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Abstract

X-ray absorption spectroscopy (XAS) is a powerful means of investigation of structural and
electronic properties in condensed -matter physics. Analysis of the near edge part of the XAS
spectrum, the so — called X-ray Absorption Near Edge Structure (XANES), can typically
provide the following information on the photoexcited atom:

e Oxidation state and coordination environment.
e Speciation of transition metal compounds.
e Conduction band DOS projected on the excited atomic species (PDOS).

Analysis of XANES spectra is greatly aided by simulations; in the most common scheme the
multiple scattering framework is used with the muffin tin approximation for the scattering
potential and the spectral simulation is based on a hypothetical, reference structure. This
approach has the advantage of requiring relatively little computing power but in many cases
the assumed structure is quite different from the actual system measured and the muffin tin
approximation is not adequate for low symmetry structures or highly directional bonds. It is
therefore very interesting and justified to develop alternative methods. In one approach, the
spectral simulation is based on atomic coordinates obtained from a DFT (Density Functional
Theory) optimized structure.

In another approach, which is the object of this thesis, the XANES spectrum is calculated
directly based on an ab — initio DFT calculation of the atomic and electronic structure. This
method takes full advantage of the real many-electron final wavefunction that can be computed
with DFT algorithms that include a core-hole in the absorbing atom to compute the final cross
section. To calculate the many-electron final wavefunction the Projector Augmented Wave
method (PAW) is used. In this scheme, the absorption cross section is written in function of
several contributions as the many-electrons function of the finale state; it is calculated starting
from pseudo-wavefunction and performing a reconstruction of the real-wavefunction by using a
transform operator which contains some parameters, called partial waves and projector waves.
The aim of my thesis is to apply and test the PAW methodology to the calculation of the
XANES cross section. I have focused on iron and silicon structures and on some biological
molecules target (myoglobin and cytochrome c). The main arguments showed in this thesis
are divided in four chapters :

1. Overview of the XANES spectroscopy.
2. Introduction to the Projector Augmented Wave (PAW) formalism.

3. Plane wave pseudopotentials approach to resolve Kohn-Sham equations in DFT frame-
work.

4. Results and discussions about ab-initio determination of the XANES cross section for
iron,silicon, myoglobin and cytochrome c.
The topic of this thesis has been awarded of 500000 core processor hours on the CINECA HCP
resources, on the basis of a peer-review procedure. In our case these core processor hours was
allocated on an IBM BG/Q named FERMI (Project IsC09/AbIXS).
Finally other inorganic and biological systems could be taken into account for future applica-
tions of this methodology, which could become an important improvement with respect to the

multiscattering approach.
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Chapter 1

The X-ray absorption
spectroscopy

1.1 Photoelectric absorption and X-radiation

It is indicated as X-radiation (X-rays) the region of electromagnetic spectrum
corresponding to wavelenght raging 1-0.01 nm nearby gamma ray from side of
shorter wavelenght, and vacuum ultraviolet region from side of longer wavelenght.
The X-rays with short wavelenght (around 0.01-0.1 nm) are called hard X-rays
and the X-rays with long wavelenght (up to 1 nm) are called soft X-rays.
These values are comparable with interatomic distances in condensated matter,
S0 as it is possible to use ondulatory properties of X-rays to investigate the
crystallographic structure of the matter by means of diffraction analysis.

The interaction between electromagnetic radiation and matter can produce two
physical effects, scattering or absorption. In the first case, the incident X-ray
photon is diffused by atoms and, after collision, its energy is conserved (Thom-
son’s scattering) or not (Compton’s scattering) with respect to the energy of
the incident beam. In the second event, the X-ray photon is absorbed by matter
and an electron could be expelled by means of photoelectric effect. Therefore an
electronic reorganization of the absorbing atom occurs and a photoelectron can
be produced.

Currently, elastic scattering is used as investigation method to obtain informa-
tions on the crystalline structure of the matter, if the spacing is in solid phase
and in crystalline form. This method, called X-ray Diffraction, is not taken in
account in this thesis and is reported just to complete the overview about X-ray
investigation methods. In this chapter we will describe the behaviour of the
X-ray radiation in the photoelectric absorption.

The absorption and emission of the electromagnetic radiation by matter occurs
by means of well defined quantum energy (the photons) F = hr and involves
the atomic energy level of the absorbing atom, in accordance with Bohr law [1]:

AFE = hv (L.1)

where h is the Planck constant and v is the photon frequencies.
The energy corrisponding to the soft X-Ray and hard X-Ray is around 1keV and
10 keV respectively. In this range, the electrons interacting with X-ray photons

1



Chapter 1-The X-ray absorption spectroscopy 2

occupy the inner shell of the atoms, called shell K or shell L. Once the photon is
absorbed in K shell, an electron can be expelled from the atom (with production
of photoelectron) and the formation of a hole occurs. Subsequently, the hole can
be filled by means of two distinct processes: if an electron from upper shell drops
in K-shell and the atom relaxes to its ground state, fluorescence effect happens.
On the contrary, the atom relaxes emitting electrons from upper shell, called
Auger electrons. In the first case, the energy of X-ray photon corresponds to the
energy difference between two electronic level which are involed in the relaxing
process; K, emission lines results when an electron transitions to the innermost
"K" shell from shell L, whereas K3 emission lines is resulting from the transiton
M— K.

In order to understand the photoelectric asborption, the absorption cross section

Energy
Continuum',ﬂ Continuum 4 hy Continuurp,,v.
%D—GQ—O— L
K o—e—0— K

Figure 1.1: Mechanism of production of a photoelectron by means of X-ray photon
absorption and subsequent relaxing through fluorescence and Auger effects

have to be introduced.
Let us to consider an electromagnetic wave consisting of N photons with energy

%
hv, wave vector k and intensity
Iy = Nhv (1.2)
The intensity I follows an exponential decay law

I
L= e Hd (1.3)

where g is the absorption coeflicient and d is thickness of the sample. The energy
flux through the sample area A per second is:

The density of the atoms in spacing crossed by flow ®q is defined as n;. Then,
the number of scattered X-ray photons per second is

I, = DoNyo (1.5)

with N, = n,Ad and o, called geometric cross section.
Let us to define Wy, the number of absorbed photons per second in 47 stereora-
diant. Then the previous equation can be rewritten as

W4ﬂ- = (DoNbO'a (16)

where o, is called absorption cross section. In last equation the flow of the
incident photons @ is included because the incident beam is larger than the
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Figure 1.2: Incident radiation beam on a sample either with a larger (on the left) and
smaller (on the right) cross section area

sample; on the contrary, we could consider the incident beam smaller than
sample by replacing the flow ®( by intensity [y. The physical meaning of the
cross section is the area corrisponding to each diffusion center (for example an
absorbing atom). It is defined as

_ W47'r
BN,

Oq (1.7)
Ragarding the diffusion process, we consider the number of scattered X-ray per
second into a detector subtended the solid angle A€} by introducing into equation
(1.6) the differential cross section (42)

d
I, = ION;,AQ(é) (1.8)

Usually, the differential cross section is introduced to study scattering process
where X-ray photons are scattered in a region into the solid angle A2, subtended
by detector of area A() = ‘3,—2’?; from mathematical point of view, it means to
perform an integration over the k values into the solid angle A€2. For absorption
process they any direction into 47 radians is possible.

The absorption coefficient p is strictly connected with absorption cross section
04, by equation:

'77lN
= paOaq = (p 1 A)aa (1.9)

by means of which the absorption cross section becomes experimentally measur-
able by means of absorption X-ray spectroscopy experiment. In equation (1.9)
N, corrisponds to the Avogadro number, p, to atomic density, p,, is the mass
density and A is atomic mass number.

In general, the absorption cross section o, is dependent on atomic number Z
and on photon energy E. This dependence becomes evident when it is plotted in
function of the energy of incident photon.

This function suffers a discontinuity corresponding to well-defined energies of
incident photon, which are typical for each chemical element. The discontinu-
ities determine the absorption threshold and in qualitative terms, they can be
explained easily. Let us to consider an electron into shell K of iron atom,with
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binding energy value of 7.112 keV. In presence of incident photons with energy
greater than 7.112 keV, the electron into K-shell can be expelled by photon.
In case of incident photon with energy smaller than 7.112 eV, the electron can
not be expelled from K-shell, but a photoelectron can be produced from shell
Ly, Lir ed Lyrr. The corresponding energy value from shell K is called K-edge.
Therefore the value reported above of 7.112 keV corresponds to the Fe K-edge.
For silicon the K-edge value is 1.839 keV.
In addition we want to show that the K-edge energy has a well-defined value for
each atom, while the L-edge has a more complex structure, corresponding to the
atomic fine structure. Rougly speaking, in figure (1.3) we show the absorption
process by X-ray photon which involves the atomic energy levels of the absorbing
atom;the cross section is reported in function of the energy of incident photon.
Figure indicates how the cross section relative to the excitation process from L
shell is characterized by fine structure due to the 2s and 2p orbitals (belonging
to L-shell) which are splitted towards different energy values. The 2s orbital
is found at low energy, whereas the p orbitals are splitted in p;/; and p3/o due
to the spin-orbit coupling. This splitting of 2s ¢ 2p obitals generates the fine
structure of the L-edge. Regarding the K-edge no fine structure is detected
because the photoelectric process involves just the 1s orbital.

In order to describe the radiation-matter interaction a complete quantum-

Energy W (3dy2)*

B LU

Absorbance (cm2g-1)

(1s)?

Energy (ke V)

Figure 1.3: In figure the meaning of fine structure in absorption cross section is
showed|2]

mechanical approach should be used, where both the radiation and the atom are
treated as quantum object. Analogue results can be achieved using a semiclassi-
cal theory, by means of which the radiation is treated as classical electromagnetic
wave and the matter is treated quantum-mechanically.
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In semiclassical theory the radiation-matter interaction is described through a
perturbative theory time-dependent, where the radiation it is considered as a
periodic perturbation acting on absorbing atom. In this way the Hamiltonian H
is a sum of two terms: H; = V which is a small perturbation time-dependent,
whereas with Hy it is indicated the unperturbed hamiltonian. Finally we found
that H = Hy + Hy.[3|

The hamiltonian H7 is cause of transition between two atomic states; the initial
state corresponds to the atomic state with energy F; of the unperturbed atom,
while the atomic final state corresponds to the state whose energy value is found
in a band around the value F; + huv.

Let us to indicate the intial state, by using Dirac notation, as |¢) and the final one
with |f). The number of transitions per second between |i) and |f) is calculated
by Fermi golden rule at first perturbation order

2w
W = =L \Mys () (1.10)

where the matrix transition element is M,y = (¢|H;|f) and p(Ey) is the density
of final state of the photoelectron. The pertubation term H; will be explained
in section 4 in detail.

In order to calculate the absorption cross section, it is necessary to perform
an integration over the entire solid angle 47, considering that the absorption
process is no longer elastic and the electron is expelled from the orbital with
binding energy FEj,. Obviously the difference between photon energy hv and the
orbital binding energy Fj is equal to the photoelectron energy. The number of
the events Wy, i.e. the number of photons absorbed per second is

21
W, = /€|]\L¢f|2EJ%5(E,,e “(E — E)p(Eye)dE,. (1.11)

The matrix element |M,¢| is calculated in dipole approximation as M;; =

YVVVY

Figure 1.4: To calculate the differential cross section an integrazion over k; value
behind the solid angle subtended by detector is needed (on the right). Regarding the
absorption cross section it is necessary perform an integration over all directions of the
photoelectron

< f ‘ €7 ’ z> and transition in which the angular momentum change as Al = +1
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occurs.The absorption cross section is given by equation

o, — W47r
a — q)O

(1.12)

Next sections the teoretical and experimental tools to perform an XAS (X-Ray
Absorption Spectroscopy) experiment will be illustrated. In particular, it will
be illustrated the XANES (X-Ray Absorption Near-Edge Structure) technique
which has been the object of the study in this thesis.

1.2 XANES e X-rays source

In this section typical experimental apparatus to perform X-ray absorption
experiment are described.In particular the source of X-rays will be illustrated
and the synchrotron radiation will be explained in detail[2].

The X-ray absorption spectra can be recorder in a trasmission geometry by using
an experimental apparatus whose schematic layout is reported in figure below
(1.5).

The trasmission factor defined as T' = T[o is related to absorption coefficient
in function of the energy of incident photons ¢, following the equation T" =
exp(—pu(e))d where d is the thickness of the sample.

It is also possible to measure the XAS signal by measuring the fluorescence yield,
where the dector is placed at 90° to the incident beam in a horizontal plane, so
as the unwanted contribution from elastic or anelastic scattering processes is
minimized or eliminated.

\
) \

G RRNETE T

Detector incident Detector trasmitted
beam lo beam |

fluorescence

Figure 1.5: In figure it is reported the scheme of experimental apparatus to acquire
XAS signal in trasmission and fluorescence geometry

Generally,in XAS experiment a source X-rays (X-ray tube,rotating anode, syn-
chrotron radiation ... ), optical components like monochromator and focalizing
devices, detector to record the incident and transmitted beam radiation will be
employed.

The employment of synchrotron radiation requires the usage of a coherent source
X-ray with large continue energy band and higher brillance. All these require-
ments are taken in account in synchrotron radiation. The figure-of-merit for the
source is defined as

photons/sec
(mmrad)?mm?20.1%bandwidth

Brillance = (1.13)
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where the intensity (number of photons per second) and the collimation of the
beam are introduced. Usually the collimation of the beam is given in milli-radian,
either for the horizontal and for vertical direction. It may be of importance
to know the size of the source and in equation (1.42) it is reported in mm?.
Moreover, in order to define the photon energy range to compare different X-ray
source, it has been fixed a relative bandwidth, choosen to be 0.1%. In this way,
the brillance is a quantity which allows one to compare the quality of X-ray beam
from different sources. The maximum brillance from third generation is about
102%photon /mrad? /mm?, around 10 orders of magnitude higher than that from
a rotating anode.

The technological limits regarding the X-ray production from standard fluores-
cence tubes are both low radiation intensity(depending by cooling efficiency) and
discrete nature of the emitting radiation; in a X-ray experiment like XANES
or EXAFS it is necessary using a continue energy spectrum. The rotating an-
ode tube improves the intensity beam because has a higher cooling efficiency;
however it is not employed in XAS spectroscopy for his discrete fluorescence
lines of the radiation. Indeed the spectrum from X-ray tube has also a continue
bremsstralung component due to the deceleration of the electrons forced by
metallic anode. The maximum intensity value of this radiation depends by the
applied voltage between anode and cathode; however its intensity is much lower
than discrete fluorescence lines K, e Kg.

The synchrotron radiation is produced from charged particles travelling at rela-
tivistic speed, forced to travel along curved paths by means of magnetic field.
The emitting radiation from charged particles is confined to a narrow cone with

2 . o . .
1 = me is the electron relativistic energy

an opening angle of 7 = = with y = .=

mc?

in mc? unit (figure 1.6).

‘ Radiation cone ‘

O i/y ‘ Opening angle
\\l B

Electron orbit
v
Orbit radius

Figure 1.6: In a accumulation ring, the clectrons are forced to go through circular
paths due to the application of constant magnetic field, emitting a beam radiation with
opening angle 1/ around 0.1-1 mrad, extremely collimated

The frequency of the electrons in a storage ring is 10% sec™'. In order to produce
X-ray, higher frequencies are needed, around 10'®. This value is obtained if
the electrons are forced to achieve relativistic condition. Typical values of the
electron energies in a storage ring are around 5 GeV with v = 10*. The opening
angle of the radiation cone is about 0.1-1 mmrad.

The orbital radius of the circulating electron beam are calculated from Lorentz
force L; = qeB where q is the charge of the particle, B is the magnetic field and
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c is the light speed. Since it is a circular motion, the Lorentz force is equal to
Fy = ma,. where a, is the centripetal force. The linear momentum of relativistic
electron is p = yme, then the radius is given by equation

yme = RqB (1.14)

where ¢ is the charge of the electron and R is the radius of the circular orbit.
Typical values of radius in storage ring are 1-40 m (The radius of synchrotron
in Grenoble is around 40 m) corresponding the the 0.02-2 GeV energy values.
Magnetic field forcing the electron in a circular motion are around 0.8 T.

