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A prediction of bone remodeling 
thanks to a mechanical signal on 
cells 

Abstract (English) 
This text wants to explore the process of bone remodeling. The idea supported is that the 

signal, the cells acquire and which suggest them to change in their architectural 

conformation, is the potential difference on the free boundaries surfaces of collagen fibers. 

These ones represent the bone in the nanoscale.  

This work has as subject a multiscale model. Lots of studies have been made to try to 

discover the relationship between a macroscopic external bone load and the cellular scale. 

The tree first simulations have been a longitudinal, a flexion and a transversal compression 

force on a full longitudinal fiber 0-0 sample.  

The results showed first the great difference between a fully longitudinal stress and a 

flexion stress. Secondly a decrease in the potential difference has been observed in the 

transversal force configuration, suggesting that such a signal could be taken as the one, 

who leads the bone remodeling. To also exclude that the obtained results was not to 

attribute to a piezoelectric collagen effect and not to a mechanical load, different coupling 

analyses have been developed. Such analyses show this effect is really less important than 

the one the mechanical load is responsible of. At this point the work had to explore how 

bone remodeling could develop. The analyses involved different geometry and fibers 

percentage. Moreover at the beginning the model was to manually implement. The author, 

after an initial improvement of it, provided to implement a standalone version thanks to 

integration between Comsol Multiphysic, Matlab and Excel.    

Abstract (Italiano) 
Il testo vuole esplorare il processo del rimodellamento osseo. L’idea alla base del 

lavoro è che il segnale, che le cellule acquisiscono e che suggerirebbe loro di cambiare la 

propria architettura, sia una differenza di potenziale ai capi delle fibre di collagene. Tali 

fibre costituiscono la struttura ossea da un punto di vista nanoscopico. 
Questo lavoro ha come oggetto un modello multiscala. Molti studi sono stati fatti alfine di 

comprendere il legame fra un carico osseo macroscopico esterno e la scala cellulare.  
Le prime tre simulazioni svolte sono state una compressione longitudinale, una flessione 

ed una compressione trasversale di un campione composto unicamente da fibre verticali di 

tipo 0-0. 

Per prima cosa i risultati mostravano una netta differenza fra una configurazione in 

completa compressione longitudinale ed una in flessione. Secondariamente, è stato 

osservato un decremento delle differenza di potenziale nella configurazione a 

compressione trasversa, suggerendo così che tale segnale sia proprio quello che guida il 
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rimodellamento. Per escludere, che il risultato di differenza di potenziale ottenuto fosse 

dovuto univocamente alle proprietà piezoelettriche delle fibre di collagene, e non al carico 

meccanico, sono state svolte analisi con accoppiamenti differenti. Un’analisi del genere ha 

effettivamente rivelato come questo contributo sia trascurabile rispetto alla differenza di 

potenziale, di cui il cui carico meccanico è responsabile. A questo punto il lavoro è 

consistito nell’esplorazione degli step del rimodellamento. L’analisi ha previsto sia lo 

studio di differenti geometrie sia di diverse percentuali fibrose. Inoltre, inizialmente, il 

modello era da implementare completamente manualmente. L’autore, dopo un suo iniziale 

sviluppo, ha implementato una versione stand-alone grazie all’interfaccia di Comsol 

Multiphysic, Matlab ed Excel.  
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Introduction  
The goal of this text is to investigate the relationship between a macroscopic load applied 

on a bone sample and the signal received by the cells in the nanoscopic domain, which 

leads the phenomenon of bone remodeling. Collagen has, in fact, the particular 

characteristic of piezoelectricity. Since other studies such a signal, which pushes cells to 

change in their architecture, is the potential difference on the free boundaries surfaces of 

collagen fibers. This one would be simply called PD in the entire text. If a collagen fiber is 

deformed by a force, it develops a potential difference. Such a signal may be the one, 

which leads bone remodeling.  

From a changing in PD, cells may understand that the existing configuration is not agreed 

with the external solicitation force. They are supposed to change in their architecture.  This 

work is composed of several analysis steps. A mechanical model has been developed with 

the goal to investigate such an assumption. Lots of numeric studies have been performed to 

understand this phenomenon.  
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1. Bone Anatomy 
Human body has his stability thanks to the skeleton. Without this one any movement 

would be possible, because muscles would have nothing to apply their driving force. Bone 

is a living tissue, which has a great complex structure. It is the connective tissue, which 

composes the skeleton. This one gives both support and protection to the body. A second 

important bone function is to store minerals. In particularly it stores Ca
++

, which is 

required to maintain a mineral homeostasis by the exchange of several ions, such as H
+
 and 

HPO4
+
.  

Surly, bone is not like any other connective tissue, because his way to grow is different. In 

fact, while the other kinds of connective tissues grow interstitially, it grows on by addition 

of tissue on a cell-laden surface [8].  
Several kinds of bones could be distinguished:  longs, shorts and plates bones. They have 

different functions, depending on the place they are, and they work all together to allow 

body movement. 

The most interesting thing is that bone tissue shows lot of structural levels. There exists a 

hierarchical scale, which is showed in figure 1. If this special tissue is charged with an 

external load, it grows up following the driving direction of the applied force.  

There are a lot of hypothesis about bone remodeling. Any unified idea has been reached 

yet. Certainly bone is composed by subunits, which work in synergy.  

As shown by the picture, several structural levels can be distinguished. In the macroscopic 

scale there is the bone, which has a cortical and a cancellous part. They differentiate 

themself for the percentage of marrow and soft tissue they contain.  
Cortical bone represents the 80% of human skeletal. In long bones a soft tissue part 

Figure 1: bone hierarchical structure [4] 
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surrounded by a cortical one can been observed. The middle bone part usually is tubular 

and is called diaphysis. The part at the ends is bigger and is always constituted by soft 

tissue surrounded by cortical bone.  

Simplifying, only cortical bone will be considered. In fact, considering also the soft part, 

would lead to an excessive difficulty for this contest. Going until the microscopic scale, 

structures, which have a dimension between 10 and 500 mm, as the Haversian system, the 

osteons and trabeculae can be founded.    
In sub-microscopic domain there are the lamellae (3-7 µm) [4]. They are put all together 

side by side to form a lamellar structure. They are differently distributed to look like a 

piece of wood.  
The space between them is filled with an amorfe substance rich in mucopolisaccarides 

(GAG). Inside this material there are lots of calcium salts, which precipitate in 

hydroxyapatite [3]. 
The nanoscopic scale includes collagen fibers, which are around 0, 5 µm, and minerals 

(from 100 nm to 1 mm). Finally there exists the sub-nanoscopic domain with his molecular 

structures under hundreds nanometers [2, 4]. 
 

Depending on the orientation of the collagen fibers, various kinds of osteons can be 

distinguished. The orientation is defined by the generating line.  

 

 

1. 0-0: the osteon has all the lamellae composed by vertical fibers. 

2. 0-90: the osteon has a lamella composed by vertical fibers and the following by 

concentric horizontal ones. 

3. O: in the osteon there are two regions, an internal and an external one. This one is 

composed by only vertical fibers. The other one is composed by concentric 

horizontal fibers.  

4. 90-90: the osteon has all the lamellae composed by concentric horizontal fibers. 

 

The chosen names for each fibers derive from the convention of the SiNuPrOs 

simulation program developed by mister Crolet and his team. The author has had to 

take bone physical data from such an instrument and took care the same way of 

calling different physiological parts [13, 14]. SiNuPrOs description will be exposed 

in the following chapters.  

 
By saying “bone is a living tissue”, the text indicates the presence of certain cellular types, 

which have the function to build and to destroy the structure in a continuous way. 
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There are three principal kinds of cells: osteoblasts, osteocytes and osteoclasts. 

The first ones deal to form tissue, the seconds ones are probably osteoblasts trapped in the 

structure. Osteocytes are concerned with tissue maintenance and repair. Finally osteoclasts 

remove old tissue or damaged material [3]. 

The kind of cells described, work always according to a policy of energy saving. If bone is 

not solicited, it would be destroyed to use the energy, which is necessary to his maintain, 

for other corporal functions.  

Even if bone remodeling phenomenon is not completely clear, sure it is at the base of bone 

fragility after a forced rest period.   

 

 

 

 

 

 

 

 

Figure 2: picture representing the remodeling process step by step in a simplified scheme 

[2] 
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2. Research background about bone remodeling 
The question the text wants to investigate about, and which lot of people have already tried 

to analyze, is which the force responsible of tissue remodeling is. In others words which 

signal represents the input, which pushes the cellular population to change in their 

architecture. From the “Integrin’s Theory” cells may have such sensors, which allow them 

to feel the change of external conditions. The term “integrins” indicates particular canal 

receptors. They allow the communication between the extracellular medium and the cells 

[10]. 

A relevant question is which is the signal, which cells feel thanks to the integrins. Several 

theories about that have been done. For example: 

 Streaming potential: the extracellular fluid is forced to flow in the caniculae by a 

matrix deformation (Haversian and Volkmann). This causes ions charge induced on the 

surface. The osteocytes mediate this phenomenon.   

 Mechanical solicitation of the osteocytes: the extracellular fluid is forced to flow in 

the caniculae by a matrix deformation. This flux mechanically stimulates the 

osteocytes. 

 Damage accumulation: a bone, which is damaged for a fatigue stress, gets cracks. 

These ones usually end in cavities, where tension grows up relevantly. Osteocytes, 

which are in cavities, are greatly mechanically solicited.  

 Collagen piezoelectricity: collagen is a piezoelectric material. If charged, a potential 

difference is generated. Such a PD is sensed by osteocytes [3].  

The theory the text supports to implement a mechanical bone remodeling model is the last 

one: collagen piezoelectricity. 

How and the way usually bone breaks and his mechanical properties are also important. 

Both cortical and cancellous bones would be described in these terms, even if the object of 

the study would be only the cortical one.  

Bone is anisotropic. This characteristic is at the base of his great complexity. His form and 

his behavior are greatly connected to the applied loads. Since the viscous-elasticity is 

usually not relevant, bone is described as an elastic-linear material. Long bones are the 

ones, which are regularly charged by axial and bending loads. Flexion usually causes 

tensions bigger than these caused by axial stress. Usually cortical bone is brittle. That 

means that such bone part easily arrives to a break point instead of a yield point. Cortical 

bone breaks in preference under a traction force, because the anisotropy in less evident in 

compression. In traction the cemented lines open themselves and cause the break. Finally, 

cortical bone in long bones usually yields for normal stress rather than a tangential one. 

The other kinds of bones are not regularly charged. Usually only impulsive loads charge 

shorts and plates bones. Theirs structures are different. They have a sandwich form: two 

cortical bone layers and a cancellous bone layer in the middle. It is difficult to establish 

single point’s properties. For that the entire structure is characterized [3]. 
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The cancellous bone is less resistant than the cortical one. It minor contributes to the 

complex rigidity. In any case his role is not to under valuate. For example, this part 

maintains together the cortical bone and distributes the load [3].  

In the following paragraphs the model and the taken decisions during the study would be 

exposed.  
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3. The mechanical model 
 

This work is based on a model developed during a doctoral research period at the ISIFC 

institute, Biomedical Engineering of Besançon (France) [1]. Such a model has been 

corrected and modified to obtain a standalone Matlab program to use in following 

analyses.  

The original idea consisted in a force applied in the macroscopic domain to a bone 

specimen, coming from a femoral diaphysis. The main goal, the work had, was to analyze 

the effects this compression force had until the nanoscopic scale.  

