoria ecologica a master equation sviluppata da Volkov
et al.[49] per descrivere la distribuzione dell’abbondanza relativa delle specie
(RSA) per i nostri campioni. La RSA è uno strumento ormai validato per lo studio
della biodiversità dei sistemi ecologici e mostra una transizione da un andamento
a logserie ad uno a lognormale passando da piccole comunità locali isolate a più
grandi metacomunità costituite da più comunità locali che possono in qualche
modo interagire.
Abbiamo mostrato come le OTU di popolazioni batteriche intestinali costituis-
cono un sistema ecologico che segue queste stesse regole se ottenuto usando di-
verse soglie di similarità nella procedura di clustering.
Ci aspettiamo quindi che questo risultato possa essere sfruttato per la compren-
sione della dinamica delle popolazioni batteriche e quindi di come queste variano
in presenza di particolari malattie.
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Introduction

Sequencing is the mean to determine the primary structure of a biopolymer, that
is for example the exact order of nucleotides in a strand of DNA.
Nowadays, sequencing techniques are assuming an increasingly important role,
particularly since their costs began to decline and their methods became more
simple and widespread. These next generation sequencing techniques, which de-
veloped since the mid 1990s, are enabling us to gather many more times sequence
data than was possible a few years ago.
Metagenomics is one of the many fields which exploit sequencing. In particular,
with metagenomics we mean the collective genomes of microbes within a given
environment, using indeed sequencing techniques to sequence particular strands
of the genome of microorganisms. To study bacteria populations, for example,
one sequences the 16S ribosomal RNA, which is a component of the 30S small
subunit of prokaryotic ribosomes.
Ribosomal RNA is suitable for phylogenetic studies since it is a component of all
self-replicating systems, it is readily isolated and its sequence changes but slowly
with time, permitting the detection of relatedness among very distant species.
Metagenomics is one of the fastest advancing fields in biology [38]. By allow-
ing access to the genomes of entire communities of bacteria, virus and fungi that
are otherwise inaccessible, metagenomics is extending our comprehension of the
diversity, ecology, evolution and functioning of the microbial world. The con-
tinuous and dynamic development of faster sequencing techniques, together with
the advancement of methods and algorithms to cope with exponentially increasing
amount of data generated are expanding our capacity to analyze microbial com-
munities from an unlimited variety of habitats and environments.
In particular, exploiting next-generation sequencing techniques we became able
to sample and study the gut microbiota biodiversity in order to understand how
and why it results modified in many pathologies, such as in metabolic diseases
and type 2 diabetes.
Patients affected by these pathologies, in fact, exhibit a certain degree of gut bacte-
rial dysbiosis, that constitutes at the same time an effect but also a causal element
of the pathology.
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Many ecological theories have been proposed to understand and describe the bio-
diversity of ecological communities, a problem not completely solved by now.
A common element of these theories is the idea that, to study the biodiversity
of a system, we shall look at the relative species abundance distribution (RSA)
rather than at the static coexistence among species, since ecological populations
are evolving and not static systems [34]. Furthermore, it seems that these RSA
distributions vary in many ways in different ecosystems, but always show some-
how similar trends.
Volkov et al. [49] suggested a simple dynamical model which well describes RSA
distribution of many different ecological systems, such as for example that of the
coral-reef community, starting from the chemical master equation of a birth-death
process. They thus obtained a negative binomial distribution with a shape param-
eter linked to immigration.
What we would like to do in this work is to exploit this dynamical model in order
to describe data from gut microbiota populations, acquired through next genera-
tion sequencing techniques. For this purpose, we will described the functioning
and applications of sequencing techniques (chapter 1) and the biomedical prob-
lems for which we are interested in analyzing the gut microbiota biodiversity
(chapter 2). Thereafter, we will face the mathematical aspects of the chemical
master equation (chapter 3), that we will exploit in the description of ecological
models (chapter 4). In chapter 5 we will describe our dataset, which is a col-
lection of 5 animals gut microbiota data from Jeraldo et al. [35], generated with
next-generation sequencing. Then we will explain how we processed these data
through specific optimized sequencing analysis algorithms, obtaining OTUs (clus-
ters) which correspond to bacteria species. Finally we will show our results in the
form of Preston plots, fitted with a gamma-like function, which corresponds to the
continuous form of the negative binomial distribution predicted by Volkov et al.
[49].



Chapter 1

Sequencing

In this chapter, first of all, we will explain the main sequencing applications, with
a particular attention to that of gut microbiota, to give an idea of the importance
of this technique. Then we will explore the most common sequencing methods,
from Maxam-Gilbert sequencing to next-generation sequencing. Finally, we will
give an insight of the principal algorithms that permit to analyze this kind of data,
through alignment, clustering, distance computation and taxonomic assignment.

In general with the term ‘sequencing’ we refer to the means to determine the pri-
mary structure of a biopolymer. There are different types of sequencing (DNA se-
quencing, RNA sequencing, protein sequencing and ChIP sequencing) and differ-
ent techniques to realize it. In particular we focus on RNA/DNA sequencing, that
is the process of determining the precise order of nucleotides within a strand of
RNA/DNA, i.e. of the four bases (adenine, guanine, cytosine, and thymine/uracil).
For insights on DNA/RNA structure and the main biological processes exploited
in sequencing, we refer to appendix B.

1.1 Sequencing Applications
Sequencing vs Microarray Nowadays, sequencing techniques are assuming an
increasingly important role, particularly since their costs began to decline and
their methods became more simple and widespread. Thus, researchers are choos-
ing sequencing over the more common technique of microarrays, and not only for
their genomic applications [22].
A DNA microarray (also commonly known as DNA chip or biochip) is a col-
lection of microscopic DNA spots attached to a solid surface. These devices are
used to measure the expression levels of large numbers of genes simultaneously
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or to genotype multiple regions of a genome. Each DNA spot contains picomoles
(1012 moles) of a specific DNA sequence, known as probes. These probes can
be composed by short sections of genes or other DNA elements that are used to
hybridize a cDNA or cRNA (where ‘c’ stands for ‘complementary’) sample (tar-
get) under high-stringency conditions. Probes are placed in known positions of
the solid surface and are fluorophore-, silver-, or chemiluminescence- labeled, so
that a probe-target hybridization can be detected and quantified. Since the posi-
tions and the sequences of the probes are known, we can determine the sequences
present on our target, since they will hybridize with their complementary probe.
The main shortcoming of microarrays is that the probe matrix can include just a
limited number of sequences, thus we have to previously know the probes that we
need, that is which sequences we are going to analyze. So, for example de novo
sequencing is not possible.
Next-generation sequencing methods provide a valid alternative to microarrays for
some applications, such as chromatin immunoprecipitation, while for others, like
cytogenetics, the transition between these two techniques has barely begun. The
reasons for this are that, first of all, microarrays’ longtime use as a genomics tool
means many researchers are very comfortable using them, and that sample label-
ing, array handling and data analysis methods are tried and true. Secondly that,
despite sequencing advancements, expression arrays are still cheaper and easier
when processing large numbers of samples.
Nevertheless, the fast development of sequencing in producing high throughput
data at lowering costs makes us suppose that these techniques will replace mi-
croarrays also in the fields in which these still rule.

Applications fields We now give a short overview of the main fields of sequenc-
ing applications reported in [20].
As already mentioned, one of the main applications of sequencing, is that of de
novo sequencing. The aim here is to sequence a genome not yet known.
A second field is the sequencing of the trascriptome (RNAseq) and of microRNA
(a small non-coding RNA molecule of about 22 nucleotides, which functions in
transcriptional and post-transcriptional regulation of gene expression). This can
be considered another great tool to analyze the biological functions inside a cell,
since it gives informations about the gene expression in different tissues or at dif-
ferent conditions inside a certain tissue, that can be exploited in studies of RNA
interference or more in general in epigenetic studies.
A third field of application is that of resequencing, where an whole already se-
quenced genome needs to be resequenced, for example to identify any genetic
deficiency such as mutations, insertions, deletions or alterations in the number of
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a gene copies. This kind of analysis is very useful to understand the development
of some pathologies and to find eventual clinical treatments.
Another important field of application, in which our work is included, is the se-
quencing of microbiotic communities for metagenomic studies. Metagenomic
sequencing allows to analyze samples directly taken from the microbiotic envi-
ronment, avoiding the issue of growing bacteria artificially. In fact, as we will
underline in section 2.1, traditional clonal culture techniques result biased and
cannot access the vast majority of organisms within a community. In this contest
the sequenced strands are those of the 16S ribosomal RNA (see appendix C), since
this results highly conserved between different species of bacteria and archaea and
thus can be used for phylogenetic and biodiversity studies.
One of the widest metagenomic studies, was that begun in 2003 by Craig Venter,
leader of the privately funded parallel of the Human Genome Project, who has
led the Global Ocean Sampling Expedition (GOS), circumnavigating the globe
and collecting metagenomic samples throughout the journey. All of these sam-
ples were sequenced using shotgun sequencing, in the hope that new genomes
(and therefore new organisms) would be identified. The pilot project, conducted
in the Sargasso Sea, found DNA from nearly 2000 different species, including 148
types of bacteria never before seen [48]. Analysis of the metagenomic data col-
lected during Venter’s journey also revealed two groups of organisms, one com-
posed by taxa adapted to environmental conditions of ‘feast or famine’, and a
second composed by relatively fewer but more abundantly and widely distributed
taxa primarily composed by plankton. Thus, this study resulted in an important
turning point in ocean biodiversity knowledge, and above all it showed the great
potentialities of nowadays sequencing techniques.
Finally, the last application that we are going to mention is that of Chromatin
ImmunoPrecipitation-Sequencing (ChIP-seq). This technique is used to study
the interaction between DNA and regulatory proteins. In fact, immunoprecipita-
tion allows to identify the positions on the DNA strand, on which transcriptional
factors, histones or proteins can be bound to control DNA replication. Thus, with
different sequencing we can understand the influence of environmental alterations
on the phenotype.

1.2 DNA Sequencing techniques
After explaining the great potentiality of sequencing, let us now give an insight of
how this techniques work.
Sequencing techniques, are able to analyze just fragments of DNA. The fragment
of DNA that is being read is called ‘read’, and it is composed by at most a hundred
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of nucleotides. These reads then need to be processed and assembled to build the
unknown sequence. We will see later the most common algorithms to analyze
these reads, but for now let us describe the main techniques of DNA sequencing.

First generation DNA sequencing methods
Maxam-Gilbert sequencing Maxam-Gilbert sequencing was the first widely-
adopted method for DNA sequencing, developed by Allan Maxam and Walter
Gilbert in 1976-1977 and also known as the chemical degradation method. This
technique is based on nucleobase-specific partial chemical modification of DNA
and subsequent cleavage of the DNA backbone at sites adjacent to the modified
nucleotides [41].
The first step in Maxam-Gilbert sequencing is a radioactive labeling at one 5’-end
of the DNA fragment that we want to sequence. This is typically done through
a kinase reaction using gamma32P ATP, where 32P is a radioactive isotope of
phosphorus that decays into sulfur-32 by beta decay with a half-life of about 14
days.
The DNA fragment is then denaturated, i.e. its double strand is separated into two
single strands through the breaking of the hydrogen bonds between them. After
this procedure the DNA fragment is subjected to four specific chemical reactions,
that generate breaks of different sizes and in different positions:

• dimethyl sulfate (DMS) plus piperdine cleaves at G;

• DMS plus piperdine and formic acid cleaves at A or G;

• hydrazine plus piperdine cleavs at C or T;

• hydrazine in a saline solution (NaCl) plus piperdine cleaves at C.

As shown in figure 1.1, reaction products are then electrophoresed on a polyacry-
lamide denaturing gel for size separation. To visualize the fragments, the gel is
exposed to an X-ray film for autoradiography, yielding a series of dark bands each
showing the location of identical radiolabeled DNA molecules. The sequence can
be deduced from the presence or the absence of certain fragments.
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Figure 1.1: An example Maxam-Gilbert sequencing reaction from [6]. In level 1
there will be the shortest sequences and in level 7 the longest.

Sanger sequencing Sanger sequencing, also called chain-terminator sequenc-
ing, has been developed by Fredrick Sanger and colleagues in 1977 and was the
most widley-used method for about 25 years.
Similarly to the Maxam-Gilbert method, the DNA sample is subjected to four
separate sequencing reactions. Each reaction contains the DNA polymerase, plus
three of the four standard deoxynucleotides, that are the DNA nucleosides triphos-
phate (dATP, dGTP, dCTP and dTTP) required for the DNA extension and only
one of the four dideoxynucleotides (ddATP, ddGTP, ddCTP, or ddTTP), which are
modified nucleotides that terminate the DNA strand elongation, since they lack the
3’-OH group required for the formation of the phosphodiester with the following
nucleotide. When the specific ddNTP included in the reaction is incorporated in
the DNA strand, the polymerase ceases the extension of DNA and we obtain DNA
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fragments that terminate with a specific nucleotide. The resulting DNA fragments
are then denatured and separated by size using gel electrophoresis, like in the
Maxam Gilbert method. To visualize the DNA bands automatically, the ddNTPs
are also radioactively or fluorescently labeled, so that the DNA bands can be vi-
sualized by autoradiography or UV light and the DNA sequence can be directly
read off the X-ray film or gel image [5].

The greatest limitations of Maxam - Gilbert and Sanger sequencing methods are
that they are quite expensive and that they can be used just for fairly short strands
(100 to 1000 basepairs). However, some improvements have been developed in
order to allow the sequencing of longer strands.

Longer strands sequencing For longer targets such as chromosomes, common
approaches consist of cutting (with restriction enzymes) or shearing (with me-
chanical forces) large DNA fragments into shorter DNA fragments. The frag-
mented DNA may then be cloned into a DNA vector and amplified in a bacterial
host such as Escherichia coli. Amplification is required to have more copies of
the same DNA fragment, in order to have more robust statistical informations.
Short DNA fragments purified from individual bacterial colonies are individu-
ally sequenced and assembled electronically into one long, contiguous sequence.
There are two main methods used for this purpose: primer walking and shotgun
sequencing.
Primer walking starts from the beginning of the DNA target, using the first 20
bases as primers for a PCR (polymerase chain reaction), that is a technique of
DNA amplification, amplifying about 1000 bases and then sequencing them using
the chain termination method. Then the method ‘walks’ on the DNA strand and
uses the last 20 bases of the previous, now known, sequence as primers, and so
on.
In shotgun sequencing, instead, DNA is broken up randomly into numerous small
segments, which are sequenced using the chain termination method to obtain
reads. Multiple overlapping reads for the target DNA are obtained by performing
several rounds of this fragmentation and sequencing. Computer programs then
use the overlapping ends of different reads to assemble them into a continuous
sequence.
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Next-generation DNA sequencing methods
The high demand for low-cost sequencing has driven the development of high-
throughput sequencing (or next-generation sequencing) technologies that paral-
lelize the sequencing process, producing thousands or millions of sequences con-
currently. Nowadays, these new methods can analyze up to 600 billions of bases
(GB) in a ten days cycle, versus the one million of the first generation methods,
and this of course coincide with a lowering in the costs. We can give an idea of
the magnitudes we deal with considering that the HIV virus genome is 3.4 kB, the
E. coli bacteria genome is 4.6 MB, and the human one is 3.2 GB [20]
The main shortcoming of these new technologies is the small length of the reads,
that generates errors during the assembly phase, that should be considered in fur-
ther analysis.
Let us describe three of the main next-generation sequencing techniques: 454 py-
rosequencing, Illumina (Solexa) sequencing and SOLiD sequencing.

454 pyrosequencing Pyrosequencing is a method of DNA sequencing based on
the ‘sequencing by synthesis’ principle; it was the first next-generation method
available on the market (produced by 454 Life Sciences since 2005 and now
owned by Roche Diagnostics). It differs from Sanger sequencing, in that it re-
lies on the detection of pyrophosphate released by nucleotide incorporation, rather
than chain termination with dideoxynucleotides.
‘Sequencing by synthesis’ involves taking a single strand of the DNA sample that
one wants to sequence and then synthesizing its complementary strand enzymat-
ically. The pyrosequencing method is based on detecting the activity of DNA
polymerase with another chemiluminescent enzyme. The template DNA is im-
mobilized, and solutions of A, C, G, and T nucleotides are sequentially added and
removed from the reaction, so that we can detect which base was actually added
by the DNA polymerase at each step. Light is produced only when the nucleotide
solution complements the first unpaired base of the template. The sequence of so-
lutions which produce chemiluminescent signals allows the determination of the
sequence of the template.
A parallelized version of pyrosequencing was developed by 454 Life Sciences
[17], see fig.1.2. 454 Sequencing uses a large-scale parallel pyrosequencing sys-
tem capable of sequencing roughly 400-600 megabases of DNA per 10-hour run.

In 454 pyrosequencing, DNA samples are first fractionated into smaller fragments
(300-800 base pairs) and polished (made blunt at each end). Short adaptors, that
are short, chemically synthesized, double stranded DNA molecules, are then lig-
ated onto the ends of the fragments. These adaptors provide priming sequences for
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Figure 1.2: 454 Life Sciences Sequencing Technology. Pooled amplicons are
clonally amplified in droplet emulsions. Isolated DNA-carrying beads are loaded
into individual wells on a PicoTiter plate and surrounded by enzyme beads. Nu-
cleotides are flowed one at a time over the plate and template-dependent incorpo-
ration releases pyrophosphate, which is converted to light through an enzymatic
process. The light signals, which are proportional to the number of incorporated
nucleotides in a given flow, are represented in flowgrams that are analyzed and a
nucleotide sequence is determined for each read. Figure from [31].

both amplification and sequencing of the sample fragments. One adaptor (Adap-
tor B) contains a 5’-biotin tag for immobilization of the DNA fragments onto
streptavidin-coated beads. Then, the non-biotinylated strand is released and used
as a single-stranded template DNA (sstDNA).
Let us observe that there should be a great number of beads (around one million),
so that each bead will carry just a single sstDNA molecule. The beads are then
emulsified with the amplification reagents in a water-in-oil mixture. This leads to
the formation of drops of water (containing the beads) in the oil mixture, where
PCR amplification occurs. This is useful, since the amplification can be done in
vitro, keeping the different fragments reactions separated. This part of the process
results in bead-immobilized, clonally amplified DNA fragments.
Subsequently, the beads are placed onto a PicoTiterPlate device, that is composed
of around 1.6 million wells, small enough to contain just one bead (∼ 28µm of di-
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ameter). The device is centrifuged to deposit the beads into the wells and the DNA
polymerase is added, with also other smaller beads (containing two enzymes: sul-
furylase and luciferase), which ensure that the DNA beads remain positioned in
the wells during the sequencing reaction.
At this point also the sequencing reagents required by pyrosequencing are de-
livered across the wells of the plate. These include ATP sulfurylase, luciferase,
apyrase, the substrates adenosine 5 phosphosulfate (APS) and luciferin and the
four deoxynucleoside triphosphates (dNTPs). The four dNTPs are added sequen-
tially in a fixed order across the PicoTiterPlate device during a sequencing run.
During the nucleotide flow, millions of copies of DNA bound to each bead are
sequenced in parallel. When a nucleotide complementary to the template strand
is added into a well, the polymerase extends the existing DNA strand by adding
nucleotide(s). Addition of one (or more) nucleotide(s) generates a light signal that
is recorded by the CCD camera in the instrument and that is proportional to the
number of nucleotides. This can be explained following the biochemical reaction
that occurs when the dNTP is complementary to the next nucleotide on the frag-
ment. In this case, the bound between the two bases will release pyrophosphate
(PPi) in stoichiometrical amounts. ATP sulfurylase quantitatively converts PPi to
ATP in the presence of adenosine 5 phosphosulfate. This ATP acts as fuel to the
luciferase-mediated conversion of luciferin to oxyluciferin that generates visible
light in amounts that are proportional to the amount of ATP, that is proportional to
the number of nucleotides bound by this dNTP type. Unincorporated nucleotides
and ATP are then degraded by the apyrase enzyme, and the reaction can restart
with another nucleotide.
Let us note that when the polymerase meets homopolymers, that are sequences of
the same kind of nucleotide (e.g. AAAA), the contiguous bases are incorporated
during the same cycle and their number can be deduced just through the intensity
of the emitted light, that sometimes can be misleading.
Currently, a limitation of the method is that the lengths of individual reads of DNA
sequence are in the neighborhood of 300-500 nucleotides, that is shorter than the
800-1000 obtainable with chain termination methods (e.g. Sanger sequencing).
This can make the process of genome assembly more difficult, particularly for se-
quences containing a large amount of repetitive DNA.
Bisides the rapid evolution of 454 pyrosequencing technology for what concern
the sequencing time (it allows to sequence one million fragments in 10 hours) and
costs (even if it remains the most expensive technique of next-generation sequenc-
ing), this progresses have not been accompanied by a reassessment of the quality
and accuracy of the sequences obtained. The mean error rate for this technology is
in fact of 1.07% [33]. More importantly, this error rate is not randomly distributed;
it occasionally rose to more than 50% in certain positions, and its distribution was
linked to several experimental variables like the presence of homopolymers, the
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position in the sequence, the size of the sequence and its spatial localization in
PicoTiter plates.

Illumina (Solexa) sequencing Illumina (Solexa) sequencing was first commer-
cialized by Solexa in 2006, a company later acquired by Illumina. This sequencing
method is based on the reversible chain termination method described previously,
and its general functioning can be subdivided in three phases: library generation,
cluster preparation and sequencing.
During the first phase, DNA is fragmented and oligo-adaptors are added at each
fragment sides for the next amplification process. Amplification occurs on flow-
cell, that is a plate on which DNA molecules are attached and on which two dif-
ferent types of oligonucleotides are present. DNA fragments ends bind to these
oligonucleotides, each end binding with its complementary nucleotide, so that a
bridge structure is created, as shown in figure 1.3.