The electrons circulating in a storage ring with angular frequency wgy should
produce photon with frequency ﬁ? (c light speed and R radius of the ring),
corresponding to the values 106 — 107 Hz typical values of the microwave range.
In order to obtain higher frequency, the electrons are accelerated into the
radiofrequency cavity. Then they move into devices which force them to have
a circular trajectory. These devices are a real radiation source. The bending
magnets force the electrons to travel along a circular trajectory producing photons
due to costant magnetic field application.

Let us imagine some devices [4] with lenght L and the spatial distance between
devices and detector is L'.

Let us to set the instant in which the electron pass through the bending magnet

as T = 0; the first photon emitted reachs the detector at the time T; = % + %

and the last one reachs the detector at the time Ty = % + L where v is the

electron speed and c is the light speed. The difference between AT = Ty — 15,
corresponds to the photon pulse:

AT = %[1 - ﬂ (1.15)

The photon frequency is calculated as

2
vy [ v}
= — |1+ - 1.16
v I + . ( )

By fixing ¢ ~ v, v = 10* ¢~ 10® m/s and L=0.1 m, we obtained v ~ 10" Hz
which corresponds to the frequency of the X-ray photons. The pulse duration is
characterized by short time (for example with gaussian profile) and the Fourier
transofrmation produces a broad frequency and energy spectrum, as necessary
in a X-ray absorption experiment XAS.

We have already said as the synchrotron radiation has a relativistic nature.
We show briefly this behaviour by considering the electron in a storage ring
along a circular path. Its velocity changes in direction everywhere, generating a
centripetal acceleration. Let us define At’ the time that the electron spends to
travel between two points A and B with velocity v, i.e. the time for the electron
to travel from one bend to the next. The observer experiences a time interval of
At between wavefronts. Due to the relativistic Doppler effect, the time interval
measured by observer (in laboratory reference frame) between two wavefront
emitted from A and B is

/
At = (¢ — ’Ucosu)A—t (1.17)
¢
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where « is the angle between electron velocity and the direction of the observer.
The radiation intensity is as higher as the Doppler effect is maximal. The
physical condition need to achieve the maximal contribution of Doppler effect
are satisfied for smallest o angle and the direction of the electron velocity is
nearly coincident with oberver direction.

We can also estimate the radiated power along the electron path as

P[EW] = 1.266c?[GeV]B?[T]L[m]I[A] (1.18)

where ¢ is the electron energy; its derivation in this section is beyond of our
scope.

Other radiation sources used in a synchrotron ring are wigglers and undulators
where the variable magnetic fields force the electrons to move along an ondulatory
path. The wigglers are built as a series of circular arcs, turning successively to
the left and to the right, forcing the electrons to oscillate both in orizontal and
vertical plane. In wigglers devices the observed intensity rises due to the sum
of incoerent waves, outcoming from each insertion. The increasing of intensity
is around 2N value where N is the number of periods. In wigglers no constant
magnetic field is used (BZ) = 373, where By is the maximum value of the field
which is introduced into the wiggler radiation power equation.

In ondulators the radiation is obtained by two distinct waves which are generated
by electrons in phase. An important physical quantity is the K factor which
discern the radiation outcoming from wigglers and ondulators

K — AqBy
2mme

(1.19)

where K = is 20 cmT for wigglers and around 1 for the ondulators. For wiggler
the horizontal and vertical opening angle of the radiation cone is K /v and 1/
respectively; for ondulators is + in both cases.

Finally coherence rate of the synchrotron radiation is obtained producing inter-
ference effects through waves generated by single electrons. In this framework, it
is possible to produce radiation with both transversal and longitudinal coherence,
which define the range where constructive interference occurs. By using higher
values out of range, shift between radiation components occurs, producing an
incoherent beam radiation with bandwidth AX \\ # 0.

1.3 XANES spectroscopy

In previous sections absorption cross section was introduced and the microscopic
mechanism produced by photon absorption have been illustrated. During this
process, the photoelectron suffers both the electron charge distribution and the
chemical enviroment. This is one of the reasons of the success of absorption X-ray
spectroscopies. The matter wave associates to the photoelectron is scattered
by atoms near to the absorbing atoms; then the cross section is dependent on
position of the nearest neighbour atoms. The photoelectron could fill either
unoccupied higher energy states or unbound states.

Usually XANES spectroscopy is defined up to 40-50 eV above the edge; in this
region the kinetic energy of the photoelectron is not very high and multiple
scattering events principally occurs. On the contrary in EXAFS region the
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photoelectron suffers a weak scattering.

In figure (1.7) typical XAS spectra is reported;the main area of interest,pre-
edge, XANES and EXAFS are indicated. Pre-edge region corresponds to the
photolelectron transition probabily due to the quadrupolar contributes of the
scattering matrix. Changing of the angular quantum number of Al = £2 is
allowed, producing low intensity signal. Another reason is the transition to the
discrete levels of the absorbing atom.

In the XANES region photoelectron multiple scattering by nearest neighbour
atoms occurs, producing the oscillating part of the spectrum. The wave associated
to the photoelectron propagates from source atom (the absorbing atom) as a
spherical wave. The oscillations extends for several hundred eV above the edge,
due to the back scattering of the outgoing spherical wave by neighbouring atom.
The EXAFS oscillations [2] are produced by interference between the outgoing
and back scattering waves. In EXAFS experiment the intial state ¥; is the
wave function which describes the innermost electrons in the orbital 1s or 2s
of the absorbing atom: the final state Wy is that of the photoelectron which
interacts with nearest neighbour ions. This interaction involves a changing of
the photoelectron wave function, defined by Wys; the EXAFS oscillations are
dependent from this modification. In fact let us to account the wave associate
to the outgoing photoelectron #, where 7 is calculated from the centre of the
absorbing atom and q is the wave vector of the photoelectron; by interaction
between photoelectron and one atom placed at the distance R from absorbing
atom,new spherical wave eq;;R is produced. The amplitude of the wave produced by
interference between outgoing wave from absorbing atom and backscattered wave
will be proportional to the %7 then the quantity Wy, at first approximation,
will be proportional to ez;ZR. In order to complete the analytical expression of
the EXAFS signal, we add the Deby-Waller factor, where the vibrations of the
nearest neighbour are taken in account, a phenomenological mean-free pathlength
and the scattering lenght ¢(g) to which the amplitude of the backscattered wave
is dependent. The EXAFS signal will be described by the following equation:

t(g)sen(2qR + 4(q)) ¢—2(q0)? ,—~2R/A
qR?

\Ijbs 0.8

By considering one shell of IV nearest neighbour atoms to the distance R;, we
obtain

ti(q)sen(2qR; +6(q)) _a(qe,)2 2R, /A
x(q) o ; E qR?J e~ 295" =28,/
with x(q) EXAFS signal defined as

_ He — Ho
x(q) = T (1.20)

where g is the absorption coefficient of the atom of the sample and pg is that
isolated atom.

Usually, the scattering process of the photoelectron is described by spherical
potential approximation, known as muffin-tin approzimation|4]. In this scheme,
the photoelectron suffers a potential V', sum of single contributions; each single
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XANES EXAFS

Pre-edge

|

Absorption

Energy (eV)

Figure 1.7: In this figure typical X-ray absorption spectra XAS are reported.In addition
the main regions of interest Pre-EDGE,XANES e EXAFS are indicated

Figure 1.8: The potential muffin-tin is sum of single contribution in non-overlapping
spherical region. The photoelectron outgoing from absorbing atom suffers a potential
due to the nieghboring atoms

potential acts in a well-defined region of the space and, beyond of that, the
potential is set to zero. Then

V=> wvn(r) (1.21)

where vy, (7) is the single atom contribution to the muffin-tin potential. Then the
muffin-tin potential consists of non-overlapping well-defined spherical regions
(figure 1.7).

Propagation of a photoelectron in a muffin-tin potential is described by Hamil-
tonian

H=Hy+V (1.22)

where Hj is the unperturbed contribution,consisting of only kinetic operator.
In order to obtain eigenstates |¥) of the H Hamiltonian operator, the time-
independent Schrodinger equation is resolved considering it as non homogeneous
partial differential equation.

(£ — Ho) |¥) =V [¥) (1.23)

so it is possible to apply the Green function formalism. The solution of ho-
mogeneous equation (whose physical meaning is the free particle solution of
Schrodinger equation) can be defined in a coordinate rappresentation as (r | @),
obtaining

(E—Ho)(r|¢)=0 (1.24)
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The free particle Green function Gy and energy E = % is defined |[3]

2

%(V2 + k%) Go(r,r'; B) = 6(r — 1) (1.25)

Morover if the identity

h2 ik-r

o (V2 4 k) = —4r(r) (1.26)

holds, then free particle Green function G takes the analytical form:

m e|r—r'|

G 9 /7E = T35 _ 01 7
o(r, 7", E) 2wh? |r — 1’|

(1.27)
It is possible to demonstrate that the solution of the inomogeneous equation is
the sum of solution of homogeneous equation, adding a particular solution

(r| W) =(rle) +/d37”Go(r,7";E) (r'[V]P) (1.28)

In order to perform this calculation, the formal solution of the equation (1.17)
is obtained as

1

U) = — V| 1.29

0 =10)+ gV 1Y (1.29)
Due to the singularity in E+m7 an imaginary term 47, infinitesimally small

and positive, is added in the denominator. To demonstrate the equation (1.22)

we may multiply the previous equation for (r|, obtaining

1

V(r)=(r|¥) = (rl¢) + Wm

Vo) (1.30)
The first term in the right side is the solution of the homogeneous equation
(1.18), i.e. it is the plane wave equation (5;)%/3e’*™.

By introducing the closed relation [ dr’|r’) (r/| = 1 in the previous equation,
we can write the equation (1.22) as

) = (ﬁ)m etk r)+ / r’ <rlmir’> (r'|V]¥) (1.31)
= <%)2/3 exp(ik -r) + /dr' <r|m|r1> V() (r) (1.32)

So by defining the Green function as

1

/. — B
GO(rvr E) - <T|E—H0:|:m

|r") (1.33)
the equation (1.22) is obtained. Moreover we should take into account both the
positive term and the negative term of the Green function GGy which describe as
the outgoing and incoming spherical waves respectively propagate in free space.
Since we take in account just the positive term of the Green function, the sign
+ will be replaced with 4+ and the notation for G further labels will not be
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taken into account. It is also possible obtain the formal solution of the equation
(1.23) through subsequently iterations of the unperturbed solution[6]. For weak
scattering potential at the first order, we have the solution |¥) = |®) which can
be introduced in (1.23) obtaining

YD = GV @) + | D) (1.34)

In order to calculate the second order solution, we introduce the solution obtained
in previous step in (1.23)

)3 = GV (GV |®) + @) + |®) = (GoVGoV + GoV + 1) [®)  (1.35)

By performing subsequently iterations we obtain

1

) = Z(GOV)” |®) = T-Gov |®) (1.36)

n

In the last equation the sum of the series is written as sum of geometrical series.
The hypothesis that it is a geometrical series must be verified, but this check
is beyond of our scope. Subsequently we consider to introduce the operator
T=V|¥) acting on unperturbed solution |P)

VI|¥) =T|¢) (1.37)

By comparing this last equation with (1.29), the series expansion (Dyson’s
expansion) as

T=V4+VGV+ VG VGV +... (1.38)

By defining the Green function G for the perturbed solution

1
CB) =F—msi (Ggll_ v) (1.39)

it is possbile calculate

G =Go+ GVG =Gy + GoTGy, (1.40)
and from equation (1.30) or (1.29)

T=V+VGT+... (1.41)

We started this section considering the muffin-tin potential as sum of single
spherical potentials, each acting in a well-defined non-overlapping region of the
space. Then it is reasonable to write the operator T as sum of terms, each is
associate to the single atom

tn = Up + U Goty (1.42)

Introducing the single values of ¢, in (1.34) and performing the sum over all
contributions to the potential V'

G=Go+» GovnGo+ Y GovnGovnGo+ ... (1.43)

nn’
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First term corresponds to the no scattered wave, the second one the scattered
wave from the nth atom due to the potential v, and third one describes double
scattering of the wavematter associate to the photoelectron by nth and n’ atoms
by means of the potentials v, e v,.

Finally, it is useful to rewrite the Fermi golden rule by means of Green function
formalism. Let us to write it as in Brouder’s paper [7]

2m 9
W= ?zf:|Mif| §(Ef — E; — hw) (1.44)
The cross section will be
o =4r’ahw | |Mif|*6(Ef — E; — hw) (1.45)
f

with « fine structure constant. The initial state is well described using an atomic
orbital in a inner shell (like 1s) while the final states are calculated in presence
of specific hole due to the expulsion of the photoelectron.

From ImG = 5;(GT — G™) and

—fImGrrE Z|f (Ef — E; — hw) (f] (1.46)

we obtain
W = —4raphwIm (i|€- P G(r,r, EYe- 7 |i) O(E; + hw — Eperms) (1.47)

where the function O(E; + hv — Epepmi) is added to take into account the
lifetime of the core-hole. The function named W corresponds to the event
probability, so it is bound to the equation I . In logarithmic scale the previous
expression is equal to pd; with equation 1.46) the absorption coefficient is
approximated by W as reported by [8].
The multiscattering theory in muffin-tin approximation with Green function
approach is the theoretical formalism underlying in some computational package
like FEFF, widely used in literature. To evaluate the equation (1.47), it is
necessary to calculate the perturbed Green function G, evaluating through the
Dyson expansion of the free particle Green functions. Indeed the formalism of
equation (1.47) is more complex since the terms showing in this equation are
written using the spherical armonics as basis to develop it.
Finally the muffin-tin potential is a good approximation for the EXAFS region of
the XAS spectra, because the kinetic energy of the photoelectron is higher and
multiscattering occurs due to the nucleus potential inside the non-overlapping
region. In XANES part of the XAS spectrum, the scattering probabily occurs
in region outside the action of the spherical potential.
In next section the angular dependece of the absorption cross section will be
briefly illustrated, following the Boruder’s paper [7]. They will be reported some
specific cases of interest treated in this thesis.

1.4 Angular dependence of absorption cross sec-
tion

In the present section, we reported briefly a theoretical investigation on angular
dependece of the absorption cross section, in particular for cristalline system at
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higher symmetry belonging to the cubic T; and O, puntual group [7].

We start from Hamiltonian operator which describes the interaction between an
electron with charge q, mass m, gyromagnetic factor g and spin s in a atomic
potential V(r) and the electromagnetic field with vector and scalar potential
A(r,t) and ®(r,t) respectively:

H= %[—mv —qAP +V(r) + q® — (9q/2m)s - B (1.48)
Applying the Coulomb gauge ® = 0 and V - A = 0, considering that the term
(g% /2m)A? is negligible for X-ray source, we obtain

H = Hy + (ihig/m)A -V — (g9q/2m)s - B (1.49)
with Hy = —(h?/2m)V? + V (r).The incident plane can be written as

A(r,t) = Ageexpli(k - r — wt)] + Ao expli(k - r — wt)] (1.50)

where € is the polarisation vector, k is the X-ray wavevector and Ag is the
vector potential amplitude. By considering a periodical perturbation w(t) =
woexp(—iwt) + wierp(iwt), the transition probability is

W = (2n/h) Y | (flwli) 8(Ef — Ei — hw) (1.51)
f

as already reported in (1.10). In our case, where the periodic perturbation is an
electromagnetic wave, since B =V - A

W = Const- Y _ | (flexp(ik - r)[he- V — (g/2)s - k x €|i) |* x 6(Ef — E; — hw)
f
(1.52)
2mq®| Ao|?
hm?2

where Const = The absorption cross section is obtained from equation

(1.51) as

o(w) = C'onst~z | (flexp(ik - r)[he- V — (g/2)s - (k x O)]|i) |*x (B —E;—hw)
f
(1.53)

with Const = (4m%ha/m’w). Since the mean radius of the 1s orbital with
effective atomic number Zgs¢ is ag/Zess with ao the Bohr radius, we perform
the series expansion of the term exp(ik - r) as

exp(ik -r)~1+ik-r (1.54)
The dipole electric transition matrix elements is
—[m(Ey — E;)h] (fe-r|i) (1.55)

‘We note the dipolar approximation is not dependent upon wave vector k; it is
a good approximation for spectroscopy where a low radiation frequency (and
low energy) is used, like UV and visible rays. For X-ray spectroscopy this



Chapter 1-The X-ray absorption spectroscopy 16

approximation is still applied for proceeses which involve orbitals with reduced
spatial extension, like 1s orbital. In dipolar approximation we found just the
dependence of the cross section form polarization vector €. The cross section can
be written as

oP(@) =aP(0,0) = \/Br/5 > V3o (2,m) (1.56)

m=—2

where the first term is the isotropic absorption cross section,while the second
term is a mesure of angular dependence between ¢ and k. The term o (1,m) is
the mth component of a spherical tensor of rank I and transform under rotation
like the spherical harmonics Y;"**.

