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Sommario

Il lavoro è dedicato all’analisi fisica e alla modellizzazione dello strato limite atmosferico in

condizioni stabili. L’obiettivo principale è quello di migliorare i modelli di parametrizzazione

della turbulenza attualmente utilizzati dai modelli meteorologici a grande scala. Questi

modelli di parametrizzazione della turbolenza consistono nell’ esprimere gli stress di Reynolds

come funzioni dei campi medi (componenti orizzontali della velocità e temperatura potenziale)

usando delle chiusure. La maggior parte delle chiusure sono state sviluppate per i casi

quasi-neutrali, e la difficoltà è trattare l’effetto della stabilità in modo rigoroso. Studieremo in

dettaglio due differenti modelli di chiusura della turbolenza per lo strato limite stabile basati

su assunzioni diverse: uno schema TKE-l (Mellor-Yamada,1982), che è usato nel modello di

previsione BOLAM (Bologna Limited Area Model), e uno schema sviluppato recentemente da

Mauritsen et al. (2007). Le assunzioni delle chiusure dei due schemi sono analizzate con dati

sperimentali provenienti dalla torre di Cabauw in Olanda e dal sito CIBA in Spagna. Questi

schemi di parametrizzazione della turbolenza sono quindi inseriti all’interno di un modello

colonnare dello strato limite atmosferico, per testare le loro predizioni senza influenze esterne.

Il confronto tra i differenti schemi è effettuato su un caso ben documentato in letteratura, il

"GABLS1". Per confermare la validità delle predizioni, un dataset tridimensionale è creato

simulando lo stesso caso GABLS1 con una Large Eddy Simulation. ARPS (Advanced

Regional Prediction System) è stato usato per questo scopo. La stratificazione stabile vincola

il passo di griglia, poichè la LES deve essere ad una risoluzione abbastanza elevata affinchè le

tipiche scale verticali di moto siano correttamente risolte. Il confronto di questo dataset

tridimensionale con le predizioni degli schemi turbolenti permettono di proporre un insieme di

nuove chiusure atte a migliorare il modello di turbolenza di BOLAM. Il lavoro è stato

compiuto all’ ISAC-CNR di Bologna e al LEGI di Grenoble.
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Abstract

The work is devoted to the physical analysis and modelling of the stable atmospheric

boundary layer. Our aim is to improve turbulence models currently implemented in weather

forecast models. These turbulence models consist in expressing the Reynolds stresses as a

function of the mean fields (horizontal velocity components and potential temperature), using

closure assumptions. Most closure assumptions have been developed in the quasi-neutral case

and the difficulty is to deal with the effects of stable stratification in a rigorous way. We shall

analyze in detail two different turbulence models regarding the stable atmospheric boundary

layer, based on different assumptions: the so-called TKE-l scheme (Mellor-Yamada,1982),

which is used in the BOLAM (Bologna Limited Area Model) forecast model, and a scheme

recently developed by Mauritsen et al. (2007). The closure assumptions of the two schemes

are tested against experimental measurements from Cabauw tower in the Netherlands and

from CIBA site in Spain. These turbulence schemes are then included in a Single Column

Model (SCM) of the atmospheric boundary layer to test their predictions without any other

influence. The comparison is made on the test- case “GABLS1”, which is well-documented in

the literature. In order to assess the validity of these predictions, a three-dimensional dataset

shall be developed using a Large Eddy Simulations (LES) of the GABLS1 test-case. The

ARPS (Advanced Regional Prediction System) code shall be used for this purpose. The stable

stratification constrains the grid size so that the LES should be of high enough resolution for

the typical vertical scale of the motion to be properly solved. Comparison of this dataset with

the predictions of the turbulence models allows us to propose a set of new closure assumptions

which improves the BOLAM turbulence model. The master’s work has been carried out at the

ISAC-CNR of Bologna and at LEGI in Grenoble.
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1 Introduction

1.1 A very short introduction

In the last page of his second book of lectures on physics devoted to hydrodynamic and
turbulence, Richard Feynman wrote (Feynman et al., 1969, chapter 21):

" Often, people in some unjustified fear of physics say you can’t write an
equation for life. Well, perhaps we can. As a matter of fact, we very possibly
already have the equation to a sufficient approximation when we write the
equation of quantum mechanics " :

Hφ = +i~
∂

∂t
φ

Of course, the Feynman’s sentence is a clear hyperbole. What he would like to express is
that the complexity of nature is easily hidden behind the elegant form of the equations
which we use to represent it. In a provocatory fashion, Richard Feynman suggests that
although we can write an equation for a class of phenomenons, we are still not able to
catch all the qualitative behaviours that such equation should explain. Having only the
Heisenberg’s equation, we would be unable to reconstruct all the world around us.
Feynman believes that an analogous situation prevails in turbulent flows of an incom-
pressibile fluid: we may already write an equation that perhaps contains everything
about turbulence:

∂

∂t
~v + (~v · ∇)~v = −1

ρ
∇p+ ν∇2~v + Fext , (1)

∇~v = 0

that it is the well-known (at least since Navier) Navier-Stokes equations. If completed
with initial and boundary conditions, it could describe all flow motions which can de-
velop in such particular situation (the situation described by those initial and boundary
conditions). As for the clear quantum mechanics example, the problem is more compli-
cated (otherwise this dissertation would be completely irrelevant): following Feynman’s
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argument, we are still unable to get the infinite qualitative behaviours of nature from the
couple of equations (1), even though they are within them. Of course they are well hid-
den by mathematical issues, but clearly inside the equations. To reveal them distinctly,
we need experiments, that give us a set of concepts and approximations that enable us
to discuss the potential hidden solutions of equations.
Atmospheric boundary layer flows are potentially described by a set of already well-
known equations. But nothing can be said without attempts, hypothesis, approxima-
tions.
The case of stably stratified atmospheric flows is difficult to tackle, since together with
theoretical issues, we must deal with experimental issues: the quantities that must be
measured are small, and in very stable conditions (the definition of "very stable condi-
tion" will be given later) they can be less than instrumental resolution. Therefore it is
necessary to deal with the problem using numerical simulations.

1.2 From Navier Stokes equation to RANS equation

Although we are able to write the differential equation governing the motion, hence to
know a possible deterministic solution of, i.e. the time evolution of the wind, the exact
solution (analytical and even numerical) is not computable:
It is well-known (since Reynolds, 1883) that turbulent motions develop inside a flow
at high Reynolds numbers, making impredictable the exact motion of the flow. All the
quantities are characterized by casual fluctuations, related to the interactions of nonlinear
inertia terms (which dominate at high Reynolds numbers) in the equations of motion.
A qualitative picture of where the impredictability come out is explained by Vallis (2006)
in terms of triad interactions : let’s assume the equation (1) without pressure terms and
viscous terms. The latter semplification is also reasonable for high Reynolds numbers
flows, because for such flows the viscous contribution is negligible compared to the other
terms ( Re >> 1 the flow is almost inviscid (Landau and Lifshitz, 1987) ). We shall
assume for simplicity the horizontal component of the flow u, indipendent from x, y,
hence u ≡ u(z, t). If we suppose that the flow is confined in a square domain with
periodic boundaries, we can expand u(z) in Fourier series so that:

u(z, t) =
∑
kz

ũkz(t)e
ikzz w(x, y, z, t) =

∑
~k

w̃~k(t)e
i~k~x (2)
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by substituting it in the simplified (1), multiplying by e−ikzz and integrating over the
domain, we can find a time evolution equation for the Fourier coefficients ũk(t):

∂

∂t
ũk(t) = −

∑
~p,~q

A(~p, ~q,~k)w̃(~p, t)ũ(~q, t) A(~p, ~q,~k) = qzδ(~p+ ~q − ~k) (3)

with ~k ≡ (0, 0, kz) , ~q ≡ (0, 0, qz). A(~p, ~q,~k) is an interaction coefficient, and should be
pointed out that only those wavevectors with ~p + ~q = ~k make a non zero contribution,
thanks to the Dirac’s delta function.
If we now consider at the initial time only two excited Fourier modes, corresponding
to wavenumber ~p, ~q (together with their conjugate symmetric −~p,−~q ), then, these
modes interact obeying to eq.(3) to generate a third and fourth wavenumber ~k = ~p + ~q

, ~m = −~p − ~q. These wavenumbers may interact with each other, exciting new fourier
modes, ~k + ~p, ~k + ~m etcetc. This process may excite in small time all the spectrum,
producing the casual fluctuations observed in the flow. Moreover, let us consider two
flows with very close, but not equal, initial conditions: they may be thought as flows with
different excited Fourier modes at the initial time. Then the process described above
may lead to completely different realizations of the flows after little time (sensitivity to
initial conditions). It is important to note that this interaction is fully due to the non
linear nature of equation (1).
Looking at experimental realizations of flows at high Reynolds number, the question

is even more interesting: figure 1 represents the sampling in time of the axial compo-
nent of a turbulent jet (Pope, 2000). Despite the randomness of the motions, due to the
non-linear interactions between scales, the turbulent flow have clear statistical properties
such us a mean value (depicted with a straight line in figure 1), along which the flow
fluctuates. It is important to observe that the sample exhibits variations on a wide range
of timescales.
The impredictable motion of the fluid, the presence of fluctuations at every scale of mo-
tion, and the presence of statistical properties that appear to restore a symmetry in the
flow (in a statistical sense), are all properties of the so-called fully developed turbulence.
All these properties are common to all fluids at very high Reynolds number (Re > 1000)
(Frisch, 1995). In this framework, a probabilistic description of turbulence is straight-
forward and it is exactly what we are going to do.
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Figure 1: Time sampling of the axial component of velocity (U1(t) ≡ U(x, t)) on the
centerline of a turbulent jet. (from Pope, 2000).

1.2.1 The concept of Reynolds decomposition and average

What it is usually done is the decomposition of the fields in what is called a Reynolds
decomposition:

φ(x, y, z, t) = φ̄(x, y, z, t) + φ′(x, y, z, t) (4)

Without entering in details (which is far beyond the scope of this work), φ̄(x, y, z, t)

represents the first moment of the random field φ. With random field we intend (Monin
and Yaglom, 1971, pag.211) a field for which exists a statistical ensemble of similar
fields, called realizations. This ensemble of fields must have a definite probability density
function (pdf) p(φ). Then the mean of the field φ is defined:

φ̄ =
1

N

∫ +∞

−∞
φp(φ)dφ N =

∫ +∞

−∞
p(φ)dφ (5)
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In this framework the concept of average is the probability average, or ensemble average.
The statistical theory of turbulence that we use in this work is based on this concept.
In practical applications, i.e. atmospheric measurements, it is impossible to realize a set
of similar flows: the "external conditions" are not fixed, hence we can not reproduce the
same experiment, obtaining a different realization of the same flow. For experimental
measurements, either time average or space average are used. The problem is shifted to
look at how close the mean value, obtained with time-space average of a single experi-
ment, lies to the ensemble mean value. In some particular cases, under strict conditions,
the time - space average are equivalent to ensemble average (i.e. in a stationary field
(see i.e. Monin and Yaglom, 1971)).

Recalling eq.(4), the "overbar" component is the mean part of the field "embedded" in-
side the total field φ. φ′ is the fluctuation part which contains all the informations about
the turbulent eddies at all scales of motion. That is, the turbulent motion is depicted as
a superposition of "eddies" of different sizes. By the "size" of eddies, we mean the order
of magnitude of the distances over which the velocity varies appreciably. As Re increases,
large eddies appear first; the smaller eddies appear later. Hence, for a flow with very
large Re eddies of every size are present from the largest to the smallest (Landau and
Lifshitz, 1987).
The size of the largest eddies belongs to the order of the dimensions l of the region in
which the flow takes place. In the atmospheric boundary layer for instance, l scales with
the boundary layer depth (and define the "external " scale of turbulence (Landau and
Lifshitz, 1987)). The velocity in them is comparable to the variation of the mean velocity
over the distance l, saying ∆u. These large eddies have the largest amplitude, thus they
contain the major part of "turbulent kinetic energy" (the rigorous concept of turbulent
kinetic energy will be explained in next chapter).
The small eddies may be regarded as a fine detailed structure superposed on the funda-
mental large turbulent eddies. Over small distances, compared to the external scale l,
the variation of the fluctuating velocity is given by the variation in the velocity in these
smallest eddies. This variation, say δu, is small compared to ∆u, but at the same time
it is large if compared to the variation of the mean velocity over these small distances
(Landau and Lifshitz, 1987). So that is why in situations where the largest turbulent
eddies are inhibited (like in strongly cooled clear air nights...) turbulence is still present,
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acting in order to mix the fields. This mixing (due to the smallest eddies) is however
faster and stronger than the mixing expected in a laminar flow.

Ensemble average (and hence even the time and spatial average in their particular cases)
is a linear operation, so it respects the so-called Reynolds average rules. The most
important properties of this kind of average are (see for details Monin and Yaglom,
1971):

φ̄ = φ̄ φ′ = 0 ,
∂

∂s
φ =

∂

∂s
φ

That is: the mean of the mean part does not change anything, the mean of the fluctua-
tions is zero, and the averaging operation commutes with linear operators. In the main
part of this work with [·] symbol we shall consider ensemble average.