Figure 1.3: DNA ligated with adaptors is attached to the flow-cell; bridge am-
plification is performed; clusters are generated; the sequencing primers are syn-
thetizes. Figure from [8].

At this point DNA polymerase synthesizes the complementary strands of our frag-
ments, that are then denaturated. The hydrogen bonds are broken and we obtain
again two separated strand, doubled compared to the beginning. The process is
repeated to obtain a cluster of thousands of fragments, that however contain both
the original strand and the complementary one. Thus, it is necessary to remove
the antisense strands, before sequencing the samples.
In the last step, primers of the fragments of each cluster are synthesized. These
primers are those sequences that start the sequencing reaction. So, sequencing can
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be done on millions of clusters in parallel.

Figure 1.4: The first base is extended, read and deblocked; the above step is
repeated on the whole strand; the fluorescent signals are read. Figure from [8].

Each step of the sequencing process involves a DNA polymerase and the four
modified dNTP, which contain also a fluorescent marker and a reversible termina-
tor. Markers of the four nucleotides react in different manner when subjected to a
laser wave and this allows the identification of the sequenced base (see fig.1.4).
After each incorporation, a laser excites the fluorescent marker generating a light
emission that allows the identification of the base. Then the terminator and the
fluorescent label are removed, so that the next base can be sequenced.
With a single cycle, Illumina sequencer can read up to 6 billion reads in few days,
with a number of bases ranging from 50 to 200, that means a total of almost 1000
GBases.

SOLiD sequencing Applied Biosystems’ (now a Life Technologies brand)
SOLiD technology employs sequencing by ligation. Like in 454 pyrosequencing,
DNA fragments are bound to adaptors in order to immobilize them onto beads
and to amplify them through emPCR. After denaturation, beads are placed on a
glass support; the difference between this support and the PicoTiter plate is that
in SOLiD there are no wells, thus the only limitation on the number of beads
is due to their diameter, that now is much smaller than for the 454 technologies
(< 1µm). In SOLiD, sequencing by synthesis is driven by DNA ligase, rather than
polymerase, that is an enzyme that facilitates the joining of DNA strands together
by catalyzing the formation of a phosphodiester bond, hence the acronym SOLiD
(Sequencing by Oligonucleotide Ligation and Detection).
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Each sequencing cycle needs a bead, a degenerate primer (which can bind all the
four bases), a ligase and four dNTP 8-mer probe, which are eight bases in length
with a free hydroxyl group at the 3’ end, with a fluorescent dye at the 5’ end and
with a cleavage site between the fifth and sixth nucleotide. The first two bases
(starting at the 3’ end) are complementary to the nucleotides being sequenced,
while bases 3 through 5 are degenerate and able to pair with any nucleotides on
the template sequence.
First of all the primer hybridizes with the adaptor sequence, then the ligase allows
the bound of a probe, followed by fluorescent emission from the dye; finally, the
last three bases (6-7-8) of the 8-mer bound are removed together with the dye, to
allow the analysis of subsequent bases.
Each couple of bases is associated with a particular color to allow the identifica-
tion; however the labeling is not univocal, since we have 4 colors and 16 possible
couples of bases. So, we can wonder why associating a color to each couple rather
than to each base. Actually, the method used here is more convenient since using
a 1-1 corrispondence is more probable to generate sequencing errors, while this
method can help in avoiding them (see fig.1.5). Let us note that, since in each cy-
cle we will sequence 2 nucleotides every 5, we will have to repeat the sequencing
cycle five times to univocally determine each base (see fig.1.6).
During this process, just few 8-mers can be bound together (7, or at most 10), and
this lead to very short reads (35-50 bases), but at the same time this procedure
allows a minimization of the errors during each read scanning.
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Figure 1.5: How SOLiD responds to single mutations, measurement errors, dele-
tions and insertions. Figure from [9].

Figure 1.6: Color output of the template TAGACA. Because of the end-labeling,
all sequences start with a T, therefore since the first signal output is blue, the first
base-pair of the sequence must be a T, since the only blue probe that begins with
an A (complementary to the T) is the AA probe. The machine uses the same logic
to compute the entire strand. Figure from [39].
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Specifications summary

Figure 1.7: Specifications of different sequencing techniques. Figure from [20].

Computational requirements
The high performances of these next-generation techniques led to the need of also
high computational ability for what concern both data storage and elaboration
[20].
We have to consider, in fact, that for each sequenced base, we can have up to
16 byte (but also more), and that a Illumina or SOLiD run can need some Tbyte
of memory, neglecting eventual backup and redundances. To give an idea of the
amount of data produced by next-generation sequencing platform, we can refer to
the 9 petabyte (18 · 1050 byte) generated in 2010 by the Sanger Insitute alone, that
is one of the biggest sequencing center in the world.
Furthermore, these big amount of data need to be processed and analyzed: reads
need to be assembled and/or aligned. Thus, besides the storage memory, also
high-performances CPU and algorithms are needed.
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1.3 Algorithms
Usually, sequencing data analysis includes the following processing procedures:
alignment, distances computations, clustering and taxonomic assignment. Let us
now describe the principal optimized algorithms to compute these elaborations.
We will exploit these algorithms through QIIME (Quantitative Insights Into Mi-
crobial Ecology) [12], that is an open source software package for comparison and
analysis of microbial communities, primarily based on high-throughput sequenc-
ing data generated on a variety of platforms, but also supporting analysis of other
types of data (such as shotgun metagenomic data). QIIME takes users from their
raw sequencing output through initial analyses such as OTU picking, taxonomic
assignment, and construction of phylogenetic trees from representative sequences
of OTUs, and through downstream statistical analysis, visualization, and produc-
tion of publication-quality graphics.

1.3.1 Sequence alignment
Computational algorithms to sequence alignment generally fall into two cate-
gories: global alignments and local alignments.
Calculating a global alignment is a form of global optimization that ‘forces’ the
alignment to span the entire length of all query sequences. These methods are
more useful when the sequences in the query set are similar and of roughly equal
size.
By contrast, local alignments identify regions of similarity within long sequences
that are often widely divergent overall. Thus, these methods are more useful for
dissimilar sequences that are suspected to contain regions of similarity or similar
sequence motifs within their larger sequence context. Local alignments are often
preferable, but can be more difficult to calculate because of the additional chal-
lenge of identifying the regions of similarity. One motivation for local alignment is
the difficulty of obtaining correct alignments in regions of low similarity between
distantly related biological sequences, because mutations have added too much
‘noise’ over evolutionary time to allow for a meaningful comparison of those re-
gions. Local alignment avoids such regions altogether and focuses on those with
an evolutionary conserved signal of similarity.
There exist also hybrid methods, which attempt to find the best possible alignment
that includes the start and end of one or the other sequence. This can be especially
useful when the downstream part of one sequence overlaps with the upstream part
of the other sequence. In this case, neither global nor local alignment would en-
tirely work.
A variety of computational algorithms have been applied to the sequence align-
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ment problem. These include slow but formally correct methods like dynamic pro-
gramming, but also include efficient, heuristic algorithms or probabilistic meth-
ods designed for large-scale database search, that do not guarantee to find best
matches.

Smith-Waterman Early alignment programs, such as the Smith-Waterman al-
gorithm and the Needleman-Wunsch, which is a variation of the first one, used
dynamic programming algorithms, that is methods based on the idea that to solve
complex problems one can break them down into simpler subproblems. Often
when using a more naive method, many of the subproblems are generated and
solved many times. The dynamic programming approach seeks to solve each sub-
problem only once, thus reducing the number of computations: once the solution
to a given subproblem has been computed, it is stored: the next time the same so-
lution is needed, it is simply looked up. This approach is especially useful when
the number of repeating subproblems grows exponentially as a function of the size
of the input.
Dynamic programming algorithms are used for optimization (for example, finding
the shortest path between two points, or the fastest way to multiply many matri-
ces). A dynamic programming algorithm will examine all possible ways to solve
the problem and will pick the best solution. Therefore, we can roughly think of
dynamic programming as an intelligent, brute-force method that enables us to go
through all possible solutions to pick the best one. If the scope of the problem
is such that going through all possible solutions is possible and fast enough, dy-
namic programming guarantees finding the optimal solution.
The Smith-Waterman algorithm is a dynamic programming method which per-
forms local sequence alignment with the guarantee of finding the optimal align-
ment [15].
The algorithm first builds a matrix H as follows:

H(i, 0) = 0; for 0 ≤ i ≤ m

H(0, j) = 0; for 0 ≤ j ≤ n (1.1)

Then, if ai = bj then w(ai, bj) = w(match) or if ai 6= bj then w(ai, bj) =
w(mismatch), thus for 1 ≤ i ≤ m, 1 ≤ j ≤ n, we have

H(i, j) = max


0

H(i− 1, j − 1) + w(ai, bj) Match/Mismatch
H(i− 1, j) + w(ai,−) Deletion
H(i, j − 1) + w(−, bj) Insertion

 . (1.2)

where:
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• a, b = strings that we want to align;

• m = length(a);

• n = length(b).

Let us now show an example from [15].
Sequence 1 = ACACACTA
Sequence 2 = AGCACACA
w(match) = +2
w(a,−) = w(−, b) = w(mismatch) = −1

H =



− A C A C A C T A
− 0 0 0 0 0 0 0 0 0
A 0 2 1 2 1 2 1 0 2
G 0 1 1 1 1 1 1 0 1
C 0 0 3 2 3 2 3 2 1
A 0 2 2 5 4 5 4 3 4
C 0 1 4 4 7 6 7 6 5
A 0 2 3 6 6 9 8 7 8
C 0 1 4 5 8 8 11 10 9
A 0 2 3 6 7 10 10 10 12


(1.3)

T =



− A C A C A C T A
− 0 0 0 0 0 0 0 0 0
A 0 ↖ ← ↖ ← ↖ ← ← ↖
G 0 ↑ ↖ ↑ ↖ ↑ ↖ ↖ ↑
C 0 ↑ ↖ ↖ ↖ ← ↖ ← ←
A 0 ↖ ↑ ↖ ← ↖ ← ← ↖
C 0 ↑ ↖ ↑ ↖ ← ↖ ← ←
A 0 ↖ ↑ ↖ ↑ ↖ ← ← ↖
C 0 ↑ ↖ ↑ ↖ ↑ ↖ ← ←
A 0 ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↖


(1.4)

To obtain the optimum local alignment, we start with the highest value in the ma-
trix (i, j). Then, we go backwards to one of positions (i − 1, j), (i, j − 1), and
(i−1, j−1) depending on the direction of movement used to construct the matrix.
We keep the process until we reach a matrix cell with zero value.
In the example, the highest value corresponds to the cell in position (8, 8). The
walk back corresponds to (8, 8), (7, 7), (7, 6), (6, 5), (5, 4), (4, 3), (3, 2), (2, 1),
(1, 1), and (0, 0).
Once we’ve finished, we reconstruct the alignment as follows: starting with the
last value, we reach (i, j) using the previously calculated path. A diagonal jump
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implies there is an alignment (either a match or a mismatch). A top-down jump
implies there is a deletion. A left-right jump implies there is an insertion.
For our example, we get:
Sequence 1 = A-CACACTA
Sequence 2 = AGCACAC-A
The Smith-Waterman algorithm is fairly demanding of time: to align two se-
quences of lengths m and n, O(mn) time is required. Other algorithms such
as BLAST, that we are now going to describe, reduce the amount of time required
by identifying conserved regions using rapid lookup strategies, at the cost of ex-
actness.

BLAST and FASTA BLAST (Basic Local Alignment Search Tool) and FASTA
(FAST All) are heuristic algorithms, and as such they are designed for solving a
problem more quickly when classic dynamic methods are too slow, or for finding
an approximate solution when classic methods fail to find any exact solution. By
trading optimality, completeness, accuracy, and/or precision for speed, a heuristic
method can quickly produce a solution that is good enough for solving the prob-
lem at hand, as opposed to finding all exact solutions in a prohibitively long time.
Thus heuristic algorithms are more practical for the analysis of the huge genome
databases currently available.
BLAST is more time-efficient than FASTA by searching only for the more sig-
nificant patterns in the sequences, yet with comparative sensitivity; thus we will
focus mostly on BLAST.
To run, BLAST requires a query sequence to search for, and a sequence to search
against (also called the target sequence) or a sequence database containing many
target sequences. BLAST will find sub-sequences in the database which are sim-
ilar to subsequences in the query. In typical usage, the query sequence is much
smaller than the database, e.g., the query may be one thousand nucleotides while
the database is several billion nucleotides.
The main idea of BLAST is that there are often high-scoring segment pairs (HSP)
contained in a statistically significant alignment. BLAST searches for high scor-
ing sequence alignments between the query sequence and sequences in the database
using a heuristic approach that approximates the Smith-Waterman algorithm, that,
as we already observed, is too slow for searching large genomic databases such as
GenBank.
Let us report how BLAST basically works, as described in [18].

1. Remove low-complexity regions or sequence repeats in the query sequence,
where ‘low-complexity’ region means a region of a sequence composed of
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few kinds of elements. These regions might give high scores that confuse
the program to find the actual significant sequences in the database, so they
should be filtered out. The regions will be marked with an X (protein se-
quences) or N (nucleic acid sequences) and then be ignored by the BLAST
program.

2. Make a list of all the k-letter words inside the query sequence, where k usu-
ally is 3 for proteins and 11 for nucleotides.

3. List the possible matching words. This step is one of the main differences
between BLAST and FASTA. FASTA cares about all of the common words
in the database and query sequences that are listed in step 2; however,
BLAST only cares about the high-scoring words. The scores are created
by comparing the words in the step 2 list with all the k-letter words and
giving a score according to how many matching and non-matching words
are present.

4. Organize the remaining high-scoring words into an efficient search tree.
This allows the program to rapidly compare the high-scoring words to the
database sequences.

5. Repeat step 3 to 4 for each k-letter word in the query sequence.

6. The BLAST program scans the database sequences for the high-scoring
word of each position. If an exact match is found, this match is used to
seed a possible un-gapped alignment between the query and database se-
quences.

7. Extend the exact matches to high-scoring segment pair (HSP). The original
version of BLAST stretches a longer alignment between the query and the
database sequence in the left and right directions, from the position where
the exact match occurred. The extension does not stop until the accumulated
total score of the HSP begins to decrease. A simplified example is presented
in fig.1.8.



1.3 Algorithms 20

Figure 1.8: The process to extend the exact match. Figure from [18].

To save more time, a newer version of BLAST, called BLAST2, adopts a
lower neighborhood word score threshold to maintain the same level of sen-
sitivity for detecting sequence similarity. Therefore, the possible matching
words list in step 3 becomes longer. Next, the exact matched regions, within
distance A from each other on the same diagonal in fig.1.9, will be joined
as a longer new region.
Finally, the new regions are then extended by the same method as in the
original version of BLAST, and the HSPs’ scores of the extended regions
are then created as before.

Figure 1.9: The positions of the exact matches. Figure from [18].

8. List all of the HSPs in the database whose score is higher then an empirically
determined cutoff score S. By examining the distribution of the alignment
scores modeled by comparing random sequences, a cutoff score S can be
determined such that its value is large enough to guarantee the significance
of the remaining HSPs.
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9. Evaluate the significance of the HSP score (E-value), that is the number
of times a random database sequence would give a score higher than S by
chance.

10. Make two or more HSP regions into a longer alignment. Sometimes, we
find two or more HSP regions in one database sequence that can be made
into a longer alignment. This provides additional evidence of the relation
between the query and database sequence. There are two methods, the Pois-
son method and the sum-of-scores method, to compare the significance of
the newly combined HSP regions. Suppose that there are two combined
HSP regions with the pairs of scores (65, 40) and (52, 45), respectively. The
Poisson method gives more significance to the set with the maximal lower
score (45 > 40). However, the sum-of-scores method prefers the first set,
because 65 + 40 (105) is greater than 52 + 45 (97). The original BLAST
uses the Poisson method; BLAST2 uses the sum-of scores method.

11. Show the gapped Smith-Waterman local alignments of the query and each
of the matched database sequences. The original BLAST only generates
un-gapped alignments including the initially found HSPs individually, even
when there is more than one HSP found in one database sequence. BLAST2
produces a single alignment with gaps that can include all of the initially-
found HSP regions. Note that the computation of the score and its corre-
sponding E score is involved with the adequate gap penalties.

12. Report every match whose expect score is lower than a threshold parameter
E.

Clustal W There are three main steps [42]:

1. all pairs of sequences are aligned separately in order to calculate a distance
matrix giving the divergence of each pair of sequences;

2. a guide tree (or a user-defined tree) is calculated from the distance matrix;

3. the sequences are progressively pairwise aligned according to the branching
order in the guide tree. Thus, first are considered the nearest sequences and
then the farther. At each stage, gaps can be introduced.
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In the original CLUSTAL programs, the pairwise distances are calculated giving
a score to the number of matches and a penalty for each gap. The latest versions
allow to choose between this method and the slower but more accurate scores
from full dynamic programming alignments using two gap penalties, which differ
if there is an opening gap or an extending one. These scores are calculated as
the number of identities in the best alignment divided by the number of residues
compared (gaps excluded). Both of these scores are initially calculated as per cent
identity scores and are converted to distances by dividing per 100 and subtracting
from 1.0 to give the number of differences per site.
The main advantage of CLUSTALW on previous methods is that it gives a better
quality without affecting the costs.

MUSCLE MUSCLE [28] is often used as a replacement for Clustal, since it
typically (but not always) gives better sequence alignments and is significantly
faster than Clustal, especially for larger alignments. However, it remains quite
slow compared to other methods like NAST [4].
The main steps of MUSCLE are the same of CLUSTAL: distance matrix com-
putation, guide tree computation, pairwise alignment following the guide tree.
MUSCLE exploits the Kimura distance, which is a more accurate measurement
even if it requires a previous alignment, and the subdivision of the tree in subtrees
in which the profile of multiple alignment is computed so that, with a re-alignment
of these profiles one can try to find an eventual better score.

UCLUST UCLUST [2] creates multiple alignments of clusters. Thus, it re-
quires a first step of clustering, then a conversion to .fasta and finally the insertion
of additional gaps. We will explain in more detail the clustering step in subsection
1.3.2.

NAST In NAST [27], an unaligned sequence is termed the ‘candidate’ and is
matched to templates by comparison of 7-mers in common.
At first, a BLAST pairwise alignment is performed between the candidate and
the template. As a result of the pairwise alignment performed by BLAST, new
alignment gaps (hyphens) are introduced between the bases of the template when-
ever the candidate contains additional internal bases (insertions) compared with
the template (fig.1.10 A, B). Any pairwise alignment algorithm must do this to
compensate for nucleotides not shared by both sequences. This expansion, when
intercalated with the original template spacing, results in candidates occupying
more columns (characters) than the original template format (fig.1.10 C). Since
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a consistent column count may be an option chosen by the user, the candidate-
template alignment is compressed back to the initial number of characters with
NAST. After insertion bases are identified (fig.1.10 C), a bidirectional search for
the nearest alignment space (hyphen) relative to the insertion results in character
deletion of the proximal place holders. Ultimately, local misalignments, spanning
from the insertion base to the deleted alignment space, are permitted to preserve
the global multiple sequence alignment format.

Figure 1.10: Example of NAST compression of a BLAST pairwise alignment
using a 38 character aligned template. Figure from [27].

Others Other common alignment methods that we just mention are: MAFFT,
which compute a multiple sequence alignment based on the fast Fourier transform
(FFT); T-Coffee, which uses a progressive approach; INFERNAL, which tries to
be more accurate and more able to detect remote homologous modeling sequences
structure; mothur, through which one can do three different kinds of alignments:
blastn (local), gotoh (global), and needleman (global).
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1.3.2 Clustering methods
Besides alignment, another important step in sequence analysis is that of cluster-
ing sequences into OTUs (Operational Taxonomic Units). An OTU is a cluster of
similar sequences, within a user defined threshold.
Clustering into OTU will be exploited in 16S rRNA sequencing analysis. In fact,
for how these sequences are (see appendix C), a cluster of similar elements will
correspond to bacteria in the same taxon at a particular taxonomic level.

BLAST BLAST first aligns the sequences using the homonymous method and
then computes a single-linkage clustering [19], that is one of several methods of
agglomerative hierarchical clustering. In the beginning of the process, each ele-
ment is in a cluster of its own. The clusters are then sequentially combined into
larger clusters, until all elements end up being in the same cluster. At each step,
the two clusters separated by the shortest distance are combined. The definition
of ‘shortest distance’ is what differentiates between the different agglomerative
clustering methods. In single-linkage clustering, the link between two clusters is
made by a single element pair, namely those two elements (one in each cluster)
that are closest to each other. The shortest of these links that remains at any step
causes the fusion of the two clusters whose elements are involved. The method is
also known as nearest neighbor clustering.
However, this method has different drawbacks. First of all, with the single-linkage
clustering there will be the so-called chaining phenomenon, which refers to the
gradual growth of a cluster as one element at a time gets added to it. This may
lead to impractically heterogeneous clusters and difficulties in defining classes
that could usefully subdivide the data. Moreover, BLAST is not really efficient
in clustering divergent sequences, it can yield one-sequence clusters and it has a
high dependency on the parameters choice (similarity threshold, identity percent-
age, alignment length). Finally, this algorithm is quite slower than other methods
since it compares each sequence with all the others, a fact that makes it not suit-
able for large databases.