Let us to introduce the notation for € in orthogonal spherical coordinates

sin 6 cos ¢
€= | sinfsin¢ (1.57)
cos 6

with usual definiton for ¢ and 0. For systems with cubic symmetry and puntual
groups Oy, and Ty, like Fe-bce and Silicon respectively, it is possible to show that
in the cross section (equation 1.54) o”(2,m) = 0 for all m; so the absorption
cross section due to the dipole transition does not show angular dependence, i.e.
it is isotropic.

Regarding another crystalline system of interest, we take in account the puntual
group C7 with lowest symmetry. In this case the only symmetry element is the
axes Cgp. It is found a complicated angular dependence of cross section:

o (@ = a"(0,0) - \@[cos 20077 (2,2) + sin? po P (2,2)]+
.58
3COS\2/2 1 D(2,0) (1.58)

we introduce the notation o?(I,m) and (I, m) because the dipolar cross
section o? (I,m) is a complex number where o (I,m) = o (I,m) + oP (I, m)
considering o real. It is possible to choose six possible independent polarization
vectors € obtaining six estimates of op in the left-hand side of the equation, as
linear combinations of o (I, m).

+2v/3 cos B[cos poP7(2,1) + sin P (2,1)

oq aP(0,0)
ob aPr(2,2)
e oPi(2,2)
ol =K Io o) (1.59)
Oc oPi(2,1)
af O'D(Q, 0)

In order to compute the set of ¢;, we can inverte the equation (1.57) with
det K # 0. Then, each term o (I, m) is a linear combination of o; for j=a,b,c,d,e,f
which are measurable. We can set the polarization vector in a restricted number
of positions in order to get the isotropic part of ¢, i.e. og. These positions are
used as input in XSpectra package, which will be illustrated in chapter 4.

By selecting sin = 0 and cos? § = 1 we are be able to isolate just the isotropic
contribution o”(0,0) of the dipolar cross section. Fixing the three directions of
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the polarization vector as €, = (1,0,0),6, = (0,1,0) and €. = (0,0,1) and by

inverting the previous relationship, we obtain

aP(1,0,0) + oP(0,1,0) + ¢P(0,0,1)
3

a?(0,0) = (1.60)
Then the isotropic cross section in general is given by the average of three cross
section (each cross section is given by single XSpectra calculations) taking as €
the three basic unit vectors.



Chapter 2

Projector Augmented Wave
method

2.1 Introduction to PAW formalism

In the recent years,first-principles methods (or ab-initio methods)for electronic
structure calculations have been widely employed to study physical properties
of the condensed matter. This enormous development is manly due to high
flexibility, increasing of computing power and also due to available computational
infrastructures.

Deunsity Functional Theory (DFT) plays a primary role regarding ab-initio me-
thods in several applications (from biological systems to solid state physics) due
to great flexibility and reduced computational cost, comparing to Hartree-Fock
methods|9].

The DFT method maps the electronic ground state of an interacting electron gas
onto the ground state of noninteracting electrons, which experience an effective
potential. Hohenberg and Kohn proved [9] that the ground state electronic
energy Fj is a functional of ng with Ey = FE[ng]. In second Hohenberg and
Kohn theorem every trial density function ns; of N noninteracting electron gas
that fulfills [ng(r)dr = N and ns(r) > 0, the inequality Ey < E, holds.
Ey and FE; are the energy functional for the ground state of interacting and
noninteracting electron gas respectively. It means that the true ground state
electron density minimizes the energy functional Ey = E[ng] where nq is the
ground state electronic density of the interacting electron gas. By Hohenberg and
Kohn theorem, ng determines an external potential us which in turn determines
the fictitious wave function of the noninteraction electron gas, corresponding to
the density ng. In principle the DFT is an exact procedure to determine the
ground state and other ground state molecular properties, but the anaytical
expression of F = F[ng] is unknown. In practice to apply the DFT method it is
necessary introduce a correlation-exchange functional as reported in [9].

The integro-differential Kohn-Sham equations underlie to DFT method, where
the Hamiltonian operator contains the unknown exchange-correlation term. In
this framework, functional built ad-hoc are employed , proving their accuracy
by means of calculation on system of interest and comparing the results with
well-known literature data. In order to resolve the Kohn-Sham equations, two

18
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approachs can be applied; the LCAO (Linear Combination Atomic Orbital) and
pseudopotentials methods. The LCAO method consists to perform an expansion
of the Kohn-Sham single-particle wave on atomic orbitals basis, centered on each
atom whereas in the second one the Kohn-Sham equations are resolved using a
semplified Hamiltonian. The latter method will be widely illustrated in the next
chapter while the LCAO approach will not be taken in account in this thesis.
Indeed there are other calculation schemes to resolve the Kohn-Sham equations.
For example it has been developed further methods like LAPW (Linear Wave
Plane Augmented) and the its semplified version, the LMTO (Linear Muffin-Tin
Orbital) methods. All these approaches are APW-based scheme where APW
(Wave Plane Augmented) is a method introduced by Slater [10] in 1937. The
linear method deal with the full wave functions and treat all elements in the
Periodic Table on the same footing [10].

To introduce the Projector Augmented Wave (PAW) method[11] it is useful
to consider the many-body wave function of real material have very different
signaturs in different regions of space: in the bonding region the wave function is
smooth, whereas close to the nucleus a rapid oscillatory beahviour is experienced,
due to the large attrattive potential of the nucleus. The accuracy of description
of the region close the nucleus is necessarly poor respect to the bonding region.
We indicate the real wave function as single particle wave function obtained by
exact resolution of Kohn-Sham many body scheme (the all electron function)
without further approximation and labeled as |¥).

The strategy of the augmented-wave methods has been to divide the wave
function into parts, a partial-wave expansion within an atom-centered sphere and
envelope functions outside the spheres. The envelope function is expanded into
plane waves basis set. In the frontier region the envelope function and partial-
wave expansion are matched with value and their derivative. The Hamiltonian
operator for N electrons interacting system is defined as (in atomic unit)

N N N

~ 1 ’

H= —3 E V2 + g u(ry) + E v(rg;Ty) (2.1)
k=1 k=1 k#k'=1

The pseudopotential approach works replacing the real interacting electron-
nucleus potential u(ry) in Hamiltonian operator by smoother potential, as
reported in figure (2.1). In fact the strongly oscillating region of the valence wave
functions is due to the interacting electron-nucleus potential u(ry), diverging
close to nucleus. The plane wave basis expansion of this wave function required
an enormous dimension of the basis set, yielding impractical the calculations.
By introducing pseudopotentials, we replace the true valence wave functions
by pseudo wave functions which match exactly the true valence wave functions
outside certain regions so-called core region but are nodeless inside.

The pseudopotential approach will be widely described in next chapter. Here we
will introduce briefly their properties to illustrate the projector augmented-wave
formalism. Our purpose is to build an efficient tool to modify the real wave
function (the Kohn-Sham wave function) to remove the oscillations, restricted in
augmented region. To pursue this aim, let us to consider the all-electron wave
function |¥) in Hilbert space H. We transform this wave function into a new
Hilbert space,named pseudo-Hilbert space HF¥, spanned by smooth or pseudo
wave functions |¥). This transformation is performed by means of transformation
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Figure 2.1: In figure electron-nucleus interaction potential Z/r is replaced by smoother
function.The potential does not show divergent behaviour close to the nucleus and the
corresponding wave function is smoother
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operator T\, so that
0) =T |¥) (2.2)

All the pseudofunctions will be labeled using symbol ~ or PS; on the contrary
the wave functions all-electron without any symbology. In addition we consider
only valence wave functions whereas the core orbitals will be labeled using c.
Let us to consider an operator A in Hilbert space H whose expectation value
(A) = (V| A|¥) corresponding to generic physical observable A. The term (A)
must be equal to (A), and the latter is

(A) = (¥ A1) (2.3)
Then the operator A transforms as
A=TFAT (2.4)

In a well-defined augmented region Qp, the wave function PS |¥}) for each
kth electronic state can be written as expansion in partial wave (partial waves)
inside Qg

) = 3 G164 (25)

By applying the operator T to equation (2.5), we obtain

W) = chk |65) (2.6)
J

where T |U}) = |0 e oft) = 7A'|g5f> Moreover we consider the coefficient in
(2.5) and (2.6) as equivalent, so as Cjj, = Cjg.
From equation (2.6), adding a substracting ), Cijx |¢f), we obtain

W) = W) Zcﬂcwﬂ +Zcﬂc|¢ (2.7)

By indicating the projector function as (pf| restricted into augmented region
Qr, the coefficients Cj, are the scalar product (pf|W}). By using the condition

i) =D (B5]1k) [65) (2.8)

J
> |<5f> (pf| = 1 is carried out for [Ty = [Tp).
By replacing the definition (pF|¥}.) nella (2.7) we obtain:

Uy) = [Ty) Z|¢R (Bl 0) +Z|¢R (D)

Collecting the term |\i/k>, the previous equation can be written as

) = [1+ Z [F) B = 2165 (5] 1)
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Finally, it is possible to define the transformation operator T introducing the
notation 7g on each augmented region R:

Te = (lof) - 85)) (pFf (2.9)

J

By remembering the equation (2.2)

k) = [0i) + > D" (16F) — |65)) (BF W) (2.10)
R j

the operator T will be defined as

7143 T (2.11)
R

To obtain the transformation operator T it is necessary to determine, in agree-
ment to equation (2.9), three terms: the partial waves all electron (AE) |¢JR>
calculated integrating the Schrodinger equation for single atom; the partial waves
pseudo function |<z~5f> by resolving the pseudopotential problem for single atom;
the projector function (5%, obtained in agreement to the relation (5f|¢%) = ;.
Finally, coherenting with each APW approach, outside of the augmented region
the function | AE and PS must coincide, then the raltion |¢§%) = |g§f) holds.

It is important to stress that the operator T allows to map the single particle
wave function |¥}) onto all electron single particle wave function [¥). The
former is obtained through pseudopotential approach with reduced computa-
tional cost, whereas the latter resulting the exact solution in DFT framework.
In practice it allows to perform a reconstruction of the real Kohn-Sham wave
function. This reconstruction is exact for infinite expansions of projector basis
functions.

Next step is to calculate the expectation value of the hamiltonian operator
(H) = (U|H|T), using the previous formalism. Now we need to be able to obtain
observable quantities as the expectation values of the PS wave functions. We
also need to transform the real operator A into new A, in function of partial
waves.

A=A+ Z 155 (@ Alg]) — (6F1A165)) 1577) (2.12)

We note that there are three main contributions which characterize the A with
expectation value (W|A|¥). First term is an operator that directly acts on the
PS wave function |\il> while the remaining two parts contain the projectors and
the expectation value of the operator A based on functions i |¢f) and [$1).
This kind of transormation which produces three different contributions will be
always present in PAW formalism. In our case two important physical quantity
will be transformed in agreement to equation (2.12), electronic density and total
energy of the system. Each contribution acts on augmented region Q.

Unitl now we have used the label R to indicate the terms defined onto aug-
mented region; for example the partial waves and projectors [¢F), [¢F) and (pF|
respectively. In order to semplify the notation, we assume that the terms acting
in augmented regions Q0 are dependent implicitly by R,without any further



Chapter 2-Projector Augmented Wave method 23

notation.

In the original Blochl’s paper the energy total in PAW formalism is derived
explicity in DFT framework, considering the kinetic energy, the Hartree potential
and the correlation-exchange functional. We will write the mono and bielec-
tronic matrix operator elements using the operator 7 as reported in (2.9), which
allows to map the wave function ¥y onto ¥;. By considering that the mono-
electronic operator A is written of occupation function fi, as Y, fi (Vi|A[Wy),
total Kohn-Sham energy as

E:ka (Wl _%A2|\Pk>+EH[n+nz]+Exc[n—|-nz] (2.13)
k

where n is the total charge density and ny the puntual nuclear charge. The
functional Fy[n+ngz| e Ez.[n+nz] are Hartree energy and correlation-exchange
terms.

Electronic charge density n(r) is the operator monoelectronic expectation value
|r) (r| which transforms in agreement to (2.12) onto n(r) = >, fx (Tl (r|Ty),

nt(r) = 325 pij (¢ilr) (rlg;) and 7' (r) = 37,; pij (dilr) (r|@;) where we define

pis = Y Ii (Tklpi) (51 T) (2.14)

as occupation function of each (7, 7 )th channel. The meaning of fj is a function
describing how many particles fill the k-state. In this case the terms label with 1
are defined into augmented region.

The terms of the total energy reported subsequently are slightly different from
Blochl derivation in [11] in order to stress the analogy with Vanderbilt approach
in [12]. This new PAW derivation scheme has been carry out by Kress and
Joubert [13]. Electronic density terms n,n',i! are defined for valence electrons
whereas the core electrons are frozen (frozen-core approzimation).

We define n.,nz,n. e ny for core electrons and nuclear charge AFE e PS; outside
of core regions of r. but inside of augmented regions, the charge densities n. AE
and PS match. Furthmore by defining nz. = n. +nz, we obtain fQ nze(r)d3r =
fQ fLZC(T‘)dB’I‘.

In Bochl and Kress papers [11][13] the complete derivation of the total energy
expression are illustrated. We see that the all electron total electronic density
nr is written as sum of terms n, which is the electronic density of valence, and
nzc; the latter corrisponding to the sum of core and nuclear density.

np =n+ng. (2.15)

Subsenquently, by remembering that ny transforms as 7ip,n% and nk. in agree-
ment to (2.12), it is found

ny =nr+ ﬂ/%ﬂ + f?%« (216)
Each term in n on the left-hand side in (2.16) is
ny =n-+nz.

1 1
np =n" +ngec
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Py = fige + 7t
By regarding the charge density ny e nr, they are different inside of augmented
regions; the latter is a PS function viewed as an approximation of the the former,
which is all-electron; outside of Qg they must match. In order to reproduce the
real charge density inside of the augmented region, the term 7 are added to iy
e fk, so i must be reproduce the corrected multipole moments obtained from
nt.So

np =N+nNz.+n (2.17)

and also for 74 Obviously the term nt. = n' + nz. does not suffer change.

