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Introduzione

Il presente lavoro di tesi verte sulla costruzione geometrica e sull’analisi delle superfici
iperellittiche. L’obiettivo ¢ duplice: definire rigorosamente la superficie di Riemann
compatta a partire dalla curva algebrica affine e, successivamente, determinarne lo spazio
delle 1-forme olomorfe.

L’elaborato é strutturato in tre capitoli.

Nel Primo Capitolo introdurremo il formalismo essenziale, richiamando le definizioni
di superficie di Riemann, carta locale e curva piana.

Nel Secondo Capitolo presenteremo le curve iperellittiche affini per poi procedere alla
loro compattificazione. Definiremo rigorosamente le operazioni di incollamento necessarie
a "tappare i buchi" (i punti all’infinito), ottenendo cosi una superficie compatta. Tale
compattezza non € formale, ma costituisce il prerequisito indispensabile per applicare i
teoremi globali del capitolo successivo.

Il Terzo Capitolo é dedicato allo studio delle 1-forme olomorfe. Dopo averne espo-
sto le proprieta, utilizzeremo il Teorema di Riemann-Roch per stabilire teoricamente la
dimensione dello spazio vettoriale Q'(X). Concluderemo il lavoro costruendo esplicita-
mente una base di forme per il caso iperellittico, verificando la corrispondenza tra la
geometria della curva e la struttura analitica dello spazio delle forme.



Capitolo 1

Concetti preliminari

In questo capitolo introduco i concetti necessari per capire gli argomenti trattati in que-
sto elaborato: le superfici di Riemann, le mappe tra loro, le curve affini, ecc. Per le
dimostrazioni, il lettore pud consultare ad esempio [1].

Una superficie di Riemann ¢ uno spazio topologico la cui struttura locale ¢ quella
del piano complesso. Questi spazi sono in particolare delle varieta lisce, orientabili di
dimensione (reale) 2. E utile ed interessante trasportare i vari concetti di analisi com-
plessa sul piano complesso al mondo delle superfici di Riemann. Vediamolo formalmente:

1.1 Superfici di Riemann

Definizione 1.1.1 (carte). Una carta complessa su uno spazio topologico X ¢ un
omeomorfismo ¢ : U — V tra aperti U C X e V C C. ¢ é centrata in p € U quando
¢(p) = 0.

Due carte complesse ¢; : Uy — Vi, @9 : Uy — V5 su X sono compatibili quando ogni
volta che U; NU; # &, la funzione di transizione

¢z 0 9251|_1 c 01 (U NUy) — ¢2(Up NU,) & olomorfa.

Definizione 1.1.2 (atlanti). Un atlante complesso su X ¢ una collezione di carte
complesse {¢; : U; — V;}ier a due a due compatibili, tale che X = J, U;. Due atlanti
su X sono equivalenti se la loro unione ¢ un atlante. Una struttura complessa su
X é una classe di equivalenza di atlanti su X, o equivalentemente un atlante massimale
(dato dal lemma di Zorn).

Questo ci porta alla definizione chiave di superficie di Riemann:
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Definizione 1.1.3. Una superficie di Riemann ¢é uno spazio topologico X connesso,
T2 e N2, insieme ad struttura complessa.

Esempio 1.1.4. C ¢ superficie di Riemann; come atlante si puo semplicemente prendere
{z’d C— C}.

Definizione 1.1.5 (mappe olomorfe e meromorfe). Siano X e Y due superfici di Rie-
mann. Una funzione F' : X — Y ¢ olomorfa quando V¢ : U — C carta su X e
V) : V — C carta su Y, la composizione ¢ o F o gb‘_l (dove ¢ definita) ¢ olomorfa.

Se F' ¢é olomorfa e biunivoca con inversa olomorfa, allora F' ¢ un biolomorfismo e X e
Y sono superfici biolomorfe o isomorfe.

Una funzione F' : X — C ¢ meromorfa quando esiste un insieme discreto P(F') C X
t.c. Fix\p(r) ¢ olomorfa e ogni p € P(F) ¢ un polo o una singolarita rimovibile per F,
cioé ¢(p) & un polo/una singolarita rimovibile per F o ¢! per ogni carta ¢ intorno a p.
Lo spazio vettoriale delle funzioni olomorfe da X — C si indica con O(X).

Lo spazio vettoriale delle funzioni meromorfe X — C si indica con M(X).

