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Introduzione

Data una sequenza ag, a1, as, ... di numeri complessi (anche se piti spesso in
questa trattazione considereremo numeri interi), la sua funzione generatrice

¢ la scrittura

2
ap + a1x + asx” + ...

dove ogni 2% ¢ solo un simbolo che indica la posizione del coefficiente a;.
Si ottiene cosi un oggetto che rappresenta l'intera successione, ma in forma
molto pitl compatta e semplice da maneggiare; se si vuole conoscere 1'n-
esimo elemento della successione, basta individuare il coefficiente di ™ nella
funzione generatrice.

In questa trattazione definiremo operazioni tra funzioni generatrici e os-
serveremo che queste corrispondono a determinate operazioni sugli elementi
delle rispettive successioni dei coefficienti. In alcuni casi, conoscere la funzio-
ne generatrice per una successione {a, } i cui elementi non sono noti permette
di determinarli; in altri casi non si riesce a ricavare esplicitamente i coeffi-
cienti, ma la funzione generatrice puo essere comunque utile a studiare le loro
proprieta.

Nel Capitolo 1, definiremo formalmente le funzioni generatrici e le opera-
zioni tra di esse.

Il Capitolo 2 vedra un’interessante applicazione delle funzioni generatrici,
il principio di inclusione esclusione. Dato un insieme di oggetti, ognuno dei
quali verifica un certo numero di proprieta, il principio di inclusione esclusione
permette di calcolare quanti di essi ne verificano esattamente un dato numero

r a partire dal numero di oggetti per cui vale un certo insieme di proprieta,

il
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che in molti casi (tra cui gli esempi presenti nel capitolo) & molto pitu semplice
da determinare.

Nel Capitolo 3 dimostreremo la formula esponenziale, un teorema che
permette di risolvere problemi quali il calcolo dei numeri di Stirling di prima
specie o dei numeri di Bell.

Nell'ultimo capitolo approfondiremo infine un altro affascinante aspetto
delle funzioni generatrici, cioé la possibilita di studiarle dal punto di vista
analitico, considerandole come funzioni di variabile complessa. Tale approc-
cio apre la strada a moltissime applicazioni: per esempio, studiando le singo-
larita di una funzione generatrice per una data successione {a,}, si possono
stimare i coefficienti. In questa trattazione approfondiremo il caso in cui tali

singolarita siano di tipo polo.
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Capitolo 1

Le funzioni generatrici

1.1 Serie formali

Definizione 1.1.1. Una serie formale di potenze f(z) a coefficienti in C &

una scrittura formale del tipo
f=2_ ana",

dove a, € C per ogni n € N. a, si dice I'n-esimo coefficiente di f, o il
coefficiente di 2" in f.
L’insieme delle serie formali di potenze a coefficienti in C si indica con

Cl[z]]. f si puo indicare equivalentemente anche con le notazioni f =

ano apx™ o f =3 a,a™.

Si noti che una serie formale di potenze non é una funzione; z" € solo
un simbolo che indica la posizione dell’n-esimo coefficiente nella scrittura
formale f.

Per brevita in questa trattazione le serie formali di potenze verranno a

volte chiamate solo serie formali.

Notazione. Data una serie formale di potenze f(z) = >, .y anz", la scrittura

[z™] f(x) indica il coefficiente a,.



1. Le funzioni generatrici

Definizione 1.1.2. Due serie formali di potenze f(z) =) yanz™ e g(x) =
Y nen bn™ si dicono uguali (e in tal caso scriveremo f(z) = g(x)) se e solo

se a, = b, per ogni n € N.

Definizione 1.1.3. Sono definite le seguenti operazioni tra serie formali di

potenze:

e Somma

Z a, " + Z by = Z(an + b,)x"

e Prodotto
n
Z anpx’ - Z b,x" = Z ™ dove ¢, = Z apbn—_1
n n n k=0

Osservazione. Si dimostra facilmente che C[[z]] & un anello con le operazioni

di somma e prodotto appena descritte.

Definizione 1.1.4. Sia f(z) = ) a,2" una serie formale di potenze. Se
g(x) & una serie formale di potenze tale che f-¢g = 1, allora g si dice un

reciproco di f.

Proposizione 1.1.1. Una serie formale di potenze f(x) =Y a,a™ ha un

reciproco se e solo se ag # 0; in tal caso esso & unico.

Dimostrazione. Se per f(x) esiste un reciproco g(x) = ) b,a", allora per
definizione di prodotto tra serie formali vale agby = 1 e quindi necessaria-
mente ay # 0. In tal caso by = 1/ag. Analogamente, per ogni n > 1 deve
valere 0 = Y " a;b,_;, quindi
b, = i @b
Qo

per ogni n > 1. I coefficienti di g sono quindi univocamente determinati.
Viceversa, se ag # 0, la serie che ha come coefficienti i b, definiti dalla

formula appena descritta (per n > 1) e by = 1/ag & un reciproco di f. O
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Notazione. Data una serie formale di potenze f(z) =) a,z" tale che ag #
0, denoteremo con 1/ f(x) il suo reciproco (che per quanto appena dimostrato

¢ unico).

Esempio 1.1.1. Il reciproco di ano x™ & 1 — x perché per definizione del

prodotto tra serie vale (1 — ) ~ 2" = 1.

Definizione 1.1.5. Date due serie formali f(z) = > a,2"eg(x) =) bya"
tali che f(x) sia un polinomio o che by # 0, la composizione f(g(z)) ¢ definita

come

Flg(x)) = anlg(x))"

Osserviamo che la composizione di due serie f(z) = > a,2" e g(z) =
>, bpx™ & ben definita se e solo se by = 0 o f(z) ¢ un polinomio. Scriviamo

piu esplicitamente la composizione di f e g:

Z an(g(x))" = ag + a1(by + b1 + box® + ...) 4+ ag(by + bz + bz + ..)% + ...
Se f(z) é un polinomio la composizione ¢ ben definita, perché per ogni n € N
il coefficiente di z™ in f(g(z)) & la somma di un numero finito di termini.
Supponiamo invece che f(x) abbia infiniti coefficienti non nulli. Affinché la
composizione sia ben definita, é necessario che il calcolo di ogni coefficiente
di f(g(x)) sia un processo finito. Se by # 0, il coefficiente di z° in f(g(z)) ¢
ag+a1bg + azbi + ..., che ¢ una somma infinita perché f ha infiniti coefficienti
non nulli. Se invece by = 0, si pud calcolare ogni coefficiente di f(g(x)):

n

[2"]f(g(x)) = Z[xn} (ar(brz + boa® + ..)%) .
k=0
Definizione 1.1.6. Sia f una serie formale di potenze. Una serie formale

di potenze ¢ si dice I'inverso di f se f(g(z)) e g(f(z)) sono entrambe ben
definite e f(g(z)) = g(f(x)) = =.

Si puo dimostrare che una serie f = > _a,z" con ap = 0 ha un inverso

neN
g se e solo se a; # 0; in tal caso g ¢ unica e [2%g(z) = 0.
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Definizione 1.1.7. Data una serie formale di potenze f(z) = }_, ., an2",

la sua derivata f'(x) é definita come

f(z) = Znanas"_l = Z(n + Dap 2"

n>1 n>0

Si puo dimostrare che per la derivata di serie formali di potenze valgono

proprieta analoghe a quelle delle derivate di funzioni: date f e g serie formali,
e (f+9)=/+Yd
o (f9)=/f9+fd

e (f(9))=1f(g9) g (nel caso in cui la composizione sia ben definita).

