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 Introduction 
 

This work is aimed at the system identification of a footbridge in Imola. The system 

identification essentially consists of study of the dynamic properties and of the 

creation and the calibration of a mechanical model basing on dynamic tests in field. 

The diffusion of this method was really important in the last years because it gives the 

possibility to obtain the dynamical characterization of structures using non-destructive 

methods. Thinking about the deteriorating of brick wall or cables in bridge it is clear 

why it is do important to know the actual proprieties and behaviour of structure. In 

order to get these information, dynamic forces are applied to the structure (vibration 

generator consisting of closed-loop electro-mechanic actuator, traffic, wind, etc…), 

and the measured data are analyzed by identification techniques in the time and in the 

frequency domain, at this point the output signals obtained are compared with the 

model that has to be calibrated. 

The first aim of this work therefore is to analyze the outputs measured by the 

accelerometers with the EFDD (Enhance Frequency Domain Decomposition) and to 

derivate an accurate mechanical model of the footbridge under examination comparing 

it with the results derived from the analysis.  

The mechanical model of a bridge, a finite element (FE) model in the case majority, is 

usually defined on the basis of highly idealized engineering designs that may or may 

not truly represent the actual behaviour of the structure under study. In fact, when 

static or dynamic tests are performed to validate the analytical model of a bridge, 

inevitably some discrepancies arise between the experimental results, typically 

expressed in terms of static deflections or natural frequencies and mode shapes, and 

their analytical counterparts. Large deviations between the experimental and analytical 

values could be responsible for significant differences between the actual and 

calculated capacities of a bridge. Moreover, an inaccurate mathematical model of a 

bridge cannot be reliably used as a baseline for future damage assessment applications. 

The experimental techniques are nowadays developed to a high degree of 

sophistication, but the interpretation of measurements often presents intrinsic 

difficulties. In fact, in recent years, there has been an increasing interest in the civil 
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and mechanical engineering community in methodologies that are capable of getting 

dynamic properties. 

Modal parameter identification is one of the most common procedures to identify 

dynamic properties of a vibrating structure starting from modal tests. Modal 

parameters can be estimate from a variety of different measurements in different data 

domains (time and/or frequency domain). These measurements can include free-

decays, forced responses, frequencies response functions or impulse response 

functions. In fact Acceleration records at different frequencies are used to calculate the 

corresponding FRFs. From these, frequencies domain methods can be used to identify 

frequencies, deformations and damping ratios of various modes. The forces exciting 

the structures can be divided in two principal categories: the ambient and the artificial 

forces. The second have the advantage that , especially for mechanical system, it is 

possible to regulate, impose, measure and check the motion of the structure, but the 

disadvantage to need the interruption of the exercise in order to do the tests The 

ambient excitation in the contrary takes the advantage not to interrupt the common use 

of the structure.T he measurements can be generated with no measured inputs, single 

measured input or multiple measured inputs. 

Most current modal parameter estimation techniques are based on the frequency 

response function (FRF) or, equivalently, impulse response function (IRF) obtained 

from the measured data. FRFs are typically found by Fast Fourier Transform.  

The simplest approach to estimate the modal parameters of a structure is the so-called 

Peak-Picking (PP) method. The method’s name refers to the fact that the identification 

of the Eigen frequencies is found picking peaks from a spectrum plot. Probably due to 

its simplicity, it is one of the most widely used methods in civil engineering. Method 

details are, for instance, discussed in [Bendat & Piersol, 1993]. It assumes that the 

damping is low and that the modes are well-separated. A violation of these 

assumptions leads to erroneous results. In fact, the method identifies the operational 

deflection shapes instead of mode shapes and for closely-spaced modes such an 

operational deflection shape will be the superposition of multiple modes. Other 

disadvantages are that the selection of the Eigen frequencies can become a subjective 

task if the spectrum peaks are not very clear or if the frequency resolution is not fine 
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enough.  Methods that elude these problems are the FDD and EFDD. They use the 

Singular Value Decomposition method diagonalizing the spectral matrix and 

decomposing it into a set of auto spectral density functions, each corresponding to a 

Single Degree of Freedom (SDOF) system. The Enhanced Frequency Domain 

Decomposition (EFDD) is basically an extension of the FDD technique capable of 

providing damping information. In EFDD, the identified frequency function around 

each resonant peak is transferred back to the time domain using Inverse Discrete 

Fourier and damping can be obtained by the logarithmic decrement of the correspond 

SDOF normalized autocorrelation function. This is the approach we used for our case 

of study. The results are right if the structure has a low damping, the load is really a 

white noise and the mode shapes of the matched modes are orthogonal. Otherwise 

they are approximated but good anyway. To have more information about 

identification techniques both in the time and in the frequency domain we remand to 

the third chapter. The estimation of the modal parameters starting from output 

measurements only (e.g. accelerations) is known as stochastic system identification, 

where the structure is excited by an un-measurable input force. In these methods, 

deterministic knowledge of inputs is replaced by the assumption that the input is a 

realization of a stochastic process (white noise). 

In the following chapters they are presented the results of an application of structural 

identification based on dynamic data for a one span footbridge, with a slab-on-beams 

deck, stayed-cable type,  recently built in the new road axis in Pedagna, Imola. In this 

work it is used, as we said, an identification technique and it is create an almost 

accurate model representing the real behaviour and improving the fitting between the 

prediction of a FE model and the real structural behaviour. 

In the first chapter the main characteristics of the cable-stayed bridges and some 

bibliography about the FE model are reported. Moreover also a detailed description of 

the real and of the FE model footbridge are reported. 

In the second chapter the dynamic theory of a single degree and a multi degree of 

freedom systems are recalled. Also the signals analysis and the tread of the signals, 

such as filtering, windowing, overlapping techniques are explained. 



 6

In the third chapter there is a wide explanation of the EFDD method used to analyse 

the measured data showing by steps how the method works. 

In the fourth chapter the process of static tests are reported and it focuses on the 

validation of the FE model comparing and calibrating it with output from the tests. 

The instruments of measure used to get the data are also shown. 

The fifth chapter is the most important and all the dynamic results are contained in it. 

Forced-vibration tests were conducted to extract the dynamic parameters of the first 

modes of vibration. The identification procedure based on modal analysis and FE 

modelling is presented for the characterization of the footbridge. Also the theory of the 

cable is reported. 

The resulting calibrated model will be of valuable importance for new structural 

identifications in the same bridge giving the possibility to identify and localize 

eventually future damages in the footbridge. 

 



 7

Introduzione 
 
Questo lavoro tratta l’identificazione strutturale di una passerella pedonale costruita in 

Imola. L’identificazione strutturale consiste nel ricavare le caratteristiche dinamiche 

della struttura e nel creare un modello meccanico e calibrarlo con i dati sperimentali 

analizzati provenienti da prove dinamiche realizzate in sito. Questa tecnica si è diffusa 

ampiamente negli ultimi anni proprio perché dà la possibilità di ricavare le 

caratteristiche dinamiche e quindi di conoscere il comportamento della struttura caso 

di studio usando prove non distruttive. Se si pensa al degrado delle strutture in 

muratura o dei cavi in acciaio nei ponti sospesi o strallati si intuisce l’importanza di 

conoscere l’attuale stato di tali strutture in modo anche da poterlo monitorare. Per 

poter ricavare le caratteristiche dinamiche delle strutture occorre applicare carichi 

dinamici (vibrodina, traffico, rilascio di blocchi di cemento, carichi impulsivi, corse, 

etc…) e i dati registrati (abbassamenti, accelerazioni…) vengono analizzati tramite un 

algoritmo d’identificazione ed infine le caratteristiche dinamiche ottenute vengono 

comparate con quelle risultanti dal modello. 

L’obbiettivo primario di questo lavoro è quello di analizzare i dati registrati dagli 

accelerometri tramite la tecnica d’identificazione chiamata EFDD (Enhance 

Frequency Domain Decomposition) e di derivare un modello rispettoso della 

situazione reale.  

Per questo è stato creato un modello agli elementi finiti tramite il programma di 

calcolo Straus7. 

 

Il modello meccanico, spesso un modello agli elementi finiti è di solito definito sulla 

base di una idealizzazione del progetto ingegneristico che può o meno essere 

rappresentativo dell’attuale stato della struttura in esame. Infatti, quando tests statici o 

dinamici sono effettuati, inevitabilmente si rivela una certa discrepanza tra i dati 

sperimentali espressi in termini di abbassamenti o frequenze naturali e quelli analitici. 

Grandi deviazioni tra i dati sperimentali e analitici, possono essere responsabili di 

discrepanze significative tra i valori di capacità della struttura reali e quelli aspettati. 

Inoltre, un modello matematico inaccurato del ponte non può essere usato come linea 

guida nello studio di futuri danneggiamenti. Le tecniche sperimentali sono oggi 
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migliorate e hanno raggiunto un livello molto alto di sofisticazione, ma 

l’interpretazione dei dati raccolti presenta spesso intrinseche difficoltà. Infatti, negli 

ultimi anni, c’è stato un incremento d’interesse nelle comunità  civili e meccaniche 

riguardo a metodologie capaci di ricavare le proprietà dinamiche delle strutture. 

 

L’identificazione dei parametri modali è una delle più comuni procedure per 

identificare le proprietà dinamiche di una struttura in vibrazione partendo da prove 

modali. I parametri modali possono essere stimati da una vasta varietà di misure in 

differenti domini (dominio del tempo e/o delle frequenze). I dati possono includere 

vibrazioni libere, risposte di sistemi sforzati, risposte di funzioni in frequenza o 

funzioni di risposta impulsive. Le forze caratterizzanti eccitanti la struttura si dividono 

in due principali categorie: ambientali e forzate. I sistemi di eccitazione artificiale, in 

particolare i sistemi di tipo meccanico (es. vibrodina), hanno il vantaggio di poter 

imporre, misurare e controllare il moto della struttura, ma anche il grande svantaggio 

di richiedere l’interruzione dell’esercizio dell’opera per poter effettuare la prova. 

L’utilizzo dell’eccitazione di tipo ambientale permette invece di eseguire le prove 

sulla struttura senza la necessità di interrompere il normale esercizio dell’opera 

durante le prove sperimentali. I dati misurati possono essere generati da input 

sconosciuto a singolo ingresso o ingresso multiplo. 

La più comune tecnica di identificazione dei parametric modali è basata sulla risposta 

in frequanza (FRF) o, equivalentemente funzione di risposta impulsive (IRF) ottenuta 

dai dati sperimentali. Le FRFs sono tipicamente ottenute tramite trasformazione di 

Fourier.    

Il metodo più semplice per la determinazione delle caratteristiche modali delle 

strutture nel dominio delle frequenze è il metodo Peak-Picking (PP). Il metodo prende 

nome dal fatto che la determinazione delle frequenze proprie è ottenuta dalla 

frequenza corrispondente ai picchi del modulo della FRF. Data la sua semplicità, nel 

passato questo metodo è stato il più diffuso per la determinazione delle caratteristiche 

modali di strutture civili [Bendat & Piersol, 1993]. Il metodo assume che lo 

smorzamento sia modesto e che i modi siano ben distinti tra loro. Nel caso in cui 

questo non accada, l’applicazione del metodo porta a commettere errori significativi. 

Infatti, il metodo identifica gli operating deflection shape invece dei modi propri, 
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ottenuti per somma di contributi di diversi modi propri. Un altro svantaggio di tale 

metodologia è dovuto alla necessità da parte dell’operatore di selezionare le frequenze 

proprie quando la FRF è definita con scarsa risoluzione o quando è presente un elevato 

livello di rumore nelle misure [Ewins, 2000]. 

I metodi FDD e EFDD eludono questo problema . Essi usano la decomposizione ai 

valori singolari diagonalizzando la matrice spettrale e decomponendola in una serie di 

funzioni di densità spettrale, ognuna corrispondente ad un sistema ad un singolo grado 

di libertà. L’EFDD è praticamente un’estensione della tecnica FFD ed è capace di 

ottenere frequenze proprie e rapporti di smorzamento.  Nell’EFDD la funzione in 

frequenza identificata attorno al picco è trasferita di nuovo nel dominio del tempo 

usando la trasformata inversa di Fourier e il rapporto di smorzamento può essere 

ottenuto dal decremento logaritmico della corrispondente alla funzione normalizzata di 

autocorrelazione del sistema SDOF. Questa è la tecnica che viene usata nel presente 

lavoro ed in particolare ci si riferisce al caso di output only identification, dove l’input 

è assunto essere un processo stocastico (white noise). I risultati ottenuti dal metodo 

sono giusti se la struttura ha valori di smorzamento bassi, the i carichi sono veramente 

dei processi stocastici e se le forme modali sono ben separate e ortogonali. Altrimenti i 

risultati non saranno perfetti, ma comunque buoni. Per avere maggiori informazioni 

sulle diverse tecniche di identificazione nel dominio del tempo e delle frequenze ci si 

riferisca al capitolo terzo. 

Nei paragrafi seguente sono presentati i risultati di una identificazione strutturale 

basata su prove dinamiche svolte su di una passerella pedonale strallata, con una luce 

principale, un pilone inclinato in cemento armato con camicia metallica collaborante, 

con impalcato formato da tubi in acciaio sostenenti una soletta di calcestruzzo e situata 

a Imola nel quartiere Pedagna. La tecnica di identificazione EFFD è stata usata e si è 

ottenuto un modello agli elementi finiti abbastanza accurato e in grado di riprodurre lo 

stato della passerella al momento delle prove. 