The model was composed by three structural levels: the macroscopic, the microscopic and 

the nanoscopic parts. The firsts two also had a correlate spreadsheet, which allowed 

calculating specific boundary conditions. These could be used in the following files in 

order to respect the hierarchical scale.   

To briefly show how the original model was built and which the relationship between the 

three structural scales was, the text gives to the reader a simplified image, which does not 

respect the real size.  

 

 

Figure 3: hierarchical model structure. The proportions do not respect the reality 

 

The real novelty of this work is represented by the boundary conditions. In various 

examples, found in the scientific literature, such conditions are established by the operator 

depending on the analysis situation.  On the contrary, in this case, the idea is to exploit the 

relationship between the macroscopic compression and the nanoscopic signal, which 

pushes cells to change in their architecture. With this goal the study starts at the 

macroscopic domain descending until the nanoscopic through the microscopic one.  

The mechanical model study is composed by several steps that will be exposed in the 

following paragraphs.   
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3.1 Longitudinal compression with vertical fibers: departing point  

First the original model was analyzed to deep understand how it had been implemented. 

During the analysis and the plan to develop the study, several mistakes have been founded. 

Therefore the model has been corrected and completely remade. 

First of all the analysis concentrates herself on a full vertical fiber specimen. Thanks to 

SiNuPrOs, physical characteristics have been obtained [12, 13 and 14]. The choice of a full 

vertical fibers specimen was not a random one. This direction is, in fact, the one in which 

fibers can at the best resist to a longitudinal compression stress. Such a stress is the most 

common simplified solicitation, a femur can be subjected to, during a usually activity as 

walking.   

 

 

The size and the geometry adopted are briefly shown in the following scheme. 

 

 

 

 

 

Figure 1[e] 
Figure 4: this pictures shows how bone macroscopically is 

composed [5] 



 

 

18 

 

 

Figure 5: pictures (-i-), (-iii-) and (-v-) represent the various analysis physiologic steps, which 

have been modeled by the geometry in pictures (-ii-), (-iv-) and (-vi-). [1, 4, 5, 6, 7] 

(-i-) (-ii-) 

(-iii-) (-iv-) 

(-v-) (-vi-) 
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SiNuPrOs™ is a computational system, which shows a graphic interface to the user, who 

can implement bone geometry characteristics and obtain tissue properties as elasticity 

matrix. In the back of that simple user interface, lots of hidden spreadsheets have been 

implemented.    

By filling in information about geometry and percentage composition, data, as tensor 

matrix and compliance, can be obtained. These data would be used in an elaboration sheet 

of the macroscopic domain. 

SiNuPrOs™ Fast allows evolution of cortical physical properties at macroscopic scale. 

The macroscopic domain, exploits the following data coming from SiNuPrOs™ 

(SiNuPrOs™ screenshot [13, 14]): 
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Two other dimensional scales are implemented: the microscopic and the nanoscopic ones. 

In the microscopic domain an osteonal structure is described. Data are filled in the relative 

spreadsheet to get the information, which are needed to implement the nanoscopic model 

part.  In this one, an analysis of vertical collagen fibers can be found.  

SiNuPrOs™ Fast Osteon allows evolution of osteonal physical properties at microscopic   

and nanoscopic scale. Since the analysis in this case is concerned with vertical fibers, the 

percentage of 100% of osteons 0-0 is inserted. The following data can be found 

(SiNuPrOs™ Fast Osteon screenshot [13, 14]):  
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3.1.1 Study at the macroscopic domain 
The macroscopic domain contains five osteonal structures in each direction for a total of 

125. In this case the osteons are not geometrically detailed. In any case the size takes in 

consideration their presence. In fact, four blocks of 390 µm x 390 µm x 715 µm (2 and ½ 

osteons) have been used to form a total cube composing the final block of 780 µm x 780 

µm x 1430 µm. 

Two physics are supposed to govern the medium behavior. The first one is the physic 

“Solids Mechanics”, which describes the solid part of bone.  

 
 Figure 6: screen capture from Comsol desk 

 
The second one is the physic “Darcy’s law”, which describes the fluid part of bone. This 

one is related to the poro-elastic property of the analyzed material, which has two kinds of 

couplings. The fluid acts on the solid part by imposing a pressure contribute to the internal 

load of the solid. This one also acts on the fluid, because if the solid is compressed the 

holes dimension decreases and the fluid is ejected. The properties of the medium sample 

are anisotropic. These properties have been estimated thanks to the SiNuPrOs model [15, 

16]. The Darcy’s law equation is the following: 
 

  

Figure 7: screen capture from Comsol desk 

 

1. Global Definition: 
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2. Solid mechanics: 

 

 In the solid mechanics physic the following conditions are imposed: 

o Body Load:  

 

o Material properties: The elastic matrix is filled in thank to SiNuPrOs data [13, 

Figure 8: Body Load 
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14]. 

 

o Imposed charge: This part is obtained by imposing a load force Fz on the high 

and low face. Fz has been chosen in order to respect a Von Mises stress of 20.35 

MPa. The signs convection respects the reference system shown in the picture 

below. 

 
 

 

 

The applied load consists in a symmetric compression. In order to obtain it, the 

force has a sign minus in the case of the high face, and a plus for the low face. 

x 

z 

y 
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o Prescribed displacements:  

 First of all a null z-axe displacement for the median plane is imposed. Such a 

condition is coherent with the applied compression force. Logically this plane 

does not move, because in it the equilibrium between the two opposite forces 

is got.  

  

 

 

 

Figure 10: displacement imposed to the middle plane 

   (-ii-)    (-i-) 

Figure 9: charge load of the high (-i-) and the low face (-ii-) in the macroscopic domain model 
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 Middle point displacement: The middle point is the only one that is not 
allowed to move at all.  

 

 

 

 

  

 

 

 

Figure 11: displacement imposed to the middle point 
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 X- Horizontal line displacement: The horizontal line cannot move in z- and 

y-axe.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: displacement imposed to the middle x-line 
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 Y- Horizontal line displacement: This line cannot move in z- and x-axe.  

3. Darcy’s Law: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: displacement imposed to middle y-line 
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o Fluid and Matrix Properties: 

o Initial Values: 

 
 

 

 

 

 

 

 

 

 

 

Figure 14: Initial Values 
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o High Face Hydraulic Head: The pressure value occurring in the last picture has 
been determined in other study concerning the physical behavior of a 
complete femur (Rizzoli Institute, Bologna). 

o Low Face Hydraulic Head: 

 

 

 

 

 

Figure 15: High Face Hydraulic Head 
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o North-South Inflow Boundary: 

 

 

 

 

 

 

Figure 16: Low Face Hydraulic Head 

Figure 17: North-South Inflow Boundary 
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o East-West Inflow Boundary: 

 

 

 

Figure 18: East-West Inflow Boundary 
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3.1.2 Study at the microscopic domain 
The macroscopic file is analyzed in specific points to insert such data in a following file, 

the microscopic one. The coordinates of the considered points are the ones shown in the 

table below. 

 

 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 
x 0 -200 -200 -200 -200 0 -356 -356 -356 -356 -200 -200 --356 -356 

y 0 -78 78 78 -78 0 -78 78 78 -78 -78 78 78 -78 

z 143 143 143 143 143 -143 -143 -143 -143 -143 0 0 0 0 

 
Table 1: coordinates of the points taken in the macroscopic model to obtain the boundary condition for 

the following model, the microscopic domain. The values are expressed in nanometers. 

 
The displacements to impose in the microscopic domain are obtained thanks the elabora-

tion sheet and the data, which had filled in.  
In this context several equations have been built in order to find the adequate boundary 

conditions to impose in the following step. The equations have been built in accordance 

with a very simple principle (Annex A). Starting from the initial coordinates a general dis-

placement equation is calculated thanks to displacement information coming from the mac-

roscopic computation. Generally speaking a face is schematized in (A, B) coordinates. In 

the figure below a scheme showing a development in terms of faces is shown.  
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In this case the coordinates, which are involved, have to consider the microscopic domain.  
Each face is observed by an external point of view and points are counted in the positive 

orientated sense, starting from the one in the up-right corner, in anticlockwise sense.  
In the table below each face and the corresponding points with their order can be observed.  
 

Face Points 
North-High 4 − 3 − 11 − 12 

North-Low 12 − 11 − 7 − 8 

South-High 2 − 1 − 9 − 10 

South-Low 10 − 9 − 5 − 6 

West-High 1 − 4 − 12 − 9 

West-Low 9 − 12 − 8 − 5 

East-High 3 − 2 − 10 − 11 

East-Low 11 − 10 − 6 − 7 

High 1 − 2 − 3 − 4 

Low 6 − 5 − 8 − 7 
Table 2: order number to build the condition limit equations for a longitudinal compression case. 

 

To simplify the notation, in accordance with the reference system, each face has been 

called with a cardinal name (N, S, E and W). With “high” and “low” the author wants to 

indicate the specific face part, in which the geometry has been cut.  

 

 

 

P1 

P2 

P3 

P4 

P5 

P6 

P7 

P8 

P10 

P9 
P11 

P12 

Figura 19: points position scheme 
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An equation system has been built.  

 

{

∝1 𝑥𝑦 + ∝2 𝑥 +∝3 𝑦 +∝4= 𝑑1

∝1 𝑥𝑦 + ∝2 𝑥 +∝3 𝑦 +∝4= 𝑑2

∝1 𝑥𝑦 + ∝2 𝑥 +∝3 𝑦 +∝4= 𝑑3

∝1 𝑥𝑦 + ∝2 𝑥 +∝3 𝑦 +∝4= 𝑑4

 

Where d1,.., 4 and α1,., 4 are the displacements coming from the macroscopic domain compu-

tation and α1,., 4  the coefficients the author was interested to estimate. (x, y) coordinates are 

represented by the (A, B) combination points shown in the previous picture. 
The operation has been made for each direction x, y and z and for each high or low face. 

The equations may present a great simplification in the case of z-coordinate, because the 

corresponding central point’s displacements are null. In this case, in fact, two α coefficients 

would be null. In any way, also in the others cases, simplified equations would be found, 

because of the null central point’s coordinates. 
The general equations of a face defined by the points P1,.,P4 are shown in Annex A.  
The obtained displacement equations are imposed as boundary conditions in the micro-

scopic file model.  
The physics, which are involved in the microscopic domain, are three: solid mechanics, 

Darcy’s law and Brinkman equation. Depending on the kind of the analysis, different kinds 

of equations combinations have been used. To describe the interstitial system and the oste-

on, the physics solid mechanics and Darcy’s law are adopted. To model the fluid part in 

the Havers channel, Brinkman equation is used. The blood vessel in Havers channel is not 

modeled. Simply, a blood pressure defined as boundary condition, which is applied on a 

cylinder localized in the Havers channel, is considered.  
 

1. Global definitions: 

 

C_x, C_y and C_z coefficients have been introduced as multiplication factors of 
the displacements equations for the microscopic and the nanoscopic domain to 
uniform the stress in the different domain for each analyzed point.  
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2. Solid  mechanics:  

 

 

o Material properties: The matrix below has been built thanks to the SiNuPrOs™ 
Fast Osteon [13, 14] simulation program.  

 
o Initial values: The initial values are all null. 