1.2 Funzioni generatrici

Definizione 1.2.1. Sia {ay}, .y una successione in C. La funzione genera-

trice ordinaria per {ay}, .y ¢ la serie formale di potenze
F(z) = Z anx".
n

Seriveremo F(z) < {an}, oy (0 equivalentemente F(z) <> {a,}>",) per

indicare che F'(x) ¢ la funzione generatrice ordinaria per {a,},cy-

Definizione 1.2.2. Data una successione {a,},.y in C, la funzione genera-
trice esponenziale per {an}, .y ¢ la serie formale di potenze
Qn,
G(z) = E —z".

n!
n

La scrittura F(x) & {an},en (0 equivalentemente F'(x) &, {an})"0)

significa che F(z) ¢ la funzione generatrice esponenziale per {an,}, -

Proposizione 1.2.1. Sia f =) ., a,x" la funzione generatrice ordinaria

per la successione {ay}, . Valgono le sequenti proprieta:



1.2 Funzioni generatrici

h—1
f—ag—aix—...—ap_1x s

1. {anJrh}n 05

xh

2. Sia P(y) = Z?:o iyt un polinomio; allora
P(zD)f <= {P(n)an};2,

(dove il simbolo xD indica l'operazione di derivazione e moltiplicazio-
ne per m, cio¢ (xD)g = xg'(x) per ogni serie formale g(x). (xD)*
la composizione di k volte xD e analogamente con P(xD)f si indica

S opi(zD) f(x));
3. fkﬁ){ Z anl'ang'---'ank} ;
n=0

ni+ng+...+ng=n

J 1f$&>{za]} .
n=0

Dimostrazione. 1. Si dimostra per induzione su h. Nel caso h = 1, si osserva

che

f—ao anl anx" n
= - = Z Ap+1T .

T
n>0

Supponendo verificata la proprieta (1) per A € N, mostriamo che vale anche

per h + 1:
f—ap—ax—..—apz”® 1 [(f—ap—aix—..—ap,17"t  apa”
oht1 T o 2z

1

= - E Qpyht — Qp
x

n>0

1

= — Apn4-hT

n>1

= E An4h4+1T

n>0

2. xf'(x) = ) 5 nana™ = Y na,a”, cioe (zDf) & {na,}>,. Per

ops
induzione su k segue che (zDf)* { kan}
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Se P(y) = po + pix + ... + pgz?, allora

Z P(n)a,z" = po Z apx" + ... + pg Z nla,z"

=pof(x) + ... +pd(:pD)df(x)
= P(xD)f(z).

3. Segue immediatamente dalla definizione di prodotto tra serie formali.

4. Come visto nell’Esempio 1.1.1, vale 1/(1 —z) = > -, z", quindi

11fzzz(z)

n>0 n>0 n>0

]

1.2.1 Esempio. Funzione generatrice per i numeri di

Fibonacci

I numeri di Fibonacci si definiscono per ricorrenza come
FOZO, Flzl, Fn:anl_'_anZ (77,22)

Vogliamo determinare la funzione generatrice F(z) = > ., F,2" per la
successione dei numeri di Fibonacci {F),}.

Foio = F,11 + F, per ogni n > 0, quindi

Y Fuppa" =Y (Foy + F)a"
n>0 n>0

Applicando il punto 1 della Proposizione 1.2.1, questo equivale a

F(.I’)—FO—Fll'_F(SC)—FO
x? B x

+ F(x),

da cui si ricava la funzione generatrice per la successione dei numeri di

Fibonacci:
_Fo—Fl’(Fl—Fo)_ i

1—x— a2 1—ax—a2

F(z) (1.1)
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x
L’n-esimo numero di Fibonacci € quindi il coefficiente di 2™ in [P
—r—zx
Dato che 1 —z—2% = (z — %)(m - #g) =(1—ryx)(1—r_x), dove
ry = %5 er_ = 1’2\/5, scomponendo in fratti semplici —"— si ottiene

r 1 1 1
l—z—a22 ro—r_\ra—1 ro—1

- % (r_xl— 1 m;l— 1) ' (1.2)

Allora, per (1.2) e per 'Esempio 1.1.1, vale

1 1 1
Flz) = ﬁ (7“_:1:— 1 LT — 1)
1
= E (—zn:rfx” + zn:rfﬁx”)

— % (Z(ri — rf)x”) . (1.3)

Quindi confrontando i coefficienti di ™ in F(x) nell’ultima uguaglianza si

ottiene una formula esatta per F),, per ogni n > 0:
1
Si puo inoltre notare che \/igrﬁ ¢ un’ottima approssimazione per Fi,.

Infatti, la loro differenza ¢ in modulo

1 )y 1
F, — —r" — |r_|",
Vo \/5| |

che mostreremo essere sempre strettamente minore di 1/2. Dato che |r_| =

(14

(1.5)

‘(1 - \/5)/2} < 1, la successione {\/Lg |r_|"} ¢ decrescente. Inoltre per
neN
1

n =0 vale \%]7’40 = %< 1, quindi per ognin € N

1 n
F,— —r"

V5

Cio significa che per ogni n € N F;, é 'intero piul vicino a \/igrfﬁ (che & univo-

< (1.6)

DN | —

camente determinato per (1.6)); questa approssimazione consente quindi di

ricavare il valore esatto di F,,.
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1.2.2 Alcune serie formali di potenze notevoli

Elenchiamo qui alcune serie formali di potenze che utilizzeremo nel resto

di questa trattazione:

1:%_ => a" (1.7)

n>0
x xn
=y — (1.8)
n>0
log(z +1) = Y (~1)" ' (1.9)
n>1 n
1 "
1 = — 1.1
SRR Dy (1.10)
1 n+k
— = " 1.11
(1— z)k+ ;}( n )x (1.11)

La (1.7) ¢ stata dimostrata nell’Esempio 1.1.1. La (1.8) e la (1.9) sono
definizioni. Per le dimostrazioni di (1.10) e (1.11) si veda Aigner (2007). Si
puo inoltre dimostrare che log(1 + z) ¢ 'inverso di e — 1 (Aigner (2007)).

Si osservi che da questo segue che e°2f(®) = f(x) se [2°]f(x) = 1. Infine si

) _ F@)
f@) -

puod dimostrare che se [2°]f(z) = 1 allora vale log(f(z))



Capitolo 2

I1 principio di inclusione

esclusione

2.1 1l principio di inclusione esclusione

Supponiamo siano dati un certo insieme finito di oggetti €2 e un insieme
finito P di proprieta che gli oggetti di {2 possono avere o non avere. Si vuole
determinare quanti oggetti hanno esattamente un certo numero di proprieta.
Dato un oggetto w € €2, chiamiamo P(w) l'insieme delle proprieta che w
possiede. Dato un insieme di proprieta S C P, definiamo N(2 S) come il
numero di oggetti per cui valgono tutte le proprieta contenute in .S, cioé il

numero di oggetti w tali che S C P(w). Si definisce, per ogni r € N,

N, =) N(29). (2.1)
|S|=r
Si noti che N, = 0 per ogni r strettamente maggiore della cardinalita di P.