1.2.2 Application to Navier-Stokes equations

In this work I would rather use, when it is possible, Einstein’s notation to write the
equations. Applying the Reynolds decomposition at the mass conservation equation
(the second of eq.(1)), we first obtain:

∂

∂xi
ūi = 0

∂

∂xi
u′i = 0 (6)

This states that the incompressibility condition is satisfied for both the mean part and the
fluctuating part of the flow. Bearing this in mind and applying the same decomposition
to the first of (1), we shall obtain the so-called Reynolds Average Navier-Stokes equations
(RANS):

∂

∂t
ūi +

(
ūj

∂

∂xj

)
ūi = −1

ρ

∂

∂xi
p̄+ ν

∂2

∂xj∂xj
ūj −

∂

∂xj
u′iu
′
j (7)

If we compare equation (7) with equation (1) we find a new "extra" term on the rhs
of equation (7): this term comes out from the non-linear advection term. In facts,
if we apply Reynolds decomposition to the second term in lhs of equation (1), using
incompressibility condition (6) it is straightforward to see:
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(ūj + u′j)
∂

∂xj
(ūi + u′i) = ūj

∂

∂xj
ūi +

∂

∂xj
u′ju

′
i (8)

We cannot evaluate the last term in the rhs of the equation (8) only by the knowledge of
the mean part ū, because it requires the knowledge of the correlation of the fluctuating
part of the flow. If we try to find an equation governing this second order term, we find
the same problem, with a third order term and so on. This problem is called the closure
problem of turbulence.
The correlation term, called Reynolds stress, is the interaction term between mean field
and fluctuations: it represents the effect of eddies to the mean flow. It should be pointed
out that with Reynolds decomposition and average, this term contains the information
about eddies of all scales, from the smallest, to the biggest.
Considering the density mass in equation (7), we may write the Reynolds stresses:

ρu′ju
′
i = u′jm

′
i (9)

where m′i ≡ ρu′i is the fluctuating momentum. Then the Reynolds stress term (9) may be
interpreted as the flux along j-direction, due to fluctuating velocity u′j, of the momentum
m′i . Interpreted as a flux, it is easy to understand that the term (9) acts in order to
enhance the mixing of the component ūi, in addition to the molecular diffusion.

The problem of turbulence modelling may be easily summarized by equation (8): "We
need a representation of Reynolds stresses in terms of the mean quantities". At this
time, the only way to do that is to introduce physical assumptions which are not direct
consequence of the equations. These assumptions link together mean flow and correla-
tions, enabling to solve the problem, to close the equations. The set of assumptions and
corresponding equations forms a closure scheme of Reynolds averaged equations.

In this work we study different closure schemes developed for turbulence modellization
in weather forecast models based on RANS. In chapter 2 we write the set of equations
characterizing atmospheric turbulence, which we are going to use in the rest of the work.
In particular, we focus on atmospheric turbulence in a stably stratified atmosphere,
which is described in chapter 3. A deep insight on different schemes is done in chapter
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4, dedicated to the parametrization of the Reynolds stresses.
The analyzed schemes are tested in a highly simplified numerical model of the atmosphere
presented in chapter 5, and they are compared to each other in chapter 6 using a three-
dimensional numerical simulation.
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2 Governing equations of atmospheric turbulence

In this chapter we shall introduce the set of equations confining the problem to atmo-
spheric turbulence, and, in particular, to turbulence in atmospheric boundary layer.

In order to simplify the problem, we shall not take into account the contribution of water
vapor: we shall consider a dry atmosphere.
With this initial approximation, the set of governing equation does not include an equa-
tion for time evolution of water vapor, and we shall not consider the variation of tem-
perature due to water vapor contribution (virtual temperature is equal to absolute tem-
perature, Tv = T ).
The second basic approximation, is the Boussinesq approximation: the termodynamic
variation of the properties of fluid are neglected (see i.e. Spiegel and Veronis, 1960), apart
the density differences associated with the force of gravity (buoyancy).

2.1 The equations of the mean fields

The set of equations is composed by a set of conservation laws (plus an equation of state
for gases):

Conservation of density mass, already written in (6), with the incompressible approxi-
mation that it is included in Boussinesq approximation.

Conservation of sensible heat per unit mass, that it is equivalent to write a conservation
equation for temperature, if the specific heat at costant pressure cp is costant:

∂

∂t
θ + uj

∂

∂xj
θ = χ

∂2

∂x2
j

θ +R (10)

where we use potential temperature θ, the value of temperature purified of adiabatic
contribution associated with the pressure variation used to bring the fluid at the reference
atmospheric pressure. It is a very useful quantity because, by definition, it is conserved
during an isoentropic motion. Hence, i.e. it allows us to neglect the adiabatic lapse rate
when we think about vertical motions of fluid particle.
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χ is the molecular thermal diffusivity and R represents radiative heat flux, or any other
source term for heat. We do not write it explicitely because we are going to discard it
as soon as possible.
If we apply again Reynolds decomposition and average, we obtain the equation for time
evolution of mean temperature:

∂

∂t
θ̄ + ūj

∂

∂xj
θ̄ = χ

∂2

∂x2
j

θ̄ + R̄− ∂

∂xj
u′jθ
′ (11)

where the Reynolds stress term compares on the rhs of the equation. Phisically, it has
the same interpretation of Reynolds stresses of eq.(7): it represents the flux of heat due
to the fluctuation velocity component u′j.
Conservation of momentum, namely the Navier-Stokes equation:(1) must be modified in
order to include all the body forces acting on an atmospheric flow: we need to add the
gravity force and the effect of the rotation of earth, the Coriolis force. With these two
extra forces equation (7) become:

∂

∂t
ūi +

(
ūj

∂

∂xj

)
ūi = +δi3g

θ̄

θ0

+ εij3fūj −
1

ρ0

∂

∂xi
p̄+ ν

∂2

∂xj∂xj
ūi −

∂

∂xj
u′iu
′
j (12)

where we have already written the pressure term without the hydrostatic contribution,
so θ̄, in this case, represents the departure from the reference state θ0. +δi3g

θ̄
θ0

is called
buoyancy term and represents the force on an air parcel when it is colder or warmer than
the surrounding: i.e. during the day solar radiation heats the ground, which transfers
heat to the air above. Then this air at height z has a temperature θ heigher than sur-
rounding air at base state temperature θ0(z). According to eq.(12) the buoyancy term is
positive, and then the air feels a positive acceleration, directed upward. Obviously the
acceleration is directed downward if the air has a temperature lower than the reference
state.

2.2 The equations of the second order moments

From this set of equations for the mean quantities we can calculate the evolution equa-
tions for the higher order moments.
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The equations of correlation terms u′iu′j may be obtained by subtracting the equations
for the mean flow to equations for "total" flow and then multiplying each other the equa-
tions for perturbations with different indeces (see i.e. Wyngaard, 2010). The equation
for the Reynolds stresses (correlations between velocity components) is:

∂

∂t
u′iu
′
k+ūj

∂

∂xj
u′iu
′
k = (T )+(Shear prod)+(buoyancy)+(Coriolis)+(Dissipation) (13)

where each single term represents:

• T = − ∂
∂xj
u′iu
′
ju
′
k − 1

ρ0
(u′k

∂
∂xi
p′ + u′i

∂
∂xk

p′): transport terms of the stresses. The first
could be associated with a flux of the stresses, the second is the correlation between
the fluctuations and the gradient of pressure fluctuations. They represent the third
order terms that appear when we look for an equation for the second order terms.

• Shear = −(u′iu
′
j
∂
∂xj
ūk + u′ku

′
j
∂
∂xj
ūi): it represents the production of turbulence

due to shear. Even without any analysis, it is clear that the gradient of velocity
components acts in order to enhance the turbulence inside a flow.

• Buoyancy = + g
θ0

(δk3u′iθ
′ + δi3u′kθ

′): it represents the contribution of gravity force.
Unlike the shear-term that acts always to produce turbulence, buoyancy term is a
bit more ambiguos: it could act in order to produce or to destroy the turbulence
in a flow. We are going to analyze it in details in the next chapter.

• Coriolis = +f(εkj3u′iu
′
j + εij3u′ku

′
j): it is the effect of Earth rotation on Reynolds

stresses.

• Dissipation = ν( ∂2

∂x2
j
u′iu
′
k)−2ν ∂

∂xj
u′i

∂
∂xj
u′k: it is the dissipation of Reynolds stresses.

The first term corresponds to molecular diffusion, and at high Reynolds numbers it
is negligible in confront to the second. The second term is the correlation between
the shear of fluctuations : if we assume at the small dissipative scales homogeneus
and isotropic turbulence, then the off-diagonal terms are zero and we can write this
term ν( ∂

∂xj
u′i)

2 ≡ ε. It is always positive and then with the minus sign in front it
is a dissipative term: it represents the molecular destruction of the quantity u′iu′k
and then the conversion of kinetic energy in internal energy.
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If in the lhs of (13) the indeces are equal we obtain the time-evolution equation for the
sum of variances of the velocity components (sum on repetead indeces).
This quantity is called the turbulent kinetic energy (TKE) 1

2
u′iu
′
i = 1

2
u′2 + 1

2
v′2 + 1

2
w′2 ≡

Ek:
d

dt
Ek = −u′iu′j

∂

∂xj
ūi − (T ) +

g

θ0

w′θ′ − ε (14)

where we have neglected the Coriolis and molecular diffusion terms, and written the sub-
stantial derivative on the lhs. It should be pointed that the equation (13) represents the
complete matrix of time evolution of the Reynolds stresses, whereas (14) represents the
trace of the time evolution tensor of Reynolds stresses, which in turn represents the inter-
action between mean flow and turbulent eddies: hence, (13) and (14) contain the sources,
the sinks, and redistributions of turbulence in a flow. In particular, (14) represents the
isotropic component of the time evolution Reynolds stresses tensor, and then it supplies
only the production/dissipation of turbulence, without exchanging/redistribution terms
(in analogy with deformations tensor where the trace represents the relative change of
volume due to deformation).

Similar equations may be written for correlations and variance of scalar quantities, i.e.
for the potential temperature:

d

dt
u′iθ
′ = (−u′iu′j

∂

∂xj
θ̄ − u′jθ′

∂

∂xj
ūi)− (T ) + δi3

g

θ0

θ′2 +

(
νθ′

∂2

∂x2
j

u′i + χu′i
∂2

∂x2
j

θ′

)
(15)

1

2

d

dt
θ′2 = −u′iθ′

∂

∂xi
θ̄ − εθ − (T ) (16)

where (T ) represents again the third order terms due to the transport of the flux and
the coupling of temperature fluctuations and pressure fluctuations.
It is possible to link the temperature variance with a "turbulent potential energy": the
vertical displacement of a fluid particle leads to a variation of the potential energy as-
sociated with the fluid particle. In particular, if the displacement occur in a stratified
fluid, at the first order the potential energy variation per unit mass associated is:

δEP =
1

2
|N2|δz2 (17)
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The vertical variations δz are linked with temperature variations:

δz
dθ

dz
= δθ (18)

Hence substituing (18) in (17) and averaging we have:

EP =
1

2

(
g
θ0

)2

|N2|
θ′2 (19)

Hence, assuming that N2 changes only slowly compared to the turbulent variations,
multiplying eq.(16) by

( g
θ0

)2

|N2| , we shall obtain an equation for the turbulent potential
energy (TPE):

d

dt
EP = − g

θ0

u′iθ
′sgn

(
dθ

dz

)
− εP − (T ) (20)

If the only important turbulent heat flux is the vertical flux w′θ′, we may observe that
when potential temperature gradient is positive (potential temperature increases with
height), buoyancy term appears with opposite signs in the budget equations of TKE and
TPE. Hence, buoyancy term may be thought as a conversion term of turbulent kinetic
energy in turbulent potential energy. Summing together TKE and TPE, an equation for
the total turbulent energy (TTE) may be obtained:

d

dt
E = −u′iu′j

∂

∂xj
ūi − (T )− εE if

dθ

dz
> 0 (21)

Otherwise, when potential temperature gradient is negative, the buoyancy terms in
(14),(20) have concordant signs. Then, summing the two equations, the budget equation
for total turbulent energy is:

d

dt
E = −u′iu′j

∂

∂xj
ūi + 2

g

θ0

w′θ′ − (T )− εE if
dθ

dz
< 0 (22)

2.3 The Single Column approximation

If we consider the mean velocity and temperature horizontally homogeneus and we con-
sider motions only on a flat terrain, the equations of motion may be strongly simplified.
The former condition permits to neglect the horizontal gradients of the advective term.
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Hence, using the continuity equation (6) and the flat terrain hypothesis, it follows
w̄(z) = 0.
Typical (horizontal) scales of mean velocity are several orders less than typical pressure
gradient scales (Lu ∼ 103m << Lp ∼ 106m). Hence, from the geostrophic balance

1

ρ0

∂p̄

∂xi
= fεij3vgj (23)

may be inferred that there are not strong variations of the geostrophic wind over the
distance Lu, and we may take it indipendent by horizontal coordinates. Moreover, if
we assume that temperature is homogeneus over the same scale Lu, from thermal wind
equation, we may assume the atmosphere barotropic and then consider the geostrophic
wind costant with height as well.
In atmosphere Reynolds number is much larger than one, so we may neglect molecular
viscous diffusion.
Taking into account these approximations, the equations of motion (10), (12) reduce to:

∂u(z)

∂t
= +f(v(z)− vg)−

∂u′w′

∂z
(24)

∂v(z)

∂t
= −f(u(z)− ug)−

∂u′w′

∂z
(25)