CD-HIT CD-HIT [1] has the main advantage of having ultra-fast speed. It can
be hundreds of times faster than other clustering programs, like BLAST. There-
fore it can handle very large databases. The main reason for this is that, unlike
BLAST, which compute the all vs all similarities, CD-HIT can avoid many pair-
wise sequence alignments exploiting a short word filter.
CD-HIT uses greedy incremental clustering algorithm method. Briefly, sequences
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are first sorted in order of decreasing length. The longest one becomes the rep-
resentative of the first cluster. Then, each remaining sequence is compared to
the representatives of existing clusters. If the similarity with any representative is
above a given threshold, it is grouped into that cluster. Otherwise, a new cluster is
defined with that sequence as the representative.
Here is how the short word filter works. Two strings with a certain sequence iden-
tity must have at least a specific number of identical words. For example, for two
sequences to have 85% identity over a 100-residue window they have to have at
least 70 identical 2-letter words, 55 identical 3-letter words, and 25 identical 5-
letter words. By understanding the short word requirement, CD-HIT skips most
pairwise alignments because it knows that the similarity of two sequences is be-
low certain threshold by simple word counting.
A limitation of short word filter is that it can not be used below certain cluster-
ing thresholds, where the number of identical k-letter words could be zero (see
fig.1.11).

Figure 1.11: Short word filtering is limited to certain clustering thresholds.
Evenly distributed mismatches are shown in alignments with 80%, 75%, 66.67%
and 50% sequence identities. The number of common 5-letter words in (a), 4-
letter words in (b), 3-letter words in (c), and 2-letter words in (d) can be zero.
Figure from [1].

Another drawback of the algorithm is that it can happen that a sequence is more
similar to a certain sequence but is put in the cluster of another one because it
is compared first with this last one. Finally, two additional limitations are that
CD-HIT does not give a hierarchical relation among clusters, and that it can yield
one-sequence clusters.

Mothur There are three main steps in mothur [10]:

• aligns sequences;

• computes distances matrix;
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• clustering.

For the clustering step mothur can use three different methods:

• nearest neighbor: each of the sequences within an OTU are at most X%
distant from the most similar sequence in the OTU;

• furthest neighbor: all of the sequences within an OTU are at most X% dis-
tant from all of the other sequences within the OTU;

• average neighbor: this method is a middle ground between the other two
algorithms.

Prefix/Suffix These methods [Qiime team, unpublished] collapse sequences which
are identical in their first and/or last bases (i.e., their prefix and/or suffix). The pre-
fix and suffix lengths are provided by the user and default to 50 each.

Trie Trie [Qiime team, unpublished] collapses identical sequences and sequences
which are subsequences of other sequences.

USEARCH USEARCH [29] creates ‘seeds’ of sequences which generate clus-
ters based on percent identity, filtering low abundance clusters. USEARCH can
perform de novo or reference based clustering.

UCLUST UCLUST [2] is a method based on USEARCH. Its main advantages
over previous methods are that it is faster, it uses less memory, it has an higher
sensitivity and it is able to classify bigger datasets. We will describe this algorithm
in more detail, since it is the one that we will use in our analysis.
The core step in the UCLUST algorithm is searching a database stored in mem-
ory. UCLUST performs de novo clustering by starting with an empty database in
memory. Query sequences are processed in input order. If a match is found to
a database sequence, then the query is assigned to its cluster (first figure below),
otherwise the query becomes the seed of a new cluster (second figure below). Of
course the first sequence in the input file will be the first seed of the database.
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Figure 1.12: Schematic representation of the working of UCLUST if the query
sequence matches a seed. Figure form [2].

Figure 1.13: Schematic representation of the working of UCLUST if the query
sequence does not match any seed. Figure form [2].

In this procedure, we say that a query sequence matches a database sequence if
their similarity is high enough. Similarity is calculated from a global alignment,
i.e. an alignment that includes all letters from both sequences. This differs from
BLAST and most other database search programs, which search for local matches.
The minimum identity is set in QIIME by the -s option, e.g. -s 0.97 means that
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the global alignment must have at least 97% similarity. Similarity is computed
as the number of matching (identical) letters divided by the length of the shortest
sequence.
Let us observe that only seeds need to be stored in memory (because other cluster
members do not affect how new query sequences are processed). This is an advan-
tage for large datasets because the amount of memory needed and the number of
sequences to search are reduced. However, this design may not be ideal in some
scenarios because it allows non-seed sequences in the same cluster to fall below
the identity threshold.
By default UCLUST stops searching when it finds a match. Usually UCLUST
finds the best match first, but this is not guaranteed. If it is important to find the
best possible match (i.e., the database sequence with highest similarity), then you
can increase the --max accepts option, even if in QIIME, the default value is 20,
that is already increased compared to the default UCLUST value, that is 1.
UCLUST also stops searching if it fails to find a match. By default, it gives up af-
ter 8 failed attempts. Database sequences are tested in an order that correlates well
(but not exactly) with decreasing similarity. This means that the more sequences
get tested, the less likely it is that a match will be found later, so giving up early
does not miss a potential hit very often. You can set the maximum number to
try using the --max rejects option, that in QIIME is 500 by default. With very
high and very low similarity thresholds, increasing maxrejects can significantly
improve sensitivity. Here, a rule of thumb is that low similarity is below 60% for
amino acid sequences or 80% for nucleotides, high similarity is 98% or more.
By default, the target sequences are rejected if they have too few unique words
in common with the query sequence. The threshold is estimated using heuristics.
This improves speed, but may also reduce sensitivity. In QIIME there is the pos-
sibility to change the length of these words and to disable this option with the
--word length command.
An ‘optimal’ variant of the algorithm can be used specifying -A (--optimal uclust),
which is equivalent to setting --max accepts and --max rejects to 0 and to disable
the rejection due to few words in common. This guarantees that every seed will
be aligned to the query, and that every sequence will therefore be assigned to the
highest-similarity seed that passes the similarity threshold (t). All pairs of seeds
are guaranteed to have similarity < t. The number of seeds is guaranteed to be
the minimum that can be discovered by greedy list removal, though it is possible
that the number of clusters could be reduced by using a different set of seeds.
An ‘exact’ variant of the algorithm is selected by -E (--exact uclust), which is
equivalent to setting --max accepts to 1, --max rejects to 0 and to disable the re-
jection due to few words in common. This guarantees that a match will be found
if one exists, but not that the best match will be found. The exact and optimal vari-
ants are guaranteed to find the minimum possible of clusters and both guarantee
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that all pairs of seeds have identities < t. Exact clustering will be faster, but may
have lower average similarity of non-seeds to seeds.
UCLUST supports a rich set of gap penalty options, even if in QIIME there is
not a direct way to change them, probably because the default settings are consid-
ered optimized. By default, terminal gaps are penalized much less than interior
gaps, which is typically appropriate when fragments are aligned to full-length se-
quences.
By default, UCLUST seeks nucleotide matches in the same orientation (i.e., plus
strand only). You can enable both plus and minus strand matching by using -z
(--enable rev strand match). This command approximately doubles memory use
but results in only small increases in execution time.
As we said at the beginning of this subsection, in UCLUST query sequences are
processed in input order. This means that if a query was similar to more than a
seed within the threshold, it will be put in the cluster of the sequence that was
first in input order. Input sequences should therefore be ordered so that the most
appropriate seed sequence for a cluster is likely to be found before other mem-
bers. For example, ordering by decreasing length is desirable when both complete
and fragmented sequences are present, in which case full-length sequences are
generally preferred as seeds since a fragment may attract longer sequences that
are dissimilar in terminal regions which do not align to the seed. In other cases,
long sequences may make poor seeds. For example, with some high-throughput
sequencing technologies longer reads tend to have higher error rates, and in such
cases sorting by decreasing read quality score may give better results.
By default, UCLUST checks that input sequences are sorted by decreasing length,
unless -D (--suppress presort by abundance uclust) is specified. This check can
be disabled by specifying the -B (--user sort) option, which specifies that input
sequences have been pre-sorted in a way that might not be decreasing length.

1.3.3 Distances
mothur For computation of the distance matrix we will use mothur’s command
dist.seqs [3]. This algorithm is well optimized, since the distances are not stored
in RAM, but they are printed directly to a file. Furthermore, it is possible to ignore
large distances that one might not be interested in.
To run dist.seqs an alignment file must be provided in fasta format, so sequences
should be aligned before computing their distances.
By default an internal gap is only penalized once, a string of gaps is counted as a
single gap, terminal gaps are penalized (there is some discussion over whether to
penalize them or not), all distances are calculated, and only one processor is used.
You can change all these option through the corresponding commands.
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The distances are computed as in the following example.
SequenceA: ATGCATGCATGC
SequenceB: ACGC - - - CATCC
Here, there would be two mismatches and one gap. The length of the shorter se-
quence is 10 nt, since the gap is considered as a single position. Therefore the
distance would be 3/10 or 0.30.

1.3.4 Taxonomic assignment
RDP classifier For 16S rRNA taxonomic assignment, the most common algo-
rithm is the RDP classifier [14].
The RDP Classifier is distributed with a pre-built database of assigned sequences,
which is used by default. Each rRNA query sequence is assigned to a set of hierar-
chical taxa using a naive Bayesian rRNA classifier. The classifier is trained on the
known type strain 16S sequences (and a small number of other sequences repre-
senting regions of bacterial diversity with few named organisms). The frequencies
of all sixty-four thousand possible 8-base subsequences (words) are calculated for
the training set sequences in each of the approximately 880 genera.
When a query sequence is submitted, the joint probability of observing all the
words in the query can be calculated separately for each genus from the training
set probability values. Using the naive Bayesian assumption, the query is most
likely a member of the genera with the highest probability. In the actual analy-
sis, the algorithm randomly selects only a subset of the words to include in the
joint probability calculation, and the random selection and probability calculation
is repeated for 100 trials. The number of times a genus is most likely out of the
100 bootstrap trials gives an estimate of the confidence in the assignment to that
genus. For higher-order assignments, the algorithm sums the results for all genera
under each taxon.
For each rank assignment, the Classifier automatically estimates the classification
reliability using bootstrapping. Ranks where sequences could not be assigned
with a bootstrap confidence estimate above the threshold are displayed under an
artificial ’unclassified’ taxon. The default threshold is 80%.
For partial sequences of length shorter than 250 bps (longer than 50 bps), a boot-
strap cutoff of 50% was shown to be sufficient to accurately classify sequences at
the genus level, and to provide genus level assignments for higher percentage of
sequences (fig.1.14) [26].
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Figure 1.14: Of 7208 full-length 16S reference sequences from the human gut
6054 were classified at genus-level with 80% bootstrap support. With these full-
length assignments as references the V3, V4 and V6 regions were extracted and
re-classified at three different bootstrap thresholds, and compared with the full-
length classification (last row). Figure form [26].

We can choose to use 50% as bootstrap cut-off since the accuracy is closest to the
one with 80% cut-off, and the total number of sequences that could be assigned to
genus level is closest to that obtained without any cut-off threshold imposed.

Others Other methods exploited in QIIME are the following [13].

• BLAST. Taxonomy assignments are made by searching input sequences
against a BLAST database of pre-assigned reference sequences. If a satis-
factory match is found, the reference assignment is given to the input se-
quence. This method does not take the hierarchical structure of the taxon-
omy into account, but it is very fast and flexible.

• RTAX. Taxonomy assignments are made by searching input sequences against
a fasta database of pre-assigned reference sequences. All matches are col-
lected which match the query within 0.5% identity of the best match. A
taxonomy assignment is made to the lowest rank at which more than half of
these hits agree.

• mothur. The mothur software provides a naive bayes classifier similar to
the RDP Classifier. A set of training sequences and id-to-taxonomy as-
signments must be provided. Unlike the RDP Classifier, sequences in the
training set may be assigned at any level of the taxonomy.

In their study, Claesson et al. [26] compared different algorithms for taxonomic
assignment and found out that the Greengenes and RDP-classifier produced the
most accurate and stable results, especially for gut communities. Furthermore, the
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RDP-classifier resulted more than 30 times faster than the Greengenes classifier.
Thus, they chose the RDP classifier due to its documented accuracy and stabil-
ity, straightforward usage, independence of sequence alignments, high speed, and
suitability for very large datasets generated by next-generation sequencing tech-
nologies, and so we will do.



Chapter 2

Gut microbiota and microbioma

In this chapter we will provide an insight of the gut microbiota as a biomedical
issue, in order to give an idea of the importance of this ecosystem and its biodiver-
sity for our health, reminding how the latest sequencing techniques and ecological
theories are necessary for this purpose.

2.1 Metagenomics
Classical microbiology relied largely on the culturing and analysis of microbes
isolated from environmental samples. However, in the 1990s studies based on the
real cell counts using microscopy techniques and 16S rRNA phylogenetic pro-
filing, estimated that the currently cultivatable microorganisms represent only a
small fraction (less than 1%) of the total microbes within a given habitat [38].
Thus traditional clonal culture techniques result biased and cannot access the vast
majority of organisms within a community.
Metagenomics is a mean to overcome these issues by capturing and analyzing the
genetic material of the entire microbial community (i.e. the metagenome), relying
on the cultivation-independent extraction of total environmental DNA.
Thus metagenomics exploits sequencing techniques (see chapter 1) to answer
questions such as: how many different species inhabit a particular environment,
what is the genomic potential of that community (i.e. which genes, functions or
pathways are present), which species are responsible for which activities, and how
does the community change over time and under different environmental condi-
tions [38].
In particular, in our work we are going to analyze gut microbiota data of next-
generation sequencing and to model them through ecological theories to give bio-
diversity informations (see chapter 4).
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2.2 Human microbiota
As reported in [38], the human body is home to roughly 10 times more microbial
cells than human cells. These commensal and not pathogenic microorganisms
(called human microbiota) come from all three domains of life: bacteria, archaea,
and eukaria, as well as viruses, and are found mostly in the gastrointestinal tract
but also along the skin surface, oral and nasal cavities, and urogenital tracts. The
collective genomes of all these symbiotic microorganisms (called human micro-
biome) constantly interacts with the human genomes, making humans ‘superor-
ganisms’ harboring these two integrated genomes. It is through their interaction
with our living environment that the human health phenotype is defined; than it is
this interaction that we should consider in the study of systemic diseases.
Through the diet we influence the composition of bacteria living environment and
therefore of bacteria population in our gut, yielding to a change in the metabo-
lites production by the microbiota, that can get into our bloodstream via a nor-
mal route enterohepatic circulation or through partially impaired gut barrier and
eventually influence human health. In particular changing patterns of food con-
sumption has been closely linked with the dramatic increase in the incidence of
obesity, diabetes, and cardiovascular diseases, linked with variations in gut mi-
crobiota distribution. Furthermore gut microbiota exhibits significant changes in
response to health changes, even in the early phase in which these are not yet de-
tectable, like during the development of precancerous lesions in the gut. These
features make gut microbiota both a biomarker for health changes and a target for
nutritional/medicinal interventions in chronic diseases.

2.3 Gut microbiota and metabolic diseases

Gut microbiota - normal functioning
The human gut is composed of four main regions: the oesophagus, the stom-
ach, the small intestine, and the large intestine, constituted by the caecum and
the colon. Through molecular analysis of gut microorganisms sampled through
biopsies or luminal content analysis, researchers have obtained an outline of gut
microbial diversity.
The first results from these analyses indicated that the same bacterial phyla tend
to predominate in the stomach, small intestine, caecum and large intestine. Thus
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more than 98% of all species detected belong to four phyla, and on average Firmi-
cutes (64%) and Bacteroidetes (23%) lead the way in terms of abundance in front
of the Proteobacteria (8%) and the Actinobacteria (3%).
Members of Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobac-
teria and TM7 (an uncultured bacterial phylum) were predominantly detected in
the upper digestive tract (oesophagus), and 41 genera were detected within these
six phyla.
The human stomach microbiota is dominated by Firmicutes and Bacteroidetes and
contains at low relative abundance representatives of the phyla Actinobacteria, Fu-
sobacteria, TM7, Deferribacteres, and Deinococcus/Thermus.
In the distal gut (caecum, colon, and fecal samples) the predominant bacterial
phyla are the Firmicutes and Bacteroidetes, in addition to one Archaeal species,
Methanobrevibacter smithii. The remaining phyla such as Proteobacteria, Acti-
nobacteria, Fusobacteria, TM7 and Verrucomicrobia, are present at much lower
frequencies. Despite the restricted number of dominant bacterial phyla found in
the distal gut, each individual harbors a remarkable number of species. A recent
study on the fecal microbiota of an adult monozygotic female twin pair revealed an
estimated 800-900 bacterial species in each co-twin, less than half of which were
shared by both individuals. Expanding this analysis to include a shallower sam-
pling of 21 fecal samples obtained from 54 mono- and dizygotic twin pairs and
their mothers revealed > 4000 species-level bacterial phylogenetic types (phy-
lotypes). However, of the 134 bacterial species whose relative abundance was
> 0.1% in at least one fecal community, only 37 were detected in more than half
of the analyzed samples [38]. These studies can make us understand how variable
and subjective is our microbioma.

Gut microbiota - functioning in metabolic diseases
As reported previously, gut microbiota is influenced by and in turn influence the
health state of the host human organism. Recent works have shown in particular
the relation of gut microbiota with metabolic diseases, and in particular how the
disruption of gut microbiota by high fat-diet may play a pivotal role in the onset
and progression of obesity and insulin resistance, that constitute the early stage of
these kind of diseases.
Gnotobiotic (i.e. with only certain known strains of bacteria and other microor-
ganisms present) mice model have been highly instrumental in the elucidation of
the mechanisms for gut microbiota getting involved in obesity development. It
was shown that in contrast to mice with a gut microbiota, germ-free animals are
protected against the obesity that develops after consuming a Western-style, high-
fat, sugar-rich diet [23].
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Furthermore, in [44], the authors showed that the transfer of gut microbiota from
genetically obese mice or from high-fat diet-induced obese mice to germ-free
wild-type lean mice lead to significant accumulation of fat in the latter, indicating
that gut microbiota are not only necessary but also sufficient to induce obesity in
the host animals.
Gut microbiota participates in obesity development in two ways [38]: (1) fer-
ments plant polysaccharides into short chain fatty acids, thus helping the host
extract more calories from otherwise indigestible food components; (2) distorts
host energy metabolism by directly regulating relevant genes, for example by sup-
pressing the expression of the fasting-induced adipogenic factor (Fiaf) gene, that
is required for fatty acid oxidation, consequently limiting it.
Gut microbiota can also stimulate genes involved in triglycerides synthesis in the
liver (associated with the development of insulin resistance) thus acting on both
sides of the energy equation and transforming the host animals into a highly effi-
cient fat-making and storage machine [23].
Another distinct but complementary mechanism for gut microbiota getting in-
volved in development of obesity and insulin resistance is by way of provoking a
low-grade, systemic and chronic inflammatory condition, a key underlying patho-
logical condition in the development of these metabolic diseases.
An important factor in this process is an endotoxin called lipopolysaccharide
(LPS). LPS is a major component of the outer membrane in Gram-negative bacte-
ria 1. Being an endotoxin, if LPS overcomes the gut mucosal barrier and enters the
circulatory system, it causes a toxic reaction, stimulating an immune response (it
activates B cells and induces macrophage and other cells to release interleukin-I
and interleukin-6, tumor necrosis factor, and other factors), with the sufferer de-
veloping a high temperature, high respiration rate, and low blood pressure.
As reported in [25], recent works showed that LPS was increased 2-3 times in the
blood of high-fat diet fed animals, which showed low-grade systemic chronic in-
flammation comparable to what has been found in human subjects. LPS resulted
responsible for the onset of metabolic diseases, since a continuous subcutaneous
low-rate infusion of LPS induced most, if not all, of the features of metabolic dis-
eases and since the corresponding LPS receptor CD14 knockout mouse resisted
the occurrence of the diseases.
Furthermore a subcutaneous injection of comparable amount of LPS into the
bloodstream of mice fed on normal chow diet made the otherwise lean and healthy