Si puo osservare che

N, =) N2

|S|=r

I

|S|=r wen
SCP(w)

9
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DRDW

we |S|=r
SCP(w)

:ZC%%

weN

Allora, definendo e; come il numero di oggetti che hanno esattamente t

=3 (e 22)

t>0

proprieta, si ottiene

Costruendo quindi la funzione generatrice N (z) per la successione { N, }

si osserva che

N(z)=> N’

r>0

-2z ()}
¥ {Z Cﬁ)x} e

t>0 r>0

= Z e (z + 1)

t>0

= E(x + 1) (23)

dove E(z) =) -,e-x" & la funzione generatrice per la successione {e,} - .
(Si noti che N(x), e quindi anche E(z), ¢ un polinomio in quanto N, = 0 per

ogni r > |P|). Si ottiene allora una relazione fondamentale tra E(x) e N(x):
E(x) = N(z —1). (2.4)

che ¢ il principio di inclusione esclusione. Grazie a questo risultato € possibi-
le determinare il numero di oggetti che hanno esattamente un certo numero
di proprieta conoscendo i coefficienti {N,} di N(z). In molti problemi, per

determinare un certo e,., rispetto al suo calcolo diretto ¢ decisamente piu



2.2 Esempio 1. Punti fissi di una permutazione

semplice calcolare i coefficienti {N,.} seguendo la definizione (2.1) e poi rica-
vare il coefficiente e, dalla relazione (2.4). In particolare, per ogni r € N, e,

sard il coefficiente di " in N(xz + 1):

e, = [z"|N(x 4+ 1)

= [2"] {Z N; Z C) xt(—l)i—f}

i>0 t=0

] {thzm @ (_1)”}

t>0 >t

= () 25)
i>r r

Un caso particolare & quello del calcolo di eq:

eo = B(0) = N(-1) = Y (~1)'N.. (2.6)

r>0

Osservazione 2.1.1. Si noti che in questo ultimo passaggio non abbiamo va-
lutato in 0 la serie formale di potenze E(x), ma la serie complessa ) >, e,
in un punto 2z € C in cui essa converge, in questo caso 0. Le uguaglianze in
(2.6) sono comunque lecite perché in generale, date due serie formali ) a,z

e Y. byx™, se esse sono uguali allora per definizione a, = b, Vn, quindi
nei punti zp € C in cui le serie convergono vale ovviamente Y~ a,z) =
Yoo bnzy. Quindi in questo esempio dato che E(xz) = N(z — 1) come serie

formali, allora anche E(0) = N(0 — 1) perché > e,z converge in z; = 0.

2.2 Esempio 1. Punti fissi di una permutazione

Vogliamo determinare il numero di punti fissi di una permutazione di n
elementi. Innanzitutto occorre individuare un insieme di oggetti e un insieme
di proprieta adatti a descrivere il problema. Possiamo scegliere 2 = S,,, dove
Sy, & l'insieme delle permutazioni di n elementi, e P = {1,2,...,n}, dove una

permutazione 7 € S, ha la proprieta j se j ¢ un suo punto fisso, cio¢e se

() = J-
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Fissato un insieme S C P, le permutazioni che soddisfano tutte le pro-
prieta di S, cioé le permutazioni che fissano (almeno) tutti gli elementi di
S, sono (n — |S|)!. Infatti gli elementi in S sono fissati, mentre quelli di

{1,...,n} — S vengono scambiati tra loro. Quindi

M= YN8 = S w-lshi= (1) m-nt=" e

|S|=r |S|=r
scp scp

Allora la funzione generatrice N(x) per la successione {N,} 2 (osservando

che N, =0ser>n)é
da cui, per la (2.4),

Per ogni r > 0, il numero di permutazioni con esattamente r punti fissi sara
il coefficiente di " in E(x). In particolare, il numero di permutazioni di n

elementi senza punti fissi é

(="
)

r.

ep=FE(0)=N(-1) = n!zn:

che per n — oo si puo approssimare con n! - exp(—1) =n!)" ., (—7,_1‘)7"

2.2.1 Calcolo di medie.

Siano {2 un insieme finito di oggetti e P un insieme finito di proprieta che
gli oggetti di 2 possono avere o non avere. Se e, ¢ il numero di oggetti che
hanno esattamente n proprieta, allora il numero medio di proprieta per ogni
oggetto ¢

ano ne,,

=N (2.8)

dove N = |Q] ¢ il numero totale di oggetti. Segue immediatamente da (2.2)

che } ~one, = Ni, quindi
= ——. (2.9)
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Tornando all’esempio, il numero medio di punti fissi in una permutazione di
n elementi é quindi
p=—0CN—— =1 (2.10)

cioé in media ogni permutazione ha un punto fisso.

2.3 Esempio 2. Estrazione di palline colorate

Supponiamo di avere un’urna con palline di k colori diversi Cy, Cs, ...Cy,
con h palline per ogni colore. Qual é la probabilita che estraendo simulta-
neamente n palline (con n > k) dall’'urna se ne ottenga almeno una per ogni
colore? Come insieme di oggetti () consideriamo l’insieme di tutti i possibi-
li esiti dell’estrazione, cioe di tutti i possibili insiemi di n palline dell’'urna.
Come insieme di proprieta si puo scegliere P = {1,2, ..., k}, dove un oggetto
w € 2 ha la proprieta j se non contiene nessuna pallina del colore C}.

e; ¢ il numero di oggetti che hanno esattamente ¢ proprieta, quindi ¢ il
numero di possibili estrazioni in cui i colori scelti sono esattamente k& — 1.

Allora la probabilita di estrarre esattamente m colori (con m < k) ¢é

€k—m
(h—k). (2-11)
In particolare, la probabilita di estrarre palline di tutti i colori ¢

o (2.12)

hky *
()
Calcoliamo i coefficienti { N, }. Per ogni scelta di r colori, le estrazioni in

. . . k—mh .. .
cui essi non compaiono sono (( nr) ) Segue quindi che per ogni r =0, ...k

N, = (f) ((k _n”h). (2.13)

o= N(—1) = zk:(—w‘ (f) ((’“ _nr)h) (2.14)

r=0
e la probabilita di estrarre palline di tutti i colori €

G WIS
()

Quindi
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2.4 Esempio 3. Numeri di Stirling di seconda
specie

Dati due interi non negativi n e k tali che k < n, il numero di Stirling
di seconda specie {Z} é il numero di possibili partizioni in k classi di un
insieme di n elementi. Si definisce {8} = 1. Osserviamo che, detto F,,.(n, k)
il numero di funzioni suriettive con dominio {1,...,n} e codominio {1, ..., k},
vale Fgur(n, k) = k'{Z}

Infatti partizionando {1,...,n} in k classi e associando a ogni elemento
della stessa classe lo stesso elemento di {1,...,k}, diverso per ogni classe,
si costruisce una funzione suriettiva; viceversa ogni funzione suriettiva in-
dividua una partizione ordinata del dominio in cui l’i-esimo blocco é dato
dalla retroimmagine di . Inoltre partizioni ordinate diverse corrispondono a
funzioni diverse.

Determiniamo quindi Fj,,.(n, k). Consideriamo come insieme di oggetti
Q) l'insieme di tutte le funzioni da {1,...,n} a {1,...,k}; come insieme di
proprieta scegliamo P = {1,...,k}, dove una funzione f € Q ha la proprieta
j se j non appartiene all'immagine di f. Una funzione non ha nessuna
proprieta se e solo se ¢ suriettiva, quindi Fy,,.(n, k) ¢ il numero di oggetti che
non hanno nessuna proprieta, cio¢ Fy,.(n, k) = €.