Figure 20: Solid Mechanics application domain  
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o Volume charge: This charge shows the pressure contribution caused by Darcy’s 

law.  The gravity effect is considered in the macroscopic domain. 

 
o Imposed displacement: Since the appropriate spreadsheet, displacements are 

imposed to each face. For example, how a displacement can be imposed to the 
high face is shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The dimension is shown in order to be coherent.  

 

3. Darcy’s law: The Darcy’s law physic involves several mass fluxes to apply to each 

Figure 21: North-High face displacement 
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face and a coupling with the Brinkman physic, which would be describe in the 
following points. 

o Fluid and matrix properties: 
 

 

o  

o Initial values: 
 

Figure 22: Darcy’s law initial values 
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The pressure value, occurring in the last picture, has been determined in others 

studies concerning the physical behavior of a complete femur (Rizzoli Institute, 

Bologna).  
 

o Flux imposition: Since the data coming from the appropriate spreadsheet, where 

macroscopic data had been filled in, flux are imposed in the microscopic model. 

For example, a displacement imposed to the high face is shown in the 

picture below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
When data would be inserted in the microscopic model, the signs convention is important 

to observe. 
 

 

 

 

 

Figure 23: High- Face flux imposition 
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o Brinkman coupling: 

 

 
4. Brinkman equation: 

 

 Figure 25: screen capture from Comsol desk 

Figure 24: Brinkman coupling 
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o Fluid and matrix properties: The following properties are user defined as 
variables or as values. 

 

o Initial values: The initial values are all zero.  

o Entry and outgoing conditions: The pressure value given by the points 𝑃𝑖𝑛𝑝𝑢𝑡 
and 𝑃𝑜𝑢𝑡𝑝𝑢𝑡 is taken. The points are the central points of the high and the low 
face.  

In this case the following values have been filled in.  
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o Coupling: There is a coupling on the pressure with the function Pvaisseau, linear 

function in z variable. The function passes in the values below. 

 

 

Comsol found a problem with this coupling but, even if the author has look for it, 

any solution has been found. The physic has not been deleted, because the program 

Figure 26: Input and output pressure imposed as boundary condition in the 

Darcy's law physic (microscopic domain) 



 

 

45 

 

converges.  

  

 
Figure 27: Brinkman-Elastic problem coupling (microscopic domain) 
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3.1.3 Study at the nanoscopic domain  
To obtain the conditions to impose to the model in the nanoscopic domain, some data are 

searched in some specific points between microscopic results. The coordinates in meter are 

the ones shown in the table below: 

 

 
Table 3: coordinates of the points taken in the microscopic domain to obtain the boundary conditions to 

impose to the following model, the nanoscopic one. The values are expressed in meters. 

    
Generally speaking, the nanoscopic domain is the analysis of a collagen fiber. The analyses 

can be either a vertical or a horizontal fiber. In the case of only 0-0 orientated fibers, the 

horizontal nano analysis does not have reason to exist.  

Data about pressure, displacements and velocity field are the interesting ones. The 

boundary conditions to impose in the nanoscopic domain have been computed by applying 

the equation obtained in the same way described in paragraph 3.1.2. In this case the order 

points change as shown in the picture below. 
  

Face Points 

North 4 − 3 − 7 − 8 

South 2 − 1 − 5 − 6 

West 1 − 4 − 8 − 5 

East 3 − 2 − 6 − 7 

High 1 − 2 − 3 − 4 

Low 6 − 5 − 8 − 7 
Table 4: order number to build the condition limit equations for a longitudinal compression case. 

 

To simplify the notation, in accordance with the reference system, each face has been 

called with a cardinal name (N, S, E and W).  

The nanoscopic domain has five physics: solids mechanics, Darcy’s law, piezoelectric ef-

fect and electrostatic. The two firsts have been introduced to schematized porous-elastic re-

gions. A piezoelectric effect is to attribute to the collagen fibers and the electrostatic part is 

arose to model ions presence. 
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1. Global definition: 
 

 
C_x, C_y and C_z coefficients have been introduced as multiplication factors of 
the equations displacements for the microscopic and the nanoscopic domain to 
uniform the stress in the different domain for each analyzed point.  

 
2. Solid mechanics: 

 
o Material properties: The elastic matrix is filled in since SiNuPrOs [13, 14]. 
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o Initial values: The initial values are all zero. 

 

Figure 28: initial values to impose to a vertical fiber (solid mechanics) 
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o Body Load: There is a charge in volume given by the Darcy’s pressure (first 

coupling). 

 
o Imposed displacement: the imposed displacement are obtained from the relative 

spreadsheet and filled in the nanoscopic file, as done in the preceding domain.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Body Load imposed to a vertical fiber  

 

Figure 30: example of imposed displacement for a vertical fiber (north imposed displacement) 
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o Coupling: to guaranty continuity with the piezo-medium a displacement is 

imposed. 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Where u2, v2 and w2 are displacements, which would be obtained in the piezoelectric 

physics.  

  

 

 

Figure 31: imposed interface displacement. It is a coupling condition with the Darcy physic 
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3. Darcy’s law: 

 
o Material properties: 

 

Figure 32: physic Darcy's law for a vertical collagen fiber 
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o Initial value: The initial value in given by a null pressure.  

 
o Coupling given to the solid compression: This coupling is not active in the used 

version of Comsol, because it is neglectable. 
 

o Entry flux: Since the osteonal study, an entry flux in the north face is established. 

The data imposed is expressed by a normalized x-axe velocity. In order to provide 

such entry flux, an x-axe velocity in the points defining the north face (𝑃3 −
𝑃4 − 𝑃8 − 𝑃9 ) have been acquired and, then, normalized. 𝑣_0  is defined 

between the Comsol variable definitions.  
 

 

 

 

 
o Imposed pressure: There is an imposition of pressure to the south face. The data 

are acquired from the osteonal study.    
 

 

 

 

Figure 33: velocity imposition for the case of a vertical collagen fiber 
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4. Piezoelectric effect: a piezoelectric effect is attributed to the collagen fibers.  

 
The equations implemented are the following: 

Figure 34: pressure imposition for the case of a vertical collagen fiber 

 

 

Figure 35: piezoelectric physic for the case of a vertical collagen fiber 

 

Figure 36: comsol screenshot. Piezoelectric equations. 
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o Material properties: the properties below have been taken in order to respect the 

reference [9]. 
 

 

 
o Initial values: The initial values are all zero. 

 

Figure 37: null-potential imposition 

 



 

 

56 

 

 

o Zero charge: This condition is imposed where what to impose is not clear. 

  
o Coupling with the elastic problem: In order to guaranty the medium continuity a 

coupling between the piezoelectric and the elastic problem is imposed.  

 
 

𝑢, 𝑣, and 𝑤 have been obtained from the solid mechanics computation.   

Figure 38: Elastic-piezoelectric coupling 
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o Coupling with the electrostatic problem: On the same surface of the elastic-

piezoelectric coupling, the same potential of the electrostatic problem is also imposed. 
 

 

5. Electrostatic: this problem wants to consider an ionic presence and the medium 

nature.  

 

The equations, that  have been exploited, are the following. 

 

Figure 39: Electric Potential imposition. It is a coupling condition with the Electrostatic 
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Figure 40: screen capture from Comsol desk. Electrostatic equations. 

 
o Charge conservation:  

 
o Initial value: the initial value is represented by a null potential. 

 

o Charge density:  

 

 

Figure 41: electrostatic physic for the case of a horizontal fiber 
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o Potential imposition:  

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 43: external electric potential imposition for the case of a vertical collagen fiber 

 

Figure 42: null surface charge density for a vertical collagen fiber 
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3.1.4 Study of the piezo-electro effect 

The analysis has been done in two coupling situations. In the first, all physic (solid, piezo, 

Darcy and electrostatic) are considered. In the second only the piezo- and electro- physics 

are simulated. The simulation proves the importance of the loading aspect. The 

piezoelectric represents the piezoelectric effect contribution, which is a characteristic of a 

collagen fiber.  

           

                 

 

 

 

 

 

Figure 44: nanoscopic results concerning the difference potential at the end of collagen fibers. 

This one is important, because the text wants to investigate about the effect of a 

mechanical stress on the potential difference. Therefore, to demonstrate, that the found 

potential difference is not only coming from a resultant coupling with the solid and an 

electrostatic one, is important to show. By observing the previous pictures the author 

observed, that the piezoelectric effect is less than the other one. Therefore there is an 

evident mechanical effect. 

Activated physic Solid-Piezo-

Darcy-Electrostatic: 

          

 Max:  0.39007  µV 
 Min:  -0.23671 µV                                                                     

Activated physic Piezo-Electro: 
 

 
  Max:  0.0029287 µV 
  Min:   0.001315   µV 
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3.2 Transversal compression with vertical fiber: start of the model 
development  

The same work has been developed in the case 

of a transversal compression. 

This phase consists in an analysis similar to the 

work already described. The boundary 

conditions, the direction of applied forces and 

the architectural conformation have been 

modified. A transversal compression has been 

implemented in the macroscopic domain.       
            
The analysis goal is, as before, to explore the 

potential difference on the free boundaries 

surfaces of collagen fibers in the nanoscopic 

domain.  
            

 The data implemented as model input have 

been the same of [1] (paragraph 3.1). The changes will be analyzed in detail in the 

following paragraphs.  

3.2.1 Changes 
The original model has been modified by imposing a force compression along x-axe. In 

practice, in Comsol, the following steps have been followed to change the original 

configuration. 

  

 

 

(-ii-) 

Figure 45: pictures showing the way the 

compression forces act on the specimen in 

the two kinds of analyses the text talks 

about. Figure (-i-) shows a longitudinal 

compression and figure (-ii-) a transversal 

one. 

 (-i-) 
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Figure 46: north face to which a force Fz is applied. 

Figure 47: south face to which -Fz is applied 
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In these pictures the charge of north and south parts is shown. The north part is outlined by 

3 − 4 − 9 − 8 points and the south one by  4 − 5 − 6 − 7 ones.  

The pictures below show the four changed prescribed displacement conditions.  

 

 

  
 

Figure 48: median plan to which a prescribed displacement is imposed. 
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Figure 49: middle point to which a prescribed displacement is applied 

 

Figure 50: middle z-line to which a prescribed displacement is applied. 
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The physics “Darcy’s law” has not been changed compared with the macroscopic analysis 

in a longitudinal compression.  

Another important change to remark is the one led to the condition limits equations to 

impose to the microscopic model. The microscopic geometry has been split in a vertical 

direction in spite of a horizontal one. The same choice has been made for a flexion stress. 

Such analysis will be described in the following paragraphs. 

Figure 51: middle y-line to which a prescribed displacement is imposed 
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The new split configuration is shown in the picture below. 

 

The macro-micro spreadsheet has been changed in accordance with the equations shown in 

Annex 2. The points, where data had been acquired, in the macro domain are the 

following: 

 P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 
x 0 -200 -200 -200 -200 0 -356 -356 -356 -356 -278 -278 -278 -278 

y 0 -78 78 78 -78 0 -78 78 78 -78 -78 78 78 -78 

z 143 143 143 143 143 -143 -143 -143 -143 -143 143 143 -143 -143 

Table 5: coordinates of the points taken in the macroscopic domain to obtain the boundary conditions to 

impose to the following model, the microscopic one. The values are expressed in meters. 

 

The nanoscopic domain did not require any change from the geometry point of view. The 

input information about pressure and displacement field coming from the preceding files 

have had the necessity to be modified. The author proceeded in the same way as in the case 

of a longitudinal loading.  
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3.2.2 Study of the piezo-electro effect 

The potential difference coming from the nanoscopic domain is shown in the picture below 

for a transversal compression in two difference coupling situations. 