1Bacteria can be classified, based on their cell wall structure, through the Gram stain test in
which a counterstain (commonly safranin) is added after the crystal violet. Gram-positive bacteria
will retain the crystal violet dye when washed in a decolorizing solution, unlike Gram-negative
bacteria which will not absorb the gram stain thanks to the thick lipid bilayer membrane (whose
outer layer contains LPS). Compared with Gram-positive bacteria, Gram-negative bacteria are
more resistant against antibodies, because of their impenetrable wall.
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animals start to develop inflammation and eventually became obese and insulin re-
sistant.
LPS levels resulted closely correlated with the Gram negative-to-Gram positive
ratio within the gut. In [25] and [24], the authors pointed out how high-fat diet
dramatically changed the gut microbiota content, leading to endotoxemia, and
how dietary fibers, which reduce the impact of high-fat diet on the occurrence of
the metabolic diseases, normalized the Gram negative-to Gram positive ratio and
consequently the plasma endotoxemia. In particular high-fat feeding decreased
the number of Bifidobacteria, a group of bacteria that has been shown to reduce
intestinal LPS levels and to improve the mucosal barrier protecting function.
About this, the authors found also out that high-fat diet-induced metabolic endo-
toxemia depended on a mechanism involved in the control of gut permeability by
gut bacteria (in fact antibiotic treatment restored normal plasma LPS values). In
particular they proved that high-fat feeding dramatically increases intestinal per-
meability by a mechanism associated with a reduced expression of epithelial tight
junction proteins such as ZO-1 and Occludin. The importance of this finding is
due to the fact that the enhancement in intestinal permeability led to metabolic
endotoxemia, that positively correlated with inflammation, oxidative stress and
macrophage infiltration.
In [52], Zhang et al., used DNA fingerprinting and bar-coded pyrosequencing
of 16S rRNA genes to profile gut microbiota structures and identified sulphate-
reducing bacteria in family Desulfovibrionaceae as the potentially important en-
dotoxin producers, whose abundance changes were associated with the develop-
ment of metabolic syndrome in mice. Member of this family are Gram-negative,
opportunistic pathogen, endotoxin producers and are also capable of reducing sul-
phate to H2S, damaging the gut barrier.
Furthermore, in [52] the authors showed that 56% of structural variations of gut
microbiota can be attributed to diet types while only 12% to host genetic mutation.
Animals with no genetic defect can develop sever obesity and insulin resistance by
taking excess amount of high-fat diet. That means, animals do not need to harbour
a genetic defect to develop metabolic diseases. The disruption of gut microbiota
by a high-fat diet would be sufficient to distort the host energy metabolism and
provoke inflammation, causing severe adiposity and tissue damage.
From all these experiments we can finally deduce that a high-fat diet disruption
of gut microbiota plays an essential mediator role in the inflammatory condition
responsible for onset and progression of obesity, as well as of related metabolic
diseases such as type 2 diabetes and cardiovascular diseases.
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Gut microbiota - functioning in type 2 diabetes
In [36], the authors, using pyrosequencing of the V4 region of the 16S rRNA gene
and qPCR, demonstrated that type 2 diabetes is associated with compositional
changes in the intestinal microbiota mostly apparent at phylum and class level.
In agreement with other results obtained for overweight persons, they found out
a significant lowering in the relative abundance of Firmicutes in diabetics, while
the proportion of Bacteroidetes and Proteobacteria was somewhat higher.
Bacterial group that distinguished the diabetic from the non-diabetic microbioma
included Bacteroides-Prevotella group versus class Clostridia and C. coccoides-
E.rectale group, which ratios were significantly higher in diabetic persons. These
results are supported by previous studies showing reduction in Bacteroides-Prevotella
spp. related to a strong decrease of metabolic endotoxemia and inflammation in
type 2 diabetes mice. Accordingly, a significant reduction in Clostridium ssp, C.
coccoides and an increase in the Bacteroides-Prevotella group along with body
weight loss have been observed in human studies.
Larsen et al. also reported significantly higher levels of Bacilli and the Lactobacil-
lus group in diabetic subjects compared to controls, an important finding since
Genus Lactobacillus represents a heterogeneous group with well documented im-
munomodulating properties and might potentially contribute to chronic inflamma-
tion in diabetic subjects.
As reported previously, in an obesity study, using mice models, Cani et al. found
a connection between metabolic diseases and the presence of Gram-negative bac-
teria in the gut. Accordingly, also the intestinal microbiota across type 2 diabetes
subjects resulted relatively enriched with Gram-negative bacteria, belonging to
the phyla Bacteroidetes and Proteobacteria.
To carry out further analysis on gut microbial content in patients with type 2 di-
abetes, Qin et al. developed a protocol for a metagenome-wide association study
(MGWAS) and undertook a two-stage MGWAS based on deep shotgun sequenc-
ing of the gut microbial DNA from 345 Chinese individuals.
In their work emerged that T2D patients had only a moderate degree gut bacterial
dysbiosis, while functional annotation analyses indicated a decline in butyrate-
producing bacteria, which may have a protective role against several types of
deaseas and be metabolically beneficial, and an increase in several opportunistic
pathogens. The authors revealed also an enrichment of other microbial functions
conferring sulphate reduction and oxidative stress resistance and finally suggested
that there is a ‘functional dysbiosis’ rather than a specific microbial species that
has a direct association with T2D (see fig. 2.1), and this underlines the need of
understanding the dynamics of the whole bacteria population which constitutes
the gut microbiota.
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Figure 2.1: A schematic diagram showing the main functions of the gut microbes
that had a predicted T2D association. Red text denotes enriched functions in T2D
patients; blue text denotes depleted functions in T2D patients; black text denotes
an uncertain functional role relative to T2D. Figure from [40].

In this chapter we showed how the gut microbiota dysbiosis and functioning alter-
ation is of crucial importance in many metabolic diseases, from obesity to type 2
diabetes. Thus, you should have understood the reason for which we want to ob-
tain a dynamical model to describe the gut microbiota population biodiversity and
evolution. In the next two chapters we will face the dynamical model proposed by
Volkov et al. [49] to explain the biodiversity of other ecological systems, intro-
ducing also the required mathematical tools. Finally we will show our application
of these dynamical models to next-generation sequencing data of gut microbiota.



Chapter 3

The Chemical Master Equation

In this chapter we are going to give an overview on the Chemical Master Equa-
tion, that we will then exploit in chapter 4 to describe ecological communities.

The Master equation is an equation that describes the time-evolution of the prob-
ability of a system to be in a specific configuration, driven by a memoryless pro-
cess of transition between states (markovian process). The systems considered are
those that can be modeled as being in exactly one of countable number of states
at any given time, and whose switching between states is treated probabilistically.
This approach is particularly useful to describe biological phenomenon, in which
a deterministic approach would be incorrect, for example when the number of
molecules in the system is small and thus the fluctuations are not negligible. In
these cases a mean field approach is not correct and one needs to introduce some
kind of noise and to treat the system stochastically.
Thus, the Chemical Master Equation is used to describe different biological situ-
ations, from the enzymatic reactions inside the cell (which involve in fact a small
number of molecules), to the protein production, to the bet hedging strategies
of some bacteria that, in order to guarantee the survival of the species to abrupt
climate changes, generate a variable offspring that could survive in different envi-
ronments.

3.1 Markov processes
Of course, the main concept behind the master equation is that of markovian pro-
cess. So, let us now define what a markovian process is, starting from the defini-
tions of stochastic variable and stochastic process, referring to [46].
A stochastic process is defined as a function of the time t and a stochastic variable
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X where for each value of X we observe a different realization of the stochastic
process.

Stochastic variables A stochastic variable is an object X defined by

• a set of possible values (called range, set of states, sample space, or phase
space) that may be discrete or continuous and mono- or multi-dimensional;

• a probability distribution function P (x) over this set, that should of course
satisfy the properties P (x) ≥ 0 and

∫
P (x)dx = 1.

Stochastic processes Once a stochastic variable X has been defined, an infinity
of other stochastic variables derives from it, namely all quantities Y that are de-
fined as functions of X by some mapping f . These quantities Y may be any kind
of mathematical object, in particular also functions of an additional variable t,

YX(t) = f(X, t). (3.1)

Such a quantity Y (t) is called random function, or, if t stands for time, a stochastic
process. On inserting for X one of its possible values x, we obtain a so called
sample function, or realization of the process Yx(t) = f(x, t). We refer to a
stochastic process as an ensemble of these sample functions. The process Y can
describe any kind of phenomenon, like the state of a subatomic particle moving
through matter, the position of a Brownian particle, the number of molecules of
each kind in a chemical reaction, or the number of individuals of a certain species
in an ecological system.
We can describe the probability of observing a specific value of the function Y
at a given time t as the measure of the ensemble of values of X for which the
function Y gives the value y at time t

P (y, t) =

∫ ∞
−∞

δ(Y (X, t)− y)dX. (3.2)

Markov processes A Markov process is defined as a stochastic process Y in
which there is no relationship between the value of Y at a certain time and its
value at the previous moments, so that the probability of observing yn at the time
tn, given the observation of the values of Y at the previous times t1, · · · , tn−1,
only depends from the value of Y at tn−1

P1|n−1(yn, tn|y1, t1; · · · ; yn−1, tn−1) = P1|1(yn, tn|yn−1, tn−1), (3.3)
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where the conditional probability density P1|1 is the so called transition probabil-
ity.
Therefore in a markovian process we have a very simple relationship: the prob-
ability distribution of observing the value yn at time tn, is a function of only the
state of the system at the time tn−1 and is not affected by any knowledge of the val-
ues at earlier times. In other words, markovian systems are memory-less, meaning
that they lose any kind of information of their state before the present value.
A Markov process is fully determined by the two functions P1(y1, t1) and
P1|1(y2, t2|y1, t1), in fact we can find successively all Pn from the iteration of

P3(y1, t1; y2, t2; y3, t3) = P2(y1, t1; y2, t2)P1|2(y3, t3|y1, t1; y2, t2)

= P1(y1, t1)P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2), (3.4)

and this is the property that makes Markov processes manageable and conse-
quently so useful in applications.

The Chapman-Kolmogorov equation To understand the meaning of the Chap-
man - Kolmogorov equation we can start from the following example about the
discrete case. Let us consider a rat in a maze with four cells, indexed 1 - 4, plus the
outside (freedom), indexed by 0 (that can only be reached via cell 4) as showed in
fig.3.1.

1

2

3 4 FREEDOM

Figure 3.1: Rat maze’s diagram.

The rat starts initially in a given cell and then takes a move to another cell, con-
tinuing to do so until finally reaching freedom. We assume that at each move
(transition) the rat, independently from the past, is equally likely to chose from
among the neighboring cells (so we are assuming that the rat does not learn from
past mistakes). This then yields a Markov chain, where yn denotes the cell vis-
ited right after the n-th move. In our case, for example, whenever the rat is in
cell 1, it moves next (regardless of its past) into cell 2 or 3 with probability 1/2:
P1,2 = P1,3 = 1/2. Then, the probability that the rat, starting initially in cell 1, is
back in cell 1 two steps later, denoted as P 2

11 = P (y2 = 1|y0 = 1), is given by the
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probability for the rat to go to cell 2 and then back to cell 1, plus the probability
to go to cell 3 and then back to cell 1, that is P 2

11 = P (y1 = 2, y2 = 1|y0 =
1) + P (y1 = 3, y2 = 1|y0 = 1) = 1/4 + 1/4 = 1/2.
We can demonstrate that in general it holds that P (n) = P n = P × P × · · · × P ,
n ≥ 1, and that the probability of a transition from the state yn (time tn) to the
state yn+m (time tn+m), Pyn,yn+m , follows the Chapman-Kolmogorov equation

P n+m
yn,yn+m

= P (yn+m, tn+m|yn, tn)

=
∑
yk∈S

Pk(yk, tk|yn, tn)Pm(ym, tm|yk, tk), (3.5)

∀n ≥ 0,∀m ≥ 0, with yn, ym ∈ S, where S is the state space. The above equa-
tion is derived by first considering in what state the chain (i.e. the process) is
at time n. Given as initial state the value yn, Pk(yk, tk|yn, tn) is the probabil-
ity that the state at time tk is yk. But then, given yk, the future after time tn is
independent of the past, so the probability that the chain m time units later (at
time tn+m) will be in state ym is P (yn+m, tn+m|yk, tk), and thus, from the inde-
pendence of the probabilities, we have P (yk, tk; yn+m, tn+m|y0 = yn, t0 = tn) =
Pk(yk, tk|yn, tn)Pm(ym, tm|yk, tk). Summing up over all k yields the result.
A rigor proof of the Chapman-Kolmogorov equation is given by the expression
below.

P n+m
i,j = P (Xn+m = j|X0 = i)

1 =
∑
k∈S

P (Xn+m = j,Xn = k|X0 = i)

2 =
∑
k∈S

P (Xn+m = j,Xn = k,X0 = i)

P (X0 = i)

=
∑
k∈S

P (Xn+m = j|Xn = k,X0 = i)P (Xn = k,X0 = i)

P (X0 = i)

3 =
∑
k∈S

P (Xn = k,X0 = i)Pm
k,j

P (X0 = i)

=
∑
k∈S

P n
i,kP

m
k,j, (3.6)

1Summing over all the elements in S we consider all the possible ways to go from i to j.
2From the definition of conditional probability P (A|B) = P (A

⋂
B)

P (B) .
3We used the Markov property to conclude that P (Xn+m = j|Xn = k,X0 = i) = P (Xn +

m = j|Xn = k) = P (Xm = j|X0 = k) = Pm
k,j .
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We can extend the Chapman-Kolmogorov equation to the continuous case inte-
grating the identity 3.4 over y2. For t1 < t2 < t3 we obtain

P2(y1, t1; y3, t3) = P1(y1, t1)

∫
P1|1(y2, t2|y1, t1)P1|1(y3, t3|y2, t2)dy2, (3.7)

and dividing both sides by P1(y1, t1), we obtain the continuous form of the Chapman-
Kolmogorov equation

P1|1(y3, t3|y1, t1) =

∫
P1|1(y3, t3|y2, t2)P1|1(y2, t2|y1, t1)dy2. (3.8)

And this is an identity which must be obeyed by the transition probability of any
Markov process.
As observed previously, a Markov process is fully determined by P1 and P1|1 be-
cause the whole hierarchy Pn can be constructed from them, but these two func-
tions cannot be chosen completely arbitrarily, since the must obey two identities:

• the Chapman-Kolmogorov equation 3.8;

• the obvious relation P1(y2, t2) =
∫
P1|1(y2, t2|y1, t1)P1(y1, t1)dy1

Vice versa, any two nonnegative functions P1 and P1|1 that obey these conditions
uniquely define a Markov process.

Stationary Markov processes Let us consider a closed and isolated physical
system that has a quantity, or a set of quantities, Y (t) which may be treated as a
Markov process. If the system is in equilibrium (for some quantities, it is suffi-
cient to have the system at the steady state), we can assert that Y (t) is a stationary
process. Stationary Markov processes are particularly interesting for describing
equilibrium fluctuations.
For these processes, P1 results independent of time and becomes the familiar equi-
librium distribution of Y , and the transition probability P1|1 does not depend on
time’s instants but only on the time interval. Under these conditions we can intro-
duce the special notation

P1|1(Y2, t2|y1, t1) = Tτ (y2|y1), (3.9)

with τ = t2 − t1.
For τ, τ ′ > 0 we can then rewrite the Chapman-Kolmogorov equation as

Tτ+τ ′(y3|y1) =

∫
Tτ ′(y3|y2)Tτ (y2|y1)dy2. (3.10)
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3.2 The Master Equation
The Master equation is an equivalent form of the Chapman-Kolmogorov equation
for Markov processes, but it is easier to handle and more directly related to phys-
ical processes. It is a differential equation obtained by letting τ ′ to zero.
To derive the master equation let us consider a Markov process, which for con-
venience we take to be homogeneous, so that we can write Tτ for the transition
probability, and let us see how Tτ ′ behaves as τ ′ tends to zero, calculating the first
order Taylor expansion of Tτ ′(y3|y2) for τ ′ small

Tτ ′(y3|y2) = T (τ ′ = 0) + ∂τ ′Tτ ′(τ
′ = 0) · τ ′ + O(τ ′2)

= (1− α0τ
′)δ(y2 − y1) + τ ′W (y2|y1) + O(τ ′2), (3.11)

whereW (y3|y2) is the transition probability per unit time from y2 to y3, also called
transition rate, and where T (τ ′ = 0) = (1−α0τ

′)δ(y2−y1) represents the fact that,
for small time intervals, the system will not move too much away from the state
y2 and that the probability of remaining in that state will be slightly less than 1.
This last statement comes from the term (1−α0τ

′), where α0 is the normalization
constant α0(y2) =

∫
W (y3|y2)dy3, that we obtain from∫

Tτ ′(y3|y2)dy3 = 1 = 1− α0(y2)τ ′ + τ ′
∫
W (y3|y2)dy3

⇒ α0(y2) =

∫
W (y3|y2)dy3. (3.12)

Inserting the Taylor expansion 3.11 in the Chapman-Kolmogorov equation 3.8,
we obtain for τ ′ small,

Tτ+τ ′(y3|y1) =

∫
(δ(y3 − y2)(1− α0(y2)τ ′)Tτ (y2|y1) + τ ′W (y3|y2)Tτ (y2|y1)) dy2

= (1− α0(y3)τ ′)Tτ (y3|y1) + τ ′
∫
W (y3|y2)Tτ (y2|y1)dy2,

where we have applied the definition of δ.
Considering that Tτ+τ ′−Tτ

τ ′
−→
τ ′→0

d
dτ
Tτ , we have

d

dτ
Tτ (y3|y1) = −α0(y3)Tτ (y3|y1) +

∫
W (y3|y2)Tτ (y2|y1)dy2. (3.13)

Inserting α0(y3) =
∫
W (y2|y3)dy2, we obtain

d

dτ
Tτ (y3|y1) =

∫
(W (y3|y2)Tτ (y2|y1)−W (y2|y3)Tτ (y3|y1)) dy2, (3.14)



3.3 Chemical Master Equation (CME) 46

where the first positive term of the integral represents the rate of jumping towards
y3 (influx), while the second negative term stands for the rate of jumping out from
y3 (efflux).
The equation 3.14 is called master equation and describes the variation of the
probability of the system to be in a particular state, due to incoming and outgoing
fluxes.
We may observe that for many systems it is much easier to determine the transi-
tion rate W (y2|y1), through measurements or modeling, than the whole transition
probability Tτ (y2|y1), that can instead be determined through the master equation.

3.3 Chemical Master Equation (CME)
The master equation 3.14 refers to a specific y1 and t1 and we can rewrite it re-
moving all the redundant indexes, through the change of variables

y3 → y

y2 → y′

In this way we obtain the probability of observing the state y at the time t

∂tP (y, t) =

∫
[W (y|y′)P (y′, t)−W (y′|y)P (y, t)] dy′. (3.15)

This equation represents an influx of probability to the state y from all the con-
nected states y′ and an efflux from y to every state y′ to which it can move.
If the system state space is discrete, as when we work with a system with a dis-
crete number of individuals or molecules, we can write the probability as Pn(t) to
represent the discreteness of the state space. In this case the master equation can
be called Chemical Master Equation (referring to a chemical environment) and we
can rewrite it, replacing integrals with sums, as

∂tPn(t) =
∞∑
n=0

[λn′,nPn′(t)− λn,n′Pn(t)], (3.16)

where the λs are the discrete versions of the W s of the continuous equation, with
the origin and destination index exchanged, so that λn,n′ represents the probability
flux from the state n to the state n′.
For a linear dynamic system (i.e. a system for which the effects superposition
principle holds) we can further simplify equation 3.16, writing

∂t
−→
P (t) = Λ

−→
P (t), (3.17)
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where the matrix Λ is called the transition matrix and is defined as

Λi,j =

{
Λi,j = λi,j, ∀i 6= j
Λi,i = −

∑
j 6=i λi,j∀i = j

(3.18)

where the second expression means that the probability of remaining in the state i
is equal to minus the probability of exiting from i.

Properties of the transition matrix We can observe that Λ is a zero determi-
nant matrix by construction, since

∑
j Λi,j = 0 ∀i. The zero determinant matrix

represents the conservation of probability; in fact a determinant different from
zero means that a certain amount of probability would be generated or destroyed,
and this is absurd, since we are describing the system as a whole (i.e. closed). A
zero determinant also means that there is at least one zero eigenvalue, since we can
write the determinant of a matrix as the product of its eigenvalues. Furthermore
the eigenvector corresponding to this null eigenvalue, is the so called stationary
distribution, that is the distribution, given by ∂tPn(t) = 0, to which the stochastic
process always converges, as long as the transition propensities λ are not func-
tion of time. If the system is fully connected (thus it cannot be broken into two
non communicating pieces), the stationary distribution is guaranteed to be unique.
Furthermore the stationary distribution will be positive, that is all its terms will be
positive, and the sum of its components will be 1, being a probability distribution.
To see these properties, let us consider the differential equation that describes our
system:

∂t
−→
P (t) = Λ

−→
P (t). (3.19)

The solution of this differential equation is, integrating by separation of variables,
of the kind

−→
P (t) =

−→
P (0)eΛt. Introducing the eigenvectors uα and the eigenvalues

λα of the matrix Λ, defined by the equation Λuα = λαuα, we can rewrite the
solution of the master equation as

P (t) =
∑
α

cαe
λαtuα, (3.20)

where the coefficients cα are determined by the initial conditions.
From this expression we can firstly observe that if, for a certain state α, the eigen-
value is λα = 0, then the Pα corresponding to this state is the stationary distribu-
tion.
We can also notice that the eigenvectors represent the direction of the decay of
the probability, and the absolute value of the eigenvalues gives the velocity of this
decay: a small |λα| stands for a slow decay, while a large |λα| corresponds to a
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fast one. Furthermore, all the others eigenvalues will have a negative real part. In
fact the probabilities Pα = uαe

λαtcα are nonnegative numbers less than or equal
to 1, and so positive values of λα are physically impossible since they would lead
to exponentially growing probabilities, i.e. > 1. Under this point of view we can
interpret the existence of the null eigenvalue observing that, if all the λαs were
negative, than all the probabilities would go to zero for t → ∞, while we know
that the system will certainly be in one of the N states and that consequently the
sum of the probabilities have to be 1 and not 0. In the limit t → ∞ the prob-
abilities of the states will tend to their equilibrium values Pα(∞) = P

(eq)
α , thus

one of the λα has to be null. The corresponding eigenvector will be, indeed, the
stationary distribution, given by −→u0 = (P

(eq)
1 , P

(eq)
2 , · · · , P (eq)

n )T . We can prove
this replacing

−→
P = −→u0 in ∂t

−→
P = Λ

−→
P , and considering that λ0 = 0. We in fact

obtain ∂t
−→
P = Λ−→u0 = λ0

−→u0 = 0, that means it is the equilibrium distribution.
Going back to the non-null eigenvalues, we can add that the smallest of these neg-
ative values represents how fast the system converges to the stationary state if we
perturb it, and the relative eigenvector is called metastable state and is the state in
which the system remains longer.
It is worth noticing that, albeit each eigenvector components decays exponentially
with time, the convergence to the stationary distribution can be slower than expo-
nential if a lot of eigenvalues are closer to the metastable one. If the eigenvalues
spectrum is closer to an exponential, it can be shown that the practical convergence
time is a power law, i.e the convergence mean-time goes to infinity.