Scelto S C P, le funzioni f : {1,...,n} — {1,....,k} che verificano le
proprieta in S sono (k — |S|)™, perché per ogni elemento di {1,...,n} la sua
immagine tramite f puo essere scelta tra gli elementi di {1, ..., k}—S. Quindi

per ogni r =0, ...,k si ha

r

N, = (k) (k—r)" (2.15)

Ovviamente invece N, = 0 se r > k (dato che non esistono sottoinsiemi di

P di cardinalitd maggiore di k). Allora la funzione generatrice N(x) per
{N: )2 @

N(z) = Xk: <’“) (k — r) " (2.16)

r
r=0
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da cui, per (2.4), segue

E(z) = ij (k> (k — r)"(z — 1) (2.17)

r
r=0

Per ogni r = 0,...,7 il numero di funzioni la cui immagine ha esattamente
k — r elementi & I'r-esimo coefficiente di F(z); in particolare il numero di

funzioni suriettive &
Yk
Fouw(n,k) =eg = FE(0) = N(—1) = Z (r) (k—r)"(=1)". (2.18)
r=0

Quindi, ricordando che Fj,.(n,k) = k‘!{Z}, si ricava subito un’espressione

esplicita per il numero di Stirling di seconda specie {Z}

n b k—nr)"
=Xy 219

. o . . . . _ n
Si puo inoltre osservare che se si moltiplicano e™¥ e 2721 “Ty", che sono

entrambe serie con infiniti coefficienti non nulli, si ottiene un polinomio:

Il
vy
w | =
N
S
N~
—
|
—_
SN—
3
—
w
|
-
S~—
3

3 "}gf. (2.20)

Sfrutteremo quest’ultima relazione nel Capitolo 4 per studiare il comporta-

mento asintotico dei numeri di Bell ordinati.
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2. Il principio di inclusione esclusione




Capitolo 3

La formula esponenziale

3.1 Definizioni

Notazione. Per ogni n intero positivo, indicheremo con [n] 'insieme {1, 2, ..., n}.

Definizione 3.1.1. Sia P un insieme astratto di immagini. Una carta C(S,p)
¢ una coppia formata da un insieme finito di interi positivi .S, che chiameremo
il suo insieme di etichette, e una immagine p € P. Il peso di C' é n = |S].

Una carta di peso n si dice standard se il suo insieme di etichette & [n].

Definizione 3.1.2. Una mano H ¢ un insieme di carte i cui insiemi di
etichette formano una partizione di [n] per un certo n € N. Tale n si dice

peso della mano.

Osservazione. E banale osservare che il peso di una mano é dato dalla somma

dei pesi delle carte in esso contenute.

Definizione 3.1.3. Dati una carta C'(S,p) e un insieme S’ C N.q di cardi-
nalita uguale a quella di S, una carta C'(S’, p) si dice un rietichettamento di

C(S,p) tramite I'insieme 5’

Definizione 3.1.4. Un mazzo D ¢ un insieme finito di carte standard che
hanno tutte lo stesso peso e le cui immagini sono tutte diverse tra loro. Il

peso di un mazzo é il peso di una qualsiasi sua carta.

17
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Definizione 3.1.5. Una famiglia esponenziale F ¢ una collezione di mazzi
D1, Ds, ... dove per ogni n = 1,2, ... il mazzo D,, ha peso n (o & eventualmente

vuoto).

Definizione 3.1.6. Data una famiglia esponenziale F formata dai mazzi D,
di peso n per ogni n > 1 intero positivo, chiamiamo h(n, k) il numero di
mani H di peso n e k carte tali che ogni carta di H ¢ un rietichettamento
di una carta di F. Le carte da rietichettare ammettono ripetizioni, cioé per
costruire una mano si possono scegliere da F piu copie della stessa carta a
patto di rietichettarle con insiemi disgiunti. Diremo inoltre che una certa
mano H ¢ una mano di F se le carte di H sono rietichettamenti di carte di
F.

Per ogni n > 1, sia d,, il numero di carte nel mazzo D,,. La funzione gene-
ratrice esponenziale per la successione {d,}}" si dice la funzione generatrice

dei mazzi per F. Inoltre, la funzione generatrice in due variabili

Hwy) = S bl k)5t

n,k>0

si dice funzione generatrice delle mani.

Osserviamo che H(x,y) ¢ una funzione generatrice ordinaria rispetto a y

e una funzione generatrice esponenziale rispetto a x.

3.1.1 Esempio

In questo esempio descriveremo tutte le permutazioni grazie a un’oppor-
tuna famiglia esponenziale.

Per prima cosa definiamo le carte che verranno usate per costruire la
famiglia. Ogni carta di peso m ha come disegno m punti disposti in un certo
ordine su una circonferenza; gli archi che li collegano sono frecce orientate in
senso orario e ognuno degli m punti ¢ contrassegnato da un elemento di [m].
L’insieme di etichette S é un insieme di interi positivi di cardinalita m.

Ognuna di queste carte identifica un ciclo. Infatti, dopo aver associato

gli elementi dell’insieme di etichette della carta C(S,p) ai punti numerati
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della figura in modo da preservarne 1'ordine (cioé associando il piu piccolo
elemento di S al punto di p contrassegnato dal numero 1, il secondo elemento
pit piccolo al punto contrassegnato dal 2 e proseguendo in questo modo per
tutti gli elementi di ), le frecce indicheranno per ogni elemento di S la sua
immagine tramite la permutazione descritta dalla carta. L’unica orbita non

banale nella permutazione rappresentata da C(S, p) sara S.

Per esempio, se la carta C' (S, p) ha come insieme di etichette S = {1,4,6, 8,9}

e come immagine p quella mostrata in Figura 3.1,

Figura 3.1: Immagine p dell’esempio. (Wilf (1994))
allora rappresenta il ciclo
1-+6—-+4—-9—-8—1.

A partire da carte di questo tipo definiamo una famiglia esponenziale F in
cui per ogni intero positivo r il mazzo D, é formato da carte standard di peso
r le cui immagini sono tutte quelle possibili a meno di rotazioni (cioé tutti i
modi possibili in cui si possono disporre gli elementi di [r] sugli 7 punti della
circonferenza descritta precedentemente, a meno di rotazioni). Vale quindi

d, = (r —1)!, da cui segue ovviamente

1
D(x) = —x".
W=k
r>1
Una mano di F di peso n e k carte identifica una permutazione di [n]
che & prodotto dei k cicli disgiunti rappresentati dalle carte. (Tali cicli sono
ovviamente disgiunti perché per definizione lo sono gli insiemi di etichette

delle carte in una mano). Viceversa si pud osservare che, per costruzione di
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F, per ogni permutazione o esiste una mano che la rappresenta, anch’essa
formata dalle carte che identificano i cicli disgiunti di cui o ¢ il prodotto.
Inoltre mani distinte rappresentano permutazioni distinte e viceversa. In-
fatti due mani H; e Hy sono uguali se e solo se tutte le carte di H; e Hy sono
uguali, cioé se e solo se le permutazioni 0, e gy rappresentate rispettivamente
da H; e Hs sono prodotto degli stessi cicli disgiunti, cioé se e solo se o7 = 0.
Esiste quindi una corrispondenza biunivoca tra le mani della famiglia
esponenziale costruita in questo esempio e le permutazioni. Nelle prossime
sezioni, dimostreremo la formula esponenziale, che ci permettera di ricavare
la funzione generatrice delle mani a partire da quella dei mazzi; questo ci
consentird di determinare il numero di permutazioni di n elementi che sono

prodotto di k cicli disgiunti.

3.2 La formula esponenziale

Definizione 3.2.1. Siano F' e F” due famiglie esponenziali i cui insiemi
di immagini P e P’ siano disgiunti. La loro unione, che indicheremo con il
simbolo F' & F”, & costruita nel seguente modo: per ogni n > 1 il mazzo
D,, contiene tutte le d], carte del mazzo D), e le d! carte del mazzo D!. La

famiglia 7' @ F” & formata dai mazzi Dy, D,, ... appena definiti.

