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Introduction

In the modern banking system, the management of risk and return is strictly gov-

erned by regulatory standards, these regulations influence how banks plan investments,

funding strategies, and capital allocation decisions. All these activities fall within the

discipline of Asset and Liability Management (ALM), which provides the economic and

strategic framework through which banks coordinate their balance-sheet decisions to en-

sure profitability, solvency, and short term and long term financial stability. ALM aims

to balance risk and return through the integrated management of interest-rate exposure,

liquidity, and capital constraints. The introduction of the Basel III framework by the

Basel Committee significantly reshaped the regulatory landscape after the 2008 crisis,

among the most influential quantitative measures are risk-weighted assets (RWA), the

Liquidity Coverage Ratio (LCR), and the Net Stable Funding Ratio (NSFR). The thesis

develops a rigorous mathematical programming framework to model these interactions

over a one year horizon. The theoretical basis from which we start is a general constrained

optimization problem:

min
x∈Rn

f(x) s.t. gi(x) ≤ 0, i ∈ I, hj(x) = 0, j ∈ E,

which provides the foundation for the subsequent developments. We present the neces-

sary and, under suitable regularity assumptions, sufficient conditions for a feasible point

to be optimal. In particular, we introduce the Karush Kuhn Tucker conditions, which

state that a feasible point x⋆ is optimal if there exist Lagrange multipliers λi ≥ 0 and

µj ∈ R such that:

(Stationarity) ∇f(x⋆) +
∑
i∈I

λi∇gi(x
⋆) +

∑
j∈E

µj∇hj(x
⋆) = 0,

(Primal feasibility) gi(x
⋆) ≤ 0, ∀ i ∈ I, hj(x

⋆) = 0, ∀ j ∈ J ,

(Dual feasibility) λi ≥ 0, ∀ i ∈ I,

(Complementary slackness) λigi(x
⋆) = 0 ∀ i ∈ I.
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ii Introduction

These conditions play a central role in the analysis of the model developed in the thesis,

they motivate the construction of our numerical algorithm for the resolution of con-

strained optimization problems. In particular, when appropriate simplifications are in-

troduced, the nonlinear balance sheet optimization problem can be reformulated as a

linear program, whose polyhedral structure allows the use of classical methods such as

the “Simplex Algorithm”. After we presents the structure of a bank’s balance sheet,

where each financial aggregate is characterized by vector

θk = (ak, tk, τk,mk, fk, rk, sk),

encoding: asset/liability sign, interest rate type, maturity, payment frequency, reference

parameter, and repayment structure. For each aggregate k, and for each month t =

1, . . . , 12, the decision variable

xk,t ∈ R,

represents a variation in exposure and its actual monthly exposure is determined by the

function Vk(xk; θk, t). The objective function, Net Interest Income, is then written as

NII(x) =
N∑
k=1

ak

(
NIIACTUAL

k +
12∑
t=1

ek,txk,t

)
,

where it can be decomposed into a constant component, coming from the initial portfolio,

and a variable part driven by the decision variables and the parameters ek,t, which denote

the interest rate associated with aggregate k at time t. The model incorporates several

structural and regulatory constraints. The monthly balance sheet identity and capital

requirements introduce the inequality, respectively,

N∑
k=1

ak Vk(xk; θk, t) = E, ∀ t = 1, . . . , 12,

N∑
k=1

rwk Vk(xk; θk, t) ≤ Cap, ∀ t = 1, . . . , 12,

where E denotes the equity level, ensuring the fundamental balance sheet relation be-

tween assets and liabilities, Cap represents the available regulatory capital as required by

Basel III, and rwk denotes the risk–weight factor associated with aggregate k. Liquidity

regulation is captured through the nonlinear expressions of the Liquidity Coverage Ratio,

LCRt(x) =
HQLAt(x)

NCFt(x)
≥ 1.1,

and the Net Stable Funding Ratio,

NSFRt(x) =
ASFt(x)

RSFt(x)
≥ 1.1,
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and in conclusion we have some operational limits that impose the box constraints

xk,t ≤ xk,t ≤ xk,t.

By collecting all the above components, a complete nonlinear optimization model is

formed:

max
xk,t

N∑
k=1

ak

(
NIIACTUAL

k +
12∑
t=1

xk,tek,t

)

s.t.
N∑
k=1

ak Vk(xk,1, . . . , xk,12; θk, t) = E, ∀ t = 1, . . . , 12,

N∑
k=1

rwk Vk(xk,1, . . . , xk,12; θk, t) ≤ Cap, ∀ t = 1, . . . , 12,

LCRt(x) ≥ 1.1, NSFRt(x) ≥ 1.1, ∀ t = 1, . . . , 12,

xk,t ≤ xk,t ≤ xk,t, ∀ k = 1, . . . , N, ∀ t = 1, . . . , 12.

The final section of the thesis presents the numerical implementation of the con-

structed model. After translating the theoretical model into a computational framework

and reconstructing the bank’s balance sheet aggregates, the optimization problems are

coded and solved in Python, under different sets of regulatory constraints. By analyz-

ing different model configurations, the study illustrates how each regulatory component

shapes the space of feasible solutions and clarifies the tradeoffs imposed by regulatory

constraints. It is therefore hoped that the optimization model will be viewed not only as

a theoretical construct, but also as a practical decision support tool for strategic balance

sheet management.
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Chapter 1

Preliminaries concepts of

Operational Research and

Mathematical Programming

In this chapter we introduce the fundamental concepts of Operational Research and

Mathematical Programming, starting from the general formulation of an optimization

problem and the definitions of feasible set, local solutions, and global solutions. We

distinguish between linear and nonlinear problems, highlighting the role of the gradi-

ent and the Hessian in characterizing optimality conditions for unconstrained optimiza-

tion. When moving to constrained problems, we present geometric notions such as

active sets, tangent cones, and linearized feasible directions, which naturally lead to

the Karush–Kuhn–Tucker conditions and the corresponding second-order criteria. The

concepts outlined here provide the theoretical and methodological foundations for the

algorithms and applications developed in the following chapters. We mainly follow the

classical treatments presented in [5], whose structure and notation are aligned with ours,

for the theoretical foundations of nonlinear programming we refer to [2], while for the

linear and integer programming aspects we rely on the comprehensive exposition of [6].

1.1 General Optimization Problem

Consider the general optimization problem

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i ∈ I,

hj(x) = 0, j ∈ E ,

(1.1)

1



2 1. Preliminaries concepts

where

f : Rn → R, gi : Rn → R, hj : Rn → R,

and E and I are two finite sets of indices. From now on, we fix their cardinalities as

|I| = m, |E| = p,

where p,m ∈ N are fixed but arbitrary. Here the vector x = (x1, . . . , xn) is the opti-

mization variable of the problem, the function f is the cost, or objective, function and

the functions gi and hi determine inequality constraints and equality constraints, respec-

tively. For simplicity of notation, since the sets I and E are finite, from now on we

assume that they are enumerated as

I = {i1, i2, . . . , im}, E = {j1, j2, . . . , jp}.

Thus, for each k = 1, . . . ,m the index ik denotes an element of I, and the index jk

denotes an element of E .

Definition 1.1 (Feasible set). The “Feasible set” (or search space) of problem (1.1) is

defined as

D :=
{
x ∈ Rn

∣∣g(x) ≤ 0, h(x) = 0
}
,

where

g(x) :=


gi1(x)

...

gim(x)

 ∈ Rm, h(x) :=


hj1(x)

...

hjp(x)

 ∈ Rp.

Definition 1.2 (Solution, Global solution, Local solution). A vector x∗ ∈ D is called a

“Feasible solution” to problem (1.1) if it satisfies all the constraints, i.e., x∗ ∈ D. It is

said to be a “Global (or optimal) solution” if it achieves the minimum of the objective

function over the feasible set:

f(x∗) ≤ f(x) ∀x ∈ D.

In this case, the optimal value is denoted by f ∗ := f(x∗). If the inequality is strict for

all x ∈ D with x ̸= x∗, then x∗ is called a “strong global solution”:

f(x∗) < f(x) ∀x ∈ D, x ̸= x∗.

A vector x∗ ∈ D is a “local solution” to problem (1.1) if there exists a neighborhood N
of x∗ such that

f(x∗) ≤ f(x) ∀x ∈ N ∩ D.
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If the inequality is strict for all x ∈ N ∩D with x ̸= x∗, then x∗ is called a “strong local

solution”:

f(x∗) < f(x) ∀x ∈ N ∩ D, x ̸= x∗.

Moreover, if x∗ is the only local solution in N ∩D, it is called an “isolated local solution”.

Different classes of problems are distinguished according to the properties of the

objective function and constraints (linear, nonlinear, convex), the number of variables

(large or small), the smoothness of the functions (differentiable or non-differentiable),

and so on.

Definition 1.3 (LP and NLP). If all functions f, gi, hj can be written in affine form,

i.e.,

f(x) = c⊤x+ c0, gi(x) = a⊤i x+ bi, hj(x) = d⊤j x+ ej,

where c, ai, dj ∈ Rn and c0, bi, ej ∈ R, then problem (1.1) is called a “linear programming

problem” (LP). If at least one among f, gi, hj is nonlinear, then the problem is called a

“nonlinear programming problem” (NLP).

1.2 Unconstrained Optimization

One of the main methods for classifying optimization problems is based on the pres-

ence or absence of constraints on the variables. Unconstrained problems, for which we

have D = Rn, do not impose explicit restrictions on the variables. Even when natural

constraints exist, they are often negligible in practice, allowing the use of unconstrained

methods. Additionally, unconstrained formulations frequently arise from constrained

problems via penalization, incorporating the constraints into the objective function to

discourage violations without restricting the search space explicitly. Constrained prob-

lems, by contrast, require all constraints to be satisfied.

Henceforth, we assume that objective function f is sufficiently smooth. Efficient

identification of local minima can then rely on first and second order information: if f

is twice continuously differentiable, a point x∗ can be classified as a local minimizer (or

strict local minimizer) by examining the gradient ∇f(x∗) and the Hessian ∇2f(x∗).

Definition 1.4 (Descent Direction). A vector d ∈ Rn is called a “descent direction” for

a function f at a point x if there exists δ > 0 such that

f(x+ αd) < f(x) ∀α ∈ (0, δ).
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The “directional derivative” of f at x along the direction d is defined as

f ′(x, d) := lim
λ→0+

f(x+ λd)− f(x)

λ
= ∇f(x)⊤d.

Hence, d is a descent direction at x if

∇f(x)⊤d < 0.

Lemma 1.5 (First-Order Necessary Conditions). If x∗ is a local minimizer of f and f

is continuously differentiable in an open neighborhood of x∗, then

∇f(x∗) = 0.

Lemma 1.6 (Second-Order Necessary Conditions). If x∗ is a local minimizer of f and

∇2f exists and is continuous in an open neighborhood of x∗, then

∇f(x∗) = 0 and ∇2f(x∗) ⪰ 0,

i.e., the Hessian is positive semi-definite.

Lemma 1.7 (Second-Order Sufficient Conditions). Suppose ∇2f is continuous in an

open neighborhood of x∗. If

∇f(x∗) = 0 and ∇2f(x∗) ≻ 0,

i.e., the Hessian is positive definite, then x∗ is a strict local minimizer of f .

The necessary and sufficient conditions are based on the Taylor series expansion and

are valid only in a neighborhood of the current solution x∗. An important consequence

of the necessary conditions is that they can be extended to a global statement: if a point

x does not satisfy the necessary conditions for being a local minimum, then it cannot be

a global minimum.

All unconstrained optimization algorithms require an initial guess x0, which may

be chosen based on prior knowledge of the problem or automatically by the algorithm.

From this starting point, a sequence of iterates {xk}k≥0 is generated with the aim of

converging to a minimizer of f . The procedure stops when no further progress can be

made or when the iterates are sufficiently close to a solution. Each step from xk to xk+1

is determined using information about f at the current point, possibly combined with

data from previous iterations, to obtain a new point with a lower objective value. At

each iteration k, let xk denote the current point. The next iterate is obtained as

xk+1 = xk + αkdk,

where dk ∈ Rn, with ∥dk∥ = 1, is the search direction, and αk > 0 is the step size.

Two fundamental principles underlie the construction of the new iterate:
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• Line search strategy, which define the path along which the algorithm moves

from xk, determines the search direction and then the step size,

• Trust region strategy, which determine how far along this direction the next

point xk+1 is chosen, determines the step size and then the search direction.

Most algorithms for unconstrained optimization can be understood as variations or com-

binations of these two basic ideas.

1.3 Constrained Optimization

Let us now consider the problem in the general form proposed in (1.1), with the

assumption that the functions f , gi and hj are sufficient smooth, real-valued functions

on a subset of Rn.

Definition 1.8 (Active set). Let x ∈ D be a feasible solution. The “active set” at x is

defined as

A(x) := E ∪ {i ∈ I | gi(x) = 0}.

In other words, A(x) consists of:

• all equality constraints, which are always active,

• together with those inequality constraints that are satisfied as equalities at x.

Inequality constraints with gi(x) < 0 are not in A(x) and are called “inactive”.

It is useful to recall some geometric notions that describe how the feasible set looks

locally around a feasible solution. In particular, we need to formalize the idea of the

directions along which it is possible (or at least approximately possible) to move while

remaining feasible.

Definition 1.9 (Tangent cone). Let X ⊆ Rn a closed convex set and let x ∈ X . The

“tangent cone” to X at x, denoted TX (x), is defined as the set of all vectors d ∈ Rn such

that there is:

• a sequence {xk}k∈N ⊆ X with xk → x for k → +∞,

• a sequence {tk}k∈N ⊆ R>0 with tk → 0+ for k → +∞,

for which the limit

lim
k→+∞

xk − x

tk
= d

holds.
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In other words, the tangent cone is a geometric object that generalizes the notion of

the tangent space to a manifold to the case of certain spaces with singularities, defined

as all limits of vectors connecting a point x to points xk of the set, normalized by scalars

tk → 0, thus capturing all directions in which it is possible to move away from x while

remaining within the feasible set.

Definition 1.10 (Linearized Feasible Direction Set). Let x ∈ Rn a feasible solution, the

“linearized feasible direction set” of x, denoted F (x), is

F (x) =
{
d ∈ Rn

∣∣∣∇hj(x)
⊤d = 0, ∀ j ∈ E , ∇gi(x)

⊤d ≤ 0, ∀ i ∈ A(x) ∩ I
}
.