Nel primo capitolo sono descritte le principali caratteristiche dei ponti strallati ed è 

introdotto il metodo agli elementi finiti. Inoltre sono riportate anche una descrizione 

dettagliata del caso in esame e del modello FE iniziale. 
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Nel secondo capitolo è introdotta l’analisi dinamica di sistemi ad un grado e a più 

gradi di libertà. Si spiega anche l’analisi  e il trattamento del segnale, come il 

filtraggio, il finestra meno e la tecnica di sovrapposizione dei dati. 

Nel terzo capitolo c’è un’ampia spiegazione della tecnica EFDD usata per analizzare i 

dati misurati e vengono mostrati i vari passaggi sequenziali del metodo. 

Nel quarto capitolo sono riportate le prove dinamiche e i risultati ottenuti sono 

comparati con quelli del modello. Sono anche brevemente descritti gli strumenti 

utilizzati nelle prove. 

Il quinto capitolo è il più importante, sono descritte le prove dinamiche, sono riportati 

i risultati derivanti dalla tecnica d’identificazione e i risultati sono comparati con 

quelli del modello. Esso è stato quindi calibrato. In questo capitolo viene riportata 

anche una breve introduzione alla non linearità dei cavi. 
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Chapter 1 

2.1 Introduction 

This study focuses on the System Identification of a footbridge in Imola (Italia). 

This footbridge is a cable stayed bridge, supported by three cables each part of the 

deck. 

Typically a cable-stayed bridge is a bridge that consists of one or more columns 

(normally referred to as towers or pylons), in which cables that support the bridge 

deck are anchored. It is similar to a suspension bridge since both type of bridges have 

towers, cables and a suspended deck structure, but they differ for the way forces are 

transmitted from the deck to the towers(e.g. the disposition of the cables and the 

supports). 

The deck of a suspension bridge merely hangs from the suspender, and has only to 

resist bending and torsion caused by live loads and aerodynamic forces. Contrarily, the 

deck in a cable-stayed bridge is in compression, pushed against the towers, and has to 

be stiff at all stages of construction and use. A great advantage is that cable stayed 

bridges are essentially made of cantilevers, and can be constructed by building out 

from the towers. 

The suspension bridge has main cables suspended between towers, plus vertical 

suspender cables that carry the weight of the deck below, upon which traffic crosses. 

Cable-stayed bridges are divided in two classes depending on the disposition of the 

cables. In a harp configuration, the cables are made nearly parallel by attaching the 

cables at various points on the tower(s) so that the height of attachment of each cable 

on the tower is similar to the distance from the tower along the roadway to its lower 

attachment. In a fan design, the cables all connect to or pass over the top of the 

tower(s). 

As a consequence of the cable geometry, suspension bridges need four anchorages to 

withstand the tension of the four cable-ends, while cable stayed bridges are self-

anchored. 

The cable-stay design is the optimum bridge for a span length between that of 

cantilever bridges and suspension bridges (between 500 and 2500 feet). Within this 
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range of span lengths a suspension bridge would require a great deal more cable, while 

a full cantilever bridge would require considerably more material and be substantially 

heavier. On the other hand, for very long spans (2500-7000 feet) a suspension bridge 

is more efficient. At some point, the towers for a cable-stayed bridge become too tall 

and have to carry to much weight. 

 

2.2 Historical dissertation about the cable-stayed bridges 

In the following section we are going to introduce a brief history of cable-stayed 

bridges.  

The theoretical studies for the concept of a cable-stayed bridge have started in 1823 

with Navier who visited the UK and studied the bridges being built there. There, 

combinations of suspended and cable-stayed bridges were built. In the following 

figure (1.1), it is shown in a very simply way how a cable-stayed bridge in the fan type 

of cables configuration works. 

 

Figure1.1.  Equilibrium in cable-stayed bridge 

At equilibrium, the dead+live load P of the deck is taken by a tensile axial force in the 

cable stay and a compressive force in the deck. 

Unfortunately a bridge built as a combination between the suspension and the cable 

stayed bridge collapsed a year after its public opening. This fact induced Navier to 

promote suspension bridges instead of cable-stayed bridges. Navier’s studies were 

P 
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very influential and this was one of the reasons that cable-stayed bridges did not 

materialize until 1955. 

An other important engineer whose name is linked to cable-stayed bridges is 

Dischinger. He took part at a design competition where he proposed to design a cable 

stayed bridge, but lost. In any case, this was important because it brought back the 

idea of cable stays. Finally in a design competition in Sweden in 1955 for the 

Stromsund Bridge, Dischinger proposed a similar idea and won. The bridge is 332 m 

long, with a 182 m long span. It was opened in 1956, and it was the first large cable-

stayed bridge in the world, constructed by Franz Dischinger, a pioneer in construction 

of cable-stayed bridges. The following picture (1.2) shows as the bridge looks today. 

 

Figure1.2. A  view of Stromsund Bridge in Sweden 

The second step in the diffusion of this new typology of bridge construction came in 

1958 in Dusseldorf, with the the design of bridges over the Rhine River. During 

WWII, all the bridges over the Rhine were destroyed except one and they had to be 

rebuilt. German designers adopted the cable-stayed form in some of the bridges. 

Let us introduce now the first one built in the US: the Pasco-Kennewick Bridge over 

the Columbia River in Washington State. It is a fan-type form with all the cables 

emanating from essentially the same point. There was however a complication with 

construction since the point where all these cables emanate is difficult to build. 
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Figure1.3.  A view of the Pasco-Kennewick Bridge 

This type of bridge has a visual problem because the cables are not parallel and they 

do not create a harmonic look of the bridge. Such a look is, instead, apparent in the 

harp configuration, like the Second Strelasund Crossing in Germany.  

 

Figure1.4. The Brotonne bridge by Jean Muller 

The Brotonne bridge shown in figure 1.4, introduced some important innovations: 

� The line of cables is in the middle of the roadway. Until now there were 

always two lines of cables, one on each side of the roadway. 
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� The deck is now cantilevered out of the middle line, in contrast in previous 

bridges it was simply supported. 

� Because of the single line of cables, cluttering is avoided from any angle 

Actually this is a hybrid cable configuration: between a fan and a harp. 

There were a lot of other innovations and updating in cable stayed bridge, as they were 

increasing in number worldwide. These bridges are now built in more unusual styles 

for structural and aesthetic reasons (Rito 1996 and Menn 1996). Examples include the 

Lerez Bridge (Troyano et al. 1998) - a single inclined tower bridge; the Katsushika 

Harp Bridge (Takenouchi 1998) - having a single pylon and S shaped deck; the 

Marian Bridge (Kominek 1998) - having a single L shaped pylon; the Alamillo Bridge 

Casa 1995), with a single inclined pylon and the Safti Link Bridge (Tan 1996) – which 

has a curved deck and single offset pylon. The unique structural styles of these bridges 

beautify the environment but also add to the difficulties in accurate structural analysis.  

 

2.3 Model Base Simulation 

In order to study the footbridge a FEM model was created using a programming 

software called STRAU7. Such a model has been first developed using the design 

blueprints and then has been validated by comparing its dynamic characteristics with 

those extracted by experimental data. 

In the following picture (1.5) is reported the steps of the Model Based Simulation. 
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Figure1.5. Diagram of modelling steps 

2.3.1 Idealization and Models 

Idealization is a comprehensive term to indicate all the tools that an engineer 

uses to pass from the physical system to a mathematical model that conserves the main 

features of the real one. This is the most important step in engineering practice, 

because it cannot be “canned.” It must be done by an engineer. 

The word “model” has the traditional meaning of a scaled copy or representation of an 

object. And that is precisely how most dictionaries define it. We use here the term in a 

more modern sense, which has become increasingly common since the advent of 

computers: 

A model is a symbolic device built to simulate and predict aspects of behaviour of a 

system. 

Note the distinction made between behaviour and aspects of behaviour. To predict 

everything, in all physical scales, you must deal with the actual system. A model 

abstracts aspects of interest to the modeller.  

The process is called idealization because the mathematical model is necessarily an 

abstraction of the physical reality and maintains just a number of the all aspects. The 

analytical or numerical results produced by the mathematical model are physically re-

interpreted only for those aspects. To give an example of the choices that an engineer 

may face, suppose that the structure is a flat plate structure subjected to transverse 

loading. Here is a non-exhaustive list of four possible mathematical models: 

1. A very thin plate model based on Von Karman’s coupled membrane-bending 

theory; 

2. A thin plate model which can be analysed using the classical approach of 

Kirchhoff’s theory; 

3. A moderately thick plate model which can be analysed by Mindlin-Reissner plate 

theory. 

4. A very thick plate model which requires the three-dimensional elasticity. 

The person responsible for this kind of decision is supposed to be familiar with the 

advantages, disadvantages, and range of applicability of each model. Furthermore the 

decision may be different in static analysis than in dynamics. 



 17

Engineering systems tend to be highly complex. For simulations it is necessary to 

reduce the complexity to manageable proportions. Mathematical modelling is an 

abstraction tool by which complexity can be controlled. This is achieved by “filtering 

out” physical details that are not relevant to the analysis process. Consequently, 

picking a mathematical model is equivalent to choosing an information filter. 

 

Figure1.6.  The diagram is a simplification of engineering practice. 

2.3.2 Discretization 

Mathematical modelling is a simplifying step. Models of physical systems are 

not necessarily simple to solve. They often involve coupled partial differential 

equations in space and time subject to boundary and initial conditions. Such models 

might have an infinite number of degrees of freedom. Considering continuum 

mechanics problem degrees of freedom (DOFs) are the set of independent 

displacements and\or rotations that specify completely the displaced or deformed 

position and rotation of the system. 

To solve the problem using a model there are two different types of procedures:  

1.  Using analytical solutions, also called “closed form solutions”. They are 

useful particularly if they apply to a wide class of problems. Unfortunately 

they tend to be restricted to regular geometries and simple boundary 

conditions. Moreover some closed-form solutions, expressed for example as 

inverse of integral transforms, may have to be anyway numerically evaluated 

to be applied to a specific problem; 
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2.  Using a numerical simulation. To make numerical simulations practical, it is 

necessary to reduce the number of degrees of freedom to a finite number. The 

reduction is called discretization. The product of the discretization process is 

the discrete model. For complex engineering systems this model is the product 

of a multilevel decomposition. 

 

 

2.4 The Finite Element Method 

The finite element method (FEM) is the more common discretization technique 

in structural mechanics. The FEM can be interpreted from either a physical or 

mathematical standpoint. The basic concept in the physical interpretation of  FEM is 

the subdivision of the mathematical model into disjoint (non-overlapping) components 

of simple geometry called finite elements or elements for short. The response of each 

element is expressed in terms of a finite number of degrees of freedom characterized 

as the value of an unknown function, or functions, at a set of nodal points. The 

response of the mathematical model is then considered to be approximated by that of 

the discrete model obtained by connecting or assembling the collection of all elements. 

The paths of this Method consist of the following steps: 

1. discretization: decomposition of the continue structure into piecewise 

elements; 

2. definition of the unknown variables (e.g. displacements) at a finite number of 

points (nodes); 

3. interpolation of the nodal values for each elements (approximation obtained by 

the shape function); 

4. elements assemblage of the whole structure; 

5. solution of the system obtaining the unknown variables(that consists of 

algebraic equations); 

6. calculus of the secondary variables for each element (stress, strain,…). 

 

2.5 STRAUS 7 (features of the program) 
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Straus7 is a general-purpose finite element analysis system consisting of pre-

processor, solvers and post-processor.   

The graphical environment in Straus7 includes advanced tools for the creation of finite 

element models, the application of loading and boundary conditions, direct interfaces 

to popular CAD and Solid Modelling systems, and automatic mesh generators.  Post 

processing tools for the investigation of results include deformed displays, contour 

plots, point-and-click data inspection (peeking) and animation.  The built-in report 

generator simplifies the task of compiling, printing and documenting results. 

The solver includes basic Linear Static and Linear Buckling Analysis, a range of 

Dynamic Analysis solvers including direct and mode superposition solvers, advanced 

Nonlinear Static and Dynamic solvers and both Steady State and Transient Heat 

solvers. 

 

2.5.1 Types of elements 

In the following section the more important elements contained in the software and 

that we used to build the  FEM model will be introduced.  

� Beam is a generic name for a group of one-dimensional or line 

elements. These elements are all connected between two nodes at their 

ends and the single dimension is length.  

In its most general form the beam element can carry axial force, shear force, 

bending moment and torque. In addition to the conventional beam element, 

there are a number of other special formulations of the beam element. (e.g. 

Spring / Damper, Cable, Truss, Cut-off bar, Point contact, Pipe and 

Connection), but we used just beams and cut-off bars. 

Beam 

The beam type refers to the conventional beam element with six degrees of 

freedom at each node: three translations and three rotations. The beam carries 

axial force, shear force, bending moment and torque. 

The element is a straight line between the two nodes to which it is connected, 

but may deform into a cubic shape. The beam may be used as a thin beam 
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where all out of plane deformation is due to bending or as a thick beam where 

deformation is due to both bending and shear.  

Cut-off bar  

The cut-off bar element is a truss element that has predefined tension and 

compression load limits. If the axial load in the bar exceeds the set limits, the 

bar fails. This type of element is mostly used as a gap element. We used this 

elements to represent the cables. 