Lemma 3.2.1 (Lemma fondamentale del conteggio con etichette).
Siano F' e F" due famiglie esponenziali e H', H" le rispettive funzioni ge-
neratrici delle mani. Sia inoltre H la funzione generatrice delle mani di

F=F @& F". Allora vale la sequente relazione:
H(z,y) =H'(z,y)H"(z,y) (3.1)

Dimostrazione. F ¢ l'unione di F' e F”, quindi ogni mano H di F di k
carte ¢ formata da un certo numero di carte &’ di F' e da k — k' carte di F”
opportunamente rietichettate (si noti che per ipotesi gli insiemi di immagini

di 7' e di F” sono disgiunti, percid ogni carta di F appartiene o a F’ 0 a

F).
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Data una mano H di k carte e peso n, sia A = {C(S1,p1),C(S2,p2), ...,
C(Sk,pr)} l'insieme delle carte di H che sono rietichettamenti di carte di
Fesia B={C(Sk+1,00+1), C(Sk42, Prr42), -, C(Sk, p) } U'insieme di quel-
le che sono rietichettamenti di carte di F”. Possiamo osservare che A ¢ uguale
a una opportuna mano H’ di F’ che ¢ stata rietichettata, preservando I’or-
dine, con I = Uk, S;. Vale I'analogo per B, che corrisponde a una mano di
carte di F” rietichettate con UZ wi1Si = [n] — I. Rietichettare una mano
K di peso m con un insieme J di interi positivi (di cardinalita m) preser-
vando l'ordine significa sostituire a 1, nell’insieme di etichette di una certa
carta di K al quale 1 appartiene, I’elemento piu piccolo di J; a 2 il secondo
elemento pit piccolo di J, e proseguire in questo modo fino a m. Si osservi
che rietichettando in questo modo due mani diverse con lo stesso insieme si
ottengono ancora due insiemi di carte diversi. Viceversa, date due mani di
F' e di F” rispettivamente di peso n’ e n —n’ e formate da k' e k — kK carte,
se le si rietichettano con due insiemi di interi positivi J e [n] — J la loro
unione sara una mano di F. Una mano di F di k carte e peso n ¢ quindi

univocamente determinata dalla scelta di:
e una mano di F’ di k" carte e peso n’ (dove n’ <n ek’ <k)
e una mano di F” di k” = k — k/ carte e peson” =n —n’

e il sottoinsieme S di [n] di cardinalitd n’ (per cui le possibili scelte sono
(:,)) con cui si vuole rietichettare, preservando 'ordine, la mano scelta

da F’; la mano scelta da F” verra ovviamente rietichettata con [n] — S

e vale

hink) =" (Z) W K (n — ',k — k). (3.2)

' K/
D’altra parte, si ha

[%yk] %/(x,ym”(x,y):[ H PONACRS uy

' E'>0
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" K
Z h"(n", k‘”) o y }
n’ k" >0
n,k
_ | h/ / k/ 1 h/l /! k k/ 1
= Z nl- K (n, )m' (n—n'k— )m
' k'=0
n,k n
=) (n) W K -W'(n—n'k—Fk)
n k'=0
) hn, k)
e questo conclude la dimostrazione. O

Teorema 3.2.1 (Formula esponenziale). Sia F una famiglia esponenziale
e siano D(x) e H(x,y) rispettivamente le funzioni generatrici dei mazzi e
delle mani. Allora

H(z,y) = /P, (3.3)

In particolare, il numero di mant di peso n e k carte é

hin, k) = [m—n} {D?k} (3.4)

n!

Dimostrazione. Passo 1. Fissato un intero positivo r, consideriamo una
famiglia esponenziale in cui I'unico mazzo non vuoto sia il mazzo D,, che
conterra una sola carta C'(S,p) di peso r. La funzione generatrice dei mazzi
sara quindi D(z) = 2" /rl.

L’unico modo per estrarre una mano da questa famiglia é scegliere un
certo numero ¢ di copie di C(S,p), e poi rietichettarle in modo che i nuovi
insiemi di etichette formino una partizione di [rt]. Le mani costruite in questo
modo avranno ovviamente peso rt.

Mani di peso n non divisibile per r in questo caso non possono esistere e
h(n, k) (che ricordiamo essere il numero di possibili mani di peso n e k carte)
sara quindi sempre uguale a zero per ogni n non divisibile per 7.

Se invece n = kr, il numero di mani di peso n é uguale al numero di
modi in cui si possono rietichettare k copie di C(S,p). Le possibili scelte

per il nuovo insieme di etichette della prima carta sono (:f), per quello della
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seconda (":T) e cosi via fino all’insieme di etichette della k-esima carta, per
cui sono ("_(’jfl)r) = (kr_(f_l)r) = 1. L’ordine con cui abbiamo scelto di
rietichettare le carte non conta, quindi sara necessario dividere per k!. Vale

quindi

h(er, k) = % lj (" - (l; - i)r)

1 n!
k(DR

La funzione generatrice delle mani per questa famiglia ¢ allora

:L.n
Hw,y) = 3 hin k) ot
n,k '

— exp (xﬂy > (3.5)

Passo 2. Si consideri ora, dati gli interi positivi r e d,, una famiglia
esponenziale F, i cui mazzi siano tutti vuoti tranne il mazzo D, che conterra
d, carte. Fissato r, si dimostra per induzione su d,. che la funzione generatrice

delle mani per F, é

H,(r,y) = exp <ycif|xr> (3.6)

Il caso d, = 1 segue immediatamente dal Passo 1.
Supponiamo ora che la (3.6) sia verificata per ogni d, compreso tra 1
e m — 1 e mostriamo che vale anche per d, = m. La famiglia F, si puo
vedere come l'unione di una famiglia F, i cui mazzi sono tutti vuoti tranne
I'r-esimo, che contiene m — 1 carte, e una famiglia F”, anch’essa con mazzi
tutti vuoti tranne 'r-esimo, che contiene una sola carta. Siano H.(x,y) e
H!(x,y) rispettivamente le loro funzioni generatrici delle mani. Dal Passo 1,

dall’ipotesi induttiva e dal Lemma Fondamentale segue allora

H,(z,y) = Ho(z,y)H (z,y)

oy (Y= D2yt
= e rl P rl
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()
= exp )
rl

Passo 3. Una qualsiasi famiglia esponenziale F formata dai mazzi D,

Ds,... si puo vedere come I'unione delle famiglie F;, F5,... dove per ogni
i > 1 la famiglia F; ha come unico mazzo non vuoto il mazzo D; (cioé

l'i-esimo mazzo di F). Per il Lemma Fondamentale e il Passo 2,

y) = [[H-(2.v)

r>1

(3.6) (ydrx’")
= exp
rl
r>1
d x"
r>1

— o¥DP(@)

e questo conclude la dimostrazione di (3.3).

Dimostriamo infine la (3.4). Ricordando che e* =", 2™ /ml, si ottiene

m

Hw,y) L eP@ Zy

m>0

Quindi, dato che per definizione H(z,y) = h(n, k)E-y* per ogni m >
Yy n,k>0 Y g

0 si ha
n
=3 bl )y
n>0
da cui segue immediatamente la tesi. O]

Corollario 3.2.1 (Formula esponenziale con restrizioni sul numero di carte).
Stano T un insieme di interi positivi e F una famiglia esponenziale. Sia
inoltre ep(x) = Y pa"/nl. Allora, detto h,(T') il numero di mani che

hanno peso n e numero di carte contenuto in T, vale

(A1)} <L er(D(2)) (3.7)
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Dimostrazione. Fissato n, sommando la (3.4) lungo tuttii k € T, si ottiene
(3.4) [2" D(x)k "
hal(T) = b, k) S | S ST ZE = | D fen (D)
keT keT
O

Osservazione 3.2.1. Detta H(z) = > -, By zn la funzione generatrice espo-
nenziale per la successione {h,},_,, dove h, ¢ il numero di mani (di qualsiasi

numero di carte) di peso n, vale
H(z) = P@), (3.8)
Questo risultato segue dal Corollario 3.2.1, ponendo 7" = N.