∂θ(z)

∂t
= −∂θ

′w′

∂z
+R (26)

The system of equations (24), (25), (26) is analogous to a one-dimensional model of
the atmosphere, where the ”horizontal contributions” to the evolution of motion are
neglected.
Strictly speaking, it is equivalent to run a three-dimensional model on a single horizontal
grid point: then the name ”Single Colomn”. In all the simulations we do not consider
radiative effects and we substitute it with a simple ground cooling. This rough forcing
model avoids the use of a model for the soil, assuming implicitly an energetic balance
between the soil and the atmosphere above. Then, we do not take into account any
coupling or feedback between ground and air, which are an important issues in stable
boundary layer modelling (see i.e. the model of Costa et al., 2011).
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3 The atmospheric Boundary Layer

Atmospheric boundary layer (ABL) could be defined as the part of the atmosphere
directly influenced by the earth’s surface (Garratt, 1992). By "influenced" we mean that
the physics generated by the presence of the surface has an effect on the air above on a
time scale which is less than a day.
It is quite straightforward that this kind of definition is far from being precise. Different
kinds of surfaces may produce different kinds of turbulent fluxes, that modified the
structure of the atmospheric flow, making it completely different from the flow in the
free atmosphere. But, over the land, the behaviour of ABL is strongly influenced by
diurnal cycle: solar influence on the sign of vertical heat fluxes permits to roughly divide
the ABL in three main categories:

• w′θ′ = 0: neutral boundary layer

• w′θ′ > 0: convective (unstable) boundary layer

• w′θ′ < 0: stable boundary layer

A truly neutral atmosphere is difficult to observe in the real world, since heat fluxes are
always present.
Convective boundary layer is the situation that we observe during the day, when the
ABL is dominated by the heating of the sun and the heat fluxes are positive (forming
i.e. plumes and thermals).
Stable boundary layer, when heat fluxes are negative, is the central topic of this work
and it will be discussed in the next sections.
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3.1 The Stable Boundary Layer

Let’s start from a figure:

Figure 2: Smoke of a fire is " blocked " due to stable stratification in Lunigiana fields,
Massa-Carrara

Picture 2 was taken one hour after the sunrise in winter 2013, with clear sky during the
night. In the figure, the signature of the stable stratification, still present at this time
of the morning, is clearly visible: according to parcel theory, the warm "smoke parcels"
are buoyancy forced to move upward. This upward motion lasts as long as the smoke
is warmer than surrounding air. Then, when parcels are in thermal equilibrium with
the sorrounding their motion is blocked. In a convective situation this easy picture is
"distorted" by turbulent eddies, which quickly mix the smoke (and any other scalar)
making it impossibile to recognize after a while.
In figure 2, on the other hand, there is not a clear signature of turbulent motions (at
least of large scales). When the smoke reaches the equilibrium height with sorrounding,
it is just "spread" by the wind (that it was very low) over the horizontal.
Regarding figure 2, we may already infer two main properties of the Stable Boundary
Layers (SBLs):
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• They are characterized by very low turbulent activity (no big-scale eddies).

• They are characteristic of nighttime, when solar short wave energy contribution is
not present. During the day, solar heating is the main responsible of the formation
of turbulent eddies, which could reach size comparable with the height of boundary
layer.

In our great division of ABL, made in the previous paragraph we state that stable bound-
ary layers are characterized by negative turbulent heat fluxes. Now we can explain that:
when the day ends, after sunset, due to longwave emission the ground starts to cool in
respect to the air above. Then we observe a situation called "inversion", when the tem-
perature at surface is colder then the air above. In this situation temperature fluctuations
θ′ are always negatively correlated with vertical velocity fluctuations w′. The resulting
fluxes are then negative as we wrote ((see i.e. Garratt, 1992) and directed downward.
To say that turbulence activity in stable conditions is small, is like saying that turbulent
fluxes are small. Therefore if we assume that the absolute value of turbulent fluxes is
maximum near to the surface and decreases with height, in stable situations the height
of boundary layers is smaller compared to the convective situations. It would mean that
nocturnal boundary layers are in general thinner than during the day, when the fluxes
are stronger.
At this point have a clear practical consequence: over the night the pollutant diffusion
from the surface (where they are emitted) to the free atmosphere is strongly suppressed,
due to small turbulent fluxes. Hence, the concentrations of trace gases build up, near
the surface. For modeling and forecasting the spread and concentration of pollutants, a
good knowledge of the SBL structure is essential.

3.2 A rough division of SBL: weak and very stable BL

Quantitatively the measure of stability is made using stability parameters. The gradient
Richardson number is a stability parameter based on the mean fields, and it is defined
as the ratio of the static stability (the Brunt-Väisälä frequency N2 ) and the module |~S|
of the shear of the mean wind:
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Rig ≡
N2

|~S|2
=

g
θ0

∂
∂z
θ̄(

∂
∂z
ū
)2

+
(
∂
∂z
v̄
)2 (27)

The quantity at denominator is a squared module, so it is always positive. The sign of
Richardson number is due to the sign of static stability: in stably stratified situation
potential temperature increase with height, so the gradient is positive. Then we have:
Ri > 0 for stable conditions, Ri < 0 for unstable (convective) conditions.
Looking at equation (27), the gradient Richardson number takes into account not only
the static stability of the atmosphere, but also the intensity of the shear. Describing the
photo in figure 2, we can say that due to low wind speed (and, we can say, low wind shear),
the smoke is not mixed when it reaches the equilibrium height. Then lower the wind shear
is, the higher will be the stability. Reminding eq.(14), the shear of the wind acts in order
to produce turbulence. Therefore Richardson number is not only a stability parameter,
but could also be a quantity that link turbulence behaviour with local gradient of the
mean quantities: positive high value of Ri could be associated with very low turbulence
activity. The conjecture of the modellers is that the turbulence activity reduction could
be written only as a one-value function of the gradient Richardson number.
Only with this remark we can depict a rough division of SBL (Steeneveld et al., 2006;
Derbyshire, 1999a):

• weakly stable BL (wSBL): characterized by low (in respect to convective situa-
tions) but still present turbulent fluxes. In this situation the cooling of the ground
increases stability, which leads a greater flux of heat from the air above. This heat
flux acts in order to mix temperature, and then reduce stability. Hence, there is
a negative feedback between stability and heat fluxes which could lead to a quasi-
steady regime (Nieuwstadt, 1984). With quasi-steady state in the Nieuwstadt
sense, we mean a state in which the vertical gradients of the mean quantities are
steady in time, but the mean temperature profile continues to evolve (the ground
continues to cool). WSBL are characterized by turbulent fluxes defined by their
values at the surface, decreasing with height.

• very stable BL (vSBL): contrary to wSBL, in this situation an increase in strat-
ification leads to a reduction of heat fluxes, intensifying the actual stratification.
Hence, there is a positive feedback between stability and heat fluxes that could
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lead to a collapse of turbulence and a decoupling of the surface (where the flow
becomes laminar) with the atmosphere above. The structure of vSBL is not defined
as cleary as the wSBL.

WSBL are studied in depth in literature (see i.e. Cuxart et al., 2006), even reaching
some important theoretical results, like Nieuwstadt theory of weakly stratified quasi-
steady SBL (Nieuwstadt, 1984).
The very stable regime is still a challenge for researchers. The decoupling of surface
can lead to a production of turbulence from the upper part of the BL,due to local shear
generation causing intermittent turbulence (Mahrt, 1999). The decoupling constitutes
a problem even for modellers and forecast models, since it may cause a drammatic and
unphysical cooling of the ground (Derbyshire, 1999b). In these situations the boundary
layer structure may be modified by internal gravity waves activity. These waves can
develop, grow, and even brake, helping the turbulence mixing to rise again.
As showed by Delage et al. (2002), wind intensity plays an important role in the mech-
anism behind the transition from a weakly stable regime to a very stable one. Small
values of wind speed are necessary for a vSBL to develop.
In order to evaluate differents closure assumptions, we confine our analysis on the weakly
stable regime, which is simpler to manage than the very stable.

3.3 The effect of the buoyancy term

The question that may arise is: " Why turbulent eddies should be suppressed in stably
stratified situations? "
The answer lies in the Turbulent Kinetic Energy equation (14) that contains turbulence
production and dissipation terms. Assuming horizontal homogeneity, and neglecting
transport terms (T ), eq.(14) reduce to:

d
dt
Ek = −u′iw′ ∂∂z ūi + g

θ0
w′θ′ − ε i = 1, 2

⇒ d
dt
Ek = −u′iw′ ∂∂z ūi

(
1−

g
θ0
w′θ′

u′iw
′ ∂
∂z
ūi

)
− ε

⇒ d
dt
Ek = −u′iw′ ∂∂z ūi (1−Rif )− ε

(28)

The quantity Rif ≡
g
θ0
w′θ′

u′iw
′ ∂
∂z
ūi

is called flux Richardson number, and measures the fraction
between buoyancy term and shear production. As have already said in section(2.1), heat
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fluxes are negative in SBLs, and Rif is greater than zero in stable stratification. Looking
at eq.(28), it suggests that for Rif > 1 shear production is unable to feed the turbulent
kinetic energy, which decreases.
Thus, in stable stratification buoyancy term acts as a destruction term of TKE. As stated
in sect(1.3), TKE is connected with the magnitude of turbulence activity, so a decreasing
in TKE means a suppression of turbulent eddies.
In particular, a limiting value of Rif at which shear production, buoyancy destruction
and dissipation balance each other must exist, allowing a steady turbulence. This value,
called critical flux Richardson number, is a property of turbulence and does not depend
on closure hypothesis: Rifcrit ' 0.25. Beyond this value, steady turbulence cannot
be possible, but turbulence activity could be present in intermittent form (very stable
boundary layers).

3.4 A very stable boundary layer example

The following case is a clear example of the transition from a wSBL to a vSBL. The data
are measured during the night between september 14th and 15th 1998 at CIBA site, Spain
(for details about the measurements see Cuxart et al., 2000). The stability quantity used
is the "bulk" Richardson number, which is equal to the gradient Ri written using the
finite-difference approximation.

Figure 3 shows the time evolution over the night between september 14th and 15th (from
the 7.00 p.m. of 14th, corresponding to 14.7 julian days, to 7.00 a.m. of 15th, correspond-
ing to 15.3 julian days) of surface temperature and bulk Richardson number measured
at different altitudes. In the first part of the night (up to 9 p.m.) the values of Rib are
smaller than 0.3, which means that a wSBL is expected to develop.
Looking at the vertical profiles in figure 4.c, 4.d, which correspond to this period of the
night, we may see that fluxes and TKE have the characteristic shape, decreasing with
height, with the maximum values at the surface. Wind shear is present (figure 4.a), and
it feeds the turbulent quantities maintaining the SBL weakly stratified (see also potential
temperature profile, figure 4.b) At 11.00 p.m., when Rib ' 1 the situation is completely
different: turbulent fluxes values (figure 5.c, 5.d) are around zero, and the TKE slope is
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(a) (b)

Figure 3: a) Surface temperature and b)Rib evolutions (at different heights) over the
night between september 14th and 15th 1998. The red "radiative" line represents an
estimation of the black-body temperature of the ground. The Rib labels are ordered in
such a way that they increase with height. The time-axis is in decimal base. Data from
CIBA site, Spain.

almost vertical. The wind shear (figure 5.a) is decreased, whereas the potential temper-
ature inversion is growing at the surface (figure 5.b). It should be noted that the second
thermometer from the ground is broken. In these highly stable conditions the classical
concepts of SBLs, as the Nieuwstadt (1984) theory, are not valid. Even the concept of
"boundary layer height" is difficult to understand in these conditions. Finally at 3 a.m.,
looking only at turbulent quantities (figure 6.c, 6.d), it is not possible to state whether
we are in a neutral, quasi-laminar boundary layer, or in a very SBL. It is recognizable
only by looking at the strong potential temperature inversion near the surface (figure
6.b). Curiously, going back to figure 3.a, after midnight, Rib is quite constant with values
approximately between 0.7 and 1.
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(a) (b)

(c) (d)

Figure 4: Vertical profiles at the beginning of the same night of figure 3 of: a) wind
speed, b) potential temperature, c) module of momentum flux τ and tke, d) heat flux.
All data are averaged on 30 minutes. Straight lines in c), d) are linear fit of data. Data
from CIBA site, Spain.
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(a) (b)

(c) (d)

Figure 5: Vertical profiles at the middle of the same night of figure 3 of: a) wind speed,
b) potential temperature, c) module of momentum flux τ and tke, d) heat flux. All data
are averaged on 30 minutes. Straight lines in c), d) are linear fit of data. Data from
CIBA site, Spain.