Intuitively, the set F (x) represents all directions d ∈ Rn along which it is possi-

ble to move infinitesimally from the point x while remaining, to first order, within the

linearized approximation of the active constraints. These are the directions that sat-

isfy all linearized equality constraints and do not violate the linearized active inequality

constraints. The relation between TX (x) and F (x) is central in constrained optimiza-

tion: under appropriate regularity assumptions (constraint qualifications) the two sets

coincide. One of the most common qualifications ensuring this property is the following.

Lemma 1.11. If x∗ is a local solution of general optimization problem (1.1), then we

have:

∇f(x∗)⊤d ≥ 0, ∀ d ∈ TD(x
∗).

Proof. Assume, by contradiction, that there exists a tangent direction d ∈ TX (x
∗) such

that

∇f(x∗)⊤d < 0,

from the definition of tangent cone given above, there are sequences {zk}k∈N ⊂ D and

{tk}k∈N ∈ R>0 with, tk → 0+, satisfying

zk → x∗,
zk − x∗

tk
→ d, for k → +∞.

Consider the Taylor expansion of f around x∗:

f(zk) = f(x∗) +∇f(x∗)⊤(zk − x∗) + o(∥zk − x∗∥),

since zk − x∗ = tkd+ o(tk), this becomes

f(zk) = f(x∗) + tk∇f(x∗)⊤d+ o(tk).

Because ∇f(x∗)⊤d < 0, the first order term dominates the remainder for k sufficiently

large. Hence, there exists K ∈ N such that for all k ≥ K,

f(zk) < f(x∗) + 1
2
tk∇f(x∗)⊤d < f(x∗).
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Thus, within any neighborhood of x∗, we can find points zk that lie in D and satisfy

f(zk) < f(x∗). This contradicts the assumption that x∗ is a local solution. Therefore,

∇f(x∗)⊤d ≥ 0, ∀ d ∈ TX (x
∗),

which completes the proof.

Definition 1.12 (Linear Independence Constraint Qualification). Given a feasible so-

lution x and its corresponding active set A(x), the “Linear Independence Constraint

Qualification (LICQ)” is said to hold at x if the set of active constraint gradients

{∇gi(x) : i ∈ A(x) ∩ I} ∪ {∇hj : j ∈ E}

is linearly independent. That is, no active constraint gradient can be expressed as a linear

combination of the others.

Remark 1.13. Let x∗ a feasible solution of general problem (1.1). Then the following

hold:

1. TD(x
∗) ⊆ F (x∗),

2. if the Linear Independence Constraint Qualification (LICQ) holds at x∗, then

TD(x
∗) = F (x∗).

We now give necessary conditions, defined in the following theorem, called first and

second order conditions because they relate to the properties of the gradients and of the

Hessian of the objective and constraint functions respectively. These conditions are the

foundation for many of the algorithms described later in the thesis.

Definition 1.14 (Lagrangian). The “Lagrangian function” associated with problem (1.1)

is

L(x, λ, µ) := f(x) +
m∑
k=1

λkgik(x) +

p∑
k=1

µkhjk(x), (1.2)

where λk and µk are called “Lagrange multipliers” associated with the corresponding

constraints. The gradient of the Lagrangian with respect to x is given by

∇xL(x, λ, µ) = ∇f(x) +
m∑
k=1

λk∇gik(x) +

p∑
k=1

µk∇hjk(x).

Theorem 1.15 (First and Second Order Necessary Conditions). Given the general prob-

lem (1.1), assume that the functions f , gi, and hj for each i and j are C1, and LICQ

holds at a local solution x∗. Then, there exist Lagrange multipliers λ ∈ Rm for the

inequality constraints and µ ∈ Rp for the equality constraints such that the following

conditions, named Karush-Kuhn-Tucker conditions [9], are satisfied:
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1. Stationarity:

∇xL(x∗, λ, µ) = 0. (1.3)

2. Primal feasibility:

gi(x
∗) ≤ 0, i ∈ I, hj(x

∗) = 0, j ∈ E . (1.4)

3. Dual feasibility:

λk ≥ 0, k = 1, . . . ,m. (1.5)

4. Complementary slackness:

λkgik(x
∗) = 0, k = 1, . . . ,m. (1.6)

If in addition the functions f , gi, and hj for each i and j are C2, there holds

w⊤∇2
xxL(x∗, λ, µ)w ≥ 0, (1.7)

for all w ∈ Rn such that

∇gi(x
∗)⊤w = 0, ∀ i ∈ A(x∗) ∩ I, ∇hj(x

∗)⊤w = 0, ∀ j ∈ E .

Remark 1.16. The complementary slackness implies that for each inequality constraint,

either the constraint is active (gik(x
∗) = 0) or the corresponding multiplier is zero

(λk = 0), or both. For inactive constraints, λk = 0, and the stationarity condition

can equivalently be written summing only over the active constraints:

∇f(x∗) +
∑

k:ik∈A(x∗)

λk∇gik(x
∗) +

p∑
k=1

µk∇hjk(x
∗) = 0.

We will call a point x∗ satisfying the KKT conditions also “KKT point or critical point”

for the NLP (1.1).

Lemma 1.17 (Farkas’ Lemma). Consider the cone

K = KB,C := {By + Cw : y ∈ Rq
≥0, w ∈ Rp},

where B ∈ Rn×q, C ∈ Rn×p. Then, for any vector g ∈ Rn, the following holds:

g ∈ K ⇐⇒ ∄ d ∈ Rn s. t. g⊤d < 0, B⊤d ≥ 0, C⊤d = 0.

In general, all vector equalities and inequalities such as B⊤d ≥ 0 or C⊤d = 0 must be

interpreted component by component, that is, each condition holds for every component

of the corresponding vector.
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Remark 1.18. The second alternative has a geometric interpretation: the vector d defines

a hyperplane in Rn that separates g from the cone K. In other words, either g lies inside

the cone, or there exists a separating hyperplane witnessing that g is outside the cone

but never both.

The Farkas’ lemma is a classical and well known result in mathematical programming.

Several equivalent formulations can be found, for instance, in [6], Chapter 7. The proof

of the version used here follows closely the exposition in [5], Lemma 12.4, where the

argument is presented in a particularly clear manner.

Proof of Theorem (1.15). We first prove the first-order part of the statement, that is,

the existence of Lagrange multipliers satisfying the Karush–Kuhn–Tucker conditions.

Let x∗ ∈ D be a local solution of problem (1.1) and assume that LICQ holds at x∗. By

Lemma 1.11 we have

∇f(x∗)⊤d ≥ 0, ∀ d ∈ TD(x
∗), (1.8)

moreover, by the remark on the relation between the tangent cone and the linearized

feasible direction set, LICQ implies

TD(x
∗) = F (x∗). (1.9)

Combining (1.8) and (1.9) we obtain

∇f(x∗)⊤d ≥ 0, ∀ d ∈ F (x∗). (1.10)

For convenience, let us enumerate the set of inequality constraints in effect on x∗:

A(x∗) ∩ I = { i ∈ I | gi(x∗) = 0 } = {̂i1, . . . , îq},

for some q ∈ N and recall that the inequality and equality constraints are indexed by

I = {i1, i2, . . . , im}, E = {j1, j2, . . . , jp}.

We now define the matrices

B :=
[
−∇gî1(x

∗) · · · −∇gîq(x
∗)
]
∈ Rn×q, C :=

[
∇hj1(x

∗) · · · ∇hjp(x
∗)
]
∈ Rn×p.

With this choice, the cone K appearing in Lemma 1.17 is

K =
{
−

q∑
ℓ=1

yℓ∇gîℓ(x
∗) +

p∑
k=1

wk∇hjk(x
∗) : y ∈ Rq

≥0, w ∈ Rp
}
,

and if we apply this Lemma with

g := ∇f(x∗), B, C as above,
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we obtain the equivalence

g ∈ K ⇐⇒ ∄ d ∈ Rn s. t. g⊤d < 0, B⊤d ≥ 0, C⊤d = 0.

Let us analyze the negation of this statement. Assume, for contradiction, that there

exists a vector d ∈ Rn such that

∇f(x∗)⊤d < 0, B⊤d ≥ 0, C⊤d = 0. (1.11)

Using the definitions of B and C, the conditions B⊤d ≥ 0 and C⊤d = 0 are equivalent

to

(−∇gîℓ(x
∗))⊤d ≥ 0, ℓ = 1, . . . , q, ∇hjk(x

∗)⊤d = 0, k = 1, . . . , p,

that is to say,

∇gîℓ(x
∗)⊤d ≤ 0, ∀ îℓ ∈ A(x∗) ∩ I, ∇hj(x

∗)⊤d = 0, ∀ j ∈ E .

By the definition of the linearized feasible direction set F (x∗), these relations mean that

d ∈ F (x∗). Hence, under (1.11), we obtain simultaneously

d ∈ F (x∗), ∇f(x∗)⊤d < 0,

which contradicts (1.10). Therefore, such a vector d cannot exist by the formulation of

Lemma 1.17, it follows that

∇f(x∗) ∈ K,

i.e., there exist multipliers y ∈ Rq
≥0 and w ∈ Rp such that

∇f(x∗) = −
q∑

ℓ=1

yℓ ∇gîℓ(x
∗) +

p∑
k=1

wk ∇hjk(x
∗). (1.12)

We now define Lagrange multipliers for all inequality and equality constraints. For the

inequality multipliers, we set

λ̂ℓ := yℓ, ∀ ℓ = 1, . . . , q,

and for the equality multipliers we define

µjk := −wk, ∀ k = 1, . . . , p.

With this notation, (1.12) becomes

∇f(x∗) = −
q∑

ℓ=1

λ̂ℓ∇gîℓ(x
∗)−

p∑
k=1

µk∇hjk(x
∗),
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we now construct the full vector of multipliers λ ∈ Rm associated with the inequality

constraints by setting for each k = 1, . . . , p:

λk :=


λ̂ℓ, if ik = îℓ for some ℓ ∈ {1, . . . , q},

0, otherwise,

since {̂i1, . . . , îq} ⊆ {i1, . . . , im}, the above identity can be rewritten as

∇f(x∗) +
m∑
k=1

λk∇gik(x
∗) +

p∑
k=1

µk∇hjk(x
∗) = 0.

That is precisely the stationarity condition

∇xL(x∗, λ, µ) = 0.

We now check the remaining KKT conditions:

• Primal feasibility. By assumption, x∗ ∈ D is feasible for problem (1.1), hence

gi(x
∗) ≤ 0, ∀ i ∈ I, hj(x

∗) = 0, ∀ j ∈ E .

• Dual feasibility. By construction.

• Complementary slackness. For ik ∈ A(x∗) we have gik(x
∗) = 0 by definition of

active inequality constraints, hence

λkgi(x
∗) = λk · 0 = 0.

For ik ∈ I \ (A(x∗) ∩ I) we have λk = 0, therefore,

λkgik(x
∗) = 0, ∀ k = 1, . . . ,m.

This completes the proof of the first-order necessary conditions. We now assume in

addition that f , gi and hj are of class C
2 in a neighborhood of the local solution x∗, and

we prove (1.7). Let λ ∈ Rm and µ ∈ Rp be the Lagrange multipliers associated with x∗

given by the first-order part of the theorem, and fix any direction w ∈ Rn such that

∇gi(x
∗)⊤w = 0, ∀ i ∈ A(x∗) ∩ I, ∇hj(x

∗)⊤w = 0, ∀ j ∈ E . (1.13)

Consider the mapping

F (x) :=

(gi(x))i∈A(x∗)∩I(
hj(x)

)
j∈E

 .
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By definition of the active set we have F (x∗) = 0. Moreover, LICQ at x∗ means that the

gradients {
∇gi(x

∗) : i ∈ A(x∗) ∩ I
}
∪
{
∇hj(x

∗) : j ∈ E
}

are linearly independent, that is, the ∇F (x∗) has full row rank. Since F is C2, by the

“Implicit Function Theorem” the level set

M := {x ∈ Rn | F (x) = 0}

is a C2 manifold in a neighborhood of x∗, and its tangent space at x∗ is

TM(x∗) =
{
d ∈ Rn | ∇gi(x

∗)⊤d = 0, ∀ i ∈ A(x∗) ∩ I, ∇hj(x
∗)⊤d = 0, ∀ j ∈ E

}
.

By (1.13) we have w ∈ TM(x∗). A standard result as a consequence of the Implicit

Function Theorem ensures that for every w ∈ TM(x∗) there exists a C2 curve

γ : (−ε, ε) → M

such that:

γ(0) = x∗, γ′(0) = w.

By construction we have, for all t sufficiently small,

gi(γ(t)) = 0, ∀ i ∈ A(x∗) ∩ I, hj(γ(t)) = 0, ∀ j ∈ E .

For the inactive inequality constraints i ∈ I \A(x∗)∩I we have gi(x
∗) < 0, by continuity

of gi there exists δ > 0 such that gi(γ(t)) < 0 for all |t| ≤ δ. Hence, for |t| small enough,

γ(t) satisfies all constraints of (1.1), and therefore γ(t) is a curve of feasible solution

passing through x∗ with initial direction w. Now we define a new scalar function as a

composition of the objective function and this curve,

φ(t) := f(γ(t)), t ∈ (−ε, ε).

Since x∗ is a local solution of (1.1) and γ(t) is feasible for |t| small, the point t = 0 is a

local minimizer of φ, i.e.,

φ′(0) = 0, φ′′(0) ≥ 0.

By the chain rule we have

φ′(t) = ∇f(γ(t))⊤γ′(t) =⇒ φ′(0) = ∇f(x∗)⊤w.

We show that φ′(0) = 0 is automatically implied by the KKT conditions. Indeed, from

stationarity,

∇f(x∗)⊤w = −
m∑
k=1

λk∇gik(x
∗)⊤w −

p∑
k=1

µk∇hjk(x
∗)⊤w.
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For i ∈ A(x∗) ∩ I we have ∇gi(x
∗)⊤w = 0 by assumption (1.13). For i ∈ I \ A(x∗) ∩ I

we have gi(x
∗) < 0, hence λi = 0 by complementary slackness. For all j ∈ E we have

∇hj(x
∗)⊤w = 0 again by (1.13). Therefore both sums vanish and

∇f(x∗)⊤w = 0,

so that indeed φ′(0) = 0, consistently with the fact that t = 0 is a local minimum of φ.