 

2) Links are similar to beam elements except that they define how the 

displacements/rotations of one node are related to the displacements/rotations 

of another one. This relation is enforced via additional equations in the 

stiffness matrix, known as Lagrange equations.   

Rigid Link 

The Rigid Link provides an infinitely stiff connection between two nodes. 

However, the rigid link also provides constraints on the nodal rotation such 

that there is no relative rotation between the connected nodes.  It is used to 

connected the cross beams with the deck. 

 

3) Plate is a generic name for a group of two-dimensional surface elements. The 

surface elements (always referred to as “plates” in Straus7) include the three 

and six node triangular elements, and four, eight and nine node quadrilateral 

elements like shown in figure 1.7. 

 

Figure1.7. The ISO3, ISO6 triangles, ISO4, ISO8 and ISO9 quadrilaters. 
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These elements can be used for plane stress and plane strain analysis, 

asymmetric solid problems, plate and shell analysis, as shear panels, 3D 

membranes and for heat flow analysis. The table 1.1 shows the way in which 

plate elements may be used in Straus7. 

 2D Plane 

Stress 

2D Plane 

Strain 

Axisymm

etric 

ThinPlate/

Shell 

ThickPlate

/Shell 

Shear 

Panel 

3D 

Membrane 

Heat 

Transfer 

Tri3 �  �  �  �    �  �  
Quad4 �  �  �  �   �  �  �  
Tri6 �  �  �  �  �   �  �  
Quad8 �  �  �  �  �   �  �  
Quad9 �  �  �  �  �   �  �  

 
Table1.1 elements related to the case of study 

 

 The deck of the bridge is made by shell elements: 

 

Plate/Shell  

The plate/shell element is the most general type of plate element in that it is a 

three-dimensional membrane and bending element. It is the only plate element 

that permits out of plane displacements associated with bending behaviour. 

This includes the analysis of flat plates and general three-dimensional shells. 

The default freedom condition should be set free in all directions. This element 

is the most commonly used plate element. Typical applications are shown in 

figure  

 

2.5.2 Type of Analysis 

Straus7 offers two solver technologies: a skyline solver and a sparse solver.  

The skyline solver can be very efficient for small models, but its performance is 

greatly affected by the bandwidth of the matrix. The Straus7 sparse solver is a high 

performance option that is useful for large models.  Sparse solvers allow very fast 

solution of large systems of equations by exploiting the so-called sparsity of the 

matrix.  A matrix is sparse if the number of non-zero entries is small compared with 

the total number of entries in the matrix. 

The analysis that the software provides can be divided in three principal groups: 
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1. Static Analysis 

Linear Static 

Nonlinear Static 

Linear Buckling 

 

2. Dynamic Analysis 

Natural Frequency  

Harmonic Response 

Spectral Response 

Linear Transient 

Nonlinear Transient 

 

We are going to introduce just the Linear Static and the Natural Frequency analysis 

because these are the one we used in the work. 

 

Linear Static 

The linear static solver is the most widely used among the various solvers available.  

A linear static solution by this solver is obtained assuming that the structure’s 

behaviour is linear and the loading is static.   

For the response of a structure to be linear, the mechanical behaviour of all materials 

in the model must follow Hooke’s law; i.e., element forces are linearly proportional to 

element deformation and when the loading is removed, the material returns to its 

original shape.  In addition, the deformation must be so small that the deformed 

geometry is undistinguishable from the original one.  Because of these two 

assumptions, solutions can be arbitrarily combined to consider more complex loading 

conditions. A load is regarded as static if its magnitude and direction do not change 

with time.  Structures under static loading conditions are analysed with the inertial and 

damping properties ignored. 

 

The Linear Static Solver performs the following steps: 

1) Calculates and assembles element stiffness matrices, equivalent element force 

vectors and external nodal force vectors. Constraints are also assembled in this 
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process. At the end of this assembly procedure, the following linear system of 

equilibrium equations is formed: 

{ } { }[ ]K d P=  

where 

[ ]K  is the global stiffness matrix; 

{ }d  is the unknown nodal displacement vector(s); 

{ }P  is the global nodal load vector(s). 

 

2) Solves the equations of equilibrium for the unknown nodal displacements. 

3) Calculates element strains, stresses, stress resultants and strain energy densities etc. 

as requested. 

�atural Frequency 

The natural frequency solver is used to calculate the natural frequencies (or free 

vibration frequencies) and corresponding vibration modes of an undamped structure. 

The natural frequency analysis problem, is formulated as the following eigenvalue 

problem: 

 

[ ]{ } [ ]{ }2K x M xω=  

where 

[ ]K  is the global stiffness matrix; 

[ ]M  is the global mass matrix; 

{ }x is the vibration mode vector ; 

ω  is the natural (circular) frequency (radians/sec). 

 

The Natural Frequency Solver performs the following steps: 

1)  Calculates and assembles the element stiffness and mass matrices to form the 

global stiffness and mass matrices.  In the stiffness calculation, material temperature 

dependency is considered. Either a consistent or lumped mass matrix can be used 

according to the solver option setting . Constraints are assembled in this process. If the 

initial file is from a nonlinear solution, the stiffness and mass matrices calculation will 

be based on the current material status and geometry. More specifically, the current 
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material modulus values will be used for nonlinear elastic material.  For plastic 

material, the initial modulus is used. The current geometry is used if geometric 

nonlinearity is considered in the initial solution. 

2)  Checks the mass matrix. If all diagonal entries are zero, the solution stops. 

3)  Solves the eigenvalue problem to get the natural frequencies of the structures. 

 

2.6 Case of study (description of the Footbridge) 

The footbridge we are analysing in this work, was designed by the engineer Leopoldo 

Gasparetto Stori and serves as a connection of the two side of a park, over crossing the 

new della Costituzione road replacing a stretch of the Emilia main road in the Pedagna 

neighbourhood in Imola. Imola is a little town in the north-central Italy. 

The footbridge has a total length of 51 m between abutments and it is a two span 

bridge. The bridge main span is 47 m and the lane width is 3,5 m. The footbridge 

consists of a Y-shaped inclined tower, six cables stays (3 on each side of the deck) 

connected in a fan-type configuration and a deck made of steel tubes connected each 

other and welded supported a concrete slab of 12 cm thickness.. The deck has a skew 

angle of 3,6 ° and is comprised of 27 steel tubes, which have a diameter of 193 mm 

and a thickness of 8 mm, what  to improve the torsional rigidity, to resist to transverse 

bending and to transfer load between the stay cable anchorage, there is also a concrete 

slab with a total thickness of 12 cm cooperating with the tubes. The footbridge is 

anchored at the end and it is supported along its length by three couples of cables. The 

cables are anchored to an inclined pylon made of metal welded sheets which enclose 

the reinforced concrete core inside.  

All along the bridge there are glass panels which have an aesthetic function and 

protect people from the wind.  

In the figure 1.9, a schematic drawing of the footbridge is  shown. 
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Figure1.8. The footbridge draw 

 

2.7 The FEM model of the Footbridge 

In this study, all the investigations were conducted before the public opening of the 

bridge. During the test load deflections, acceleration and stresses were measured. 

Theoretical results compared with the measured data provide useful information about 

the initial state of the bridge and they could be used for a comparison with later studies 

and investigations. It is an important instrument to check the state of the bridge along 

its life.  

 

The model, as we saw in the 1.5 paragraph,  is created by a software program  for the 

structural analysis called STRAUS7.  

In defining the FEM model, both the geometric features and the material properties 

were taken from written design documentation and drawings.  

The deck and the lateral trusses of the bridge are modelled using beam type elements 

with a circular cross-section, connected at the nodes. It is decided to use this type of 
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element that can transfer axial and shear forces and moments, because the tubes are 

welded each other. Actually the tubes forming the two lateral trusses of the bridge, are 

almost completely subjected to compression forces. Instead the transversal tubes 

connecting the two sides and creating the base for the deck have to carry also moments 

and shear forces, due to the lack of diagonal elements. 

The total thickness of the deck is 12 cm, but the concrete slab  is just 7 cm modelled 

with 2D elements, I mean shell. A shell is a three dimensional body with one 

dimension much smaller than the other two and the curvature of the shell mid-surface 

in the current configuration is non-zero. This element is studied with the Reissner, 

Mindlin theory. The presence of a  corrugated sheet cooperating with the concrete slab 

suggested us to use the shell element that has a flexural stiffness. We have to find the 

right thickness of the deck considering an homogeneous material, thus we used the 

following approach: 

1. First of all it the total area of the deck is calculated, 

251 3 153A l b m = ⋅ = ⋅ =          (1) 

where l is the total length and b is the transversal dimension of the bridge. 

2. Then the homogenized volume is obtained: 

2

( ) ( )
2

s
TOT c b l

c

E
V l b s n l l b s

E

φ
π

  = ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ =  
   

2

30,006
(51 3 0,07) 7 20 3,1415 51 (51 3 0,01) 12, 4

2
m

    = ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ =       
 (2) 

where ls is the sheet metal thickness,φ is the diameter of the bar and n is the 

number of bars. 

3. And finally the thickness of the equivalent homogeneous shell is given by the 

following expression: 

[ ]12, 4
0,08 80

153

tot
tot

V
s m mm

A
= = = =     

  (3) 

To find the bending thickness we have to consider the concrete cracking. There are 

two main cases: 
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when the section of the bridge is completely in compression the moment of inertia 

is TOTJ , instead when  the slab is cracked (where some of the fibres are in tension) 

the value of the moment of inertia is usually considered
1

3
 TOTJ  . In general is 

suggested to use a middle value between the two cases,  therefore we have 

considered a value equal to
2

3
TOTJ . 

 

The connection between the transversal tubes and the deck is made by rigid link. It 

provides an infinitely stiff connection between two nodes. However, the rigid link also 

provides constraints on the nodal rotation such that there is no relative rotation 

between the connected nodes.   

 

The inclined pylon consists of several metal welded panels, whose thickness is 4,5 cm 

that contains a reinforced concrete core. In order to model this pylon, it is divided in 

four parts according to the amount of steel bar inside. Considering that it is really high 

and slender, it could be modelled by four beam elements having different dimensions. 

The material should be homogeneous, therefore the geometrical proprieties of the 

beams cross section are evaluated. Two different approaches are analyzed to obtain the 

values of moments of inertia and of area: 

1. it is simply considered the sum of the contributions of the two different 

materials; 

2. it is obtained the equivalent cross section having both the area and the moment 

of inertia in the main direction equal to the combined contributions of concrete, 

metal shells and bars. 

 

 

 

 

 

 

Pylon piece 0  
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Figure1.9. The cross section of the beam at the bottom of the pylon 

b width 3500 mm 

h height 600 mm 

ls  thickness 12 mm 

Equivalent area 
2

2

s
s

c

E
A n

E

φ
π  = ⋅ ⋅  

 
 steel bars 215533,71 2mm  

s
l l

c

E
A s b

E
= ⋅ ⋅  steel sheets 688800 2mm  

cA h b= ⋅  concrete 2100000 2mm  

tot s c lA A A A= + +  total 3004333,71 2mm  

    

Moment of inertia around the longitudinal axis X xJ  

2

xs si i

i

J A d= ⋅∑  steel bars 1038154037 4mm  

2 ( / 2)i

xl lJ A h s= ⋅ ⋅ +
 

steel sheets 27528984000 4mm  

3

12
xc

bh
J =  concrete 63000000000 4mm  

xtot xs xl xcJ J J J= + +
 

total 91567138037 4mm  

    

 heq 604,76 mm  

 beq 4967,78 mm  

    

zJ   6,17861E+12 4mm  

    

Pylon piece 1 
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We decided to use a simple proportion to deduce the dimension of this second part. 