 

        
 

 
 

 

 

 
Figure 52: nanoscopic results for a transversal compression in two different coupling situations. 

 
The piezoelectric effect is less than the mechanical one for the first two analysis cases. The 

resulting potential difference derives only from the piezoelectric effect induced by the 

solid.  

3.2.2 Comparison between longitudinal and transversal  compression 
 

From a preliminary analysis a difference in terms of PD has been observed. For a 

longitudinal compression a PD of 6.2678E-7 V has been obtained and for the transversal 

one about 3.21784E-8 V.  

Between the longitudinal and transversal compression of fibers 0-0 there is difference of a 

factor 20. It is coherent with the fact that the PD is a possible signal to start the remodeling 

phenomenon. 

The next step of the analysis has been the implementation of various architectures 

(depending on osteon nature) analyses both for the longitudinal both for the transversal 

compression. Data will be discuss in detail for all kind of  implemented architectures in 

paragraph 3.4.   
 

The results coming from the computation are shown in the following tables. 

 

 

Activated physic Solid-Piezo-

Darcy-Electrostatic: 

          

Min: 0.031004     µV                                   

Max: 0.0011744  µV  

Activated physic Piezo-Electro: 
  
 Max: 0.0029287 µV 
 Min:  0.001315   µV 
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Vertical [V] Horizontal [V] 

(min, max) PD (min, max) PD 

Longitudinal 

compression 

0-0 3.9007E-7 
6.2678E-7  

 -2.3671E-7 

0-90 2.1527E-7 
3.3073E-7 

4.0198E-7 
6.315E-7 

 -1.1446E-7 -2.2055E-7 

O 2.1766E-8 
1.23696E-7 

1.9748E-7 
4.231E-7 

 -1.0193E-7 -3.2567E-7 

90-90 
 

1.6243E-7 
2.455E-7 

 -8.3078E-7 
 

Table 6: results in terms of potential difference for transversal compression 

 

 

 
Vertical [V] Horizontal [V] 

(min, max) PD (min, max) PD 

Transversal 

compression 

 

0-0 3.1004E-8 
3.2178E-8  

 1.1744E-9 

0-90 3.2969E-8 
3.4274E-8 

2.4634E-6 
4.865E-6 

 1.1305E-9 -2.4024E-6 

O 2.9707E-8 
3.0966E-8 

2.1895E-6 
5.335E-6 

 1.1598E-9 -2.1457E-6 

90-90 
 

1.9599E-6 
3.865E-6 

 -1.9059E-6 

 
Table 7: results in terms of potential difference for longitudinal compression 

 
By comparing all the results coming from an analysis of different kinds of fibers for a 

longitudinal and transversal stress, an incoherence came out. The longitudinal compression 

does not show any relevant difference between the different kinds of fibers. In the case of a 

transversal compression, the horizontal fibers show the PD about 1µV versus a 0.01µV for 

the vertical fibers.  

Probably a full longitudinal stress is not a good physiological representative one. Probably, 

an human femur does not allow a completely vertical applied stress. The suggested idea 

has been that such a stress is a too much big simplification of the biological loading 

applied on a bone specimen. In fact, a femur is not subjected to a completely vertical 

compression, but also to a horizontal force. The analysis has been, then, modified to 

simulate a flexion stress. 
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 3.3 Flexion  

This kind of analysis has required a modification in the imposed displacements and in the 

kind of force to apply in the macroscopic domain. Moreover, as consequence of the 

modification of the imposed displacements, also the boundary condition equations to fill in 

the microscopic model spreadsheet have been necessary to modify. 

The changings in the macroscopic domain have consisted in an imposition force (0.1 of the 

longitudinal force) in the horizontal direction (x-axe).  

 

Figure 53: high face load for a flexion case 

 

Figure 54: low face load for a flexion case 
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In order to respect the physic of a flexion stress a null z- and y-displacement to the middle 

(xy)-plan and a total null displacement to the middle point have been imposed. Moreover a 

y null-displacement to the middle (xz)-plane has been imposed.  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 55: imposed displacement to the median plane for a flexion case 

 

Figure 56: imposed displacement to the middle point 
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After the macroscopic computation, the author, by observing the stress distribution on the 

specimen, has detected a parabolic distribution of stress. That is why an analysis in 14 

points for the microscopic domain, as the one lead in the case of a longitudinal stress, has 

been necessary. The same kind of equations of the longitudinal case have been taken, but 

since the imposed displacements have been changed, also the equation had to. The limit 

condition equations are shown in Annex C. 

The microscopic and nanoscopic domains did not have any change compared to the others 

implemented cases.  

Figure 57: imposed displacement to the (yz)-middle plan for a flexion case 
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3.3.1 Potential  difference coming from the nanoscopic domain in a 
flexion stress analysis 

The results obtained, by imposing a flexion, stress may be resumed by the picture below: 

  

                                                      

                                                      

 

 

 

 

 

 
In this case the analysis is satisfactory. The PD relevant increases than the one in a 

longitudinal stress applied on 0-0 full fibers specimen. The author tried, then, to look for 

others kinds of architecture. The next analyses have been described in the paragraphs 

below. The author implemented also a standalone program to simplify the multiscale 

model implementation. This one would be described at as the last one.    

Activated physic Solid-Piezo-

Darcy-Electrostatic: 

          

Max:  -25.743 µV 

Min:    17.254 µV 

Figure 59: PD results for a flexion case 
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3.4 Others architectures 
Starting from these preliminary results, others kinds of architectures have been analyzed in 

order to confirm what said. The different kinds of analyses are shown, with the name of 

each file they are composed of, in the list below.  
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In the macroscopic, microscopic, and nanoscopic domain, data have been changed in order 

to respect the new architectures. The following pictures show the data adopted in each 

analyses case. Each table represents a SiNuPrOs screenshot. The geometry is the same 

shown in paragraph 3.1.  
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Macroscopic general geometry: 
 

 
 
Case of the presence of 100% 90-90 orientated fibers: 
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Case of the presence of 100% 0-90 orientated fibers: 
 

 
 

 
 

       
Case of the presence of 100% O orientated fibers:  
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Microscopic and nanoscopic general geometry: 
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Case of the presence of 100% of osteon 90-90: 

 

 

 

 

 

  Case of the presence of 100% of osteon 0-90: 
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Case of the presence of 100% of osteon O: 

 

 

 The reader could ask himself why there exist so many osteons. That is why the 

microscopic model consists in the analysis of a single osteon. The analysis split in different 

parts is necessary. A part for each osteon, which composes the architecture. Moreover each 

osteon file has one or two corresponding nanoscopic files. In fact, even if the geometry and 

the data are the same, there exist two different files to describe horizontal and vertical 

fibers. Depending on the fiber type contained inside the osteon, the analysis may require a 

vertical or a horizontal or both studies. The relationships between the microscopic and the 

nanoscopic domains to consider are briefly shown below: 

 Osteon 0-0: vertical fibers 

 Osteon 90-90: horizontal fibers 

 Osteon 0-90: both vertical and horizontal fibers 

 Osteon O: both vertical and horizontal fibers  

In the case of a horizontal fiber, the analysis in the nanoscopic scale is as the one already 

seen for the case of a vertical fiber. Since now a different fiber is implemented, also a 

different geometry must be considered. 

 

 

 

 

 

 

 

 

Figure 60: model of a horizontal fiber 
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The physics impositions are very similar to these already explained in paragraph 3.1 and 

3.2, but these have been changed in order to respect the new geometry configuration.   

 

  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 61: initial values to impose to a horizontal fiber 

 

Figure 62: imposed interface displacement. It is a coupling condition with the Darcy physic 

 



 

 

85 

 

 

 

 

 

 

 

 

 

 

      

      
 

Figure 63: example of imposed displacement for a horizontal fiber (north imposed displacement) 

 

Figure 64: volume charge to impose to a horizontal fiber 

 



 

 

86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

 

Figure 65: physic Darcy's law 

 

Figure 66: no entry flow faces for the case of a horizontal fiber for the Darcy's law 
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Figure 67: pressure imposition for the case of a horizontal fiber 

 

Figure 68: velocity imposition for the case of a horizontal fiber 

 

Figure 69: piezoelectric physic for the case of a horizontal fiber  
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Figure 70: null charge for the case of a horizontal fiber 

 

Figure 71: initial values for the case of a horizontal fiber 

 

Figure 72: Elastic coupling physic 
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Figure 73: Electric Potential imposition. It is a coupling condition with the Electrostatic 
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Figure 74: electrostatic physic for the case of a horizontal fiber 

 

Figure 75: null charge for the case of a horizontal fiber 
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Figure 77: external electric potential imposition for the case of a horizontal fiber 

 

Figure 76: charge density imposition for the case of a horizontal fiber 

 

Figure 78: example of PD signal in the case of a collagen horizontal fiber  
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4. Matlab-Comsol implementation  
 

 

 
                             1 
 

 

 

 

                             2 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ModelImplementation.m  

User 

 Configuration ? 

  Analysis type ? 

macro_model.m 

(After the computation it 

saves data in file.dat) 

SiNuPrOs 

02 Excel spreadsheet 

1 writes the percentage configuration in the SiNuPrOs file. 

Then it reads the resulting elastic matrix and call the 

macro_model.m file by giving him the information about the 

chosen architecture and the analysis case. 

1 loads macro data and writes such information in the 02 

Excel spreadsheet, whose name depends on the analysis 

case.  

END 

1 implements a “for cycle” to 

compute the micro and the 

nano model scales. Four elastic 

matrices are defined. In the “for 

cycle” the initial architecture 

vector, chosen by the user, is 

analyzed. For each osteon kind 

the micro_model and the 

nano_model are called by 

specifying the elastic matrix 

and the case of analysis. 

 

04 Excel 

Spreadsheet 

micro_model.m 

 
(After the computation it 

saves data in file.dat) 

Transcription.m 

 It loads micro data and 

writes such information 

in the 04 Excel 

spreadsheet  

nano_model_vert.m 

 
nano_model_horiz.

m 
This phase concerns both 

the loading of the limit 

conditions equation both 

the computation of the nano 

model 
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Once the multiscale model, the text talked about, has been verified, the author 

implemented a Matlab program in order to simplify the used model.  

The programming environment has been Comsol Multiphysic 4.2 linked with Matlab. The 

author adopted both a technique of reverse engineering by exporting Comsol file and by 

implementing them in Matlab code, both loading Comsol file from Matlab function and by 

modifying them. This kind of approach is due to the complexity of the program, it has been 

necessary to implement.   

The program is composed by: 

 

1) SiNuPrOs file: file which allows the user to choose a fiber architecture configuration. It 

is a standalone program, to which the user can access thanks to the 

ModelImplementation.m file. The instructions given during the computation have to be 

followed. The user can access to the fiber configuration only in this step study. The 

dimension is fixed and cannot be changed, because the access to the micro and nano 

architectural data is not previewed. For that reason the advice is to not change anything in 

the data filled in SiNuPrOs datasheet. In the contrary case, to change data in the others    

Matlab files would be necessary, but most of all changing the defined geometry of the 

Comsol model file.   
 

2) ModelImplementation.m: m-file interacting with the user by video string messages. It is 

the responsible of the interaction between the several parts, the program is composed of. In 

this phase the user can choose the kind of architecture to analyze and the type of stress to 

apply to the specimen. 
 