Differentiating φ a second time and using again the chain rule, we obtain

φ′′(t) = γ′(t)⊤∇2f(γ(t)) γ′(t) +∇f(γ(t))⊤γ′′(t),

evaluating at t = 0 gives

φ′′(0) = w⊤∇2f(x∗)w +∇f(x∗)⊤γ′′(0). (1.14)

We now express ∇f(x∗)⊤γ′′(0) in terms of the constraints and the multipliers, from

stationarity we have

∇f(x∗)⊤γ′′(0) = −
∑
i∈I

λi∇gi(x
∗)⊤γ′′(0)−

∑
j∈E

µj∇hj(x
∗)⊤γ′′(0). (1.15)

Differentiating twice gi with respect to t gives, for each i ∈ A(x∗) ∩ I,

d

dt
gi(γ(t)) = ∇gi(γ(t))

⊤γ′(t),
d2

dt2
gi(γ(t)) = γ′(t)⊤∇2gi(γ(t)) γ

′(t)+∇gi(γ(t))
⊤γ′′(t),

evaluating at t = 0 and using γ′(0) = w we obtain

0 =
d2

dt2
gi(γ(t))

∣∣∣∣
t=0

= w⊤∇2gi(x
∗)w +∇gi(x

∗)⊤γ′′(0),

from which

∇gi(x
∗)⊤γ′′(0) = −w⊤∇2gi(x

∗)w, i ∈ A(x∗) ∩ I. (1.16)

For all k such that ik ∈ I \A(x∗)∩ I we have λk = 0, so these indices do not contribute

to (1.15). Similarly, for hj fixed j ∈ E ,

0 =
d2

dt2
hj(γ(t))

∣∣∣∣
t=0

= w⊤∇2hj(x
∗)w +∇hj(x

∗)⊤γ′′(0),

from which

∇hj(x
∗)⊤γ′′(0) = −w⊤∇2hj(x

∗)w, j ∈ E . (1.17)

Substituting (1.16) and (1.17) in (1.15) we have

∇f(x∗)⊤γ′′(0) =
∑

i∈A(x∗)∩I

λi w
⊤∇2gi(x

∗)w +
∑
j∈E

µj w
⊤∇2hj(x

∗)w.



14 1. Preliminaries concepts

Inserting this expression into (1.14), it follows

φ′′(0) = w⊤∇2f(x∗)w +
∑

i∈A(x∗)∩I

λiw
⊤∇2gi(x

∗)w +
∑
j∈E

µj w
⊤∇2hj(x

∗)w.

Noting that the terms with i /∈ A(x∗) ∩ I are zero because λi = 0, we can rewrite the

whole thing as

φ′′(0) = w⊤
(
∇2f(x∗) +

∑
i∈I

λi∇2gi(x
∗) +

∑
j∈E

µj∇2hj(x
∗)
)
w = w⊤∇2

xxL(x∗, λ, µ)w.

Since x∗ is a local minimum and γ(t) is a feasible curve passing through x∗, we have that

t = 0 is a local minimum of φ(t) = f(γ(t)), and therefore

φ′′(0) ≥ 0,

By the previous formula for φ′′(0) we deduce

w⊤∇2
xxL(x∗, λ, µ)w ≥ 0

for every w ∈ Rn that satisfies (1.13), that is, for every direction that is tangent to the

surfaces of the active constraints in x∗.

We introduce a sufficient condition, formulated in terms of the objective function and

the constraints which guarantees that x∗ is a local solution to the problem. However, the

second-order sufficient condition closely resembles the necessary condition just introduced

but differs in that the qualification of the constraint is not required and the Hessian

inequality is replaced by a strict inequality.

Definition 1.19 (Critical Cone). Let x∗ be a feasible solution and let (λ∗, µ∗) be a pair

of Lagrange multipliers satisfying the KKT conditions. The “critical cone” at (x∗, λ∗, µ∗)

is defined as

w ∈ C(x∗, λ∗) ⇐⇒


−∇hj(x

∗)⊤w ≤ 0, ∀ j ∈ E ,

−∇gik(x
∗)⊤w ≤ 0, ∀ ik ∈ A(x) with λ∗

ik
> 0,

−∇gik(x
∗)⊤w ≥ 0, ∀ ik ∈ A(x) with λ∗

ik
= 0.

(1.18)

Lemma 1.20. Let {xk}k∈N be a sequence of feasible solution with xk → x∗ and let

d = lim
k→∞

xk − x∗

∥xk − x∗∥
.

Then d ∈ C(x∗, λ∗), that is, the limit direction belongs to the critical cone.
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Theorem 1.21 (Second-Order Sufficiency Conditions). Given the general problem (1.1),

assume that the functions f , gi, and hj for each i and j are C2, and let x∗ ∈ Rn be a

feasible solution. Let us assume that λ ∈ Rm and µ ∈ Rp exist such that x∗ satisfies the

KKT conditions for the problem, and additionally,

w⊤∇2
xxL(x∗, λ, µ)w > 0, ∀w ∈ C(x, λ), w ̸= 0, (1.19)

then x∗ is a strict local minimum of problem (1.1).

Proof. We define the compact subset of C as

C̄ = {w ∈ C(x∗, λ∗) | ∥w∥ = 1},

then by hypothesis (1.19) we can define

σ := min
w∈C̄

w⊤∇2
xxL(x∗, λ∗, µ∗)w > 0.

Moreover, since C(x∗, λ∗) is a cone, it follows that w/∥w∥ ∈ C̄ if and only if w ∈
C(x∗, λ∗), w ̸= 0. Therefore, for any such w we have

w⊤∇2
xxL(x∗, λ∗, µ∗)w ≥ σ ∥w∥2.

Suppose that there exists a feasible sequence {xk}k∈N converging to x∗ such that

f(xk) < f(x∗) +
σ

4
∥xk − x∗∥2, ∀ k > K, with K ∈ N sufficiently large,

which is equivalent to assuming that x∗ is not a strict local solution, now we consider

the limiting direction

d = lim
k→∞

xk − x∗

∥xk − x∗∥
.

Using the Taylor expansion of the Lagrangian combined with the KKT conditions, we

have

f(xk) ≥ f(x∗) +
1

2
(xk − x∗)T∇2

xxL(x
∗, λ∗)(xk − x∗) + o(∥xk − x∗∥2),

since d ∈ C(x∗, λ∗) by previews lemma and by the definition of σ, it follows

f(xk) ≥ f(x∗) +
σ

2
∥xk − x∗∥2 + o(∥xk − x∗∥2),

which again contradicts the initial assumption. Every feasible sequence xk → x∗ satisfies

f(xk) ≥ f(x∗) +
σ

4
∥xk − x∗∥2

for k sufficiently large, so x∗ is a strict local solution.
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The complete proof of this theorem, as well as that of the previous lemma, can be

found in [5], Theorem 12.6. For brevity, we omit further details here.

After presenting conditions the second order conditions (1.7) and (1.19), it is possible

to express them in a slightly weaker but also more convenient form to verify. This

alternative form is based on a two sided projection of the Lagrangian Hessian onto

subspaces associated with critical cone, it is a subset of the Linearized Feasible Direction

Set, and consists of those directions that tend to remain aligned with the active inequality

constraints, particularly for indices ik ∈ I where the corresponding Lagrange multiplier

λ∗
ik
is positive. It also incorporates the equality constraints. In this way, the critical cone

represents directions in F(x∗) along which first-order information alone does not indicate

whether the objective function will increase or decrease. We introduce the notation A(x∗)

to denote the matrix whose rows correspond to the gradients of the active constraints:

A(x∗)⊤ :=
[
· · · ∇hj(x

∗) · · · ∇gi(x
∗) · · ·

]
j∈E, i∈A(x∗)∩I

.

The simplest case occurs when the Lagrange multiplier vector λ∗ that satisfies the KKT

conditions is unique (for example, when the LICQ condition holds) and strict comple-

mentarity is satisfied. In this situation, the definition (1.18) of the critical cone reduces

to

C(x∗, λ∗) = {w ∈ Rn | A(x∗)⊤w = 0},

where A(x∗) is defined as above, in other words, the critical cone coincides with the null

space of the active constraint gradients and in this context we can define a full-column-

rank matrix Z ∈ Rn×(n−m) whose columns form a basis of C(x∗, λ∗), i.e.,

C(x∗, λ∗) = {Zu | u ∈ Rdim(C(x∗,λ∗))}.

Using this notation, the positive semidefinite second-order condition (1.7) can be rewrit-

ten as

u⊤Z⊤∇2
xxL(x∗, λ∗)Zu ≥ 0, ∀u,

or more concisely,

Z⊤∇2
xxL(x∗, λ∗)Z ⪰ 0.

Similarly, the positive definite condition (1.19) becomes

Z⊤∇2
xxL(x∗, λ∗)Z ≻ 0.

From a numerical point of view, the matrix Z can be computed, which allows the positive

definiteness or semi-definiteness conditions to be checked by forming the matrices and
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computing their eigenvalues. One way to obtain Z is by applying a QR factorization to

the transpose of the active constraint gradients, as we show next:

A(x∗)⊤ =
[
Q1 Q2

]R
0

 = Q1R

where R is a square upper triangular matrix and Q is an n× n orthogonal matrix. If R

is non-singular, we can set Z = Q2. If R is singular (indicating that the active constraint

gradients are linearly dependent), a slight modification of the QR procedure with column

pivoting can be used to correctly identify Z.

1.4 Linear Programming

Linear programming problems are characterized by a linear objective function and a

set of linear constraints, which may include both equalities and inequalities. The feasible

set defined by these constraints is a polytope, namely a convex and connected set bounded

by flat faces. The objective function can be represented by a family of hyperplanes whose

level sets translate uniformly across the variable space. In general, the optimal solution

corresponds to a vertex of the feasible polytope. However, uniqueness is not guaranteed:

the optimal value may be attained over an entire edge or face, and in higher dimensions

the set of optimal solutions can extend beyond a single point. For both theoretical

analysis and algorithmic implementation, it is customary to express a linear program in

the following “standard form”:

min c⊤x subject to Ax = b, x ≥ 0, (1.20)

where c ∈ Rn, x ∈ Rn, b ∈ Rm are vector, and A ∈ Rm×n is a real matrix, with n and m

denote the number of variables and constraints, respectively. Through elementary trans-

formations, any linear program can be reformulated into this canonical representation.

In many situations, linear programs are initially formulated with inequality constraints

and without explicit sign restrictions on the decision variables. For example,

min
x∈Rn

c⊤x subject to Ax ≤ b.

Let us transform this problem into the canonical form often required by linear optimiza-

tion algorithms, which we will see later, through two operations. First, each inequality

constraint can be rewritten as an equality by introducing a non-negative “slack variable”,

Ax ≤ b ⇐⇒ Ax+ z = b, z ∈ Rm, z ≥ 0.
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Secondly, since the variables x are unrestricted in sign, each component can be written

as the difference of two non-negative variables:

x = x+ − x−, x+ ≥ 0, x− ≥ 0.

Substituting this decomposition into the constraints and the objective function we get

A(x+ − x−) + z =
[
A −A Im

]
x+

x−

z

 = b, c⊤(x+ − x−) =


c

−c

0


⊤

x+

x−

z

 ,

with all variables non-negative. This procedure shows that any linear program with

inequality constraints and variables free in sign can be systematically rewritten in the

canonical form

min c̃⊤x̃ subject to Ãx̃ = b, x̃ ≥ 0,

where x̃ collects all non-negative variables (x+, x−, z). In this way, every inequality can

be converted into an equality with non-negative additional variables, ensuring that the

problem fits the standard framework for linear programming methods.

1.4.1 Optimality Conditions

The optimality of a feasible solution for the linear program

min c⊤x subject to Ax ≤ b, x ≥ 0, (1.21)

can be characterized entirely by the first-order Karush–Kuhn–Tucker (KKT) conditions.

Since the problem is convex and the objective function is linear, second-order conditions

are not informative in this setting: the Hessian of the Lagrangian vanishes identically.

To formulate the KKT system, we introduce Lagrange multipliers λ ∈ Rm for the

inequality constraints Ax ≤ b and multipliers s ∈ Rn for the non negativity bounds

x ≥ 0. The Lagrangian associated with (1.21) is

L(x, λ, s) = c⊤x− λ⊤(Ax− b)− s⊤x. (1.22)

The KKT conditions state that a feasible vector x is optimal if and only if there exist

multipliers λ ∈ Rm and s ∈ Rn such that

A⊤λ+ s = c, (1.23)

Ax ≤ b, (1.24)

x ≥ 0, (1.25)

s ≥ 0, (1.26)

xisi = 0, i = 1, . . . , n. (1.27)
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Condition 1.27, known as complementarity, enforces that for each component either the

primal variable xi or the corresponding dual variable si vanishes, it can be expressed as

the inner product of the vectors x and s. Combining the stationarity condition (1.23)

with feasibility and complementarity, one obtains the identity

c⊤x = (A⊤λ+ s)⊤x = (Ax)⊤λ = b⊤λ.

The equality c⊤x = b⊤λ reflects the fact that primal and dual objective values coincide

at optimality. Moreover, for any feasible x̄ we have

c⊤x̄ = (A⊤λ+ s)⊤x̄ = (Ax̄)⊤λ+ (s)⊤x̄ ≥ b⊤λ = c⊤x,

where the inequality follows from Ax̄ ≤ b, λ ≥ 0, x̄ ≥ 0 and s ≥ 0. This shows that no

feasible solution can yield a strictly lower objective value than x. Finally, note that the

optimality of x̄ requires

x̄⊤s = 0,

so that any positive component of s enforces the vanishing of the corresponding com-

ponent of every optimal solution x̄. This characterization highlights the close interplay

between primal feasibility, dual feasibility, and complementarity in the theory of linear

programming.

1.4.2 Bases and Basic feasible solutions

We write the linear problem in standard form

min c⊤x subject to Ax = b, x ≥ 0,

and we assume that the number of variables is larger than the number of constraints

so n > m. The matrix A has full rank so it contains m linearly independent columns.

In practice the data can be prepared in advance to remove redundant constraints or to

eliminate some variables and the use of slack surplus or artificial variables can also make

the matrix A satisfy this condition.

Definition 1.22 (Basic Feasible Solution and Basis Matrix). A vector x is called a

“basic feasible solution” if it satisfies the feasibility conditions and there is a subset B of

the indices {1, . . . , n} such that:

1. B has exactly m elements,

2. xi = 0 for every i /∈ B,
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3. the matrix B = [Ai]i∈B is not singular.

Under this property, B and B are called the “basis” and the “basis matrix”, respectively.

Theorem 1.23. Let x ∈ D := {x ≥ 0 : Ax = b}, D is the feasible polytope, then x is a

vertex of P if and only x is a basic feasible solution associated with a basis B of matrix

A.

Proof. (⇐) Suppose, by contradiction, that x is a basic feasible solution but not a vertex

of D. Then there exist distinct y, z ∈ D and a scalar 0 < λ < 1 such that

x = λy + (1− λ)z.