Both n}. and 7ir contained in Z, are equivalent because they produce just the
monopole moment, which corresponds to the sum between nuclear charge and
electrostatic core charge; higher order of the moment expansions are negligible
because the charge is strongly localized in a point 7 of the space. In practice the
term 7 acts just in 72 reproducing the moments of n'. The choice of function 7 is
not unique but any other choice must be fulfill the previous requirement. See the
reference [13]. Now we can introduce the total energy terms, by remembering that
the energy is the expectation value of the Hamiltonian operator, transforming in
agreement to (2.12). Each value to energy contribution must fulfill the (2.12).
By according with equation (2.15) and (2.16), we obtain

Elnr] = Elir] + B'[ny] - E'([ag] =

= B[+ fige +7) + EY[n' +ng] — EYa' +7 4 fig.] (2.18)
First term E[ii7] is depending from electronic density contributions 7.7z, and
n,

B= Xk: fo (W] — %vz|q/k>+EXc[ﬁ+a+m]+EH[ﬁ+ﬁ]+ / Vil ((F) L7 () dr+U (R, Z)

(2.19)
the second in (2.18) is

E' = Zpij (&i] — %VQWBJ')"‘EXC[W + 70+ R+ Eg it + ﬁ]"‘/ vilize) (' (r)+a(r))dr
k

(2.20)
, and third term E'[nk] will be

1
E'= Zpij (pi] — §V2|¢j> + Excn! +n.)+ Eglnt] —|—/VH[an]n1(r)dr
k

(2.21)

For all three expressions, we indicate with Fy the coulomb electrostatic energy
Ey =1 f f drdr’ % whereas by vy[n] we indicate external potential

2
|Z(_T;2|dr' . The term marked

with '~/ are valuated on integration grid inside certain radius of the augmented
region; on the contrary the other terms are calculated by using plane wave
expansion. Finally we mention that the contribution E is much similar to the
functional energy of the Ultrasoft (US) Venderbilt method, when th density 7 in
PAW formalism corresponds to the pseudo-density derived in US derivation.

included in Kohn-Sham equations vy [n(r)] = [
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2.2 Absorption cross section in PAW scheme

In chapter 1 we introduced briefly the X-ray absorption mechanism, underlying
to the XANES and EXAFS spectroscopy. The absorption cross section was
introduced as

0o = dm’ahw Y |M;f|*(Ef — B; — hw) (2.22)
f

where the matrix element M;; in dipolar approximation is written as € - .
By generalizing the expression for absorption cross section, beyond the dipolar
approximation, we found

0q = Am aohw Y | (Wyle- 7 + %(@- VK 7)) 20(Es — Ei—hv) (2.23)
f

The all-electron function |W) in PAW formalism is written as [Wy) = T W)
where |¥;) we indicate the PS wave.
The matrix element (U ;|D|¥;) is the expectation value of the operator D =

T+ Lle ?)( k - 7) which transforms as (2.12).
By writing the operator 7 as in (1.11), it is found that

—1+ZZ|¢>R 1#5%)) (551 (2.24)

This transformation applied to |\i/k) produces, as already illustrated previously,
three different terms. In case of transition matrix, the transformation (2.12) is
applied to the wave function which describes the final state of the system after
collision with X-ray photon. So from all electron |V ;) function, we obtain the PS
function |\il #)- The latter is calculated by traditional pseudoptentials approach,
eventually with core-hole effect. In addition the intial state is well known as
orbitals 1s or 2s where the photoelectron is extracted and no transformation is
performed.

The matrix element is written as

Mg = (U4|DI%;) + Y ($F|DIW:) (U |5F) = Y (65 |DIW:) (Uyl57) (2:25)
Rj Rj

By considering the absorption process which involes just one atomic site,named
Ry, the summatory ), runs over the single term Ry and a semplified version
of transition matrix is obtained

Mig = 3 (Fgl5[°) (6| DIw:) (2.26)

where the first and the last term are negligible for closing relation |g5f°) (P} plto| =
1 applied to third term of equation (2.25). Finally, we rewrite the expressmn of
the cross section, introducing the equation (2.26) into (2.22)

2
o =4raohw Y | (Us|pf) (65 |DIW;)| 6(Es — B; — hw) (2.27)
£
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The ingredients to determine the cross section by means of ab initio method in
DFT-PAW scheme[14][15] are the partial functions |¢f°), the projectors <ﬁf°|
and the wave functions of final state PS [ ).

In the next chapter, it will introduce the psudopotentials formalism, here it has
been done a brief mention, stressing the Ultrasoft Vanderbilt approach. In this
scheme, a powerfull calculation tools are introduced in order to perform the
simulation of ab initio XANES cross section.



Chapter 3

The Pseudopotential Plane
Wave Method

3.1 Introduction to the wave plane basis formal-
ism

In the last chapter the Projector Augmented Method (PAW) as powerfull computa-
tional techniques for electronic structure calculations, has been widely illustrated.
In order to introduce the PAW approach, we mentioned the Pseudoptentials (PP)
techniques, currently employed in computational chemistry and computational
material science to resolve complicated many-body problems. The reasons of the
widely diffusion and successful of this approach are due, in particular, to the
formal semplicity and reduced computational cost.

In fact, it is well-known, that the problem of strongly interacting electrons
can be mapped onto a problem of single-particle, moving in an external poten-
tial genereted by electron-nucleus attraction for fixed nuclei positions (Born-
Oppenheimer approximation). The hamiltonian operator for many body problem
is (in atomic unit)

1 N N N
§ZV +Y u(re)+ Y vk ry) (3.1)
k=1 k=1 k#£k/=1

Within density function theory framework, a non interacting system of N nonin-
terecting electrons, that each suffers the same external potentials vy, is taken
in account. The potential labeled by v, is generated by ground-state electron
density ng of the reference system (with n is indicated the G.S. for the real
system); there is a direct correspondence between ng and v, and the identity
ng = n holds.

If the electronic density for the ground states n(r) = Eivﬂ |pES (r)|? of the non
interecting system is build by using N Kohn-Sham orbitals ¢, the corrispond-
ing energy is given

PRl = 3 0l Lot [ aras ™) ey B3

k=1

27
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or in more compact way
EES[n] = K[n(r)] + EY[n(r)] + E[n(r)] + E*[n(r)] (3.2)

Now, the Kohn-Sham equations can be obtained by means of a functional
minimization of the energy E¥“[n]; this minimization is achieved variyng the
electronic density, or the Kohn-Sham orbitals. Minimizing the expression (3.2),
the Kohn-Sham operator for interacting system is given

’
n(r
ir (_ 2,| + v(r) + Vye[n(r)] (3.3)

~ 1
His = —§v2 + /dr

n(r’)
|r—r’]
the electron-electron potential (called also Hartree potential Vi), v(r) is the
electron-nucleus potential and V,.[n(r)] is the exchange-correlation potential.
To resolve the resulting single-particles Kohn-Sham equations, we need to build up
a pratical numerical scheme of calculations. The linear combination of Molecular
Orbitals (LCAO method) is widely used in particular for chemical problems;in
this case the gaussian basis-set expansion of the Kohn-Sham orbitals are used,
and the Kohn-Sham equations are transformed into a set of algebraic equations.
This approach is not useful to obtain informations about transport properties
and generally is applied for chemical practice problems. For example insulators
materials are described very well by LCAO methods but this approach fails
when electronic and transport properties of the metal or semiconductor must be
obtained. Generally a wave plane expansion of the wave function single-particles
(or Kohn-Sham orbitals) is used to describe extended system like metal and in
general for solid states systems. In addition wave plane basis set are the exact
eigenfunctions of the homogeneous electron gas, therefore, they are natural choice
for a basis expansion of the electron wave functions for metal and conductor
materials.

The electron wave function in a periodic system suffers the interaction with a
periodic potential whose periodicity is fixed by vectors lattice given by

where —%Vz is the kinetic energy operator for single electron, f dr is

T =nia1 + neas + n3as (3.4)

where {n;}?_, are integer numbers and {ai}‘?=1 are three vectors describing
the box of atoms repeated periodically in all three spacial directions, which
rappresents our system of interest. The volume of the crystallographic cell is
usually defined as V,,. = a1 - a2 X as.

It is well known that the solution of a single-particle Schrodinger equation with
a periodic potential ¥(r); for generic state k, fulfils the Bloch theorem[16]

Upe,j (1) = up,j(r)e™ ™ (3.5)

Then, we can write the Kohn-Sham equations as

(—;V2 +/dr’ |:(_T;),| +uv(r)+ Vm[n(r)]>\llk,j(r) =By j Vg (r) (3.6)

The single particle Kohn Sham wave function is written as a periodic function
ug(r) modulated by plane wave with wave vector k and band index j.
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Since the function wuy(7) is a periodic function, it can be written in a wave plane
rappresentation as [17]

ur(r) = Care'S" (3.7)
G

and the single-particles Kohn-Sham wave function:

i(r) = ZCG,kei(GJrk)'r (3.8)
G

where G rappresents the vectors which form the reciprocal lattice. The reciprocal
lattice is generated by three primitive vectors by,bz,bs, so that a; - b; = 27d;;.
Let us try to apply the wave plane formalism for the electronic density and for
matrix elements of the Hamiltonian operator. For electronic density n(r) =
>k fuVi(r)Vi(r) we obtained

n(r) =33 fiCs . Cane’ €~k = 3 Dggel @Gk (3.9)
k G'G G'G

where we defined the density matriz as Dgrg = ;. frCrwCq. We can also
defined the overlap matrix elements as

1 f - "
SGG' = 7/ d'r'e'L(G_G r = 6GG/ (310)

The generic matrix elements of the Hamiltonian can be written in a plane wave
rappresentations replacing n(r) (equation 3.9) in (3.2) as (in atomic unit):

1 *
Bpin = 5 Gzc:,(k +G)*Cgr 1 Candae

v 1 * iI(G—G')-
E¥ = v GZG,CG,C’G /w dre’t Ty (r)

1 - ’ : ’’ 177 ’
ee 1 i(G—G")r i(G"-G"")-r
E V2 E: E : DGG'DG"G"'/drdr el )7 il )
“r GG’ GG w

Ere = VL Y CaCa / dre' GGy (1) (3.11)
peley w

where we have written the matrix elements of the kinetic energy,external potential

energy,electron-electron energy and exchange-correlation energy respectively.

For each k value, the G index runs over plane wave, labeling the sites of the

reciprocal lattice; the Fourier expansion is truncated usually within some cutoff

in a way that for kinetic energy is

1
5||k+G||2 < Epw (3.12)
In atomic unit, the energy is expressed usually in Rydberg or Hartree; common

value for kinetic energy cutoff is 100-150 Ry but in general it is necessary testing
the convergence for the system of interest.
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Moreover, from equations (3.11), we note that the Kohn-Sham operator matrix
elements are written like a Fourier sum over G reciprocal lattice,defined in a
reciprocal space. In the Fourier rappresentation the electronic density is written

n(r) = Zn(G)eiGT (3.13)

G

n(G) = L/ drn(r)e 'CT (3.14)
Voor Jow,.

the last expression is a common Fourier transform; The conversion from real

space to reciprocal space and the calculation of the Fourier coefficients n(G)

is realized by the algorithm Fast Fourier Transform. In reciprocal space,the

electronic density is calculated usually in the first Brioullin zone (IBZ) as

= wrgz/ dk fi Vi ()W (r)0(Er — ek ;) (3.15)

where 0(Er — €x,;) is the characteristic function;in this way we have considered
the electrons which occupy all the orbitals with energy € ; up to the Fermi level
and the summatory runs over the band index j.

In order to calculate the n(r) we need to truncate the infinite sums up to a cutoff
value (eq. 3.12) and perform the conversion fwk — ., sampling the reciprocal
space by means of a regular grid or special k-points. In addition the number of
plane waves is a discontinue function of the cutoff kinetic energy; changing cutoff
value the number of plane wave changes suddenly. To remove this discontinuity
smearing factor can be introduced.

/ =) wp (3.16)

where )", wy are the weight of the integration points. A possible choice to
perform this sampling is use a regular grid like Monkhorost-Pack Grid, by means
of which, the reicprocal lattice is sampled with rectangular grid of points of
dimension M, X M, X M, spaced evenly throughout the Brillouin zone;larger
is the dimension of the grid, better and more accurate will be the sampling.
Previously, we have introduced two important amounts,the wave plane cutoff
and the k-sampling grid, necessary to perform a DFT calculation in wave plane
approximation; these values are needed an accurate convergence test on system
of interest. For insulators usually only a small number of k-points is required to
get good converged results.

We already said that a periodic system can be rappresented by a unit (or
primitive) cell repeated periodically in all three spacial directions. To simulate
this complicated system, we can use a single cell and apply the wave plane
formalism with periodic boundary condition or build up a supercell generated
by more than one single cell whose periodicy is defined by lattice vectors T
(eq. 3.4); also in this case the periodic bound condition will be applied but the
computational cost increses with dimesnion of the supercell. The volume of the
reciprocal lattice V,,, =by - (baxbs) is given by equation

L

Viow = %
Wy

(3.17)
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For large supercell, the volume of the Brioullin zone becomes smaller and it is
enough low number of k-point to achieve the convergence. For very large value
of the volume of the cristalline cell V,, very small reciprocal lattice volume is
obtained; for large supercell it is warrented use just one point to sampling the
reciprocal space, usually the k = 0 or I" point. For metallic system is required to
use a large k-sampling grid in order to describe accurately the Fermi surface.
We have already seen in (3.11), four contributions to the DFT total energy
written on the planewave basis. Finally the matrix elements of the Kohn-Sham
operator are rewritten in a Fourier rappresentation.

For the kinetic energy matrix elements Ty, are already diagonalized by plane
wave basis

1
Tk:in = 5("7 + G)25GG' (318)
From Poisson equation
V2V (r) = —4mn(n) (3.19)

the Hartree potential is obtained as

Vu(G) = 4w|7|lé;cl"|l (3.20)

For external potential

]_ . ’ 7 1
N (G-G'-G"")r _ -~ el
Vo€ = &) = 7= 3 Vel ©) /w e = Ve G~ @)
(3.21)
and their relative energy contribution is
1
B = o > Veat(G)n(G) (3.22)
wr o

The expectation value in Fourier space is calculated as sum over G-vectors of
the product between electronic density and external potential.

Finally for exchange-corrrelation potential energy, by using the FFT, the density
n(Q) (eq. 3.14) in Fourier space is calculated;here it is evalueted the exchange-
correlation potential and by means another FFT algorithm back the results in
the direct space.

In the next section the nucleo-core interaction is taken in account and we will
see as the PW basis set does not allow to resolve the Kohn-Sham equation in
PW rappresentation except if a very large number of plane wave is used.

3.2 The Norm-conserving pseudopotentials

In the previous section, the plane wave formalism of the single-particles Kohn-
Sham equations was introduced and subsenquetly reported in the Fourier Space;
we noted that in the Fourier space, they have a particularly simple form. The
single-particles Kohn-Sham wave functions |¥y) are all electron function, but
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no difference between core orbitals and valcence orbitals has been taken in
account. Core orbital are strongly localized in an atomic region around the
nucleus; due to the divergence of the electron-nucleus potential for distance r
— 0, their behaviour results strongly oscillating (fig 2....). This perturbation
requires high value of G - cutoff, with enormous incresed of the computational
cost. In principle, also the valence orbital has a nodal structure, in order to
be orthogonal to the core states;to achieve the nodeless valence wave function,
it is assumed that the core electrons are frozen (Frozen Core Approzimation)
and replacing the ion-core potential by a Pseupotential. In the (Frozen Core
Approzimation) the spatial form of the core orbitals can be obtained from a
single calculation performed on isolated atom, assuming that it remains the same
in a crystal enviroment. The physical justification is that the core orbitals do
not partecipate in chemical bonding.

Therefore, the set of wave functions, which are the variational solutions the
Kohn-Sham equations, regard only the valence electrons;the core are not taken in
accounts. In this way, the electrons in the valcence wave functions do not feel a
bare ion-electron potential but rather a potential screened by core electrons. This
potential is smoother and shallow than true one and the Kohn-Sham valence
orbitals risulting are nodeless. The pseudpotential have to be built, ad-hoc for
the system of interest (different for each element of the periodic table) and
generally must be transferable. For example the pseudopotential for the iron
elements, calculated on the isolated system, must be equally efficient for iron in
mioglobine or iron in crystalline enviroment.

The constructions of a pseudopotential typically starts with the choice of an
appropriate reference electronic configurations and the relative "pseudoization
radii" so that for r < r, the oscillating part of the valcence wave functions is
replaced by nodeless pseudofunction; usually the r < r. value is different for
each l-channels (1 is the angular orbital quantum number).

Actually the pseudopotential for ideal element is obtained starting from a
generical smooth pseudofunction inverting the radial Schrodinger equations for
isolated atoms to get the pseudopotential. From (in atomic unit)

1d*  I(l+1) PS PS PS
[—57’2 2,2 + Vi (T)]TRI =¢grR;
to
I(1+1 1 d>
VS =g - D & vRPs) (3.23)

2r2 QTRZPS(T) dr?

where RlP S is the radial part of the pseudofunction "% (r). General rules for
pseudpotential and pseudofunction can be summarized in:

1) Pseudofunction must be nodeless

2) Norm conservation. The electronic charge (or the norm) of the pseudo-
function (PS) within the pseudoization radius is the same of the charge of the
all electron wave function (AE).

3) Pseudofunction matches the all-electron wave function beyond the cutoff
radii

4) The Pseudopotential must be transferable. In order to achieve this
properties, the eingenvalues of the relative pseudofunction must be the same
over a range of rasonable reference configurations.
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Not always these results can be achieved simultancously and often they are in
conflict. The Norm Conserving rule is that generally adopted for a long time. In
this framework the relation reported below holds for all valence pseudofunctions.