  
An important remark is, that this program has been implemented mainly for the following 

case: 

   2. a) longitudinal stress 
   2. b) transversal stress 
   2. c) flexion stress 
The user has not to change the files, because the program will give an error message and 

will stop. Previous developments for such a program would be the extension to all possible 

analysis cases. How to properly implement them is really important, because the limit 

conditions and the micro file depend from the stress the user decides to apply to the 

specimen.  

   

3) macro_model.m: matlab function developing the macro analysis. This function has as 
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arguments an elastic matrix and a variable n indicating the case 1), 2) or 3) of the stress 

configuration. 
 

4) micro_model.m: matlab function developing the micro analysis. This function has as 

arguments an elastic matrix and a variable n indicating the case 1), 2) or 3) of the stress 

configuration. This file contains a code, which accesses to a Comsol 03 file, and modifies 

it. After the modification a message would be displayed. Such a message invites the user to 

compute the micro file opening Comsol environment. This kind of choice has been taken, 

because this file takes too much time to turn in Matlab.  
In Comsol 300-600 seconds would be necessary the program to turn. After that, the user 

has to save the 03 Comsol file and to close it. Then, he has to push Enter and the Matlab 

analysis will prosecute.  

 

5) Transcription.m: matlab function loading the micro data and writing them in the 04 

excel datasheet for the following nanoscopic analysis. 
 

6) nano_model_vert.m: matlab function developing the nano vertical analysis. This 

function has as argument an elastic matrix built in the ModelImplementation.m. 
After the computation, the program returns. If the user would like to make previous 

analyses, he has to consider that the obtained data will be subscribed. Then, he has to copy 

them in another folder to save the work. 

 

7) nano_model_horiz.m: matlab function developing the nano horizontal analysis. This 

function has as argument an elastic matrix built in the ModelImplementation.m. 
After the computation, the program returns. If the user would like to make previous 

analyses, he has to consider that the obtained data will be subscribed. Then, he has to copy 

them in another folder to save the work. 

 

For a more detailed description of the Matlab-Comsol implementation, the reader has to 

read the code of the described program.  
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5. Results  
The analysis results coming from the Matlab-Comsol model computation are 

shown in the tables below: 

 

 

Vertical [V] Horizontal [V] 

(min, max) PD (min, max) PD 

Longitudinal 

compression 

0-0 3.9007E-7 
6.2678E-7  

 -2.3671E-7 

0-90 2.1527E-7 
3.3073E-7 

4.0198E-7 
6.315E-7 

 -1.1446E-7 -2.2055E-7 

O 2.1766E-8 
1.23696E-7 

1.9748E-7 
4.231E-7 

 -1.0193E-7 -3.2567E-7 

90-90 
 

1.6243E-7 
2.455E-7 

 -8.3078E-7 

 

 
Vertical [V] Horizontal [V] 

(min, max) PD (min, max) PD 

Transversal 

compression 

 

0-0 3.1004E-8 
3.2178E-8  

 1.1744E-9 

0-90 3.2969E-8 
3.4274E-8 

2.4634E-6 
4.865E-6 

 1.1305E-9 -2.4024E-6 

O 2.9707E-8 
3.0966E-8 

2.1895E-6 
5.335E-6 

 1.1598E-9 -2.1457E-6 

90-90 
 

1.9599E-6 
3.865E-6 

 -1.9059E-6 

 

 
Vertical [V] Horizontal [V] 

(min, max) PD (min, max) PD 

Flexion 

0-0 1.7254E-5 
3.2997E-5  

 -2.5743E-5 

0-90 3.4198E-7 
7.5341E-7 

2.1645E-6 
4.493E-6 

 -4.0143E-7 -2.3288E-6 

O 1.4578E-5 
2.9579E-5 

4.6444E-5 
9.167E-5 

 -1.4001E-5 -4.5231E-5 

90-90 
 

3.1365-6 
5.768E-6 

 -2.6324-6 
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6. Conclusion  
By comparing the data obtained in the analyses we can conclude that:  

1. The piezoelectric effect is less than the mechanical one for the longitudinal and 

transversal analysis cases. That is really important, because the analysis wants to 

investigate about a mechanical effect. The resulting potential difference derives only 

from the piezoelectric effect induced by the solid.  

2. Between the longitudinal and the transversal compression of fibers 0-0 there is 

difference of a factor 20. This result is consistent with the fact that the PD is a possible 

signal to start the remodeling phenomenon. 

3. By comparing all results coming from an analysis of different kinds of fibers for a 

longitudinal and a transversal stress an incoherence came out. The longitudinal 

compression does not show any relevant difference between the different kinds of 

fibers. In the case of a transversal compression, the horizontal fibers show the PD 

about 1µV versus a 0.01µV for the vertical fibers. The incoherence is in the 

longitudinal compression. 

4. Probably a full longitudinal stress is not a good physiological representative one. 

Probably an human femur does not allow a completely vertical applied stress. In fact, 

there is not a so relevant difference between the PD coming from different kinds of 

fibers loaded with a longitudinal compression. The conclusion is that a femur does not 

allow a completely vertical applied stress.  

5. In the case of a flexion stress the situation gets more complicated. In the case of 

uncoupled fibers, the vertical ones are the preferred with a PD about 10µV. This result 

confirms the point 3. Such a PD value, in fact, is bigger than the corresponding in a 

transversal compression. It is another proof of the role of the PD signal as the leader of 

the remodeling phenomenon.  

6. The flexion stress is different from the other kind of stress. In such a bone load, also 

the horizontal fibers would be solicited. In this case, in fact, the 90-90 fibers show a 

relevant PD of the same order of a transversal compression. Moreover a flexion stress 

shows the greatest results in terms of PD with the coupled fibers. In particular, the case 

of O fibers is to remark. This one shows a 10µV value for each orientated fiber. This 

indicates that the preferred case is the coupled one. There is any preference for vertical 

or horizontal one in this case, but they both are of the same order of magnitude.  
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7. Future developments 
Certainly the model, exposed in this text, needs a magnification in terms of the 

implemented code to integrate more analysis cases. After that, an  experimental 

validation both of SiNuPrOs simulation program both of the bone remodeling model 

would be necessary. In fact, choices, as the one to uniform the stress in different 

domains by multiplying the displacement equations, would be disputable.  

The described model is only a mechanical one. The biological integration would be 

make it complete and useful in the bone application domain.    
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Annex A 
For a general face defined by the points P1..P4 the equations are shown in the table below: 

x, y- coordinate (high)  

Coefficients  

 ∝1𝑥,𝑦= (
1

2𝐴𝐵
) [d1x, y–d2x, y+d3x, y-d4x, y] 

 ∝2𝑥,𝑦= (
1

2𝐴
) [-d3x, y+d4x, y] 

 ∝3𝑥,𝑦= (
1

2𝐵
) [d1x, y +d2x, y –d3x, y-d4x, y] 

 ∝4𝑥,𝑦= (
1

2
) [d3x, y-d4x, y] 

Face equation 𝑁𝑥,𝑦 = ∝1𝑥,𝑦 𝑦𝑧 + ∝2𝑥,𝑦 𝑦 +∝3𝑥,𝑦 𝑧 +∝4𝑥,𝑦 

 

z- coordinate (high) 

Coefficients  

 ∝1z
= (

1

4𝐴𝐵
) [d1 z–d2z] 

 ∝2z
= 0 

 ∝3z
= (

1

4𝐵
) [d1z +d2z] 

 ∝4z
= 0 

Face equation 𝑁𝑧 = ∝1z
𝑦𝑧 + ∝2z

𝑦 +∝3z
𝑧 +∝4z

 

 

x, y- coordinate (low) 

Coefficients  

 ∝1𝑥,𝑦= (
1

2𝐴𝐵
) [d1x, y–d2x, y+d3x, y-d4x, y] 

 ∝2𝑥,𝑦= (
1

2𝐴
) [d1x, y-d2x, y] 
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 ∝3𝑥,𝑦= (
1

2𝐵
) [d1x, y +d2x, y –d3x, y-d4x, y] 

 ∝4𝑥,𝑦= (
1

2
) [d1x, y+d2x, y] 

Face equation 𝑁𝑥,𝑦 = ∝1𝑥,𝑦 𝑦𝑧 + ∝2𝑥,𝑦 𝑦 +∝3𝑥,𝑦 𝑧 +∝4𝑥,𝑦 

 

z- coordinate (low) 

Coefficients  

 ∝1z
= (

1

4𝐴𝐵
) [d3 z–d4 z] 

 ∝2z
= 0 

 ∝3z
= (

1

4𝐵
) [-d3 z –d4 z] 

 ∝4z
= 0 

Face equation 𝑁𝑧 =∝1𝑧
𝑦𝑧 +∝2z

𝑦 +∝3𝑧
𝑧 +∝4z

 

 
The final coefficients and equations for the specific faces can be observed in the table be-

low: 

x, y- North-High face  

Coefficients  

 ∝1𝑥,𝑦= (
1

2𝐴𝐵
) [d4x, y–d3x, y+d11x, y-d12x, y] 

 ∝2𝑥,𝑦= (
1

2𝐴
) [-d11x, y+d12x, y] 

 ∝3𝑥,𝑦= (
1

2𝐵
) [d4x, y +d3x, y –d11x, y-d12x, y] 

 ∝4𝑥,𝑦= (
1

2
) [d11x, y-d12x, y] 

Face equation 𝑁𝑥,𝑦 = ∝1𝑥,𝑦 𝑦𝑧 + ∝2𝑥,𝑦 𝑦 +∝3𝑥,𝑦 𝑧 +∝4𝑥,𝑦 

 

z- North-High face  

Coefficients  
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 ∝1z
= (

1

4𝐴𝐵
) [d4 z–d3z] 

 ∝2z
= 0 

 ∝3z
= (

1

4𝐵
) [d4z +d3z] 

 ∝4z
= 0 

Face equation 𝑁𝑧 = ∝1z
𝑦𝑧 + ∝2z

𝑦 +∝3z
𝑧 +∝4z

 

 

x-, y- East-High face 

Coefficients  

 ∝1𝑥,𝑦= (
1

2𝐴𝐵
) [d3x, y–d2x, y+d10x, y-d11x, y] 

 ∝2𝑥,𝑦= (
1

2𝐴
) [–d10x, y+d11x, y] 

 ∝3𝑥,𝑦= (
1

2𝐵
) [d3x, y+d2x, y–d10x, y-d11x, y] 

 ∝4𝑥,𝑦= (
1

2
) [d10x, y-d11x, y] 

Face equation 𝐸𝑥,𝑦 = ∝1𝑥,𝑦 𝑥𝑧 + ∝2𝑥,𝑦 𝑥 +∝3𝑥,𝑦 𝑧 +∝4𝑥,𝑦 

 

z-East-High face 

Coefficients  

 ∝1z
= (

1

2𝐴𝐵
) [d3z–d2z] 

 ∝2z
= 0 

 ∝3z
= (

1

2𝐵
) [d3z+d2z] 

 ∝4z
= 0 

Face equation 𝐸𝑧 = ∝1z
𝑥𝑧 + ∝2z

𝑥 +∝3z
𝑧 +∝4z
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x-, y- West-High face 

Coefficients  

 ∝1𝑥,𝑦= (
1

2𝐴𝐵
) [d1x, y–d4x, y+d12x, y-d9x, y] 

 ∝2𝑥,𝑦= (
1

2𝐴
) [–d12x, y+d9x, y] 