Since y, z ∈ D, it follows that Ay = Az = b and y, z ≥ 0. Let B := {j : xj > 0} denote

the set of indices corresponding to the basis of basic variables solution x. By definition

of a BFS, the columns {Aj : j ∈ B} are linearly independent and |B| = m. For all j /∈ B
we have xj = 0, hence,

0 = xj = λyj + (1− λ)zj.

Since λ, 1− λ > 0 and yj, zj ≥ 0, it follows that yj = zj = 0 for all j /∈ B. Therefore, y

and z have nonzero components only in the positions indexed by B. Because y, z ∈ D,

one can write ∑
j∈B

yjAj = b,
∑
j∈B

zjAj = b.

Subtracting these two equalities yields∑
j∈B

(yj − zj)Aj = 0.

Let d := y − z. Then Ad = 0 and d ̸= 0, since y ̸= z. This shows that the columns

{Aj : j ∈ B} are linearly dependent, which contradicts the definition of a basis associated

with a basic feasible solution. Hence our initial assumption was false, and x must be a

vertex of D.

(⇒) Assume that x ∈ D is a vertex. Let B := {j : xj > 0}, and denote by {Aj : j ∈
B} the corresponding columns of A. Let |B| = p. Suppose, by contradiction, that these

columns are linearly dependent. Then there exists a nonzero vector d ∈ Rn such that

Ad = 0, dj = 0, ∀ j /∈ B.

For sufficiently small |θ|, the points x + θd and x − θd both satisfy A(x ± θd) = b and

remain non-negative, so that x± θd ∈ D. Since

x = 1
2

[
(x+ θd) + (x− θd)

]
,
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the point x lies on the line segment connecting two distinct feasible points of D. This

contradicts the assumption that x is a vertex. Hence the columns {Aj : j ∈ B} must

be linearly independent, and therefore p ≤ m. If p < m, we can add m − p additional

indices to B in order to form a full basis matrix B of A. Consequently, x is the basic

feasible solution associated with B.
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Chapter 2

Balance Sheet Model and

Regulatory Constraints

In the modern banking system, risk and return management are strictly governed

by prudential rules that not only determine the amount of capital and liquidity to be

held, but also define the operational methods by which financial institutions plan their

investment, raising, and capital allocation strategies.

All of these activities fall within a broader discipline called Asset and Liability Man-

agement (ALM), which represents the economic and strategic framework through which

banks coordinate budgetary decisions to simultaneously ensure profitability and finan-

cial stability. ALM aims to balance risk and return through integrated management of

interest rate exposure, liquidity, and capital constraints.

The introduction of the Basel III principles by the Basel Committee on Banking

Supervision has profoundly changed the framework within which banks must operate.

Among the main regulatory constraints, we will encounter risk-weighted assets (RWA),

the Liquidity Coverage Ratio (LCR), and the Net Stable Funding Ratio (NSFR). These

quantitative measures significantly influence decisions regarding balance sheet structure

and banking book composition, simultaneously influencing profitability and liquidity

management.

We will first study the structure of the bank balance sheet, the calculation of Net In-

terest Income (NII), and the main types of fixed- and floating-rate financial instruments,

along with their technical characteristics, maturities, and repayment terms. The combin-

ation of constraints with return objectives creates a complex problem in which asset and

liability portfolio planning must simultaneously meet capital and liquidity requirements

while maximizing the economic outcome. This formally translates into a constrained op-

timization problem. For a more detailed analysis of the theoretical foundations of bank

23
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risk management and practical approaches to optimizing asset and liability strategies,

see [3] and [7], respectively.

2.1 The Balance Sheet Model

A bank’s balance sheet is an accounting document that captures the institution’s

financial position at a given point in time, such as the end of a month, quarter, or year.

In simple terms, it shows where the bank’s resources come from and how these resources

are used. It is a basic tool for understanding the bank’s solidity and liquidity, and its

exposure to risk. It follows the basic accounting rule that total assets always equal total

liabilities plus equity, or

A− L = E,

this balance reflects the accounting principle that every use of resources has a corre-

sponding source of funding. We now provide an example for illustrative purposes only,

where we can see how the three aforementioned categories are clearly defined and dis-

tinct, and how this equation is verified. The main balance sheet items, such as loans,

investments, deposits, and debt, include various types of contracts. These contracts

can vary in terms of currency, duration, interest rate, creditworthiness, and accounting

method. To understand how the balance sheet will change over time, it is important to

analyze these individual contracts. In financial modeling, the way we aggregate balance

sheet items may differ from the standard accounting classification. For example, we can

break down “Loans and advances to customers” by repayment type such as amortizing

versus at maturity or categorize “Debt issued” by fixed versus floating rates to see their

sensitivity to interest rate changes. This helps assess the effect of each strategy on the

bank’s risk and return. To build a mathematical model for balance sheet optimization,

a stable and clear accounting structure is required. The model’s logic, including its

constraints and relationships, must not depend on the input data. However, account

names and organization influence the definition of contracts and decision variables, so it

is important to use a consistent input structure.

Different versions of the balance sheet, aggregated or disaggregated at will,

can be output for targeted analysis at the level of interest.

This way, the balance sheet is no longer just a static snapshot, it becomes a dynamic

tool that evolves based on the bank’s strategies for profitability, risk management, and

regulatory compliance.



2.1 The Balance Sheet Model 2. Balance Sheet and Regulation

Figure 2.1: Balance sheet UBS [13]
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2.2 Classification of Financial Instruments

After analyzing the structure of the balance sheet, it is necessary to introduce a formal

framework for classifying and aggregating the various balance sheet items consistently.

Such a classification is crucial in a mathematical and operational research context, as it

provides the information base upon which optimization and data analysis models can be

constructed, and it was chosen based on the problem and the input data. Let us denote

by BS the set of all financial instruments considered in the balance sheet: where each

element in BS represents a single financial instrument, and N∗ is the total number of

instruments associated to the following way of aggregating.

The first segmentation is based on the accounting category of the instrument:

• Assets: An economic resource owned or controlled by the bank that has value

and from which a future economic benefit is expected (e.g. interest, dividends, or

capital gains).

• Liabilities: A debt or obligation of the bank arising from past events, the fulfill-

ment of which will result in an outflow of economic resources in the future (e.g.

payment of debt or repayment of funds).

Equity instruments can be considered a residual category, because in our case they

represent a single value fixed at the beginning of the optimization, not subject to any

changes during the simulation time horizon.

In addition to this primary classification, financial instruments are also classified

based on the type of interest rate, which can be fixed, floating, or mixed/hybrid. A

fixed rate instrument maintains the same value up to its maturity, while a floating rate

instrument adjusts periodically based on a market parameter. A mixed rate instrument

combines both, for example, with initial fixed-rate periods followed by floating-rate pe-

riods.

The reference rate, or pivot rate is the market parameter used to determine the

interest rate in floating, fixed, or mixed contracts. It is based on official indices that

reflect current monetary conditions: in the euro area, the Eurirs is commonly used for

variable rates, while the Eurirs represents the reference rate for fixed rates. These indices

are standardized and recognized in financial markets.

Another way to classify financial instruments is by their repayment term structure,

which describes both the overall duration of the instrument and the terms by which

interest and principal are repaid over time. The maturity indicates the period between

the issuance of the instrument and the final repayment of the principal. Likewise, the
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payment frequency defines the time intervals in which interest is paid, determining the

timing of periodic cash flows. The repayment capital type specifies the method of principal

repayment: it can be a lump sum at maturity, typically referred to as a bullet repayment,

or through periodic payments over the life of the instrument, according to a linear or an

exogenous amortizing plan.

Financial instruments are also classified according to the record type,which identifies

their accounting nature:

• Bonds: bonds issued by public entities or corporations, with predetermined credit

rights.

• Current Accounts and Sight Deposits: checking accounts and demand de-

posits, liquid instruments that generate short-term fixed or floating interest.

• Loans and Receivables at Maturity / Time Deposits: loans and term de-

posits, with defined duration and repayment schedules, generating programmed

interest flows.

• Data Entry Operation – 700: accounting records of specific operations, often

internal to the bank, used for monitoring or internal management purposes.

• Stocks, Funds, Options: equity instruments, fund shares, or derivatives, which

exhibit risk and return characteristics different from fixed-income instruments.

To each instrument we associate a “vector of characteristics”:

θk =
(
ak, tk, τk,mk, fk, rk, sk, pk

)
, (2.1)

where each component captures a fundamental property of the instrument:

• ak: accounting category,

• tk: interest rate type (fixed, floating, mixed),

• τk: pivot rate or reference index (Euribor, CMS),

• mk: maturity,

• fk: interest payment frequency,

• rk: repayment type (bullet, amortizing, etc.),

• sk: record type (bonds, loans, stocks, etc.).

This representation allows a structured and flexible way to aggregate instruments ac-

cording to shared characteristics.
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2.2.1 Aggregation of Instruments

This multidimensional classification structure allows instruments with similar eco-

nomic, temporal, and accounting characteristics to be aggregated, facilitating both math-

ematical modeling of the portfolio and the assessment of interest rate, liquidity, and credit

risks. Let Ig ⊆ I denote the subset of instruments sharing a specific feature g described

above. For any quantitative characteristic xk of an instrument k for example, outstand-

ing amount, interest contribution, or any relevant risk or liquidity metric, the aggregated

value for the group at a given time or evaluation date can be expressed as:

Xg =
∑
k∈Ig

xk,

where Xg represents the total or combined contribution of the characteristic xk for all

instruments in the group. This framework can be applied to a wide range of numerical

attributes, enabling consistent metric calculations while maintaining the desired aggre-

gation.

2.3 Net Interest Income (NII)

In the context of Asset-Liability Management (ALM), the profit generated by the

difference between the return on assets and the cost of liabilities is a key measure of

financial performance. The main indicator of this profitability is the “Net Interest Income

(NII)”, defined as:

NII = Interest Income− Interest Liabilities. (2.2)

The interest income represents the profits from interest-bearing assets while interest

expenses reflect the cost of funding and other sources of financing. The NII is the

main component of a bank’s operating income and forms the basis of commercial banks’

operating results. It reflects the bank’s ability to convert its balance sheet structure

and interest rate profile into profit by capturing the so-called spread between assets and

liabilities.

From a financial perspective, the net interest income (NII) summarizes the efficiency

with which a bank uses its resources to generate value, being influenced by multiple

factors: the volume and composition of loans and deposits, the interest rate structure,

the timing of cash flows (repricing), and interest rate risk management policies. The NII

also serves as a stability indicator: a reduction in the net interest income, caused for

example by high financing costs or low asset returns, can reduce the bank’s ability to

generate capital and withstand market shocks.
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In balance sheet optimization, the NII becomes the objective function to be maxi-

mized. The goal is to find a combination of assets and liabilities that, given regulatory

and operational constraints, maximizes the net interest income over time. This also re-

quires considering risk variables: interest rate changes, maturity mismatches, duration,

options embedded in contracts, and regulatory limits (e.g. on liquidity and capital re-

quirements). These factors do not change the NII formula, but they influence its stability

and long-term sustainability.

From a mathematical point of view, considering a set of positions with exposures xk

and ak as a weighting indicator to determine whether the i-th instrument is an asset or

a liability, the objective function can be represented as:

max
x

NII(x) =
∑
k

akekxk, (2.3)

where ek are the interest rates of the corresponding instruments.

A closely related indicator to NII is “Net Interest Margin (NIM)”. While NII measures

the absolute value of the interest income generated by the difference between financial

income and expenses, NIM represents the relative measure, comparing this income to

the bank’s total interest-bearing assets. It is defined as:

NIM =
NII

Earning Assets
. (2.4)

NIM therefore represents the efficiency with which a bank uses its assets to generate

interest income. Higher NIM values indicate a greater ability to transform assets into

profitable margins, while lower values may reflect an increase in the cost of funding, a

reduction in lending rates, or increased competition in the credit market.

2.4 Regulatory Constraints: Basel III Framework

Following the 2008 global financial crisis, the Basel Committee on Banking Super-

vision (BCBS) introduced a set of international standards, known as Basel III [1], with

the aim of strengthening the resilience of the banking system and reducing systemic risk.

The framework evolved from previous agreements (Basel I and II) and broadened the

focus from just credit risk to an integrated approach that includes market, liquidity, and

leverage risks. The core principle of Basel III is the definition of adequate capital and

liquidity requirements based on the structure of banks’ balance sheets. The regulatory

framework is based on three main pillars:

• Pillar 1: called “Minimum Capital Requirements”, it establishes the minimum

amount of capital a bank should hold to cover credit, market, and operational risks.
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It provides guidelines for calculating the risk exposure of a bank’s balance sheet

assets (the “risk-weighted assets”, RWA and their components) and establishes the

minimum capital requirements;

• Pillar 2: called “Supervisory Review and Evaluation Process” involves both banks

and regulators taking a view on whether a firm should hold additional capital

against risks not covered in Pillar 1. Part of the Pillar 2 process is the ‘Internal

Capital Adequacy Assessment Process’ (ICAAP), which is a bank’s self-assessment

of risks not captured by Pillar 1;

• Pillar 3: called “Market Discipline”, aims to encourage market discipline by re-

quiring banks to disclose specific, prescribed details of their risks, capital, and risk

management.

Basel III therefore includes various indicators that allow for the rigorous quantification

of liquidity and credit risk and the direct linking of asset and liability allocation deci-

sions to regulatory constraints. We will now define some of these indicators that were

subsequently introduced into the optimization process.

2.4.1 Liquidity Coverage Ratio (LCR)

The “Liquidity Coverage Ratio” (LCR) is designed to ensure that a bank has an

adequate stock of unencumbered high-quality liquid assets (HQLA) to meet its liquidity

needs in a short-term, 30-day liquidity stress scenario. HQLA consists of cash or assets

that can be converted into cash with little or no loss in value in private markets. The

underlying idea is that the stock of unencumbered HQLA should allow the bank to

survive until day 30 of the stress scenario, by which time it is assumed that management

and supervisors can take appropriate corrective action or that the bank can be resolved

in an orderly manner. Formally, the Basel Framework defines the LCR as follows:

LCR =
Stock of HQLA

Total net cash outflows over the next 30 calendar days
. (2.5)

A minimum standard of 100% is required, implying that the stock of HQLA must at

least equal the total net cash outflows under a severe stress scenario.

The numerator of the LCR, the stock of High-Quality Liquid Assets (HQLA), rep-

resents the volume of assets that can be easily and immediately converted into cash in

private markets, even during periods of stress, and that are ideally eligible for central

bank operations. Assets qualifying as HQLA must exhibit low credit and market risk,

be easily and consistently valued, and be traded in deep and active markets with low
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volatility. These assets are divided into three distinct levels, each subject to specific

composition and haircut requirements:

• Level 1 Assets (0% haircut):

– Cash, central bank reserves, and marketable securities backed by sovereigns

or central banks.