[ s = [ e (321
Jo J0

In addition, in order to assure a good trasferability of the pseudopotential, it is
raccomandable that the slope of the pseudofunction is equals to the slope of the

all electron wave function for |r| = |r.|.Then
PS(r,e) dr e W (re) dr T ’

Equation 3.25 is the condition on the logarithmic derivatives. In (3.23) the
Schrodinger equation is resolved in spherical simmetry, hence as a product of
a radial equation and a spherical armonics. For fixed potential and energy e,
the radial differential equation is a one-dimensional ordinary linear second order
equations with two indipendent solutions and inside and outside the sphere is
uniquely defined.

In practice to obtain pseudoptential, the all-electron wave function \IlﬁE is
rapleced,inside the sphere with » < 7., by an arbitrary smooth nodeless function
1/},1: S with same logarithmic derivative at r. and for certain €, energy values,
eigenvalue of the all electron wave function. The required pseudpotential is ob-
tained by inserting 1 S and ¢, in radial Schrodinger equation and subsenquetly
simply inverting it, so that to obtain V7 which has the required properties.
The pseudopotential obtained inverting the radial Schrodinger equation is
screened, which incorporates the Hartree and exchange-correlations terms rel-
atively to the electronic density of the pseudofunction. To obtain the pseu-
dopotential unscreened we substract the Hartree and the exchange-correlations
contribution as reported below

‘/ZPS,U,'H,SCT‘(T) — ‘/ZPS,SCT(T) _ ‘/IPS,H(T) _ ‘/ZPS,XC(T) (326)

Moreover the logarithmic derivative properties have to be reproduced for large
value of energy ¢, in this the reproducebility of the pseudofunction (and the
pseudopotential) is assured for several different chemical enviroment. Furthmore
to guarantee large trasferibility, the pseudoptential have to be as soft as possible
and the number of plane wave to expand the pseudofunction have to be as
small as possible. A large value of 7. generates a pseudopotential with better
trasferibility properties; the same beahviour will be obtained if small cutoff value
is used. These two conditions are in competition with each other and a good
compromise must be achived.

For example a possible choice for pseudofunction RY S in (3.23) is Troullier-
Martins equation [18]

RZPS = plTlePp < gy
RPS = R Er > 1, (3.27)
where

p(r) = co + car? + cdrt + cer® + cgr® + 10010 4 ¢y 2012 (3.28)
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Then, the norm conservation is imposed
[ arwrser = [ arwitwy
r<re r<re

together to the continuity conditions of the wavefunction and its derivatives
RFS = RAEr =,

anPS(,,,C) B anAE (7'0)
d7’" - d’f‘”
In principle the r. and the pseudopotential depend on the angular momentum
[, so for each [ value different pseudopotentials have to be built. As a result of
these scheme is a pseudpotential which can be written as:

lmaz

VPS(r) = viee(r) + Y T VEE ()P (3.29)
=0

and P, = |I) (I| The local part of V'°°(r) is taken as the compoent V;”S with
maximum value of [ and

‘/yfls(r) — VZPS(’I’) _ Vloc(,’,) (3.30)

In this way once the full pseudpotential V.7 I(r) applies on wave function,
each angular momentum component of wave function feels only the relative
l-component of the VlP 9(r) potential. This type of pseudoptential is called
semilocal pseudpotential.

In planewave rappresentation the semi-local part of the pseudopotential is written

1
Vw r

/drefi(kJrG)VTflS(r)ﬁlei(kJrG') (3.31)

. . = 7 ’ . .
The projection operator P, acts on e*+&") and can be written in terms of
spherical armonics Y} ,,

1

Vwr I
,m

[artirem Oy )Y (ST @) 32)

Let us consider the expansion

inf  +1
eik~'r' _ eikrcos@ _ 47TZ Z Z'ljl(kT)le?m(’l')Yxm(k)

=0 m=—1

the normalization property of the spherical armonics

2 T
/ / d¢d9|Y27TYL(97 ¢)|2 = 5l,l/5m,7rz’
Jo Jo
and the addition theorem for spherical armonics

. +1 .
Pi(eost) = gy D Yim(B)Vim (k) (3:33)
l

m=—
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where 6 is the angle between k and k’, j! are spherical Bessel functions and
P, the Legendre polynomial. Then in spherical simmetry the integral (3.30) is
written

4

inf
(cosv)(Ql—i—l)/O r2drj,(r|k + G|)7.(r |k:+G'|)V S(r) (3.34)

We see that the matrix elements depend on |k + G| and |k + G’| necessarely
correlated with each other because the angle ~y is that between the vectors k+ G
and k + G’. Using a planewave basis with N elements, the number of matrix
elements is N(N+1)/2, value which increases rapidely.

Kleinmann and Bylander [19] proposed an alternative approach, introducing a
fully non-local pseudopotential in separable form:

PS\I/PS> <\I/PSV}PS|

V
VKB Vloc | l Vloc anoc 3.35
NP R N (33)
and the equation written below

VM ele) = Vi ) (3.36)

holds. In Fourier space the non local part of the Kleinmann-Bylander (K-B)
pscudopotentials is written

P
S k+ Gk 4+ G =Y (k+ Glaj) v (a;lk+ G)  (3.37)

GG/ j=1 GG’

where v; = W and the summatory runs over the number p of pro-

jector |V;PSWPS) (WPSV,PS| = |a;) (aj]. In K-B scheme the computational
efficiency increases and non-local potential requires only Np number of plane
waves because the vectors |k + G| and |k + G’| can be treated separately, disap-
pearing the dependence with angle ~.

Another approach to obtain a pseudopotential was introduced by David Vander-
bilt who suggested to abandon (or relaxing) the norm-conservation condition.
This relaxing leads the bloch states Wy ; will be not orthonormal anymore,
complicating the formalism of Kohn-Sham equations. On the contrary, by using
this approach, a large cutoff radii r. is imposed (but the spheres with these radii
centered on different atoms must not overlap anywhere) generating a pseudopo-
tential which is much softer and hence much lower planewave basis set cutoff
would be necessary; generally Ultrasoft pseudoptential is less transferable than
norm conserving one.

3.3 Ultrasoft Pseudopotential

To introduce the Venderbilt pseudopotential (or Ultrasoft (USPP) pseudopoten-
tial) formalism [12], let us start to lebel the all electron wavefunction as |Wg)
and |¢g) will be the relative pseudofunction, so that:

[T+ VLT ()] o) = e o) (3.38)
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[T+ Vo) + V()] ) = e o) (3.30)

where Veff is the full all electron Kohn-Sham potential, k is a composite index
where k = €, 1, m, V!°¢(r) is a potential generated by using a special algorith
which apparoach to V. beyond .. To define the Vnloc(r) and we impose the
norm conservation at r = r.

(Or|dr) = (Vi|Vi) (3.40)

and €’ = ;. Moreover, if we define the eigenstate |yx) as

k) = [ex — T — V()] | g) (3.41)

and

Vrlee(r) |gr) = |xk) (3.42)

hence the non-local part of the pseudopotential is

rnloc _ |Xk3> <Xk|
v = (Xi| k) (343)

We note some similarity between equation (3.42) and equation (3.35) where we
introduced the Kleinmann and Bylander formalism.
Now let us generalize the condition (3.40) defining the augmentation coefficients

Qrj as
Quj = (Uk|¥;) — (Pr|ds) (3.44)

obviously if Q; = 0 norm-conservation condition is imposed. The norm-
conservation condition (3.40) is defined inside the core region r. (the same
of the NCPP pseudopotential) but we will see that the component Qy; is defined
in a ragion which is larger that core region, with radius R > r..

Furthermore we define

ki = (Pelx;) (3.45)

and

|Br) ZBJ X5

(Bl =D Oul B! (3.46)
J
so that (B;|¢r) = i with |5;) dual of the pseudofunction |¢y));in fact

(Biléw) ZB (xjlon) = dir (3.47)

The non-local part of the pseudopotential can be chosen as

Vo(r) =3 B [Bin) (Bl (3.48)
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To demonstrate the previously equation is enough replace it into V”loc(r)

V() |6k) = > B |Bm) (Bald) (3.49)

then from (3.46) and (3.47) we obtain

rnloc o |Xk> <Xk|¢k> .

Now we introduce a crucial overlap function

mn

Starting from (3.47) It can demonstrate that

(6ilS|65) = (¢3le;) + Qij = (T3] W) (3.51)

and from defintion (3.48) for non-local potential that

[f + Viee + (Z Bmn + EnQnm) |/8m> </Bn|] |¢k> = €k§ |¢k> (3'52)

Hence we have written the initial equation (3.39) in practice introducing the
projectors |5 ) (Bn| and |x;) (x;|. This equation have to be resolved for each k
points (one Bloch state), generating a sequence of band with index n. Then the
general Bloch eingestate |®g ,,) resolves the equation [fI — enkg] |®g) = 0.

We can build and calculate the true electronic density from definition (3.44)
replacing the general Bloch eingestate |¢g. ) by adding over k states occupied.

pr) = brn (P)dkn(r) + Y pijQij(T) (3.53)
n.k ij

with Qi; = >, & (BilOk.n) (Pk,n|B;). The electronic density is splitted in two
component, one smooth calculated from pseudofunction ¢, and one defined
inside the augmented region R. We have already reported some important
features of Ultrasoft pseudopotential. Finally we would stress that for each
chanel [ the Ultrasfot pseudpotential approach allows to use more than one
reference energy ¢, whilemean in norm-conserving semi-local approach this
possibility was forbidden.

3.4 Gauge-including Projector Augmented Wave
Pseudopotential

In chapter 2, we described the Projector Augmented Wave methods, a novel
approach by means of which the Kohn-Sham problem is resolved in a pseudo
Hilbert space HPS span by smooth pseudofunction |¥,) and subsenquetly the
reconstruction of the all-electron |Wy), T, [¥) = 7 |¥) is performed by using the
operator T defined as

T=1+> Tr (3.54)
R
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and
k) = [Ti) + > (16F) — |65) (57 ) (3.55)
R
with
Tr=>_ (%) — |65)) (57| (3.56)

J

where all the lebels have already been defined in chapter 2. To perform this
reconstruction the partial waves |¢>JR> and the projector <;5§%| are needed, defined
inside the augmented region R. Without a complete demonstration, we can
note as the US-PP method is strictly equivalent to the PAW method if in the
augmentation function @;; with radius R the wave function |¢y) is replaced by
pseudopotential partial waves |q~5,§> and the function all electron |¥), is replaced
by all clectron partial wave |¢ft)

Qkj = (Pkld5) — (Prldj) (3.57)

In addition in (3.52) the projector |3;) (5| is replaced by [p;) (pj| where (p;]
are the usual projectors of the PAW method. Then in order to resolve the
Kohn-Sham problem approaching with PAW method, the projector (p,,| and the
partial waves |¢f) and |¢) must be calculated, cither to obtain a SCF-converged
Kohn-Sham valence wavefunction and to perform the all electron wavefunction
reconstruction.

In presence of uniformal external magnetic field B [20], the all electron Hamilto-
nian is (in atomic unit)

H = %[p + %A(r)]2 +V(r) (3.58)

where c is the speed of light and B(r) = V x A(r). The choice of gauge that
we make is set the gauge origin at the atomic site of the augmentation region.
In this way we would obtain that |A(r)|? experiences the minimum value and
the interaction between the valence and core states is negligibly small. So the
vector potential is chosen

A(r) = %B(r) X r (3.59)

Here we do not discuss the PAW theory in presence of uniformal magnetic field,
because is beyond of our scope[20]. Let’s just say that in presence of uniform
magnetic field, in order to preserve the translational invariance of the all electron
wave function |¥y), a modification of the operator 7 must be adding. Including
the gauge properties, the new operator T translational-invariant is written

:?\- =14+ Z Ze(i/Qc)r~RxB(|¢§2> _ |Q~S?>) <151R| e—(i/2c)r~R><B (360)
R

This transformation defines a more general PAW approach which we call
Gauge-including Progector Augmented Wave (GIPAW) useful to calculate the
XANES cross section and the chemical shift in a NMR experiment.
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We are interesting to simulate the XANES cross section by using PAW method
as reported at the end of chapter two. There,we introduced the formalism of the
cross section o, in PAW framework, that we still reporting below

2
o =4maohw Y |Y " (Us[ple) (610 |DIW;)| 6(Es — B — hw) (3.61)
fr

Now we are able to calculate the amounts required to perform the simulation of
the XANES cross section. In summary we need

e The initial single-particles Kohn-Sham wave function |¥;) from which the
photoelectron is expelled. In general is known( 1s or 2s atomic obital).

e The multielectron final wave function |¥ ;) which describe the full electron
final state of our system of interest. It is the converged Kohn-Sham wave-
function obtained after SCF-DFT procedure. To perform this calculation
we use a plane wave pseudopotential approach, where the pseudopotential
have to be GIPAW-like pseudopotential. Due to the equivalence between
US-PP and PAW-PP approach, in practice we reduce to calculate the
pseudo wavefunction |\il 7) with US-PP approach.

e The projectors already defined |ﬁf°) and the partial waves |a$§%°> used to
perform the reconstruction in (1.55), which are generated into the GIPAW
pseudopotential.

Next section the building of the GIPAW pseudopotential for iron element is
reported in order to perform XANES cross section simulation of the iron crys-
talline,myoglobine and cytochrome C.

3.5 GIPAW pseudopotential generation

Now we propose to build an Ultrasoft pseudopotential for Iron atom which
contains the elements required to GIPAW reconstruction of the all electron wave
function. As we can seen, we have to resolve the equation (3.52) for single isolated
atom. As exchange-correlation functional we will use a gradient correction such
PBE. Here we do not investigate this tipe of choice which remains an important
step within of the PP generation procedure.

The starting atomic state (in our case the single-particles Kohn-Sham wave
function for isolated atom) is defined by the electronic configuration for iron
element. From periodic table, the electronic ground state of the Iron is

Fe = 15225%2p%35%3p%4523d° (3.62)

From this configuration, we can note the valence orbitals are 452 and 3d® whereas
the core states are 1522522p53523p% because the atomic levels are completely
filled up to the orbital 3p° (end of third row of the periodic table). To improve
the transferibility of the pseudopotential sometime is necessary promote the ns
and nd states into valence. Physically can be correct because ns and np are
localized in the same spatial region of the nd then they could be dependent to
the chemical enviroment around the iron atom.

Now, if we put the orbital ns and np into core states, we could obtain a
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pseduopotential with poor transferibility. Promoting ns and np in valence states
(we speak of semilocal states for ns and np) together nd, (n+1)s and, eventually,
(n + 1)p, we should improve the transferibility. For iron element the semilocal
states are 3s? and 3p%, whereas the pure valence state are 452 and 3d°. In
general it is not necessary follow and impose the exact iron configuration as
reported in (3.62). To generate the pseudopotential other configurations can
be used,for example an ionic configuration where some electrons are removed.
The orbital 452 loses two electrons and leads the metalic F'e® in ionic form Fe?*
whose electronic configuration is,

Fe?t = 15%2522p°3523p%45°3d° (3.63)

physically an chemically corrected.
In addition, in order to build a GIPAW pseudopotential with core-hole in 1s
orbital, the electronic configuration will be

(Fe?t)* = 15'2522p53523p545°3d° (3.64)

The presence of the core-hole is necessary when we simulate XANES spectra, as
already said in chapter one and two; the xanes cross section in a PAW framework
contains the final wave function of the system, after interaction with photons;
the photoelectron is ejected leaving a core-hole states in 1s or 2s orbital.

Once that the electronic configuration are imposed, we have to define the cutoff
radius either for core region and for augmented region. Henceforth, we will
consider identical the augmented region for Vanderbilt approach and PAW ap-
proach. Moreover the cutoff values are defined for each 1-channel of the semi-core
and valence states resulting from electronic configurations. In addition we add
the valence orbitals 4P and 4D which are involved in the 1s — P or 1s — D
transitions. The cutoff radius values are reported in table 3.1 below To obtain

nl 7. Raug

3S  1.100 1.300
4S  0.800 1.300
3P 1.000 1.300
3D 1.400 1.800
4P 1.000 1.300
4D 1.400 1.800

Table 3.1: In table 3.1 cutoff radius for r. and Raug used to build GIPAW pseudopo-
tential are reported (in A)

the pseudopotential for iron, the Martins-Troullier approach is choosen, whose
algorithm is reported in (3.27) and (3.28).Then, the pseudization of the atomic
waves is performed and the radial part of the Kohn-Sham equation is resolved in
spherical symmetry for each l-channel and energy. More than one such atomic
waves for different energy can be pseudized for the same Lin this case more than
one projector per lI-channel is resulted. This procedure is correct by definition for
Ultrasoft pseudopotential;on the contrary for Norm- conserving PP, is necessary
follow the Kleinmann-Bylander scheme, not implemented in Quantum Espresso.
Finally,it is necessary to choose the local potential which appears in equation
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(3.29). A good choice to set this value is taken the maximum value of the orbital
angulare momentum, or with [ > [., where [. is the maximum value of the
angular momenta for core states. In our case {;,. = 2.

