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Introduzione

Data una sequenza a0, a1, a2, ... di numeri complessi (anche se più spesso in
questa trattazione considereremo numeri interi), la sua funzione generatrice
è la scrittura

a0 + a1x+ a2x
2 + ...

dove ogni xi è solo un simbolo che indica la posizione del coefficiente ai.
Si ottiene così un oggetto che rappresenta l’intera successione, ma in forma
molto più compatta e semplice da maneggiare; se si vuole conoscere l’n-
esimo elemento della successione, basta individuare il coefficiente di xn nella
funzione generatrice.

In questa trattazione definiremo operazioni tra funzioni generatrici e os-
serveremo che queste corrispondono a determinate operazioni sugli elementi
delle rispettive successioni dei coefficienti. In alcuni casi, conoscere la funzio-
ne generatrice per una successione {an} i cui elementi non sono noti permette
di determinarli; in altri casi non si riesce a ricavare esplicitamente i coeffi-
cienti, ma la funzione generatrice può essere comunque utile a studiare le loro
proprietà.

Nel Capitolo 1, definiremo formalmente le funzioni generatrici e le opera-
zioni tra di esse.

Il Capitolo 2 vedrà un’interessante applicazione delle funzioni generatrici,
il principio di inclusione esclusione. Dato un insieme di oggetti, ognuno dei
quali verifica un certo numero di proprietà, il principio di inclusione esclusione
permette di calcolare quanti di essi ne verificano esattamente un dato numero
r a partire dal numero di oggetti per cui vale un certo insieme di proprietà,
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iv INTRODUZIONE

che in molti casi (tra cui gli esempi presenti nel capitolo) è molto più semplice
da determinare.

Nel Capitolo 3 dimostreremo la formula esponenziale, un teorema che
permette di risolvere problemi quali il calcolo dei numeri di Stirling di prima
specie o dei numeri di Bell.

Nell’ultimo capitolo approfondiremo infine un altro affascinante aspetto
delle funzioni generatrici, cioè la possibilità di studiarle dal punto di vista
analitico, considerandole come funzioni di variabile complessa. Tale approc-
cio apre la strada a moltissime applicazioni: per esempio, studiando le singo-
larità di una funzione generatrice per una data successione {an}, si possono
stimare i coefficienti. In questa trattazione approfondiremo il caso in cui tali
singolarità siano di tipo polo.
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Capitolo 1

Le funzioni generatrici

1.1 Serie formali

Definizione 1.1.1. Una serie formale di potenze f(x) a coefficienti in C è
una scrittura formale del tipo

f =
∑
n∈N

anx
n,

dove an ∈ C per ogni n ∈ N. an si dice l’n-esimo coefficiente di f , o il
coefficiente di xn in f .

L’insieme delle serie formali di potenze a coefficienti in C si indica con
C[[x]]. f si può indicare equivalentemente anche con le notazioni f =∑

n≥0 anx
n o f =

∑
n anx

n.

Si noti che una serie formale di potenze non è una funzione; xn è solo
un simbolo che indica la posizione dell’n-esimo coefficiente nella scrittura
formale f .

Per brevità in questa trattazione le serie formali di potenze verranno a
volte chiamate solo serie formali.

Notazione. Data una serie formale di potenze f(x) =
∑

n∈N anx
n, la scrittura

[xn]f(x) indica il coefficiente an.
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2 1. Le funzioni generatrici

Definizione 1.1.2. Due serie formali di potenze f(x) =
∑

n∈N anx
n e g(x) =∑

n∈N bnx
n si dicono uguali (e in tal caso scriveremo f(x) = g(x)) se e solo

se an = bn per ogni n ∈ N.

Definizione 1.1.3. Sono definite le seguenti operazioni tra serie formali di
potenze:

• Somma ∑
n

anx
n +

∑
n

bnx
n =

∑
n

(an + bn)x
n

• Prodotto∑
n

anx
n ·
∑
n

bnx
n =

∑
n

cnx
n dove cn =

n∑
k=0

akbn−k

Osservazione. Si dimostra facilmente che C[[x]] è un anello con le operazioni
di somma e prodotto appena descritte.

Definizione 1.1.4. Sia f(x) =
∑

n anx
n una serie formale di potenze. Se

g(x) è una serie formale di potenze tale che f · g = 1, allora g si dice un
reciproco di f .

Proposizione 1.1.1. Una serie formale di potenze f(x) =
∑

n anx
n ha un

reciproco se e solo se a0 ̸= 0; in tal caso esso è unico.

Dimostrazione. Se per f(x) esiste un reciproco g(x) =
∑

n bnx
n, allora per

definizione di prodotto tra serie formali vale a0b0 = 1 e quindi necessaria-
mente a0 ̸= 0. In tal caso b0 = 1/a0. Analogamente, per ogni n ≥ 1 deve
valere 0 =

∑n
i=0 aibn−i, quindi

bn = −
∑n

i=1 aibn−i

a0

per ogni n ≥ 1. I coefficienti di g sono quindi univocamente determinati.
Viceversa, se a0 ̸= 0, la serie che ha come coefficienti i bn definiti dalla
formula appena descritta (per n ≥ 1) e b0 = 1/a0 è un reciproco di f .
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Notazione. Data una serie formale di potenze f(x) =
∑

n anx
n tale che a0 ̸=

0, denoteremo con 1/f(x) il suo reciproco (che per quanto appena dimostrato
è unico).

Esempio 1.1.1. Il reciproco di
∑

n≥0 x
n è 1 − x perché per definizione del

prodotto tra serie vale (1− x)
∑

n≥0 x
n = 1.

Definizione 1.1.5. Date due serie formali f(x) =
∑

n anx
n e g(x) =

∑
n bnx

n

tali che f(x) sia un polinomio o che b0 ̸= 0, la composizione f(g(x)) è definita
come

f(g(x)) =
∑
n

an(g(x))
n

Osserviamo che la composizione di due serie f(x) =
∑

n anx
n e g(x) =∑

n bnx
n è ben definita se e solo se b0 = 0 o f(x) è un polinomio. Scriviamo

più esplicitamente la composizione di f e g:∑
n

an(g(x))
n = a0 + a1(b0 + b1x+ b2x

2 + ...) + a2(b0 + b1x+ b2x
2 + ...)2 + ...

Se f(x) è un polinomio la composizione è ben definita, perché per ogni n ∈ N
il coefficiente di xn in f(g(x)) è la somma di un numero finito di termini.
Supponiamo invece che f(x) abbia infiniti coefficienti non nulli. Affinché la
composizione sia ben definita, è necessario che il calcolo di ogni coefficiente
di f(g(x)) sia un processo finito. Se b0 ̸= 0, il coefficiente di x0 in f(g(x)) è
a0+a1b0+a2b

2
0+ ..., che è una somma infinita perché f ha infiniti coefficienti

non nulli. Se invece b0 = 0, si può calcolare ogni coefficiente di f(g(x)):

[zn]f(g(x)) =
n∑

k=0

[xn]
(
ak(b1x+ b2x

2 + ...)k
)
.

Definizione 1.1.6. Sia f una serie formale di potenze. Una serie formale
di potenze g si dice l’inverso di f se f(g(x)) e g(f(x)) sono entrambe ben
definite e f(g(x)) = g(f(x)) = x.

Si può dimostrare che una serie f =
∑

n∈N anx
n con a0 = 0 ha un inverso

g se e solo se a1 ̸= 0; in tal caso g è unica e [x0]g(x) = 0.



4 1. Le funzioni generatrici

Definizione 1.1.7. Data una serie formale di potenze f(x) =
∑

n≥0 anx
n,

la sua derivata f ′(x) è definita come

f ′(x) =
∑
n≥1

nanx
n−1 =

∑
n≥0

(n+ 1)an+1x
n.

Si può dimostrare che per la derivata di serie formali di potenze valgono
proprietà analoghe a quelle delle derivate di funzioni: date f e g serie formali,

• (f + g)′ = f ′ + g′

• (fg)′ = f ′g + fg′

• (f(g))′ = f ′(g) · g′ (nel caso in cui la composizione sia ben definita).

1.2 Funzioni generatrici

Definizione 1.2.1. Sia {an}n∈N una successione in C. La funzione genera-
trice ordinaria per {an}n∈N è la serie formale di potenze

F (x) =
∑
n

anx
n.

Scriveremo F (x)
ops←→ {an}n∈N (o equivalentemente F (x)

ops←→ {an}∞n=0) per
indicare che F (x) è la funzione generatrice ordinaria per {an}n∈N.