– Must be of the highest liquidity and credit quality (rated AA− or higher).

– No limit on their composition within the HQLA stock.

– Examples include: coins and banknotes, reserves held at the central bank,

and sovereign bonds issued in the domestic currency.

• Level 2A Assets (15% haircut):

– Comprise high-quality corporate and covered bonds not included in Level 1.

– Minimum external rating of AA− or equivalent.

– The total composition of Level 2 assets (2A + 2B) in HQLA cannot exceed

this 40% threshold.

• Level 2B Assets (25–50% haircut):

– Include lower-rated corporate bonds (A+ to BBB−), certain equities, and

residential mortgage-backed securities (RMBS) that meet strict criteria.

– A maximum of 15% of the total HQLA stock can consist of Level 2B assets.

– Haircuts vary depending on the asset class:

∗ 25% for corporate bonds (rated A+ to BBB−),

∗ 50% for eligible equities listed on major stock indices,

∗ 25% for high-quality RMBS with a minimum rating of AA and a maxi-

mum loan-to-value ratio below 80%.

Furthermore, to qualify as HQLA, all assets must be unencumbered, legally and oper-

ationally accessible to the liquidity management function, and under the control of the

treasury. Supervisors may impose additional requirements or exclude assets that do not

meet local market liquidity standards. After haircuts and composition limits are applied,

the adjusted stock of HQLA represents the numerator of the LCR:

Stock of HQLA = Level 1 + 0.85× Level 2A + (0.5 or 0.75)× Level 2B, (2.6)
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where each multiplier reflects the regulatory haircut assigned to the respective level.

The denominator of the LCR, the total net cash outflows, represents the amount of

liquidity that a bank is expected to need under a severe 30-day stress scenario. It is

calculated as the total expected cash outflows minus the total expected cash inflows

during the period, with the inflows being capped at 75% of the outflows to ensure a

conservative liquidity buffer. Formally, [LCR40], this can be expressed as:

Total Net Cash Outflows =

Expected Outflows−min
(
Expected Inflows, 0.75× Expected Outflows

)
.

(2.7)

Cash outflows reflect the estimated loss of funding that a bank would face due to the

withdrawal of deposits, the non-renewal of maturing liabilities, and the potential use

of committed credit and liquidity facilities. They are determined under stress assump-

tions that take into account both contractual obligations and behavioral factors ob-

served during periods of market tension. Retail deposits generally receive lower run-off

rates—typically between 3% and 10%—depending on their stability and the presence of

deposit insurance schemes. In contrast, wholesale funding provided by financial institu-

tions or corporations, particularly when not related to operational purposes, is assigned

much higher run-off rates, often up to 100%, reflecting its lower stability in stressed mar-

kets. Additional outflows may also arise from potential collateral calls, derivatives margin

requirements, or drawdowns on committed lines of credit to customers. Cash inflows,

conversely, represent the liquidity that a bank can reasonably expect to receive within

the same 30-day horizon from performing assets, contractual repayments, and other

cash-generating activities. However, the Basel Framework requires that such inflows be

treated conservatively. Only inflows from fully performing exposures are included, and

they must be adjusted for the likelihood of delayed or partial repayment under stress

conditions. For instance, inflows from loans and advances may be recognized at 50%

of the contractual amount, while inflows from maturing securities or deposits at other

financial institutions are considered only if they are certain and contractually enforce-

able. Inflows from derivatives are recognized net of collateral and margin obligations.

By limiting the recognition of inflows to 75% of total outflows, the LCR ensures that

a bank’s liquidity position does not rely excessively on potentially uncertain incoming

cash flows.

This conservative treatment reinforces the prudential goal of the ratio: to ensure

that the institution holds a sufficient stock of High-Quality Liquid Assets (HQLA) to

cover the net liquidity gap that would emerge under an acute 30-day stress scenario.
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The resulting metric therefore captures a realistic and prudent estimate of the bank’s

short-term funding needs, ensuring resilience even under severe market disruptions.

2.4.2 Net Stable Funding Ratio (NSFR)

The “Net Stable Funding Ratio” (NSFR) is a key standard for long-term structural

liquidity introduced by Basel III. While the LCR focuses on short-term liquidity over a

30-day time horizon, the NSFR ensures that banks maintain a sustainable funding struc-

ture over a longer time horizon, typically one year. Its objective is to reduce maturity

transformation risk, i.e., the tendency of banks to finance long-term illiquid assets with

short-term unstable liabilities, which has been a major cause of liquidity crises. Formally,

the ratio is expressed as:

NSFR =
Available Stable Funding

Required Stable Funding
. (2.8)

A value equal to or greater than 100% indicates that the bank’s available stable funding

sources are sufficient to finance the portion of assets that requires stable funding under

normal and stressed market conditions.

The numerator, “Available Stable Funding”, measures the stability of a bank’s fund-

ing profile. Each liability category is assigned a so-called ASF factor, which ranges

approximately from 0% for the least stable sources to 100% for the most stable ones. In

general, the higher the reliability and the longer the maturity of a funding source, the

higher its ASF factor. For instance, regulatory capital and long-term debt instruments

are considered the most stable sources of funding and therefore receive the highest fac-

tors. Retail deposits — especially those that are insured or belong to customers with

long-term relationships with the bank — are also viewed as relatively stable and receive

intermediate factors. Conversely, short-term wholesale funding obtained from financial

institutions or interbank markets is highly sensitive to market confidence and thus re-

ceives low or even zero ASF factors. This structure encourages banks to diversify their

liabilities and to rely more heavily on stable, long-term funding sources rather than

volatile short-term borrowing. In essence, the ASF reflects the expected behavior of in-

vestors and depositors under stressed market conditions, taking into account contractual

maturities, funding concentration, and withdrawal patterns.

The denominator, “Required Stable Funding”, represents the amount of stable fund-

ing a bank must hold to support its assets and off-balance-sheet exposures. Each asset

or exposure is assigned an RSF factor, which ranges from very low values (for assets

that are highly liquid and can be rapidly sold or used as collateral) to high values (for

illiquid or long-term assets that cannot be easily converted into cash). In practical terms,
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cash and central bank reserves are considered to require little or no stable funding, since

they can be used immediately to meet obligations. On the other hand, long-term loans,

real estate holdings, and intangible assets require a higher proportion of stable funding

because they cannot be liquidated quickly without incurring significant losses. Similarly,

assets encumbered or pledged as collateral also increase the RSF requirement, as they

are not readily available for liquidity management. The RSF thus captures the liquidity

characteristics and residual maturity of a bank’s asset portfolio. Increases in the av-

erage maturity or illiquidity of assets lead to higher RSF factors, while holding more

marketable or short-term assets reduces the overall funding requirement.

2.4.3 RWA-based Capital Constraint

Within the Basel regulatory framework, “Risk-Weighted Assets” (RWA) represent the

measure through which the risk profile of a bank’s exposures is translated into capital

requirements. Each asset held by a bank is weighted by a coefficient that reflects its

credit, market, or operational risk, determining how much regulatory capital must be

maintained to absorb potential losses. The total RWA thus acts as a constraint on a

bank’s balance sheet: the higher the overall riskiness of its assets, the greater the amount

of capital that must be held. This mechanism ensures that the institution maintains

solvency even under adverse conditions, thereby protecting depositors and the financial

system as a whole. The total amount of Risk-Weighted Assets can be expressed as:

RWAtotal = RWAcredit +RWAmarket +RWAoperational. (2.9)

Each component captures a specific dimension of financial risk and is computed either

through a standardized regulatory methodology or an internal model approach, depend-

ing on the institution’s complexity and supervisory approval. The main components can

be described as follows:

• Credit Risk RWA: This represents the capital requirement associated with po-

tential losses arising from counterparty default or credit deterioration. Under the

Basel framework, each exposure is assigned to a risk weight that increases with

the probability of default (PD) and the severity of the expected loss, measured

by the loss given default (LGD). Highly rated sovereign or institutional exposures

receive lower risk weights, while unsecured or low-rated exposures receive higher

ones. This component ensures that capital requirements are sensitive to credit

quality and asset collateralization.
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• Market Risk RWA: This captures exposure to losses caused by adverse move-

ments in market variables such as interest rates, exchange rates, equity prices,

or commodity prices. They are determined through standardized sensitivity-based

approaches or internal models approved by regulators, typically based on statistical

risk measures such as Value-at-Risk (VaR) or Expected Shortfall (ES). These mea-

sures ensure that the bank holds adequate capital to withstand potential market

volatility and extreme price shocks.

• RWA for Operational Risk: Quantify the amount of capital required to cover

losses resulting from operational failures, including process deficiencies, human

errors, system failures, or external events. The calculation is based on a business

indicator that reflects the scale and complexity of the bank’s operations, adjusted

for its historical loss experience. This ensures proportionality between operational

complexity and capital absorption.

In the context of balance sheet optimization the concept of risk-weighted assets can be

interpreted as a capital-absorbing operator that maps the portfolio composition to an

equivalent measure of risk-weighted exposure. Each instrument xk on the balance sheet

is associated with a regulatory risk weight rwk, and within the optimization model, these

coefficients act as scaling factors that translate nominal exposures into their risk-weighted

equivalents, thus linking the decision variables to the capital requirement. In this sense,

the RWA component introduces a structural constraint on the feasible set of portfolio

allocations: the aggregate risk-weighted exposure resulting from the selected positions

must remain compatible with the available regulatory capital.

2.4.4 Quantitative Aspects and Implications for Asset–Liability

Management

From a quantitative standpoint, liquidity and capital ratios such as the LCR, NSFR,

and RWA introduce explicit regulatory constraints within bank balance sheet optimiza-

tion models. While the LCR and NSFR impose nonlinear relationships between assets

and liabilities by linking portfolio composition to short-term and long-term liquidity re-

quirements, the RWA framework directly affects the capital constraint by determining

the minimum amount of own funds required to support risk exposures.

In the context of Asset–Liability Management, these regulatory measures act as struc-

tural stability constraints. As a result, modern ALM optimization must integrate these

prudential ratios as binding conditions, ensuring that strategic decisions on funding, in-



36 2. Balance Sheet and Regulation

vestment, and capital structure remain consistent with regulatory solvency and liquidity

standards.



Chapter 3

Mathematical Programming Models

Optimizing a bank’s balance sheet is a central problem in Asset-Liability Manage-

ment (ALM), the objective of which is to determine the optimal allocation of assets

and liabilities. The growing complexity of prudential regulation and the interplay be-

tween earnings generation and regulatory ratios (see previous chapter) have rendered

traditional static approaches insufficient. Consequently, optimization-based frameworks

have become a key decision-making tool in strategic balance sheet management, where

the problem can be formulated as a constrained optimization problem, where the deci-

sion variables represent monthly changes in portfolio exposures. The objective function

maximizes the net interest income (NII) subject to balance sheet consistency, regulatory

capital adequacy, and liquidity constraints. This naturally leads to a linear optimiza-

tion problem in its basic form and a nonlinear extension when liquidity constraints are

incorporated.

In this chapter, we present both formulations. The first, purely linear, describes the

optimization of exposures given the portfolio structure and regulatory capital constraints.

The second introduces simplified liquidity constraints, derived from regulatory ratios,

leading to a nonlinear problem that integrates solvency and liquidity dimensions into a

unified optimization framework. The models are built over a one-year time horizon (12

monthly steps) and are based on simplifying assumptions necessary to bridge the different

levels of aggregation between the income, capital, and liquidity simulation modules.

3.1 Notations

To formalize the optimization framework developed in this chapter, we introduce

the notation and mathematical objects that will be used throughout the chapter. The

notation follows standard conventions for optimization and mathematical modeling [2].

37
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Each symbol is uniquely defined to ensure consistency between the algebraic formulation

of the model and its economic interpretation.

Indices.

k index for financial instruments in the balance sheet,

k = 1, . . . , N ;

t index for discrete time periods (months),

t = 1, . . . , T , with T = 12 over the considered horizon.

Decision variables.

xk,t variation in the exposure of instrument k at time t; positive values indicate

an increase in exposure, negative values a reduction.

Parameters.

ak asset/liability indicator, taking value +1 for assets and −1 for liabilities;

NIIACTUAL
k net interest income associated with the initial exposure of instrument k;

ek,t expected yield (interest rate or spread) of instrument k at time t;

sk residual or surviving exposure of instrument k beyond the considered time

horizon;

rwk regulatory risk weight assigned to instrument k;

Cap total capital coverage available across all exposures, defined as

Cap =
N∑
k=1

CET1kOUTk,

where:

– CET1k regulatory capital component allocated to instrument k,

– OUTk cut-off exposure associated with instrument k;

E constant exogenous equity component ensuring balance sheet consistency;

xk,t, xk,t lower and upper bounds on the variation of the exposure xk,t;

θk set of characteristics of instrument k.
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We can now formalize the optimization problem at the heart of this framework, express-

ing it in the general form presented in (1.1). This representation provides a compact

yet rigorous way to describe the model, in which the objective function formalizes the

maximization of net interest income (NII), and the set of constraints captures the regu-

latory and balance sheet structure through the balance sheet equation, RWA limits, and

liquidity ratios.

Within the balance sheet, all financial instruments have been disaggregated into a

granular representation that reflects their relevant contractual and accounting character-

istics. These attributes, collected in the characteristic vector θk defined in (2.1), include

the accounting category, the interest rate type tk, the benchmark parameter τk, the ma-

turity mk, the interest payment frequency fk, the repayment structure rk ,and the record

type sk , in numerical terms, we will see later, only some of these really come into play,

the remaining ones, as already mentioned, serve to make each aggregate unique. This

disaggregation ensures that each balance sheet position is represented consistently and

that the optimization model correctly reflects its financial behavior over time.

Furthermore, the optimization is not performed on the entire portfolio, but only on

the subset of instruments belonging to the loans and receivables record type. All remaining

balance sheet categories are treated as constants within the optimization framework,

contributing fixed components to the objective function and constraints, while remaining

unchanged over time.

Based on this formulation, two model variants are developed. The first is a fully

linear model that maximizes the NII subject only to budget consistency, RWA limits,

and bound on decision variables. The second expands the model by introducing LCR

and NSFR constraints, whose inherently nonlinear nature requires further analytical

treatment and specific modeling assumptions.