Detailed balance The condition of detailed balance is one of the most distin-
guishing property of a system, and corresponds to the thermodynamic equilib-
rium. The formal definition regards the microscopic probability flux, asserting
the microscopy reversibility: λijPi = λjiPj . When this relationship holds, the
resolution of the stationary distribution of the master equation is almost trivial for
any dimension.
In general this condition can be linked to the Kirchhoff law of fluxes into a net-
work, because the CME can be interpreted as a probability flux on a network
generated by the available states and linked by the possible reactions. If we have
a circular network of reversible transitions from state A to state B,C and D (so we
are working on a system with only 4 possible states) like the graph in fig. 3.2,
the condition of detailed balance between fluxes can be rewritten in terms of the
reaction propensity alone. Recalling that Pi = Pj

λji
λij

, and applying it recursively
over the cycle, we can obtain the following condition

KABKBCKCDKDA = KDCKCBKBAKAD. (3.21)



3.3 Chemical Master Equation (CME) 49

In a system that has more than one elementary cycle, the detailed balance condi-
tion should be applied to every cycle to be valid for the whole system.

Figure 3.2: Graph with 4 possible states. Figure from [32]



Chapter 4

Ecological theories

In this chapter we are going to describe the main ecological theories proposed to
explain the patterns observed in ecological systems, focusing on a simple dynam-
ical model that arises from a Chemical Master Equation approach and that we will
apply later to the gut microbiota. At the end of this chapter we will also report
some results of a previous application of this dynamical model to ecological sys-
tems such as coral reefs.

4.1 Ecological theories purposes and perspectives
The main purpose of modern ecological theories is to describe and explain the
within-trophic-level biodiversity [34]. Here, with the term ‘biodiversity’ we de-
note both species richness, that is the total number of species in a defined space
at a given time, and relative species abundance (RSA), which refers to their com-
monness or rarity. Instead, with the words ‘within-trophic-level’ we mean that
we are going to study organisms which occupy the same position in a food chain.
Thus we will not consider problems such as the trophic organization of commu-
nities, or what controls the number of trophic levels, or how biodiversity at one
trophic level affects diversity on other trophic levels. The reason for this is that,
while not complete, a theory of biodiversity within trophic levels would never-
theless be a major advance because most biodiversity resides within rather than
between trophic levels (i.e. there are many more species than trophic levels).
In this perspective, we can define an ‘ecological community’ as a group of troph-
ically similar species that exist in the same local area and that actually or poten-
tially compete for the same or similar resources, and a ‘metacommunity’ as the
ensemble of all trophically similar individuals and species in a regional collection
of ‘local communities’, in which species may not actually compete because of
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separation in space or time.
Modern ecological theories can be distinguished in essentially two main schools
of thought: the niche assembly perspective and the dispersal one.
The physicist Heinz Pagels (1982) once observed that there seem to be two kinds
of people in the world. There are those who seek deterministic order and meaning
in every event, and those who believe events to be influenced, if not dominated,
by random chance. This is the controversy between determinism and stochasticity
that dominated the twentieth-century physics, one of whose triumphs was exactly
to prove that both views of physical nature are simultaneously true and correct,
but on very different spatial and temporal scales. The same kind of debate also
persists for example in population genetics debates, where the question is whether
most change in gene frequencies results from random evolution or from natural
selection, and similarly exists in ecology, where there are these two conflicting
world views on the nature of ecological communities: the niche and the dispersal
perspectives.

Niche Theory The niche assembly perspective holds that communities are groups
of interacting species whose presence or absence and even their relative abundance
can be deduced from deterministic ‘assembly rules’ that are based on the ecolog-
ical niches or functional roles of each species. Here, the concept of ‘ecological
niche’ summarizes the interactions between species and their environment, and is
thus defined by two components [47]:

• the requirement for an organism of a given species to live in a given envi-
ronment (the extent to which a limiting factor, like a resource, a predator or
a parasite, influences the birth and death rate of that species);

• the impact of the species on its environment (the extent to which the growth
of a population alters the limiting factor, i.e. the availability of a resource
or the density of a predator or parasite).

According to this view, species coexist in interactive equilibrium and a stable co-
existence among competing species is made possible by niche partitioning. The
stability of the community and its resistance to perturbation derive from the adap-
tive equilibrium of member species, each of which has evolved to be the best
competitor in its own ecological niche.
Niche-assembled communities are limited-membership assemblages in which in-
terspecific competition for limited resources and other biotic interactions deter-
mine which species are present or absent from the community. We have to under-
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line that most proponents of niche assembly come out of a strong neo-Darwinian
tradition, which focuses on the lives of interacting individuals and their fitness
consequences. The concept of niche follows naturally and logically as the pop-
ulation level summation of the individual adaptations of organisms to their envi-
ronments.
Niche theory resulted able to predict patterns of species traits and species sep-
aration on nutrient gradients similar to those observed in different studies and
provided a potential explanation for the high diversity of nature, predicting that
habitat heterogeneity can allow a potentially unlimited number of species to co-
exist if species that are better at dealing with one environmental constraint are
necessarily worse at dealing with another [34]. On the other hand, this theory is
not able to predict a limit to diversity, and consequently neither to explain species
relative abundance.

Dispersal and Neutral Theory The other world view is the dispersal assem-
bly perspective, which asserts that communities are open, nonequilibrium assem-
blages of species largely thrown together by chance, history, and random dispersal
[34]. Species come and go, their presence or absence is dictated by random dis-
persal and stochastic local extinction.
Actually we will refer to a particular class of dispersal theories, those called ‘neu-
tral’, in which ecological communities are structured entirely by ecological drift
(i.e. demographic stochasticity), random migration, and random speciation. By
neutral we mean that the theory treats organisms in a trophically defined commu-
nity as essentially identical in their per capita probabilities of giving birth, dying,
migrating, and speciating (ecological equivalence). We have to underline that neu-
trality is defined at the individual level, not at the species level, thus this is a very
unrestrictive and permissive definition since it does not preclude interesting biol-
ogy from happening or complex ecological interactions from taking place among
individuals. All that is required is that all individuals of every species obey exactly
the same rules of ecological engagement. So, for example, if all individuals and
species enjoy a frequency-dependent advantage in per capita birth rate when rare,
this per capita advantage will be exactly the same for each and every individual of
a species of equivalent abundance.
One consequence of a focus on adaptation and niche assembly has been a ten-
dency to accept an equilibrium and a relatively static view of niches and ecological
communities. This focus on individual variation in fitness, adaptation and niche,
moreover, has led naturally to small-scale, short-term experimental studies of pro-
cesses of competition, selection and adaptation. Proponents of dispersal assembly
criticize this and typically work on much larger spatial and temporal scales, using
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biogeographic or paleoecological frames of reference, through an approach less
experimental and more analytical of large-scale statistical patterns.
Thus for example, as reported in [34], data from much fossil records revealed
that many pre-Holocene, full glacial, and previous interglacial plant communities
are very different from modern communities. The evidence from many studies
is strong that communities undergo profound compositional changes, sometimes
gradual, sometimes episodic, on timescales of centuries to millennia and longer.
The fact is that species are transient, even if transit time to extinction are often
of the order of millions or ten of millions of year, and furthermore in most of
the cases local extinction can not be attributed to competitive exclusion. So, as
suggested by Hubbell in his work, we should not concentrate on the indefinite
coexistence of specie, but rather on the study of species presence-absence, persis-
tence times, and above all species relative abundance (RSA) in communities, that
can be compared with real data.

4.2 Patterns of relative abundance - inductive ap-
proaches

Species abundance is of central theoretical and practical importance in conserva-
tion biology. In particular, understanding the causes and consequences of rarity is
a problem of profound significance because most species are uncommon to rare,
and rare species are generally at greater risk to extinction.
Observing the patterns of relative species abundance in different ecological com-
munities (fig.4.1), we can note how all of them have a curiously similar shape,
even thought they differ in many ways, including species richness, the degree of
dominance of the community by common species, and the number of rare species
each community contains. Some are steeper, and some are shallower, but all of
the distributions basically exhibit an S-shaped form, bending up at the left end and
down at the right end.
Let us now outline the major theoretical and empirical milestones in the study of
relative species abundance. First of all we can observe that two major approaches
to the study of the distribution of individuals per species have been taken: induc-
tive and deductive. In the early years, when the study of relative species abundance
was in its infancy, the inductive approach dominated. Observed distributions of
the numbers of individuals per species in collections were fit to statistical distri-
butions with little or no attempt to give a theoretical explanation or to define the
sampling universes from which the collections were made.
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Figure 4.1: Patterns of relative species abundance in a diverse array of ecological
communities from [34]. Species in each community are ranked in percentage
relative abundance from commonest (left) to rarest (right). The percentage relative
abundance is log transformed on the y-axis. (1) Tropical wet forest in Amazonia.
(2) Tropical dry deciduous forest in Costa Rica. (3) Marine planktonic copepod
community from the North Pacific gyre. (4) Terrestrial breeding birds of Britian.
(5) Tropical bat community from Panama.

Fisher’s logseries distribution A milestone of the inductive approach was the
work proposed by Fisher, Cobert and Williams in 1943 [30].
Corbet and Williams, studied abundance data, respectively about butterflies in
Malaya and moths collected over a four-year period at the Rothamsted Exper-
imental Station in England, and plotted the number of species into abundance
classes, i.e. species represented by a single individual, by two individuals, and so
on. In these plots, the authors both noticed that the series was a relatively smooth
hyperbolic progression, with many rare and few common species.
When then Fisher analyzed their data, he assumed that relative abundances of
species in nature would be well described by a gamma function and that the num-
ber of individuals collected of a given species would be Poisson distributed be-
cause most species were rare and represented by only a few individuals in the
samples of Corbet and Williams. The resulting compound distribution was neg-
ative binomial. However, there was a problem because the zero abundance class
(species too rare to be sampled) was obviously not observable, so Fisher truncated
the negative binomial to eliminate the zero class. Then, having no way of estimat-
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ing how many species were not sampled, Fisher assumed the number of species
in the community was effectively infinite. Fisher obtained a one-parameter distri-
bution that he dubbed the logarithmic series, derived from the negative binomial
as a limiting case (shape parameter set to zero).
According to the logseries, as it is now generally called, the number of species in
a collection having n individuals will be given by

αxn/n, (4.1)

where x is a positive constant 0 < x < 1 and α is a measure of diversity,
which in the expectation is equal to the number of singleton species divided by
x. Thus, the number of species with 1, 2, 3, 4, . . . n individuals will be given by
αx, αx2/2, αx3/3, αx4/4, . . . , αxn/n for 0 < x < 1.
Adding all terms, the total number of species, S, is expected to be α[−ln(1− x)],
and the total number of individuals in the collection, N , is αx/(1 − x). The
parameter α, known as Fisher’s α, is a widely used measure of species diversity
because it is theoretically independent of sample size [30], even if in other studies
[34] is showed that empirically α is only approximately constant, changing slowly
over large ranges in sample size.
Fitting the logseries always results in the singleton category having the most
species, as shown in fig.4.2.

Figure 4.2: An example from [34] of the use of the logseries distribution to fit data
on species abundance in collections of months.
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Preston’s lognormal distribution A few years later, Preston (1948) criticized
the logseries on the grounds that it was not a good fit to data that he had assembled,
primarily on bird species abundances. Preston argued that relative abundance dis-
tributions were often bell-shaped curves, such that species having intermediate
abundances were more frequent than very rare species. Preston actually noted
that the distributions were lognormal and introduced a simple way to display this
lognormal distribution of relative species abundance. He built doubling categories
of abundance (1, 2, 4, 8, etc.), and counted the species having abundances falling
in each category. Species having exactly 1 2 4 8 individuals were divided equally
between adjacent abundance categories. He called these doubling classes ‘oc-
taves’ in analogy to octaves of a musical scale, which represent a doubling of the
frequency of musical pitch. This classification of species into doubling abundance
classes effectively log transforms the relative abundance data to the log base 2. He
chose log base 2 for the simple practical expedient of spreading the distribution of
species abundances over more categories to make its shape more apparent. Using
any larger number for the base of log transforming the distribution would only
reduce the number of categories displayed, depending on the range in relative
species abundances.
The lognormal distribution is continuous, not discrete as in the case of the logseries.
However, Preston’s method of categorizing abundances provides a simple way to
approximate the distribution by a discrete-valued function, as follows. Let S0 be
the number of species in the modal octave of abundance. Let SR be the number
of species in the R−th octave (or doubling abundance class) to the left or right of
the modal octave. Then the so called Species Curve can be written as

SR = S0e
−a2R2

, (4.2)

with R = 0, 1, 2, . . . and where a is a constant that depends on the variance of
the lognormal, a = 1/

√
2σ . Note that the distribution is symmetrical about the

mode, located at R = 0. Fitting the Species Curve can be done approximately
by taking natural logs, and regressing ln(SR) on R2, a regression having slope
−a2 and intercept ln(S0). More accurate fitting of the continuous lognormal dis-
tribution to the data on individual species abundances requires using a maximum
likelihood technique for a truncated lognormal.
Over the past half century, the lognormal distribution has been fit successfully to a
far larger number of relative species abundance distributions than has the logseries
distribution, particularly as larger sample sizes have become available [34].
To explain his lognormal distribution, Preston argued that the shape of the rela-
tive species abundance distribution observed by Fisher and his colleagues was an
artifact of small sample size. In the logseries, the expected number of species is
always largest in the rarest abundance category, consisting of singleton species.
However, in a small sample, one should observe only a truncated distribution of
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relative abundances, comprising only the most common species. This is because
common species are generally collected sooner than rare species.

Figure 4.3: As the survey of months at light traps at Rothamsted Field Station
was extended over more years, the distribution of individuals per species became
lognormal, as Preston predicted. Figure from [34].

As sample size increases, Preston predicted that more and more of the lognor-
mal distribution would be revealed, as shown in fig.4.3, and the reason for which
Fisher had not noted it was because they did not consider the importance of sample
size, because of the theoretically expected constancy of Fishers α in collections
of different sizes.
However, the proposal for a lognormal distribution let the apparent invariance of
Fisher’s α unexplained and, furthermore, in recent years, as larger sample sizes
of relative species abundance have become available and the abundances of very
rare species have become better known, it has become increasingly apparent that
observed distributions of relative species abundance are actually seldom lognor-
mally distributed. Observed distributions appear to be lognormal to the right of
the mode in the right-hand tail representing common species. But they almost
always show a strong negative skewness, as we can see in fig.4.4, that can not be
explain neither with Fisher or with Preston’s distribution.
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Figure 4.4: Negatively skewed distribution of relative species abundance for all
British breeding birds. Note the poor fit of the lognormal to the left-hand tail of
rare and extremely rare species. Figure from [34].

4.3 Patterns of relative abundance - deductive ap-
proaches

Early deductive approaches As we said before, the logseries and lognormal
were the principal inductive approaches to the study of relative species abundance.
These were followed by different attempt to derive a theory of relative species
abundance from first principles, that is based on hypotheses about how ecological
communities were organized. You can find a review of these early approaches
in [34]. Here we just note that these early theories present many shortcomings,
among which a not entirely exhaustive biological interpretation, the presence of
many parameters, and, besides that, the inability to explain real data.
Furthermore, all these early approaches belong to the niche perspective and con-
sequently they tend to accept the idea of coexistence as a static equilibrium and to
describe the ecological communities through a static point of view. None of them
in fact tries to undertake a dynamical approach and to make the theory emerge
from natural processes of birth, death and dispersion, and this is of course due to
their focusing on coexistence rather than on relative abundance distribution, fol-
lowing Lotka-Volterra’s tradition.
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MacArthur and Wilson theory of island biogeography The first deductive
theory for ecological system, based on the idea of a dynamical equilibrium, and
that introduced the concept of neutrality in ecology, is that built by MacArthur
and Wilson in their monography of 1967 [37].
MacArthur and Wilson erected their theory in part to explain the puzzling obser-
vation that islands nearly always have fewer species than areas on continents of
the same size, a fact that could not been explained with the current static idea of
island communities, that considered them fixed over ecological time-scale (∼ 103

years). The authors proposed a new theory, in which the number of species present
on the island changes as a result of two opposing forces: immigration from the
continents of species not already present on the island, and extinction of species
present on the island.
MacArthur and Wilson reasoned that this possibility of extinction comes from the
fact that island average population sizes are smaller than those on the continents,
and small populations are subject to some complications:

• the Allee effect, that is at small densities the death rate could be higher
than the birth one because of difficulties in finding a partner for reproduc-
tion, higher exposition to predators, disruption of the social structure of a
population;

• the inbreeding, that is the coupling between related individuals, that brings
to the genetic deterioration of the population, that is to a reduced survival
and fertility;

• the strong influence of adverse casual events: the probability that few indi-
viduals die at the same time, is higher that the probability that many indi-
viduals die all together (demographic stochasticity).

Furthermore, once island populations went extinct, it would take the same species
longer to recolonize the island than it would take them to disperse among adjacent
areas on the mainland. Thus, other things being equal, species would spend a
smaller fraction of total time resident on a given island than in the same-sized
area of the mainland. Given these assumptions, i.e., a higher island extinction rate
and a lower reimmigration rate, one then predicts a lower steady-state number
of species on islands than in same-sized areas on the mainland. MacArthur and
Wilson captured this simple equilibrium idea in a now famous graph (fig.4.5).
The equation that controls the species dynamics is

dS

dt
= I(S)− E(S), (4.3)

where I(S) is the immigration rate of new species, while E(S) is the extinction
rate. I(S) will be a descending function, as the probability of immigration of a
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Figure 4.5: MacArthur and Wilson’s equilibrium hypothesis for explaining the
number of species on islands (Si ) as a dynamic equilibrium between the rate of
immigration of new species onto the island and the rate of extinction of species
already resident on the island. Figure from [34].

new species will be higher if the species already present on the island are few. For
what concern E(S), instead, this will be an ascending function, that is null for
S = 0. In fact, we can write E(S) = µ(S)S, where µ is the probability that a
single species get extinct in unit of time. µ(S) will be an ascending function of
the number of species on the island, in fact if there are many species, there will
be a higher interspecific competition, that is a lower number of free niches on the
island, and this will increase the probability of a species to get extinct.
The stationary state will be that in which the immigration and the extinction rate
become equal, that is the point S1, S2, S3 or S4 in fig. 4.5, that refer to different
conditions in which we can find the island.
In its fundamental assumptions MacArthur and Wilson theory is a dispersal the-
ory that asserts that island communities are dispersal assembled, not niche assem-
bled. It predicts a steady-state number of species on islands under a persistent
rain of immigrant species from mainland source areas. However, in contrast to
niche-assembly community theory, it predicts only a diversity equilibrium, not a
taxonomic equilibrium: what remains steady here is the number of species on the
island, and not their identity, in fact in the steady point the immigration and the
extinction rate are equal but not null. Consequently, there is a turnover of the
present species, that is exactly I(Si) = E(Si) for unit of time. Thus, we can state
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that we are dealing with a theory that can be considered neutral, since all species
are considered equal in their probabilities of immigration onto the island, or of
going extinct once there.
Breaking away from the conventional neo-Darwinian view, ecological commu-
nities are now described as in perpetual taxonomic nonequilibrium, undergoing
continual endogenous change and species turnover through repeated immigra-
tions and local extinctions (let us note that anyway it does not include speciation).
These turnovers need not be especially rapid, however, and species can coexist
for long periods in slowly drifting mixtures and in shifting relative abundances.
Thus, MacArthur and Wilson theory highlights the possibility that environmental
and demographic stochasticity can play a role equal or also more important than
niche assembly rule in structuring ecological communities.

Caswell’s abundance random walk In the mid-1970s, when most eyes were
still focused on the classical, niche-based theory of community ecology, Caswell
made a bold attempt to create a neutral theory of community organization. Bor-
rowing mathematical machinery from the theory of neutral evolution in population
genetics, Caswell erected his model, in which communities are essentially collec-
tions of completely noninteracting species in which each species undergoes an
independent random walk in abundance. Therefore, the total size of the commu-
nity fluctuates.
New species enter the community as a Poisson process (i.e., a rare event) with
probability ν per unit time. This immigration probability, as in the theory of is-
land biogeography, is independent of the identity of the species and of the number
and identities of the species already present, except that only species not currently
present are allowed to immigrate. This is equivalent to assuming that immigration
makes a negligible contribution to the population dynamics of a species already
present. Each new immigrant species becomes the founder of a line of descen-
dants.
Caswell assumed a linear birth-death process in which the stochastic per capita
birth and death rates, λ and µ, are assumed to be equal, corresponding to the de-
terministic case of a zero intrinsic rate of increase, r. In other words, each species
population is as likely to increase as it is to decrease per unit time. This is a pure
drift process or random walk. The transition probabilities from a population of
size Ni to size Ni−1, Ni , or Ni+1 at time t + dt are linear functions Ni of at time
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t, as follows:

Pr(Ni−1|Ni) = µNi

Pr(Ni|Ni) = 1− (λ+ µ)Ni

Pr(Ni+1|Ni) = λNi (4.4)

Note in this model that λ and µ must be chosen to be sufficiently small to satisfy
(λ+ µ)Nt < 1.
Actually Caswells model has different problems. First of all its results differ sub-
stantially from observed community relative abundance patterns and look decid-
edly not lognormal on a Preston plot of octaves of abundance.
Furthermore, there are also more serious problems with Caswell’s model. One is
that the size of the community grows without bound over time. Community size,
J , where J is the total number of individuals in the community, is a negative
binomial random variable with mean E[J ] = t→∞ (elapsed time), and variance
V ar[J ] = t(t + 1) → ∞ as t → ∞. A second major problem is that the ex-
pected number of species in the community, E[S], is linearly proportional to the
colonization rate of new species per unit time, ν, and the log of elapsed time:

E[S] = V ar[S] = ν · ln(t+ 1). (4.5)

Despite all these defects, this model is very important since it was the first model
of relative species abundance explicitly based on birth, death, and dispersal pro-
cesses. Moreover, with the addition of the assumption of a finite community size
(due to limited resource availability) and minor changes in the birth, death, and
dispersal processes, a much better model can be obtained.