Definizione 1.2.2. Data una successione {an}n∈N in C, la funzione genera-
trice esponenziale per {an}n∈N è la serie formale di potenze

G(x) =
∑
n

an
n!

xn.

La scrittura F (x)
egf←→ {an}n∈N (o equivalentemente F (x)

egf←→ {an}∞n=0)
significa che F (x) è la funzione generatrice esponenziale per {an}n∈N.

Proposizione 1.2.1. Sia f =
∑

n≥0 anx
n la funzione generatrice ordinaria

per la successione {an}n∈N. Valgono le seguenti proprietà:
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1.
f − a0 − a1x− ...− ah−1x

h−1

xh

ops←→ {an+h}∞n=0 ;

2. Sia P (y) =
∑d

i=0 piy
i un polinomio; allora

P (xD)f
ops←→ {P (n)an}∞n=0

(dove il simbolo xD indica l’operazione di derivazione e moltiplicazio-
ne per x, cioè (xD)g = xg′(x) per ogni serie formale g(x). (xD)k è
la composizione di k volte xD e analogamente con P (xD)f si indica∑d

i=0 pi(xD)if(x));

3. fk ops←→

{ ∑
n1+n2+...+nk=n

an1 · an2 · ... · ank

}∞

n=0

;

4.
f

1− x

ops←→

{
n∑

j=0

aj

}∞

n=0

.

Dimostrazione. 1. Si dimostra per induzione su h. Nel caso h = 1, si osserva
che

f − a0
x

=

∑
n≥1 anx

n

x
=
∑
n≥0

an+1x
n.

Supponendo verificata la proprietà (1) per h ∈ N, mostriamo che vale anche
per h+ 1:

f − a0 − a1x− ...− ahx
h

xh+1
=

1

x

(
f − a0 − a1x− ...− ah−1x

h−1

xh
− ahx

h

xh

)
=

1

x

(∑
n≥0

an+hx
n − ah

)

=
1

x

∑
n≥1

an+hx
n

=
∑
n≥0

an+h+1x
n.

2. xf ′(x) =
∑

n≥1 nanx
n =

∑
n≥0 nanx

n, cioè (xDf)
ops←→ {nan}∞n=0. Per

induzione su k segue che (xDf)k
ops←→

{
nkan

}∞
n=0

.
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Se P (y) = p0 + p1x+ ...+ pdx
d, allora∑

n≥0

P (n)anx
n = p0

∑
n≥0

anx
n + ...+ pd

∑
n≥0

ndanx
n

= p0f(x) + ...+ pd(xD)df(x)

= P (xD)f(x).

3. Segue immediatamente dalla definizione di prodotto tra serie formali.
4. Come visto nell’Esempio 1.1.1, vale 1/(1− x) =

∑
n≥0 x

n, quindi

1

1− x
f =

∑
n≥0

xn
∑
n≥0

anx
n =

∑
n≥0

(
n∑

k=0

ak

)
xn.

1.2.1 Esempio. Funzione generatrice per i numeri di

Fibonacci

I numeri di Fibonacci si definiscono per ricorrenza come

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n ≥ 2).

Vogliamo determinare la funzione generatrice F (x) =
∑

n≥0 Fnx
n per la

successione dei numeri di Fibonacci {Fn}.
Fn+2 = Fn+1 + Fn per ogni n ≥ 0, quindi∑

n≥0

Fn+2x
n =

∑
n≥0

(Fn+1 + Fn)x
n.

Applicando il punto 1 della Proposizione 1.2.1, questo equivale a

F (x)− F0 − F1x

x2
=

F (x)− F0

x
+ F (x),

da cui si ricava la funzione generatrice per la successione dei numeri di
Fibonacci:

F (x) =
F0 + x(F1 − F0)

1− x− x2
=

x

1− x− x2
. (1.1)
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L’n-esimo numero di Fibonacci è quindi il coefficiente di xn in
x

1− x− x2
.

Dato che 1−x−x2 = (x− −1+
√
5

2
)(x− −1−

√
5

2
) = (1− r+x)(1− r−x), dove

r+ = 1+
√
5

2
e r− = 1−

√
5

2
, scomponendo in fratti semplici x

1−x−x2 si ottiene

x

1− x− x2
=

1

r+ − r−

(
1

r−x− 1
− 1

r+x− 1

)
=

1√
5

(
1

r−x− 1
− 1

r+x− 1

)
. (1.2)

Allora, per (1.2) e per l’Esempio 1.1.1, vale

F (x) =
1√
5

(
1

r−x− 1
− 1

r+x− 1

)
=

1√
5

(
−
∑
n

rn−x
n +

∑
n

rn+x
n

)

=
1√
5

(∑
n

(rn+ − rn−)x
n

)
. (1.3)

Quindi confrontando i coefficienti di xn in F (x) nell’ultima uguaglianza si
ottiene una formula esatta per Fn, per ogni n ≥ 0:

Fn =
1√
5
(rn+ − rn−). (1.4)

Si può inoltre notare che 1√
5
rn+ è un’ottima approssimazione per Fn.

Infatti, la loro differenza è in modulo∣∣∣∣Fn −
1√
5
rn+

∣∣∣∣ (1.4)
=

1√
5
|r−|n , (1.5)

che mostreremo essere sempre strettamente minore di 1/2. Dato che |r−| =∣∣(1−√5)/2∣∣ < 1, la successione
{

1√
5
|r−|n

}
n∈N

è decrescente. Inoltre per
n = 0 vale 1√

5
|r−|0 = 1√

5
< 1

2
, quindi per ogni n ∈ N∣∣∣∣Fn −

1√
5
rn+

∣∣∣∣ < 1

2
. (1.6)

Ciò significa che per ogni n ∈ N Fn è l’intero più vicino a 1√
5
rn+ (che è univo-

camente determinato per (1.6)); questa approssimazione consente quindi di
ricavare il valore esatto di Fn.
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1.2.2 Alcune serie formali di potenze notevoli

Elenchiamo qui alcune serie formali di potenze che utilizzeremo nel resto
di questa trattazione:

1

1− x
=
∑
n≥0

xn (1.7)

ex =
∑
n≥0

xn

n!
(1.8)

log(x+ 1) =
∑
n≥1

(−1)n−1x
n

n
(1.9)

log
1

1− x
=
∑
n≥1

xn

n
(1.10)

1

(1− x)k+1
=
∑
n≥0

(
n+ k

n

)
xn. (1.11)

La (1.7) è stata dimostrata nell’Esempio 1.1.1. La (1.8) e la (1.9) sono
definizioni. Per le dimostrazioni di (1.10) e (1.11) si veda Aigner (2007). Si
può inoltre dimostrare che log(1 + x) è l’inverso di ex − 1 (Aigner (2007)).
Si osservi che da questo segue che elog(f(x)) = f(x) se [x0]f(x) = 1. Infine si
può dimostrare che se [x0]f(x) = 1 allora vale log(f(x))′ = f ′(x)

f(x)
.



Capitolo 2

Il principio di inclusione

esclusione

2.1 Il principio di inclusione esclusione

Supponiamo siano dati un certo insieme finito di oggetti Ω e un insieme
finito P di proprietà che gli oggetti di Ω possono avere o non avere. Si vuole
determinare quanti oggetti hanno esattamente un certo numero di proprietà.
Dato un oggetto ω ∈ Ω, chiamiamo P (ω) l’insieme delle proprietà che ω

possiede. Dato un insieme di proprietà S ⊆ P , definiamo N(⊇ S) come il
numero di oggetti per cui valgono tutte le proprietà contenute in S, cioè il
numero di oggetti ω tali che S ⊆ P (ω). Si definisce, per ogni r ∈ N,

Nr =
∑
|S|=r

N(⊇ S). (2.1)

Si noti che Nr = 0 per ogni r strettamente maggiore della cardinalità di P .
Si può osservare che

Nr =
∑
|S|=r

N(⊇ S)

=
∑
|S|=r

∑
ω∈Ω

S⊆P (ω)

1

9



10 2. Il principio di inclusione esclusione

=
∑
ω∈Ω


∑
|S|=r

S⊆P (ω)

1


=
∑
ω∈Ω

(
|P (ω)|

r

)
Allora, definendo et come il numero di oggetti che hanno esattamente t

proprietà, si ottiene

Nr =
∑
t≥0

(
t

r

)
et. (2.2)

Costruendo quindi la funzione generatrice N(x) per la successione {Nr}∞r=0

si osserva che

N(x) =
∑
r≥0

Nrx
r

=
∑
r≥0

{∑
t≥0

(
t

r

)
et

}
xr

=
∑
t≥0

{∑
r≥0

(
t

r

)
xr

}
et

=
∑
t≥0

et(x+ 1)t

= E(x+ 1) (2.3)

dove E(x) =
∑

r≥0 erx
r è la funzione generatrice per la successione {er}∞r=0.