3.2 Linear Case

As a general assumption of our optimization setting, we consider a finite time horizon

of one year, divided into monthly time buckets. Each bucket represents a discrete eval-

uation point at which the relevant financial quantities and constraints are assessed. The

optimization portfolio, whose structure has been defined above, is assumed to consist

of N instruments, each characterized by a unique set of attributes as described in the

characteristic vector θk. The optimization model can therefore be written as follows:
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max
xk,t

N∑
k=1

ak

(
NIIACTUAL

k +
T∑
t=1

xk,tek,t

)

s.t.
N∑
k=1

ak Vk(xk,1, . . . , xk,T ; θk, t) = E, ∀ t = 1, . . . , T,

N∑
k=1

rwk Vk(xk,1, . . . , xk,T ; θk, t) ≤ Cap, ∀ t = 1, . . . , T,

xk,t ≤ xk,t ≤ xk,t, ∀ k = 1, . . . , N, ∀ t = 1, . . . , T.

The first equality constraint requires the basic accounting rule, balancing assets and

liabilities for each month, ensuring that the bank’s total exposure remains consistent

with its level of equity. In this expression, the function Vk(xk,1, . . . , xk,T ; θk, t) represents

the effective exposure of instrument k at time t, taking into account its maturity, re-

payment type, interest payment frequency, and any residual outstanding. This ensures

that changes in xk,t are incorporated consistently with the contractual characteristics of

each instrument. The second constraint imposes a limit on risk-weighted assets, requir-

ing that the sum of risk-weighted exposures do not exceed available regulatory capital.

Here, each instrument is multiplied by its risk weight rwk, which reflects the regulatory

risk associated with that position. Finally, the upper and lower bounds of xk,t define

the allowable operating range for exposure changes. The lower bound xk,t represents

the maximum allowable reduction (shrink), while the upper bound xk,t represents the

maximum allowable increase (growth) of exposure in each month. As mentioned, the

function Vk(·) represents the effective exposure of instrument k at time t, and is defined

piecewise as follows:

Vk(xk,1, . . . , xk,T ; θk, t) =



xk,t−1, if m = 1 ,

T∑
r=t−m

xk,r, if m ∈ {3, 6} and bullet repayment,

T∑
r=t−m

xk,r −
m∑
r=1

wrxk,t−r, if m ∈ {3, 6} and linear amortization,

sk +
T∑

r=1

xk,r, if m > 12 and bullet repayment,

sk +
T∑

r=1

xk,r −
T∑

r=1

wrxk,r, if m > 12 and linear amortization.

The weights wr depend on the repayment frequency parameter.
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3.3 Non Linear Case

The nonlinear extension of the previous model maintains the same objective func-

tion and the same bounds on the decision variables. In other words, we still aim to

maximize the NII while respecting the above mentioned constraints, but in this case,

additional objects are introduced to capture regulatory liquidity requirements, leading

to two nonlinear constraints: the Liquidity Coverage Ratio and the Net Stable Funding

Ratio. The first one ensures that high-quality liquid assets (HQLA) are sufficient to cover

net cash outflows over a short-term (30-day) stress horizon. The second one ensures that

the available stable financing (ASF) is sufficient relative to the required stable financing

(RSF) over a time horizon of one year, for more details see Chapter (2).

LCR =
HQLA(x)

Net Cash Outflows(x)
≥ 1.1, NSFR =

ASF(x)

RSF(x)
≥ 1.1.

To incorporate liquidity requirements into the optimization model, several simplifi-

cations were made due to the limitations of the available data sets. We started with

a given portfolio at the cut-off date, from which we defined a constant-volume baseline

strategy as the starting point for optimization, which by regulatory design is a feasible

solution to the problem. For the aggregate, the contributions to the numerators and

denominators of LCR and NSFR are then calculated based on the baseline and then

scaled proportionally based on the instrument’s portfolio share.

3.3.1 Liquidity Coverage Ratio

As a first simplification,we use a formula that thinks in terms of separate contributions

(included and not included in optimization) to calculate the values of the indicator, for

each month, the LCR is computed as:

LCRt(x) =

∣∣∣∣∣
N∑
k=1

HQLAk,t(xk,t) + Else Nt

∣∣∣∣∣∣∣∣∣∣
N∑
k=1

NCFk,t(xk,t) + Else Dt

∣∣∣∣∣
≥ 1.1, ∀ t = 1, . . . , T.

where:

• xk,t: exposure variation of instrument k in month t (decision variable).

• HQLAk,t(xk,t): contribution of instrument k to high-quality liquid assets in month

t.

• NCFk,t(xk,t): contribution of instrument k to net cash outflows in month t.
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• Else Nt: contribution to HQLA from instruments not included in the optimization.

• Else Dt: contribution to NCF from instruments not included in the optimization.

In the absence of complete data, we approximate the contributions HQLAk,t and NCFk,t

for each instrument starting from the constant-volume baseline strategy. LetBuffer basek,t

and Den basek,t be the contributions to the numerator and denominator of instrument

k with respect to the baseline strategy, and val basek be the corresponding portfolio

values. Therefore:

HQLAk,t(xk,t) ≈
Buffer basek,t

val basek
xk,t, NCFk,t(xk,t) ≈

Den basek,t
val basek

xk,t.

While this is a reasonable first-order approximation, it does not fully capture all the in-

teractions between portfolio values and liquidity contributions due to incompleteness and

inconsistencies in the available data. Nonetheless, this approach allows us to calculate

the monthly contributions for the optimized instruments and add them to the constant

contributions of the non-optimized aggregates.

3.3.2 Net Stable Funding Ratio

In a similar way to what was done, the NSFR is calculated in the same way.

NSFRt(x) =

∣∣∣∣∣
N∑
k=1

ASFk,t(xk,t) + Else ASFt

∣∣∣∣∣∣∣∣∣∣
N∑
k=1

RSFk,t(xk,t) + Else RSFt

∣∣∣∣∣
≥ 1.1, ∀ t = 1, . . . , T.

where:

• xk,t: exposure variation of instrument k in month t (decision variable),

• ASFk(xk): contribution of instrument k to available stable funding at time t,

• RSFk(xk): contribution of instrument k to required stable funding at time t,

• Else ASFt: fixed ASF contribution from non-optimized instruments at time t,

• Else RSFt: fixed RSF contribution from non-optimized instruments at time t.

Let ASF basek,t and RSF basek,t denote the baseline contributions of instrument k to

ASF and RSF, and val basek the corresponding portfolio values. Then we approximate:

ASFk,t(xk,t) ≈
ASF basek,t
val basek

xk,t, RSFk,t(xk,t) ≈
RSF basek,t
val basek

xk,t.
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This allows computing the NSFR contribution of the optimized instruments proportion-

ally to the portfolio values, while constant contributions from non-optimized instruments

are added to maintain consistency. We now incorporate these constraints into the pre-

vious linear formulation, leading to a more extensive and complete representation of the

optimization problem:

max
xk,t

N∑
k=1

ak

(
NIIACTUAL

k +
T∑
t=1

xk,tek,t

)

s.t.
N∑
k=1

ak Vk(xk,1, . . . , xk,T ; θk, t) = E, ∀ t = 1, . . . , T,

N∑
k=1

rwk Vk(xk,1, . . . , xk,T ; θk, t) ≤ Cap, ∀ t = 1, . . . , T,

LCRt(x) =

∣∣∣∣∣
N∑
k=1

Buffer basek,t
val basek,t

xk,t + Else Nt

∣∣∣∣∣∣∣∣∣∣
N∑
k=1

Den basek,t
val basek,t

xk,t + Else Dt

∣∣∣∣∣
≥ 1.1, ∀ t = 1, . . . , T,

NSFRt(x) =

∣∣∣∣∣
N∑
k=1

ASF basek,t
val basek,t

xk,t + Else ASFt

∣∣∣∣∣∣∣∣∣∣
N∑
k=1

RSF basek,t
val basek,t

xk,t + Else RSFt

∣∣∣∣∣
≥ 1.1, ∀ t = 1, . . . , T,

xk,t ≤ xk,t ≤ xk,t, ∀ k = 1, . . . , N, ∀ t = 1, . . . , T.

3.3.3 Assumption of constant sign and rewriting of liquidity

constraints

Lemma 3.1 (Linearization with known signs). Let the problem be given as in (1.1). Let

κ > 0 and consider the inequality constraint

g(x) =
|A(x)|
|B(x)|

− κ ≤ 0,

where A(x) and B(x) are linear functions of x. If there exist sA, sB ∈ {+1,−1} such

that sAA(x) ≥ 0 and sBB(x) > 0 for all feasible solution x of the problem, then

|A(x)|
|B(x)|

≤ κ ⇐⇒ sAA(x) ≤ κsBB(x),
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which is an affine (linear plus constant) constraint. Then we have four possible cases:

I: A(x) ≥ 0, B(x) > 0: A(x) ≤ κB(x).

II: A(x) ≥ 0, B(x) < 0: A(x) ≤ −κB(x) ⇐⇒ A(x) + κB(x) ≤ 0.

III: A(x) ≤ 0, B(x) > 0: −A(x) ≤ κB(x) ⇐⇒ A(x) + κB(x) ≥ 0.

IV: A(x) ≤ 0, B(x) < 0: −A(x) ≤ −κB(x) ⇐⇒ A(x) ≥ κB(x).

In what follows, we fix the signs to obtain a single linear form that is valid on the

whole feasible set.

In the balance sheet configurations typically observed in banking practice, the com-

ponents entering the regulatory liquidity ratios exhibit stable and well-defined signs at

the aggregate level. This property is not merely an empirical regularity, but rather de-

rives from the structural constraints of the bank’s balance sheet and from the regulatory

definitions underlying the Liquidity Coverage Ratio (LCR) and the Net Stable Funding

Ratio (NSFR). More specifically:

• LCR. The numerator (HQLA) has a positive sign: it consists of eligible and unen-

cumbered assets (cash, central bank reserves, eligible securities), and any haircuts,

while reducing its recognized value, do not reduce it to zero. Short Positions on

assets (that can generate negative Net Liquidity Position) must not be represented

in this section. The denominator (NCF, total net cash outflows) has a negative

sign, it measures 30-day net outflows, and in Commercial Banks (where maturity

transformation is carried out) and under regulatory caps, inflows do not exceed

gross outflows to the point of inverting the sign of the aggregate.

• NSFR. The denominator, Required Stable Funding (RSF), is associated with the

asset side of the balance sheet and is structurally positive, as it represents the

weighted sum of exposures requiring funding stability. The numerator, Available

Stable Funding (ASF), is associated with the liability side of the balance sheet

and thus carries a structurally negative sign, as it represents the stable sources of

funding on the liability side of the balance sheet.

Therefore, it is reasonable to assume that, inside the feasible set given by the bounds

xk,t ≤ xk,t ≤ xk,t, the aggregate signs of the terms in LCR and NSFR are constant and

known. This structure enables the reformulation of the ratio-based and absolute-value

expressions to be reformulated into linear form, preserving the same feasible set while

improving its tractability for optimization and simulation purposes.
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We rewrite that constraints, and for notational simplicity let us set for t = 1, . . . , T :

NLCR
t (x) =

N∑
k=1

Buffer basek,t
val basek,t

xk,t + Else Nt,

DLCR
t (x) =

N∑
k=1

Den basek,t
val basek,t

xk,t + Else Dt,

NNSFR
t (x) =

N∑
k=1

ASF basek,t
val basek,t

xk,t + Else ASFt,

DNSFR
t (x) =

N∑
k=1

RSF basek,t
val basek,t

xk,t + Else RSFt,

so the original constraints in compact form as

LCRt(x) =
|NLCR

t (x)|
|DLCR

t (x)|
≥ 1.1, NSFRt(x) =

|NNSFR
t (x)|

|DNSFR
t (x)|

≥ 1.1.

In the LCR constraint we assume, consistently with the described convention,

NLCR
t (x) ≥ 0 and DLCR

t (x) < 0, ∀x ∈ D, ∀ t = 1, . . . T,

then

|NLCR
t (x)| = NLCR

t (x), |DLCR
t (x)| = −DLCR

t (x).

For a fixed threshold κ = 1.1, we are in case (II) of Lemma (3.1), numerator non-negative

and denominator negative, therefore

|NLCR
t (x)|

|DLCR
t (x)|

=
NLCR

t (x)

−DLCR
t (x)

≥ 1.1 ⇐⇒ NLCR
t (x) + 1.1DLCR

t (x) ≥ 0.

Expanding both terms and doing simple algebraic steps, for each t = 1, . . . , T we obtain

a new formulation for the constraints related to the LCR:

N∑
k=1

(
Buffer basek,t

val basek,t
+ 1.1

Den basek,t
val basek,t

)
xk,t + Else Nt + 1.1Else Dt ≥ 0.

Analogously, we assume

NNSFR
t (x) ≤ 0 and DNSFR

t (x) > 0, ∀x ∈ D, ∀ t = 1, . . . T.

Hence

|NNSFR
t (x)| = −NNSFR

t (x), |DNSFR
t (x)| = DNSFR

t (x).

With κ = 1.1, we are now in case (III) of Lemma (3.1), and thus

|NNSFR
t (x)|

|DNSFR
t (x)|

=
−NNSFR

t (x)

DNSFR
t (x)

≥ 1.1 ⇐⇒ NNSFR
t (x) + 1.1DNSFR

t (x) ≤ 0.
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Here too, by substituting and doing some algebraic steps for each t = 1, . . . , T we obtain

a new formulation for the constraints related to the NSFR:

N∑
k=1

(
ASF basek,t
val basek,t

+ 1.1
RSF basek,t
val basek,t

)
xk,t + Else ASFt + 1.1Else RSFt ≤ 0.

We have therefore transformed the liquidity constraints, initially nonlinear due to

the presence of absolute values and ratios, into affine linear constraints valid over the

feasible set D. Therefore, the entire optimization problem is now linearized, with both

the objective function and constraints all linear. In this form, it belongs to the class of

linear programming (LP) problems and can therefore be solved efficiently and guaranteed

using the simplex algorithm.

3.4 The Simplex Method

For a more complete treatment of the Simplex algorithm and its theoretical foun-

dations, the reader is referred to the classic manuals by [10] and [6], from which the

following exposition draws some inspiration.

We can express a generic linear optimization problem in the form:

min c⊤x subject to Ax ≤ b, x ≥ 0, (3.1)

where c ∈ Rn, x ∈ Rn, b ∈ Rm and A ∈ Rm×n.

Theorem 3.2. Let D = {x ≥ 0 : Ax = b} the feasible polytope of the linear program

(3.1), assume that D is non-empty and bounded (in the direction of optimization, i.e.,

from below for minimization problems). If the linear program (3.1) admits at least one

optimal solution then there exists at least one vertex x∗ ∈ D such that

c⊤x∗ = min
x∈D

c⊤x.