Esempio 1.1.6 (La sfera di Riemann). Consideriamo la compattificazione di Alexan-
droff C di C. Essa ¢ naturalmente omeomorfa sia alla sfera S? che alla retta proiettiva
complessa CP'. Ma vale di pitt: Questi spazi sono biolomorfi come superfici di Riemann.
Utilizzando le proiezioni stereografiche ¢y , ¢g sulla sfera e le carte affini ¢, ¢; su CP!,
si hanno due atlanti complessi sullo spazio topologico C. Si dimostra che tra queste due
strutture complesse essenzialmente non c¢’¢ nessuna differenza, cio¢ che S? e CP! sono
biolomorfi.

Figura 1.1: La sfera di Riemann

Fatto: Ogni superficie di Riemann ¢ orientabile.
Da questo segue, per il teorema di classificazione delle superfici topologiche, che ogni



superficie di Riemann compatta ¢ omeomorfa a S;: La superficie chiusa, orientabile
e connessa di genere g. Quindi puo essere visualizzata come la somma connessa di g
tori, i.e. il toro con g buchi:

@h»
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Figura 1.2: Le superfici topologiche compatte orientabili

Ecco alcuni fatti sulla topologia delle superfici compatti:
Proposizione 1.1.7. Sia X una superficie di Riemann compatta di genere g.
e la caratteristica di Eulero x(X) =2 — 2g

e il gruppo fondamentale

7T1(X) = <a1, bl, <oy Qg, bg | alblal_lbl_l tee agbgag_lbg_l = 1>

e il primo gruppo di omologia H,(X) = Z9

Proposizione 1.1.8. Siano X e Y due superfici di Riemann e sia F': X — Y olomorfa
e non costante. AlloraVp € X 3!'m > 1 t.c. 3¢ carta centrata in p ed 31 carta centrata
in F(p) t.c. o Fog¢telafunzione z — 2™.

Definizione 1.1.9. Siano X e Y due superfici di Riemann e sia F': X — Y olomorfa e
non costante. Il numero m dato da Proposizione 1.1.8 si chiama molteplicita di F' in p
e si indica mult, F'.

Un punto p con mult,/’ > 2 ¢ un punto di ramificazione per F. L’insieme dei punti
di ramificazioni di F si denota R(F).
Se X e Y sono compatte, il grado di F' &

degF := Z mult, F'

zeF~

dove possiamo scegliere un punto arbitrario y € Y.



Definizione 1.1.10. Sia F': X — C meromorfa e sia p € X. Scelta una carta ¢ intorno
a p, possiamo esprimere F o ¢! come serie di Laurent > ;> ¢;z', con m € Z, ¢, # 0.
Allora I'ordine di F'in p é definito come ord,F := m. Non dipende dalla carta scelta.

Proposizione 1.1.11. Sia X compatta e F': X — C meromorfa.
= ) ord,F =0
peX

Teorema 1.1.12 (Riemann-Hurwitz). Siano X e Y superfici di Riemann compatte e sia
F : X — Y una mappa non costante olomorfa. Allora

29(X) — 2 =deg(f)(29(Y) —2) + Y [mult,F — 1]
PER(F)

Introduco ora una classe importante di superfici di Riemann: Le curve piane affini e
proiettive.

1.2 Curve piane

Definizione 1.2.1 (curve piane). Una curva algebrica piana affine X C C? ¢ il
luogo di zeri di un polinomio f € C|z, w]:

X =V(f) = {(z,w) €C*| f(z,w) = 0}
La curva ¢ nonsingolare o liscia quando f ¢ nonsingolare, i.e.

Ve X, (2o, 5 w) # (0.0

La curva é irriducibile quando f ¢ irriducibile.

Una curva algebrica piana proiettiva X C CP? ¢ il luogo di zeri V/(F) = {[z: y : 2] €
CP? | F(z,y,2) =0} di un polinomio omogeneo F € C[z,y, z]. La curva ¢ irriducibile
quando F' ¢ irriducibile, nonsingolare quando F' ¢ nonsingolare, i.e.

vpe X, (G0 5 5o 0)) 7 (0.0.0)

Proposizione 1.2.2. Ogni curva piana affine X = V/(f) liscia ed irriducibile & una
superficie di Riemann.