(Si noti che N(x), e quindi anche E(x), è un polinomio in quanto Nr = 0 per
ogni r > |P |). Si ottiene allora una relazione fondamentale tra E(x) e N(x):

E(x) = N(x− 1). (2.4)

che è il principio di inclusione esclusione. Grazie a questo risultato è possibi-
le determinare il numero di oggetti che hanno esattamente un certo numero
di proprietà conoscendo i coefficienti {Nr} di N(x). In molti problemi, per
determinare un certo er, rispetto al suo calcolo diretto è decisamente più
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semplice calcolare i coefficienti {Nr} seguendo la definizione (2.1) e poi rica-
vare il coefficiente er dalla relazione (2.4). In particolare, per ogni r ∈ N, er
sarà il coefficiente di xr in N(x+ 1):

er = [xr]N(x+ 1)

= [xr]

{∑
i≥0

Ni

i∑
t=0

(
i

t

)
xt(−1)i−t

}

= [xr]

{∑
t≥0

xt
∑
i≥t

Ni

(
i

t

)
(−1)i−t

}

=
∑
i≥r

Ni

(
i

r

)
(−1)i−r (2.5)

Un caso particolare è quello del calcolo di e0:

e0 = E(0)
(2.4)
= N(−1) =

∑
r≥0

(−1)rNr. (2.6)

Osservazione 2.1.1. Si noti che in questo ultimo passaggio non abbiamo va-
lutato in 0 la serie formale di potenze E(x), ma la serie complessa

∑∞
n=0 enz

n
0

in un punto z0 ∈ C in cui essa converge, in questo caso 0. Le uguaglianze in
(2.6) sono comunque lecite perché in generale, date due serie formali

∑
n anx

n

e
∑

n bnx
n, se esse sono uguali allora per definizione an = bn ∀n, quindi

nei punti z0 ∈ C in cui le serie convergono vale ovviamente
∑∞

n=0 anz
n
0 =∑∞

n=0 bnz
n
0 . Quindi in questo esempio dato che E(x) = N(x− 1) come serie

formali, allora anche E(0) = N(0− 1) perché
∑∞

n=0 enz
n
0 converge in z0 = 0.

2.2 Esempio 1. Punti fissi di una permutazione

Vogliamo determinare il numero di punti fissi di una permutazione di n
elementi. Innanzitutto occorre individuare un insieme di oggetti e un insieme
di proprietà adatti a descrivere il problema. Possiamo scegliere Ω = Sn, dove
Sn è l’insieme delle permutazioni di n elementi, e P = {1, 2, ..., n}, dove una
permutazione τ ∈ Sn ha la proprietà j se j è un suo punto fisso, cioè se
τ(j) = j.
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Fissato un insieme S ⊆ P , le permutazioni che soddisfano tutte le pro-
prietà di S, cioè le permutazioni che fissano (almeno) tutti gli elementi di
S, sono (n − |S|)!. Infatti gli elementi in S sono fissati, mentre quelli di
{1, ..., n} − S vengono scambiati tra loro. Quindi

Nr =
∑
|S|=r
S⊆P

N(⊇ S) =
∑
|S|=r
S⊆P

(n− |S|)! =
(
n

r

)
(n− r)! =

n!

r!
(2.7)

Allora la funzione generatrice N(x) per la successione {Nr}∞r=0 (osservando
che Nr = 0 se r > n) è

N(x) = n!
n∑

r=0

1

r!
xr

da cui, per la (2.4),

E(x) = n!
n∑

r=0

1

r!
(x− 1)r.

Per ogni r ≥ 0, il numero di permutazioni con esattamente r punti fissi sarà
il coefficiente di xr in E(x). In particolare, il numero di permutazioni di n
elementi senza punti fissi è

e0 = E(0) = N(−1) = n!
n∑

r=0

(−1)r

r!
,

che per n→∞ si può approssimare con n! · exp(−1) = n!
∑

r≥0
(−1)r

r!
.

2.2.1 Calcolo di medie.

Siano Ω un insieme finito di oggetti e P un insieme finito di proprietà che
gli oggetti di Ω possono avere o non avere. Se en è il numero di oggetti che
hanno esattamente n proprietà, allora il numero medio di proprietà per ogni
oggetto è

µ =

∑
n≥0 nen

N
, (2.8)

dove N = |Ω| è il numero totale di oggetti. Segue immediatamente da (2.2)
che

∑
n≥0 nen = N1, quindi

µ =
N1

N
. (2.9)
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Tornando all’esempio, il numero medio di punti fissi in una permutazione di
n elementi è quindi

µ =
N1

N
(2.7)
=

n!

1!

1

n!
= 1, (2.10)

cioè in media ogni permutazione ha un punto fisso.

2.3 Esempio 2. Estrazione di palline colorate

Supponiamo di avere un’urna con palline di k colori diversi C1, C2, ...Ck,
con h palline per ogni colore. Qual è la probabilità che estraendo simulta-
neamente n palline (con n ≥ k) dall’urna se ne ottenga almeno una per ogni
colore? Come insieme di oggetti Ω consideriamo l’insieme di tutti i possibi-
li esiti dell’estrazione, cioè di tutti i possibili insiemi di n palline dell’urna.
Come insieme di proprietà si può scegliere P = {1, 2, ..., k}, dove un oggetto
ω ∈ Ω ha la proprietà j se non contiene nessuna pallina del colore Cj.

ei è il numero di oggetti che hanno esattamente i proprietà, quindi è il
numero di possibili estrazioni in cui i colori scelti sono esattamente k − i.
Allora la probabilità di estrarre esattamente m colori (con m ≤ k) è

ek−m(
hk
n

) . (2.11)

In particolare, la probabilità di estrarre palline di tutti i colori è
e0(
hk
n

) . (2.12)

Calcoliamo i coefficienti {Nr}. Per ogni scelta di r colori, le estrazioni in
cui essi non compaiono sono

(
(k−r)h

n

)
. Segue quindi che per ogni r = 0, ...k

Nr =

(
k

r

)(
(k − r)h

n

)
. (2.13)

Quindi

e0 = N(−1) =
k∑

r=0

(−1)r
(
k

r

)(
(k − r)h

n

)
(2.14)

e la probabilità di estrarre palline di tutti i colori è∑k
r=0(−1)r

(
k
r

)(
(k−r)h

n

)(
hk
n

) .
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2.4 Esempio 3. Numeri di Stirling di seconda

specie

Dati due interi non negativi n e k tali che k ≤ n, il numero di Stirling
di seconda specie

{
n
k

}
è il numero di possibili partizioni in k classi di un

insieme di n elementi. Si definisce
{
0
0

}
= 1. Osserviamo che, detto Fsur(n, k)

il numero di funzioni suriettive con dominio {1, ..., n} e codominio {1, ..., k},
vale Fsur(n, k) = k!

{
n
k

}
.

Infatti partizionando {1, ..., n} in k classi e associando a ogni elemento
della stessa classe lo stesso elemento di {1, ..., k}, diverso per ogni classe,
si costruisce una funzione suriettiva; viceversa ogni funzione suriettiva in-
dividua una partizione ordinata del dominio in cui l’i-esimo blocco è dato
dalla retroimmagine di i. Inoltre partizioni ordinate diverse corrispondono a
funzioni diverse.

Determiniamo quindi Fsur(n, k). Consideriamo come insieme di oggetti
Ω l’insieme di tutte le funzioni da {1, ..., n} a {1, ..., k}; come insieme di
proprietà scegliamo P = {1, ..., k}, dove una funzione f ∈ Ω ha la proprietà
j se j non appartiene all’immagine di f . Una funzione non ha nessuna
proprietà se e solo se è suriettiva, quindi Fsur(n, k) è il numero di oggetti che
non hanno nessuna proprietà, cioè Fsur(n, k) = e0.