B width 2400 mm 

H height 600 mm 

S thickness 12 mm 

   

by proportion   

    

Beq  3480,7 mm 

Heq  600,1 mm 

Original dimensions 

B width 2000 mm 

H 
Height 

 
600 mm 

S thickness 12 mm 

Equivalent area 

2

2

s
s

c

E
A n

E

φ
π  = ⋅ ⋅  

 
 steel bars 103775,49 2mm  

s
l l

c

E
A s b

E
= ⋅ ⋅  steel sheets 436800 2mm  

cA h b= ⋅  concrete 1200000 2mm  

tot s c lA A A A= + +  total 1740575,49 2mm  

   

Moment of inertia around the longitudinal axis X xJ  

2

xs si i

i

J A d= ⋅∑  steel bars 499851944 4mm  

2 ( / 2)i

xl lJ A h s= ⋅ ⋅ +
 

steel sheets 1,57E+10 4mm  

3

12
xc

bh
J =  concrete 3,6E+10 4mm  

xtot xs xl xcJ J J J= + +  total 5,22E+10 4mm  

   

heq  600,1 mm 

beq  2900,6 mm 
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zJ   1,2203E+12 4mm  

Pylon piece 2 
 

 

Figure1.10. The cross-section of the second beam 

b width 600 mm 

h height 2000 mm 

s thickness 12 mm 

Equivalent area 

2

2

s
s

c

E
A n

E

φ
π  = ⋅ ⋅  

 
 steel bars 103775,49 2mm  

s
l l

c

E
A s b

E
= ⋅ ⋅  steel sheets 436800 2mm  

cA h b= ⋅  concrete 1200000 2mm  

tot s c lA A A A= + +  total 1740575,5 2mm  

   

Moment of inertia around the longitudinal axis X xJ  

   
2

xs si i

i

J A d= ⋅∑  steel bars 3,1572E+10 4mm  

2 ( / 2)i

xl lJ A h s= ⋅ ⋅ +
 

steel sheets 4,4206E+11 4mm  

3

12
xc

bh
J =  concrete 4E+11 4mm  

xtot xs xl xcJ J J J= + +  total 8,7363E+11 4mm  
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beq  2454,2 mm 

heq  709,2 mm 

zJ   7,296E+10 4mm  

Using the first method we reach the following results 

concrete area  1740575,49 2mm  
3

12
xc

bh
J =   5,2231E+10 4mm  

3

12
xc

hb
J =   8,7363E+11 4mm  

   

Pylon piece 3 

 

 

Figure1.11. The cross-section of the third beam 

b width 600 mm 

h height 2000 mm 

s thickness 12 mm 

Equivalent area 

2

2

s
s

c

E
A n

E

φ
π  = ⋅ ⋅  

 
 steel bars 71844,57 2mm  

s
l l

c

E
A s b

E
= ⋅ ⋅  steel sheets 436800 2mm  

cA h b= ⋅  concrete 1200000 2mm  
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tot s c lA A A A= + +  total 1708644,57 2mm  

Moment of inertia around the longitudinal axis X xJ  

2

xs si i

i

J A d= ⋅∑  steel bars 346051346 4mm  

2 ( / 2)i

xl lJ A h s= ⋅ ⋅ +
 

steel sheets 1,5731E+10 4mm  

3

12
xc

bh
J =  concrete 3,6E+10 4mm  

xtot xs xl xcJ J J J= + +  total 5,2077E+10 4mm  

   

heq  604,8 mm 

beq  2825,3 mm 

zJ   1,1366E+12 4mm  

Using the first method we reach the following results: 

Concrete area   1708644,6 2mm  
3

12
xc

bh
J =   5,2077E+10 4mm  

3

12
xc

hb
J =   4,7934E+11 4mm  

   

Pylon piece 4 
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Figure1.12. The cross-section of the top beam 

b width 2000 mm 

h height 1000 mm 

s thickness 12 mm 

Equivalent area 

2

2

s
s

c

E
A n

E

φ
π  = ⋅ ⋅  

 
 steel bars 143689,14 2mm  

s
l l

c

E
A s b

E
= ⋅ ⋅  steel sheets 504000 2mm  

cA h b= ⋅  concrete 2000000 2mm  

tot s c lA A A A= + +  total 2647689,14 2mm  

Moment of inertia around the longitudinal axis X 
2

xs si i

i

J A d= ⋅∑  steel bars 5446536852 4mm  

2 ( / 2)i

xl lJ A h s= ⋅ ⋅ +
 

steel sheets 1,3646E+10 4mm  

3

12
xc

bh
J =  concrete 1,6667E+11 4mm  

xtot xs xl xcJ J J J= + +  total 1,8576E+11 4mm  

   

heq  917,6 mm 

beq  2885,6 mm 

   

zJ   1,8372E+12 4mm  
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Using the first method we reach the following results: 

Equivalent area   2647689,14 2mm  
3

12
xc

bh
J =   1,8576E+11 4mm  

3

12
zc

hb
J =   7,7192E+11 4mm  

 

 

 

 

 

 

 

 

 

 

 

Pylon transversal beam 

 

 

Figure1.13. The cross section of the transversal beam 

b width 12 mm 

h height 1000 mm 

s thickness 2060 mm 
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equivalent area 

2

2

s
s

c

E
A n

E

φ
π  = ⋅ ⋅  

 
 steel bars 167484,646 2mm  

s
l l

c

E
A s b

E
= ⋅ ⋅  steel sheets 514080 2mm  

cA h b= ⋅  concrete 2060000 2mm  

tot s c lA A A A= + +  total 2741564,646 2mm  

Moment of inertia around the longitudinal axis X 
2

xs si i

i

J A d= ⋅∑  steel bars 
6134541735 

4mm  

22 ( / 2)i

xl lJ A h s= ⋅ ⋅ +
 

steel sheets 
88608938880 

4mm  

3

12
xc

bh
J =  concrete 

1,71667E+11 

4mm  

xtot xs xl xcJ J J J= + +  total 2,6641E+11 
4mm  

   

heq  1079,9 mm 

beq  2538,8 mm 

   

zJ   1,47259E+12 
4mm  

   

Using the first method we reach the following results: 

concrete area  2741564,646 
2mm  

3

12
xc

bh
J =  

 2,6641E+11 

4mm  

3

12
zc

hb
J =  

 8,33743E+11 

4mm  

 

 

The connection between the bridge and the deck is provided by two hinges that are 

realized using a beam with a high stiffness equal to 61 10 MPa⋅ and end rotations 

released. 
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The other supports are modelled as is shown in the design draws and as it explained in 

the following figure(1.14). 

 

 
 

Figure1.14. The visualisation and disposition of the supports. 

The symbol U indicates a roller that has only a single translational degree of freedom, 

while the symbol M indicates a roller which has two translational degrees of freedom 

and only the degree of freedom in the vertical direction is blocked. Finally the letter F 

represents a fixed point/support. The units of measure are in mm. 

 

The glass panels distributed all along the footbridge don’t have a structural function 

and hence have been modelled as  translational masses. 

The weight of the panel was divided in two points, one at the height of the hand rail 

and the other one at the bottom of the deck, according to the following  calculation and 

considering the area of influence for each part. 

We are going to show the calculus: 

 

Glass sheet   

1h  length of the top part 1695  (mm) 

2h  length of the bottom part 1305  (mm) 

gs  thickness of the panel 10      (mm) 

gγ  Specific weight of glass 2,7e-9 3( / )T mm  

Weight of the first 

panel 
1 1 46,62g gW h s l Kgγ= ⋅ ⋅ ⋅∆ =  

Weight of the second 

panel 
2 2 31,32g gW h s l Kgγ= ⋅ ⋅ ⋅∆ =   
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Where l∆ is the wide of the panel and corresponds also to the distance between the 

two transversal beams of the deck equal to 2000 mm. This is just the weight of the 

internal glass panel, but we have to sum the contribution of the metal frame to each 

panel. In the extreme part the value of weight is the half part because the influenced 

area is halved. 

 

The structure is a cable-stayed bridge for its strands that support the deck, so we have 

to decide also how to model the cables. 

The cable is an element with geometrical non linear behaviour; it does not react in 

compression and its stiffness depends both from the tension and the curvature of the 

cable itself. The Dishinger module governs its behaviour and is expresses as follow 

(equation 4). 

 

2 2

3
1

12

E dl
d Ed

l E l
σ ε

γ
σ

= = ⋅
+

        

 (4) 

  

where 

dσ  is the increase of tension in the cable; 

dε  is the increase of deformation in the cable; 

E  is the elastic module of the material; 

γ  is the specific weight of the material; 

l  is the initial length of the cable; 

σ  is the tension in the cable; 

dl is the increasing length of the cable. 

 

Anyway as a first approximation, for the static validation and to find the natural 

frequency we need a linear model therefore the cables are modelled by cut-off 

elements. They are similar to the trusses, but have predefined tension and compression 

load limits. If the axial load in the beam exceeds the set limits, the bar fails. This type 

of element is mostly used as a gap element. The cutoff bar can be used as the 

following gap elements: 
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1. Tension Only: a beam element that is automatically removed from the 

model if it ever goes into compression or if the tension reaches a 

predetermined cut-off value.  

2. Compression Only:  a beam element that is automatically removed from 

the model if it ever goes into tension or if the compression reaches a 

predetermined cut-off value.     

3. Tension-Compression:  a beam element that resists both tension and 

compression, but only to predetermine (compression and tension) cut-off 

values. 

In addition to the cut-off value, the elements have an option to specify what happens 

to the bar if its axial force exceeds the cut-off value.  Two options are possible: 

 

Brittle 

When the axial load in the bar exceeds one of the limits, the bar fails completely and 

contributes no further stiffness to the model. The bar is removed from the model. 

Ductile 

If the axial load in the bar exceeds the limit, the bar becomes plastic and yields whilst 

continuing to carry the maximum permissible load. The load cannot however exceed 

the set limit. 

 

The actual breaking force that is used to stop the tension is 759,6 KN and the elastic 

module is the one of the steel and it is equal to 2,06 *10^5 MPa. 

 

In the last chapter we are going to introduce the non linear behaviour of the cable 

using a diagram stress versus strain and the Dischinger elastic module. 

In the following page the FEM model of the bridge is reported, (figure 1.15). 
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Figure1.15. The FEM model of the bridge. 
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Chapter 2 
 
2.1 Introduction  
 

With the term System Identification we indicate the complex process of 

identifying a mathematical model of a system , model that represent the dynamic 

characteristics and behaviour of it, (e.g. natural frequencies, damping ratios, mode 

shapes) of structures. In order to obtain the dynamic proprieties of a structure and 

study its behaviour under a generic load condition, a mathematical model is necessary. 

This describes the relations between forces, displacements, velocities, accelerations 

and flexures of the system. 

The classic method to study the relation of the output x(t) of a system with a generic 

external force f(t) is to solve the differential dynamic equations with the Integral 

method. However the most part of the problems is too elaborated it’s not easy to find 

the output using the. Thus, the frequency response approach is commonly used. This 

last approach, that is used by the identification techniques determines the dynamic 

proprieties of the system through the Frequency Response Function FRF. A frequency 

response function (FRF) is a transfer function, expressed in the frequency domain. 

Frequency response functions are complex functions, with real and imaginary 

components. They may also be represented in terms of magnitude and phase. A 

frequency response function can be formed from either measured data or analytical 

functions. 

A frequency response function expresses the structural response to an applied force as 

a function of frequency. The response may be given in terms of displacement, 

velocity, or acceleration. This kind of functions is used in vibration analysis and 

modal testing and it could be used either if the behaviour of the structures is linear or 

non-linear [Sabia, 1997]. The FRF can be obtained directly for a harmonic force or, in 

case of different excitation, it is determined by the signal processing. It uses the 

autocorrelation and cross-correlation function applied to output and input signals.  

In this chapter we are going to review the bases of the Dynamic of Structures focusing 

on the representation of mechanical system through state variables.  



 41

 

 

2.2   Dynamic system 
 

A system is defined dynamic when the forces change with the time and cause 

significant inertial force. To study this case, we can adopt a determinist, stochastic or 

random approach depending on the kind of forces involved. It is called “deterministic 

approach” if we know the evolution of the force with the time, otherwise the process is 

un-deterministic, that is the most frequent case. 

In addition, we need to define the kind of problem we are interested in. It can be 

directed and inverse.  

1. In a directed problem, the external force and the analytical model are known 

and they are used to obtain the response of the dynamic system to the external 

excitation. 

2. In an inverse problem, the output of the system is known. Moreover this could 

be subdivided in other three groups:  

� Design problem: the external force is known and the model of the system is 

created referring to limitation and information about the output.  

� Control problem: knowing the geometrical proprieties and the output of the 

system, the external excitation is determined. 

� Identification problem: knowing the output and the force, the model of the 

system is determined. 

The classical definition of the identification problem could be extended also to the 

cases with external force unknown, and this is the type of analysis we are going to 

describe in this dissertation. This kind of problem is called output only system 

identification. 

The theory of linear SDOF and MDOF systems is the foundation of Experimental 

Modal Analysis. 
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2.2.1   Single degree of freedom systems (SDOF); 

A dynamic Single Degree of Freedom (SDOF) system is shown in figure 2.1. 

The spring represents the stiffness of the system and the viscous damper is included to 

model the dissipation of energy. If the restoring force from the spring is proportional 

to the deflection and the viscous dissipative force is proportional to the velocity, such 

a SDOF system is linear (i.e. additive and homogenous). A mass m [kg] which can 

move in direction of x-axis is connected to a fixed base by a spring described by its 

stiffness coefficient k [N/m] and a dashpot (viscous damper) with the damping 

coefficient c [N/(m/s)]. The mass may be excited by a force F(t) that varies with time 

and the objective of analysis is the prediction of the response of the mass to excitation, 

its behaviour in the period after the excitation ceased (free vibration) or the effect of 

frequency content of excitation. 

 

Figure1.16.  SDOF system representation 

Indicating with x(t)  the temporal history of the displacement, the following 2nd  order 

equation, called equation of motion, is obtained: 

mx+cx+ kx = F(t)ɺɺ ɺ  

 (5) 
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Let’s considered the homogeneous equation (free vibrations) without the external 

force ( ) 0F t = . 

mx+cx+ kx = 0ɺɺ ɺ  

 (6) 

The chosen solution has the following expression: 

stx(t) Xe=  

  (7) 

and, substituting it in the dynamic equation, after some mathematical passages  is 

obtained:  

2 22 0n ns sζω ω+ + =  

 (8) 

where nω is the natural frequency of the system: 

n

k

m
ω =  

  (9) 

and ζ is the damping ratio: 

02 n

c c

m c
ζ

ω
= =  

 (10) 

where 0c is the critical damping coefficient. 

Solving the equation in the variable s , the two complex solutions are determined: 

2

1,2 1n n n ds i iω ς ω ς ω ς ω= − ± − = − ±  

 (11) 
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The solution of the dynamic system is: 

( ) n dt i t
x t Xe e

ω ς ω−=  

 (12) 

and it defines the single mode of the system. The first term n t
e

ω ς−
 corrispond to the 

exponetially decay part and the second to the periodic component. The complex 

frequency consists of two parts:  the imaginary or oscillatory part with frequency 

21nω ς−  and the real one with frequency nω  . 