3.4 A very stable boundary layer example 33

(a) (b)

(c) (d)

Figure 6: Vertical profiles during the same night of figure 3 of: a) wind speed, b) potential
temperature, c) module of momentum flux τ and tke, d) heat flux. All data are averaged
on 30 minutes. Straight lines in c), d) are linear fit of data. Data from CIBA site, Spain.
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4 Models

4.1 The paradigm

Reminding the equations governing a one-dimensional model of the atmosphere (24),
(25), (26), the problem is "reduced" to find a parametrization (remember section (1.3))
for the turbulent fluxes u′iw′ , θ′w′.
In analogy with the molecular viscosity of equation (7), we can think turbulent flux term
like a "diffusion" of momentum and heat, characterized with particular coefficients of
eddy viscosity and eddy diffusivity (Monin and Yaglom, 1971):

u′w′ = −Km
∂u

∂z
θ′w′ = −Kh

∂θ

∂z
(29)

There is a critical point in this kind of formulation: unlike the coefficient ν of molecular
viscosity, the eddy viscosity Km,h does not characterize any physical properties of the
fluid, such that it cannot be considered a property of the fluid. It depends on the
charateristics of the flow, and may vary (in principle) in space and time. Hence, taking
into account such flux-gradient relation as a paradigm of turbulence modelling 1, the goal
is to find a rightful parametrization for the turbulent diffusion coefficient Km,h. The idea
is to use the same argument of molecular viscosity which is defined by kinetic theory of
gas (Pope, 2000):

ν ' 1

2
c̄λ (30)

where c̄ is the mean molecular speed, and λ is the mean free path. Thinking about
Reynolds stresses as a turbulent diffusion process, it seems reasonable to use the same
argument of eq.(30) for turbulent viscosity/diffusivity Km, Kh. Therefore, the problem
is shifted to find a rightful choice of a velocity scale U analogous to c̄ and length scale L
analogous to the mean free path.

Km ∼ Kh ∼ U L (31)
1The eddy-diffusion assumption is deeply based on two hypothesis: in first place that the Reynolds

stresses are totally defined by local mean values, and secondly that there is a linear relation between
the non-diagonal terms of Reynolds tensor and strain tensor (the flow is a Newtonian fluid). These two
hypothesis are not physically grounded when turbulence time-scale is large compared to a characteristic
mean flow time-scale, i.e. shear time-scale (see ?).
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Whilst the velocity scale U may be linked to some turbulent quantities (as the square
root of momentum fluxes at the surface), the length scale L called mixing length is not
easy to define: it should be thought as the characteristic distance covered by a fluid
parcel transported by a turbulent eddy. Such distance does not only depend on the
geometry of the flows, but as we see in chapter(3) it even depends on the stability of the
flow.
In example in the neutral surface layer, that is the costant flux region of boundary layer
(corresponding to ∼ 10% of it), Km, Kh are computed (Monin and Yaglom, 1971):

Km ∼ Kh ∼ u∗ kz (32)

where u∗ is the squared root of the module of momentum fluxes at the surface u∗ ≡
(u′w′

2
+ v′w′

2
)1/4, and kz is the mixing length near the ground: without stability effects,

the eddies are bounded only by the presence of the ground at the bottom and their size
is proportional to the geometric height z. Hence in surface layer we find that the ratio
between Km and Kh, called the Prandtl turbulent number is costant:

Prsfct ≡ Ksfc
m

Ksfc
h

∼ constant (33)

4.2 The effect of stratification

The previous argument is exact only for a neutral boundary layer. If we consider the
effect of stratification the paradigm that we follow is based on the similarity theories :
Monin-Obukhov similarity for the surface layer (Monin and Obukhov, 1954), and his
extensions to the entire boundary layer due to Nieuwstadt (Nieuwstadt, 1984).
Shortly, a similarity theory is a scale analysis based on the organization of variables into
dimensionless groups. This organization is guided by "Buckingum π theory" (see i.e.
Stull, 1988): applied on the boundary layer equations it says that all turbulent quantities,
adimensionalized using characteristic scale quantities (and with "characteristic" we mean
the quantities relevant to the problem), may be expressed as a functions of a single
dimensionless parameter that fully characterize stratification:
I.e. if X is the turbulent quantity and A,B,C are the scale quantities on which X

depend, we may find a dimensionless quantity ζ resulting from a combination of A,B,C
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such that:
X

AaBbCc
= ψX(ζ) (34)

It should be stressed that a similarity theory does not give an analytical shape for the
functions ψ. It just states that such functions exist. Moreover, the choice of the relevant
quantities is based only on physical arguments, and it is not always clear.
Applied (34) on (31) we obtain:

Km,h = ULfm,h(ζ) (35)

Basic point is that the functional dependence from ζ is different for heat and momentum
coefficient. If ζ is some measure of stability, it follows that the turbulent Prandtl number
Prt, which is costant in neutral surface layer (eq.(33)), is a function of ζ as well:

Prt ≡
Km

Kh

= Prt(ζ) (36)

Then, the mixing of momentum or heat varies in different manner with the parameter ζ.

4.2.1 Monin-Obukhov scaling

The first boundary layer similarity theory was developed by Monin and Obukhov (1954)
for a stationary atmospheric surface layer over horizontally homogeneus terrain. In
these conditions the structure of turbulence is completely characterized by the surface
turbulent stresses u2

∗, the surface heat flux θ′w′|sfc, the buoyancy term g/θ0 and the
height above the ground z. These quantities are necessary to define a velocity scale u∗, a
temperature scale θ∗ ≡ θ′w′|sfc/u∗, and a length scale of turbulence, the Monin-Obukhov
length LMO:

LMO ≡ −
u2
∗

k g
θ0
θ∗

(37)

Applying (34) all statistics quantities properly scaled, as mean values, gradients, vari-
ances, they may be written as universal functions of a non-dimensional parameter which
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is the ratio between geometric height z and LMO:

ζ ≡ z

LMO

(38)

Shortly, MO similarity says that turbulence within the surface layer is fully characterized
by the surface turbulent stress u′w′|sfc ≡ u2

∗ and the surface heat flux θ′w′|sfc ≡ u∗θ∗.
Hence, the MO-length LMO represents the distance from the surface at which the buoy-
ant production of turbulence (of TKE) equals the shear production: it is the height at
which buoyancy dominates in respect with the shear .
Hence, ζ is a stability parameter, like the gradient Richardson number defined in eq.(27).
Unlike Ri, ζ is defined with internal quantities of turbulence, the fluxes, while Ri is de-
fined with mean flow quantities. For ζ > 0 the BL is stably stratified. Instead, if ζ < 0,
the BL is unstably (convectively) stratified.

4.2.2 Nieuwstadt local scaling

Nieuwstadt (1984) extended MO-similarity, strictly valid only in the surface layer to
the whole boundary layer: starting from the diagnostic equations for the second order
moments, he derived (see for details Nieuwstadt, 1984) that all turbulent quantities may
be expressed in terms of the local fluxes u′w′(z) , θ′w′(z) . Hence, he defined a new
stability parameter called local MO-length scale Λ such that:

Λ ≡ − τ(z)3/2

k g
θ0
θ′w′(z)

⇒ ζ|loc =
z

Λ
, τ =

√
u′w′

2
+ v′w′

2 (39)

Nieuwstadt theory gives a "similarity" interpretation to the flux gradient relation (29). It
is important to observe that local scaling hypothesis is closely related to the assumption
that turbulence is in local equilibrium, because it is derived from the assumption that
all second order moments are locally in a steady state. In particular for TKE equation,
it means that production and dissipation should be in local balance. If they are not
in local balance (i.e. through a big influence of pressure-velocity correlation term), the
local scaling hypothesis will hardly be reasonable (Derbyshire, 1999a).

What is usually done in turbulence modelling is to write local quantities in terms of



4.3 Second order schemes 38

gradient Richardson number instead of Λ: local scaling permits to write Ri as a function
of Λ, therefore it is possible to write non-dimensional turbulent quantities in terms of Ri
(see i.e. Sorbjan, 2010).

Applying these arguments to the turbulent diffusion coefficients Km,h yelds:

Km,h = U Lψm,h(Ri) (40)

This formulation forKm,h allows to overcome the problem of a critical Richardson number
Ric. Recalling the definition of flux Richardson number (28), we obtain Richardson
number just using flux-gradient relations:

Rif ≡
g
θ0
w′θ′

u′w′ ∂u
∂z

=

g
θ0
Kh

∂θ
∂z

Km
∂u
∂z

2 =
Kh

Km

Ri⇒ Ri =
Km

Kh

Rif (41)

In a "classical" formulation (i.e. in Nieuwstadt (1984)), Km/Kh ∼ 1 (or equivalenty Prt
is costant, the so-called Reynolds analogy ) so if Rif reaches its critical value, so does
the gradient Richardson number: Rifcrit ' Rigcrit ' 0.25.
If Km/Kh ∼ ψ(Ri), our previus reasoning is not strictly valid. In particular, if Km >

Kh in stable conditions (if we assume that momentum is mixed more than heat with
stable stratification (Kondo et al., 1978)) we may overcome the existence of such critical
Richardson number. This is what is done in ordinary turbulence closure schemes.

4.3 Second order schemes

There are many different closure schemes in literature. In the present work we deal with
the so-called "higher-orders" closure schemes, in which prognostic equations for turbu-
lent quantities (higher order moment) are used, coupled with the equations for the first
moments (see Mellor and Yamada, 1982, for an exhaustive treatment of the hierarchy of
turbulence modelling).
In a second order closure model TKE − l 2 the idea below is that turbulent kinetic
energy is the quantity that fully characterizes all other turbulence quantities (reminding,

2in literature they are even called "I-1/2" order schemes, a full "II-order" scheme use prognostic
equations even for turbulent fluxes, eq (13),(15)
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for instance of the comments on TKE-equation in chapter(2)): hence, it is straighforward
to identify the velocity scale U of turbulent diffusion with the square root of turbulent
kinetic energy. The length scale L is still an ambiguos term: we need to link the near-
surface behaviour with the length scale of eddies far from the surface, and the effect of
stability on such mixing length. Following Blackadar (1962) we define a mixing length
which is the interpolation between these three different contributions.
Using TKE-budget equation it is possible to determine explicitly turbulent kinetic en-
ergy, parametrizing the higher-than-II-order turbulent terms that appear in the budget
equation.
We analize in details the TKE − l scheme used by Bologna Limited Area Model (BO-
LAM) taking it as representative of this class of closure schemes.

4.4 TKE-l BOLAM closure

Recalling the TKE-budget equation (14), and applying the SCM simplifications we have:

∂EK
∂t

+ (T )vert = −u′iw′
∂ui
∂z

+
g

θ0

θ′w′

∂z
− ε i = 1, 2 (42)

Coupled with eq (24),(25),(26).
Hence, in order to close the system of equations, we need a parametrization for the third
order moment (T )vert (vertical "flux of kinetic energy" and correlation between pressure
fluctations and vertical velocity fluctuations), and the dissipation rate ε.

In the BOLAM’s scheme, the velocity scale of turbulent diffusion coefficient Km,h is
linked to the local friction velocity u∗ (which is a generalization based on local scaling of
the surface friction velocity). Surface layer measurements have determined that friction
velocity could be written as a fraction ce of the turbulent kinetic energy EK . Hence the
eddy viscosity coefficient Km:

u2
∗ = ceEK → Km = l

√
ceEK , ce = 0.17 (43)

On the contrary the eddy diffusivity Kh is written using Prandtl turbulent number Prt.
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Basing on local scaling approach, we could write Prt as a function of Richardson number,
Prt = Prt(Ri):

Kh =
Km

Prt
(44)

where Prt is a Richardson number’s function such that:

Prt = 1 + 5Ri (45)

for the stable case. This relation implies less turbulent heat mixing than momentum
mixing in stably stratified conditions (Prt is monotonic positive defined function of Ri).
For the mixing length in stable cases, BOLAM uses the Blackadar (1962) parametriza-
tion, modified by a stability function:

l−1
black =

1

kz
+

1

lmax
⇒ lbolam =

kz lmax
kz + lmax

1

1 + 12Ri
lmax = 100m (46)

For the unstable cases, it uses a non-local parametrization, non-dipendent on stratifica-
tion:

lconv = Cu
[
(zup − z)(z − zdown)3

]1/4
zdown < z < zup Cu = 0.5 (47)

where zdown,zup represent the bottom and top heights of the convective layer.
It should be pointed that this mixing length formulation is not a continue function of
the stratification:
Such choice, from weather forecast’s point of view, with very low vertical resolution, may
be useful. From a researcher’s point of view, eq.(46), (47) lack in "physics", and it may
even be considered "wrong" if we thought (as we do) of mixing length as a continue
function of stability.
As we have already written, we need a parametrization for triple moments and the rate
of dissipation. The triple moment of equation (42) describes the vertical flux of kinetic
energy: in analogy with what has been done with the fluxes of momentum and heat, we
shall write it using a flux-gradient relation:

(T ) ≡ ∂

∂z

(
1

2
u′iu
′
iw
′ +

1

ρ0

p′w′
)

= − ∂

∂z

(
Ke

∂Ek
∂z

)
(48)

The rate of dissipation ε instead, is written with Kolmogorov’s inertial sub-range theory
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Kolmogorov (1941):

ε = cε
E

3/2
K

l
cε = (ce)

3/2 = 0.07 (49)

The turbulent diffusion coefficient Ke is parametrized maintaining the analogy with the
momentum coefficient:

Ke = l
√
ceEk ce = 0.17 (50)

Using the closures described, the sistem of prognostic equations which must be resolved
is:

∂u

∂z
= +f(v − vg) +

∂

∂z

(
Km

∂u

∂z

)
(51)

∂v

∂z
= −f(u− ug) +

∂

∂z

(
Km

∂v

∂z

)
∂θ

∂t
= +

∂

∂z

(
Kh

∂θ

∂z

)

∂EK
∂t
− ∂

∂z
Ke

∂EK
∂z

= +Km(
∂ū

∂z
)2 +Km(

∂v̄

∂z
)2 −Kh

g

θ0

∂θ

∂z
− cεE

3/2
K

l

With turbulent fluxes and mixing length diagnosed using:

u′iw
′ = −Km

∂ui
∂z

Km = l
√
ceEK (52)

θ′w′ = −Kh
∂θ

∂z
Kh = Km/Prt

l =
kz lmax
kz + lmax

1

1 + 12Ri
lmax = 100m

4.5 Total Turbulent Energy as characteristic turbulence quantity

A II order TTE− l closure (Mauritsen and Svensson (2007a), Zilitinkevich et al. (2007),
Zilitinkevich et al. (2013)) is based on the hypothesis according to which the quantity
characterizing turbulence is the total turbulent energy (TTE), instead of TKE alone.
Using the concept of TTE, there is no "destruction" of buoyancy due to the stratification,
but only a conversion of TKE in TPE, like the usual classic mechanics concepts of
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conservation of total energy. Applying to eq.(21),(22) the SCM simplification yelds:

∂E

∂t
= −

(
u′w′

∂u

∂z
+ v′w′

∂v

∂z

)
− (T ) +

{
0 if ∂θ

∂z
≥ 0

2 g
θ0
w′θ′ if ∂θ

∂z
< 0

}
− εE (53)

Coupled as above with eq.(24),(25),(26).
Even though it only uses one prognostic equation like a "classical" TKE-l scheme, the
reason why TTE is employed instead of TKE is that TTE is a conserved property (it
becomes an invariant in absence of production and dissipation), in contrast with TKE
that continuosly feeds the potential energy TPE.