 ∝3𝑥,𝑦= (
1

2𝐵
) [d1x, y+d4x, y–d12x, y-d9x, y] 

 ∝4𝑥,𝑦= (
1

2
) [d12x, y-d9x, y] 

Face equation 𝑊𝑥,𝑦 = ∝1𝑥,𝑦 𝑥𝑧 + ∝2𝑥,𝑦 𝑥 +∝3𝑥,𝑦 𝑧 +∝4𝑥,𝑦 

 

z-West-High face 

Coefficients  

 ∝1z
= (

1

2𝐴𝐵
) [d1 z-d4z] 

 ∝2z
= 0 

 ∝3z
= (

1

2𝐵
) [–d1z-d4z] 

 ∝4𝑧
= 0 

Face equation 𝑊𝑧 = ∝1z
𝑥𝑧 + ∝2z

𝑥 +∝3z
𝑧 +∝4𝑧

 

 

x-, y- South-High face 

Coefficients  

 ∝1𝑥,𝑦= (
1

2𝐴𝐵
) [d2x, y–d1x, y+d9x, y-d10x, y] 

 ∝2𝑥,𝑦= (
1

2𝐴
) [–d9x, y+d10x, y] 

 ∝3𝑥,𝑦= (
1

2𝐵
) [d2x, y+d1x, y–d5x, y-d6x, y] 



 

 

109 

 

 ∝4𝑥,𝑦= (
1

2
) [d9x, y-d10x, y] 

Face equation 𝑆𝑥,𝑦 = ∝1𝑥,𝑦 𝑦𝑧 + ∝2𝑥,𝑦 𝑦 +∝3𝑥,𝑦 𝑧 +∝4𝑥,𝑦 

 

z-South-High face 

Coefficients  

 ∝1z
= (

1

2𝐴𝐵
) [d2z–d1z] 

 ∝2z
= 0 

 ∝3𝑧
= (

1

2𝐵
) [d2z+d1z] 

 ∝4𝑧
= 0 

Face equation 𝑆𝑧 = ∝1z
𝑦𝑧 + ∝2z

𝑧 +∝3𝑧
𝑧 +∝4𝑧

 

 

x-, y- North-Low face  

Coefficients  

 ∝1𝑥,𝑦= (
1

2𝐴𝐵
) [d2x, y–d11x, y+d7x, y-d8x, y] 

 ∝2𝑥,𝑦= (
1

2𝐴
) [d2x, y-d11x, y] 

 ∝3𝑥,𝑦= (
1

2𝐵
) [d2x, y +d11x, y –d7x, y-d8x, y] 

 ∝4𝑥,𝑦= (
1

2
) [d2x, y+d11x, y] 

Face equation 𝑁𝑥,𝑦 = ∝1𝑥,𝑦 𝑦𝑧 + ∝2𝑥,𝑦 𝑦 +∝3𝑥,𝑦 𝑧 +∝4𝑥,𝑦 

 

z- North-Low face  

Coefficients  

 ∝1z
= (

1

4𝐴𝐵
) [d7 z–d8 z] 
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 ∝2z
= 0 

 ∝3z
= (

1

4𝐵
) [-d7 z -d8 z] 

 ∝4z
= 0 

Face equation 𝑁𝑧 =∝1𝑧
𝑦𝑧 +∝2z

𝑦 +∝3𝑧
𝑧 +∝4z

 

 

x-, y- East-Low face 

Coefficients  

 ∝1𝑥,𝑦= (
1

2𝐴𝐵
) [d11x, y–d10x, y+d9x, y-d7x, y] 

 ∝2𝑥,𝑦= (
1

2𝐴
) [d11x, y-d10x, y] 

 ∝3𝑥,𝑦= (
1

2𝐵
) [d11x, y+d10x, y–d9x, y-d7x, y] 

 ∝4𝑥,𝑦= (
1

2
) [d10x, y+d11x, y] 

Face equation 𝐸𝑥,𝑦 = ∝1𝑥,𝑦 𝑥𝑧 + ∝2𝑥,𝑦 𝑥 +∝3𝑥,𝑦 𝑧 +∝4𝑥,𝑦 

 

z-East-Low face 

Coefficients  

 ∝1z
= (

1

2𝐴𝐵
) [d9 z–d7 z] 

 ∝2z
= 0 

 ∝3z
= (

1

2𝐵
) [-d9z-d7z] 

 ∝4z
 = 0 

Face equation 𝐸𝑧 = ∝1z
𝑥𝑧 + ∝2z

𝑥 +∝3z
𝑧 +∝4z
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x-, y- West-Low face 

Coefficients  

 ∝1𝑥,𝑦= (
1

2𝐴𝐵
) [d9x, y–d2x, y +d8x, y -d5x, y] 

 ∝2𝑥,𝑦= (
1

2𝐴
) [–d8x, y +d5x, y] 

 ∝3𝑥,𝑦= (
1

2𝐵
) [d9x, y +d2x, y–d8x, y -d5x, y] 

 ∝4𝑥,𝑦= (
1

2
) [d8x, y-d5x, y] 

Face equation 𝑊𝑥,𝑦 = ∝1𝑥,𝑦 𝑥𝑧 + ∝2𝑥,𝑦 𝑥 +∝3𝑥,𝑦 𝑧 +∝4𝑥,𝑦 

 

z-West-Low face 

Coefficients  

 ∝1z
= (

1

2𝐴𝐵
) [d8z-d5z] 

 ∝2z
= 0 

 ∝3𝑧
= (

1

2𝐵
) [–d8z-d5z] 

 ∝4z
= 0 

Face equation 𝑊𝑧 = ∝1𝑧
𝑥𝑧 + ∝2z

𝑥 +∝3z
𝑧 +∝4z

 

 

x-, y- South-Low face 

Coefficients  

 ∝1𝑥,𝑦,𝑧= (
1

2𝐴𝐵
) [d10x, y, z–d9x, y, z+d5x, y, z-d6x, y, z] 

 ∝2𝑥,𝑦,𝑧= (
1

2𝐴
) [d10x, y, z -d9, y, z] 

 ∝3𝑥,𝑦,𝑧= (
1

2𝐵
) [d10x, y, z+d9x, y, z–d5x, y, z-d6x, y, z] 
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 ∝4𝑥,𝑦,𝑧= (
1

2
) [d10x, y, z+d9x, y, z] 

Face equation 𝑆𝑥,𝑦,𝑧 = ∝1𝑥,𝑦,𝑧 𝑦𝑧 + ∝2𝑥,𝑦,𝑧 𝑦 +∝3𝑥,𝑦,𝑧 𝑧 +∝4𝑥,𝑦,𝑧 

 

z-South-Low face 

Coefficients  

 ∝1𝑥,𝑦,𝑧= (
1

2𝐴𝐵
) [d5x, y, z–d6x, y, z] 

 ∝2𝑥,𝑦,𝑧= 0 

 ∝3𝑥,𝑦,𝑧= (
1

2𝐵
) [-d5x, y, z-d6x, y, z] 

 ∝4𝑥,𝑦,𝑧= 0 

Face equation 𝑆𝑥,𝑦,𝑧 = ∝1𝑥,𝑦,𝑧 𝑦𝑧 + ∝2𝑥,𝑦,𝑧 𝑧 +∝3𝑥,𝑦,𝑧 𝑧 +∝4𝑥,𝑦,𝑧 

 

High face 

Coefficients  

 ∝1𝑥,𝑦,𝑧= (
1

4𝐴𝐵
) [d1x, y, z–d2x, y, z+d3x, y, z-d4x, y, z] 

 ∝2𝑥,𝑦,𝑧= (
1

4𝐴
) [d1x, y, z–d2x, y, z–d3x, y, z+d4x, y, z] 

 ∝3𝑥,𝑦,𝑧= (
1

4𝐵
) [d1x, y, z+d2x, y, z–d3x, y, z-d4x, y, z] 

 ∝4𝑥,𝑦,𝑧= (
1

4
) [d1x, y, z +d2x, y, z +d3x, y, z-d4x, y, z] 

Face equation 𝐻𝑥,𝑦,𝑧 = ∝1𝑥,𝑦,𝑧 𝑥𝑦 + ∝2𝑥,𝑦,𝑧 𝑥 +∝3𝑥,𝑦,𝑧 𝑦 +∝4𝑥,𝑦,𝑧 

 

Low face 

Coefficients  

 ∝1𝑥,𝑦,𝑧= (
1

4𝐴𝐵
) [d6x, y, z–d5x, y, z+d8x, y, z-d7x, y, z] 
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 ∝2𝑥,𝑦,𝑧= (
1

4𝐴
) [d6x, y, z–d5x, y, z–d8x, y, z+d7x, y, z] 

 ∝3𝑥,𝑦,𝑧= (
1

4𝐵
) [d6x, y, z+d5x, y, z–d8x, y, z-d7x, y, z] 

 ∝4𝑥,𝑦,𝑧= (
1

4
) [d6x, y, z +d5x, y, z +d8x, y, z-d7x, y, z] 

Face equation 𝐿𝑥,𝑦,𝑧 = ∝1𝑥,𝑦,𝑧 𝑥𝑦 + ∝2𝑥,𝑦,𝑧 𝑥 +∝3𝑥,𝑦,𝑧 𝑦 +∝4𝑥,𝑦,𝑧 
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Annex B 
 

For a general face defined by the points P1..P4 the equations are shown in the table below: 

x- coordinate (left)  

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [–d2x +d3x] 

 ∝2𝑥
= (

1

2𝐴
) [-d2x -d3x] 

 ∝3𝑥
= 0 

 ∝4𝑥
= 0 

Face equation 𝑁𝑥,𝑦 = ∝1𝑥
𝑦𝑧 + ∝2𝑥

𝑦 +∝3𝑥
𝑧 +∝4𝑥

 

 

y-,z- coordinate (left) 

Coefficients  

 ∝y,z= (
1

4𝐴𝐵
) [d1y, z–d2 y, z+d3y, z-d4y, z] 

 ∝2z
= (

1

2𝐴
) [d1y, z–d2y, z+d3y, z-d4y, z] 

 ∝3z
= (

1

4𝐵
) [d1y, z –d4y, z] 

 ∝4z
= (

1

2
) [d1y, z+d4y, z] 

Face equation 𝑁𝑧 = ∝1y,z
𝑦𝑧 + ∝2𝑦,z 𝑦 +∝𝑦,𝑧  𝑧 +∝4 𝑦, z 

 

x - coordinate (right) 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d1x-d4x] 

 ∝2𝑥
= (

1

2𝐴
) [d1x+d4x] 



 

 

116 

 

 ∝3𝑥
= 0 

 ∝4𝑥
= 0 

Face equation 𝑁𝑥,𝑦 = ∝1𝑥,𝑦 𝑦𝑧 + ∝2𝑥,𝑦 𝑦 +∝3𝑥,𝑦 𝑧 +∝4𝑥,𝑦 

 

y-, z- coordinate (right) 

Coefficients  

 ∝1z
= (

1

4𝐴𝐵
) [d1x, y–d2x, y+d3x, y-d4x, y] 

 ∝2z
= (

1

2𝐴
) [d1x, y–d2x, y+d3x, y-d4x, y] 

 ∝3z
= (

1

2𝐵
) [d2 z –d3z] 

 ∝4z
= (

1

2
) [d2 z +d3z] 

Face equation 𝑁𝑧 =∝1𝑧
𝑦𝑧 +∝2z

𝑦 +∝3𝑧
𝑧 +∝4z

 