In other words, if an optimal solution exists, then at least one of the vertices of the

feasible polytope D is optimal.

Proof. Since problem (3.1) is a linear programming problem, the objective function

φ(x) := c⊤x = (c1, c2, . . . , cn)
⊤x is linear, and the feasible set D, by hypothesis, is

non-empty and bounded. Let x(1), x(2), . . . , x(p) be the vertices of the polytope D. If

exists at least one optimal solution x(0) ∈ D such that

φ(x(0)) = min
x∈D

c⊤x.



3.4 The Simplex Method 3. Mathematical Programming Models

Due to the linear and therefore convex nature of D any point x(0) ∈ D can be expressed

as a convex combination of the vertices of D, that is,

x(0) =

p∑
i=1

λix
(i), with λi ≥ 0,

p∑
i=1

λi = 1.

Let x(k) s.t.

c⊤x(k) = min
1≤i≤p

c⊤x(i).

We can now evaluate the value of objective function in x(0):

c⊤x(0) = c⊤

(
p∑

i=1

λix
(i)

)
=

p∑
i=1

λic
⊤x(i) ≥

p∑
i=1

λic
⊤x(k) = c⊤x(k)

p∑
i=1

λi = c⊤x(k),

where the inequality is true since c⊤x(k) is the vertex with the smallest objective function

and all λi ≥ 0. However, x(0) is by definition an optimal solution, hence its cost cannot

be strictly greater than that of any feasible solution, and in particular

c⊤x(0) ≤ c⊤x(k).

Combining the two inequalities, we obtain

c⊤x(0) = c⊤x(k).

Therefore, the vertex x(k) attains the same optimal cost as x(0), proving that at least one

vertex of the feasible polytope D is optimal.

This theorem provides the theoretical foundation on which the Simplex Method is

based. The resulting structural property is crucial from an algorithmic perspective:

although the feasible set D can contain infinitely many feasible solutions, its vertices are

finite, corresponding to the basic feasible solutions. The Simplex Method exploits this

fact, limiting the search for the optimum to this finite set of vertices. Starting from an

initial basic feasible solution, the algorithm moves along the edges of the polytope to an

adjacent vertex that improves (or maintains) the value of the objective function. The

process continues until no adjacent vertex produces an improvement, which implies that

the current vertex is an optimal point.

3.4.1 Optimality conditions and reduced costs

To formalize this idea, consider the standard form of a generic linear problem, as

introduced in Chapter (1),

min c⊤x s.t. Ax = b, x ≥ 0,
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where A ∈ Rm×n has full row rank m, b ∈ Rm, and c ∈ Rn. Now we consider a basic

feasible solution x, and for each we have the corresponding basis B ⊆ {1, . . . , n}, the
goal is to determine which index should leave the basis in order to move to an adjacent

basic feasible solution that yields an improvement in the objective function. We define

the non-basic index set N as the complement of B, that is,

N = {1, . . . , n} \ B.

Analogously to the basic matrix B, which consists of the columns of A indexed by B, we
define the non-basic matrix N as the sub-matrix of A containing the remaining columns,

i.e.,

A = [B | N ].

Accordingly, we partition the vectors x and c into their basic and non-basic components

as follows:

x =

xB

xN

 , c =

cB
cN

 ,

then the linear system can thus be rewritten as

BxB +NxN = b,

but from definition of basic feasible solution it reduces to

xB = B−1b, xN = 0.

Recalling the KKT conditions for this linear problem, a feasible solution x is an optimal

feasible solution if there exist vectors λ ∈ Rm and s ∈ Rn such that

A⊤λ+ s = c, (3.2)

Ax = b, (3.3)

x ≥ 0, (3.4)

s ≥ 0, (3.5)

xisi = 0, i = 1, . . . , n. (3.6)

Since x is a basic feasible solution, we have

xB = B−1b ≥ 0, xN = 0.

We impose the complementarity condition on the basic variables by setting

sB = 0.
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Considering now the stationarity condition (3.2) separately for the basic and non-basic

index sets B and N , we obtain

B⊤λ = cB, N⊤λ+ sN = cN .

Since B is square and non-singular, the first equation uniquely determines λ as

λ = B−⊤cB,

and substituting this into the second equation gives

sN = cN −N⊤λ = cN − (B−1N)⊤cB.

The computation of the vector sN is often referred to as pricing, and its components

are called the reduced costs of the non-basic variables xN . If all components of sN are

non-negative, then together with sB = 0, xB = B−1b ≥ 0, and xN = 0, all the KKT

conditions (3.2)–(3.6) are satisfied. Hence, the current basic feasible solution is optimal.

3.4.2 Pivot operations, unboundedness and degeneracy

However, if one or more components of sN are negative, the complementarity con-

dition (3.6) cannot hold at optimality. Since the corresponding non-basic variables are

currently fixed at zero (xN = 0), in this case, at least one non-basic variable can be

increased from zero to obtain a feasible direction that decreases the objective function

value. Let q ∈ N be an index such that sq < 0, this index is called the “entering index”.

The choice of this index is not unique; several choices are possible. A common selection

strategy, originally proposed in [10], consists of choosing the most negative reduced cost,

namely:

q = argmin
j∈N

sj.

This rule, known as the “Dantzig rule”, corresponds to selecting the non-basic variable

that provides the greatest instantaneous decrease in the objective function per unit

increase, this is reflected in choosing the steepest descent with respect to the current

reduced costs. We then allow the corresponding non-basic variable xq to increase from

zero while preserving feasibility with respect to the equality constraints Ax = b. Since

the remaining non-basic variables stay at zero, we have for a new iterate x∗,

Ax∗ = Bx∗
B + Aqx

∗
q = b = BxB = Ax.

Multiplying both sides by B−1 yields

x∗
B = xB −B−1Aq x

∗
q.
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Geometrically, this relation represents a move along an edge of the feasible polytope that

decreases the objective value c⊤x. The simplex algorithm continues to move along this

edge until a new vertex of the feasible region is reached, at this vertex, a new constraint

xp ≥ 0 must have become active, in other words, one of the basic components xp, with

p ∈ B, has decreased to zero. We then remove the index p, called “leaving index”, from

the basis B and replace it with the entering index q. The corresponding new basis is

obtained by exchanging the indices p and q, that is,

B∗ = B \ {p} ∪ {q}, N ∗ = N \ {q} ∪ {p}.

Finally, we can analyze how the objective function changes during this step. Using the

stationarity condition (3.2), we can write

c⊤x = (A⊤λ+ s)⊤x = λ⊤(Ax) + s⊤x = λ⊤b+ s⊤x.

Since Ax∗ = Ax = b, the variation of the objective function depends only on s and the

change in x:

c⊤x∗ − c⊤x = λ⊤(Ax∗ − Ax) + s⊤(x∗ − x) = s⊤(x∗ − x).

Because sB = 0 and all non-basic variables remain zero except for the entering variable

xq, we obtain

s⊤(x∗ − x) = sq(x
∗
q − 0) = sq x

∗
q.

Hence,

c⊤x∗ − c⊤x = sq x
∗
q.

Because sq is negative, this term is negative, implying that the objective function value

strictly decreases, whenever x∗
q > 0. This argument, based solely on the KKT condi-

tions (3.2)–(3.6), shows that whenever there exists a non-basic variable with negative sq,

moving along the feasible edge defined by the direction −B−1Aq decreases the objective

value while maintaining primal feasibility.

If all components of sN are non-negative, then all KKT conditions are satisfied, and

the current basic feasible solution is optimal. It may happen that, for a chosen entering

index q ∈ N , all components of the direction vector d = B−1Aq are nonpositive. In this

case, the constraint

x∗
B = xB −B−1Aq x

∗
q ≥ 0

is satisfied for all x∗
q > 0. Consequently, we can increase xq indefinitely without violating

feasibility. When this occurs, the objective function c⊤x decreases without bound along

the feasible direction −B−1Aq, and the linear program is said to be unbounded. If the
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problem is bounded, the algorithm proceeds by moving from one vertex of the feasible

region to another. The path traced by successive basic feasible solutions can be viewed

as a sequence of edges on the boundary of the polytope, each step producing a reduction

in the objective value until an optimal vertex x∗ is reached.

Definition 3.3 (Degenerate Basis and Degenerate LP ). A basis B is said to be “degen-

erate” if at least one component of the associated basic feasible solution xB = B−1b is

zero. A linear program is called “degenerate” if it possesses at least one degenerate basis.

When the current basis B is nondegenerate, meaning that all basic components of

xB = B−1b are strictly positive, therefore, each pivot produces a genuine change in the

basic feasible solution and a strict decrease in the objective function c⊤x. Degeneracy can

cause a pivot to change the basis without altering the current feasible point, which may

lead to cycling. In practice, anti-cycling rules such as Bland’s rule [8] or lexicographic

pivoting are employed to ensure progress and avoid infinite loops.

Theorem 3.4 (Termination of the simplex method). If the linear program is bounded

and nondegenerate, the simplex method terminates after a finite number of iterations at

a basic optimal solution.

Proof. This is a classic result in linear programming theory, the proof of which can be

found, for example, in [6], Chapter 11.

3.4.3 Initialization: the two-phase method

The simplex method requires an initial basic feasible solution and finding one is not

always easy, its construction may be as difficult as solving the original problem itself. To

address this, practical implementations employ the “two-phase method”.

In “Phase I”, an auxiliary linear program is introduced by adding artificial variables

z ∈ Rm to guarantee feasibility of the constraints:

min
x,z

e⊤z s.t. Ax+ Ez = b, (x, z) ≥ 0,

where e = (1, . . . , 1)⊤ and E is a diagonal matrix with

Ejj = 1 if bj ≥ 0, Ejj = −1 if bj < 0.

The Phase-I problem is designed so that an initial basis and an initial basic feasible point

are trivial to find, and so that its optimal solution provides a basic feasible starting point

for the second phase. Indeed, the point

x = 0, and zj = |bj|, for j = 1, . . . ,m,
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is a basic feasible solution for this auxiliary problem, with B = E as the initial basis

matrix. It satisfies Ax + Ez = b by construction and ensures (x, z) ≥ 0. The artificial

variables z quantify the violations of the original equality constraints Ax = b, for any

feasible pair (x, z) we can rewrite

Ax = b− Ez.

Hence, z represents the amount by which the original constraints are not yet satisfied.

Minimizing the objective e⊤z =
∑m

j=1 zj therefore forces all violations to vanish, driving

the point x toward feasibility with respect to the original system. At optimality, if the

auxiliary problem yields an objective value

e⊤z∗ = 0,

then necessarily z∗ = 0, because all components zj ≥ 0. Substituting z∗ = 0 into the

constraints Ax+ Ez = b gives

Ax∗ = b, x∗ ≥ 0,

which means that x∗ is feasible for the original problem. Conversely, if the original linear

program admits a feasible vector xf , then the pair (xf , 0) is feasible for the auxiliary

problem and achieves e⊤z = 0. Therefore, the auxiliary problem has an optimal objective

value of zero if and only if the original problem is feasible.

If Phase I terminates with an optimal solution (x̃, z̃) such that e⊤z̃ = 0, then z̃ = 0

and x̃ satisfies Ax̃ = b and x̃ ≥ 0. This point, together with the final basis obtained in

Phase I, provides the starting basic feasible solution for “Phase II”. In this second phase,

the original linear program

min
x

c⊤x s.t. Ax = b, x ≥ 0,

is solved using the standard simplex procedure initialized at (x, z) = (x̃, 0). In practice,

it is common that some artificial variables remain in the optimal basis at the end of

Phase I, even though their corresponding values are zero. These variables are kept in

the initial Phase-II basis to preserve non-singularity of the basis matrix. During the first

few pivots of Phase II, they are gradually replaced by genuine variables of the original

problem. Once an artificial variable leaves the basis, it can be safely removed from the

system.

If, on the other hand, the Phase-I problem terminates with a strictly positive optimal

value, that is,

e⊤z∗ > 0,

then at least one component of z∗ is positive, implying that the equality Ax = b cannot

be satisfied with any x ≥ 0. Hence, the original problem is called “infeasible”.
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3.4.4 Complexity and practical performance

In optimization point of view, the simplex method is not a polynomial-time algorithm

in terms of computational complexity. Even if it is very efficient in practice, there are

some linear programming problems for which the simplex method requires an exponential

number of iterations with respect to the problem size. Consider the standard form

problem:

min c⊤x s.t. Ax = b, x ≥ 0,

where A ∈ Rm×n has rank m. The number of possible bases is(
n

m

)
,

because each basis corresponds to a choice of m linearly independent columns of A. In

the worst case, the simplex method could visit an exponential number of bases in m,

and the execution time would be

O

((
n

m

))
= O(2n),

which means exponential in the problem size. A classical artificial example that shows

this behavior was given by [11], in the so-called “Klee-Minty cube”, a specially con-

structed linear programming problem of dimension n, the simplex method using Dantzig’s

rule (that is, choosing the most negative reduced cost) visits all 2n bases before reaching

the optimal solution. This result proves that, in general, the simplex method does not

belong to the polynomial-time complexity class.

However, despite this theoretical worst case, empirical results show that the simplex

method is extremely efficient in practice. In most real-world and randomly generated

instances, the number of pivot operations required to reach optimality grows moderately

with problem size, often following a nearly linear or low-order polynomial trend [12].
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Chapter 4

Numerical Results

The purpose of this chapter is to evaluate, from a numerical perspective, the opti-

mization framework developed in the previous chapters. Starting from the general the-

ory of linear constrained optimization discussed in Chapter (1), and the balance sheet

representation and regulatory framework introduced in Chapter (2), the mathematical

programming models of Chapter (3) are applied here to a realistic banking context. A

first step to verify the feasibility of the problem is to construct a reference portfolio based

on the condition that the aggregates have a constant balance sheet volume. The two pre-

viously proposed formulations are solved, and using the results obtained, an analysis is

performed that highlights both the effects of the optimization choices on the profitability

profile and the implications for liquidity.

4.1 Base Scenario and Data Construction

The guiding question of the project can be stated as follows:

Given a certain Balance Sheet today, what is the best new business strategy

that the bank should set up, over a one year horizon, in order to maximize

Net Interest Income while satisfying all regulatory constraints?