Corollario 3.2.2 (Formula esponenziale con restrizioni sul numero di carte
e sul peso delle carte). Siano T e S due insieme di interi positivi e F una
famiglia esponenziale. Allora, detto h(n,S,T) il numero di mani di peso n
che hanno numero di carte contenuto in T e che sono formate solo da carte

di peso contenuto in S, vale
{h(n, 5, T}y &L e (D) (2)) (3.9)
dove er ¢ definita come nel Corollario 3.2.1 ¢ D (z) =Y _od, %

Dimostrazione. Data la famiglia F formata dai mazzi D, (di peso r) per ogni

9) i cui mazzi

intero positivo r, definiamo una nuova famiglia esponenziale F(
D) sono vuoti se r ¢ S euguali a D, se r € S. Le carte in F*) sono
quindi tutte e sole le carte di F che hanno pesi contenuti in S. La funzione
generatrice dei mazzi per F%) &
() r
D¥(x) = TGZS drﬁ
Data I’ovvia corrispondenza biunivoca tra le carte di F¥) e le carte di F di
peso contenuto in .S, scegliere in F solo carte di peso contenuto in S equivale
a scegliere carte qualsiasi in F®). In particolare, applicando il Corollario

3.2.1 alla famiglia F) si ottiene la tesi. ]
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3.3 Esempi

3.3.1 Permutazioni e numeri di Stirling di prima specie

Torniamo all’esempio delle permutazioni. Si é gia osservato nell’Esempio
3.1.1 che il numero di carte contenute nel mazzo D, é d, = (r — 1)l. La

funzione generatrice dei mazzi ¢ quindi

T

D(z) =Y (r— 1)!%
_ ;””_

1
=1
(=)

Per la formula esponenziale, la funzione generatrice delle mani ¢

7—[(‘7;7 y) - 6yD(:r)
_ ﬁ (3.10)
Quindi il numero di permutazioni di n elementi che sono prodotto di k cicli
disgiunti & h(n, k), cioé il coefficiente di £ 14" in ﬁ
Il numero di Stirling di prima specie m ¢ definito come il numero di
permutazioni di n elementi che sono prodotto di £ cicli disgiunti, quindi

h(n,k) = [Z] e, per n fissato, dalla definizione di H(z,y) segue

> m v =D h(n, k)y*

k>0 k>0

- {ﬁ} H(z,y). (3.11)

n!
Sostituendo (3.10) in (3.11) si ottiene
x" 1 iy L (y+n-— 1
e R ) — 1) —1
s (T v -,
quindi

Zmyka(yﬂLl)---(ern—l), (3.12)

k>0
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cioé il numero di Stirling di prima specie [}] ¢ il coefficiente di y* in y(y +
- (y+n-—1).

Per esempio, il numero di permutazioni di n elementi che hanno un solo
ciclo ¢ il coefficiente del termine di y' in y(y+1)--- (y+n—1), cio¢ il termine
notoin (y+1)---(y+n—1) cheé (n— 1)\

3.3.2 Partizioni di un insieme e numeri di Bell

Consideriamo la famiglia F in cui per ogni r > 1 il mazzo D, contiene
una sola carta, di peso d,.. Dato che ogni mazzo ha una sola carta, ogni carta
in F ¢ identificata dal suo peso e quindi I'immagine presente su di essa non
ha importanza. Si puo osservare che ogni mano H di F di peso n e k carte
corrisponde univocamente alla partizione di [n] in k classi i cui blocchi sono
gli insiemi di etichette delle carte in H. Viceversa, data una partizione di
[n] in k classi, dove Ay, ..., Aj sono i blocchi della partizione, si pud formare
una mano scegliendo per ogni blocco A; 'unica carta di F di peso |4;| e
rietichettandola con A;. Inoltre diverse partizioni corrispondono ovviamente
a mani diverse. Quindi il numero di mani di F di peso n e k carte h(n, k) é
il numero di partizioni di [n] in k classi, cio¢ il numero di Stirling di seconda
specie {Z} Si ha d,, = 1 per ogni n > 1, quindi la funzione generatrice dei

mazzi €
1 n X

n>1
Il numero di Bell b,, ¢ definito per ogni n > 1 come il numero di parti-
zioni di un insieme di n elementi; by = 1 per definizione. Ovviamente dalle
definizioni dei numeri di Bell e dei numeri di Stirling di seconda specie segue
che

n n n
bn:Z{k} = " h(n, k); (3.13)

k=0 k=0
quindi nella famiglia esponenziale descritta in questo esempio il numero di

mani di peso n e numero di carte qualsiasi é uguale a b,. Allora per 1'Os-

bﬁ " per

n

servazione 3.2.1 la funzione generatrice esponenziale H(z) = > -,
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i numeri di Bell {b,},, ¢

H(x) = e 71, (3.14)
cio¢ il numero di partizioni di un insieme di n elementi ¢ uguale al coefficiente
di 2™ in e 1.
Da questa funzione generatrice si puo inoltre ricavare una definizione per

. . . . 5 . eT—1 b n
ricorrenza per i numeri di Bell. Dall'uguaglianza e = znZO " segue

s b,
e’ — 1 =log(e“ 1) = log <Z —|x”> ;
n!

n>0

derivando entrambi i membri si ottiene

by .n—1
- an1nn!x

by m
ano R

Infine, moltiplicando entrambi i membri per x si ottiene

bn n
E n—x
n>0 !
re' = —/————

[
E:n207ﬁx
che equivale a
by by,
ze® E —" = E n—a".
n! n!
n>0 n>0

Quindi per ogni n > 1 il coefficiente di ™ in entrambi i membri &

nb, " - by
Fz[m]{xe Zﬁx }

n>0
b
n—1 T n_n
=[x ]{e ;mx}
n—1 1 1b
— 1Y
c (n—1—Fk)k!

da cui si ottiene )
— —1
QZEKijk Vn > 1. (3.15)

Per definizione by = 1, quindi tramite la relazione appena trovata si possono

determinare per ricorrenza tutti i numeri di Bell.
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3.3.3 Permutazioni con cicli di lunghezza maggiore di ¢

Fissato un intero positivo ¢, sia f(n,q) il numero di permutazioni di n
elementi che sono prodotto di cicli disgiunti tutti di lunghezza maggiore di
q. Applicando il Corollario 3.2.2 con T = N e S = {t € N|t > ¢}, si ottiene
che la funzione generatrice esponenziale f,(x) della successione {f(n,q)} -,

e

fula) = exp (Z %)

n>q
q
z" "
= exrp E _— = E —
n n
n>1 n=1

q
(1.10) 1 "
= ] _E:_
exp(ogl_z n:1n>
1 . zn
—1_2'65”7’(—53;)

n=1

Nel Capitolo 4 studieremo il comportamento asintotico dei coefficienti di

fo(@).
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Capitolo 4

Metodi asintotici

4.1 Proprieta analitiche delle serie di potenze.

Fino ad ora abbiamo considerato le funzioni generatrici come serie for-
mali, cioé come scritture formali del tipo ) ., a,2" in cui la = ¢ solo un
simbolo e non la variabile di una funzione; per le serie formali non esiste il
concetto di convergenza in un punto. In questo capitolo studieremo invece le
funzioni generatrici dal punto di vista analitico, cioé data una funzione gene-
ratrice ), -, a,2" per la successione {a,},y (dove a, € C per ogni n € N),

considereremo la funzione di variabile complessa

N
Sz:gaznzlimgaz”
( ) " N—+oco " ’
n>0 n=0

definita nei punti z € C in cui il limite converge. In questa trattazione
chiameremo la funzione S(z) anche serie complessa.