Dimostrazione. Le proprietd T2 e N2 sono ereditate da C?. La connessione deriva dal-
I'irriducibilita di f attraverso un risultato profondo in geometria algebrica, che non dimo-
strero qui. L’atlante complesso ¢ garantito dal teorema della funzione implicita olomorfa:
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Sia p € X con ZL(p) # 0. Allora 3 un intorno U di p: U = {(g(2), 2)} per una funzione
olomorfa g : V. C C — C e come carta intorno a p si prende una restrizione della pro-
iezione po(z,w) = w. In tutti gli altri punti, g—i(p) # 0 e pi(z,w) = z (ristretta) & una
carta. Queste carte sono compatibili tra loro, perché le funzioni di transizione sono o id

o la funzione implicita olomorfa g. O

Per semplificare le notazioni, ogni tanto usero i simboli z e w per indicare le proiezioni
p1 € pa, che possono essere delle carte se definite su intorni opportuni; in ogni caso sono
funzioni olomorfe.

Osservazione. Anche le curve proiettive, se lisce ed irriducibili, sono delle superfici di
Riemann. Le carte si ottengono come composizioni delle carte affini in CP? con le carte
delle curve affini.

Proposizione 1.2.3. Sia X = V(f) C C? una curva affine. I punti di ramificazione
delle proiezioni p; e ps sono caratterizzati come segue:

PeR(p) < g—i(P)—O
PeR(p) < %(P):O

Definizione 1.2.4. Data una curva piana affine X = V(f), la sua chiusura proiettiva
X C CP? ¢ il luogo di zeri dell’omogenizzazione f" di f:

fho=21. f(g, g) € Cylz,y, 2] , dove d = deg(f)
X =V

. . <P . D
Attenzione: Non ¢ detto che X sia ancora una superficie di Riemann.

Un caso particolare delle curve piane affini sono le curve iperellittiche — gli oggetti
centrali di questa tesi.



Capitolo 2

Le superfici iperellittiche

2.1 Curve iperellittiche

Proposizione 2.1.1. Sia h € C[z] un polinomio di grado > 1, e sia f(z,w) = w? —h(z).
Allora:

1. f éirriducibile <= h non é un quadrato in C|[z]
2. f € nonsingolare <= h ¢ libero da quadrati

In particolare:
V(f) é una superficie di Riemann <= tutte le radici di h sono semplici.

Definizione 2.1.2. Una curva affine iperellittica ¢ una curva piana affine X = V()
data da f(z,w) = w® — h(z) con deg(h) > 5 e h senza radici multiple.
Se deg(h) € {3,4}, X si chiama curva affine ellittica.

Piu avanti scopriremo che se deg(h) =29+ 146, con g > 2, ¢ € {0, 1}, il numero g
corrisponde al genere di un opportuna compattificazione di X, che chiamero "superficie
iperellittica". Il numero § non influenza il genere.

Definizione 2.1.3. Data una curva affine iperellittica X, la funzione olomorfa

L X > X si chiama involuzione iperellittica.

(z,w) = (z, —w)

Osservazione. X = V(w? — h(z)) non ¢ mai compatta: La proiezione p; : X —
C,(z,w) — z ¢ continua e suriettiva. Se X fosse compatta, im(p;) dovrebbe essere
limitato.



Alcuni degli strumenti di analisi complessa pitt potenti funzionano solo sulle superfici
compatti. Anche per la mia missione di trovare tutte le 1-forme olomorfe su una super-
ficie iperellittica € necessario avere a che fare con una superficie compatta. Proviamo
quindi a compattificare la curva iperellittica X = V' (f) in modo che resti una superficie
di Riemann.

Un primo tentativo per immergere X in una superficie di Riemann compatta potrebbe
essere di prendere la sua chiusura proiettiva:

se f(z,w) =w?— h(z) = w? —cH(z — ;)

d
F:zd-f(z,g) = 24722 —cH(x—aiz), YP:V(F)

=1

Purtroppo vediamo subito che questo tentativo fallisce proprio per qualsiasi curva ipe-
rellittica, poiché compare sempre una singolarita nel punto [0: 1 : 0].

F(0,1,0)=0 = [0:1:0]€ X

g—]; = sz_ly
9 d
a—i = —cZH(m — agz)
i=1 ki
d
88—]; = (d —2)2%3y* — cz [ — H(x — akz)}
i=1 ket

= VF[0:1:0]=0

Quindi abbiamo bisogno di un altro concetto di compattificazione.