Scelto S ⊆ P , le funzioni f : {1, ..., n} → {1, ..., k} che verificano le
proprietà in S sono (k − |S|)n, perché per ogni elemento di {1, ..., n} la sua
immagine tramite f può essere scelta tra gli elementi di {1, ..., k}−S. Quindi
per ogni r = 0, ..., k si ha

Nr =

(
k

r

)
(k − r)n (2.15)

Ovviamente invece Nr = 0 se r > k (dato che non esistono sottoinsiemi di
P di cardinalità maggiore di k). Allora la funzione generatrice N(x) per
{Nr}∞r=0 è

N(x) =
k∑

r=0

(
k

r

)
(k − r)nxr (2.16)
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da cui, per (2.4), segue

E(x) =
k∑

r=0

(
k

r

)
(k − r)n(x− 1)r. (2.17)

Per ogni r = 0, ..., r il numero di funzioni la cui immagine ha esattamente
k − r elementi è l’r-esimo coefficiente di E(x); in particolare il numero di
funzioni suriettive è

Fsur(n, k) = e0 = E(0) = N(−1) =
k∑

r=0

(
k

r

)
(k − r)n(−1)r. (2.18)

Quindi, ricordando che Fsur(n, k) = k!
{
n
k

}
, si ricava subito un’espressione

esplicita per il numero di Stirling di seconda specie
{
n
k

}
:{

n

k

}
=

k∑
r=0

(−1)r (k − r)n

r!(k − r)!
(2.19)

Si può inoltre osservare che se si moltiplicano e−y e
∑

r≥1
rn

r!
yr, che sono

entrambe serie con infiniti coefficienti non nulli, si ottiene un polinomio:

e−y
∑
r≥1

rn

r!
yr =

(∑
s≥0

(−y)n

s!
ys

)
·

(∑
r≥1

rn

r!
yr

)

=
∑
s≥1

s∑
r=0

1

s!

(
s

r

)
(−1)r(s− r)n

(2.19)
=
∑
s≥1

{
n

s

}
ys

=
n∑

s=1

{
n

s

}
ys. (2.20)

Sfrutteremo quest’ultima relazione nel Capitolo 4 per studiare il comporta-
mento asintotico dei numeri di Bell ordinati.
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Capitolo 3

La formula esponenziale

3.1 Definizioni

Notazione. Per ogni n intero positivo, indicheremo con [n] l’insieme {1, 2, ..., n}.

Definizione 3.1.1. Sia P un insieme astratto di immagini. Una carta C(S,p)
è una coppia formata da un insieme finito di interi positivi S, che chiameremo
il suo insieme di etichette, e una immagine p ∈ P . Il peso di C è n = |S|.

Una carta di peso n si dice standard se il suo insieme di etichette è [n].

Definizione 3.1.2. Una mano H è un insieme di carte i cui insiemi di
etichette formano una partizione di [n] per un certo n ∈ N. Tale n si dice
peso della mano.

Osservazione. È banale osservare che il peso di una mano è dato dalla somma
dei pesi delle carte in esso contenute.

Definizione 3.1.3. Dati una carta C(S, p) e un insieme S ′ ⊆ N>0 di cardi-
nalità uguale a quella di S, una carta C(S ′, p) si dice un rietichettamento di
C(S, p) tramite l’insieme S ′.

Definizione 3.1.4. Un mazzo D è un insieme finito di carte standard che
hanno tutte lo stesso peso e le cui immagini sono tutte diverse tra loro. Il
peso di un mazzo è il peso di una qualsiasi sua carta.

17
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Definizione 3.1.5. Una famiglia esponenziale F è una collezione di mazzi
D1,D2, ... dove per ogni n = 1, 2, ... il mazzo Dn ha peso n (o è eventualmente
vuoto).

Definizione 3.1.6. Data una famiglia esponenziale F formata dai mazzi Dn

di peso n per ogni n ≥ 1 intero positivo, chiamiamo h(n, k) il numero di
mani H di peso n e k carte tali che ogni carta di H è un rietichettamento
di una carta di F . Le carte da rietichettare ammettono ripetizioni, cioè per
costruire una mano si possono scegliere da F più copie della stessa carta a
patto di rietichettarle con insiemi disgiunti. Diremo inoltre che una certa
mano H è una mano di F se le carte di H sono rietichettamenti di carte di
F .

Per ogni n ≥ 1, sia dn il numero di carte nel mazzo Dn. La funzione gene-
ratrice esponenziale per la successione {dn}∞1 si dice la funzione generatrice
dei mazzi per F . Inoltre, la funzione generatrice in due variabili

H(x, y) =
∑
n,k≥0

h(n, k)
xn

n!
yk

si dice funzione generatrice delle mani.

Osserviamo che H(x, y) è una funzione generatrice ordinaria rispetto a y

e una funzione generatrice esponenziale rispetto a x.

3.1.1 Esempio

In questo esempio descriveremo tutte le permutazioni grazie a un’oppor-
tuna famiglia esponenziale.

Per prima cosa definiamo le carte che verranno usate per costruire la
famiglia. Ogni carta di peso m ha come disegno m punti disposti in un certo
ordine su una circonferenza; gli archi che li collegano sono frecce orientate in
senso orario e ognuno degli m punti è contrassegnato da un elemento di [m].
L’insieme di etichette S è un insieme di interi positivi di cardinalità m.

Ognuna di queste carte identifica un ciclo. Infatti, dopo aver associato
gli elementi dell’insieme di etichette della carta C(S, p) ai punti numerati
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della figura in modo da preservarne l’ordine (cioè associando il più piccolo
elemento di S al punto di p contrassegnato dal numero 1, il secondo elemento
più piccolo al punto contrassegnato dal 2 e proseguendo in questo modo per
tutti gli elementi di S), le frecce indicheranno per ogni elemento di S la sua
immagine tramite la permutazione descritta dalla carta. L’unica orbita non
banale nella permutazione rappresentata da C(S, p) sarà S.

Per esempio, se la carta C(S, p) ha come insieme di etichette S = {1, 4, 6, 8, 9}
e come immagine p quella mostrata in Figura 3.1,

Figura 3.1: Immagine p dell’esempio. (Wilf (1994))

allora rappresenta il ciclo

1→ 6→ 4→ 9→ 8→ 1.

A partire da carte di questo tipo definiamo una famiglia esponenziale F in
cui per ogni intero positivo r il mazzo Dr è formato da carte standard di peso
r le cui immagini sono tutte quelle possibili a meno di rotazioni (cioè tutti i
modi possibili in cui si possono disporre gli elementi di [r] sugli r punti della
circonferenza descritta precedentemente, a meno di rotazioni). Vale quindi
dr = (r − 1)!, da cui segue ovviamente

D(x) =
∑
r≥1

1

r
xr.

Una mano di F di peso n e k carte identifica una permutazione di [n]
che è prodotto dei k cicli disgiunti rappresentati dalle carte. (Tali cicli sono
ovviamente disgiunti perché per definizione lo sono gli insiemi di etichette
delle carte in una mano). Viceversa si può osservare che, per costruzione di



20 3. La formula esponenziale

F , per ogni permutazione σ esiste una mano che la rappresenta, anch’essa
formata dalle carte che identificano i cicli disgiunti di cui σ è il prodotto.

Inoltre mani distinte rappresentano permutazioni distinte e viceversa. In-
fatti due mani H1 e H2 sono uguali se e solo se tutte le carte di H1 e H2 sono
uguali, cioè se e solo se le permutazioni σ1 e σ2 rappresentate rispettivamente
da H1 e H2 sono prodotto degli stessi cicli disgiunti, cioè se e solo se σ1 = σ2.

Esiste quindi una corrispondenza biunivoca tra le mani della famiglia
esponenziale costruita in questo esempio e le permutazioni. Nelle prossime
sezioni, dimostreremo la formula esponenziale, che ci permetterà di ricavare
la funzione generatrice delle mani a partire da quella dei mazzi; questo ci
consentirà di determinare il numero di permutazioni di n elementi che sono
prodotto di k cicli disgiunti.

3.2 La formula esponenziale

Definizione 3.2.1. Siano F ′ e F ′′ due famiglie esponenziali i cui insiemi
di immagini P e P ′ siano disgiunti. La loro unione, che indicheremo con il
simbolo F ′ ⊕ F ′′, è costruita nel seguente modo: per ogni n ≥ 1 il mazzo
Dn contiene tutte le d′n carte del mazzo D′

n e le d′′n carte del mazzo D′′
n. La

famiglia F ′ ⊕F ′′ è formata dai mazzi D1,D2, ... appena definiti.