4.5.1 Energy scaling

At present time, the sole model using a TTE-l scheme for stable cases is the one developed
by Mauritsen and Svensson (2007a). Together with TTE-budget equation, they have
developed a new closure for fluxes based on a local energy similarity theory. Basing
themselves on experimental evidences, Mauritsen and Svensson (2007b) assumed that
non dimensional turbulent momentum and heat fluxes are unique functions of Richardson
number:

|~τ |
EK

=

√
u′w′

2
+ v′w′

2

EK
= fτ (Ri)

w′θ′√
EKθ′2

= fθ(Ri) (54)

Where the functions fτ (Ri) , fθ(Ri) are for the stable case:

fτ (Ri) = 0.17(0.25 + 0.75(1 + 4Ri)−1) , fθ(Ri) = −0.145(1 + 4Ri)−1 (55)

And for the the convective case:

fτ = 0.17 fθ = +0.145 (56)

Our analysis in figure 7, based on data from CIBA site in Spain, confirms the Ri-
dependence of the non-dimensional turbulent fluxes.
Moreover, figures 7.a, 7c, 7e show that the drop of the non-dimensional momentum
fluxes, as Ri increases, is quicker than Mauritsen’s functions.
Physically, it means that in the surface layer, if we compute (or measure) only friction
velocity, the corresponding value of turbulent kinetic energy available to the system is
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higher than in the non nearly-neutral case.
In all the plots we have added the BOLAM formulation for the same quantities. As
we can easily see, BOLAM uses a costant value for the ratio |~τ |

EK
, which corresponds to

the value ce = 0.17. This value corresponds to nearly neutral stratification, where the
turbulence is isotropic. Figure 7 says that in stable stratification turbulence is highly
anisotropic, and such anisotropy modifies the partition of turbulent kinetic energy on
the non-diagonal terms of the Reynolds stress tensor.
For stable cases, at Ri << 1, Mauritsen fθ function tends to a costant value: fθ(0) =

−0.145. From fθ definition, it implies that turbulent flux and variance of temperature
tend to zero with the same velocity. Looking at 7.b, 7.d, 7.f, it is not possible to cor-
roborate this hypothesis because of the different behaviours of w′θ′√

EKθ′2
at the different

altitude for small values of Ri.
It should be pointed that this quantity is not very familiar at near neutral regime, in
particular if you would compare the analytical function with experimental data. Whilst
|~τ |
EK

tends to the neutral limit value ce = 0.17, for Ri→ 0 both heat flux and temperature
variance go to zero.
From an experimental point of view, data of w′θ′√

EKθ′2
for Ri → 0 have no sense. So any

validation of numerical costants (as the limit value fθ(0) = −0.145 ) using data in the
limit of Richardson number tending to zero, have no sense.

Analysis of the pdf of the quantity |~τ |
EK

permits to say more on the TKE partition on
non-diagonal terms: in figure 8 the probability density functions (pdfs) are showed (with
the corresponding cumulative functions) computed for different ranges of Richardson
number values at different altitudes,for a dataset of measuraments from Cabauw tower
(Netherlands).
For low stabilities, (8.a: 0.1 < Ri < 0.16; 8.b: 0.25 < Ri < 0.4) the pdfs show clear peaks
which correspond to the most probable values (the modal value) and approximately to
median values of the cumulative functions. Physically, we may understand it saying that
the existence of a modal value validate the idea that this quantity may be written as a
function of the Richardson number.
On the other hand, looking at plots at higher stability range, (8.c: 0.6 < Ri < 1, 8.d:
1 < Ri < 1.6) the situation is completely different: there are not clear peaks of the pdfs
which are almost flat. Phisycally it would mean that there is no reason to think that
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the quantity |~τ |
EK

may be a function of Richardson number, at high values of it. Looking
at a functional depedences at high stabilities between these quantities, after figure 8, it
seems unjustified.

4.5.2 TTE-l Mauritsen’s closure

Together with usual triple moments and dissipation rate parametrization, also a parametriza-
tion for kinetic and potential energy partition are necessary, in order to calculate turbu-
lent fluxes using eqs(55).
In equation (53) the shear production term is parametrized with the assumption (that it
is implicit in the linear relation between stresses and strain rate) that the stress vector
is aligned with the gradient velocity vector. So, if two vectors are aligned, their scalar
product is equal at their modules product:(

u′w′
∂u

∂z
+ v′w′

∂v

∂z

)
= ~τ · ~S = |~τ | |~S| (57)

The dissipation rate ε as usual is parametrized with Kolmogorov’s theory:

ε = Cε
E3/2

l
Cε = fτ (0)3/2 = 0.07 (58)

It should be pointed that this equation implies the same dissipation time scale for poten-
tial and kinetic energy. As already showed by Zilitinkevich et al. (2013), this assumption
is not strictly valid.
The turbulent flux of the total energy is closed with a flux-gradient relation:

(T ) =
∂

∂z

(
−KE

∂E

∂z

)
KE ≡ |~S| l2 ⇒

∂φE
∂z

=
∂

∂z

[
−KE

∂E

∂z

]
(59)

The mixing length l is inspired to Blackadar formulation, taking an interpolation between
geometric distance height z, Coriolis effect f , and static stability N for the stable case:

1

l
=

1

kz
+

f

Cfτ 1/2
+

N

CNτ 1/2
(60)

We have not treated the unstable case, so we have just chosen a function which should
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be continued for all the range of stability:

1

l
=

1

kz
+

f

Cfτ 1/2
(61)

On the contrary, if we consider the bulk of the boundary layer (like the BOLAM mixing
length in example), this formulation is based on the local values of the momentum fluxes
and the temperature gradient, at the considered height z. Hence, it allows decoupled
turbulence in, for example, low level jet. Cf = 0.185, CN = 1.3 are determined by Mau-
ritsen and Svensson (2007a) by tuning with many LES results.

Total energy partition in kinetic and potential energy is calculated using a function fint,
interpolating between the two asymptotic values Ri� 1 , Ri� 1. These limiting values
are obtained using TKE and TPE budget equations in steady conditions, omitting third
order moment (assumed to be negligible in steady conditions). As usual, we shall consider
the two different situations, Ri less or greater than zero. For Ri > 0 we have:

EP
EK

=

g
θ0
w′θ′

|~τ ||~S|+ g
θ0
w′θ′

⇒ Rif ≡ −
g
θ0
w′θ′

|~τ ||~S|
=

Ri

PrT
⇒ EP

EK
=

Rif
1−Rif

(62)

⇒ EP
EK

=

 Ri << 1 : Ri
PrT (1− Ri

PrT
)
→ Ri

PrT (0)

Ri >> 1 : Rif → Rifcrit ⇒ Rifcrit
1−Rifcrit

' 0.46

⇒
(
EP
EK

)−1

= fint(Ri) ⇒ EP = EKf
−1
int (Ri)

fint is an unique function of Richardson number, critical flux Richardson number, and
Prt in the neutral limit:

fint ≡

 1
Ri

PrT (0)

+
1

Rifcrit
1−Rifcrit

 (63)

As far as the convective case is concerned, the procedure is analogous: an interpolation
is done between the limiting values Ri→ 0− e Ri→ −∞. Now, in the asymptotic limit
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we assume that shear production is negligible with respect to heat flux:

EP
EK

=


|Ri| << 1 : |Ri|

PrT (1− |Ri|
PrT

)
→ |Ri|

PrT (0)

|Ri| >> 1 :
g
θ0
w′θ′

g
θ0
w′θ′(|τ ||S|/ g

θ0
w′θ′+1)

→ 1

(64)

So, for convective cases the ratio of potential to kinetic energy is written as:

EP = g−1
intEK gint ≡

(
1
|Ri|
Prt(0)

+ 1

)
(65)

From eq.(62) and the condition E = EK +EP obtaining EK and EP is straightforward:

EK = E
1

1 + f−1
int (Ri)

EP = E
f−1
int (Ri)

1 + f−1
int (Ri)

(66)

Using eq.(19), we may obtain variance of temperature fluctations (the energy of temper-
ature fluctations), used in the calculus of heat fluxes:

θ′2 = 2

(
g
θ0
|∂θ
∂z
|

( g
θ0

)2

)
EP = 2

(
g|∂lnθ

∂z
|

g
θ0

2

)
EP

(67)

With (59),(58),(62),(67) the set of equations (24), (25), (26), (53) is closed.

However, since our numerical code is written in terms of flux-gradient relations, we need
a formulations for turbulent diffusion coefficients Km , Kh. Eddy viscosity Km may be
calculated inverting eq.(31):

Km = +
|~τ |
|~S|

(68)

We cannot do the same operation with eddy diffusion Kh, because when heat fluxes go
to zero (i.e. in near neutral stratification), Kh does not tend to zero, it tends to a value
near Km (Prt(0) ∼ 1). Hence, we compute it following Mauritsen and Svensson (2007a),
just multiplying TPE equation in steady conditions, neglecting third order terms, by Kh
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on the lhs and rhs of the equation:

Kh =
w′θ′

2

εP
=

2f 2
θEK l

Cε
√
E

(69)

using eq.(68),(69) we may express the stress and heat flux gradients as a diffusion of
momentum and heat in the vertical coordinate.

u′iw
′ = −Km

∂ui
∂z

θ′w′ = −Kh
∂θ

∂z
(70)

The complete set of equation to be solved becomes:

∂u

∂t
= +f(v − vg) +

∂

∂z
Km

∂u

∂z
(71)

∂v

∂t
= −f(u− ug) +

∂

∂z
Km

∂v

∂z

∂θ

∂t
= +

∂

∂z
Kh

∂θ

∂z

∂E

∂t
= +

(
fτEK |~S|

)
+

∂

∂z
KE

∂E

∂z
+

{
0 ∂θ

∂z
≥ 0

2 g
θ0
fθ
√
EKθ′2

∂θ
∂z
< 0

}
− Cε

E3/2

l

E = EK + EP ⇒ EK = E − EP EP =


EKf

−1
int (Ri)

EKg
−1
int(Ri)

It should be pointed that at opposite with TKE equation in (51), the shear production
term has positive sign, instead of minus as usual adopted.