Possiamo vedere la non-compattezza di X come se la superficie si avvolgesse attorno
ad un buco, dove perd questo buco si trova all'infinito. Torna comodo vedere il com-
portamento della curva non compatta in questo modo, perché abbiamo un metodo per
tappare buchi nelle superfici di Riemann con dei dischi in modo naturale, e soprattutto
in modo olomorfo.

2.2 Incollare spazi e tappare buchi

In questa sezione spiegherd prima come si possono incollare due superfici di Riemann per
ottenerne una nuova. Dopodiché, introdurré il concetto di carta bucata su una superficie
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di Riemann e dard un metodo per "tappare il buco" di una tale carta bucata. Infine,
fard vedere come si pud ottenere in questo modo una compattificazione "bella" delle
superficie di partenza.

Innanzitutto, incolliamo due spazi topologici:

Definizione 2.2.1. Siano X e Y due spazi topologici, e U C X, V C Y due aperti
omeomorfi: ¢ : U =, V. L'incollamento di X e Y lungo U e V tramite ¢ ¢ lo
spazio topologico X L, Y := (X L Y) /~, con la relazione d’equivalenza generata da:
x~ p(xr)VreU.

Un altro modo per chiamare questo spazio ¢: L’incollamento di X lungo U a Y lungo

V (tramite ¢). Per avere un’immagine intuitiva: E come mettere della colla su U e su
V ed incollarli. I restanti pezzi di X e Y rimangano separati.

- @
ln
i

Figura 2.1: Incollamento

Mettiamoci ora nel caso in cui X e Y sono superfici di Riemann e U e V' sono due
aperti biolomorfi (in particolare omeomorfi). Possiamo allora sperare che 1'incollamento
di X e Y lungo U e V sia ancora una superficie di Riemann. L’unico vero pericolo é che
I’incollamento non sia pitt uno spazio di Hausdorff.

Proposizione 2.2.2 (incollamento di superfici). Siano X e Y superfici di Riemann, e
siano U C X, V C Y sottoinsiemi aperti biolomorfi:

p:U =4V biolomorfismo
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Sia Z = X U, Y T'incollamento lungo ¢. Allora esiste un’unica struttura complessa su
Z tale che le inclusioni ix : X < Z e iy : Y — Z siano olomorfe. Inoltre, Z & connesso
e N2.

Dimostrazione. Dimostrare che Z sia connesso e N2 ¢ elementare. Costruiamo I’atlante
cercato:

Se vogliamo che le inclusioni siano olomorfe, allora V ¢ carta su X e V 1) presunta carta
su Z, deve valere che 9 oix o ¢! & olomorfa. Notiamo che ¢ oiy' ¢ un omeomorfismo, e
che la condizione su 1 o iy o ! ¢ esattamente la compatibilita tra le carte ¥ e ¢ o iy
Quindi, ogni atlante su Z rispetto al quale le inclusioni sono olomorfe contiene le carte
¢ oiy nel suo atlante massimale. Simmetricamente, la stessa cosa vale per Y. Quindi,
scelti due atlanti {(Ua, gba)}a per X, {(Wa, wa)}a per Y, consideriamo

(i, v}, 0 { (o v},

E immediato dimostrare che questo é un atlante, e per I'osservazione sull’atlante massi-
male, definisce 1'unica struttura complessa con le proprieta richieste. O

Non é scontato che uno spazio incollato in questo modo sia anche uno spazio di Hau-
sdorff. Per avere uno spazio di Hausdorff, servono delle ipotesi in pi.

Lemma 2.2.3. Siano X e Y due spazi topologici T2 e N1, e siano U C X, V CY due
aperti omeomorfi: ¢ : U — V. Allora sono equivalenti:

(i) Lo spazio di incollamento X U, Y ¢ Hausdorff

(i) Non esistono successioni (x,) in U convergenti ad un punto in 0*U t.c. ¢(z,) —
y o'V,

Vediamo adesso cosa si intende per un "buco" in una superficie di Riemann e come
si puo tappare.

Definizione 2.2.4 (carte bucate). Una carta ¢ : U — C su una superficie di Riemann
X é una carta bucata quando:

(i) im(¢) contiene un disco aperto bucato D*(0)

X

(i) ¢=H(Dz(0)) < U

(ii)) ¢(#TD2(0)" ) = D(0) \{0}.
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Figura 2.2: carta bucata

In altre parole, una carta bucata trasporta una regione di una superficie di Riemann
ad un disco di C con un foro nel centro. Sul piano complesso C, la chiusura di questo
disco chiude il foro. Il nostro obiettivo ¢ di fare lo stesso anche sulla superficie: chiudere
il foro.