We start from a snapshot of the bank’s balance sheet at the reference date t0, already

aggregated according to the assumptions and classification introduced in the previous

chapter. In particular, for optimization purposes, we consider only classified operations

with the record type loans and receivables, see Section (3.1), while all other balance sheet

items are treated as exogenous and kept fixed over time. The analysis horizon is discrete

and equal to one year, divided into T = 12 monthly buckets indexed by t = 1, . . . , 12,

consistent with the notation used previously. On this horizon, we first construct and

55
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simulate a deterministic new business strategy, which aims to keep the volume profile

constant over time for each aggregate being optimized. More precisely, let

Kopt ⊆ BS, |Kopt| = N,

denote the set of portfolio aggregates that can be optimized. Since the elements of

Kopt do not require structured notation, we introduce explicit indexing and consider a

bijection

ι : {1, . . . , N} −→ Kopt,

so that the k-th aggregate is identified by

Kk := ι(k), k = 1, . . . , N.

In the following, we will therefore use the index k to refer to the generic aggregate

Kk ∈ Kopt, then we denote with ∆V mat
k,t the amount of capital that matures (or is

amortized) in month t in the aggregate k, and with ∆V NB
k,t the new business originated

in the same month on the same instrument. The basic strategy, with constant volumes,

imposes, by construction, the following identity:

∆V NB
k,t = ∆V mat

k,t ∀ k = 1, . . . , N, ∀ t = 1, . . . , T, (4.1)

so that the overall stock of exposure associated with each aggregate k remains unchanged

from the level observed in t0. In other words, each month the bank renews exactly, for

each individual aggregate, the volume that has matured, maintaining the balance sheet

activity profile constant over time on the subset Kopt.

The relationship (4.1) can be directly matched with the decision variables introduced

in Chapter 3. If we denote with xk,t the change in exposure on aggregate k in month

t and with Vk(xk,1, . . . , xk,T ; θk, t) the effective exposure function, the constant volume

strategy corresponds to fixing

xref
k,t := ∆V NB

k,t = ∆V mat
k,t , ∀ k = 1, . . . N, ∀ t = 1, . . . , T,

this strategy induces a deterministic trajectory of balance sheet variables. From a reg-

ulatory perspective, the initial portfolio observed at time t0 is, by assumption, fully

compliant with all supervisory requirements; by regulatory construction, it is a portfo-

lio that is always sustainable for a bank. Specifically, the short-term liquidity measure

(LCR), the stable funding measure (NSFR), and the RWA-based capital constraint are all

satisfied in the actual balance sheet. Since the constant-volume strategy simply replaces

maturing positions and keeps the exposure to each aggregate unchanged, it represents
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a feasible solution to the optimization problem by construction. Therefore, the refer-

ence point xref belongs to the feasible set of both optimization problems and satisfies

all linear and nonlinear constraints. Finally, through balance sheet simulation induced

by the constant-volume strategy combined with the outputs of a proprietary software of

company “Prometeia”, we create the basis for calibrating all the fixed parameters of the

model, such as:

• the NII contributions associated with the initial stock, NIIACTUAL
k in the objective

function, and the expected yield ek,t for each instrument and each month;

• the value of equity to be included in the balance sheet constraint;

• the risk weight coefficients rwk, the corresponding cut-off exposures OUTk and

CET1k the regulatory capital component, used to calculate the RWA constraint;

• the LCR and NSFR components relating to the aggregates, both regarding the

non-optimized portfolio component Else Nt, Else Dt, Else ASFt, Else RSFt and

regarding the constant-volume baseline strategy for calculating the contributions

of the aggregates that are optimized, as ASF basek,t, RSF basek,t, Den basek,t,

Buffer basek,t and val basek,t

In this way, the balance sheet snapshot at t0 and the associated constant-volume strategy

play a dual role: on one hand, they guarantee the existence of a feasible solution to the

optimization problem, and on the other, they provide the data structure with which

consistently parameterize all the components of the model presented in the previous

chapters. The resulting linear program is implemented in Python and solved using the

scipy.optimize.linprog routine with the HiGHS backend (method=‘‘highs’’). This

algorithm provides a state-of-the-art implementation of linear programming methods,

ensuring numerical robustness and efficient solution times even for problems with several

thousand variables and constraints such as the one considered here.

4.2 Data Loading and Preprocessing

All portfolio information for the optimized aggregates Kopt is stored in a dedicated

Excel file and imported into a tabular structure. Each row of this table corresponds to

one aggregate k and contains all the relevant attributes:

• the vector of characteristic θk =
(
ak, tk, τk,mk, fk, rk, sk, pk

)
,

• the cut-off exposure and the one year survival outstanding amounts,



58 4. Numerical Results

• the calibrated NII contribution of the initial stock, NIIACTUAL
k ,

• the regulatory parameters: risk weights rwk and capital coefficients used in the

RWA constraint,

• the monthly baseline new-business volumes and the associated exposure coefficients

that define the constant-volume strategy xref ,

• the lower and upper bounds xk,t and xk,t for each decision variable xk,t.

The decision variables are arranged in a sub-matrix of that above:

x ∈ RN×T , T = 12,

but for the interaction with the linear solver, this matrix is flattened into a vector x ∈ Rn

with n = N × T , and the bounds xk,t, xk,t are collected into two vectors x, x ∈ Rn defin-

ing a simple box constraint. In the numerical case study presented in this chapter, the

optimization set contains N = 66 aggregates. The analyzed dataset contains several

columns, and we present a portion of them to illustrate its structure. For ease of read-

ability, it is presented in three logical blocks. The first part of the dataset contains the

identifying characteristics of each aggregate, Figure 4.1, i.e., the characteristics reported

in the vector θk.

Figure 4.1: Aggregate characteristics vector.

The second section of the dataset includes the parameters needed to calculate the

NII and constraints. An excerpt of the structure is shown in Figure 4.2.

Figure 4.2: Excerpt of the external and management parameters.

The last part of the dataset reports the volumes of new business over a monthly

horizon, generated by the constant-volume baseline strategy, Figure 4.3.

Figure 4.3: Monthly new business baseline volumes.
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Starting from these data we are going to numerically implement the objective function

that corresponds to the NII maximization introduced in Chapter 3:

max
x

NII(x) =
∑
k

ak

(
NIIACTUAL

k +
T∑
t=1

xk,t ek,t

)
.

Since the linear solver operates in minimization form, the problem is recast as

min
x

c⊤x,

where the cost vector c ∈ Rn collects the coefficients

ck,t = − ak ek,t,

arranged consistently with the flattening of x. In this formulation, designed exclusively

for the solver, we separate the optimization-dependent part from the constant part and

use only the former. Later, during the evaluation phase, we will also add the constant

component additively.

The balance sheet identities, which enforce the equality between assets and liabilities

plus equity at each month t, are written in the form∑
k

ak Vk

(
xk,1, . . . , xk,T ; θk, t

)
= E, t = 1, . . . , T.

For the linear solver, these T identities are expressed as

Aeqx = beq,

where the matrix Aeq and the vector beq are obtained through simple algebraic operations

done to isolate the variables xk,t. The RWA–based capital constraint of Chapter 3 is

treated in an analogous way. For each month t the inequality∑
k

rwk Vk

(
xk,1, . . . , xk,T ; θk, t

)
≤ Cap, t = 1, . . . , T,

collecting all months, this family of constraints is written as

Aubx ≤ bub.

The liquidity constraints related to the LCR and NSFR are derived by combining the

balance sheet structure with the regulatory requirements discussed, based on the assump-

tions presented in Section (3.3.3). For each optimized aggregate and for each month, the
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baseline are used to compute unit coefficients describing how one unit of exposure con-

tributes to and we obtain:

N∑
k=1

(
Buffer basek,t

val basek,t
+ 1.1

Den basek,t
val basek,t

)
xk,t + Else Nt + 1.1Else Dt ≥ 0,

N∑
k=1

(
ASF basek,t
val basek,t

+ 1.1
RSF basek,t
val basek,t

)
xk,t + Else ASFt + 1.1Else RSFt ≤ 0.

Since the LCR and NSFR conditions are expressed in linear form, they can be rewritten

in standard inequality form and incorporated into the global constraint system. By

combining them with the RWA requirements, all linear constraints can be collected in

the compact representation Aubx ≤ bub. The optimization problem submitted to the

linear solver therefore reads:

min
x∈Rn

c⊤x

s.t. Aeqx = beq,

Aubx ≤ bub,

x ≤ x ≤ x.

4.3 Numerical Evaluation

Once the data have been structured and the linear program has been generated as

described in the previous section, we evaluate the behavior of the optimization framework

under three different configurations. The analysis follows a progressive structure: we first

solve the model under the constant-volume strategy used for calibration, then we consider

the optimization with only RWA and balance sheet equation, and finally we impose

the full set of constraints (adding LCR and NSFR). This staged approach allows us to

disentangle the contribution of the constraints, highlighting how regulatory requirements

shape the feasible region and interact with the objective of NII maximization.

The constant-volume strategy xref provides the benchmark against which all opti-

mized solutions are compared. Since this strategy simply rolls over, period by period,

the maturities of each aggregate, both the exposure profile and all associated regula-

tory quantities evolve in a deterministic and controlled manner. From the balance sheet

simulation under xref , the following results are obtained:

• the Net Interest Income corresponds to an objective value of approximately

objref ≈ 9.655× 109,
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consistent with the observed exposure and return structure. All quantities entering

the objective function are expressed in euros, so that both NII(x) and the reported

optimal values can be interpreted directly as monetary amounts in euro;

• the RWA constraint is comfortably satisfied at each time bucket, with total RWA

remaining close to capital;

• the balance sheet identity holds exactly, confirming internal consistency;

• the liquidity metrics are stable and well above the regulatory thresholds:

LCRref
t ∈ [1.37, 1.58], NSFRref

t ∈ [1.28, 1.43].

We next solve the optimization problem including all linear constraints (RWA, balance-

sheet identities, and exposure bounds), but excluding the LCR and NSFR conditions.

This configuration is designed to show the unconstrained profit-seeking behaviour of the

model when liquidity regulation is ignored. The linear program converges rapidly:

Status: Optimal, Iterations: 34.

The objective function reaches

objlin ≈ 1.7669× 1011,

which is nearly one order of magnitude larger than the baseline value. Such a substantial

increase is the consequence of reallocating volumes toward the most profitable aggregates,

unconstrained by funding stability or liquidity coverage concerns. However, the resulting

liquidity indicators immediately reveal that the obtained solution is economically and

regulatorily unimplementable:

LCRlin
t =

[
22.65, 22.25, 16.07, . . . , 2.20, 1.46, −24.62

]
,

NSFRlin
t =

[
0.74, 0.53, 0.43, . . . , 0.06, 0.21, 0.14

]
.

The LCR has out-of-scale and negative values in several months, and NSFR is constantly

below the Basel III minimum threshold. This outcome shows that the model, in the ab-

sence of liquidity constraints, reallocates the portfolio into positions whose refinancing

risk is extremely high, leveraging short-term and unstable funding. These results pro-

vide a crucial insight: merely imposing solvency constraints (RWA) and balance sheet

equality is insufficient to guarantee a regulatory-feasible portfolio. Liquidity constraints

are structural components of the feasible region and cannot be omitted without losing

economic meaning.
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Finally, we solve the complete optimization problem, including both the LCR and

NSFR linearized conditions. This corresponds to the economically relevant configuration

in which the bank aims to maximize NII while maintaining regulatory compliance across

the entire one-year horizon. The solver reports:

Status: Optimal, Iterations: 165,

where the increase in iterations reflects the more restrictive feasible region. The optimal

objective is

objnl ≈ 1.7426× 1011,

which remains substantially higher than the constant-volume benchmark, although slightly

lower than the unconstrained linear solution, but both LCR and NSFR sit exactly at the

minimum allowed level:

LCRnl
t = 1.1, NSFRnl

t = 1.1, ∀t = 1, . . . , 12.

The model pushes the liquidity ratios to their regulatory floor in order to maximize

NII within the admissible region, confirming the economic coherence of the optimization

mechanism.

To complement the analysis, we also evaluate the Net Interest Margin (NIM), defined

in Section (2.3), across the three configurations. Since NIM measures the interest income

relative to the volume of earning assets, it provides a normalized indicator of profitability,

allowing comparisons that are independent of the absolute size of the balance sheet. For

the constant-volume benchmark portfolio, we obtain:

NIMref ≈ 1.7002%,

The results of our optimization show a reallocation of exposures toward the most prof-

itable aggregates, producing a substantial improvement in relative profitability. In the

first model, the one without liquidity constraints, the resulting margin rises to:

NIMlin ≈ 2.4491%,

reflecting a more aggressive and less constrained asset composition. However, as pre-

viously noted, this configuration violates the liquidity requirements, and the resulting

NIM must be interpreted as purely theoretical. In the full regulatory setting, including

the LCR and NSFR linearized constraints, and we get as result:

NIMnl ≈ 2.4163%.
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The slight reduction compared to the unconstrained linear solution mirrors the tightening

of the feasible region induced by liquidity regulation, nevertheless, the improvement rel-

ative to the constant-volume strategy remains substantial showing that the optimization

framework is capable of enhancing efficiency even under strict supervisory requirements.

4.4 Comparison and Interpretation

In summary, the three scenarios offer a clear view of the role each constraint plays

in defining the bank’s optimal behavior. The constant volume solution represents the

baseline configuration of the portfolio: it is prudent, fully compliant with all regulatory

metrics, and devoid of optimization motives, serving primarily as a benchmark against

which the effects of the subsequent models can be measured. The second scenario, free

of liquidity constraints, highlights how a purely profit-oriented formulation leads the op-

timization algorithm to reallocate exposures toward the most remunerative aggregates,

exploiting the linearity of the objective function and the absence of liquidity frictions.

This configuration, disregards the funding stability of the bank and, therefore, does not

constitute a sustainable policy within a regulatory environment shaped by Basel III.

The introduction of the LCR and NSFR constraints fundamentally modifies the feasible

region of the problem, their presence limits excessive concentration on high-yield assets

when destabilize liquidity constraints. When both measures are enforced jointly, the

resulting optimal allocation reflects the intrinsic trade-off at the core of Asset and Lia-

bility Management: the pursuit of profitability must be reconciled with the maintenance

of a robust funding structure and the fulfillment of liquidity requirements over the entire

planning horizon. The optimized portfolio obtained under the full regulatory framework

is therefore more balanced, and ultimately more consistent with the operational logic of

a banking institution. Finally, beyond the specific numerical results, the thesis under-

scores the value of optimization-based tools for decision-making in ALM. By formalizing

balance-sheet management within a rigorous quantitative structure, the model enables

practitioners to simulate alternative regulatory configurations, assess profitability liq-

uidity trade-offs, and evaluate the impact of possible supervisory reforms. Although

simplified in several respects, the framework developed here provides a foundation upon

which more complex features, for these reasons, it is hoped that the proposed approach

may serve not only as an academic contribution, but also as a practical component of a

broader decision support architecture for modern balance-sheet management.
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