 

The equations for the specific faces are shown in the tables below: 

North face  

Coefficients  

 ∝1= (
1

4𝐴𝐵
) [d4x–d3x+d7x-d8x] 

 ∝2= (
1

4𝐴
) [d4x–d3x-d7x+d8x] 

 ∝3= (
1

4𝐵
) [d4x +d3x –d7x-d8x] 

 ∝4= (
1

4
) [d4x+d3x+d7x+d8x] 

Face equation 𝑁𝑥 = ∝1𝑥
𝑦𝑧 + ∝2𝑥

𝑦 +∝3𝑥
𝑧 +∝4𝑥

 

 

South face 
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Coefficients  

 ∝1= (
1

2𝐴𝐵
) [d2x–d1x+d5x-d6x] 

 ∝2= (
1

2𝐴
) [d2x–d1x-d5x+d6x] 

 ∝3= (
1

2𝐵
) [d2x+d1x-d5x-d6x] 

 ∝4= (
1

2
) [d2x+d1x+d5x+d6x] 

Face equation 𝑆𝑥 = ∝1𝑥
𝑦𝑧 + ∝2𝑥

𝑦 +∝3𝑥
𝑧 +∝4𝑥

 

 

x -East-Left face 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [–d2x+d6x] 

 ∝2𝑥
= (

1

2𝐴
) [–d2x-d6x] 

 ∝3𝑥
= 0 

 ∝4𝑥
= 0 

Face equation 𝐸𝑥 = ∝1𝑥
𝑥𝑧 + ∝2𝑥

𝑥 +∝3𝑥
𝑧 +∝4𝑥

 

 

y-, z- East Left face 

Coefficients  

 ∝1y,z= (
1

2𝐴𝐵
) [d10y, z-d2y, z+d6y, z-d11y, z] 

 ∝2y,z
= (

1

2𝐴
) [d10y, z-d2y, z-d6y, z+d11y, z] 

 ∝3y,z
= (

1

2𝐵
) [d10y,z-d11y,z] 

 ∝4y,z
= (

1

2
) [d10y,z+d11y,z] 
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Face equation 𝐸𝑦,𝑧 = ∝1y,z
𝑥𝑧 + ∝2y,z 𝑥 +∝3y,z 𝑧 +∝4y,z 

 

x- East-Right face 

Coefficients  

 ∝1x
= (

1

2𝐴𝐵
) [d3x–d7x] 

 ∝1x
= (

1

2𝐴
) [d3x+d7x] 

 ∝3x
= 0 

 ∝4x
= 0 

Face equation 𝐸𝑥 =∝1𝑥
𝑥𝑧 +∝2x

𝑥 +∝3𝑥
𝑧 +∝4x

 

 

y-, z- East Right face 

Coefficients  

 ∝1y,z
= (

1

2𝐴𝐵
) [d3 y, z–d10 y, z+ d11 y, z–d7 y, z] 

 ∝2y,z= (
1

2𝐴
) [d3 y, z–d10 y, z-d11 y, z+d7 y, z] 

 ∝3y,z
= (

1

2𝐵
) [d10 y, z -d11 y, z] 

 ∝4y,z
 = (

1

2
) [d10 y, z +d11 y, z] 

Face equation 𝐸𝑦,𝑧 = ∝1y,z
𝑥𝑧 + ∝2y,z 𝑥 +∝3y,z

𝑧 +∝4y,z
 

 

x-West-Left face 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [–d4x+d8x] 

 ∝2𝑥
= (

1

2𝐴
) [–d4x-d8x] 
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 ∝3𝑥
= 0 

 ∝4𝑥
= 0 

Face equation 𝑊𝑥 = ∝1𝑥
𝑥𝑧 + ∝2𝑥

𝑥 +∝3𝑥
𝑧 +∝4𝑥

 

 

y-,z- West-Left face 

Coefficients  

 ∝1z,y
= (

1

2𝐴𝐵
) [d9 y, z-d4 y, z+d8 y, z-d12 y, z] 

 ∝2z,y
= (

1

2𝐴
) [d9 y, z-d4 y, z-d8 y, z+d12 y, z] 

 ∝3y,z
= (

1

2𝐵
) [d9y,z-d12y,z] 

 ∝4y,z
= (

1

4
) [d9y,z+d12y,z] 

Face equation 𝑊𝑦,𝑧 = ∝1y,z
𝑥𝑧 + ∝2y,z 𝑥 +∝3y,z 𝑧 +∝4𝑦,𝑧 

 

x- West-Right face 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d1x-d5x] 

 ∝2𝑥
= (

1

2𝐴
) [d1x+d5x] 

 ∝3𝑥
0 

 ∝4𝑥
0 

Face equation 𝑊𝑥 = ∝1𝑥
𝑥𝑧 + ∝2𝑥

𝑥 +∝3𝑥
𝑧 +∝4𝑥
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y-, z- West-Right face 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d1x–d9x +d12x -d5x] 

 ∝2y,z
= (

1

2𝐴
) [d1x–d9x-d12x+d5x] 

 ∝3𝑦,𝑧
= (

1

2𝐵
) [d9y, z-d12y, z] 

 ∝4y,z
= (

1

2
) [d9y, z+d12y, z] 

Face equation 𝑊𝑦,𝑧 = ∝1𝑦,𝑧 𝑥𝑧 + ∝2y,z
𝑥 +∝3y,z 𝑧 +∝4y,z

 

 

x- High-Left face 

Coefficients  

 ∝1𝑥
= (

1

4𝐴𝐵
) [-d10x+d3x] 

 ∝2𝑥
= (

1

4𝐴
) [-d10x-d3x] 

 ∝3𝑥
= 0 

 ∝4𝑥
= 0 

Face equation 𝐻𝑥 = ∝1𝑥
𝑥𝑦 + ∝2𝑥

𝑥 +∝3𝑥
𝑦 +∝4𝑥

 

 

y-,z- High-Left face 

Coefficients  

 ∝1𝑦,𝑧= (
1

2𝐴𝐵
) [d9y, z–d10 y, z+d3 y, z-d4 y, z] 

 ∝2𝑦,𝑧= (
1

2𝐴
) [d9x, y, z–d10x, y, z–d3x, y, z+d4x, y, z] 

 ∝3𝑦,𝑧= (
1

2𝐵
) [d10y, z–d3y, z] 
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 ∝4𝑦,𝑧= (
1

2
) [d10y, z+d3y, z] 

Face equation 𝐻𝑦,𝑧 = ∝1𝑦,𝑧 𝑥𝑦 + ∝2𝑦,𝑧 𝑥 +∝3𝑦,𝑧 𝑦 +∝4y,𝑧 

 

x- High-Right face 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d10x -d9x] 

 ∝2𝑥
= (

1

2𝐴
) [d10x+d9x] 

 ∝3𝑥
= 0 

 ∝4𝑥
= 0 

Face equation 𝐻𝑥 = ∝1𝑥
𝑦𝑧 + ∝2𝑥

𝑦 +∝3𝑥
𝑧 +∝4𝑥

 

 

y-, z- High-Right face 

Coefficients  

 ∝1𝑦, 𝑧= (
1

2𝐴𝐵
) [d1y, z–d2y, z+d10y, z–d9y, z] 

 ∝2𝑦,𝑧== (
1

2𝐴
) [d1y, z–d2y, z-d10y, z+d9y, z] 

 ∝3𝑦,𝑧= (
1

2𝐵
) [d9y, z-d4y, z] 

 ∝4𝑦,𝑧= (
1

2
) [d9y, z+d4y, z] 

Face equation 𝐻𝑦,𝑧 = ∝1y,z 𝑦𝑧 + ∝2𝑦,𝑧 𝑧 +∝3y,𝑧 𝑧 +∝4y,𝑧 

 

x- Low-Left face 

Coefficients  

 ∝1𝑥
= (

1

4𝐴𝐵
) [-d11x+d7x] 
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 ∝2𝑥
= (

1

4𝐴
) [-d11x-d7x] 

 ∝3𝑥
= 0 

 ∝4𝑥
= 0 

Face equation 𝐻𝑥 = ∝1𝑥
𝑥𝑦 + ∝2𝑥

𝑥 +∝3𝑥
𝑦 +∝4𝑥

 

 

y-, z- Low-Left face 

Coefficients  

 ∝1𝑦,𝑧= (
1

2𝐴𝐵
) [d12y, z–d11 y, z+d7 y, z-d8 y, z] 

 ∝2𝑦,𝑧= (
1

2𝐴
) [d12x, y, z–d11x, y, z–d7x, y, z+d8x, y, z] 

 ∝3𝑦,𝑧= (
1

2𝐵
) [d12y, z–d8y, z] 

 ∝4𝑦,𝑧= (
1

2
) [d12y, z+d8y, z] 

Face equation 𝐻𝑦,𝑧 = ∝1𝑦,𝑧 𝑥𝑦 + ∝2𝑦,𝑧 𝑥 +∝3𝑦,𝑧 𝑦 +∝4y,𝑧 

 

x- Low-Right face 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d5x –d12x] 

 ∝2𝑥
= (

1

2𝐴
) [d5x+d12x] 

 ∝3𝑥
= 0 

 ∝4𝑥
= 0 

Face equation 𝐻𝑥 = ∝1𝑥
𝑦𝑧 + ∝2𝑥

𝑦 +∝3𝑥
𝑧 +∝4𝑥
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y-, z- Low-Right face 

Coefficients  

 ∝1𝑦, 𝑧= (
1

2𝐴𝐵
) [d5y, z–d6y, z+d11y, z–d12y, z] 

 ∝2𝑦,𝑧= (
1

2𝐴
) [d1y, z–d2y, z-d10y, z+d9y, z] 

 ∝3𝑦,𝑧= (
1

2𝐵
) [d2y, z-d10y, z] 

 ∝4𝑦,𝑧= (
1

2
) [d2y, z+d10y, z] 

Face equation 𝐻𝑦,𝑧 = ∝1y,z 𝑦𝑧 + ∝2𝑦,𝑧 𝑧 +∝3y,𝑧 𝑧 +∝4y,𝑧 
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Annex C 
For a general face defined by the points P1..P4 the equations are shown in the table below: 

x, y- coordinate (high)  

Coefficients  

 ∝1𝑥,𝑦= (
1

2𝐴𝐵
) [d1x, y–d2x, y+d3x, y-d4x, y] 

 ∝2𝑥,𝑦= (
1

2𝐴
) [-d3x, y+d4x, y] 

 ∝3𝑥,𝑦= (
1

2𝐵
) [d1x, y +d2x, y –d3x, y-d4x, y] 

 ∝4𝑥,𝑦= (
1

2
) [d3x, y-d4x, y] 

Face equation 𝐹𝑥,𝑦 = ∝1𝑥,𝑦 𝑦𝑧 + ∝2𝑥,𝑦 𝑦 +∝3𝑥,𝑦 𝑧 +∝4𝑥,𝑦 

 

z- coordinate (high) 

Coefficients  

 ∝1z
= (

1

4𝐴𝐵
) [d1 z–d2z] 

 ∝2z
= 0 

 ∝3z
= (

1

4𝐵
) [d1z +d2z] 

 ∝4z
= 0 

Face equation 𝐹𝑧 = ∝1z
𝑦𝑧 + ∝2z

𝑦 +∝3z
𝑧 +∝4z

 

 

x, y- coordinate (low) 