For next steps, we propose to calculate total density of states (DOS) and band
structures for iron crystalline (bee lattice), checking the quality of the pseu-
dopotential comparing it with a reference pseudopotential. Other check has
been performed with experimental results and reported in figures below. The
pseudopotential GIPAW (GIPAW-PP) generated is Utrasoft-like pseudopotential
(US or USPP);on the contrary the reference pseudopotential is Norm-Conserving
(NC or NCPP). Here we do not report how the converged wavefunction is calcu-
lated remanding this calculation to the next chapter. If reconstruction are not
performed then we can speak equally of GIPAW-PP or US-PP pseduopotential
calculation. In this section we perform just wavefunction optimizations, whereby
the GIPAW-PP and US-PP notations are identical.

First of all, the lattice constant of the bec lattice have be reproduced to verify
the good quality of GIPAW pseudopotentials. Experimental value at 300 K is
2.87 A. Below we reported total energy of the Fe bee single unit cell in function
of lattice parameter. The calculations reported in this section have been done
using 150 Ry of cutoff kinetic energy, 10 x 10 x 10 Monkhorost-Pack k-points
mesh and PBE exchange-correlation functional on single bcc cell.
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-249,040 -

Total Energy (a.u.)

249,045

n.
249,050 -] \

— . .
2,65 2,70 2,75 2,80 2,85 2,90 2,95 3,00
Cell constant (A)

Figure 3.1: Total energy in function of lattice constant for iron unit cell in bee symmetry
was reported. The calculation was performed for pseudopotential without core-hole. It
has been verified that the minimum of the curve is 2.87 A

In figure 3.3 and 3.4 the total density of states (DOS) have been reported. DOS
was calculated by this step:

e The single-particles Kohn-Sham wave functions were calculated by using
GIPAW pseudopotential, setting the cutoff of the kinetic energy at 150
Ry and the lattice parameter at 2.87 A; smearing Fermi-Dirac (FD) and
Gaussian are used. The final density is converged by Self Consistent Field
calculation after 18 (da verificare) scf-iterations
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Figure 3.2: Total energy in function of lattice constant for iron unit cell in bee symmetry
was reported. The calculation was performed for pseudopotential with core-hole. It has
been verified that the minimum of the curve is 2.87 A
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Figure 3.3: In this figure total density of states of iron crystalline are reported for
pseudopotential USPP. The wavefunction was calculated using smearing Fermi-Dirac
(FD) with value 0.05 Ry. The label 1star indicate the presence of core-hole and Ef is

the Fermi energy



Chapter 3-The Pseudopotential Plane Wave Method 43

Gau 1 star
Gau

Ef

DOSs

0 . . : A . !

Energy(eV)

Figure 3.4: In this figure total density of states of iron crystalline are reported for
pseudopotential USPP. The wavefunctions was calculated using smearing Gaussian
(GAU) with value 0.001 Ry. The label 1star indicate the presence of core-hole and Ef
is the Fermi energy

e DOS calculation extracted from wavefunction determinated by previous
steps

Further informations and details about wavefunction calculations will be reported
in chapter five. Density of states have been calculated either for pseudopotential
within core-hole and without core-hole. In the last case, the Fermi energy seems
to drop inside the band with greatest intesity;on the contrary, the DOS peak
around the Fermi energy is contracted probably due to the screening effect of
the core-hole. In addition, this behaviour increases for FD smearing, where the
smearing value is set at 0.05 Ry, enormously greater than gaussian smearing
one, set at 0.001 Ry. Same trend was found for traditional NCPP, where the
agreement with GIPAW-PP is very high, how we can see in figure (3.4) and (3.5).
In addition experimental DOS has been reported in figure (3.6) [21] in order
to compare the experimental DOS and the DOS calculated in previous figures.
Band structures of the iron in bce symmetry are reported in the figures below for
pseudo USPP (figure 3.7) and LSDA Norm Conserving pseudopotential approach
from reference (22| (figure 3.8) Band structure was calculated using the special
points at high symmetry of the FCC lattice H,I" and P whose coordinates in %’T
unit are

H =1[-0.5;0.5;0.5]
' =[0;0;0]
P =10.25,0.25,0.25] (3.65)

with a lattice constant.
From these calculations, the agreement between USPP and NCPP approaches
seems to be satisfactory,but to verify how XANES spectra are simulated, further
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Figure 3.5: In this figure total density of states of iron crystalline are reported for
pseudopotential NCPP. The wavefunctions was calculated using smearing Gaussian
(GAU) with value 0.001 Ry. The label 1star indicates the presence of core-hole and Ef
is the Fermi energy
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Figure 3.6: In this figure experimental total density of states of non-magnetic iron
crystalline are reported for pseudopotentials from reference [21]
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Figure 3.7: In this figure band structure for iron bcc is reported.This calculation was
performed using USPP with core-hole and 0.001 Ry for gaussian smearing
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Figure 3.8: In this figure calculated band structure was reported, using Norm conserving
pseudopotential and LSDA exchange-correlation funtional;more computational details
can be obtain from reference [22]



Chapter 3-The Pseudopotential Plane Wave Method 46

investigations have been performed.Next chapter we will introduce formally the
calculations of the XANES spectra using GIPAW pseudopotential approach.



Chapter 4

Determination of XANES
spectra by using
GIPAW-DFT approach

4.1 General aims

In the previous chapters we built a general scheme of calculation, inside the
density functional theory framework, through which it is possible to calculate
the all electron single-particle Kohn-Sham wave functions for many body system,
starting from planewave pseudopotential approach. These functions are the wave
functions all electrons, i.e. they do not suffer of further approximations. In
practice, they are the real Kohn-Sham obitals which resolve the Kohn-Sham
problem, inside of the Born-Oppheneimer approximation.

In order to obtain the XANES cross section for the system of interest, we need
the wavefunction of the final states of the system, after the interaction with the
X-ray photon.(equation 3.61).

In the past some authors have already performed ab inito calculations to generate
the XANES cross section [14] [15] by using PAW and GIPAW approximation.
The PAW methodology is currently implemented in the Quantum Espresso
suite,an integrated suite of Open-Source computer codes for electronic-structure
calculations and materials modeling at the nanoscale, based on Density functional
theory, planewave and pseudopotentials[23]. To obtain XANES spectra, the
XSpectra module of Quantum Espresso has been used together the planewave
module (PWscf), necessary to perform the self consistent field algorithm.
Roughly speaking, the steps necessary to calculate the XANES cross section are:

e Determination of the best structural parameters for the system target. For
the test cases we have considered, namely iron and silicon, it is enough to
verify the best lattice parameter for cubic unit cell. Different scf calculation
with pseudopotential are performed for different lattice parameter values,
obtaining a curve total energy in function of the lattice constant. The
point corresponding to the minimum of the curve is the best theoretical
value of the lattice costant for the cubic cell. In this step planewave module
of Quantum espresso was used

47
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o Determination of the scf-converged final wavefunction |¥ ) of the system of
interest after interaction with x-ray photon, calculated for the best lattice
costant. This is the pseudoelectron Kohn-Sham wave function obtained
using traditional USPP or NCPP calculations.The pseudopotential have to
contain the informations to perform the GIPAW reconstruction. Generally
the core-hole approximation have to be taken in account.As well in this
case, the only planewave module of quantum espresso was used.

e XSpectra calculations to generate XANES spectra. The parameters used in
XSpectra will be showed for each case of interest. Usually, the calculation
of XANES spectra required to fix the coordinates of polarization vector
epmn and k vector. For each system material of interest, these values
are set in function of the simmetry class of the unit cell. For C1 puntual
group and in general for system without any particular symmetry, in oder
to generate XANES spectra it is possibile apply the scheme reported in
(14).

From numerical point of view we perform the calculation of the XANES cross
section in (3.62) by using a recursive method. As reported in [15], this approach
permits to write the cross section as a continued fraction and only the occupied
Kohn-Sham states have to be calculated. In chapter 2, we showed the expression
of the cross section using Green function. In fact the cross section

2
D (Wglp) (¢ |DIWs) | S(Ef — E; — hw) (4.1)

J

04 = AT ahw Z
f
by making the substitution (already reported in (1.40)), can be rewritten

—%Imé(r,r’, EB) = 3" 1¥5) (B — B, — hw) (V] (4.2)
f

and G(r,r',E) is G(r,r',E) = (E — H +iy)~" and with H = THHT. The
Lanczos recursive method is used to calculate the eigenvalues of square matrix
NxN starting from reduced tridiagonal form of the intial matrix. In our case
the initial matrix is G(r,r’, E) and the pseudo-hamiltonian H. The tridiagonal
form is obtained making a change of basis. Let us try to rewrite o, as,

[ = Z |55 (@5 | DI¥s) (4.3)

where the index j runs over number of projectors. And
O = 47T2afu,ulm[<<£f°|(E —H - ry)|gz~5f°)] (4.4)

The change of basis in the {|u;)} vectors is achieved by means the following
transformation

H |u;) = a; Jug) + big |uigr) + bi [ui—1) (4.5)

. . s R0
where {|ug)} is the normalized intial vectors |ug) = 2 %) The vectors a;

~ T (PFojpFo)
and b; are determinated as a; = (u;|H|u;) and b; = {(u;|H|u;_1).
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The number of Lanczos iterations N necessary to achieve the convergence must
not exceed the dimension of the pseudo-Hilbert space H, span by |\i/) pseudo
wave functions. This dimension is set by planewave cutoff of the kinetic energy.
All the wavefunction optimization procedures (or single point SCF procedure) was
done with pseduopotential approach as already described in the previous chapters,
both NCPP and USPP; for exchange-correlation part, the PBE functional will
ever be used.

In the sections below we will describe the procedure applied to the K-edge cross
section for Fe-bee and d-silicon (silicon in diamond symmetry);as nontrivial
applications to material of biological interest this procedure is also applied to
myoglobin and cytochrome c.

4.2 Application to the K edge in Iron with body
cubic centered symmetry

The first application described in this section regards the theoretical investigation
of the fine structure near K edge of the Fe-bec (iron with body cubic centered
symmetry).

Iron is one of the most important metals, subject of exstensive experimental and
theoretical investigation for many years. Its particular properties make it one of
the systems target for electronic structure calculations. Usually iron crystallizes
in a periodic structure whose unit cell is in body cubic centered (bcc) symmetry
but at least another symmetry, the face centered cubic shape, can be found.
Some of these calculations suggest wrongly the fcc to be more stable than bee
symmetry [21]. The fcc unit cell will not be taken in account, considering the
iron just in bce symmetry.

The PWscf module of Quantum Espresso suite was used to determine the lattice
constant for cubic cell of the Fe-bcec; for fixed value of the lattice parameter, a
full self consistent field (SCF) wavefunction optimization is performed. The most
important parameters needed in PWscf module are

o Cell Symmetry

e number of atoms in the unit cell

e Kinetic energy cutoff

e occupation smearing

e scf convergence threshold

e atomic species and atomic positions in the unit cell
e K point mesh

e number of bands

The initial calculations were performed using single unit cell (two atoms for cell),
150 Ry for kinetic energy cutoff, and 10x10x10 Monkhorost-Pack k-points grid.
In metallic systems, 0.001 Ry of guassian spreading is an acceptable value and
for number of occupied bands usually is chosen half of number electrons in the
unit cell with adding 20% or greater.
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Figure 4.1: Plot of the total energy in function of the lattice constant.The minimum
is found for 2.77 A. Each curve corresponds to the Monkhorost-Pack k-points mesh
(axqxq)

In the next figure (4.1), we report the calculations to obtain the best cell
parameter by using Norm-Conserving pseudopotential, generated by Quantum
Espresso authors with core-hole approximation. In addition convergence study
of the Monkhorost-Pack k-points grid is reported (fig 4.2). From figures (4.1),
2.77 A is the value corrisponding to the minimum of the total energy. Calculated
value of the lattice constant was found 2.76 A|21]. From experimental point of
view the lattice constant is 2.87 Aat 300 K. Using a greater smearing value with
Fermi-Dirac profile, we obtained 2.87 A as minimum value for lattice constant(fig
4.3). Subsequently, the XSpetcra module of Quantum Espresso has been used;we
reported the most important parameters used in XSpetcra to obtain the K-edge
spectra for Fe-bce single cell in dipolar approximation.

e Type of approximation:dipolar or quadrupolar

e number of iterations of the Lanczos procedure

e Convergence threshold to finish the Lanczos iterations

e Fermi energy

e Coordinates of the polarization vector of the incident beam

e Coordinates of the k vector of the incident wave

e K point mesh to perform the electronic integration in the Lanczos iterations
e Core-hole linewidth (from atomic data)

e Energy range for plotting the xanes spectra

In dipolar approximation the transition matrix (see chapter 1,section 4) is not
dependent by k vector. In addition the polarization vector and the k vector must
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Figure 4.2: Plot of the single point SCF total energy in function of the Monkhorost-Pack
k-point mesh (qxqxq) for each lattice constant values
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Figure 4.3: Plot of the single point SCF total energy in function of the lattice constant
for Fermi-Dirac smearing (0.05 Ry).
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Figure 4.4: Plot of the xanes spectra for Fe-bce with lattice costant d=2.77 A(in black)
and d=2.87 A(in red), comparing with experimental curve (in green)

be orthogonal; then we need to set only the coordinates of € considering that for
cubic cell, and in particular for point group Oy, the absorption cross section is
indipendent of the position of the polarization vector. Convergence threshold
is set at 0.001 eV and usually we used a 7x7x7 grid for electronic integration
in Lanczos procedure; for this grid there are 7x7x7=343 k-points and for each
k-point XSpectra performs the Lanczos iterations. The computational cost for
single Fe-bce unit cell is rather low, and not appreciable increase of that is
detected for different parameters. For larger system, it could be necessary change
these values in order do not increase the computational costs. In figure (4.4)
and (4.5) Fe-bcec XANES spectra are reported, using the optimized wavefunc-
tion for the final states in the cross section, calculated previously, comparing
the XANES spectra for different lattice constant. In order to appreciate the
agreement between experimental and calculated spectra,the intensity of the
curves are normalized by aligning the intensity of the corresponding highest
peaks. For Fe-bce single cell the agreement with experimental plot is rather
low and we can note as the dependence with lattice constant is very pronounced.
Certainly the spectra calculated for lattice constants reported in fig 4.4 has a
better agreement with experimental result respect the curve in figure (4.5). For
d=2.87A the only agreement is for the first peak around 14 éV. In summary, we
reported in table 4.1 the essential parameters used to obtain the XANES spectra
for single Fe-bce cell. However some precoutions must be taken in account
to improve the calculated XANES spectra. First, it is necessary give up the
single cell structure for Fe-bce and build up a supercell system, to minimize the
interaction between core-hole and its your periodic image (fig 4.6 and 4.7). In
figure 4.8 we reported a 2D-plot of the electronic density for 2x2x2 supercell
In a 2x2x2 supercell the distance between two core-hole is twice of the lattice
constant, corresponding to the weaker interaction respect to single cell. In fact
for Fe-bce symmetry the primitve supercell contains 8 atoms and only one of
these eight atoms suffers an interaction with x-ray photon. This last atom will
be describe by using the pseudopotential generated with core-hole (and GIPAW
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Figure 4.5: Plot of the xanes spectra for Fe-bee with lattice costant d=2.57 A (in black)

comparing with experimental curve (in red).