4.6 Surface layer parametrization

Monin-Obukhov similarity is used to compute turbulent fluxes at the boundary (defined
as fluxes at first computational level from soil), using an arbitrary set of similarity
functions φ:

kz

u∗

∂u

∂z
= φm

( z
L

)
(72)
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kz

θ∗

∂θ

∂z
= −φh

( z
L

)
Our schemes use for the φ−functions in the stable case, Holtslag’s functions (Beljaars

and Holtslag, 1991) (with z
L
≡ ζ ):

∫ ζ

ζ0

φm(ζ ′)− 1

ζ ′
dζ ′ ≡ ψm(ζ, ζ0) = −

[
a
( z
L
− z0

L

)
+ b
( z
L
− c

d

)
e(−d z

L
) − b

(z0

L
− c

d

)
e−d

z0
L

]
(73)∫ ζ

ζ0

φh(ζ
′)− 1

ζ ′
dζ ′ ≡ ψh(ζ) = −

[
(1 + a

2

3

z

L
)3/2 + b(

z

L
− c

d
)e(−d z

L
)

]
+

+

[
(1 + a

2

3

z0

L
)3/2 + b(

z0

L
− c

d
)e(−d z0

L
)

]
with the coefficients: a = 1, b = 2/3, c = 5, d = 0.35 .
Classical MO surface formulations use for the stable case linear φ functions of ζ. These
formulations in the limit of very high stability lead to the so-called "z-less" limit (Wyn-
gaard, 1975): for ζ >> 1 the counteraction of stratification is too strong, causing a
detachement of the turbulence characteristics of the above atmosphere from the surface.
Therefore the reason of the name "z-less": the turbulence becomes indipendent from the
height.
This is not validated by the observations, since linear φ function formulation overes-
timates the suppression of turbulent mixing, causing a too quick detachment from the
surface and hence an overcooling of the surface (Derbyshire, 1999b). Hence it is preferred
to use Holtslag’s functions, which are more coherents with data.
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(a) |~τ |
EK

at z = 5.8m (b) w′θ′√
EKθ′2

at z = 5.8m

(c) |~τ |
EK

at z = 13.5m (d) w′θ′√
EKθ′2

at z = 13.5m

(e) |~τ |
EK

at z = 32m (f) w′θ′√
EKθ′2

at z = 32m

Figure 7: Non dimensional turbulent fluxes as functions of bulk Richardson number
(Richardson number using finite-difference methods) at different heights. Red stars are
data, the red straight lines are the near neutral surface value used by BOLAM, thick red
line the median of the data, and the two thin red lines correspond to the 10% and 90%
of the cumulant function of the data. Mauritsen functions correspond to eqs.(55). Data
from CIBA site, Spain, are averaged over 30 minutes
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(a) 0.1 < Ri < 0.16 (b) 0.25 < Ri < 0.4

(c) 0.6 < Ri < 1 (d) 1 < Ri < 1.6

Figure 8: pdfs of the ratio |~τ |
EK

for differents ranges of Ri and at differents altitudes. The
cumulant functions are the lines between [0:1] frequencies. Data from Cabauw tower
measurements of February 2008, Netherlands
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5 Numerical Models

5.1 FakeBolam

The closure schemes described in chapter (4) are implemented on FakeBolam, a Single
Column numerical Model (SCM) of the atmosphere, based on the BOLAM model. Fake-
Bolam solves the set of equations (24), (25), (26) discretized on a staggered grid with a
finite-difference scheme. The initialization of the model is made on a z-coordinate grid
for simplicity, whereas the integration is performed on σ-coordinate for consistency with
the BOLAM model. The transformation from z-coordinates to σ-coordinates is made
using hydrostatic equation.
The time integration is performed using the splitting of the operators: the Coriolis terms
are integrated with a simple forward Euler, while the vertical diffusions are integrated
with a fully-implicit scheme which ensures inconditional stability of the integration (see
i.e. Press et al., 1992, Numerical recipes in FORTRAN).
The vertical gradients are computed using a centered difference method, from here the
necessity to use a staggered grid. The mean quantities are defined on integer levels,
whereas turbulent fluxes, TKE, mixing length etc are defined on semi-integer levels
(where the gradients are evaluated).
At the bottom, a free-slip boundary condition is imposed for horizontal velocity compo-
nents on the integer levels, while the temperature boundary condition is defined on the
half-integer levels in terms of skin temperature θskin, which is prescribed as a function
of time. At the top, a zero-flux condition is imposed.
A schematic picture of the scheme is showed in figure 9 using z as vertical coordinate. It
should be noted that the index of the levels starts from the top of the integration domain
(denoted with ntop), and it increases towards the ground (with last level nlev for integer
levels and nlev+1 for half-integer) because the σ-coordinate used during the integration
increases downwards.

5.2 1D model vs 3D model

Testing the predictions of our 1D model is not immediate: comparing them with ex-
perimental measurements of vertical profiles is not easy. The difficulties arise from the
assumptions made in the 1D model, since it is developed in order to isolate and study
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Figure 9: Schematic picture of FakeBolam vertical discretization and boundary condi-
tions.

only the effect of turbulence closure in the evolution of the flow. On the other hand,
this is a considerable limit for the comparison with the experimental data: the latter,
even in the most idealized case, are always ”polluted” by other processes, i.e. large scale
motions or coupling effects of the ground with the atmosphere .
Thus, at this point, the issue is to compare the higly idealized results with something else
equally idealized, which conversely is more similar to the real world than a 1D model. We
shall follow the usual testing approach made in literature (i.e. Cuxart et al. (2006),Sorb-
jan (2012)), comparing the predictions of the 1D models with 3D predictions of a Large
Eddy Simulation (LES) .

5.3 The LES approach

A Direct Numerical Simulation (DNS) of atmospheric flows is still not possible: It means
to resolve all the turbulent eddies, from the dissipative scale η to the largest scale ls,
for instance ls ∼ 300m in the atmosphere. The ratio of these two length scales, using
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Kolmogorov theory, is (Garratt, 1992):

ls
η
∼ Re3/4 (74)

For a typical boundary layer flow U ∼ 1m/s ⇒ Re ∼ 107 ⇒ ls/η ∼ 105 . Therefore,
the minimum length of eddies we should resolve is η ' 1mm, which would mean at least
1015 grid points for a 3D numerical simulations! That is the reason why DNS are possible
only for low Reynolds number flows.

Therefore the basic idea of Large Eddy Simulations, as the name suggests, is to solve
directly the largest eddies, which are the most energetic eddies, and to parametrize the
smallest ones with some physical assumption. It should allow us to simulate even high
Reynolds number flows, without loosing too many details.
In practice, what is usually done with isotropic grids, is to define a model representing the
action of scales smaller than the grid size (see i.e. Compte et al., 1993). This separation
is made applying a spatial low-pass filter of width ∆x, the grid size, which allows to
separate the flow in a filtered field < φ > and a sub grid scale (SGS) field φ′. The
resulting filtered equations have a similar form of RANS equation (7); for example, for
filtered momentum equation:

∂
∂t
< ui > + < uj >

∂
∂xj

< ui >=
1

<ρ>
∂
∂xi

< p > +gδi3 + εij3f < uj > +ν ∂2

∂x2
j
< ui > + ∂

∂xj
Tij

(75)

The term Tij represents the sub-grid stress tensor formally similar to Reynolds stress
tensor (9):

Tij ≡< uiuj > − < ui >< uj > (76)

That should be parametrized with some closure.
The LES approach is similar in form to Reynolds decomposition and average, but have
a deep conceptual difference: the filtered field < φ > is random inhomogeneus and
unsteady even though the field is statistically homogeneus and steady. < φ > is a
random field itself, not the first moment of a random field, as in RANS (Tampieri,
2011).
In the limit of ∆x ”big”, the predictions of a LES converge in some sense, to the mean



5.4 ARPS model 54

(ensemble) flow of a RANS (Compte et al., 1993). The question which should arise is:
How much is ”big” ?
”Big” would mean with a dimension comparable to the size of energy-containing eddies.
Here the problems of LESs in stably stratified flows arise.
As exposed in the introduction (1.2), in stable conditions the size of energy-containing
eddies is highly reduced in respect with eddies in neutral or convective situations. Then,
in order to have little influence of SGS model, LES in stably stratified flows must be at
very high resolutions (Mason and Derbyshire, 1990). From previous works of Beare et al.
(2006) (see also Beare and Macvean, 2004), we may assert that in weakly and moderate
SBL in order to obtain a reasonable LES, vertical grid resolution should be less than
6.25 meters.

5.4 ARPS model

The Advanced Regional Prediction System (ARPS) is a three dimensional, non-hydrostatic
compressible LES code used for small scale atmospheric flows. It is explicitely developed
to work between regional and micro-scale, for boundary layer studies. A description
of the model, the system of equations which solves, and the numerical scheme adopted
by the model, are issues beyond the scope of this work, and could be found in great
details in Xue (2000), Xue (2001). We only focus on the turbulence model used for the
parametrization of sub grid scale eddies, and the parametrization of surface fluxes.

5.4.1 Parametrization of SGS eddies

For the parametrization of sub grid scale turbulence an eddy-viscosity model is used,
equal in form to equation (31), which links the SGS motion with filtered variables. For
the computation of turbulent eddy viscosity Km, the same TKE-l scheme described in
(3.3.2) is used with the main difference in the formulation of the mixing length which in
isotropic grid is written, for stable conditions, as follows:

Km ≡ 0.1
√
Ekl l = min(∆z, lb) (77)

where ∆z is the grid spacing, and lb ≡ 0.76
√
Ek/N , the buoyancy length scale (Moeng,
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1984). This definition of mixing length takes into account the possible reduction of SGS
eddies due to strong stability. The heat turbulent diffusion coefficient is computed using
the turbulent Prandtl number:

Prt ≡ max(1/3, (1 + 2l/∆z)) ⇒ Kh = Km/Prt (78)

Dissipation of TKE is parametrized with K41 as (49), with costant cε = 3.9 at the lowest
model level (near the ground) and cε = 0.93 above (see Deardorff, 1980) .

Surface stresses are parametrized as usual with Monin-Obukhov similarity theory and
stability functions. ARPS defines only the stability functions for unstable conditions,
and from them it computes stability functions for the other cases:

ψm = 2ln
(

1+χ
1+χ0

)
+ ln

(
1+χ2

1+χ2
0

)
− 2tan−1χ+ 2tan−1χ0

ψh = 2ln
(

1+η
1+η0

) (79)

with
χ = (1− 15 z

LMO
)1/4 χ0 = (1− 15 z0

LMO
)1/4

η = (1− 9 z
LMO

)1/2 η0 = (1− 9 z0
LMO

)1/2

Unlike our 1D model, the calculation of Monin-Obukhov length scale LMO is made using
an analytical solution from Byun (1990) that allows to compute z/LMO as a function of
z and bulk Richardson number Rib. Hence it is possible to compute surface fluxes with
the drag laws (i.e. Jimenez et al. (2012)):

u2
∗ = C2

uU
2 U2 = u2 + v2

θ∗ = Cθ∆θ ∆θ = θ1st − θskin
(80)

In neutral conditions the drag coefficients Cu, Cθ are calculated using the z/LMO ana-
lytical function for unstable cases with an extremely negative value of bulk Richardson
number. From these neutral condition coeffients the stable case is computed:

Cstable
u = Cneutr

u

(
1− Rib

Ric

)
Cstable
θ = Cneutr

θ

(
1− Rib

Ric

) (81)
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Where Ric is a critical bulk Richardson number, defined as Ric ≡ 3.05
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6 Numerical results

6.1 Test case of a neutral boundary layer

The first series of simulations which have been done had the goal to test the behaviour
of the two schemes A and B of table 1, which are explained in details in chapter 4.
The test is made on the setup already described by Weng and Taylor (2003) (see also
Weng and Taylor, 2005).
The horizontal axis are aligned with the barotropic geostrophic wind with intensity
ug = 10m/s vg = 0. No forcing is imposed during the simulation (in terms of a cooling
rate of the ground), so θskin(t) = 285oK. The roughness length is set to z0 = 0.01m and
the Coriolis constant f = 1.39 10−4s−1.
The wind at the initial time is set constant with height and equal to the geostrophic
wind:

u(z) = ug v(z) = 0

Potential temperature profile at initial time is constant with height and equal to the skin
temperature so

θ(z) = 285oK

In these conditions, a neutral Ekman-layer is expected to develop.
FakeBolam is integrated for 30 hours on a vertical grid of 400 points with constant res-
olution of ∆z = 5m, which corresponds to a vertical domain of 2000m.
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In figure 10.a and 10.b the time evolution of u∗ and of the u-component of the wind
at fixed height are showed for the period of integration. The transient evolution of u∗
is different for the two schemes, but they converge to the same value u∗ ' 0.37m/s

after a time t ' 25hrs. The wind u-component shows the same evolution, with a
steady state reached around t ' 25hrs. Looking at the equation of momentum (24),
(25), it means that a balance between Coriolis force and Reynolds stresses is reached
in the lowest part of the atmosphere. In the upper part (z = 1502.5m) the situation
is different: the wind of run A is still equal to the geostrophic wind, therefore nothing
has happened at this altitude, while the wind of run B shows an oscillatory regime.
The period of this oscillation T ' 12.5hrs is equal to the period of the pure inertial
oscillation Tinertial = 2π/f ' 12.5hrs due to the Coriolis term in the equation of motion.
This implies that in the run B also the upper part of the atmosphere has been slightly
perturbated, allowing an inertial oscillation to develops and persists, since Coriolis term
dominates, compared to the term of the stresses.
In figure 11.a, the vertical profiles of the wind are showed. Both the wind profiles show

(a) (b)

Figure 10: Evolution in time of a) u∗ and b) wind u-component of run A and B (see
table 1) and ARPS, for the neutral simulation described in 6.1.

a Ekman-like profile with a rotation of the wind with height. Turbulent fluxes present a
lot of noise in both simulations. The noise is due to the temperature profile, which is not
exactly constant with height because numerical noise is present during the computation of
potential temperature gradient. Such noise causes a fluctuation of potential temperature
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(a) (b)

Figure 11: Vertical profiles of a) wind components ū, v̄ and b) the module of momentum
flux, of run A, B, at the end of the neutral simulation (t = 30hrs) described in 6.1.

gradient around zero, thus a continuous changing in turbulent parametrization. This is
clearly visible in the mixing length profile in figure 12.a, where for run A the mixing
length is computed largely using the "non-local" convective formulation described in
(4.4), which is completely different from Blackadar mixing length expected in near-
neutral regimes. Being calculated using the mixing length, the same "non-physical"
behaviour compares also in the eddy viscosity coefficient Km. The mixing length of B
works better, and here the strong noise is due to turbulent kinetic energy which is a
function of Richardson number (figure 12). In this nearly-neutral regime, we expect that
near the ground the surface layer theory is quite respected. In figure 13 we may observe
that the wind profile for run B matches the neutral logaritmic profile expected in the
first 200m from the ground. The same is showed for the diffusion coefficient, where the
simulated Km matches the surface layer value Ksfc

m = kzu∗.