Lo studio delle proprieta analitiche delle funzioni generatrici ha moltis-
sime applicazioni, molte delle quali non si possono dedurre semplicemente
studiando le funzioni generatrici solamente come serie formali. In questa
trattazione mostreremo che, data una serie formale di potenze Y~ a,z", se
la serie complessa Y~ a,2" & lo sviluppo in serie di potenze intorno all’ori-
gine di una funzione f nota olomorfa in un certo dominio, allora si possono

studiare le singolarita di f per stimare i coefficienti {a,}.

31
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Enunciamo il seguente teorema, per la dimostrazione si veda Stein, Sha-
karchi (2003):

Teorema 4.1.1. Siano U un aperto di C e f : U — C una funzione olomorfa.

Sia zg € U. Ser >0 ¢ tale che D,(z9) C U, allora per ogni z € D,(z)
F(2) = an(z— z)"
n>0

dove
_ ™ ()

n!

an (4.1)

per ogni n € N.

Da questo teorema segue che se due funzioni S1(2) =, a,2" e Sa(2) =
>, bp2" convergono e sono uguali in un intorno dell’origine, allora a, = b,
per ogni n € N. Infatti, dato che le serie di potenze complesse S; e Sy sono
funzioni olomorfe nei loro dischi di convergenza, allora vale il Teorema 4.1.1
e per la (4.1) vale a, = b, in quanto Si(z) = S3(z) in un intorno di 0.
Viceversa invece, se due serie formali ) | a,2" e > b,2" sono uguali, allora
per definizione a,, = b, Vn e quindi ovviamente ) a,z" = > b,2" nei
loro dischi di convergenza.

D’ora in poi quindi a volte useremo le stesse notazioni per le serie formali e
le serie complesse ad esse associate, ricordando pero che considerando le serie
come funzioni le uguaglianze valgono solo nei punti del disco di convergenza.

Il Teorema 4.1.1 ¢ inoltre alla base del seguente risultato fondamentale:

Proposizione 4.1.1. Sia S(f) C C un insieme chiuso e costituito da punti
isolati. Sia f : C—S(f) — C una funzione olomorfa e tale che gli elementi di
S(f) sono tutti singolarita isolate e non rimovibili di f. Sia inoltre zo € S(f)
la singolarita di f piu vicina all’origine.

Se 0 € C=5(f) ein un intorno di 0 vale f(2) =), 5o an2" (dovea, € C
per ognin € N), allora il raggio di convergenza di ), -, anz" € |20]. Inoltre,

fissata € > 0, esiste N € N tale che per ognin > N wvale

1 n
la,| < (— + 6)
|20
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e inoltre esistono infiniti n € N tali che

1 n
la,| > <— — 6) :
|20

Dimostrazione. Detto R il raggio di convergenza di ) .,a,2", dal teore-
ma di Cauchy-Hadamard e dalla definizione di massimo limite segue im-

mediatamente che, fissato € > 0, esiste N € N tale che per ogni n > N

la,| < 1+ '
an, — 4+ €
R

e che esistono infiniti n € N tali che

anl > (L&)
a, ——€ .
R

Mostrando che R = |z| si conclude la dimostrazione. Per il Teorema

vale

4.1.1, per ogni r > 0 tale che r < [z vale f(z) = > .;a.2" per ogni
z € D,(0) (si osservi che, sempre per il Teorema 4.1.1, i coefficienti della
serie sono univocamente determinati). Allora f(2) = > ~;a,2" in Dy (0)
e quindi il raggio di convergenza R della serie & > |z|. Mostriamo ora che R
non puo essere strettamente maggiore di |zg|. Per semplicita lo dimostreremo
nel caso in cui 'unica singolarita non rimovibile di f di modulo |zy| sia z; la
dimostrazione per il caso in cui f ha anche altre singolarita di modulo |z &
analoga.

Supponiamo per assurdo che ano a,z" converga in un disco di raggio
R" > |%]. Sia quindi € > 0 tale che D e — {20} € ((C = S(f)) N Dp)
e tale che f non abbia altre singolarita in D). +.(0). Dato che una serie di
potenze € olomorfa nel suo disco di convergenza, ano a,z" & olomorfa in
D)24¢(0). Sia f che > - a,2" sono olomorfe in D, 1 — {20}, quindi per
il teorema di identita delle funzioni olomorfe vale f(2) = >_ ., a,2" per ogni
2 € Dyg4e(0) — {20}

Dato che ), . a,2" & olomorfa in D);(0), allora per continuita ¢ limi-
tata in un intorno di zp. Quindi, poiché » - a,z" = f in Di,4.(0) — {20},

f é limitata in un intorno bucato di zy. Allora per il teorema di Riemann per
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le singolarita rimovibili zg € una singolarita rimovibile per f, contraddicendo

I'ipotesi. O

Quindi se in un intorno dell’origine una serie di potenze complessa ¢
uguale a una data funzione f olomorfa in un certo insieme, studiando le

singolarita di f si possono stimare i coefficienti della serie.

4.2 Funzioni meromorfe

Sia f : C—{zo, ..., 22} — C olomorfa, con z, ..., z; poli. Vogliamo stimare
i coefficienti del suo sviluppo in serie intorno all’origine.

Se f ha un polo di ordine m; in z;, allora esistono r; > 0 e una funzione
G; : D, (z;)) — C olomorfa (dove D, (z;) = {z € C| |z — z;| < r;}) tali che

(4) (@) (@)

a—m, A _m;+1 a_y
F(&)Dr, )2y = R e e R e Gi(z)  (4.2)

dove a% € Cperogni k=1,..,m,.

o) KO o0
PP(f;z) = T T — :C— i —C
(£52) (2 — zo)™ * (z — z)mi—1 L z2— 2 fai}

¢ la parte principale di f in z;.
Sia R > 0 il modulo del polo di f pit vicino all’origine e siano zg, 21, ..., 25
tutti i poli di f di modulo R, di ordine rispettivamente mg, my..., ms.

Definiamo la funzione
h(z) = f(2) = PP(f;20) — PP(f;21) — ... = PP([;z). (4.3)

h & olomorfa in C — {2, ..., 2;} e si puod estendere a una funzione olomorfa in
C — {2541, .-, 2t} (che continueremo a chiamare h) perché le sue singolarita
in zg, 21, ..., 2, sono tutte rimovibili. Infatti, da (4.2) segue che per ogni
1=20,...,8

s

h(2)\p,, =y = PP(f;z1) + Gi(z) — Z PP(f; )

k=0
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— S PP(fi ) (4.4)

k=0
ki
Allora, passando al limite,
lim h(z) = lim (Gi(z) — PP(f;20) — ...PP(f; zi-1) (4.5)
22—z 2—2;
— PP(f;zi41) — ... = PP(f; %))
k)
Z Z (4.6)
k=0 j=1 o Zk

k#1

e quindi per ogni i = 0, ..., s 2; & una singolarita rimovibile per h.

Le singolaritdo di h sono zs.1, ..., z;, quindi il raggio di convergenza R’
dello sviluppo di h in serie di potenze intorno all’origine ¢ il modulo del
punto piu vicino all’origine tra z;,1, ..., z5, € vale R > R. (Ovviamente se
le singolarita di f hanno tutte modulo |zg| vale R' = o0). Sottraendo a f
la sua parte principale nei poli pit vicini all’origine si & quindi ottenuta una
funzione il cui sviluppo in serie di potenze attorno all’origine ha un raggio di
convergenza strettamente maggiore di quello di f.