Lemma 3.2.1 (Lemma fondamentale del conteggio con etichette).
Siano F ′ e F ′′ due famiglie esponenziali e H′, H′′ le rispettive funzioni ge-
neratrici delle mani. Sia inoltre H la funzione generatrice delle mani di
F = F ′ ⊕F ′′. Allora vale la seguente relazione:

H(x, y) = H′(x, y)H′′(x, y) (3.1)

Dimostrazione. F è l’unione di F ′ e F ′′, quindi ogni mano H di F di k

carte è formata da un certo numero di carte k′ di F ′ e da k − k′ carte di F ′′

opportunamente rietichettate (si noti che per ipotesi gli insiemi di immagini
di F ′ e di F ′′ sono disgiunti, perciò ogni carta di F appartiene o a F ′ o a
F ′′).
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Data una mano H di k carte e peso n, sia A = {C(S1, p1), C(S2, p2), ...,

C(Sk′ , pk′)} l’insieme delle carte di H che sono rietichettamenti di carte di
F ′ e sia B = {C(Sk′+1, pk′+1), C(Sk′+2, pk′+2), ..., C(Sk, pk)} l’insieme di quel-
le che sono rietichettamenti di carte di F ′′. Possiamo osservare che A è uguale
a una opportuna mano H ′ di F ′ che è stata rietichettata, preservando l’or-
dine, con I =

⋃k′

i=1 Si. Vale l’analogo per B, che corrisponde a una mano di
carte di F ′′ rietichettate con

⋃k
i=k′+1 Si = [n] − I. Rietichettare una mano

K di peso m con un insieme J di interi positivi (di cardinalità m) preser-
vando l’ordine significa sostituire a 1, nell’insieme di etichette di una certa
carta di K al quale 1 appartiene, l’elemento più piccolo di J ; a 2 il secondo
elemento più piccolo di J , e proseguire in questo modo fino a m. Si osservi
che rietichettando in questo modo due mani diverse con lo stesso insieme si
ottengono ancora due insiemi di carte diversi. Viceversa, date due mani di
F ′ e di F ′′ rispettivamente di peso n′ e n− n′ e formate da k′ e k− k′ carte,
se le si rietichettano con due insiemi di interi positivi J e [n] − J la loro
unione sarà una mano di F . Una mano di F di k carte e peso n è quindi
univocamente determinata dalla scelta di:

• una mano di F ′ di k′ carte e peso n′ (dove n′ ≤ n e k′ ≤ k)

• una mano di F ′′ di k′′ = k − k′ carte e peso n′′ = n− n′

• il sottoinsieme S di [n] di cardinalità n′ (per cui le possibili scelte sono(
n
n′

)
) con cui si vuole rietichettare, preservando l’ordine, la mano scelta

da F ′; la mano scelta da F ′′ verrà ovviamente rietichettata con [n]−S

e vale

h(n, k) =
∑
n′,k′

(
n

n′

)
h′(n′, k′)h′′(n− n′, k − k′). (3.2)

D’altra parte, si ha[
xn

n!
yk
]
H′(x, y)H′′(x, y) =

[
xn

n!
yk
]{ ∑

n′,k′≥0

h′(n′, k′)
xn′

n′!
yk

′
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∑
n′′,k′′≥0

h′′(n′′, k′′)
xn′′

n′′!
yk

′′

}

=

n,k∑
n′,k′=0

n! · h′(n′, k′)
1

n′!
· h′′(n− n′, k − k′)

1

(n− n′)!

=

n,k∑
n′,k′=0

(
n

n′

)
h′(n′, k′) · h′′(n− n′, k − k′)

(3.2)
= h(n, k)

e questo conclude la dimostrazione.

Teorema 3.2.1 (Formula esponenziale). Sia F una famiglia esponenziale
e siano D(x) e H(x, y) rispettivamente le funzioni generatrici dei mazzi e
delle mani. Allora

H(x, y) = eyD(x). (3.3)

In particolare, il numero di mani di peso n e k carte è

h(n, k) =

[
xn

n!

]{
D(x)k

k!

}
(3.4)

Dimostrazione. Passo 1. Fissato un intero positivo r, consideriamo una
famiglia esponenziale in cui l’unico mazzo non vuoto sia il mazzo Dr, che
conterrà una sola carta C(S, p) di peso r. La funzione generatrice dei mazzi
sarà quindi D(x) = xr/r!.

L’unico modo per estrarre una mano da questa famiglia è scegliere un
certo numero t di copie di C(S, p), e poi rietichettarle in modo che i nuovi
insiemi di etichette formino una partizione di [rt]. Le mani costruite in questo
modo avranno ovviamente peso rt.

Mani di peso n non divisibile per r in questo caso non possono esistere e
h(n, k) (che ricordiamo essere il numero di possibili mani di peso n e k carte)
sarà quindi sempre uguale a zero per ogni n non divisibile per r.

Se invece n = kr, il numero di mani di peso n è uguale al numero di
modi in cui si possono rietichettare k copie di C(S, p). Le possibili scelte
per il nuovo insieme di etichette della prima carta sono

(
n
r

)
, per quello della
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seconda
(
n−r
r

)
e così via fino all’insieme di etichette della k-esima carta, per

cui sono
(
n−(k−1)r

r

)
=
(
kr−(k−1)r

r

)
= 1. L’ordine con cui abbiamo scelto di

rietichettare le carte non conta, quindi sarà necessario dividere per k!. Vale
quindi

h(kr, k) =
1

k!

k∏
i=1

(
n− (k − i)r

r

)
=

1

k!

n!

(r!)k

La funzione generatrice delle mani per questa famiglia è allora

H(x, y) =
∑
n,k

h(n, k)
xn

n!
yk

=
∑
k

1

k!(r!)k
xkryk

= exp

(
xry

r!

)
(3.5)

Passo 2. Si consideri ora, dati gli interi positivi r e dr, una famiglia
esponenziale Fr i cui mazzi siano tutti vuoti tranne il mazzo Dr, che conterrà
dr carte. Fissato r, si dimostra per induzione su dr che la funzione generatrice
delle mani per Fr è

Hr(x, y) = exp

(
ydrx

r

r!

)
(3.6)

Il caso dr = 1 segue immediatamente dal Passo 1.
Supponiamo ora che la (3.6) sia verificata per ogni dr compreso tra 1

e m − 1 e mostriamo che vale anche per dr = m. La famiglia Fr si può
vedere come l’unione di una famiglia F ′

r i cui mazzi sono tutti vuoti tranne
l’r-esimo, che contiene m − 1 carte, e una famiglia F ′′

r , anch’essa con mazzi
tutti vuoti tranne l’r-esimo, che contiene una sola carta. Siano H′

r(x, y) e
H′′

r (x, y) rispettivamente le loro funzioni generatrici delle mani. Dal Passo 1,
dall’ipotesi induttiva e dal Lemma Fondamentale segue allora

Hr(x, y) = H′
r(x, y)H′′

r (x, y)

= exp

(
y(m− 1)xr

r!

)
· exp

(
yxr

r!

)
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= exp

(
ymxr

r!

)
.

Passo 3. Una qualsiasi famiglia esponenziale F formata dai mazzi D1,
D2,... si può vedere come l’unione delle famiglie F1, F2,... dove per ogni
i ≥ 1 la famiglia Fi ha come unico mazzo non vuoto il mazzo Di (cioè
l’i-esimo mazzo di F). Per il Lemma Fondamentale e il Passo 2,

H(x, y) =
∏
r≥1

Hr(x, y)

(3.6)
=
∏
r≥1

exp

(
ydrx

r

r!

)

= exp

(
y
∑
r≥1

drx
r

r!

)
= eyD(x)

e questo conclude la dimostrazione di (3.3).
Dimostriamo infine la (3.4). Ricordando che ez =

∑
≥0 z

m/m!, si ottiene

H(x, y) (3.3)
= eyD(x) =

∑
m≥0

ym
(D(x))m

m!

Quindi, dato che per definizione H(x, y) =
∑

n,k≥0 h(n, k)
xn

n!
yk, per ogni m ≥

0 si ha
D(x)m

m!
=
∑
n≥0

h(n,m)
xn

n!

da cui segue immediatamente la tesi.

Corollario 3.2.1 (Formula esponenziale con restrizioni sul numero di carte).
Siano T un insieme di interi positivi e F una famiglia esponenziale. Sia
inoltre eT (x) =

∑
n∈T xn/n!. Allora, detto hn(T ) il numero di mani che

hanno peso n e numero di carte contenuto in T , vale

{hn(T )}∞n=0

egf←→ eT (D(x)) (3.7)

.
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Dimostrazione. Fissato n, sommando la (3.4) lungo tutti i k ∈ T , si ottiene

hn(T ) =
∑
k∈T

h(n, k)
(3.4)
=

[
xn

n!

]{∑
k∈T

D(x)k

k!

}
=

[
xn

n!

]
{eT (D(x))}

Osservazione 3.2.1. Detta H(x) =
∑

n≥0
hn

n!
xn la funzione generatrice espo-

nenziale per la successione {hn}∞n=0, dove hn è il numero di mani (di qualsiasi
numero di carte) di peso n, vale

H(x) = eD(x). (3.8)

Questo risultato segue dal Corollario 3.2.1, ponendo T = N.