4.4 Dynamical models of RSA
As we have seen in previous sections, many niche and neutral models have been
proposed to explain the RSA trend observed in so many experimental data.
We now present a simple unified theory for understanding these RSA patterns,
developed by Azaele et al. [21] in the continuous form and by Volkov et al. [49]
in the discrete one.
This theory offers an explanation for diversity, species composition, relative species
abundance patterns, and invasion dynamics in ecological communities, resolving
many of the shortcomings of both classical niche theory and neutral theory.
The basis of this theory is that niche partitioning and demographic stochasticity
are both involved in structuring communities. Such combined approaches might
offer an explanation for the diversity, composition and relative abundance patterns
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of species observed in ecological communities.

Dynamical Model - continuous form We treat the population of a species at
time t as a continuous variable, x(t), an assumption which is valid when the pop-
ulation varies smoothly with time and is not too small.
We assume that the species population is subject to two distinct dynamical pro-
cesses. The first of these is deterministic whereas the second one is stochastic. The
deterministic process has two contributions: 1) an immigration rate b, which, for
simplicity, is assumed to be equal for all species and independent of time and 2)
an effective competition term proportional to the population of the species which
serves to fix the average population.
The stochastic process controls the demographic fluctuations, not considered by
the deterministic part, and is proportional to

√
x as described in appendix A.

We know that a system ruled by a deterministic component, described by a vec-
torial field a(x, t), and by some white noise b(x, t)ξ(t), that reflects a stochastic
component, can be modeled by the Langevin equation

dx

dt
= a(x) + b(x)ξ(t), (4.6)

and that the equation for the probability density function corresponding to this
process is the Fokker Planck equation

∂ρ

∂t
= − ∂

∂x
(ρa(x)) +

b(x)2

2

∂2ρ

∂x2
(4.7)

as demonstrated in [43].
Thus, the Langevin equation corresponding to our system is

ẋ(t) = b− x(t)

τ
+
√
Dx(t)ξ(t), (4.8)

where x > 0 for any t > 0; b, τ and D are positive real constants, ξ(t) is a
Gaussian white noise, that means it has zero mean value and time correlation
〈ξ(t)ξ(t′)〉 = 2δ(t− t′).
The corrisponding Fokker Planck equation for this process is

ṗ = ∂x[(x/τ − b)p] +D∂2
x(xp), (4.9)

where p = p(x, t) is the probability density function (pdf) of finding x individuals
at time t in the community, i.e.

∫ n+∆n

n
p(x, t)dx is the fraction of species with
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a population between n and n + ∆n. Setting ṗ = 0 one obtains the stationary
solution of eq.4.9

p0(x) = (Dτ)−b/DΓ(b/D)−1x
b
D
−1e−

x
Dτ , (4.10)

where Γ(x) is the gamma function.
In fact ṗ = 0⇒ ∂x[(x/τ − b)p] +D∂2

x(xp) = 0 that means

∂x ([(x/τ − b)p] +D∂x(xp)) = 0. (4.11)

The obvious solution is [(x/τ − b)p] + D∂x(xp) = constant and we can set
cost = 0 obtaining

D∂x(xp) = (b− x/τ)p. (4.12)

We can rewrite the equation in the form ∂xg = A(x)g(x) multipling and dividing
the right hand side by Dx

∂x(Dxp) =
(b− x/τ)

Dx
Dxp (4.13)

where g(x) = Dxp and A(x) = (b−x/τ)
Dx

. Thus the solution will be g(x) =

e
∫
A(x)dx, i.e.

p0(x) =
1

Dx
e
∫ b−x/τ

Dx
dx =

1

Dx
e
b
D
logx− 1

Dτ
x

=
1

D
x
b
D
−1e−

x
Dτ (4.14)

Then we have to normalize this function to finally find the stationary solution.
Thus we calculate

1

D

∫ ∞
0

x
b
D
−1e−

x
Dτ = 1, (4.15)

that we can rewrite, multiplying and dividing for (Dτ)
b
D
−1, as

1

D
(Dτ)

b
D
−1

∫ ∞
0

x
b
D
−1

(Dτ)
b
D
−1
e−

x
Dτ = 1. (4.16)

Now we can make the change of variables x
Dτ

= t and dx
Dτ

= dt, and the equation
becomes

1

D
(Dτ)

b
D
−1

∫ ∞
0

t
b
D
−1e−tDτdt = 1. (4.17)

Now if we introduce the definition of the gamma function Γ(x) =
∫∞

0
tx−1e−tdt,

our equation can be written as

1

D
(Dτ)b/DΓ(b/D) = 1⇒ 1

D
=

(Dτ)−b/D

Γ(b/D)
, (4.18)
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and the stationary solution becomes

p0(x) = PRSA =
(Dτ)−b/D

Γ(b/D)
x
b
D
−1e−

x
Dτ (4.19)

This solution obeys reflecting boundary conditions at x = 0 which, in a station-
ary regime, fix the number of species on average. Thus the steady-state solution
p0(x) = PRSA(x), which is independent of initial conditions, provides an exact
expression for the relative species abundance (RSA). Furthermore, for b/D � 1,
one obtains the RSA distribution of metacommunity proposed by Fisher.
In order to understand the meaning of the parameters involved in the equation
4.10, we can start from a discrete master equation. The time evolution of a popula-
tion x of a given species is governed by the following birth-death master equation
(x = 1, 2, · · · )

∂px(t)

∂t
= b(x− 1)px−1(t) + d(x+ 1)px+1(t)− [b(x) + d(x)]px(t) (4.20)

where the birth and death rates are given by

b(x) = x(b1 + b0/x)

d(x) = x(d1 + d0/x) (4.21)

Here, b1 and d1 are the per-capita rates and the presence of the constants b0 and
d0 produce a density dependence effect, which causes a rare species advantage
(disadvantage) when b0 > d0 (b0 < d0). Such density dependence can arise
due to effective rates of immigration/emmigration/speciation/extinction in a local
community. The skewness of the RSA indicates a rare species advantage and
thus b0 > d0 and for simplicity and parsimony we will choose b0 = −d0 in the
following. Treating x as a continuous variable we use the Taylor expansion

d(x+ 1)px+1(t)− d(x)px(t) =
∂

∂x
(d(x)px(t)) +

1

2

∂2

∂x2
(d(x)px(t)) + ... (4.22)

and similarly for b(x− 1)px−1(t)− b(x)px(t). Thus the previous master equation
becomes a Fokker-Planck (FP) equation, whose explicit form is

∂p(x, t)

∂t
=

∂

∂x
[d(x)− b(x)]p(x, t) +

1

2

∂2

∂x2
[d(x) + b(x)]p(x, t). (4.23)

By inserting the rates in 4.21 into this FP equation and setting b0 = −d0 > 0, we
obtained

∂p(x, t)

∂t
=

∂

∂x
[(d1 − b1)x− b]p(x, t) +

[d1 + b1]

2

∂2

∂x2
xp(x, t). (4.24)
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This equation matches with 4.9 on setting

D =
d1 + b1

2

τ =
1

d1 − b1

> 0

b = 2b0 > 0 (4.25)

that are three parameters with ecological significance: D describes the effects of
demographic stochasticity (fluctuations) and is given by (b1+d1)/2; 1

τ
= d1−b1 is

the imbalance between the death and birth rates that inexorably drives the ecosys-
tem to extinction in the absence of immigration or speciation, thus τ is the char-
acteristic time associated to species turnover in neutral evolution (an ecosystem
close to the stationary state is able to recover from a perturbation on a timescale
of order τ ); b = 2b0 describes the density dependence effects arising from immi-
gration and/or speciation.
Let us observe that in the more general case, with b0 6= −d0, one obtains an extra
term in the FP equation, i.e. Dx is substituted by Dx+ (b0 + d0)/2. However, we
can neglect the new term if Dx � (b0 + d0)/2, in fact when |b0| ∼ |d0| is of the
order of b/2, as found in different real data, (b0 + d0)/2 is at most D/4. Anyhow,
the same reasoning for the term x/τ − b does not allow one to neglect the b term
because τ is large.
Thus the FP equation with the three parameters we have used is consistent even
when b0 6= −d0.

Dynamical Model - discrete form Following the work of Volkov et al. [49], we
can also find the discrete form of the RSA distribution, considering a birth-death
process for a discrete community.
In this case we will have a discrete variable n that describes the number of indi-
viduals of a k-th species, so that Pn,k(t) will denote the probability that the k-th
species contains n individuals at time t. Thus, now we have that the time evolution
of Pn,k(t) is regulated by the master equation

∂Pn,k(t)

∂t
= Pn−1,k(t)bn−1,k + Pn+1,k(t)dn+1,k − Pn,k(bn,k + dn,k), (4.26)

that is equivalent to equation 4.20 with birth rate bn,k and death rate dn,k related to
the k-th species with n individuals.
We can solve this equation to find the stationary solution using the linear expan-
sion method. This method exploits the fact that in a birth-death process we can
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state that in stationary conditions, the flux should be null at each step, thus

Pn,kbn,k = Pn+1,kdn+1,k, (4.27)

that is the detailed balance condition (see paragraph 3.3).
This allows us to write a simple recursive solution for this system

Pn+1,k = Pn,k
bn,k
dn+1,k

. (4.28)

and so, given a certain value of P0,k to maintain the final normalization of proba-
bility, we can write the stationary solution that is reached in the infinite time limit,
as

Pn,k = P0,k

n−1∏
i=0

bi,k
di+1,k

. (4.29)

Let us consider a simple, ecologically meaningful form for the effective birth and
death rates of the k-th species

bn,k = bk(n+ Υk)

dn,k = dkn (4.30)

where bk and dk denote the per-capita density-independent birth and death rates
and a non-zero Υk could arise from either immigration or owing to intraspecific
interactions such as those giving rise to density dependence. We do not incorpo-
rate speciation explicitly into the model because it does not affect the functional
form of the results (it can be incorporated into the immigration term at n = 0 by
adding a constant); we do not even explicitly include emigration since it depends
by n and can thus be considered already expressed in the term dkn.
The steady-state solution of the master equation for Pk(n), the probability that the
k-th species has n individuals, yields a negative binomial distribution

Pn,k = P0,k
bnk
dnkn!

Γ(n+ Υk) =
(1− xk)Υk

Γ(Υk)

xnk
n!

Γ(n+ Υk), (4.31)

where xk = bk/dk, the ratio of the per-capita birth rate to the per-capita death rate,
controls the mean species abundance given by xkΥk/(1 − xk), and where P0,k

was deduced by the normalization condition
∑

n Pk,n = 1. Furthermore, as we
showed in 3.3, the system always reaches the stationary condition for t→∞.
The number of species containing n individual is given by

ϕn =
S∑
k=1

In,k, (4.32)
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where S is the total number of species that may potentially be present in the com-
munity and In,k is a random variable that takes the value 1 with probability Pn,k
and 0 with probability (1− Pn,k). Thus the average number of species containing
n individuals is

< ϕn >=
S∑
k=1

In,kPn,k =
S∑
k=1

Pn,k, (4.33)

from which follows the condition∑
n

< ϕn >= S. (4.34)

Let us now suppose that the probabilities of birth and death for each individual do
not depend on the species to which it belongs. Thus, let us impose that the species
in the metacommunity are demographically equal, that is we are introducing the
hypothesis of neutrality in our system

bk = b

dk = d

xk = x. (4.35)

From equation 4.33 and 4.31, we finally have that

< ϕn >=
S

[(1− x)−Υ − 1]Γ(Υ)

xn

n!
Γ(n+ Υ), (4.36)

and placing θ = S/[(1− x)−Υ − 1]Γ(Υ), that is Fisher biodiversity number, an
estimate of species variety inside our ecosystem, we have

< ϕn >= θ
xn

n!
Γ(n+ Υ). (4.37)

We can observe that the biodiversity number θ does not depend from the number
of individuals in the community, but, as required by Fisher, only from the rate
x = b/d. Let us remark that in these dynamical models, we used two key assump-
tion: we considered non-interacting species and individuals neutrality. With these
two assumptions we were able to obtain a deductive model in which Fisher distri-
bution and its biodiversity parameter emerge as a consequence of the birth-death
processes of the individuals in the species.

4.5 Application: coral reefs
To show an application of this dynamical model, we refer to the work of Volkov
et al. [49], in which the authors described the RSA patterns of coral reefs through
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the model reported in section 4.4.
The starting point for this work was that previous studies on coral reefs patterns
reported log-series-like RSA distributions in local communities, and log-normal-
like RSA distributions when a geographically widespread set of coral-reef com-
munities was pooled to estimate the RSA distribution for the metacommunity. In
their study, Volkov et al. considered a relatively small semi-isolated local commu-
nity surrounded by a very large metacommunity acting as a source of immigrants.
In coral reefs, in fact, each local community receives immigrants from all the
surrounding semi-isolated local communities, within each of which the species
abundances are not frozen in time (as it is instead for rainforests). Let us observe
that we can suppose we have the same conditions in the gut microbiota communi-
ties that we will analyze.
In their work, Volkov et al. fitted the coral-reef RSA distribution using equation
4.37, as shown in figure 4.6.

Figure 4.6: Preston plot and fits of equation 4.37 to the coral-reef species abun-
dance data for: 180 coral-reef local communities (a), 45 reef communities, each of
which consisting of 4 local communities (b), 15 metacommunities, each of which
consistng of 5 reef communities (c), and metacommunity (habitats pooled), each
of which consisting of 5 metacommunities (d). Figure from [49].

To explain these RSA distributions, Volkov et al. applied the model reported in
section 4.4. First of all, they considered that, given the isolation of individual
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coral reefs under the island metacommunity model, the value of the immigration
parameter Υ is very small since local communities are separated from each other
by large distances. In such a situation, the RSA for the local communities re-
sembles the Fisher log-series, and does not have an interior mode (at abundance
n > 1). Then they tried to gradually assemble the metacommunity RSA distribu-
tion by considering the joint RSA distributions of multiple local communities in
the following way. First consider the joint RSA of two local communities A and
B making up the metacommunity. Consider a species that has nA individuals in
community A with probability P (nA) and nB individuals in community B with
probability P (nA). The probability that the species has n individuals in A and B
is demonstrated to be

P (nA + nB = n) =
∑

nA+nb=n

P (nA)P (nB) ∝ xn

n!
Γ(n+ 2Υ). (4.38)

The corresponding RSA has the same form as for the single community but with
the effective immigration parameter 2Υ. Extending the calculation of the joint
RSA distribution to more and more local communities, one arrives at the RSA
of the metacommunity characterized by an effective immigration parameter LΥ,
where L is the total number of local communities making up the metacommu-
nity. When L is large, the RSA distribution exhibits a clear, interior mode at
abundance n > 1, and the rare species constitute a smaller fraction of all the
species than in the local community. We can in fact see from the fits that, on local
scales (local communities and reefs), immigration is almost absent so that the lo-
cal RSA resembles the Fisher log-series distribution. Their theory thus explained
how the RSA becomes log-normal-like on aggregating the local communities into
one metacommunity.
Let us finally observe that this mean field analysis does not take into account the
actual spatial locations of the local reef communities. This fact is important since
we are going to apply the same model to a gut microbiota community, sampled by
sequencing, in which of course we do not have spatial informations.
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Results

In this chapter we report our results on gut microbiota next-generation sequencing
data analysis. First of all we will describe our dataset, then we will explain how,
through a clustering procedure, we were able to deduce the bacteria species dis-
tribution and to fit it with the gamma distribution theoretically obtained in chapter
4. Finally we will compare our results, showed in the form of Preston plots, with
the coral reefs study reported previously in section 4.5.

5.1 Data
In order to analyze the Relative Species Abundance (RSA) distributions, as a mea-
surement of the gut microbiota biodiversity, we downloaded from the SRA (Se-
quence Read Archive) database of NCBI [7], data from the experiment of Jeraldo
et al. [35].
Jeraldo’s data are composed of five samples, as described in table 5.1.

Sample Description Treatment Spots Bases Size
SRR491179 chicken cecum inoculated with C. jejuni 1 wk before 18324 3.8M 8.9Mb

cecal sampling
SRR491180 cattle rumen 1 sampled at 0 h after feeding (gut sample) 47489 7.7M 4Mb
SRR491181 cattle rumen 2 sampled at 8 h after feeding (gut sample) 31074 5.2M 2.5Mb
SRR491182 swine clone 1 fed with diet 1 before fecal sampling 42443 9M 19.5Mb
SRR491183 swine clone 2 fed with diet 2 before fecal sampling 44927 9.5M 20.3Mb

Table 5.1: Description of Jeraldo’s data.

16S rRNA data of these samples were obtained using 454 Life Sciences pyrose-
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quencing.

5.2 Clustering
As explained in section 1.3.2, our aim was to cluster 16s rRNA sequences into
OTUs (Operational Taxonomic Units, correspond to bacteria taxa at a particular
taxonomic level), in order to quantify their respective abundance and to compute
the relative abundance distribution of bacteria species in one sample’s gut micro-
biota.
For this purpose, after converting the .sra files to .fastq and then to .fasta, we com-
puted a de novo clustering (that is without a reference database) with UCLUST
(see section 1.3.2), using different similarity thresholds.
The similarity thresholds used for UCLUST clustering are: 97%, 90%, 85%, 80%,
75%, 70%, and 65%. Let us underline that, with the decreasing of the similarity
threshold, we will obtain more abundant OTUs and, at the same time, the total
number of OTUs generated will decrease.
As we underlined in section 1.3.2, before clustering with UCLUST it is recom-
mended to sort the input sequences so that the seeds would be chosen among the
best. Since our data are obtained with 454 Life Sciences pyrosequencing, a prefer-
able way to sort them is by quality score.
The quality score is a code the is provided in the .fastq file, and is assigned to each
nucleotide base call in automated sequencer traces. The quality score has become,
by this time, widely accepted to characterize the quality of DNA sequences.
454 quality scores are expressed as Phred scores Q [11], which are defined as a
property which is logarithmically related to the base-calling error probabilities P :

Q = −10 · log10P. (5.1)

For example, if Phred assigns a quality score of 30 to a base, the chances that this
base is called incorrectly are 1 in 1000, while the base call accuracy is 99.9%. If
instead the quality score is 10, the probabilities that the base is incorrectly called
are 1 in 10 and the base call accuracy is 90%. Thus, we ordered our input se-
quences by quality score, putting first those with higher quality score.
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5.3 UCLUST tests
In order to understand the effect of UCLUST clustering at different similarity
thresholds, we considered sample SRR491180 clustered at 97% and 85% of sim-
ilarity and selected the first most abundant 7 OTUs in each case. Then, we com-
puted the distances among sequences inside each OTUs and represented them in
histograms for visualization. Finally we assigned taxonomy to each sequence in-
side these clusters to establish how well sequences were assembled together into
clusters.

To compute the distance matrix, we first aligned our sequences through PyNAST,
that is the python implementation of NAST (see 1.3.1). In order to align all se-
quences, without failures, we set the ‘minimum sequence length to include in
alignment’ to 1 and the ‘minimum percent sequence identity to include sequence
in alignment’ to 50%. Then we used mothur (see 1.3.3) with default settings to
compute all distances. Finally, we represented the inside-OTU distances with his-
tograms, as showed in the following figures.
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From the previous figures we can see how well UCLUST builds its clusters even
if it does not compare all vs all sequences and we can already underline the dif-
ferences between clustering at high similarity thresholds (in this case 97%) or at
low similarity thresholds (85%).
At 97% of similarity, in fact, we can see how, even in these very plentiful clusters,
the maximum distance inside each cluster is approximately always under 0.1, in a
scale from 0 to 1. Distance histograms show tails on the right, as expected, since
distances can be thought as sums of squares of independent normal distributed
variables, which will follow a chi-square distribution, that in fact exhibits a tail on
the right. Furthermore, likely, histograms do not contain secondary peaks, which
could have been a sign of multiple clusters inside the considered one.
At 85%, instead, histograms are more spread and maximum distances exceed 0.1
remaining however always approximately under 0.3. Also here, the shape of the
distances distribution is, as expected, with a tail towards high distances and with-
out secondary peaks.
These observations let us already note how clustering at 85% similarity generates
bigger and more spread clusters, which will contain more variability than those
obtained with the 97% similarity.

As we mentioned before, our second test on UCLUST consisted in computing the
inside-OTU taxonomy. For this purpose, we exploited the RDP Classifier (see
section 1.3.4) with a bootstrap cutoff of 50%. We report in the following tables
the results of the same clusters used in the distances computation. For each cluster
we report the OTU identification number, its abundance, that is the number of se-
quences collected in it, the taxonomic assignment of its representative sequence,
the taxonomic assignments present among its elements at each taxonomic level
(from B to G), and, for each of these levels, how many sequences of the cluster
were classified with that specific assignment.