The displacement of an underdamped system would appear like the figure 2.2. 

 

Figure1.17. displacement plot of a SDOF underdamped system 

where 
2

d

d

T
π

ω
=  is the period f the dumped vibration. 

2.2.2  Multi degree of freedom systems (MDOF) 

 

Equation of motion 
 

The behaviour of a dynamic system that is linear and with C degrees of 

freedom is governed by the following equations of motion: 
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( ) ( ) ( ) ( )t t t t+ + =Mv Cv Kv fɺɺ ɺ

ɶ ɶɶ
 

 (13) 

where ( )tv , ( )tvɺ , ( )tvɺɺ are, respectively, the displacement, the velocity and the 

acceleration vectors, related to the degrees of freedom of the system 

M
ɶ

, C
ɶ

 and K
ɶ

 are the mass, the damping and the stiffness matrices, respectively. Each 

one of dimension  C x C.  Finally, f(t) is the vector of the external forces and its 

dimension is C. 

The natural frequencies, the damping ratios and the mode shape are obtained through 

the  homogeneous equation: 

( ) ( ) ( ) 0t t t+ + =Mv Cv Kvɺɺ ɺ

ɶ ɶɶ
 

(14) Supposing the solution of the previous equation is a harmonic function:

  

teλ= φv           

 (15) 

and substituting v in the homogeneous equation, the associated eigenvalue problem 

can be expressed as: 

( )2λ λ+ + =M C K φ 0
ɶ ɶɶ

 

 (16) 

Assuming that the structure has all the rigid –body modes constrained and there are 

no repeated eigenvalues, the solution of the equation (12) provides C eigenvalues and 

C eigenvectors that are complex variables. The eigenvalues determined solving the 

equations above, are usually written as follow [Ewins, 2000]: 

2
1 jjjj i ζ−ω+ζω−=λ  

 (17)

where jω  is j-th frequency for an un-damped system and ζj is the damping ratio 

respectively. 



 46

 

2.2.3  Equation of motion in a state space form 

 

Another form to represent the equations of motion of a dynamic system is through a 

state space realization such as: 

( ) ( ) ( )x A x B uc ct t t= +ɺɺɺɺ

ɶ ɶɶ ɶɶ ɶɶ ɶ
 

 (18) 

which is obtained writing the classical second order equation of motion in the state 

space form, using the response vector and the system matrices in the state form 

( ) ( )
( )






=

t

t
t

v

v
x

ɺ
 

 (19) 

1 1c − −

 
=  − − 

0 I
A

M K M C
ɶɶ

ɶ
ɶ ɶ ɶ ɶ

 

 (20) 

where ( )tx  is the state space vector containing the displacement and velocity vectors 

and cA
ɶ

 is a matrix containing the system’s mass, damping and stiffness matrices. In 

the equations above 0
ɶ

, *C CR∈ , is the null matrix and I
ɶ

, *C CR∈ is the identity matrix. 

The eigenvalue problem associated with the equations above is now in term of an 

asymmetric matrix: 

1c −

 
=  

 

0
B

M
ɶ

ɶ
ɶ

 

 (21) 









=

)(
)(

t
t

f

0
u  

 (22) 
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The system consists of 2C first order differential equations. The corresponding 

equations of motion for free vibration of a linear system can be written as follow: 

( ) ( )ct t=x A xɺ

ɶ
 

 (23) 

just setting equal to zero the vector of the external force u(t).  

A harmonic solution is assumed in order to solve the problem: 

tet λ= ψx )(  

 (24)

  

The eigenvalue problem associated with the equations above is now in term of an 

asymmetric matrix and can be expressed as 

A ψ ψc λ=
ɶ

 

 (25)

  

where ψ is a complex eigenvector and its dimension is 2C, and  λ is a complex 

parameter. 

Considering an under-damped system, that is the case in most civil structures, the 2C 

eigenvalues are obtained in couples like these: 

2

212 1, jjjjjj i ζ−ω±ζω−=λλ − ,  

 (26)

  

where j is the index of the mode, jω and  jζ  are the frequency of the undamped 

system corresponding to the j-th mode.  

 



 48

2.2.4  Output vectors 

 

We are going to introduce the output vectors representation because the System 

Identification in order to obtain the modal parameters of the structures refers to 

measurements (output vectors) from dynamic tests done in field just at some specific 

points.  

Supposing that the number of sensors be equal to l, including velocity, acceleration 

and displacement transducers. Hence we can write the output vector ( )y t  associated 

with the equation of motion: 

( ) ( ) ( ) ( )a v dt t t t= + +y C v C v C vɺɺ ɺ

ɶ ɶ ɶ
 

 (27)

  

where the ,C Ca v
ɶ ɶ

 e dC
ɶ

are matrices used to identify the degrees of freedom involved 

in the tests. The elements of the matrices above are all equal to zero despite of the 

ones corresponding to the i-th degree of freedom where the instrument gets the 

measurement.  

Using the equations of motion and the output vectors, we can represent the mechanic 

system in the second order form: 

( ) ( ) ( ) ( )t t t t+ + =Mv Cv Kv fɺɺ ɺ

ɶ ɶɶ
       

 (28)  

( ) ( ) ( ) ( )a v dt t t t= + +y C v C v C vɺɺ ɺ

ɶ ɶ ɶ
 

 (29) 

Introducing the following statements: 

1 1

d a v a

− − = − − C C C M K C C M C
ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ

 

 (30) 
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1−= MCD a  

 (31)

  

the equations (24) and (25) can be written in a form that is suitable for the first-order 

system as: 

( ) ( ) ( )t t t= +y Cx Du
ɶɶ

 

 (32)

  

The C
ɶ

 e D
ɶ

 matrices select the observed signal from the corresponding internal states 

and they are equivalent to coefficients matrices. They have a dimension of  Cl 2×  

and Cl × , respectively. It is possible now to introduce the state form for the 

representation of the mechanical system above:  

( ) ( ) ( )

( ) ( ) ( )

x A x B u

y Cx Du

c ct t t

t t t

= +

= +

ɺ

ɶ ɶ

ɶɶ

 

 (33)

  

 

2.2.5  System model in a discrete state-space form 

 

The equations (29) are the continuous time equation of motion in the state 

space form for a linear time invariant  C-DOF model  under a generic force u(t).  

The measurements, in term of displacement, velocity and acceleration, are obtained at 

a specific time interval and therefore, are in a discrete form. We have to treat the 

complex structural system as a discrete dynamic system subjected to excitation at a 

discrete locations and time steps. The model’s identification problem consist on the 

determination of an 2C order system with the system matrices cA
ɶ

and cB
ɶ

, using the 
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out-put measurements y(0), y(1), y(2),…..,y(s-1) obtained for s time steps [Peeters 

1999].  

Supposing that the solution at the generic step t0 is known, we can find the solution at 

the following step t by the Lagrange formula. 

( ) ( ) ( )L Ft t t= +x x x  

 (34)

  

where 

0( )

0( ) ( )c t t

L t e t
−= Ax x   

 (35) 

is the component of x(t) given by the free vibration solution of the system and 

( )∫ τ= τ−
t

t

c

t

F tet c

0

d)()( uBx A
 

 (36) 

is the contribution to x(t) induced by the forcing function u(t). Using the equations 

above and assuming   

0t k t= ∆  ;    ( 1)t k t= + ∆  

 (37) 

where k is an integer and represents the sampling instant and t∆  is the sampling 

time, we can derive the discrete time of the state space equations in the form: 

1x Ax Bu

y Cx Du

k k k

k k k

+ = +

= +
ɶ ɶ

ɶɶ

 

 (38)

  

The matrices A
ɶ

 and B
ɶ

 are defined as follow: 
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c t
e

∆= AA ɶ

ɶ
 

 (39)

   

-1

c c

0

d [ -I]
AB B A Α Bτ τ

∆

= =∫ c

t

ce ɶ
ɶ ɶ ɶ ɶ ɶ ɶ

 

 (40)

  

The natural frequencies and the modal damping ratios can then be retrieved from the 

eigenvalues of cA
ɶ

 by the dynamic matrix in the discrete form A
ɶ

, and the mode 

shapes can be evaluated using the corresponding eigenvectors and the output matrix 

C
ɶ

 [Juang 1994]. Indicating with 
j

λ  the generic eigenvalue of the A
ɶ

 matrix, the 

natural frequency and the damping ratio are given by: 

( )
t

f
j

j ∆π

λ
=

2

ln
 

 (41)

  

( )( )
( )

Re ln

ln

λ
ζ

λ
= −

j

j

j

 

 (42)                                                 

where j is the index of the mode, 
j

f  is the frequency and ζ
j
 is the damping ratio 

corresponding to the jth mode. The jth complex mode shape jφ  sampled at sensor 

locations can also be evacuated using the following expression: 

j jφ ψ= C
ɶ

 

 (43) 

where jψ  is the eigenvector of A
ɶ

 corresponding to the eigenvalue jλ . 
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2.3  Signal analysis 
 

This work focuses on output identification methods using the measurements 

from the tests on the footbridge for ambient and artificial loads. These data represent a 

random physical phenomenon and therefore they cannot be described by an explicit 

mathematical relationship, because each observation of the phenomenon will be 

unique. In other words, any given observation will represent only one of the possible 

outcome that might have occurred. We cannot know the exactly value that a random 

data will have in the future. The science which studies this type of data is called 

Statistics and it uses average quantities. We are going to define this kind of data and to 

introduce the instruments and the relations that join them in the following section. 

After that, the theory of Signal Analysis will be shown that is useful to define the 

frequency response function (FRF). Knowing these relations the dynamic and modal 

proprieties of the structure can be obtained. 

 

2.3.1   Random data 

 

A single time history representing a random phenomena is called sample; the 

collection of all possible sample functions is named random process or stochastic 

process. This kind of processes could be divided in the following categories:  

1. stationary processes: they are random processes where all of their statistical 

properties do not change with time. They may be further categorized as being ergodic 

or not ergodic. For ergodic random process the time-averaged mean value and 

autocorrelation function, that we will show later, are equal to the corresponding 

ensemble averaged values. 

 

2. non-stationary random processes: the properties of non stationary random process 

are generally time-varying functions that can be determined only by performing 

instantaneous averages over the ensemble of sample functions forming the process. 
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The properties of the random data are described by four types of statistical functions: 

the averaged square value, the spectral density function, the auto-correlation function 

and the density spectrum power function. In order to describe these proprieties the 

basic tools and equations which define the random data will be introduced: 

The Mean Value xµ of the time history of a random process x(t), is defined as follow: 

0

1
lim ( )dt

T

x
T

x t
T

µ
→∞

= ∫   

 (44) 

where T is the sample period. 

 

The Mean Square Value 2

xΨ  of the time history of a casual process x(t), is 

described by the following expression at it represent an approximation of the 

intensity of the time history: 

2 2

0

1
lim ( )

T

x
T

x t dt
T→∞

Ψ = ∫  

 (45) 

It is useful to consider the data as a composition of a static component, not variable 

with time, that is the men value, and of a dynamic component, introducing the 

variance. 

2 2 2

x x xσ µ= Ψ −  

 (46) 

The Variance could be written also in the following way: 

[ ]22

0

1
lim ( )

T

x x
T

x t dt
T

σ µ
→∞

= −∫  

 (47) 
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The variance of a random variable, or a probability distribution is a measure of 

statistical dispersion from the expected value. 

 

The probability density function. This function represents the probability that x(t) 

assumes a specific value in a known interval  x and x x+ ∆ ; this function could be 

valuated also by the ratio between xT  and T where the first one is the total time in 

which x(t) is in the interval ( x, x x+ ∆ ) and T is the period of observation.  

[ ]Pr ( ) 1
( ) lim lim lim x

x x T

ob x x t x x T
p x

x x T∆ →∞ ∆ →∞ →∞

〈 〈 + ∆  = =  ∆ ∆  
 

 (48) 

Now it is possible to write the mean and the mean square values by the following 

expressions respectively (equations 45 and 46). 

( )x x p x dxµ
∞

−∞

= ⋅∫  

 (49) 

2 2 ( )x x p x dx

∞

−∞

Ψ = ⋅∫  

 (50) 

In order to introduce the other random data features,  we will show before the tools 

and equations of the signal analysis. 

2.3.2   The Fourier series and transforms  

 

The Fourier Transform (FT) defines a relationship between a signal in the time 

domain and its representation in the frequency domain. Being a transform, no 

information is created or lost in this process, so the original signal can be recovered 

from knowing the Fourier transform, and vice versa.  
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If the signal is periodic, in other words if x(t) = x(t+T0) for every instant t, considering  

T0 the signal period, it can be written as a sum of harmonic functions using the Fourier 

transform: 

( ) tjk

k

k
eXtx ω

∞

−∞=

ω= ∑)(  

 (51)

  

where the Xk coefficients are given by the following expression: 

( ) tetx
T

X
t

T
jk

T

T

k d)(
1

0

0

0

22

2

0

π
−

−

⋅=ω ∫  

and 1j = −  

 (52)

  

If the function x(t) could not be considered periodic, we will have a more generic 

expression of the Fourier transform and it is represented as follow: 

( ) tetxX tj

k d)( ω−
∞

∞−

⋅=ω ∫  

 (53)

  

In order to get the Fourier coefficient corresponding to the k-th harmonic function, 

using discrete time steps ∆t, it is necessary to round up/down the expression above in 

the following way: 

∑
−

=

∆
∆

π
−

⋅∆
∆

=
1

0

2

)(
1 C

n

tn
tC

jk

k etnx
tC

X
1

kC
C t

=
∆

,  

 (54)  

where 
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21

0

( )
j k nC

C
k

n

C x n t e
π− −

=

= ∆ ⋅∑  

 (55)

  

is the Discrete Fourier transform (DFT) or Fast Fourier Transform (FFT) and C is the 

number of the time steps. 