Corollario 3.2.2 (Formula esponenziale con restrizioni sul numero di carte
e sul peso delle carte). Siano T e S due insieme di interi positivi e F una
famiglia esponenziale. Allora, detto h(n, S, T ) il numero di mani di peso n

che hanno numero di carte contenuto in T e che sono formate solo da carte
di peso contenuto in S, vale

{h(n, S, T )}∞n=0

egf←→ eT (D(S)(x)) (3.9)

dove eT è definita come nel Corollario 3.2.1 e D(S)(x) =
∑

r∈S dr
xr

r!
.

Dimostrazione. Data la famiglia F formata dai mazzi Dr (di peso r) per ogni
intero positivo r, definiamo una nuova famiglia esponenziale F (S) i cui mazzi
D(S)

r sono vuoti se r /∈ S e uguali a Dr se r ∈ S. Le carte in F (S) sono
quindi tutte e sole le carte di F che hanno pesi contenuti in S. La funzione
generatrice dei mazzi per F (S) è

D(S)(x) =
∑
r∈S

dr
xr

r!

Data l’ovvia corrispondenza biunivoca tra le carte di F (S) e le carte di F di
peso contenuto in S, scegliere in F solo carte di peso contenuto in S equivale
a scegliere carte qualsiasi in F (S). In particolare, applicando il Corollario
3.2.1 alla famiglia F (S) si ottiene la tesi.
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3.3 Esempi

3.3.1 Permutazioni e numeri di Stirling di prima specie

Torniamo all’esempio delle permutazioni. Si è già osservato nell’Esempio
3.1.1 che il numero di carte contenute nel mazzo Dr è dr = (r − 1)!. La
funzione generatrice dei mazzi è quindi

D(x) =
∑
r≥0

(r − 1)!
xr

r!

=
∑
r≥0

xr

r

= log

(
1

1− x

)
Per la formula esponenziale, la funzione generatrice delle mani è

H(x, y) = eyD(x)

=
1

(1− x)y
. (3.10)

Quindi il numero di permutazioni di n elementi che sono prodotto di k cicli
disgiunti è h(n, k), cioè il coefficiente di xn

n!
yk in 1

(1−x)y
.

Il numero di Stirling di prima specie
[
n
k

]
è definito come il numero di

permutazioni di n elementi che sono prodotto di k cicli disgiunti, quindi
h(n, k) =

[
n
k

]
e, per n fissato, dalla definizione di H(x, y) segue∑

k≥0

[
n

k

]
yk =

∑
k≥0

h(n, k)yk

=

[
xn

n!

]
H(x, y). (3.11)

Sostituendo (3.10) in (3.11) si ottiene[
xn

n!

]
1

(1− x)y
(1.11)
= n!

(
y + n− 1

n

)
= y(y + 1) · · · (y + n− 1),

quindi ∑
k≥0

[
n

k

]
yk = y(y + 1) · · · (y + n− 1), (3.12)
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cioè il numero di Stirling di prima specie
[
n
k

]
è il coefficiente di yk in y(y +

1) · · · (y + n− 1).

Per esempio, il numero di permutazioni di n elementi che hanno un solo
ciclo è il coefficiente del termine di y1 in y(y+1) · · ·(y+n−1), cioè il termine
noto in (y + 1) · · · (y + n− 1) che è (n− 1)!.

3.3.2 Partizioni di un insieme e numeri di Bell

Consideriamo la famiglia F in cui per ogni r ≥ 1 il mazzo Dr contiene
una sola carta, di peso dr. Dato che ogni mazzo ha una sola carta, ogni carta
in F è identificata dal suo peso e quindi l’immagine presente su di essa non
ha importanza. Si può osservare che ogni mano H di F di peso n e k carte
corrisponde univocamente alla partizione di [n] in k classi i cui blocchi sono
gli insiemi di etichette delle carte in H. Viceversa, data una partizione di
[n] in k classi, dove A1, ..., Ak sono i blocchi della partizione, si può formare
una mano scegliendo per ogni blocco Ai l’unica carta di F di peso |Ai| e
rietichettandola con Ai. Inoltre diverse partizioni corrispondono ovviamente
a mani diverse. Quindi il numero di mani di F di peso n e k carte h(n, k) è
il numero di partizioni di [n] in k classi, cioè il numero di Stirling di seconda
specie

{
n
k

}
. Si ha dn = 1 per ogni n ≥ 1, quindi la funzione generatrice dei

mazzi è

D(x) =
∑
n≥1

1

n!
xn = ex − 1.

Il numero di Bell bn è definito per ogni n ≥ 1 come il numero di parti-
zioni di un insieme di n elementi; b0 = 1 per definizione. Ovviamente dalle
definizioni dei numeri di Bell e dei numeri di Stirling di seconda specie segue
che

bn =
n∑

k=0

{
n

k

}
=

n∑
k=0

h(n, k); (3.13)

quindi nella famiglia esponenziale descritta in questo esempio il numero di
mani di peso n e numero di carte qualsiasi è uguale a bn. Allora per l’Os-
servazione 3.2.1 la funzione generatrice esponenziale H(x) =

∑
n≥0

bn
n!
xn per
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i numeri di Bell {bn}∞n=0 è
H(x) = ee

x−1, (3.14)

cioè il numero di partizioni di un insieme di n elementi è uguale al coefficiente
di xn in ee

x−1.
Da questa funzione generatrice si può inoltre ricavare una definizione per

ricorrenza per i numeri di Bell. Dall’uguaglianza ee
x−1 =

∑
n≥0

bn
n!
xn segue

ex − 1 = log(ee
x−1) = log

(∑
n≥0

bn
n!
xn

)
;

derivando entrambi i membri si ottiene

ex =

∑
n≥1 n

bn
n!
xn−1∑

n≥0
bn
n!
xn

.

Infine, moltiplicando entrambi i membri per x si ottiene

xex =

∑
n≥0 n

bn
n!
xn∑

n≥0
bn
n!
xn

,

che equivale a
xex

∑
n≥0

bn
n!
xn =

∑
n≥0

n
bn
n!
xn.

Quindi per ogni n ≥ 1 il coefficiente di xn in entrambi i membri è

nbn
n!

= [xn]

{
xex

∑
n≥0

bn
n!
xn

}

= [xn−1]

{
ex
∑
n≥0

bn
n!
xn

}

=
n−1∑
n=0

1

(n− 1− k)!

1

k!
bk,

da cui si ottiene

bn =
n−1∑
k=0

(
n− 1

k

)
bk ∀n ≥ 1. (3.15)

Per definizione b0 = 1, quindi tramite la relazione appena trovata si possono
determinare per ricorrenza tutti i numeri di Bell.
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3.3.3 Permutazioni con cicli di lunghezza maggiore di q

Fissato un intero positivo q, sia f(n, q) il numero di permutazioni di n
elementi che sono prodotto di cicli disgiunti tutti di lunghezza maggiore di
q. Applicando il Corollario 3.2.2 con T = N e S = {t ∈ N|t > q}, si ottiene
che la funzione generatrice esponenziale fq(x) della successione {f(n, q)}∞n=0

è

fq(x) = exp

(∑
n>q

xn

n

)

= exp

(∑
n≥1

xn

n
−

q∑
n=1

xn

n

)
(1.10)
= exp

(
log

1

1− z
−

q∑
n=1

xn

n

)

=
1

1− z
· exp

(
−

q∑
n=1

xn

n

)
.

Nel Capitolo 4 studieremo il comportamento asintotico dei coefficienti di
fq(x).
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Capitolo 4

Metodi asintotici

4.1 Proprietà analitiche delle serie di potenze.

Fino ad ora abbiamo considerato le funzioni generatrici come serie for-
mali, cioè come scritture formali del tipo

∑
n≥0 anx

n in cui la x è solo un
simbolo e non la variabile di una funzione; per le serie formali non esiste il
concetto di convergenza in un punto. In questo capitolo studieremo invece le
funzioni generatrici dal punto di vista analitico, cioè data una funzione gene-
ratrice

∑
n≥0 anx

n per la successione {an}n∈N (dove an ∈ C per ogni n ∈ N),
considereremo la funzione di variabile complessa

S(z) =
∑
n≥0

anz
n = lim

N→+∞

N∑
n=0

anz
n,

definita nei punti z ∈ C in cui il limite converge. In questa trattazione
chiameremo la funzione S(z) anche serie complessa.