6.2 Averaging the mixing length

The first modification raised concerns about the mixing length formulation of run A.
Mixing length is a "global" quantity, which represents the integral scale of the eddies.
On the other hand, in the models we compute it using local quantities, without any
memory of the vertical mixing at which they are submitted.
In order to consider this effect, we applied to the quantities, used in the mixing length
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(a) (b)

(c) (d)

Figure 12: Vertical profiles of a) mixing length, b) eddy viscosity Km, c) tke and d)
Richardson number, of run A, B, at the end of the neutral simulation (t = 30hrs)
described in 6.1.

computation, a mobile mean at each grid point, with averaging length lmean equal to a
multiple of the Blackadar mixing length at that altitude:

l−1
mean(z) = 3

(
1

kz
+

1

l0

)
l0 = 100m (82)

The average is weighted on the thickness of the single layers, hence in a non-linear grid
the larger the layers, the more importance they have in the averaging.
The simulation of the previous neutral case with the averaged mixing length (run C1)
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(a) (b)

Figure 13: a) Wind profile vs the log (theoretical) profile u∗
k
ln( z

z0
) and b) eddy viscosity

vs Ksfc
m = kzu∗ at the end of the neutral simulation (t = 30hrs) described in 6.1. The

comparison is made only for run B

does not show large differences compared to run A. The noise in the gradient of potential
temperature is reduced, but it is not exactly zero (figure 14.a). Hence the problem of
the "choice" of the right turbulence parametrization remains (figure 14.b). This problem
is soluble at this time only with the introduction of a neutral interval, in which the
temperature gradient is numerically imposed to zero when it is less than a threshold
value.

6.3 Case Studio: GABLS 1

The initial and boundary conditions for the comparison between FakeBolam and ARPS
are based on a test-case deeply investigated in literature (Cuxart et al. (2006) ,Beare
et al. (2006)) based on the measurement made during BASE on 1 october 1994 (see i.e.
Kosovic and Curry (1999)), though adopting a slightly different wind at initial time.
The Coriolis parameter, as in the previous neutral case, is fixed to f = 1.39 10−4. The
roughness length z0 = 0.1m.
The initial wind profile is assumed barotropic and equal to the geostrophic value, aligned
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(a) (b)

Figure 14: Vertical profiles of a) potential temperature gradient, b) filtered mixing length
of run C1, at the end of the neutral simulation (t = 30hrs) described in 6.1

with our reference system:{
ū(z) = ug = 8m/s z > 0

v̄(z) = vg = 0

}
(83)

Potential temperature profile is initialized with a shallow mixed layer capped with a
weakly stable layer (with lapse rate equal to adiabatic lapse rate):{

θ̄(z) = 265K 0 < z ≤ 100m

θ̄(z) = 265 + 0.01 (z − 100)K z > 100m

}
(84)

In order to stimulate turbulence, random potential temperature fluctuations of zero mean
and amplitude 0.1 K is applied below 50m:

δθ(~x) = 0.1N(~x)K 0 < z ≤ 50m

where N(~x) is a white noise of amplitude 1oK in (x, y, z) for ARPS, only in z for Fake-
Bolam.
The stable stratification is developed by a prescribed, constant in time, cooling of ground
temperature θskin. Radiative and soil schemes of ARPS are switched off, and the same
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prescribed θskin is used:

z = 0 θskin = θ(0) = 265− 0.25

3600
t [K] (85)

The models are run for 9 hours, in order to simulate a possible evolution of a stable night
in high latitude regions.

For 1D models, a vertical domain of 400m is used, with a grid mesh of ∆z = 2m, and a
time step of ∆t = 5s (bearing in mind that the fully implicit scheme used for diffusion
is unconditionally stable ).
For ARPS, the domain size is set to (400 × 400 × 400), and an isotropic grid is used
with different resolutions: for our purpose, a ”low” resolution grid with ∆ = 3.125m,
and a "high" resolution grid with grid size ∆ = 2m have been used. The determination
of a suitable time step needs more investigation: ARPS is a fully compressible non
hydrostatic model, and for the Courant-Friedrichs-Lewy (CFL) stability criterion (see
i.e. Press et al., 1992, Numerical Recipes in Fortran) it must respect the inequality:

c|v|∆t
∆x

≤ 1 c = 1 (86)

CFL criterion is a necessary condition for stability, but it is not a sufficient condition:
with u ∼ 10m/s the CFL criterion for grid size ∆ = 3.125m should give ∆t = 0.3125s,
which does not work in our simulations.
For the simulation with grid size ∆ = 3.125m the maximum time step permitting the
stability of the simulation is ∆t = 0.06s, which implies an (empiric) amplification factor
c ∼ 5.
For the simulation with grid size ∆ = 2m the maximum time step permitting the stability
of the simulation is ∆t = 0.02s which implies c ∼ 10.
The comparison is made solely between one-dimensional model results and ARPS results,
at a resolution ∆ = 2m.
In figure 15 is showed a schematic picture of the simulation at the initial time.
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Figure 15: Schematic picture of the GABLS1-setup described in chapter 6.3

6.4 ARPS results

Being in horizontal homogeneus conditions, we may extract from the random field φ of
our simulations (with φ = u, v, θ etc..) a horizontal mean field profile:

< φ > (x, y, z) = < φ >(z)+ < φ >′ (x, y, z) (87)

where in this case [·] is the averaging along horizontal domain. For economy from here
on we shall define < φ >≡ φ for ARPS, saying implicitly that we are referring to the
filtered fields, not to the total field.
The turbulent fluxes are the sum of the resolved-eddy fluxes and the sub grid scale eddy
(SGS) fluxes: τtot = τres + τSGS where τ in this case represents a generic turbulent flux
τ = u′iφ

′. Using eq.(87) we can define the resolved turbulent fluxes as:

u′iφ = (ui − ūi)(φ− φ̄) φ = u, v, w, θ (88)

A fundamental issue in LESs, is the the parametrization of the SGS fields in respect
to the resolved parts. The larger this contribution is, the more the simulation will be
similar to a RANS simulation.
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In figure 16, the resolved and SGS turbulent fluxes (momentum and heat) for the

(a) (b)

Figure 16: Vertical profiles of the resolved and SGS parts of a) the module of momentum
flux and b) the heat flux, for both the simulations made at different resolutions (∆ = 2m,
∆ = 3.125m) of the case-studio described in 6.3. The quantities are averaged over the
last hour of the simulation.

GABLS1 simulation are showed at different resolutions. The critical point for a LES is the
size of the energy-containing eddies. The eddy size is not reduced only by stratification,
but also by the presence of the ground, which bounds the size of the eddies (Mason and
Derbyshire, 1990). In our simulations the SGS part of the fluxes is nearly always much
smaller than the resolved part, starting to increase near the ground and finally becoming
dominant only at the last two grid point for the highest resolution simulation.
An estimation of the vertical size of the most energetic eddies, could be done using the
buoyancy length scale:

lb =
w′2

1/2

N
(89)

it is proportional to the displacement-scale of a fluid particle, if a balance between kinetic
and available potential energy is assumed (Mason and Derbyshire, 1990).
In figure 17.a the buoyancy length scale computed using the resolved fields is showed.

The vertical scale of resolved eddies is much larger than the grid size in the "central" part
of SBL (50 < z < 150, where the contribution of SGS part is negligible), and becomes
comparable with ∆ only near the top of the boundary layer where the fluxes (figure 16)
go to zero.
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Figure 17: a) buoyancy length scale lb defined in eq.(89) and b) 1-D spectrum along
x-axis of the resolved w′−component of the wind at the end of the simulation (t = 9hrs)
described in 6.3.

Therefore we may assert that for this weakly stable case, our LES simulations are rea-
sonable in most part of SBL except near the boundaries.
Moreover, horizontal spectral analysis shows the strong anisotropy produced by the sta-
ble stratification on the eddy-size. If we assume the vertical scale of order lz ∼ lb ∼ 10m,
horizontal spectrum in figure 17.b shows a peak around ki ' 5 kmin = 5 2π/L, where L
is the dimension of the horizontal domain. Hence the horizontal length scale (injection
energy-scale) of eddies may be computed:

lh =
2π

ki
' 80m (90)

and we may observe the anisotropic effect of stable stratification: lh ∼ 100m� lz ∼ 10m.

6.5 Comparison between 1D models and ARPS results

In figures 18.a and 18.b the time evolutions of u∗ and θ∗ are showed.
After a time t ' 6hrs the u∗ behaviour is similar for all the simulations, and it reaches a
steady state with a value u∗ ' 0.3. This means that the forcing near the ground of the
momentum flux will be similar for ARPS, run A and run B, and then the behaviour of
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the wind (which near the ground is driven by u∗ by MO similarity). Due to the cooling
of the ground θ∗ starts to increase in absolute value, but unlike u∗, it does not reach a
clear steady state. The value of the LES at the end of the simulation is larger than the
1D values, and, in particular, run A predicts a θ∗ smaller (in absolute value) than run
B, which would mean a surface heat flux smaller for run A than run B.
In figure 19.a and 19.b respectively, the vertical profiles for the mean quantities ū, v̄, θ̄

(a) (b)

Figure 18: Evolution in time of a) u∗ and b) θ∗, of the run A, B (see table 1) and ARPS.
In b), the sign of θ∗ is inverted (θ∗ is negative in stable situation) in respect to the output
of the models.

are showed at the end of the simulations (t = 9hrs). As the analysis of u∗ suggests
the behaviour near the ground (up to z ' 75m) is similar for ARPS, run A and run
B. All the runs present the characteristic supergeostrophic wind maximum of stable
boundary layers, called low level jet (LLJ). LLJ is predicted by Nieuwstadt (1985) theory
for a quasi-steady weak stable boundary layer, and it is also observed by experimental
measurements (see i.e. Banta, 2008) in the higher part of SBLs. Run B shows a clear
well-developed LLJ but at an altitude higher than the ARPS one. On the other hand,
run A shows a wind profile too "spread" in the vertical, which is due to a large mixing
of momentum still presents in the upper part of the BL.

Looking at the potential temperature profiles in figure 19.b, the LES simulation and
run B are in accordance. The inversion layer expected with this setup (and also experi-
mentally observed, (see Kosovic and Curry, 1999)) in the higher part of BL is reproduced
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(a) (b)

Figure 19: Vertical profiles of a) wind components ū,v̄ and b) θ̄, of the run A, B and
ARPS at the end of the simulation (t = 9hrs) described in 6.3.

(a) (b)

Figure 20: Vertical profiles of a) module of momentum flux and b) of heat fluxes, of
the run A, B and ARPS. For A, B the profiles are referred to the end of the simulation
(t = 9hrs) described in 6.3. For ARPS the profiles are averaged over the last hour.

by both ARPS and run B. The second one overestimates the altitude of this inversion
layer, compared to the LES. The altitude at which the temperature inversion develops
is the same of the wind jet, which may mean that there is a link between these two
phenomenons.
On the other hand, run A shows a potential temperature profile completely different from
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the other two. This means that potential temperature mixing is highly underestimated
in respect to the run B and ARPS: the cooling of the ground produces a downward heat
flux (figure 9.b) which acts in order to mix the temperature of the layer, cooling the air
above. The stronger the flux is, the smaller the potential temperature gradient will be
in the central part of SBL. Looking at run A in figure 19.b, it seems that turbulent heat
mixing is highly underestimated.
Figure 20 shows the vertical profile of fluxes (momentum, and heat) for the three sim-
ulations. As expected by potential temperature profiles, the heat flux (figure 20.b) for
the run A is smaller than the other two simulations. Moreover, it could be noted that in
both figures 20 the fluxes "suddenly" go to zero for the LES and run B, while for the run
A the curves go down to zero in a smoother fashion, which makes it difficult to define
clearly a SBL "height" (conventionally defined as the the altitude at which the module
of momentum flux is 5% of u2

∗).
These different behaviours may be interpreted looking at the closure assumptions used
by the one-dimensional schemes.
The vertical profiles of turbulent diffusion coefficients are showed in figure 21. It should

(a) (b)

Figure 21: Vertical profiles of a) eddy viscosity Km and b)eddy diffusion Kh of the run
A, B and ARPS. For A, B the profiles are referred to the end of the simulation (t = 9hrs)
described in 6.3. For ARPS the profiles are averaged over the last hour.

be noted that the coefficients plotted for ARPS are "equivalent" diffusion coefficients,
computed using resolved fluxes and the resolved wind vertical gradients.
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(a) (b)

Figure 22: Vertical profiles of a) TKE, b) TPE of the run A, B and ARPS. For A, B
the profiles are referred to the simulation time t = 9hrs. For ARPS, the profiles are
averaged over the last hour.

(a) (b)

Figure 23: Vertical profiles of a) mixing length and b) Prandtl number, of the run A,
B and ARPS. For A, B the profiles are referred to the end of the simulation (t = 9hrs)
described in 6.3. For ARPS, the profiles are averaged over the last hour.