The DFT creates spectra where each value could be considered as the output of a filter 

centred at the ω frequency. The FT when n=0 

∑
−

=

∆=
1

0

0 )(
1 C

n

tnx
C

X  

 (56)

  

is the mean value of the x signal. 

 

2.3.3   Autocorrelation function  

In Statistics, the autocorrelation of a random process describes the correlation between 

values of the process at different points in time, as a function of the two times or of the 

time difference.  

Given a time history x(t), the autocorrelation function of it is the continuous cross-

correlation integral of x(t) with itself a time t and t+τ  and it could be written: 

( )
0

1
lim

T

xx
T

R τ x(t)x(t + τ)dt
T→∞

= ∫  

 (57) 

If the function R is well-defined, its value must lie in the range [−1, 1], with 1 

indicating perfect correlation and −1 indicating perfect anti-correlation. 

The discrete autocorrelation xxR  at lag j for a discrete signal xn is 
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xx n n- j

n

R (j)= x x∑  

 (58) 

It is real, symmetric and positive and it has a maximum at 0τ = . 

It is also correlated with the mean square value and the average value as: 

2

(0)

(0)

x xx

x xx

R

R

µ =

Ψ =
 

 (59) 

Thus, the autocorrelation function of a waveform is a similarity between the waveform 

and a time-shifted version of itself, as a function of this time shift. 

 

Figure1.18. Autocorrelation of two different waveforms 

The autocorrelation  of a periodic function is periodic, the autocorrelation of a 

random signal instead tends to zero for 0τ ≠ . 
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2.3.4   The Power Spectral Density function (PSD) 

 

The Fourier transformation of the autocorrelation function  R
xx

(τ) is called 

Power Spectral density function (PSD), or auto-spectrum: 

( ) ( ) j

xx xxS R e dωτω τ τ
+∞

−

−∞

= ∫  

 (60) 

The function S
xx

(ω)  is obtained by the Fourier transformation X(ω) of the time history 

x(t)  using the following relation:  

( ) ( ) ( )xxS X Xω ω ω=  

 (61) 

  

Where ( )X ω  is the complex conjugate of X(ω). ( )xxS ω  is a real function and 

contains the frequencies’ information of x(t), but doesn’t give information about the 

phases because it is obtained just from the module of X(ω).  

 

2.3.5   The cross correlation function  

The cross correlation function describes the correlation between two set of 

data. Indicating with x(t) the first set and with y(t) the second set of random data, the 

cross correlation function is the product of  x(t) at the time t with  y(t) at   time t τ+  

for an appropriate averaging time T and is given by the following expression: 

0

1
( ) lim )

T

xy
T

R x(t)y(t dt
T

τ τ
→∞

= +∫  

 (62) 
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where τ  is a constant time delay.  

The xyR  function is always real, positive or negative but it doesn’t have a maximum 

at 0τ = . 

2.3.6   Cross-spectral density function 

The Fourier Transformation of the cross-correlation function R
xy 

is called 

cross-spectrum (CSD) and it is usually indicated by S
xy

(ω): 

( ) ( ) j

xy xyS R e dωτω τ τ
+∞

−

−∞

= ∫  

 (63)

  

The S
xy

(ω) function is obtained by the Fourier transformation of both x(t) and y(t) 

using the following expression:  

( ) ( ) ( )xyS X Yω ω ω=  

 (64)

  

This is a complex function and both the information about frequencies and phases are 

contained. Its amplitude is the product of the two amplitudes, and the phase the 

difference of the two phases ( from ( )X ω  to ( )Y ω ). The real part is known as the 

“coincident or co-spectrum” and it gives a measure of how well the two functions 

correlate as a function of frequency,  while the imaginary part is termed the 

“quadrature or quad-spectrum” and angle a measure of the phase shift between the two 

signals as a function of frequency.   

2.3.7 Coherence 

The coherence gives a measure of the degree of linear dependence between the two 

signals, as a function of frequency. It compares the out-put with the in-put and 

produces the coherence factor. 
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( )
( )

( ) ( )

2

yx2

yy xx

S ω
γ ω =

S ω S ω
.  

 (65)

  

If γ
2
(ω) < 0.75 the experimental measures aren’t really good because the ratio signal/ 

noise is low. There are also other things like the non linear behaviour of the structure 

or some missing measurements that could produce a low value of ratio and coherence. 

 

2.3.8   The frequency response functions (FRF) 

 

It is really important to introduce the frequency response functions (FRF). For 

a constant-parameter linear system, the FRF ( )H ω  is the Fourier transform of a unit 

impulse response function h(t) : 

2

0

( ) ( ) j fH h t e dπ τω τ
∞

−= ⋅∫  

 (66)

   

where ( ) 0 0h t for τ= <          

  (67) 

The signal could be considered like a sum of unit impulse. Therefore, considering the 

force f(t) pressing the structure and y(t) the response, we can obtain the FRF for every 

couple consisting of excitation and response by the ratio of Fourier Transform of the 

response Y(ω) and of the force F(ω): 

( ) Y(ω)
H ω =

F(ω)
.  

This is sometime known as “transfert function”.  

 (68) 
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2.3.9  Frequency response functions in term of 
displacement, velocity and acceleration 

 

The FRF are generally represented like the ratio between the Fourier transform 

of the out-put (in term of displacement, velocity, force, acceleration) and the Fourier 

transform of the force module. First of all we can define the receptance function α that 

is the ratio between the displacement transform y(t) of a generic point of the system 

and the Fourier transform of the applied force f(t): 

( ) ( )
( )

Y ω
α ω =

F ω
.  

 (69)

   

At the same way we can introduce the mobility function that consist of the ratio 

between the velocity out-put yɺ of a generic point of the system and the Fourier 

transform of the force f(t).  

( )
( )

( )

Y
B

F

ω
ω

ω
=
ɺ

 

 (70) 

To conclude, we give also the expression of the inertance that is the ratio between the 

acceleration out-put yɺɺ of  a generic point of the system and the FT of the force f(t). 

( ) ( )
( )ω
ω

=ω
F

Y
A

ɺɺ

.  

 (71)

  

These first and the third expressions could be join in the following way. 
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( ) ( )ωα⋅ω−=ω 2A  

 (72)

  

We use the last two formulas because the output data are in term of accelerations. 

 

2.3.10   The frequency response function for �-DOF 
systems 

For C-degree of freedom systems with viscous damping, the equations of 

motion assume the following form: 

+ + =Mv Cv Kv fɺɺ ɺ

ɶ ɶɶ
.  

 (73)

   

Calculating the Fourier transform of both the parts, we obtain the following result: 

( ) d di t i t
e t e t

ω ω
∞ ∞

− −

−∞ −∞

+ + ⋅ = ⋅∫ ∫Mv Cv Kv fɺɺ ɺ

ɶ ɶɶ
 

 (74)

  

That could be written also as: 

( ) ( ) ( )2 iω ω ω ω− ⋅ + ⋅ + ⋅ =M C K V F
ɶ ɶɶ

 

 (75)

  

where ( )ωV  and ( )ωF  are the Fourier transforms of the displacement v and the force 

f.  

The receptance could be written as follow: 



 63

( ) ( ) 1
2α M C Kω ω ω

−
= − ⋅ + ⋅ +

ɶ ɶɶ ɶ
i .  

 (76)

  

Recalling the modal matrix 
ɶ

ϕϕϕϕ  that has in columns the eigenvectors and using the well 

known expressions of orthogonal modes of vibration systems  

2( )t

r
diag ω=φ K φ

ɶɶ ɶ

,  

 (77)

  

t =φ M φ I
ɶ ɶɶ ɶ

,          

 (78) 

(2 )t

r r
diag ζ ω=φ C φ

ɶɶ ɶ

,        

 (79) 

 it is possible to write the equation of motion in this other way: 

( ) ( )1 2t t
iω ω ω−

= − ⋅ + ⋅ +φ α φ φ M C K φ
ɶ ɶɶ ɶɶ ɶ ɶ ɶ

,     

 (80) 

( )ωωζ+ω−ω= rrr idiag 222 ,  

Finally receptance could be written: 

( ) ( ) 1
2 2 2t

r r r
diag iω ω ω ζ ω ω

−
= − +α φ φ

ɶ ɶ ɶ

.  

 (81)

  

or in components: 

( ) ( )∑
= ωωζ+ω−ω

φφ
=ωα

C

r rrr

rkrj

jk
i1

22 2
. 

 (82)
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The inertance function for this case derivers from the expression (76): 

( ) ( )∑
= ωωζ+ω−ω

φφ⋅ω
−=ω

C

r rrr

rkrj

jk
i

A
1

22

2

2
, 

 (83)

  

The formula above (1.66) could be written also as follow: 

( )
( )

( )∑
= ωωζ+ω−ω

⋅ω
−=ω

C

r rrr

rjk

jk
i

R
A

1
22

2

2
 

 (84)

  

Where Rjk is the residue and it is given by the product of the eigenvectors. 

 

2.3.11   FRF in the state form 

 

It is our aim now to write the same expression in an other form. Starting from the well 

known equation of motion in the sate form will have : 

( ) ( ) ( )
c c

t t t= +x A x B uɺ

ɶ ɶ ɶ
 

 (85)

  

and assuming an harmonic excitation and the corresponding harmonic response of the 

structure we reach the following expression: 

( ) i i

c ci e e
ω ωω − =I A X B U

ɶ ɶ ɶ
 

 (86)

  

from this is easy to obtain the FRF of the displacement: 
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( ) ( ) 1

c
iω ω −

= −α I A
ɶ ɶɶ

 

 (87)

  

Using the pre-multiplication and the post-multiplication of the two sides with the 

eigenvector ψ we obtain: 

( ) ( )1

c
iω ω−

= −ψ α ψ ψ I A ψ
ɶ ɶɶɶ ɶ ɶ ɶ

 

 (88)

  

Are now introduced the proprieties of orthogonal modes of vibration systems and the 

above formula is written by its components: 

( )
( )∑

= λ−ω

ψψ
=ω

C

r r

krjr

jk
i

2

1

α  

 (89)

  

The sum of the equation above extends 2C because the equation 

)()()( ttt
cc
uBxAx +=ɺ  consist of 2C components. The eigenvectors are C conjugate 

couples and therefore the expression above could be also written as follow: 

( )
( ) ( )∑

= 











λ−ω

ψψ
−

λ−ω

ψψ
=ω

C

r r

krjr

r

krjr

jk
ii1

*

**

α , 

 (90)

  

where the complex conjugate member is indicated with the(
*
) symbol. 

The FRF have a relevant importance in the System identification. 
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2.4  Instrumentation for the frequency domain 

Appropriate techniques for the acquisition and processing of random data are 

heavily dependent on the physical phenomenon represented by the data and the 

desired engineering goals of the processing. In broad terms, however, the required 

operations may be divided into five primary categories: data collection, data recording 

(including transmission), data preparation, data qualification and data analysis. Each 

of these categories involves a number of sequential steps. During  these steps we some 

sources of errors can occur.  

 

2.4.1 Aliasing 

In the digitalization of a continuous signal, the sampling of the signal is 

obtained for equal time steps. The problem is to find a good sampling interval. On 

the one hand, sampling with steps that are too close each other will lead to have too 

many data and to an increasing in the computational calculus. On the other hand, if 

the sampling frequency is too low we couldn’t get the real wave of the signal. 

Aliasing is a phenomenon in analog to digital conversion in which the frequency of 

the converted signal is lower than that of the original signal. This latter problem 

constitutes a potential source of error that does not arise in direct analog data 

processing, but is inherent in all digital processing that is preceded by an analog to 

digital conversion. It is often overlooked, sometimes with disastrous results. 
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Figure1.19. example of Aliasing, the signal is not correcting digitalized 

This minimum sample rate requirement is known as the Nyquist Criterion. In the time 

domain a sampling frequency exactly twice the input frequency would not always be 

enough. Whereas, slightly more than two samples in each period gives sufficient 

information. It certainly would not be enough to give a high quality time display. The 

Nyquist Criterion of a sample rate greater than twice the maximum input frequency is 

sufficient to avoid aliasing and preserve all the information in the input signal. 

Therefore the higher frequency that could be define by the sampling ration of 1/ t∆  

samples over second is  

1

2
=

∆cf
t

.  (91) 

This cutting or band-limiting frequency  is called �yquist frequency. 

The aliasing problem could be solved using a filter (or our FFT processor which acts 

like a filter) after the sampler. It will remove the alias products while passing the 

desired input signals if the sample rate is greater than twice the highest frequency of 

the input. If the sample rate is lower, the alias products will fall in the frequency range 

of the input and no amount of filtering will be able to remove them from the signal. 
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2.4.2  Leakage 

 

Leakage describes an unwanted loss, or leak, of something which escapes 

from its proper location. 

In everyday usage, leakage is the gradual escape of matter through a leak-hole.  