Lattice constant (A) 2.57 2.77 2.87
Planewave cutoff (Ry) 150 150 150
Approximation dipolar dipolar dipolar
Coordinates € vector 100 100 100
Coordinates k vector 001 001 001
Monkhorost-Pack k-points  10x10x10 10x10x10 10x10x10
Electronic integration grid 7x7x7 TXTXT TXTXT
Thres. conv. (eV) 0.001 0.001 0.001
Max numb. iter. 1000 1000 1000
c-h linewidth(eV) 3 3 3
Energy range (V) [-20;50] [-20;50] [-20;50]

Table 4.1: In table 4.1 the most important parameter for XSpectra module are re-
ported.Lattice parameters used are 2.57 A, 2.77 Aand 2.87 A. The vectors € and k
are reported in crystal coordinates,i.e. in relative coordinates of the primitive lattice

vectors.
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Figure 4.6: In figure a 2D picture of Fe-bcce single cell and his periodic images are
reported.Distance between two core-hole is equal to the lattice constant for the bcc
symmetry.
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Figure 4.7: In this figure a 2D picture of 2x2x2 Fe-bcce supercell is reported together
his periodic images.Distance between two core-hole is twice to the lattice constant for
the bce symmetry.
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Figure 4.8: In this figure the 2D-plot of the electronic density for Fe-bcc 2x2x2 supercell
is reported.The value of magnitude corrisponding to each gray scale is reported on the
right of the figure

Planewave cutoff (Ry) 150
Approximation dipolar
Coordinates of € vector 100
Coordinates of k vector 001

Monkhorost-Pack k-points  10x10x10
Electronic integration grid 7x7x7

Thres. conv. 0.001 eV
Max numb. iter. 1000
c-h linewidth (eV) 2
Energy range [-20;50]

Table 4.2: In table 4.2 the most important parameter for XSpectra module used to
obtain the spectra in figure (4.11) are quoted

reconstruction), whereas the other seven atoms will be described by tradition
NCPP (or USPP) pseudopotential.

In the next figure (4.9) the lattice parameter for Fe supercell 2x2x2 is calculated.
As already found for single cell, the minimum is achieved for 2.77 A using a
smearing gaussian (0.001 Ry). At 300 K the experimental value is 2.87 A which
is achieved by using a Fermi-Dirac smearing electronic occupation with 0.05 Ry
for broadening (figure 4.10). Using 2.87 A as value of the lattice constant and
parameters in table (4.2), calculated spectra for 2x2x2 supercell with Norm-
Conserving pseudopotential is reported in the figure (4.11). In our opinion, it is
important to stress the improvent obtained for the theoretical spectra using a su-
percell respect to the Fe-bece single cell. All the peak positions seem to be are well
reproduced (except the pre-edge region of the spectrum). Some differences have
been encoutered regarding the peaks intesity, where an accetable convergence
between caluclated and experimental profile is not yet obtained, in particular at
high energy values (upper 20 eV). Moreover, in the previous chapter, we built
an Ultrasoft pseudopotential for iron element with GIPAW reconstruction, by
means of which different electronic density properties and structural parameters
of the Fe-bcce was calculated (total DOS and band structure). By using this
tested pseudopotential, we perform the XANES calculation applying the scheme
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Figure 4.9: As for single Fe-bcc cell, the minimum of the total energy of the supercell
2x2x2 is found at 2.77 A.Each curve corresponds to the Monkhorost-Pach K-points
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Figure 4.10: By using Fermi-Dirac spreading the minimum of the total energy of the
supercell 2x2x2 is found at 2.87 A.The K-points grid used is 10x10x10
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Figure 4.11: In this figure the XANES spectra for Fe-bce 2x2x2 supercell is reported.The
linewidth of the core-hole is set at 2eV

as already seen for Norm-Conserving. In XSpectra it will be used the parameters
in table 4.2.

In the next figures we compare the Ultrasoft XANES cross section with experi-
mental data, for linewidth of the core-hole fixed at 2 eV (figre 4.12) and 3 eV
(figure 4.13). The curves seem to be in good agreement with experimental

——USPP
—EXP.

Intensity (arb. units)

Energy (eV)

Figure 4.12: In this figure the XANES spectra for Fe-bce 2x2x2 supercell is reported
by using USPP pseudopotential. The linewidth of the core-hole is set at 2 eV

data, in particular at low energy values. In next figures with compare the USPP
with NCPP approach Finally we note as both Norm-Conserving and Ultrasoft
approach work in good agreement with experimental data. The former was
generated by Quantum Espresso authors whereas the latter is generated by us.
The Ultrasoft approach allows to use more than one l-channel in the valence
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Figure 4.13: In this figure the XANES spectra for Fe-bce 2x2x2 supercell by using
USPP pseudopotential is reported.The linewidth of the core-hole is set at 3 eV
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Figure 4.14: Calculated XANES spectra for Fe-bce 2x2x2 supercell with USPP (in
red)and NCPP (in black colour) approach are compared in this figure.The linewidth of
the core-hole is set at 2 eV.It is also reported the experimental curve
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Figure 4.15: Plot of the total energy in function of the lattice costant is reported for
different Monkhorost-Pack kpoints grid (M-P qxqxq)

configuration; then we can put the 3s and 4s orbitals as valence orbitals, more
similar to his ground state. For norm-conserving scheme just the 3s orbital have
been included in the valence configuration.

4.3 Application to the K edge in Silicon

Furthermore, another application was performed on the silicon crystalline struc-
ture. Silicon, like carbon and germanium, crystallizes in a diamond cubic crystal
structure, with a lattice spacing of 5.43 A. For silicon, we used a similar scheme
already used for the Fe-bee.First we determined the lattice costant for single cell
with diamond symmetry, building up the curve total energy in function of lattice
constant for different values of the latter one (fig. 4.15). For all the calculations
reported in this section, we used an Ultrasoft approach. For low grid values,
we obtained lattice constants which are far from experimental value, 5.23 Aup
to a 4x4x4 mesh. Lattice constant values near to experimental data (5.43 A)
is achieved for finer grid. The k-points convergence of the charge density was
obtained with good accuracy for k-points grid greater than 7x7x7(fig. 4.16).
Moreover for d=5.33 Aand d=5.43 Awe added further mesh values up to q=15
to assure completely the convergence of the charge density. All these values are
obtained using a pseudo Ultrasoft with core-hole effect. This effect produces
a lattice cell distorsion and the best value of the lattice constant is reached
for 5.33 A. By performing a wavefunction optimization with pseudopotential
without core-hole, we want demonstrate that cell distorsion is mainly due to the
core-hole interaction. In fact, for the same values of the lattice constant used in
the previous calculation (fig 4.18), the best calculated lattice parameter value is
5.42 A. Moreover, for lattice constant set at 5.33 A and 5.43 A we performed
the XANES simulation (fig 4.19, 4.20) using the parameters reported in table
(4.3). From figures 4.19 and 4.20 the calculated spectra for silicon single cell
does not seem to be in strong agreement with experimental data;maybe only the
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Figure 4.16: In this figure we can see the convergence of the electronic density for

k-points grid higher than 7x7x7
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Figure 4.17: In this figure we can see the convergence of the electronic density for
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(fig. 4.17)
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Figure 4.18: In this figure it is reported the plot total energy in function of lattice

constant, showing that the
without core-hole

best lattice value is 5.43 A, calculated by pseudoptential

Lattice parameter (A)

Planewave cutoff (Ry)

Monkhorost-Pack k-points 10x10x10 10x10x10
Electronic integration grid 7x7x7 TXTXT

Coordinates of € vector
Coordinates of k vector
Thres. conv. (eV)

Max numb. iter.

c-h linewidth (eV)
Energy range

5.33 5.43
150 150
100 100
001 001
0.001 0.001
1000 1000
1;2;3 1;2;3
[-20;50] [-20;50]

Table 4.3: In table 4.3 the most important parameter for XSpectra module are reported
used to obtain the spectra in figures (4.19) and (4.20)
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first peak around 5 €V is slightly reproduced, but with very low intensity.
As already seen for the Fe-bce, we have to decrease the core-hole effect intro-

——d=5.33 A XG=1
——d=5.33 A XG=2

- d=5.33 A XG=3
—EXP

Intensity (arb. units)

Energia (eV)

Figure 4.19: Simulated XANES spectra of silicon with diamond single cell (d=5.33 A)
for different values of core-hole line width (labeled XG in figure) and comparing with
experimental spectra

ducing a supercell so that the distance between core-hole in subsequent image of
the supercell increases. We built a supercell 2x2x2 which is enough to reduce
this interaction;in fact from figure (4.21), we note that the minimum of the curve
total energy in function of lattice constant is found again at 5.43 A.
Subsequently, we generate the spectra for supercell 2x2x2 (fig 4.23). We note
that the calculated spectra for silicon supercell is improved and the first peak is

— d=5.43 A XG=1
—— d=5.43 A XG=2

d=5.43 A XG=3
— EXP

Intensity (arb. units)

Energia (eV)

Figure 4.20: Simulated XANES spectra of silicon with diamond single cell (d=5.43 A)
for different value of core-hole linewidth (labeled XG in figure) and comparing with
experimental spectra
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Figure 4.21: Plot total energy in function of lattice constant for 2x2x2 supercell
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Figure 4.23: Upper figure reports calculated XANES spectra of Si supercell (black
line) compared with experimental data (red line). In order to improve the comparison
between profiles, the simulated curve has been rescaled by means of linear scale factor
in the region above 10 eV (figure in bottom)
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well reproduced. The linewidth used in this last calculation is linearly energy
dependent after the first 5 eV with slope fixed at 0.075. For the first 5 eV we
used costant value of 0.5 eV.

In our opinion the agreement beteween simulated and experimental spectra
is not yet completely accetable, in particular for energy values upper 10 eV.
Besides, the position of second peak around 15 eV from experimental curve
is well-reproduced, but the intensity is probably too much low in simulated
curve. In addition, we can see that the black curve suffers a strong decrease,
reaching pre-edge intensity values after 50 eV. This beahviour has not been yet
investigated but it is probably due to the low number of projectors used to
perform the GIPAW reconstruction|24].

Next application regards metalloprotein myoglobin and cytochrome c.

4.4 Metalloproteins: Myoglobin and Cytochrome c

Metalloprotein is a generic term for a protein which contains a metal ion cofactor.
A large fraction of all proteins are members of this category:for our applications,we
are interested in metallo(Ferri)proteins where the iron atom is bound to the
porphiryns group.Porphyrins are an group of aromatic organic compounds
consisting in pyrrole units in turn connected together through chemical bonds
between their carbon atoms. Iron porphyrins play a vital role in biochemical
process such as oxygen transport in animal (hemoglobin, myoglobin) and redox
processes such as electron transfer (cytochrome c¢). Iron and porphiryns group
generates the prosthetic group, called heme in hemoglobyne and myoglobin.
First application of the methodology, already illustared for iron and silicon
crystalline, is on cytochrome c. In this biomolecule, the heme prosthetic group is
centered on the Fe ion and connected to the protein matrix through the covalent
bonds between the cysteine residues and two vinyl groups of the adjacent pyrrols.
The axial coordination of the metal involves the nitrogen atom of hystidyne
(Hys18) (labeled Nist) and the sulfur atom of the metionine (Met80) (fig 4.24).
In the recent years, many papers regarding different applications of the XANES

./ \
> W Y

b e k, &Y - Ml -

< e i
Xy <y
- <

Figure 4.24: In this figure, on the right, the porphyrins group is shown (yellow and
grey colours are used for carbon and nitrogen atoms respectively) with iron atom (in
red colour) in center of the ring. On the left we reported the cluster used to simulate
the XANES spectra for cytochrome ¢ (sulfur atom is in yellowish colour out of the ring
and the blue colour are used for hydrogen atoms)

spectroscopy on the cytochrome ¢ have been published [25][26]]27]. In particular
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in [25] the authors using x-ray absorption spectroscopy by synchrotron radiation
to investigate the pH-dependence of the local structure of Ferricytochrome c.
Xanes spectroscopy is used by the authors in [26] to study the structural and
dynamical effects of the Cytochrome c in a dry trehalose matrix. In the last
paper a more general solvent effect has been object of a methodological study
by using XANES and EXAFS spectroscopy.
In our case we did not want to investigate a particular biological or solvent effect
of the cytochrome c, but we used this isolated metalloprotein to test a possibile
biological application of the GIPAW scheme.
In order to achieve our goal, we isolated the fragment of the citochrome c
containing eme group and two aminoacid residues, Hys18 and Met80, in axial
position respect the heme ring.Subsequently, we performed the ion optimization
using two pseudopotential for iron,USPP and NCPP, already used to simulate
the Fe-bce system. The most important optimized geometrical parameters are
reported in the tables below for different accuracy level.
In addition, following the scheme reported in [26] and in figure (4.25), further
geometrical outcomes are showed in table (4.5).

From tables (4.4) and (4.5), we noted that the distance Fe-S calculated by

k-points Gamma point
Plane wave cutoff 150 Ry
Box dimension 20x20x18 (bohr)

Gaussian smearing 0.001 Ry

Table 4.4: Parameters used to perform the ions optimization for cytochrome c

Approach Distance Fe-S  Distance Fe-Nist  Distance Fe-Np
NCPP 2.35 1.97 1.99
NCPP* 2.76 2.28 1.99
USPP 2.29 1.99 2.00
usppP* 2.64 2.28 1.99
XRD PDB 2.31 1.98 2.04
XRD PDB 2.49 2.60 1.81
NMR PDB sol 2.37 1.96 2.07
NMR PDB sol 2.36 1.94 2.08
NMR PDB sol 2.23 1.93 1.95
EXAFS 2.29 2.10 1.99

Table 4.5: Most important geometrical parameters (in A) for cytochrome ¢ optimized
with different accuracy levels. NCPP* and USPP* corresponds to the Norm-Conserving
and Ultrasoft approach with core-hole.Fe-S and Fe-Np are the distance between iron
and sulfur in Met80 and nitrogen in pyrrolic unit respectively. EXAFS XRD and NMR,
data are cited in [26]

using USPP* and NCPP* approach (2.64 Aand 2.76 A) are too much large than
to the other ab inito methods and EXAFS data (2.29 A). For these reasons we
have chosen to generate the XANES spectra using the geometrical structure
optimized without core-hole effect. Obviously, the core-hole effect is introduced
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Figure 4.25: Structural model for methionine;histidine residue and porphyrin group

Pyrrolic unit Model NCPP USPP USPP* EXAFS
Fe-Np 1.99 1.99 2.00 1.99 1.99(2)
Np-C2 1.38 1.39 1.38 1.38

C2-C3 1.44 1.44 1.44 1.44

C3-C4 1.34 1.37 1.36 1.36

C2-C6 1.38 1.39 1.37 1.39

Fe-Np-C2 109° 127° 127° 127°

Fe-Np-C3 163° 163° 163° 163°

Np-C2-C6 125° 124° 125° 125°

Histidine unit Model NCPP USPP USPP* EXAFS
Fe-Nist 2.00 1.97 2.00 2.28 2.10 (5)
Nist-C1 1.32 1.34 1.33 1.32

Nist-C1 1.37 1.39 1.38 1.38

C1-N1 1.34 1.37 1.36 1.36

C2-C3 1.35 1.37 1.37 1.37

C3-N1 1.35 1.39 1.38 1.38

Fe-Nist-C1 128° 126° 126° 125°

Fe-Nist-C2 127° 127° 127° 128°

Fe-Nist-N1 163° 162° 161°

Methionine unit Model NCPP USPP USPP* EXAFS
Fe-S 2.29 2.35 2.29 2.64 2.29 (4)
S-C1 1.81 1.87 1.81 1.81

S-C2 1.82 1.85 1.82 1.82

Fe-S-C1 109° 109° 111° 108°

S-C1-C3 110° 112° 111° 114°

Table 4.6: In table several geometrical parameters (distance in A) for cytochrome c for
different accuracy level are showed.The atoms involves in the distances reported in this
table, are labeled following the scheme in figure 4.25.
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k-points Gamma point
Electronic integration grid 3x3x3