Coefficients  

 ∝1𝑥,𝑦= (
1

2𝐴𝐵
) [d1x, y–d2x, y+d3x, y-d4x, y] 

 ∝2𝑥,𝑦= (
1

2𝐴
) [d1x, y-d2x, y] 
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 ∝3𝑥,𝑦= (
1

2𝐵
) [d1x, y +d2x, y –d3x, y-d4x, y] 

 ∝4𝑥,𝑦= (
1

2
) [d1x, y+d2x, y] 

Face equation 𝐹𝑥,𝑦 = ∝1𝑥,𝑦 𝑦𝑧 + ∝2𝑥,𝑦 𝑦 +∝3𝑥,𝑦 𝑧 +∝4𝑥,𝑦 

 

z- coordinate (low) 

Coefficients  

 ∝1z
= (

1

4𝐴𝐵
) [d3 z–d4 z] 

 ∝2z
= 0 

 ∝3z
= (

1

4𝐵
) [-d3 z –d4 z] 

 ∝4z
= 0 

Face equation 𝐹𝑧 =∝1𝑧
𝑦𝑧 +∝2z

𝑦 +∝3𝑧
𝑧 +∝4z

 

The resulting equations, which have been adopted, are the following. 

x-, y- North-High face  

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d4x–d3x+d11x-d12x] 

 ∝2𝑥
= (

1

2𝐴
) [-d11x+d12x] 

 ∝3𝑥
= (

1

2𝐵
) [d4x +d3x –d11x-d12x] 

 ∝4𝑥
= (

1

2
) [d11x-d12x] 

Face equation 𝑁𝑥 = ∝1𝑥
𝑦𝑧 + ∝2𝑥

𝑦 +∝3𝑥
𝑧 +∝4𝑥
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y-,z- North-High face  

Coefficients  

 ∝1y,z= (
1

4𝐴𝐵
) [d4y, z–d3y, z] 

 ∝2y,z= 0 

 ∝3z
= (

1

4𝐵
) [d4y,z +d3y,z] 

 ∝4y,z
= 0 

Face equation 𝑁𝑧 = ∝1y,z
𝑦𝑧 + ∝2y,z 𝑦 +∝3y,z 𝑧 +∝4y,z 

 

x -East-High face 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d3x–d2x+d10x-d11x] 

 ∝2𝑥
= (

1

2𝐴
) [–d10x+d11x] 

 ∝3𝑥
= (

1

2𝐵
) [d3x+d2x–d10x-d11] 

 ∝4𝑥
= (

1

2
) [d10x-d11x] 

Face equation 𝐸𝑥 = ∝1𝑥
𝑥𝑧 + ∝2𝑥

𝑥 +∝3𝑥
𝑧 +∝4𝑥

 

 

y-,z- East-High face 

Coefficients  

 ∝1y,z= (
1

2𝐴𝐵
) [d3y, z–d2y, z] 

 ∝2y,z
= 0 

 ∝3y,z
= (

1

2𝐵
) [d3y,z+d2y,z] 
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 ∝4y,z= 0 

Face equation 𝐸𝑦,𝑧 = ∝1y,z
𝑥𝑧 + ∝2y,z 𝑥 +∝3y,z 𝑧 +∝4y,z 

 

x-West-High face 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d1x–d4x+d12x-d9x] 

 ∝2𝑥
= (

1

2𝐴
) [–d12x+d9x] 

 ∝3𝑥
= (

1

2𝐵
) [d1x+d4x–d12x-d9x] 

 ∝4𝑥
= (

1

2
) [d12x-d9x] 

Face equation 𝑊𝑥 = ∝1𝑥
𝑥𝑧 + ∝2𝑥

𝑥 +∝3𝑥
𝑧 +∝4𝑥

 

 

y-,z- West-High face 

Coefficients  

 ∝1z,y
= (

1

2𝐴𝐵
) [d1 y, z-d4 y, z] 

 ∝2y,z
= 0 

 ∝3y,z
= (

1

2𝐵
) [–d1y,z-d4y,z] 

 ∝4𝑦,𝑧
= 0 

Face equation 𝑊𝑦,𝑧 = ∝1y,z
𝑥𝑧 + ∝2y,z 𝑥 +∝3y,z 𝑧 +∝4𝑦,𝑧 

 

x- South-High face 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d2x–d1x+d9x-d10x] 



 

 

129 

 

 ∝2𝑥
= (

1

2𝐴
) [–d9x+d10x] 

 ∝3𝑥
= (

1

2𝐵
) [d2x+d1x–d5x-d6x] 

 ∝4𝑥
= (

1

2
) [d9x-d10x] 

Face equation 𝑆𝑥 = ∝1𝑥
𝑦𝑧 + ∝2𝑥

𝑦 +∝3𝑥
𝑧 +∝4𝑥

 

 

y-,z- South-High face 

Coefficients  

 ∝1y,z
= (

1

2𝐴𝐵
) [d2y, z–d1y, z] 

 ∝2y,z= 0 

 ∝3𝑦,𝑧
= (

1

2𝐵
) [d2y, z+d1y, z] 

 ∝4𝑦,𝑧= 0 

Face equation 𝑆𝑦,𝑧 = ∝1y,z 𝑦𝑧 + ∝2y,z 𝑧 +∝3𝑦,𝑧 𝑧 +∝4𝑦,𝑧 

 

x- North-Low face  

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d2x–d11x+d7x-d8x] 

 ∝2𝑥
= (

1

2𝐴
) [d2x-d11x] 

 ∝3𝑥
= (

1

2𝐵
) [d2x +d11x –d7x-d8x] 

 ∝4𝑥
= (

1

2
) [d2x+d11x] 

Face equation 𝑁𝑥 = ∝1𝑥
𝑦𝑧 + ∝2𝑥

𝑦 +∝3𝑥
𝑧 +∝4𝑥

 

 

y-, z- North-Low face  
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Coefficients  

 ∝1y,z
= (

1

4𝐴𝐵
) [d7 y, z–d8 y, z] 

 ∝2y,z
= 0 

 ∝3y,z= (
1

4𝐵
) [-d7 y, z -d8 y, z] 

 ∝4y,z
= 0 

Face equation 𝑁𝑦,𝑧 =∝1𝑦,𝑧
𝑦𝑧 +∝2y,z

𝑦 +∝3𝑦,𝑧
𝑧 +∝4y,z

 

 

x- East-Low face 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d11x–d10x+d9x-d7x] 

 ∝2𝑥
= (

1

2𝐴
) [d11x-d10x] 

 ∝3𝑥
= (

1

2𝐵
) [d11x+d10x–d9x-d7x] 

 ∝4𝑥
= (

1

2
) [d10x+d11x] 

Face equation 𝐸𝑥 = ∝1𝑥
𝑥𝑧 + ∝2𝑥

𝑥 +∝3𝑥
𝑧 +∝4𝑥

 

 

y-, z- East-Low face 

Coefficients  

 ∝1y,z
= (

1

2𝐴𝐵
) [d9 y, z–d7 y, z] 

 ∝2y,z= 0 

 ∝3y,z
= (

1

2𝐵
) [-d9y, z-d7y, z] 

 ∝4y,z
 = 0 



 

 

131 

 

Face equation 𝐸𝑦,𝑧 = ∝1y,z
𝑥𝑧 + ∝2y,z 𝑥 +∝3y,z

𝑧 +∝4y,z
 

 

x- West-Low face 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d9x–d2x +d8x -d5x] 

 ∝2𝑥
= (

1

2𝐴
) [–d8x+d5x] 

 ∝3𝑥
= (

1

2𝐵
) [d9x+d2x–d8x-d5x] 

 ∝4𝑥
= (

1

2
) [d8x-d5x] 

Face equation 𝑊𝑥 = ∝1𝑥
𝑥𝑧 + ∝2𝑥

𝑥 +∝3𝑥
𝑧 +∝4𝑥

 

 

y-, z- West-Low face 

Coefficients  

 ∝1y,z
= (

1

2𝐴𝐵
) [d8y, z-d5y, z] 

 ∝2y,z
= 0 

 ∝3𝑦,𝑧
= (

1

2𝐵
) [–d8y, z-d5y, z] 

 ∝4y,z
= 0 

Face equation 𝑊𝑦,𝑧 = ∝1𝑦,𝑧 𝑥𝑧 + ∝2y,z
𝑥 +∝3y,z 𝑧 +∝4y,z

 

 

x- South-Low face 

Coefficients  

 ∝1𝑥
= (

1

2𝐴𝐵
) [d10x–d9x+d5x-d6x] 

 ∝2𝑥
= (

1

2𝐴
) [d10x-d9x] 
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 ∝3𝑥
= (

1

2𝐵
) [d10x+d9x–d5x-d6x] 

 ∝4𝑥
= (

1

2
) [d10x+d9x] 

Face equation 𝑆𝑥 = ∝1𝑥
𝑦𝑧 + ∝2𝑥

𝑦 +∝3𝑥
𝑧 +∝4𝑥

 

 

y-, z- South-Low face 

Coefficients  

 ∝1𝑦, 𝑧= (
1

2𝐴𝐵
) [d5y, z–d6y, z] 

 ∝2𝑦,𝑧= 0 

 ∝3𝑦,𝑧= (
1

2𝐵
) [-d5 y, z-d6 y, z] 

 ∝4𝑦,𝑧= 0 

Face equation 𝑆𝑦,𝑧 = ∝1y,z 𝑦𝑧 + ∝2𝑦,𝑧 𝑧 +∝3y,𝑧 𝑧 +∝4y,𝑧 

 

High face 

Coefficients  

 ∝1𝑥,𝑦,𝑧= (
1

4𝐴𝐵
) [d1x, y, z–d2x, y, z+d3x, y, z-d4x, y, z] 

 ∝2𝑥,𝑦,𝑧= (
1

4𝐴
) [d1x, y, z–d2x, y, z–d3x, y, z+d4x, y, z] 

 ∝3𝑥,𝑦,𝑧= (
1

4𝐵
) [d1x, y, z+d2x, y, z–d3x, y, z-d4x, y, z] 

 ∝4𝑥,𝑦,𝑧= (
1

4
) [d1x, y, z +d2x, y, z +d3x, y, z-d4x, y, z] 

Face equation 𝐻𝑥,𝑦,𝑧 = ∝1𝑥,𝑦,𝑧 𝑥𝑦 + ∝2𝑥,𝑦,𝑧 𝑥 +∝3𝑥,𝑦,𝑧 𝑦 +∝4𝑥,𝑦,𝑧 

 

Low face 

Coefficients  
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 ∝1𝑥,𝑦,𝑧= (
1

4𝐴𝐵
) [d6x, y, z–d5x, y, z+d8x, y, z-d7x, y, z] 

 ∝2𝑥,𝑦,𝑧= (
1

4𝐴
) [d6x, y, z–d5x, y, z–d8x, y, z+d7x, y, z] 

 ∝3𝑥,𝑦,𝑧= (
1

4𝐵
) [d6x, y, z+d5x, y, z–d8x, y, z-d7x, y, z] 

 ∝4𝑥,𝑦,𝑧= (
1

4
) [d6x, y, z +d5x, y, z +d8x, y, z-d7x, y, z] 

Face equation 𝐿𝑥,𝑦,𝑧 = ∝1𝑥,𝑦,𝑧 𝑥𝑦 + ∝2𝑥,𝑦,𝑧 𝑥 +∝3𝑥,𝑦,𝑧 𝑦 +∝4𝑥,𝑦,𝑧 
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