In our case, we have seen that the spectrum of a frequency response depend also of the 

time of observation T therefore the leakage is a problem connected with the length of 

the time history and the assumption of a periodic signal.  

If the time record contains an integral number of cycles of the input sine wave, then 

this assumption exactly matches the actual input waveform as shown in Figure 2.4. In 

this case, the input waveform is said to be periodic in the time record.  

 

 

Figure1.20. Input signal periodic in time record 

Figure 2.5 demonstrates the difficulty with this assumption when the input is not 

periodic in the time record. The FFT algorithm is computed on the basis of the highly 

distorted waveform in Figure 2.5c. The actual sine wave input has a frequency 

spectrum of single line. The spectrum of the input assumed by the FFT in Figure 2.5c 

should be very different. Since sharp phenomena in one domain are spread out in the 
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other domain, we would expect the spectrum of our sine wave to be spread out 

through the frequency domain.  

 

Figure1.21. Input signal not periodic in time record 

In Figure 2.6 we see in an actual measurement that our expectations are correct. In 

Figures 2.6 a & b, we see a sine wave that is periodic in the time record. Its frequency 

spectrum is a single line whose width is determined only by the resolution of our 

Dynamic Signal Analyzer. On the other hand, Figures 2.6 c & d show a sine wave that 

is not periodic in the time record. Its power has been spread throughout the spectrum 

as we predicted. This smearing of energy throughout the frequency domains is a 

phenomenon known as leakage.  
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Figure1.22. Actual FFT results 

We are seeing energy leak out of one resolution line of the FFT into all the other lines. 

It is important to realize that leakage is due to the fact that we have taken a finite time 

record. For a sine wave to have a single line spectrum, it must exist for all time, from 

minus infinity to plus infinity. If we were to have an infinite time record, the FFT 

would compute the correct single line spectrum exactly. However we need to look at a 

finite time record of the sine wave for evident reasons. This can cause leakage if the 

continuous input is not periodic in the time record. It is obvious from Figure 2.6 that 

the problem of leakage is severe enough to entirely mask small signals close to our 

sine waves. As such, the FFT would not be a very useful spectrum analyzer.  

If there are two sinusoids, with different frequencies, leakage can interfere with the 

ability to distinguish them spectrally. If their frequencies are dissimilar, then the 

leakage interferes when one sinusoid is much smaller in amplitude than the other. That 

is, its spectral component can be hidden by the leakage from the larger component. 

But when the frequencies are near each other, the leakage can be sufficient to interfere 

even when the sinusoids are equal strength; that is, they become irresolvable. 
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2.4.3  Windowing 

 

Windowing is a method used to solve the leakage problem. It is able to filter 

the in-put signal x(t) using a filtering function W(t).  This operation, called 

windowing, gives a signal '( ) ( ) ( )x t W t x t= ⋅  that help to reduce the spectral 

dispersion.  

In Figure 2.7 we have again reproduced the assumed input wave form of a sine wave 

that is not periodic in the time record. Notice that most of the problem seems to be at 

the edges of the time record, the centre is a good sine wave. If the FFT could be made 

to ignore the ends and concentrate on the middle of the time record, we would expect 

to get much closer to the correct single line spectrum in the frequency domain. If we 

multiply our time record by a function that is zero at the ends of the time record and 

large in the middle, we would concentrate the FFT on the middle of the time record. 

One such function is shown in Figure 2.7c. Such functions are called window 

functions because they force us to look at data through a narrow window.  
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Figure1.23. The effect of windowing in the time domain 

Figure 2.8 shows us the vast improvement we get by windowing data that is not 

periodic in the time record. However, it is important to realize that we have tampered 

with the input data and cannot expect perfect results. The FFT assumes the input looks 

like Figure 2.8c, something like an amplitude-modulated  sine wave in the time record. 
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Figure1.24. Leakage reduction with windowing 

This has a frequency spectrum which is closer to the correct single line of the input 

sine wave than Figure 2.6b, but it still is not correct. Figure 2.9 demonstrates that the 

windowed data does not have as narrow a spectrum as an unwindowed function which 

is periodic in the time record. 

 

Figure1.25. Windowing reduces leakage but does not eliminate it 
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There are a lot of different windows and following there is a list of the most important 

ones: 

� Box window 

� Hamming Window; 

� Cosine Taper Window; 

� Exponential Window. 

 

Every window corresponds to a specific type of signal, for example the second and the 

third are 

used for periodic signals or for random vibrations; the fourth one is used for transient 

state in which 

the more important data are concentrated in a specific part of the whole signal. 

 

 

2.4.4 Overlap averaging 

From the figure 2.9 it is seen that windowing the time history, the leakage error 

is suppressed, but it also increase the width of the main lobe of the spectral window; 

that is, it reduces the basic resolving power of the analysis. For Hanning, the increase 

in the half-power bandwidth of the main lobe is about  60%. This is generally an 

acceptable penalty to pay for the suppression of the leakage from frequencies outside 

the region of the main lobe. However, there may be cases where maintaining a 

minimum  main-lobe bandwidth is critical to the analysis. This can be achieved by 

simply increasing the record length T for each FFT to provide the same bandwidth 

with windowing that would have occurred without windowing. 

To counteract the increase in variability caused by time-history windowing for leakage 

suppression, overlapped processing techniques are sometimes used. 

Specifically, instead of dividing a record x(t)  into dn  independent segments, ix (t),  

d(i -1)T t iT, i = 1,2,....,n≤ ≤ , the record is divided into overlapped segments ( )
i

x t  

covering the time intervals: 
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[ ] [ ] , dq(i - 1) T t q(i - 1)+1 T i = 1,2,....,(n /q) q < 1≤ ≤      

 (92) 

A common selection in overlapped processing is q = 0.5 , which produces 50% 

overlapping. This will retrieve about 90% of the stability lost due to the windowing 

operation but also will double the required number of FFT operation.  
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Chapter 3 

Introduction  

Modal parameter identification is a procedure to identify dynamic properties of 

a vibrating structure starting from modal tests. Modal parameters can be estimate from 

a variety of different measurements in different data domains (time and/or frequency 

domain). It allows us to obtain the modal parameters of the structure such as mode 

shapes, damping ratios, natural frequencies by the not destructive tests on fields. 

These measurements can include free-decays, forced responses, frequencies response 

functions or impulse response functions. The measurements can be generated with no 

measured inputs, single measured input or multiple measured inputs.  

Most current modal parameter estimation techniques are based on the 

frequency response function (FRF) or, equivalently, impulse response function (IRF) 

obtained from the measured data. FRFs are typically found by Fast Fourier Transform. 

Excitation of structure by dynamic forces is usually required in order to apply 

frequency domain methods. Forces may be imposed, for example, by means of a 

mechanical shaker. Acceleration records at different frequencies are used to calculate 

the corresponding FRFs. From these, frequencies domain methods as MDOF Circle 

Fit Method can be used to identify frequencies, deformations and damping ratios of 

various modes. 

In the input-output system identification the modal parameters are obtained by a 

special model which defines the frequency response function that means a function 

that connects the in-put with the out-put. The system identification based just on the 

out-put data obtained by the test is called out-put only. When the system 

identification is based only on out-put data, two problems recur: 

� The excitation in unknown; 

� The out-put is often affected by noise. 

The principal concept of the out-put only system identification is that the unknown 

external load is assumed as composed by a virtual load called white noise. It is 
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supposed that the white noise does not act in the structural system. Therefore is it 

possible to identify the structural modes and the virtual mode due to the white noise 

separately. 

The concept of output-only modal testing is not new but the development of this 

technique has a brief history. For several years people working in modal analysis have 

been performing output only modal identification using the commonly accepted fact 

that if only one mode contributes to a certain band of the cross spectral matrix, then 

any row or column in that matrix can be used as a mode shape estimate. By picking a 

peak in one of the spectral density functions one can get the mode shape from one of 

the columns or rows in the cross spectral matrix. This classical approach, also known 

as Basic Frequency Domain (BFD) technique, is based on the simple signal processing 

technique using a discrete Fourier transform, and hinges on the fact that well separated 

modes can be estimated directly from the matrix of the cross spectra. 

In the case of closely spaced modes, it can be difficult to detect the modes and, even in 

the case where close modes are detected, estimated frequencies and mode shapes 

become heavily biased. Furthermore, the estimated frequencies are limited by the 

frequency resolution of the estimated spectral density and, in all cases, damping 

estimation is uncertain or impossible. 

The main advantage of the classical i.e. BFD approach is that the structural properties 

can be easily found just by examining the density functions. The disadvantages 

associated with this approach are removed by another method called Frequency 

Domain Decomposition technique (FDD) that was extensively investigated by Ren 

and Zong and Brincker et al. Brincker R, Zhang L, Andersen P (2000 and 2003) . 

This method contains all the advantages of the classical technique and also provides 

clear indication of harmonic components in the response signal. It has been described 

that the spectral matrix can be decomposed with the Singular Value Decomposition 

(SVD) method into a set of auto spectral density functions, each corresponding to a 

Single Degree of Freedom (SDOF) system. The FDD technique can effectively handle 

close modes and noise, however it cannot provide damping information.  

The Enhanced Frequency Domain Decomposition (EFDD) is basically an extension of 

the FDD technique capable of providing damping information. In EFDD, the 

identified frequency function around each resonant peak is transferred back to the time 
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domain using Inverse Discrete Fourier and damping can be obtained by the 

logarithmic decrement of the correspond SDOF normalized autocorrelation function. 

This is the approach we used for our case of study. The results are right if the structure 

has a low damping, the load is really a white noise and the mode shapes of the 

matched modes are orthogonal. Otherwise they are approximated but good anyway. 

Time domain methods are more flexible since any kind of dynamic excitation can be 

used, such as noise excitations or forces induced by impact of weights on the structure. 

Among them, autoregressive models and subspace methods are the most effective 

methods. Possibility of extracting modal parameters from recorded time signals, 

without the need of direct measurement of excitation force, is their main advantage. It 

can be shown, in fact, that a stochastic state-space model may represent a vibrating 

structure excited by a stationary white noise.  

 The first time-domain technique that really became known for serious output-only 

identification was introduced by Ibrahim and Milkulcik and is known as the Ibrahim 

Time Domain (ITD) method. Shortly after that the Polyreference time-domain method 

were introduced by Vold et al. and Vold and Rocklin. The Eigen Realization 

Algorithm (ERA) was developed by Juan and Pappa and later employed in space 

application. The last two techniques, i.e. Polyreference and ERA, use multiple inputs 

but ITD can also be formulated as a multiple input method as described by Fukuzono. 

Recently, Zhang et al. gave a common formulation for all these techniques. What they 

have in common is that they assume that a free response function can be obtained. 

These time domain techniques are all based on a function represented by exponential 

decay.  

Recently a lot of research effort was spent to a more modern time-domain techniques 

called Stochastic Subspace Identification (SSI). Three different implementations of 

Stochastic Subspace Identification technique are: Unweighted Principal Component 

(UPC), Principal Component (PC), and Canonical Variate Analysis (CVA). These 

methods are time domain methods that directly work with time domain data, without 

any conversion to spectral functions. Subspace methods identify state-space models 

from input and output data by applying robust numerical techniques such as QR 

factorization, SVD and least squares. They are based on projection of the row space of 
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future outputs into the row space of past outputs and they do not need any 

optimization procedure. The algorithm for this new stochastic subspace time domain 

technique was described by Van Overschee and De Moor. Also, more detailed 

information on stochastic subspace method can be found in Pandit SM (1991)  and 

Peeters B, De Roeck G (2001). 

 

The main purpose of this thesis is the characterization of dynamic behaviour of 

structure using frequency domain methods. The EFDD method will be shown. 

Identified parameters are modal frequencies, mode shapes and damping ratios. 

 

 

EFDD method (Enhanced Frequency Domain 
Decomposition) 

 

The technique presented in this paper is a frequency domain decomposition 

(FDD) technique. It removes all the disadvantages associated with the classical 

approach, but keeps the important features of user friendliness and even improves the 

physical understanding by dealing directly with the spectral density function. 

Furthermore, the technique gives a clear indication of harmonic components in the 

response signals. 

Taking the singular value decomposition (SVD) of the spectral matrix, the spectral 

matrix is decomposed into a set of auto spectral density functions, each corresponding 

to a single degree of freedom (SDOF) system. This result is exact in the case where 

the loading is white noise, the structure is lightly damped and when the mode shapes 

of close modes are geometrically orthogonal. 

If these assumptions are not satisfied the decomposition into SDOF systems is 

approximate, but still the results are significantly more accurate than the results of the 

classical approach. 
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2.4.5  Frequency domain analysis 

It is considered a system with r input ( )ix t  1,2,....i r=  and an out-put y(t) . It is 

assumed that y(t)  is the sum of each ( )iy t  obtained by the transform functions ( )ih t  

for each input ( )ix t . 

1

( )
=

= ∑y(t)
r

i

i

y t          

  (93)  

1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( )
( )

...