Se f ¢ la funzione generatrice per la successione {c,}, -, e
9(2) = PP(f;2) + PP(f;21) + .. + PP(f;2) 2 (b3, (47)

(cio¢ piu precisamente in un intorno di 0 valgono f(z2) = > c. 2" e
g(2) = > 50 bna™), allora, per la Proposizione 4.1.1 applicata ad h = f — g
(il cui sviluppo in serie di potenze intorno all’origine ha come coefficienti

{¢, —bn},~,), per ogni € > 0 fissata vale

1 n
| — bn| < (ﬁ + E) per n — 0. (4.8)

Da (4.8) segue

Y (E0 s R
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cioé asintoticamente si possono approssimare i termini della successione {c, } -,
con i coefficienti dello sviluppo in serie di potenze intorno all’origine di g, dove
g ¢ la somma delle parti principali di f nei poli di modulo minimo.

Determiniamo ora esplicitamente i coefficienti b,,. Dato che g = PP(f; zo)+
.+ PP(f;z), per ogni n € N b, ¢ uguale alla somma dei coefficienti dei
termini di grado n negli sviluppi in serie di potenze intorno all’origine di
PP(f;20),..., PP(f; zs) rispettivamente. Per ogni i=0,...,s fissato vale

r a®

P(f;zi):Zﬁ

j*l

- a?. 4.10
Zzl—Z/zz)) - (410)

Dato che per (1.11) per |z| < 1 vale
1 n+k\ ,
(1— z)kt! _Z< n )x
n>0
(il raggio di convergenza ¢ 1 perché la singolarita di 1/(1 — x)*** di modulo
minimo ¢ -1), allora per ogni z tale che |z| < |z;| = R si ha

oS

n>0
—1
_Z (n—i—j )(z/zz) (4.11)
n>0
Sosituendo in (4.10) quest’ultima relazione si ottiene quindi che, in un intorno

dell’origine,

mi ([ ja(i)A n ) —
PPz =y T (Z( o <z/zi>>">

7=1 1 n>0
Sy (SR 1
n>0 (j:l z J—1

Allora sommando per ogni polo di modulo |zg| segue che, per € > 0 arbitraria,

f = Z(Z ?ﬂu(njil))w((; VY peeno o

(4.13)
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4.3.1 Numeri di Bell ordinati

L’n-esimo numero di Bell b,, definito nel Capitolo 3, & il numero di par-
tizioni di un insieme di n elementi. Il numero di Bell ordinato b(n) & invece
definito come il numero di partizioni ordinate di un insieme di n elementi,
dove come partizione ordinata si intende una partizione in cui conta l'ordine
delle classi ma non quello degli elementi all’interno di una stessa classe. Vale

allora
b(n) = g k'{Z} (4.14)

perché per ogni k£ = 0, ..., n esistono {Z} partizioni dell’insieme in £ classi, e
per ognuna di queste partizioni i modi di ordinarne le classi sono k!, quindi
le partizioni ordinate di un insieme di n elementi in &k classi sono /{:!{Z};
sommando per ogni k si ottiene b(n).

Moltiplicando entrambi i membri di (2.20) per e™¥ e integrando da 0 a

+00 si ottiene
n

bn) =Y 5 (4.15)

r>0

[e.e]

Quindi la funzione generatrice esponenziale per la successione {b(n)} e
n=0

n>0
,’,.TL ZTL
rtz" 1
TZ 1
- Z; (6 ) or+1
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2—e*
Studiamo le singolarita di f. f & olomorfa in C — {log(2) + 2kni|k € Z} e

tutte le sue singolarita sono poli.
Im 10

log (2) + 2mi

log (2)
10 5 0] 5 10 19
Re

nlog (2) — 2mi

-10

Figura 4.1: Singolarita di f e dischi di convergenza degli sviluppi in serie di
potenze di f e f — PP(f;log(2)) intorno all’origine.

La singolarita di f piu vicina all’origine ¢ log(2), quindi asintoticamen-
te i termini di {B(n)} possono essere approssimati dai coefficienti dello

sviluppo in serie di pontz%ze intorno all’origine di PP(f;log(2)). La parte
principale di f in log(2) &
~1/2
z —log(2)
f — PP(f;log(2)) & olomorfa in C — {log(2) + 2kmilk € Z — {0}} e il
raggio di convergenza dello sviluppo in serie di potenze di f — PP(f;log(2))
¢ ora R’ = |log(2) + 2kmi| = /(log(2))? + 472 perché log(2) + 2mi ¢ una sua

PP(f:log(2)) =

singolarita di modulo minimo.
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Quindi per (4.12) si ha

1/2

[2"]{PP(f;log(2))} = Tlog(2))™1"

(4.16)

Allora, per (4.13), per € > 0 arbitraria vale

ng) = <1ogg)2)n+1 +0 ((% * E)n)

__ 12 1 AN
 (log(2))"* O <<\/(10g(2))2 ¥ 472 * ) ) (4.17)

per n — o0,

da cui si ottiene la seguente stima per b(n):

. 1 1 "
") = Sy O ((wlog(z))z T ) ”!)

1 n

Per n grandi il calcolo esatto dell’n-esimo numero di Bell con la formula (4.14)
& complesso, ma n!/((21log(2))"™!), che ¢ molto pit semplice da determinare,
é una buona approssimazione, come si puod osservare nell’esempio per alcuni

valori di n (Wilf (1994)):

n 1 2 3 5} 10
b(n) 1 3 13 541 102247563
n!/((2log(2))™1) 1.04 3.002 12.997 541.002 102247563

4.3.2 Numero di permutazioni con cicli di lunghezza

maggiore di q.

Nel Capitolo 3 si ¢ dimostrato che, dato un intero positivo ¢ e detto

f(n,q) il numero di permutazioni di n elementi che sono prodotto di cicli
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disgiunti di lunghezza maggiore di ¢, la funzione generatrice esponenziale

per la successione {f(n,q)}, -, ¢

I B T

1—=2 —

Si vuole stimare il comportamento asintotico di f(n,q). f, ha una sola
singolarita, di tipo polo, in zy = 1; 'ordine di polo di z; ¢ 1. Calcoliamo il
residuo di f, in 2y:

Res(1, fq) = lim((z — 1) f4(2))

z—1

_ q N . . .
dove H, =) 7 _,1/n ¢ il g-esimo numero armonico.

La parte principale di f, in 1 ¢ allora

PP(f,,1) = L -, (4.20)

1—2

f4 ha un solo polo (in zy = 1), quindi sottraendo a questa funzione la sua
parte principale in 1 si ottiene una funzione olomorfa in C; allora il raggio
di convergenza dello sviluppo in serie di potenze di f, — PP(f,;1) intorno
all’origine ¢ R = oco. Allora, per quanto dimostrato nella sezione precedente,

per € > 0 arbitraria vale

f(n.q) _ [Zn]{ 1 qu}+O(6n)

n!
= [2"] { (Z z”) e_Hq} + O(€")

=e M 4 O(e") per n — oo.




4.3 Esempi

41

Da quest’ultimo risultato si puo osservare che la probabilita che una permuta-
zione abbia cicli tutti di lunghezza maggiore di ¢ asintoticamente si avvicina

a una costante, e"*¢. Per esempio, se ¢ = 1,

f(n,q)

n!

=e '+ 0(") per n — 0o,

cioé la probabilita che una permutazione di n elementi non abbia punti fissi si

avvicina asintoticamente a e~}

2.

, in accordo con quanto osservato nel Capitolo
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