Lo studio delle proprietà analitiche delle funzioni generatrici ha moltis-
sime applicazioni, molte delle quali non si possono dedurre semplicemente
studiando le funzioni generatrici solamente come serie formali. In questa
trattazione mostreremo che, data una serie formale di potenze

∑∞
n=0 anx

n, se
la serie complessa

∑∞
n=0 anz

n è lo sviluppo in serie di potenze intorno all’ori-
gine di una funzione f nota olomorfa in un certo dominio, allora si possono
studiare le singolarità di f per stimare i coefficienti {an}.

31
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Enunciamo il seguente teorema, per la dimostrazione si veda Stein, Sha-
karchi (2003):

Teorema 4.1.1. Siano U un aperto di C e f : U → C una funzione olomorfa.
Sia z0 ∈ U . Se r > 0 è tale che Dr(z0) ⊆ U , allora per ogni z ∈ Dr(z0)

f(z) =
∑
n≥0

an(z − z0)
n

dove
an =

f (n)(z0)

n!
(4.1)

per ogni n ∈ N.

Da questo teorema segue che se due funzioni S1(z) =
∑

n anz
n e S2(z) =∑

n bnz
n convergono e sono uguali in un intorno dell’origine, allora an = bn

per ogni n ∈ N. Infatti, dato che le serie di potenze complesse S1 e S2 sono
funzioni olomorfe nei loro dischi di convergenza, allora vale il Teorema 4.1.1
e per la (4.1) vale an = bn in quanto S1(z) = S2(z) in un intorno di 0.
Viceversa invece, se due serie formali

∑
n anx

n e
∑

n bnx
n sono uguali, allora

per definizione an = bn ∀n e quindi ovviamente
∑

n anz
n =

∑
n bnx

n nei
loro dischi di convergenza.

D’ora in poi quindi a volte useremo le stesse notazioni per le serie formali e
le serie complesse ad esse associate, ricordando però che considerando le serie
come funzioni le uguaglianze valgono solo nei punti del disco di convergenza.

Il Teorema 4.1.1 è inoltre alla base del seguente risultato fondamentale:

Proposizione 4.1.1. Sia S(f) ⊂ C un insieme chiuso e costituito da punti
isolati. Sia f : C−S(f)→ C una funzione olomorfa e tale che gli elementi di
S(f) sono tutti singolarità isolate e non rimovibili di f . Sia inoltre z0 ∈ S(f)

la singolarità di f più vicina all’origine.
Se 0 ∈ C−S(f) e in un intorno di 0 vale f(z) =

∑
n≥0 anz

n (dove an ∈ C
per ogni n ∈ N), allora il raggio di convergenza di

∑
n≥0 anz

n è |z0|. Inoltre,
fissata ϵ > 0, esiste N ∈ N tale che per ogni n > N vale

|an| <
(

1

|z0|
+ ϵ

)n
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e inoltre esistono infiniti n ∈ N tali che

|an| >
(

1

|z0|
− ϵ

)n

.

Dimostrazione. Detto R il raggio di convergenza di
∑

n≥0 anz
n, dal teore-

ma di Cauchy-Hadamard e dalla definizione di massimo limite segue im-
mediatamente che, fissato ϵ > 0, esiste N ∈ N tale che per ogni n > N

vale

|an| <
(
1

R
+ ϵ

)n

e che esistono infiniti n ∈ N tali che

|an| >
(
1

R
− ϵ

)n

.

Mostrando che R = |z0| si conclude la dimostrazione. Per il Teorema
4.1.1, per ogni r > 0 tale che r < |z0| vale f(z) =

∑
n≥0 anz

n per ogni
z ∈ Dr(0) (si osservi che, sempre per il Teorema 4.1.1, i coefficienti della
serie sono univocamente determinati). Allora f(z) =

∑
n≥0 anz

n in D|z0|(0)

e quindi il raggio di convergenza R della serie è ≥ |z0|. Mostriamo ora che R

non può essere strettamente maggiore di |z0|. Per semplicità lo dimostreremo
nel caso in cui l’unica singolarità non rimovibile di f di modulo |z0| sia z0; la
dimostrazione per il caso in cui f ha anche altre singolarità di modulo |z0| è
analoga.

Supponiamo per assurdo che
∑

n≥0 anz
n converga in un disco di raggio

R′ > |z0|. Sia quindi ϵ > 0 tale che D|z0|+ϵ − {z0} ⊆ ((C − S(f)) ∩ DR′)

e tale che f non abbia altre singolarità in D|z0|+ϵ(0). Dato che una serie di
potenze è olomorfa nel suo disco di convergenza,

∑
n≥0 anz

n è olomorfa in
D|z0|+ϵ(0). Sia f che

∑
n≥0 anz

n sono olomorfe in D|z0|+ϵ − {z0} , quindi per
il teorema di identità delle funzioni olomorfe vale f(z) =

∑
n≥0 anz

n per ogni
z ∈ D|z0|+ϵ(0)− {z0}.

Dato che
∑

n≥0 anz
n è olomorfa in D|z0|+ϵ(0), allora per continuità è limi-

tata in un intorno di z0. Quindi, poiché
∑

n≥0 anz
n = f in D|z0|+ϵ(0)− {z0},

f è limitata in un intorno bucato di z0. Allora per il teorema di Riemann per
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le singolarità rimovibili z0 è una singolarità rimovibile per f , contraddicendo
l’ipotesi.

Quindi se in un intorno dell’origine una serie di potenze complessa è
uguale a una data funzione f olomorfa in un certo insieme, studiando le
singolarità di f si possono stimare i coefficienti della serie.

4.2 Funzioni meromorfe

Sia f : C−{z0, ..., zt} → C olomorfa, con z0, ..., zt poli. Vogliamo stimare
i coefficienti del suo sviluppo in serie intorno all’origine.

Se f ha un polo di ordine mi in zi, allora esistono ri > 0 e una funzione
Gi : Dri(zi)→ C olomorfa (dove Dri(zi) = {z ∈ C| |z − zi| < ri}) tali che

f(z)|Dri (zi)−{zi} =
a
(i)
−mi

(z − zi)mi
+

a
(i)
−mi+1

(z − zi)mi−1
+ ...+

a
(i)
−1

z − zi
+Gi(z) (4.2)

dove a
(i)
−k ∈ C per ogni k = 1, ...,mi.

PP (f ; zi) =
a
(i)
−mi

(z − z0)mi
+

a
(i)
−mi+1

(z − z0)mi−1
+ ...+

a
(i)
−1

z − z0
: C− {zi} → C

è la parte principale di f in zi.
Sia R > 0 il modulo del polo di f più vicino all’origine e siano z0, z1, ..., zs

tutti i poli di f di modulo R, di ordine rispettivamente m0,m1...,ms.
Definiamo la funzione

h(z) = f(z)− PP (f ; z0)− PP (f ; z1)− ...− PP (f ; zs). (4.3)

h è olomorfa in C−{z0, ..., zt} e si può estendere a una funzione olomorfa in
C − {zs+1, ..., zt} (che continueremo a chiamare h) perché le sue singolarità
in z0, z1, ..., zs sono tutte rimovibili. Infatti, da (4.2) segue che per ogni
i = 0, ..., s

h(z)|Dri−{zi} = PP (f ; zi) +Gi(zi)−
s∑

k=0

PP (f ; zk)
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= Gi(z)−
s∑

k=0
k ̸=i

PP (f ; zk) (4.4)

Allora, passando al limite,

lim
z→zi

h(z) = lim
z→zi

(Gi(z)− PP (f ; z0)− ...PP (f ; zi−1) (4.5)

− PP (f ; zi+1)− ...− PP (f ; zs))

= Gi(zi)−
s∑

k=0
k ̸=i

mk∑
j=1

a
(k)
−j

(zi − zk)j
∈ C (4.6)

e quindi per ogni i = 0, ..., s zi è una singolarità rimovibile per h.

Le singolaritò di h sono zs+1, ..., zt, quindi il raggio di convergenza R′

dello sviluppo di h in serie di potenze intorno all’origine è il modulo del
punto più vicino all’origine tra zt+1, ..., zs, e vale R′ > R. (Ovviamente se
le singolarità di f hanno tutte modulo |z0| vale R′ = ∞). Sottraendo a f

la sua parte principale nei poli più vicini all’origine si è quindi ottenuta una
funzione il cui sviluppo in serie di potenze attorno all’origine ha un raggio di
convergenza strettamente maggiore di quello di f .