5.3 UCLUST tests 79

O
T

U
19

-3
25

0
se

qs
-R

ep
re

se
nt

at
iv

e
se

qu
en

ce
:B

ac
te

ri
a;

Pr
ot

eo
ba

ct
er

ia
;G

am
m

ap
ro

te
ob

ac
te

ri
a;

Ps
eu

do
m

on
ad

al
es

;M
or

ax
el

la
ce

ae
;P

sy
ch

ro
ba

ct
er

B
n.

se
qs

B
C

n.
se

qs
C

D
n.

se
qs

D
E

n.
se

qs
E

F
n.

se
qs

F
G

n.
se

qs
G

B
ac

te
ri

a
32

50
Pr

ot
eo

ba
ct

er
ia

32
50

G
am

m
ap

ro
te

ob
ac

te
ri

a
32

50
Ps

eu
do

m
on

ad
al

es
32

50
M

or
ax

el
la

ce
ae

32
49

Ps
yc

hr
ob

ac
te

r
32

49

O
T

U
18

05
-2

00
2

se
qs

-R
ep

re
se

nt
at

iv
e

se
qu

en
ce

:B
ac

te
ri

a
B

n.
se

qs
B

C
n.

se
qs

C
D

n.
se

qs
D

E
n.

se
qs

E
F

n.
se

qs
F

G
n.

se
qs

G
B

ac
te

ri
a

20
02

Fi
rm

ic
ut

es
10

16
C

lo
st

ri
di

a
90

1
D

es
ul

fo
vi

br
io

na
le

s
16

D
es

ul
fo

ha
lo

bi
ac

ea
e

16
Pr

ot
eo

ba
ct

er
ia

34
D

el
ta

pr
ot

eo
ba

ct
er

ia
21

C
lo

st
ri

di
al

es
66

7

O
T

U
27

10
-1

61
4

se
qs

-R
ep

re
se

nt
at

iv
e

se
qu

en
ce

:B
ac

te
ri

a;
Fi

rm
ic

ut
es

;B
ac

ill
i;

L
ac

to
ba

ci
lla

le
s;

C
ar

no
ba

ct
er

ia
ce

ae
;C

ar
no

ba
ct

er
iu

m
B

n.
se

qs
B

C
n.

se
qs

C
D

n.
se

qs
D

E
n.

se
qs

E
F

n.
se

qs
F

G
n.

se
qs

G
B

ac
te

ri
a

16
11

Fi
rm

ic
ut

es
16

11
B

ac
ill

i
16

11
L

ac
to

ba
ci

lla
le

s
16

08
C

ar
no

ba
ct

er
ia

ce
ae

16
07

C
ar

no
ba

ct
er

iu
m

16
05

U
na

ss
ig

na
bl

e
3

D
es

em
zi

a
1

O
T

U
27

06
-1

47
5

se
qs

-R
ep

re
se

nt
at

iv
e

se
qu

en
ce

:B
ac

te
ri

a;
Fi

rm
ic

ut
es

;C
lo

st
ri

di
a;

C
lo

st
ri

di
al

es
;R

um
in

oc
oc

ca
ce

ae
;F

as
tid

io
si

pi
la

B
n.

se
qs

B
C

n.
se

qs
C

D
n.

se
qs

D
E

n.
se

qs
E

F
n.

se
qs

F
G

n.
se

qs
G

B
ac

te
ri

a
14

75
Fi

rm
ic

ut
es

14
57

C
lo

st
ri

di
a

14
51

C
lo

st
ri

di
al

es
14

50
R

um
in

oc
oc

ca
ce

ae
14

31
Fa

st
id

io
si

pi
la

77
3

O
T

U
27

48
-1

37
5

se
qs

-R
ep

re
se

nt
at

iv
e

se
qu

en
ce

:B
ac

te
ri

a;
Pr

ot
eo

ba
ct

er
ia

;G
am

m
ap

ro
te

ob
ac

te
ri

a;
E

nt
er

ob
ac

te
ri

al
es

;E
nt

er
ob

ac
te

ri
ac

ea
e;

B
ut

tia
ux

el
la

B
n.

se
qs

B
C

n.
se

qs
C

D
n.

se
qs

D
E

n.
se

qs
E

F
n.

se
qs

F
G

n.
se

qs
G

B
ac

te
ri

a
13

75
Pr

ot
eo

ba
ct

er
ia

13
75

G
am

m
ap

ro
te

ob
ac

te
ri

a
13

75
E

nt
er

ob
ac

te
ri

al
es

13
72

E
nt

er
ob

ac
te

ri
ac

ea
e

13
72

B
ut

tia
ux

el
la

13
39

O
T

U
13

43
-1

32
9

se
qs

-R
ep

re
se

nt
at

iv
e

se
qu

en
ce

:B
ac

te
ri

a;
Pr

ot
eo

ba
ct

er
ia

;G
am

m
ap

ro
te

ob
ac

te
ri

a;
E

nt
er

ob
ac

te
ri

al
es

;E
nt

er
ob

ac
te

ri
ac

ea
e

B
n.

se
qs

B
C

n.
se

qs
C

D
n.

se
qs

D
E

n.
se

qs
E

F
n.

se
qs

F
G

n.
se

qs
G

B
ac

te
ri

a
13

27
Pr

ot
eo

ba
ct

er
ia

13
23

G
am

m
ap

ro
te

ob
ac

te
ri

a
13

23
E

nt
er

ob
ac

te
ri

al
es

13
15

E
nt

er
ob

ac
te

ri
ac

ea
e

13
15

Y
er

si
ni

a
88

5
U

na
ss

ig
na

bl
e

2
A

ct
in

ob
ac

te
ri

a
3

A
ct

in
ob

ac
te

ri
a

3
A

ct
in

om
yc

et
al

es
3

Se
rr

at
ia

35
4

O
T

U
17

32
-1

03
1

se
qs

-R
ep

re
se

nt
at

iv
e

se
qu

en
ce

:B
ac

te
ri

a;
Pr

ot
eo

ba
ct

er
ia

;G
am

m
ap

ro
te

ob
ac

te
ri

a;
Ps

eu
do

m
on

ad
al

es
;M

or
ax

el
la

ce
ae

;P
sy

ch
ro

ba
ct

er
B

n.
se

qs
B

C
n.

se
qs

C
D

n.
se

qs
D

E
n.

se
qs

E
F

n.
se

qs
F

G
n.

se
qs

G
B

ac
te

ri
a

10
31

Pr
ot

eo
ba

ct
er

ia
10

31
G

am
m

ap
ro

te
ob

ac
te

ri
a

10
31

Ps
eu

do
m

on
ad

al
es

10
28

M
or

ax
el

la
ce

ae
10

28
Ps

yc
hr

ob
ac

te
r

10
27

Ta
bl

e
5.

2:
Ta

xo
no

m
y

of
th

e
fir

st
s

m
os

ta
bu

nd
an

t7
O

T
U

s
of

SR
R

11
49

80
at

97
%

si
m

ila
ri

ty
.



5.3 UCLUST tests 80
O

T
U

27
2

-7
68

1
se

qs
-R

ep
re

se
nt

at
iv

e
se

qu
en

ce
:B

ac
te

ri
a;

Pr
ot

eo
ba

ct
er

ia
;G

am
m

ap
ro

te
ob

ac
te

ri
a;

E
nt

er
ob

ac
te

ri
al

es
;E

nt
er

ob
ac

te
ri

ac
ea

e
B

n.
se

qs
B

C
n.

se
qs

C
D

n.
se

qs
D

E
n.

se
qs

E
F

n.
se

qs
F

G
n.

se
qs

G
B

ac
te

ri
a

76
56

Pr
ot

eo
ba

ct
er

ia
75

48
G

am
m

ap
ro

te
ob

ac
te

ri
a

74
89

E
nt

er
ob

ac
te

ri
al

es
69

26
E

nt
er

ob
ac

te
ri

ac
ea

e
69

26
V

ib
ri

o
2

U
na

ss
ig

na
bl

e
25

A
ct

in
ob

ac
te

ri
a

25
A

ct
in

ob
ac

te
ri

a
25

V
ib

ri
on

al
es

2
V

ib
ri

on
ac

ea
e

2
K

lu
yv

er
a

2
A

ct
in

om
yc

et
al

es
23

M
yc

ob
ac

te
ri

ac
ea

e
12

E
rw

in
ia

3
M

yc
ob

ac
te

ri
um

12
C

itr
ob

ac
te

r
74

0
Tr

ab
ul

si
el

la
37

R
ao

ul
te

lla
17

Sa
lm

on
el

la
22

H
af

ni
a

9
E

sc
he

ri
ch

ia
11

Sh
ig

el
la

Pa
nt

oe
a

1
X

en
or

ha
bd

us
39

1
B

ut
tia

ux
el

la
43

86
E

nt
er

ob
ac

te
r

58

O
T

U
24

6
-7

59
9

se
qs

-R
ep

re
se

nt
at

iv
e

se
qu

en
ce

:B
ac

te
ri

a;
Pr

ot
eo

ba
ct

er
ia

;G
am

m
ap

ro
te

ob
ac

te
ri

a;
Ps

eu
do

m
on

ad
al

es
;M

or
ax

el
la

ce
ae

;P
sy

ch
ro

ba
ct

er
B

n.
se

qs
B

C
n.

se
qs

C
D

n.
se

qs
D

E
n.

se
qs

E
F

n.
se

qs
F

G
n.

se
qs

G
B

ac
te

ri
a

75
68

Fi
rm

ic
ut

es
1

B
et

ap
ro

te
ob

ac
te

ri
a

1
E

nt
er

ob
ac

te
ri

al
es

3
E

nt
er

ob
ac

te
ri

ac
ea

e
3

B
ar

to
ne

lla
15

U
na

ss
ig

na
bl

e
31

Pr
ot

eo
ba

ct
er

ia
75

58
C

lo
st

ri
di

a
1

R
hi

zo
bi

al
es

15
B

ar
to

ne
lla

ce
ae

15
Ps

yc
hr

ob
ac

te
r

71
90

A
lp

ha
pr

ot
eo

ba
ct

er
ia

26
C

lo
st

ri
di

al
es

1
M

or
ax

el
la

ce
ae

72
49

G
am

m
ap

ro
te

ob
ac

te
ri

a
74

81
O

ce
an

os
pi

ri
lla

le
s

1
Ps

eu
do

m
on

ad
al

es
72

53

O
T

U
22

0
-7

10
1

se
qs

-R
ep

re
se

nt
at

iv
e

se
qu

en
ce

:B
ac

te
ri

a
B

n.
se

qs
B

C
n.

se
qs

C
D

n.
se

qs
D

E
n.

se
qs

E
F

n.
se

qs
F

G
n.

se
qs

G
B

ac
te

ri
a

70
96

Fi
rm

ic
ut

es
24

98
C

lo
st

ri
di

a
22

41
Sy

ne
rg

is
ta

le
s

86
R

um
in

oc
oc

ca
ce

ae
14

0
Se

di
m

en
tib

ac
te

r
4

U
na

ss
ig

na
bl

e
5

Pr
ot

eo
ba

ct
er

ia
46

2
Sy

ne
rg

is
tia

86
D

es
ul

fo
vi

br
io

na
le

s
18

2
Sy

ne
rg

is
ta

ce
ae

86
D

es
ul

fo
na

tr
on

o-
sp

ir
a

1

Sy
ne

rg
is

te
te

s
86

D
el

ta
pr

ot
eo

ba
ct

er
ia

27
9

C
lo

st
ri

di
al

es
16

52
In

ce
rt

ae
Se

di
s

X
I

8
Py

ra
m

id
ob

ac
te

r
7

D
es

ul
fo

ha
lo

bi
ac

ea
e

16
7

D
et

hi
os

ul
fo

vi
br

io
1

In
ce

rt
ae

Se
di

s
X

II
I

5
Ti

nd
al

lia
2

C
lo

st
ri

di
ac

ea
e

5
E

th
an

ol
ig

en
en

s
33

Fa
st

id
io

si
pi

la
39

A
ce

ta
na

er
o-

ba
ct

er
iu

m
5

D
es

ul
fo

ha
lo

bi
um

1
A

na
er

ov
or

ax
5

Ta
bl

e
5.

3:
Ta

xo
no

m
y

of
th

e
fir

st
m

os
ta

bu
nd

an
t7

O
T

U
s

of
SR

R
11

49
80

at
85

%
si

m
ila

ri
ty

(fi
rs

tp
ar

t)
.



5.3 UCLUST tests 81
O

T
U

17
1

-3
97

8
se

qs
-R

ep
re

se
nt

at
iv

e
se

qu
en

ce
:B

ac
te

ri
a;

Fi
rm

ic
ut

es
;C

lo
st

ri
di

a;
C

lo
st

ri
di

al
es

;L
ac

hn
os

pi
ra

ce
ae

;B
ut

yr
iv

ib
ri

o
B

n.
se

qs
B

C
n.

se
qs

C
D

n.
se

qs
D

E
n.

se
qs

E
F

n.
se

qs
F

G
n.

se
qs

G
B

ac
te

ri
a

39
77

Fi
rm

ic
ut

es
39

46
C

lo
st

ri
di

a
39

43
C

lo
st

ri
di

al
es

39
41

In
ce

rt
ae

Se
di

s
X

IV
18

Sp
or

ac
et

ig
en

iu
m

8

U
na

ss
ig

na
bl

e
1

A
ct

in
ob

ac
te

ri
a

5
A

ct
in

ob
ac

te
ri

a
5

A
ct

in
om

yc
et

al
es

5
R

um
in

oc
oc

ca
ce

ae
3

B
la

ut
ia

18
Pe

pt
oc

oc
ca

ce
ae

1
Sy

nt
ro

ph
oc

oc
cu

s
63

L
ac

hn
os

pi
ra

ce
ae

38
18

L
ac

hn
ob

ac
te

ri
um

98
In

ce
rt

ae
Se

di
s

X
I

6
M

or
ye

lla
20

C
lo

st
ri

di
ac

ea
e

3
Sp

or
ot

om
ac

ul
um

1
Pe

pt
os

tr
ep

to
co

cc
ac

ea
e10

Pa
ra

sp
or

ob
ac

te
ri

um
5

C
op

ro
co

cc
us

57
4

B
ut

yr
iv

ib
ri

o
75

4
A

na
er

ob
ac

te
r

3
Sh

ut
tle

w
or

th
ia

3
Ps

eu
do

bu
ty

riv
ib

ri
o

30
G

al
lic

ol
a

6
D

or
ea

1
A

na
er

os
po

ro
ba

ct
er

56
R

os
eb

ur
ia

20
O

T
U

26
2

-2
73

8
se

qs
-R

ep
re

se
nt

at
iv

e
se

qu
en

ce
:B

ac
te

ri
a;

Pr
ot

eo
ba

ct
er

ia
;G

am
m

ap
ro

te
ob

ac
te

ri
a;

E
nt

er
ob

ac
te

ri
al

es
;E

nt
er

ob
ac

te
ri

ac
ea

e
B

n.
se

qs
B

C
n.

se
qs

C
D

n.
se

qs
D

E
n.

se
qs

E
F

n.
se

qs
F

G
n.

se
qs

G
B

ac
te

ri
a

27
34

Pr
ot

eo
ba

ct
er

ia
27

31
G

am
m

ap
ro

te
ob

ac
te

ri
a

27
26

E
nt

er
ob

ac
te

ri
al

es
25

62
E

nt
er

ob
ac

te
ri

ac
ea

e
25

62
R

ah
ne

lla
6

U
na

ss
ig

na
bl

e
4

R
ao

ul
te

lla
2

C
itr

ob
ac

te
r

30
Se

rr
at

ia
79

3
E

sc
he

ri
ch

ia
/

Sh
ig

el
la

1

Y
er

si
ni

a
12

48
X

en
or

ha
bd

us
2

B
ut

tia
ux

el
la

44
O

T
U

94
-2

45
4

se
qs

-R
ep

re
se

nt
at

iv
e

se
qu

en
ce

:B
ac

te
ri

a;
Fi

rm
ic

ut
es

;B
ac

ill
i;

L
ac

to
ba

ci
lla

le
s;

E
nt

er
oc

oc
ca

ce
ae

B
n.

se
qs

B
C

n.
se

qs
C

D
n.

se
qs

D
E

n.
se

qs
E

F
n.

se
qs

F
G

n.
se

qs
G

B
ac

te
ri

a
24

52
Fi

rm
ic

ut
es

24
51

B
ac

ill
i

24
50

L
ac

to
ba

ci
lla

le
s

23
30

C
ar

no
ba

ct
er

ia
ce

ae
20

20
C

ar
no

ba
ct

er
iu

m
19

22
U

na
ss

ig
na

bl
e

2
B

ac
ill

al
es

6
B

ac
ill

ac
ea

e
2

E
nt

er
oc

oc
cu

s
23

0
E

nt
er

oc
oc

ca
ce

ae
24

7
D

es
em

zi
a

2
Tr

ic
ho

co
cc

us
93

Ta
bl

e
5.

4:
Ta

xo
no

m
y

of
th

e
fir

st
m

os
ta

bu
nd

an
t7

O
T

U
s

of
SR

R
11

49
80

at
85

%
si

m
ila

ri
ty

(s
ec

on
d

pa
rt

).



5.3 UCLUST tests 82

O
T

U
21

-1
86

6
se

qs
-R

ep
re

se
nt

at
iv

e
se

qu
en

ce
:B

ac
te

ri
a;

Fi
rm

ic
ut

es
;C

lo
st

ri
di

a;
C

lo
st

ri
di

al
es

;R
um

in
oc

oc
ca

ce
ae

;O
sc

ill
ib

ac
te

r
B

n.
se

qs
B

C
n.

se
qs

C
D

n.
se

qs
D

E
n.

se
qs

E
F

n.
se

qs
F

G
n.

se
qs

G
B

ac
te

ri
a

18
45

Fi
rm

ic
ut

es
16

87
C

lo
st

ri
di

a
16

78
Sy

ne
rg

is
ta

le
s

2
R

um
in

oc
oc

ca
ce

ae
15

38
A

ce
tiv

ib
ri

o
8

U
na

ss
ig

na
bl

e
21

Pr
ot

eo
ba

ct
er

ia
56

Sy
ne

rg
is

tia
2

N
au

til
ia

le
s

5
Sy

ne
rg

is
ta

ce
ae

2
D

es
ul

fo
na

ut
ic

us
5

Sy
ne

rg
is

te
te

s
2

E
ps

ilo
np

ro
te

ob
ac

te
ri

a
5

D
es

ul
fo

vi
br

io
na

le
s

9
L

ac
hn

os
pi

ra
ce

ae
30

C
lo

st
ri

di
um

7
D

el
ta

pr
ot

eo
ba

ct
er

ia
10

C
lo

st
ri

di
al

es
16

69
C

lo
st

ri
di

ac
ea

e
8

Jo
nq

ue
te

lla
1

N
au

til
ia

ce
ae

5
R

ob
in

so
ni

el
la

1
D

es
ul

fo
ha

lo
bi

ac
ea

e
8

Fa
st

id
io

si
pi

la
60

7
N

au
til

ia
5

O
sc

ill
ib

ac
te

r
16

0

Ta
bl

e
5.

5:
Ta

xo
no

m
y

of
th

e
fir

st
m

os
ta

bu
nd

an
t7

O
T

U
s

of
SR

R
11

49
80

at
85

%
si

m
ila

ri
ty

(t
hi

rd
pa

rt
).



5.3 UCLUST tests 83

Also taxonomy results show how different similarity thresholds used in the clus-
tering procedure influence the output clusters structure.
At 97% similarity, almost all elements in the same cluster are classified with the
same taxonomic assignment by the RDP Classifier. Furthermore, we can test the
goodness of the cluster seed choice comparing the representative sequence taxon-
omy to that of the other sequences inside the cluster. Except for cluster 1805, in
which it is clear that the seed taxonomy was not well assigned (note that however
also in this cluster distances are . 0.1, so the cluster is well built) and conse-
quently also the taxonomy inside the cluster does not show good results, for the
other clusters, the representative sequence is able to attract to itself only elements
of the same genus and moreover this happens in these very abundant clusters, so
we can suppose that the same behavior will characterize also smaller clusters.
At 85% similarity, we observe that clusters are more spread, as already resulted
in distance histograms, and even if seed sequences are classified up to the most
refined level (level G), we can assert that sequences in the same cluster agree in
taxonomic assignments just up to level F. Also here we have an exception for
OTU 220, in which the representative sequence is not well classified as just level
B taxonomy was assigned, that is we just know we are dealing with a bacteria, and
consequently also its sequences agree in the classification just at level B. Also in
this OTU, however, distances are not higher than in other 85% clusters, so we can
assert that the clustering was well done, even if the RDP Classifier did not find
good results.
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5.4 Preston plots and fits
After clustering the samples data with UCLUST (through QIIME) at different
similarity thresholds, as explained before, we computed the species abundances.
Here, as we already mentioned, a ‘species’ corresponds to an OTU, thus its abun-
dance will be exactly the number of sequences which have fallen into that cluster.
Then we represented the relative abundance distribution by building the histogram
of the species abundances with the x-axes in log2 scale, thus obtaining a Preston
plot (see 4.2).
Finally we fitted the histogram using the gamma-like function

f(x) = a · bx · xc, (5.2)

that corresponds to the gamma distribution 4.10 found in the continuous model
4.4, that we report here:

PRSA =
(Dτ)−b/D

Γ(b/D)
x
b
D
−1e−

x
Dτ .

This gamma distribution itself can be considered as the continuous form of the
negative binomial distribution 4.31 deduced by Volkov et al., that is

Pn,k =
(1− xk)Υk

Γ(Υk)

xnk
n!

Γ(n+ Υk).