( ) ( ) ( )r r r

x t h t y t

x t h t y t
y t

x t h t y t

→ → 
→ → 

→

→ → 

       

  (94) 

Applying the integral of convolution is obtained: 

10 0

( ) ( ) ( ) ( ) ( )τ τ τ τ τ τ
∞ ∞

=

= ⋅ − ⇒ = ⋅ −∑∫ ∫y(t)
r

i i i i i

i

y t h x t d h x t d     

  (95) 

The autocorrelation function, as shown in chapter two, could be represent by the 

following form: 

1 0

( ) ( ) ( )ξ η ξ η τ ξ η
∞

=

= ⋅ ⋅ − +∑∫ ∫yR (τ)
ɶ

r

i i i i

i

h h R x d d      

 (96) 

Using the Fourier transform, the power spectral density function (SPD) is obtained: 

2
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i j ij

i j

e d

h e d h e d R t e dt

H f H f G f

   

 (97) 
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where the symbol “─” means the complex conjugate. If it is preferable writing the 

formula like a matrix, it is necessary to introduce the r-dimensional input vector x(t): 

1 2[ ( ), ( ),..., ( )]x(t) = rx t x t x t         

 (98) 

the r-dimensional vector of the frequency response function H(f): 

1 2[ ( ), ( ),..., ( )]H(f) = rH f H f H f        

 (99) 

the r-dimensional vector of the cross spectrum of in-put 
i

x (t) : 

1 2
( ) [ ( ), ( ),..., ( )]

xy
G =

rx y x y x yf G f G f G f       

 (100) 

and the r x r matrix for each in-put ( )ix t : 

1 2 1 2 1

2 1 2

1 2

( ) ( ) ... ( )

( ) ... ( )
( )

... ... ...

( ) ( ) ... ( )

xxG

 
 
 =  
 
  

r

r

r r r r

x x x x x x

x x x x

x x x x x x

G f G f G f

G f G f
f

G f G f G f

 

Therefore the power spectral density function becomes: 

2

1 1

2 ( ) ( ) ( ) ( )
y

G
π ττ τ

+∞
−

= =−∞

= ⋅ = ⋅ ⋅∑∑∫
ɶ ɶɶ

r r
j f

i j ij

i j

(f) R e d H f H f G f     

 (101) 

At this point the equation could be written in the matrix form: 

T

yy xxG (f) = H(f)×G (f)× H (f)
ɶ ɶɶ ɶ

       

 (102) 

where the symbol “T” stands for transposed. 

 

If the measurements registered are m, the matrices above represent the following 

quantities: 

xx
G :(f) spectral density matrix of the in-put, which has a dimension of r x r; 

yy
G :(f)  spectral density matrix of the out-put, which has a dimension of m x m; 

H :(f) frequency response functions matrix, which has a dimension of m x r. 
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2.4.6   Frequency response function 

As we saw in the second chapter the frequency response function could be written as 

the ratio between the Fourier Transform of the out-put over the in-put one. 

( )
( )

( )

ω
ω

ω
=

ɶ

Y
H

X
         

 (103) 

If we consider the external force like an impulse ( )f A tδ= ⋅ , la FRF is proportional to 

( )X ω , apart from an unessential factor: 

1

( cos sin )x(t)
ζ ω ω ω−

=

= +∑ k k

n
t

k k kd k kd

k

u e A t B t      

 (104) 

where ku  is the modal constant, kς is the damping ratio and 21kd k kω ω ξ= − is the 

damping frequency for the k-th mode and kA , kB  are two constants.  

In order to use the FRF in the form of inertance we have to derive the previous 

equation two times: 

2

1

( cos sin )x(t)
ζ ωω α ω β ω−

=

= +∑ɺɺ k k

n
t

k k k kd k kd

k

u e t t      

 (105) 

where  

2 22 1 (1 2 )k k k k k kB Aα ς ς ς= − − − −        

 (106) 

2 22 1 (1 2 )β ς ς ς= − − −k k k k k kA B  

Applying the Fourier Transform of x(t)ɺɺ : 

2

2 2
1

( )
( )

β ω α ς ω α ω
ω ω

ς ω ω ω=

+ +
=

+ +∑
ɶ

n
k kd k k k k

k k

k k k kd

i
H u

i
      

 (107) 

and supposing 
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2( 1 )k k k k k ki iλ ω ς ς σ ω= − + − = − +        

 (108) 

2( 1 )k k k k k ki iλ ω ς ς σ ω= − − − = − −  

is it obtained: 

2 2( ) ( )( )k k kd k ki i iς ω ω ω ω λ ω λ+ + = − +       

 (109) 

therefore it follows:  
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i
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 (110) 

with s iω=  and finally grouping together the quantities in the following way: 

2
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2

1

2

ϕ α β
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ω γ ϕ

ω γ ϕ

= +
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= =

= =

ɶ

ɶ
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i

i

R u G

R u G

        

 (111) 

where ϕk  and γ k  are the mode shape vector and the modal participation vector, 

respectively. 

 

The FRF assumes the expression: 

1

( )ω
ω λ ω λ=

= +
− −∑ ɶ ɶ

ɶ

n
k k

k k k

R R
H

i i
       

 (112) 

where 
ɶ

kR and kλ are called the residues and the poles respectively. The residue is the 

product of the eigenvectors. 
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2.4.7   Decomposition of the Power Spectral Density 
matrix of the out-put 

Supposing the input consists just of the white noise, the corresponding PSD is a 

constant matrix: 

( )
xx

G ω =
ɶ ɶ

C           

 (113) 

and the PSD of the output could be written as follow: 

1 1

yy
G (ω)

ω λ ω λ ω λ ω λ= =

   
= + ⋅ ⋅ +   − − − −   
∑∑ ɶ ɶ ɶ ɶ

ɶ ɶ

H
n n

k k s s

k s k k s s

R R R R
C

i i i i
   

 (114) 

where superscript H denotes a complex conjugate and transpose. Multiplying the two 

partial fraction factors and making use of the Heaviside partial fraction theorem, after 

some mathematical manipulations, the output PSD can be reduced to a pole/residue 

form as follows: 

1

yy
G (ω)

ω λ ω λ ω λ ω λ=

= + + +
− − − −∑ ɶ ɶ ɶ ɶ

ɶ

n
k k k k

k k k k k

A A B B

i i i i
     

 (115) 

where 
ɶ

kA  is the k-th matrix of the residues of the output PSD: 

1 λ λ λ λ=

 
= + − − − − 

∑ ɶ ɶ
ɶ ɶ ɶ

T Tn
s s

k k

s k s k s

R R
A R C       

 (116) 

The contribution of the k-th mode is given by: 

2σ
= ɶ ɶɶ

ɶ

T

k k
k

k

R CR
A          

 (117) 

and kσ  comes from the real part of kλ . 
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It is clear that the term kσ  becomes dominant if the damping is light: 

T T T T

k k k k k k k k k kA R CR C dϕ γ γ ϕ ϕ ϕ∝ = =       

 (118) 

where kd is a constant scalar.  

For each frequency just a finite number of modes are dominant, usually one or two. 

Indicating this group of modes like ( ),Sub ω the answer of the system could be written 

as follow: 

( )

yy
G (ω)

ω

ϕ ϕ ϕ ϕ
ω λ ω λ∈

= +
− −∑

ɶ

T Tn
k k k k k k

k Sub k k

d d

i i
       

 (119) 

This is the modal decomposition of the spectral matrix. The expression is similar to 

the result we could obtain directly from this 

 

Implementation of the EFDD method 

On the root of this method there is the decomposition of the output in simple 

one degree of freedom systems SDOF . This decomposition is obtained by selecting 

the spectral bell close to the peak of interest and corresponding to the k-th mode. We 

are going to describing the steps of this method. 

 

3.3.1 Filtering 
 

It is often a good idea to filter the input signals with a low-pass and high-pass 

filter or with a band-pass filter. Filtering concentrates the identification to the 

frequency range of interest and reduces the effect of high-frequency measurement 

noise. A data signal normally has a mixture of different frequency components in it. 

The frequency contents of the signal and its powers can be obtained for example 

trough the Fast Fourier Transform (FFT). 

The low pass filter posses relatively low frequency components in the signal, but stop 

the high frequency components. The high-pass filter does the contrary. The so-called 

cut off frequency divides the pass band and the stop band. The high pass filter is 
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especially useful since the random errors involved in the row position data obtained 

trough reconstruction are characterized by relatively high frequency contents.  

The data records we analyzed were filtered by the Butterworth filter, included in 

Matlab programming software. It is designed to have a frequency response which is as 

flat as mathematically possible in the pass band. Another name for it is maximally flat 

magnitude filter. The behaviour of a filter can be summarized by the so-called 

frequency response function. The FRF of the Butterworth low-pas filter has the 

following form: 

2

2

1
( )

1 ( / )
c �

c

H i
i i

ω
ω ω

=
+

       

 (120) 

where ω  is the frequency (rad/sec), 
c

ω  is the cut off frequency (rad/sec) and C  is the 

order of the filter. When 0ω =  the magnitude squared function 2

c
H  becomes 1 and 

the frequency components completely passed. When ω = ∞ ,  2

c
H  becomes 0 and the 

frequency components will be completely stopped. Between the pass band and the 

stop band there is the transition band 2(1 0)
c

H> > in which the components will be 

partially passed but partially stopped at the same time.  When 
c

ω ω= , 2

c
H  always 

becomes 0,5 (half power regardless of the order of the filter). The things we explained 

will be clearer looking at the following figure. 

Figure1.26.  

1.1 Figure   FRF of the low-pass Butterworth filter 
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Figure1.27. The following figure instead shows the effect of the filter order on the 

frequency response. As the filter order increase, the transition from the pass 

band to the stop band gets steeper 

 

1.2 Figure  Effect of the different orders of the filter. 

Therefore when the order of the filter is bigger, the filtering effect is better at the cost 

of longer computational time. On the other hand, a smaller order leads to a shorter 

computational time and more approximate filtering effect.  

In order to filter our data sets we used a  5
th

  order high-pass filter with cut off 

frequency equal to 0.8 and a 9
th

 order low-pass filter with cut off frequency equal to 

15. The frequency range was decided referring to the natural frequencies provided by 

the FEM model. 

 

3.3.2 Assembly of the power spectral density of the output  

For each set of measurements it is valued the PSD matrix that has a dimension of m 

x m, where m is the numbers of instrument used to collect the data: 



 88

1 2 1 2 1

2 1 2 2 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

... ... ...

( ) ( ) ... ( )

yyG (f)

 
 
 =  
 
  

ɶ

m

m

m m m m

y y y y y y

y y y y y y

y y y y y y

G f G f G f

G f G f G f

G f G f G f

     

 (121) 

where ( )
i iy yG f  is auto-spectrum density function, and ( )

i jy yG f  is the cross-spectrum 

density function. Two different approaches were used to obtain this matrix.  

1. Valuation of PSD matrix passing for the FFT of each data.  

2. Valuation of the CPSD matrix of the data. 

 

1) As we saw in the second chapter the fast Fourier transformation of the 

autocorrelation function  R
yy

(τ) is called spectral density power function (PSD), or 

auto-spectrum: 

( ) ( ) 2 dj

yy yy
S R e

πωτω τ τ
+∞

−

−∞

= ∫        

 (122). 

The function S
xx

(ω)  is obtained by the Fourier transformation Y(ω) of the time 

history y(t). Therefore the first step is to compute the N-points FFT for each set of 

data  ( )
k

Y f , 0....( 1)k �= − , where N is number of the data values.  

Form the Fourier transform it is possible to find the one-side auto-spectral and cross-

spectral density function of the signals: 

22
=

∆ ⋅i iy y iG Y
t C

          

 (123) 

2
= ≠

⋅∆i iy y j iG Y Y i j
C t

       

 (124) 
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where  ∆t  is the sampling time. 

Anyway the plot of the PSD showed still a not clearly  of the peaks. Therefore another 

approach was used.  

2) Calculation of the CPSD using the Matlab function  

[Pxy,F] = cpsd(x,y,window,noverlap,nfft,fs). 

This function, based on the cross-spectrum power density function, requires the 

division of the data signals in sequences, their windowing and overlapping. We will 

show the steps of the method. 

In order to get the CPSD we have to divide the available data records for ( )ix t and 

( )iy t  into dn  pairs of blocks, each consisting of C data values.  

 

1 2( ) ...= ∪ ∪ ∪i nx t x x x         

 (125) 

1 2( ) ...i ny t y y y= ∪ ∪ ∪  

Figure1.28.  
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Figure1.29.  

Figure1.30.  

Figure1.31.  

Figure1.32.  

Figure1.33.  

Figure1.34.  

Figure1.35.  

Figure1.36.  

Figure1.37.  

Figure1.38.  

1.3 Figure   division in sequences and overlapping of the data records 
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Each block is traded separately and with the averaged value centred to zero, therefore 

cleared off possible trends. After that the signals are multiply for the windowing 

function called Hanning window W  that help to reduce the leakage problems: 

= ⋅
⌢

k kx x W  ,        = ⋅
⌢

k ky y W  

where the symbol “ ^ ”, stands for  windowed. 

This function removes the codes of the sequence in consideration using a window as 

we showed in the previous chapter and it might assume also different length despite of 

the sequence (usually shorter) and in this case a finite number of zeros are added to the 

signals. The mathematical expression of the Hanning window is the following: 

2

( ) 1 cos 0,1, 2,.....,

( ) 0

r
W t r s

s

W t r s

π = − = 
 

= >
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where s represents the width, in samples, of a discrete-time window function and r is 

an integer 0 r s< ≤ . 

 

For each sequence windowed and overlapped, is it valued the Discrete Fourier 

Transform (DFT): 
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Moreover the transforms are averaged as follow: 

1=

= ∑
⌢n

i k

k

Y Y   and 
1=

= ∑
⌢n

i k

k

X X        

 (128) 