Se f è la funzione generatrice per la successione {cn}∞n=0 e

g(z) = PP (f ; z0) + PP (f ; z1) + ...+ PP (f ; zs)
{ops}←→ {bn}∞n=0 (4.7)

(cioè più precisamente in un intorno di 0 valgono f(z) =
∑

n≥0 cnx
n e

g(z) =
∑

n≥0 bnx
n), allora, per la Proposizione 4.1.1 applicata ad h = f − g

(il cui sviluppo in serie di potenze intorno all’origine ha come coefficienti
{cn − bn}∞n=0), per ogni ϵ > 0 fissata vale

|cn − bn| <
(

1

R′ + ϵ

)n

per n→∞. (4.8)

Da (4.8) segue

cn = bn +O

((
1

R′ + ϵ

)n)
per n→∞ (4.9)
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cioè asintoticamente si possono approssimare i termini della successione {cn}∞n=0

con i coefficienti dello sviluppo in serie di potenze intorno all’origine di g, dove
g è la somma delle parti principali di f nei poli di modulo minimo.

Determiniamo ora esplicitamente i coefficienti bn. Dato che g = PP (f ; z0)+

... + PP (f ; zs), per ogni n ∈ N bn è uguale alla somma dei coefficienti dei
termini di grado n negli sviluppi in serie di potenze intorno all’origine di
PP (f ; z0), ..., PP (f ; zs) rispettivamente. Per ogni i=0,...,s fissato vale

PP (f ; zi) =
r∑

j=1

a
(i)
−j

(z − zi)j

=
r∑

j=1

(−1)j

zji (1− (z/zi))j
a
(i)
−j (4.10)

Dato che per (1.11) per |x| < 1 vale

1

(1− x)k+1
=
∑
n≥0

(
n+ k

n

)
xn

(il raggio di convergenza è 1 perché la singolarità di 1/(1− x)k+1 di modulo
minimo è -1), allora per ogni z tale che |z| < |zi| = R si ha

1

(1− (z/zi))j
=
∑
n≥0

(
n+ j − 1

n

)
(z/zi)

n

=
∑
n≥0

(
n+ j − 1

j − 1

)
(z/zi)

n (4.11)

Sosituendo in (4.10) quest’ultima relazione si ottiene quindi che, in un intorno
dell’origine,

PP (f ; zi) =

mi∑
j=1

(−1)ja(i)−j

zji

(∑
n≥0

(
n+ j − 1

j − 1

)
(z/zi))

n

)

=
∑
n≥0

zn

(
mi∑
j=1

(−1)ja(i)−j

zn+j
i

(
n+ j − 1

j − 1

))
(4.12)

Allora sommando per ogni polo di modulo |z0| segue che, per ϵ > 0 arbitraria,

[zn]f =
s∑

i=1

(
mi∑
j=1

(−1)ja(i)−j

zn+j
i

(
n+ j − 1

j − 1

))
+O

((
1

R′ + ϵ

)n)
per n→∞.

(4.13)
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4.3 Esempi

4.3.1 Numeri di Bell ordinati

L’n-esimo numero di Bell bn, definito nel Capitolo 3, è il numero di par-
tizioni di un insieme di n elementi. Il numero di Bell ordinato b̃(n) è invece
definito come il numero di partizioni ordinate di un insieme di n elementi,
dove come partizione ordinata si intende una partizione in cui conta l’ordine
delle classi ma non quello degli elementi all’interno di una stessa classe. Vale
allora

b̃(n) =
n∑

k=0

k!

{
n

k

}
, (4.14)

perché per ogni k = 0, ..., n esistono
{
n
k

}
partizioni dell’insieme in k classi, e

per ognuna di queste partizioni i modi di ordinarne le classi sono k!, quindi
le partizioni ordinate di un insieme di n elementi in k classi sono k!

{
n
k

}
;

sommando per ogni k si ottiene b̃(n).

Moltiplicando entrambi i membri di (2.20) per e−y e integrando da 0 a
+∞ si ottiene

b̃(n) =
∑
r≥0

rn

2r+1
(4.15)

Quindi la funzione generatrice esponenziale per la successione
{
b̃(n)

}∞

n=0
è

f(z) =
∑
n≥0

b̃(n)

n!
zn

=
∑
n≥0

(∑
r≥0

rn

2r+1

)
zn

n!

=
∑
r≥0

(∑
n≥0

rnzn

n!

)
1

2r+1

=
∑
r≥0

(erz)
1

2r+1

=
1

2

∑
r≥0

(
ez

2

)r
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=
1

2
· 1

1− ez

2

=
1

2− ez

Studiamo le singolarità di f . f è olomorfa in C − {log(2) + 2kπi|k ∈ Z} e
tutte le sue singolarità sono poli.

Figura 4.1: Singolarità di f e dischi di convergenza degli sviluppi in serie di
potenze di f e f − PP (f ; log(2)) intorno all’origine.

La singolarità di f più vicina all’origine è log(2), quindi asintoticamen-
te i termini di

{
b̃(n)

}∞

n=0
possono essere approssimati dai coefficienti dello

sviluppo in serie di potenze intorno all’origine di PP (f ; log(2)). La parte
principale di f in log(2) è

PP (f ; log(2)) =
−1/2

z − log(2)
.

f − PP (f ; log(2)) è olomorfa in C − {log(2) + 2kπi|k ∈ Z− {0}} e il
raggio di convergenza dello sviluppo in serie di potenze di f −PP (f ; log(2))

è ora R′ = | log(2) + 2kπi| =
√

(log(2))2 + 4π2 perché log(2) + 2πi è una sua
singolarità di modulo minimo.
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Quindi per (4.12) si ha

[zn] {PP (f ; log(2))} = 1/2

(log(2))n+1
. (4.16)

Allora, per (4.13), per ϵ > 0 arbitraria vale

b̃(n)

n!
=

1/2

(log(2))n+1
+O

((
1

R′ + ϵ

)n)
=

1/2

(log(2))n+1
+O

((
1√

(log(2))2 + 4π2
+ ϵ

)n)
(4.17)

per n→∞,

da cui si ottiene la seguente stima per b̃(n):

b̃(n) =
1

2(log(2))n+1
n! +O

((
1√

(log(2))2 + 4π2
+ ϵ

)n

n!

)
=

1

2(log(2))n+1
n! +O (0.16nn!) per n→∞. (4.18)

Per n grandi il calcolo esatto dell’n-esimo numero di Bell con la formula (4.14)
è complesso, ma n!/((2 log(2))n+1), che è molto più semplice da determinare,
è una buona approssimazione, come si può osservare nell’esempio per alcuni
valori di n (Wilf (1994)):

n 1 2 3 5 10
b̃(n) 1 3 13 541 102247563

n!/((2 log(2))n+1) 1.04 3.002 12.997 541.002 102247563

4.3.2 Numero di permutazioni con cicli di lunghezza

maggiore di q.

Nel Capitolo 3 si è dimostrato che, dato un intero positivo q e detto
f(n, q) il numero di permutazioni di n elementi che sono prodotto di cicli
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disgiunti di lunghezza maggiore di q, la funzione generatrice esponenziale
per la successione {f(n, q)}∞n=0 è

fq(x) =
1

1− z
· exp

(
−

q∑
n=1

xn

n

)
. (4.19)

Si vuole stimare il comportamento asintotico di f(n, q). fq ha una sola
singolarità, di tipo polo, in z0 = 1; l’ordine di polo di z0 è 1. Calcoliamo il
residuo di fq in z0:

Res(1, fq) = lim
z→1

((z − 1)fq(z))

= lim
z→1
−exp

(
−

q∑
n=1

zn

n

)

= −exp

(
−

q∑
n=1

1

n

)
= −e−Hq ,

dove Hq =
∑q

n=1 1/n è il q-esimo numero armonico.

La parte principale di fq in 1 è allora

PP (fq, 1) =
1

1− z
e−Hq . (4.20)

fq ha un solo polo (in z0 = 1), quindi sottraendo a questa funzione la sua
parte principale in 1 si ottiene una funzione olomorfa in C; allora il raggio
di convergenza dello sviluppo in serie di potenze di fq − PP (fq; 1) intorno
all’origine è R′ =∞. Allora, per quanto dimostrato nella sezione precedente,
per ϵ > 0 arbitraria vale

f(n, q)

n!
= [zn]

{
1

1− z
e−Hq

}
+O(ϵn)

= [zn]

{(∑
n∈N

zn

)
e−Hq

}
+O(ϵn)

= e−Hq +O(ϵn) per n→∞.
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Da quest’ultimo risultato si può osservare che la probabilità che una permuta-
zione abbia cicli tutti di lunghezza maggiore di q asintoticamente si avvicina
a una costante, e−Hq . Per esempio, se q = 1,

f(n, q)

n!
= e−1 +O(ϵn) per n→∞,

cioè la probabilità che una permutazione di n elementi non abbia punti fissi si
avvicina asintoticamente a e−1, in accordo con quanto osservato nel Capitolo
2.
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