Thres. conv. 0.01 eV

Max numb. iter. 50.000

c-h linewidth 1.36 eV /0.1 (0.05) slope

Table 4.7: In table 4.7 the most important parameters for XSpectra module are
reported.The core-hole line width is calculated as 1.36 ¢V and 0.05 ¢V in the first 5 eV
of the spectrum, and linearly energy dependent above with slope 0.1

in the wavefunction optimization of the final state.
As already done for Fe-bee and silicon, we could reduce the core-hole interaction
between periodic images of the system, building a supercell, minimum 2x2x2.
We did not follow this route for excessive computational cost. Increasing number
of atoms, it would have been necessary reduce the kinetic energy planewave
cutoff, reducing the accuracy of the calculation.
In general the absorption cross section for cristalline system with unit cell
belonging to specific class of symmetry, involves strong dependence by specific
coordinate space of the polarization vector; its analytical expression will be
determinated by own class of symmetry.
In the previous applications, we generated XANES spectra for systems with
high symmetry; Fe-bce e d-silicon belong to point group symmetry O-h and
Td respectively. For these class of symmetry, the absorption cross section did
not manifest a dependence by polarization vector of the plane wave incident.
In practice XANES spectra did not show any angular dependence when the
the polarization and the direction of the incident x-ray beam are varied. Both
calculated and experimental cross section are determined in crystalline form.
On the contrary the experimental cross sections of the biomolecules studied in
this thesis are acquired in solution. In this case,in order to reproduce XANES
spectra, more than one calculation are needed, because it does not exist an
angular dependence of the cross section, neither the polarization vector suffers
a preferred orientation. As reported in section 1.4, the isotropic XANES cross
section 00 is given by the average of the three cross sections evaluated taking as
polarization vector the three basic unit vectors (along x,y and z directions).

o0 = 04(1,0,0) + 0,(0,1,0) + 0,(0,0,1) (4.6)

3

For these reasons we performed three different XSpectra calculations for each
0(/1'\, 5, k) absorption cross section, then we applied the equation (4.6) to obtain
the isotropic absorption cross section. In table 4.7 we reported the parameter
used for XSpectra calculations. In the following two figures (4.26 and 4.27)
Norm-Conserving pseudopotentials calculations of XANES absorption cross
section for cytochrome c is reported. The only difference is the broadening
parameter used. For energy larger than 30 eV, we found an accetable agreement
with experimental curve, whereas for energy ranging 0-30 eV the experimental
peaks are not well reproduced by calculated data. The highest intensity peak is
found around 25 €V in experimental profile, against 20 eV in theoretical curve.
Moreover the experimental spectra is characterized by several areas where the
function is oscillating. In our opinion this behaviour gets lost in calculated
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Figure 4.26: Upper figure reports three different XANES cross sections for cytochrome
¢ determinated using Norm-Conserving approach as explained in the text.The cross
sections 04(0,0,1), 04(1,0,0) and 04(0,1,0) are labeled in figure as o0.,0, and oy
respectively. In bottom the isotropic cross section is compared with experimental data.
Core-hole linewidth is set costant up to 5 eV (1.36 €V) and variable with slope 0.1
above (table 4.7)
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Figure 4.27: Upper figure reports three different XANES cross sections for cytochrome
¢ determinated using Norm-Conserving approach as explain in the text. The cross
sections 04(0,0,1), 04(1,0,0) and 04(0,1,0) are labeled in figure as o0.,0, and oy
respectively. In bottom the isotropic cross section is compared with experimental data.
Core-hole linewidth is set costant up to 5 eV (1.36 €V) and variable with slope 0.05
above (table 4.7)
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spectra and the computational profile flattens.

In addition, the figure shows three component of the isotropic cross section. The
axial component (¢,) contributes with minor intensity to the total isotropical
cross section. This fact is in agreement to [26] and the isotropic spectrum is
dominated by paths involving atoms in the heme group;the higher intensity
contributions of o, and o, in figure 4.27 seems to confirm this properties.

In figures (4.28) and (4.29) the same calculations are performed with Ultra-
soft approach. We did not detect strong difference respect Norm-Conserving
calculation, except for o, which shows higher intensity respect to the other
contributions. Ultrasoft and Norm-Conserving spectra are compared in figure
(4.30) and (4.31).
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Figure 4.28: Upper figure reports three different XANES cross sections for cytochrome
¢ determinated using Ultrasoft approach as explain in the text.The cross sections
04(0,0,1), 04(1,0,0) and 64(0, 1,0) are labeled in figure as 0,0, and o, respectively.In
bottom the isotropic cross section is compared with experimental data.Core-hole
linewidth is set costant up to 5 €V (1.36 €V) and variable with slope 0.1 above (table
4.7)

Beyond the edge, the XANES spectra generated by Ultrasoft approach re-
mains above the experimental curve, whereas the Norm-Conserving crosses the
experimental curve. In both case, the XANES region below 30 ¢V is not well
reproduced.

Further investigations are needed to understand this trend and subsequently
try to improve the simulations. Probably it is necessary to act on geometrical
optimization, so as to have a more realistical geometry of the cytochrome c
structure. Another effect to take in account is the solvent effect, since could
determine the XANES experimental profile [26].

Finally, XANES spectra for cytochrome ¢ are calculated using a constant -y
parameter (2¢V)(fig. 1.32).
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Figure 4.29: Upper figure reports three different XANES cross sections for cytrochrome
¢ determinated using Ultrasoft approach as explained in the text. The cross sections
04(0,0,1), 04(1,0,0) and 04(0, 1,0) are labeled in figure as 0,0, and oy respectively.
In bottom the isotropic cross section is compared with experimental data. Core-hole
linewidth is set costant up to 5 eV (1.36 €V) and variable with slope 0.05 above (table
4.7)



Chapter 4 - Ab initio determination of XANES spectra 74

—EXP
. Norm Conserving
——— Ultrasoft

Intensity (arb. units)

Energy (eV)

Figure 4.30: In figure the isotropic cross sections for cytochrome c obtained by USPP
and NCPP are compared with experimental data.Core-hole linewidth is set costant up
to 5 eV (1.36 eV) and variable with slope 0.1 above (table 4.7)

—EXP
Norm Conserving
——— Ultrasoft

Intensity (arb. units)
1

Energy (eV)

Figure 4.31: In figure the isotropic cross sections for cytochrome c¢ obtained by USPP
and NCPP are compared with experimental data. Core-hole linewidth is set costant up
to 5 eV (1.36 eV) and variable with slope 0.05 above (table 4.7)
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Figure 4.32: Upper figure reports three different XANES cross sections for cytochrome
¢ determinated using Ultrasoft approach as explained in the text. The cross sections
0a(0,0,1), 04(1,0,0) and 04,(0,1,0) are labeled in figure as 0,0, and o, respectively.
In bottom the isotropic cross section is compared with experimental data. Core-hole
linewidth is set costant at 2 eV
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Next application is on Myoglobin, where we propose an anologue scheme of
calculation for XANES spectra, already showed for cytochrome c. In particular,
we consider the structure of carbonmonoxy-Myoglibin (MbCO) where the CO
group is bound with Fe in heme group (Fig 4.33). In axial poistion we found the
carbonmonoxy group from one side and the aminoacid residue Hys64 on the other
side. In whole protein, the experimental geometrical position of the CO group is
determinated by His64 and Val68, which are not considerer in this study. The
reference [AIP] contains a valid approach scheme to simulate XANES spectra of
the MbCO system. As reported in [27], the XANES spectra is strongly dependent
by CO position. The complete ions optimization of the cluster in figure 4.33
leads the direction of the chemical bond C-O to be perpendicular respect to the
heme plane (a = 0°). Moreover, we indicate the angle 8 as the angle between
the Fe-CO and the C-O directions. From XRD diffraction, the « and g angle
are detected at 4.8° and 7.4°. To generate XANES spectra, we considered to
use the cluster geometry more similar to the experimental one. Then we set the
angle a at 9.0° leaving the 8 angle fixed at 0°. As reported in [28], the dipolar
transition depends weakly by angle 5 and just in the pre-edge region. In table
4.8 optimized geometrical parameters are reported. The geometrical parameters

Figure 4.33: Cluster used to simulate the atomic region of the MbCO near heme group.
The direction of the CO group make the angle 8 with Fe-CO direction.

in MbCO do not suffer a geometrical distorsion due to the core-hole effect, then
we can introduce it completely, optimzing geometrical structure of the cluster in
figure (4.33) by using USPP* and NCPP* pseudopotential. The most important
parameters introduced in the Quantum Espresso PWscf and XSpectra modules
are showed in tables (4.9) and (4.10). In figure 4.34 the XANES spectra are
reported for different cross section contribution (upper figure) and final isotropic
value, calculating by using the equation (4.6).

As usual, we quoted the spectra showing three components of absorption cross
section, and subsequently the isotropic cross section. Regarding the main experi-
mental peak (around 20 €V), his position is reproduced with good accuracy,but
it is characterized by too much pronounced broadening. The simulated curve
seems to have a similar trend respect experimental profile. On the contrary by
aligning the main theoretical peaks with experimental one, the experimental



Chapter 4 - Ab initio determination of XANES spectra 7

Approach Distance Fe-CO  Distance Fe-Nist  Distance Fe-Np
NCPP 1.72 2.09 2.01

NCPP* 1.72 2.02 2.00

USPP* 1.77 2.10 2.04

XRD PDB 1.73 2.12 2.00

RELAX (CP dynamics) 1.77 2.15 2.04

XRD 1.73 2.06 1.98

XRD 1.82 2.06 1.98

EXAFS 1.93 2.20 2.01

XANES 1.83(2) 2.06(3) 2.00(2)

Table 4.8: In this table the most important parameters (in A) for MbCO for different
accuracy level are indicated. NCPP* and USPP* corresponds to the Norm-Conserving
and Ultrasoft approach with core-hole. Fe-CO and Fe-Np are the distances between
iron and CO group and nitrogen in pirrolic unit respectively. The relaxed data are from
Car-Parrinello (CP) molecular dynamics [28]. EXAFS,XANES and XRD geometrical
parameters are showed in [29]

k-points Gamma point
Plane wave cutoff 100 Ry

Box dimension 20x20x15 (bohr)
number of atoms 48

Gaussian smearing 0.001 Ry

Table 4.9: Parameters used to perform the ions optimization for MbCO

k-points Gamma point
Electronic integration grid 4x4x4

Thres. conv. 0.01 eV

Max numb. iter. 50.000

c-h linewidth 1.36 eV /0.1 (0.05) slope

Table 4.10: In this table the most important parameters for XSpectra module are
reported.The core-hole line width is calculated as 1.36 ¢V and 0.05 ¢V in the first 5 ¢V
of the spectrum, and linearly energy dependent above with slope 0.1
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Figure 4.34: Upper figure reports three different XANES cross sections for
carbonmonoxy-myoglobin determinated using Norm-Conserving approach. The cross
sections 04(0,0,1), 04(1,0,0) and 04(0,1,0) are labeled in figure as o0.,0, and oy
respectively. In bottom the isotropic cross section is compared with experimental data.
Core-hole linewidth is variable with slope 0.1 above 5 ¢V and costant up to 5 ¢V (1.36
eV)
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curve is not well reproduced in terms of intensity and it is found always below
the theoretical one.

Regarding the MbCO system, the contribution axial to the isotropic cross section
seems to be reduced with respect to the signal from heme group as well found
for cytochrome c.

Moreover the simulated curve above 20 eV reproduces the trend of the experi-
mental curve up to 50 eV, generally with lower intensity. In the pre-edge region
a single large peak has been found but reasonably it can not be ascribed to
the typical pre-edge signal detectable in the experimental XANES curve. Fur-
thermore in figure (4.34) the XANES spectra from single cross section have a
good agreement with spectra reported in [28]. In this paper theoretical and
experimental spectra for two different polarizations of the X-rays are showed.
By comparing our spectra in (4.34), we note that the contribution from heme
group (04(1,0,0) and 0,(0,1,0)) is characterized by large peak around 20 eV
also for the spectra o, in [28] (figure 2). Similarly the spectra in figure (4.34)
calculated with polarization normal to the heme plane (black line) suffers more
oscillations and at least two important peaks are detected around 15-18 ¢V and
35-38 €V as in [28]. Differently to the reference [28], where the intensity of the
peak at 15 eV is higher respect to the peak at 35 eV, we obtained the same
values of intensity for these two peaks.

Finally the biological applications of the GTIPAW methods to generate the XANES
cross section shows actrattive prospects and potential applications regarding
more complex biophysical effects could be considered. However, it would be
useful performing more investigations on this biomolecular model, cytochrome c
and myoglobin to reduce the differences between calculated and experimental
spectra; in particular in terms of intensity on entire spectrum and in the pre-edge
region, where no peaks have been reproduced.



Conclusion

The multiscattering approach used in the muffin tin approximation is the most
common scheme for analyzing of the XANES spectra, widely applied by many
authors. In this framework the spectral simulation is based on a hypotetical
reference structure and the accordance with experimental results is achieved
through the best fitting of the free parameters. It is well known that in the XANES
experiment, the X-ray photon is absorbed by sample and the photolelectron is
expelled for photoelectric effect. The photoelectron is scattered by atoms nearest
to the absorbing atom, producing the traditional oscillations of the XANES
profile; the X-ray beam transmitted through the sample is recorded in function
of the photon energy, generally up to 40-50 eV above the absorbtion edge.

In this thesis, we perfomed several simulations of the XANES spectra for some
reference systems like iron, silicon, myoglobin and cytochrome ¢, by using
an alternative approach with respect to the multiscattering scheme, where a
full ab-initio XANES spectra is generated. Shortly this methodology consists
in two step calculations. First a complete full ab-initio optimization of the
wavefunction (eventually also for geometrical structure) for the system of interest
is carried out; subsequently, the effective calculation of the absorption cross
section to obtain XANES spectra is performed, in our case through a Lanczos
numerical procedure. More specifically, the wavefunctions which describe the
intial and final states of the system involved in the photoelectric process, appear
in the expression of the absorption cross section; the wavefunction of the initial
state is the orbital occupied by electron before the interaction with X-ray
photon (in our case the 1s orbital belonging to the k-shell of the absorbing
atom), while the final state is described by all-electron wavefunction in presence
of core-hole. This last term is calculated from a plane wave pseudopotential
approach in density functional theory scheme. The pseudo wavefunction is
transformed in an all electron wavefunction by means of transform operator
which is derived in the projector augmented wave (PAW) scheme. By introducing
the wavefunctions previously determinated, the cross section is obtained applying
a Lanczos numerical procedure.

In addition it is useful to remember that the plane wave pseudopotential approach
is among most popular methods to resolve the Kohn-Sham equations. The
modern pseudopotential are build on the isolated atom; before to use for the
system of interest, it is necessary to check its transferibility. In particular some
structural, or eventually, electronic parameters should be reproduced with good
accuracy.

In our case, the calculated XANES spectra for K-edge of the bee-iron is found
in good agreement with experimental data, in particular for 2x2x2 bcc-Fe
cell. The position of the peaks is well reproduced and substantially also their
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intensity. Different results have been obtained for silicon, where the intensity of
the simulation curve drops after 10 eV, probabily due to the poor quality of the
pseudopotential. In this case the low quality of the pseudopotential is probably
due to the number of parameters (projector functions) used to transform the
pseudo wavefunction in all electron wavefunction. An open interesting question
that we are still investigating in test systems is how the tail at high energies
modifies by the inclusion of a larger number of projectors.

Our calculations on iron and silicon XANES cross section regards cristalline
structures with unit cell belonging to puntual group with high simmetry (O;, and
T, for iron and silicon respectively). Some examples of simulated XANES spectra
on quartz and diamond are available in literature, in any case for cristalline
structures. In the second part of this thesis, starting from general expression
of the absorbing cross section for C; puntual group, it has been derived an
expression of the cross section specific for sample in powder or in solution. In
fact the simulation of the spectra for myoglobin and cytochrome c required the
expression derived for powder samples. For myoglobin essentially we obtained an
acceptable agreement to the experimental data, while for cytochrome ¢ further
analysis and tests are needed to improve the accordance between experimental
and theoretical data.

The topic of this thesis has been awarded of 500000 core processor hours on
the CINECA HCP resources, on the basis of a peer-review procedure. In our
case these core processor hours was allocated on an IBM BG/Q named FERMI
(Project IsC09/AbIXS).

Finally the PAW-DFT (or GIPAW-DFT) approach to calculate a full ab-initio
XANES spectra for cristalline or amorphous materials could play a crucial role
as alternative method for analyzing the experimental XANES spectra. By using
a full ab-initio approach, further powerfull tools ara available (as DOS,PDOS
and Bands calculations) to characterize the material. Then further informations
on the structure of the material could be available in order to generate and
interpret the XANES spectra.
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