Thus, for simplicity we chose to fit our data with the simple function 5.2, that
we can consider to be a distribution when its parameters satisfy the conditions
c+ 1 > 0→ c > −1 and ln(1/b) > 0→ b < 1.
In particular we are interested in the gamma shape parameter c + 1 that, as we
remarked in section 4.4, is related to the immigration parameter Υ of the discrete
model, or to the b/D parameter of the continuous model, which corresponds to an
immigration term divided by a term that describes the fluctuations due to demo-
graphic stochasticity. Thus, the parameter c can help us understanding which is
the dynamics under our system and what type of interactions are present among
its constituents. Furthermore, following the example reported in section 4.5, we
can perceive which type of community we are observing through our clustering
procedure.
So, let us report our results, taking a particular attention to the shape of the fitted
function, that is to the parameter c. In the following figures we show for each
sample at each similarity threshold used, a first figure with the histogram in log2

x-scale, the histogram points plot (blue line) and the fit curve (red line), and a
second figure representing the cumulative function of the histogram points plot
(blue) and that of the fit (red).
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Conclusions from results Looking at Preston plots results, we can note how
well the theoretically predicted gamma distribution fits Jeraldo’s gut microbiota
sequencing data. We can note how, as the similarity threshold decreases, our
Preston plots show a transition from a logserie-like to a lognormal-like curve.
This result of course reminds us that of the coral reefs (see section 4.5), in which
this passage was explained in terms of local communities and metacommunities.
As for the coral reefs, here we have an ‘immigration’ parameter c that increases as
the similarity threshold decreases, as showed in figure 5.1. Note that in some cases
we have c < −1, thus our function would not be exactly a distribution. Anyway
we can give an interpretation considering these as limit cases with c ∼ −1.
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Figure 5.1: Trend of the parameter c for different samples. Note how c always
decreases with the increase of the similarity threshold and how data from the same
animal species produce similar c.

What we can assert is that when we cluster our data with a high similarity thresh-
old, we are sampling many small OTUs (as already observed in distance his-
tograms and in taxonomic assignments inside OTUs) which have a low immi-
gration rate, that corresponds to having many small isolated local communities,
separated from each other. In such a situation, the RSA resembles the Fisher log-
series xn/n (eq.4.1), since the gamma shape parameter (c + 1) is very close to 0
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(c ∼ −1).
With the decreasing of the similarity threshold, we sample fewer but bigger OTUs,
as in our previous results, and the immigration rate increases. This is because,
again referring to the coral reefs example, sampling bigger OTUs corresponds to
assembling together multiple local communities into metacommunities. Thus, the
RSA distribution of course acquires an interior mode, becoming more lognormal-
like and the immigration parameter increases, since the many local communities
assembled together will interact between each others and there will be immigra-
tion from each local community towards the others. In confirmation of this we
can observe that with the decreasing of the similarity threshold, the gamma shape
parameter c increases, as observed for the coral reefs.
Furthermore, from figure 5.1, we can also see how well different animal species
gut microbiota result separated in the parameter c plot: SRR491180 and SRR491181
both refer to cattle rumen gut microbiota, SRR491182 and SRR491183 both refer
to swine gut microbiota, while SRR491179 refers to chicken cecum microbiota.
To conclude, we can assert that the sampled microbiota community can be con-
sidered as an ensemble of isolated local communities, if we compute a refined
analysis, that is if we look really close, while it shows a metacommunity behavior
if we look at it more roughly, as also confirmed by our previous tests on inside-
OTU distances distribution and inside-OTU taxonomic assignment. So, from our
analysis we can extract informations on the structure and the dynamics of gut mi-
crobiota populations. Furthermore, we can also differentiate the species of origin
of the gut microbiota and we can hope to apply these results in the understanding
of the changing of gut microbiota populations in different conditions and patholo-
gies.



Conclusions

In this work we analyzed next-generation sequencing data of 5 animals from [35],
acquired with 454 Life Sciences pyrosequencing.
We compared the provided sequences through the algorithm UCLUST [2] and
we thus generated OTUs, which correspond to bacteria species at particular tax-
onomic levels. We obtained clusters with different structures by using different
threshold similarities. For high similarity we obtained many small clusters, which
show a behavior similar to the coral-reef communities, when considered as iso-
lated local communities, with a Relative Species Abundance (RSA) distribution
well described by a log-serie like curve, as first proposed by Fisher [30]. For
low similarity thresholds, instead, we could see the trend of the relative species
abundance for fewer but bigger OTUs. In this case, the Preston plot acquired an
interior mode and became lognormal-like.
This passage from a log-serie to a lognormal curve had been observed previously
in many ecological systems and has been mathematically described with a simple
dynamical model based on a master equation by Volkov et al. [49].
Such as in the work of Volkov et al. for the coral-reef community, we were able
to extract informations on a shape parameter, which is related to some kind of
interaction among species (OTUs) and which, for the coral reef, was considered
as an immigration parameter. As expected, we obtained a shape parameter which
increases with the decreasing of the similarity threshold, that is shifting from a
refined view of isolated local communities (small clusters) to a rougher view of
metacommunities, each composed of different local communities.
We proved that this model also works well for our sequencing data, showing how
the gut microbiota community can be studied as an ecological system. This can
help us understanding its biodiversity and the phenomenon of dysbiosis, which
affects patients with metabolic diseases such as obesity or type 2 diabetes.
The technique of applying ecological models to sequencing data seems to have
a great future. Further works will extend this ecological description to genes se-
quences in which species, families, etc. are characterized by the percentage of
bases in common, even if they do not refer to microorganisms as for gut micro-
biota sequencing. In particular, a genetic ecosystem can be that of the transposable
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elements (TEs) [47], that is very important in genetic and biodiversity regulation.
These are more or less long bases sequences which raid DNA and whose inva-
sion and replication mechanisms inside DNA itself constitute a complex and not
entirely clear issue. Given that TEs have a considerable impact on the biology of
their host species, we need to better understand whether their dynamics reflects
some form of organization or is primarily driven by stochastic processes, and this
can be of course another application of all the procedures, algorithms and models
explained in this work.



Appendix A

Stochastic processes - Fluctuations

Let us consider a random variable x defined on R, with probability density ρ, and
let us consider the generation of N of these events: x1, ..., xN . We want to com-
pute the mean number NA of events that fall inside an ensemble A ⊂ R and in
particular we are interested in its fluctuation σA

NA
. For this purpose we consider

the random variable y =
∑N

i=1 χA(xi), whose value corresponds exactly to the
number of events that fall inside A (y is the number of times that x falls inside A),

and where χA is the characteristic function of A: χA =

{
0, if x /∈ A
1, if x ∈ A

.

In general, if y = g(x) is a function of a random variable x with density func-
tion ρ(x), the density function of y is given by ρ̂(y) =

∫∞
−∞ ρ(x)δ(y − g(x))dx.

Consequently the probability density function of y is

ρ̂(y) =

∫ ∞
−∞

δ

(
y −

N∑
i=1

χA(xi)

)
ρ(x1) · · · ρ(xN)dx1 · · · dxN (A.1)
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Let us calculate the mean of y:

NA =< y > =

∫
yρ̂(y)dy

=

∫
ρ(x1) · · · ρ(xN)dx1 · · · dxN

∫
yδ

(
y −

N∑
i=1

χA(xi)

)
dy

=
N∑
i=1

∫
χA(xi)ρ(x1) · · · ρ(xN)dx1 · · · dxN

=
N∑
i=1

∫
χA(xi) · ρ(xi)dxi

=
N∑
i=1

χA(xi)

= N · χA (A.2)

Where in the last steps we have applied the definition of χA: χA(xi) 6= 0 only if

xi ∈ A, and in this case we have
∫
χA(xi)ρ(xi)dxi =

∫
A
ρ(xi)dxi =

{
µ(x)

x ∈ A
=

µ(A).
We now calculate the mean of y2:

< y2 > =

∫
y2ρ̂(y)dy

=
N∑

i,j=1

∫
χA(xi)χA(xj)ρ(x1) · · · ρ(xN)dx1 · · · dxN (A.3)

if i = j we obtain a single integral on xi:
∑∫

ρ(xi)dxi = Nµ(A);
if i 6= j we will have a double integral:

∑∫
ρ(xi)dxiρ(xj)dxj = N(N−1)µ2(A).

< y2 > is given by the sum of these two contributions: < y2 >= N(N −
1)µ2(A) +Nµ(A).
Consequently, the variance will be

σ2
A =< y2 > − < y >2= Nµ(A)(1− µ(A)) (A.4)

and it means that σA ∼
√
N .

We thus have that the fluctuation is given by

σA
NA

=
1√
N

[
1− µ(A)

µ(A)

] 1
2

∼ 1√
N

(A.5)
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We can conclude that fluctuations go as σA
NA
∼ 1√

N
(if µ(A) ∼ 1 we will have

small fluctuations, while if A is small and thus µ(A) � 1, fluctuations are likely
to diverge) and that the stochastic process instead goes as σA ∼

√
N [43].



Appendix B

DNA and RNA

DNA is the genetic material that organisms inherit from their parents. Encoded
in the structure of DNA is the information that programs all the cell’s activities,
through the production of proteins. Each gene (stretch of DNA) along a DNA
molecule directs synthesis of a type of RNA called messenger RNA (mRNA).
The mRNA molecule interacts with the cells protein-synthesizing machinery to
direct production of a polypeptide, which folds into all or part of a protein. We
can summarize the flow of genetic information as DNA → RNA → protein.
Actually, the system is much more complicated than this, involving many regula-
tory pattern, but for our description here, this simplification can be worthwhile.

B.1 DNA and RNA as molecules
Now, let us focus on the biochemical structure of DNA and RNA molecules.
DNA (DeoxyriboNucleic Acid) and RNA (RiboNucleic Acid) are a nucleic acid,
and in particular they consist of long biopolymers made of simpler units called
nucleotides. A nucleotide is composed of three parts: a nitrogen-containing (ni-
trogenous) base, a five-carbon sugar (a pentose), and one phosphate group (see
fig.B.1).

To build a nucleotide, let us first consider the nitrogenous bases, described in
fig.B.2. Then, let us add a sugar to the nitrogenous base. In DNA the sugar is
deoxyribose, while in RNA it is ribose, as shown in fig.B.3. So far, we have built
a nucleoside (nitrogenous base plus sugar). To complete the construction of a nu-
cleotide, we attach a phosphate group to the 5’ carbon of the sugar. The molecule
is now a nucleoside monophosphate, better known as a nucleotide.
Now we can see how these nucleotides are linked together to build a polynu-
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Figure B.1: (left) A polynucleotide has sugar-phosphate backbone with variable
appendages, the nitrogenous bases. (right) A nucleotide monomer includes a ni-
trogenous base, a sugar, and a phosphate group. Figure from [45].

Figure B.2: Nitrogenous bases. Figure from [45].
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Figure B.3: Sugars. Figure from [45].

cleotide. Adjacent nucleotides are joined by a phosphodiester linkage, which
consists of a phosphate group that links the sugars of two nucleotides. This bond-
ing results in a backbone with a repeating pattern of sugar-phosphate units (see
fig. B.1). The two free ends of the polymer are distinctly different from each
other. One end has a phosphate attached to a 5’ carbon, and the other end has a
hydroxyl group on a 3’ carbon; we refer to these as the 5’ end and the 3’ end,
respectively. We can say that a polynucleotide has a built-in directionality along
its sugar-phosphate backbone, from 5’ to 3’.
RNA molecules usually exist as single polynucleotide chains like the one shown
in fig.B.1. In contrast DNA molecules are double-stranded helices, consisting of
two long biopolymers that spiral around an imaginary axis (fig.B.4).

Figure B.4: DNA double elix. Figure from [45].
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The two sugar-phosphate backbones run in opposite 5′ → 3′ directions from each
other; this arrangement is referred to as antiparallel. The sugar-phosphate back-
bones are on the outside of the helix, and the nitrogenous bases are paired in the
interior of the helix. The two strands are held together by hydrogen bonds be-
tween the paired bases (see fig.B.4). Only certain bases in the double helix are
compatible with each other. Adenine (A) always pairs with thymine (T), and gua-
nine (G) always pairs with cytosine (C). Thus, the two strands of the double helix
are complementary. Note that in RNA, adenine (A) pairs with uracil (U).

B.2 DNA replication
Let us now describe the process of DNA replication, that is exploited in many
sequencing techniques.
The replication of a DNA molecule begins at particular sites called origins of repli-
cation, short stretches of DNA having a specific sequence of nucleotides. While
many bacteria’s chromosomes have just a single origin, eukaryotic chromosome
may have hundreds or even a few thousand replication origins.
Proteins that initiate DNA replication recognize this origin sequence and attach
to the DNA, separating the two strands and opening up a replication ‘bubble’.
Replication of DNA then proceeds in both directions until the entire molecule is
copied. In eukaryotes, multiple replication bubbles form and eventually fuse, thus
speeding up the copying of the very long DNA molecules.

At each end of a replication bubble is a replication fork, a Y-shaped region where
the parental strands of DNA are being unwound. Several kinds of proteins partic-
ipate in the unwinding (fig.B.5). Helicases are enzymes that untwist the double
helix at the replication forks, separating the two parental strands and making them
available as template strands. After the parental strands separate, single-strand
binding proteins bind to the unpaired DNA strands, keeping them from re-pairing.
The untwisting of the double helix causes tighter twisting and strain ahead of the
replication fork. Topoisomerase helps relieve this strain by breaking, swiveling,
and rejoining DNA strands.
The unwound sections of parental DNA strands are now available to serve as tem-
plates for the synthesis of new complementary DNA strands. However, the en-
zymes that synthesize DNA cannot initiate the synthesis of a polynucleotide; they
can only add nucleotides to the end of an already existing chain that is base-paired
with the template strand. The initial nucleotide chain that is produced during DNA
synthesis is actually a short stretch of RNA, not DNA. This RNA chain is called a
primer and is synthesized by the enzyme primase. Primase starts a complementary
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Figure B.5: Some of the proteins involved in the initiation of DNA replication.
The same proteins function at both replication forks in a replication bubble. Figure
from [45].

RNA chain from a single RNA nucleotide, adding RNA nucleotides one at a time,
using the parental DNA strand as a template. The completed primer, generally
510 nucleotides long, is thus base-paired to the template strand. The new DNA
strand will start from the 3’ end of the RNA primer.
Enzymes called DNA polymerases catalyze the synthesis of new DNA by adding
nucleotides to a preexisting chain. In E. coli, there are several different DNA
polymerases, but two appear to play the major roles in DNA replication: DNA
polymerase III and DNA polymerase I. The situation in eukaryotes is more com-
plicated, with at least 11 different DNA polymerases discovered so far; however,
the general principles are the same. Most DNA polymerases require a primer and
a DNA template strand, along which complementary DNA nucleotides line up.
Each nucleotide added to a growing DNA strand comes from a nucleoside triphos-
phate, which is a nucleoside (a sugar and a base) with three phosphate groups. The
nucleoside triphosphates used for DNA synthesis are chemically reactive, partly
because their triphosphate tails have an unstable cluster of negative charge. As
each monomer joins the growing end of a DNA strand, two phosphate groups are
lost as a molecule of pyrophosphate. Subsequent hydrolysis of the pyrophosphate
to two molecules of inorganic phosphate is a coupled exergonic reaction that helps
drive the polymerization reaction (fig.B.6).
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Figure B.6: Incorporation of a nucleotide into a DNA strand. Figure from [45].



Appendix C

16S ribosomal RNA and
phylogenetic analysis

Evolution is a process whereby populations are altered over time and may split
into separate branches, hybridize together, or terminate by extinction. The evolu-
tionary branching process may be depicted as a phylogenetic tree, and the place
of each of the various organisms on the tree is based on a hypothesis about the
sequence in which evolutionary branching events occurred.
Phylogenetic analyses, that is the study of evolutionary relationships among groups
of organisms (e.g. species, populations), which are discovered through molecular
sequencing data and morphological data matrices, have become essential to re-
search on the evolutionary tree of life.
Taxonomy, that is the classification, identification, and naming of organisms, is
usually richly informed by phylogenetics. So, to finally understand why we do
sequence 16S rRNA to obtain the classification of gut microbiota’s bacteria pop-
ulations, let us first explain how biologists classify living beings in pylogenetic
trees and how ribosomal RNA can be exploited for this purpose.

C.1 The tree of life
Early taxonomists classified all known species into two kingdoms: plants and an-
imals. Even with the discovery of the diverse microbial world, the two-kingdom
system persisted: noting that bacteria had a rigid cell wall, taxonomists placed
them in the plant kingdom. Eukaryotic unicellular organisms with chloroplasts
were also considered plants. Fungi, too, were classified as plants, partly be-
cause most fungi, like most plants, are unable to move about (never mind the
fact that fungi are not photosynthetic and have little in common structurally with
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plants!). In the two-kingdom system, unicellular eukaryotes that move and in-
gest food (protozoans) were classified as animals. Those such as Euglena that
move and are photosynthetic were claimed by both botanists and zoologists and
showed up in both kingdoms. Taxonomic schemes with more than two kingdoms
gained broad acceptance in the late 1960s, when many biologists recognized five
kingdoms: Monera (prokaryotes), Protista (a diverse kingdom consisting mostly
of unicellular organisms), Plantae, Fungi, and Animalia. This system highlighted
the two fundamentally different types of cells, prokaryotic and eukaryotic, and set
the prokaryotes apart from all eukaryotes by placing them in their own kingdom,
Monera.
However, phylogenies based on genetic data soon began to reveal a problem with
this system: some prokaryotes differ as much from each other as they do from
eukaryotes. Such difficulties have led biologists to adopt a three-domain sys-
tem. The three domains (Bacteria, Archaea, and Eukarya) are a taxonomic level
higher than the kingdom level. The validity of these domains is supported by
many studies, including a recent study that analyzed nearly 100 completely se-
quenced genomes.
The domain Bacteria contains most of the currently known prokaryotes, including
the bacteria closely related to chloroplasts and mitochondria. The second domain,
Archaea, consists of a diverse group of prokaryotic organisms that inhabit a wide
variety of environments. Bacteria differ from archaea in many structural, bio-
chemical, and physiological characteristics. The third domain, Eukarya, consists
of all the organisms that have cells containing true nuclei.

Figure C.1 represents one possible phylogenetic tree for the three domains and
the many lineages they encompass. The three-domain system highlights the fact
that much of the history of life has been about single-celled organisms. The two
prokaryotic domains consist entirely of single-celled organisms, and even in Eu-
karya, only the branches shown in red (plants, fungi, and animals) are dominated
by multicellular organisms. Of the five kingdoms previously recognized by tax-
onomists, most biologists continue to recognize Plantae, Fungi, and Animalia,
but not Monera and Protista. The kingdom Monera is obsolete because it would
have members in two different domains. The kingdom Protista has also crumbled
because it is polyphyletic: it includes members that are more closely related to
plants, fungi, or animals than to other protists.
In the tree in fig.C.1, the first major split in the history of life occurred when bacte-
ria diverged from other organisms. Thus, eukaryotes and archaea are more closely
related to each other than either is to bacteria.
This reconstruction of the tree of life is based largely on sequence comparisons
of rRNA genes, which code for the RNA components of ribosomes. Because ri-
bosomes are fundamental to the workings of the cell, rRNA genes have evolved
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Figure C.1: The three domains of life. The phylogenetic tree shown here is
based on rRNA gene sequences. Branch lengths are proportional to the amount of
genetic change in each lineage. Figure from [45].

so slowly that homologies between distantly related organisms can still be de-
tected, making these genes very useful for determining evolutionary relationships
between deep branches in the history of life.
However, other genes reveal a different set of relationships. For example, re-
searchers have found that many of the genes that influence metabolism in yeast
(a unicellular eukaryote) are more similar to genes in the domain Bacteria than
they are to genes in the domain Archaea, a finding that suggests that the eukary-
otes may share a more recent common ancestor with bacteria than with archaea.
Comparisons of complete genomes from the three domains show that there have
been substantial movements of genes between organisms in the different domains.
These took place through horizontal gene transfer, a process in which genes are



C.2 16S ribosomal RNA 106

transferred from one genome to another through mechanisms such as exchange of
transposable elements and plasmids, viral infection, and perhaps fusions of organ-
isms. Recent research reinforces the view that horizontal gene transfer is impor-
tant. For example, a 2008 analysis indicated that, on average, 80% of the genes
in 181 prokaryotic genomes had moved between species at some point during the
course of evolution. Because phylogenetic trees are based on the assumption that
genes are passed vertically from one generation to the next, the occurrence of such
horizontal transfer events helps to explain why trees built using different genes can
give inconsistent results.

C.2 16S ribosomal RNA
The ribosome is a large and complex molecular machine, found within all living
cells, that serves as the primary site of biological protein synthesis (translation).
Ribosomes link amino acids together in the order specified by messenger RNA
(mRNA) molecules. Ribosomes consist of two major subunits: the small riboso-
mal subunit reads the mRNA, while the large subunit joins amino acids to form
a polypeptide chain. Each subunit is composed of one or more ribosomal RNA
(rRNA) molecules and a variety of proteins.
Ribosomal RNA is suitable for phylogenetic studies since it is a component of all
self-replicating systems, it is readily isolated and its sequence changes but slowly
with time, permitting the detection of relatedness among very distant species. In
particular, 16S ribosomal RNA (or 16S rRNA), which is a component of the 30S
small subunit of prokaryotic ribosomes, is exploited for this purpose. 16S rRNA
is 1.542kB (1542 nucleotides) in length and the genes coding for it, referred to as
16S rDNA, are indeed used in reconstructing phylogenies, thanks to the work of
Carl Woese and George E. Fox [51].
Multiple sequences of 16S rRNA can exist within a single bacterium. The most
common primer pair was devised by Weisburg et al. [50] and is currently referred
to as 27F and 1492R; however, for some applications shorter amplicons may be
necessary for example for 454 sequencing with Titanium chemistry (500-ish reads
are ideal) the primer pair 27F-534R covering V1 to V3. Often 8F is used rather
than 27F. Fig.C.2 shows these primers.
Type strains of 16S rRNA gene sequences for most bacteria and archaea are avail-
able on public databases such as NCBI. However, the quality of the sequences
found on these databases are often not validated. Therefore, secondary databases
which collect only 16S rRNA sequences are widely used. The most frequently
used online databases are: EzTaxon-e, Ribosomal Database Project (RDP), SILVA
and Greengenes.
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Figure C.2: 16S ribosomal RNA primers. Figure from [16].
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