The overestimation of momentum mixing at high altitude of run A is explained by Km

profile in figure 21.a. For run A the eddy viscosity Km is different from zero up to
z ' 300m, whereas for ARPS and run B it goes to zero around z ' 150m. This is
mainly due to the mixing length (showed in figure 23.a) which does not feel the strong
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effect of stratification and hence it is different from zero in almost the whole computa-
tional domain.
The heat diffusion coefficients Kh is highly underestimated by the run A compared to
the LES result, whereas the Kh computed by B is too high. The latter one, is due to
the parametrization of turbulent potential energy (showed in figure 22.b), which results
too high compared to the resolved TPE computed by ARPS. It means that the simple
interpolation formula used in equation (62) is too rough, and a more sophisticated for-
mula should be used, in order to compute the right heat flux.
As far as run A is concerned, the computation of Kh depends on the Prandtl number
formulation, which seems completely wrong compared to the LES (figure 23.b): Prt in
run A grows quickly with the Richardson number, whereas the "resolved" Prt of the
LES is almost constant in the whole range of Richardson number with a physical sense
(up to Ri ' 0.3, which is the highest value of Ri reached in the BL). The result of the
LES is in accordance with Zilitinkevich et al. (2013) argument, which says that in weak
SBLs Prt grows very slowly with stability and it is almost constant, starts to increase
with stratification only for Ri > 1, under very stable stratification.
The main effect of this Prt formulation is that turbulent mixing of heat is suppressed
(even though Km is in agreement with the LES in almost the whole of SBL), which is
what we see in potential temperature profile in figure 19.b.

6.6 Modification of the BOLAM closure

The observed difficulties of BOLAM original scheme (A in table 1) in the previous simple
case, suggest to try different parametrizations for some of the closure assumptions of A,
in order to improve the results. Our modifications are summarized in table 1.

The first series of modifications which have been done concern the formulation of the
mixing length (C2, C3 in table 1). The idea is to use a mixing length which does not
suffer from the problems of the parametrization of A, and, furthermore, which may be
extended continuosly to the convective case, resolving the problem of the near neutral
cases.
Looking at the good results showed by the Mauritsen formulation (figure 23.a), we shall
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try to use equation (60) in the BOLAM scheme (run C2).
We shall also attempt another parametrization, which is a modified version of the one
developed by Duynkerke and Driedonks (1987), where the effect of the stability on the
size of the eddies is counted using the buoyancy length scale lb defined in eq.(89), where
vertical velocity variance may be linked with the turbulent kinetic energy: w′2

1/2
=

cdE
1/2
K . Hence the mixing length in stable condition is written:

l−1 =

(
1

kz
+

1

l0
+

N

cd
√
EK

)
cd = 0.36 (91)

By surface layer measurements in near neutral conditions, (see i.e. Mellor, 1973) the
ratio between the vertical velocity variance and the TKE should be cd ' 0.54. However,
in stable stratification this ratio is less than in the neutral case. In order to account
for this reduction, Duynkerke and Driedonks (1987) calculated it far from the ground
(where they suppose that the term (89) dominates in the interpolation formula (91), and
Richardson numbers reach a constant values Ric, Rifcrit), using TKE equation (14) in
steady condition:

cd '
(
ce

Ric
1−Rifcrit

)1/2

= 0.36 (92)

The second series of modifications concern the Prandtl number formulation and the ratio
u2
∗/EK (run D1 in table 1). The latter modification follows from the analysis made in

chapter (4.4), where we pointed out that the ratio u2
∗/EK reduces with Ri faster than

the Mauritsen function (55).Therefore we shall propose a new function tτ which seems
to work better against our data (figure 24):

u2
∗

EK
≡ tτ = 0.17(0.25 +

0.75

1 + (4Ri)2
) (93)

This formulation for the ratio u2
∗/EK are used in run D1 and D2 only as a boundary

condition for the TKE, to compute it at the first level from the ground.
Prandtl number is a quantity more difficult to deal with. Experimental measurements of
this quantity are difficult, because eddy diffusion coefficient Km,h are derived quantities
from fluxes and gradients, which are often not measured at the same altitude. Hence, we
shall use Prt derived by Zilitinkevich et al. (2013) which may be written as a function
of Richardson number Ri. The Zilitinkevich formula is quite complicated, so we decided



6.6 Modification of the BOLAM closure 74

Figure 24: The Mauritsen function (55) (green line) and function tτ (93) (blue line)
against data at z = 5.8m from CIBA site, Spain. As in figure 7 the thick red line are
the median of the data, while the two thin red lines correspond to the 10% and 90% of
the cumulant function of the data.

to use a simpler polynomial expression of Ri which fits well the original formula:

Prt(Ri) = (Prt(0) + (4Ri)3)1/3 (94)

Figure 25: Different Prt formulation used in our simulations, plotted against experimen-
tal measurements from CIBA site, Spain. The numbers between brackets on the axis
labels, are the altitude in meters at which the wind (for Km) and the temperature (for
Kh) are measured.
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In figure 25 equation (94) with different values of Pr(0) is showed against Zilitinkevich
et al. (2013) curve, Prt used in run A, and experimental data (which show a large spread).
Even though LES data in figure 23.b shows clear that Prt(0) < 1, in run D1 we use the
same value of Prt(0) of run A because changing the neutral limit value of Prt would
mean to change also the surface layer parametrization. From the surface layer theory we
know:

Ksfc
m = lsfc/φm(

z

LMO

) Ksfc
h = lsfc/φh(

z

LMO

) (95)

Now, if we assume that the mixing length near the surface is the same for heat and
momentum fluxes (as is made in run A, see chapter (4.5.3)), proportional to z by the
Von Karman constant kvk the Prandtl number at the surface is:

Prt(
z

LMO sfc

) =
φh(

z
LMO

)

φm( z
LMO

)
(96)

In our surface layer scheme (which is the same for all the run), in the limit z
LMO

= 0 the
stability functions φm, φh are equal to one. Then the only possible value for Prtsfc in
the neutral limit is Prt(0) = 1.
Hence, assuming the Prt(0) 6= 1 would imply that the mixing length near the surface is
different for heat and momentum (as in the upper part of the BL), or equivalently that
the Von Karman constant is different for heat and momentum. From ARPS simulation
we may infer a value for Prt(0) ' 0.85 which would mean a heat Von Karman constant
k(h):

Prt(0)sfc =
φh(0)k(m)z

φm(0)k(h)z
⇒ k(h) = 0.47 (97)

that it is what it is used in run D2.

In figure 26, 27 some results of run C2 and C3 are showed, together with the original
scheme (run A) and the LES. The setup of the simulation is always the case-studio
described in 6.3. All the vertical profiles are the profiles at the end of the simulations.
The run C2 seems to work worse than A, compared to the LES. The "spread" of the ve-
locity profile of C2 is larger than A, and it covers the whole computational domain. This
means that momentum mixing is enhanced in respect to A. Looking at vertical profile
of the mixing length (figure 27.b) the C2 mixing length is larger than A in all the BL,
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(a) (b)

Figure 26: Vertical profiles of a) the wind speed (module of the wind) and b) the potential
temperature, for run C2, C3, A, ARPS, at the end of the simulation (t = 9hrs) described
in 6.3.

which causes the enhanced mixing of momentum observed. The Mauritsen formulation
used in C2 has the coefficient cs tuned for the scheme B, which is not suitable for the
scheme A.
Run C3 has a mixing length more similar to the LES, but globally there is not great
improvement in the other quantities: i.e. in figure 27.a the TKE is showed, which is
larger than run A.

In figure 28 the profiles of the mean quantities of run D1, D2 are showed, together with
the original scheme A and ARPS.
The wind profile is unchanged, as it could be expected, and the largest differences are
observable in the potential temperature profiles. To change the Prt formulation, has
a great impact in the calculus of heat flux: the diffusion coefficient Kh (figure 30.c) is
increased in respect to run A, and in run D1 it quite matches the Kh of the LES. Curi-
ously, in run D2 the same Prt(0) of the LES causes a larger Kh in respect with the Kh

computed by the LES. These modified diffusion coefficients produce larger heat flux in
run D1, D2 in respect to the original scheme A, and nearer the ARPS results.
The new Prandtl formulation does not lead to great modifications in TKE (figure 29.a).
In figure 31.b the time evolution of the TKE at the first level from the ground (nlev)
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(a) (b)

(c) (d)

Figure 27: Vertical profiles of a) TKE, b) mixing length, c) eddy viscosity Km, d) eddy
diffusion Kh, for run C2, C3, A, ARPS. The setup is the same described in chapter 6.3.
The profiles of C2, C3, A are referred to the end of the simulation time, t = 9hrs. The
ARPS profiles are averaged over the last hour

is showed, only for the one-dimensional simulations. There is no effect of the boundary
condition modification u2

∗/EK , and the curves are practically equal.
The run D1, D2, show an increment of the θ∗ (figure 31.b), which is more similar to
the LES in respect to the original scheme A. This increment is a consequence of Prt
modification, since by modifying the mixing in the "upper" part of the boundary layer,
it has a feedback with the computation of surface layer values. In particular, looking
at the potential temperature zoom in figure 28.c, in run D1 and D2 the temperature
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(a) (b)

(c)

Figure 28: Vertical profiles of a) the wind speed (module of the wind), b) potential
temperature and c) zoom of θ on the first 100m from the ground, of run D1, D2, A and
ARPS at the end of the simulation (t = 9hrs) described in 6.3.

gradients between the ground and the first level from it, are lower than the run A. This
means that there is more heat flux which acts in order to mix temperature, reducing the
temperature gradient.
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(a) (b)

(c)

Figure 29: Vertical profiles of a) TKE, b) module of momentum flux and c) heat flux of
run D1, D2, A, ARPS. The setup is the same described in chapter 6.3. The profiles of
D1, D2, A are referred to the end of the simulation (t = 9hrs).The ARPS profiles are
averaged over last hour.
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(a) (b)

(c) (d)

Figure 30: Vertical profiles of a) mixing length, b) Km, c) Kh, d) Prt of run D1, D2, A,
ARPS. The setup is the same described in chapter 6.3. The profiles of D1, D2, A are
referred to the end of the simulation (t = 9hrs).The ARPS profiles are averaged over
last hour.



6.6 Modification of the BOLAM closure 81

(a) (b)

Figure 31: Evolution in time of a) θ∗ and b) TKE at the first level from the ground
(z = 2m), of run D1, D2, A, ARPS. The TKE evolution is only of the one-dimensional
models
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7 Conclusions

In this work a study of Stable Boundary Layers has been performed.
For our purposes, we have developed a numerical code called FakeBolam:
FakeBolam is a Single Column Model (SCM) of the atmosphere devoted to boundary
layer studies, particularly useful to test different closure of the Reynolds Average Navier
Stokes (RANS) equations. The code is highly flexible, fast in the computation, and easy
to use. As far as these qualities are concerned, it may be used beyond the scopes of this
thesis work, rearranging it to other problems.

Inside FakeBolam, a TTE-l scheme and the BOLAM TKE-l scheme have been tested.
For the comparison we also produced a three dimensional dataset using an high resolu-
tion LES code, ARPS, employed to assess the validity of FakeBolam predictions.
Our analysis of experimental data (from CIBA site, Spain and Cabauw tower, Nether-
lands) confirms the validity of the Mauritsen closure hypothesis for the ratio u2

∗/EK as a
function of Richardson number, but only for low Ri (< 1). For higher Ri the probability
density functions of u2

∗/EK of our data are almost flat. Hence, looking for a single value
function of Ri for the ratio u2

∗/EK could be questionable.
Looking at the results of our simulation made on GABLS1-setup, the TTE-l scheme
overestimates turbulence mixing, for both momentum and heat compared to the LES
results. This is a common problem of the RANS closure schemes, so well-known in lit-
erature. On the other hand, the results of TKE-l scheme are quite ambiguous: it highly
overestimates momentum mixing, and at the same time it highly underestimates the
heat mixing, compared to the LES. This fact is due to the Prt parametrization, which
causes a suppression of heat mixing too fast with Ri.
Regarding this weakly stable case, we can affirm that the TTE-l scheme is in better
agreement with the LES than the TKE-l scheme.
In order to improve the TKE-l scheme results, some original modifications of the scheme
have been attempted, based on the previous data analysis and the LES results.
In particular we have seen that Mauritsen mixing length formulation is tuned for his
TTE-l scheme: when it is introduced in the TKE-l scheme, the results are worse than
the original scheme, compared to the LES.
The most serious problem of the TKE-l scheme is related to the parametrization of Prt,
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which causes a strong underestimation of vertical mixing of potential temperature in
respect to the LES. Changing the Prt with a formula in agreement with the LES results,
produces a heat flux much more similar to the LES heat flux, which causes an improve-
ment of the prediction of the potential temperature profile.
Nevertheless, the sole modification of the bottom boundary condition of TKE (using a
formula similar to the one proposed by Mauritsen and Svensson (2007b)) does not lead
to relevant difference between the model predictions.

The modification of Prt and u2
∗/EK have been proposed as an improvement of BOLAM,

and their influence inside the complete (fully 3-D) model have to be analyzed.
Future work could be:

• the development of a closure scheme based on two prognostic equations, one for
the turbulent kinetic energy and one for the turbulent potential energy, following
the work of Zilitinkevich et al. (2013).

• the implementation of a soil scheme in FakeBolam, which allows us to relax the
hypothesis of an energetic balance between the ground and the air.

• the development of a mixing length formulation which both takes into account in
the right way the reduction due to the stable stratification, and extends continuosly
to the convective case.

• test a modified version of BOLAM scheme which takes into account the stability
reduction to the ratio u2

∗/EK at all levels. This must lead to an additional reduc-
tion of the turbulent mixing coefficients in stable condition because this ratio is
implicitly used in the computation of Km,h.

• test the performance of FakeBolam in convective (unstable) condition.
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