Tappare un buco: In presenza di una carta bucata ¢ : W — C su una superficie di
Riemann X, con D! C im(¢), possiamo costruire il seguente incollamento: Sia Y = D,
il disco aperto (non bucato) e sia V=D CY. Sia U = ¢ }(D?). Allora U C W e la
funzione ¢ = ¢y : U = V & un biolomorfismo tra due aperti U di X e V di Y. Quindi &
ben definito I'incollamento X := X L, D,. Diciamo che X ¢ ottenuto da X tappando
il buco della carta ¢.

Proposizione 2.2.5 (tappm:e un buco). Sia X una superficie di Riemann con una carta
bucata ¢. Allora lo spazio X ottenuto da X tappando il buco di ¢ é una superficie di
Riemann.

Dimostrazione. Per la Proposizione 2.2.2, basta dimostrare che X ¢ di Hausdorff. Pro-
viamo ad usare il Lemma 2.2.3: Sia (z,,) una successione in U = ¢~ !(D?) t.c.

T, > x€0XU = 8X(¢_1(D:)) C WDE*)X
= x € U per (ii) e ¢(P) € (D.)* per (iii). Supponiamo per assurdo che
¢(x,) = P € 0"V =0 (DX) = {2}
Per continuita ¢(z,) — ¢(P) = z, assurdo. O

Osserviamo che nella coordinata locale della carta bucata ¢, il nuovo punto, cioé il
buco tappato, ha coordinata 0.
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Esempio 2.2.6. Possiamo ottenere la sfera di Riemann Cda C tappando un buco al-
Pinfinito. La carta ¢(z) = £ : C* — C* ¢ naturalmente una carta bucata sulla superficie
C. Incolliamo il disco unitario I lungo D* a C lungo ¢~'(D*) = C\D. Topologicamente,
otteniamo la sfera S%. In termini di analisi complessa, otteniamo la sfera con un atlante

complesso. Le carte sono quelle garantite dalle proposizioni precedenti sugli incollamenti
e sui buchi: ¢(z) = z su C\{oco0} e

1 2eC\{0,00}

0, z=o0

¢y C\{0} = C, ¢o(2) = {

Proposizione 2.2.7 (compattificazione tappando i buchi). Sia X una superficie di Rie-
mann e siano ¢; : Uy — V; 2 D7, i = 1,...,n un numero finito di carte bucate su X.

Supponiamo che X\ U, ¢; ' (D}) sia compatto. Allora la superficie ottenuta tappando
tutti i buchi delle ¢; ¢ compatta.

Dimostrazione. Sia Z = (X UD, U--- U D5n>/ ~ lo spazio di incollamento, e 7 la

proiezione al quoziente. Possiamo scomporre

7= 7r<(X\U¢;1(D;))) ulJ=(D.)

)

o anche Z = ﬂ((X\U(bzl(D:))) U Um

)

Sappiamo che ¢~1(D?) = D,, , quindi n(D,,) = ¢~1(Dz) U{P} = D,, che ¢ compatto.
Quindi Z & 'unione finita di spazi compatti, percio ¢ compatto. O

W@

Figura 2.3: compattificazione
Applichiamo questa tecnica per compattificare le curve iperellittiche:
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2.3 La compattificazione delle curve iperellittiche

Sia X = V(f) = V(w* — h(z)) una curva affine iperellittica, con

d

h(z)=c- H(z — )

J=1

D’ora in poi chiamero py, ps : X — C le proiezioni naturali, ristrette alla curva.

Notiamo che &L = 2w e V(z,w) € X, w = 0 & h(z) = 0. Quindi la proiezione
p1(z,w) = z, opportunemente ristretta, & una carta locale in tutti i punti di X con

h(z) # 0.

Per compattificare la curva, vediamo cosa succede "all’infinito", i.e., allontanandoci

sempre di piu dal punto (0,0). Consideriamo un disco D,.(0) C C abbastanza grande da
contenere tutte gli zeri Z(h) di h.
Siano V = C\D,(0) e U = p; (V). Notiamo che Vz € V, p;'(2) = {(z,£+/h(2))} ha
cardinalita 2 (h(z) # 0). Inoltre, per quanto appena detto, p; & un omeomorfismo locale
su U. Concludiamo che p;, : U =V & un rivestimento a 2 fogli. Raccolgo queste
informazioni in una proposizione:

Proposizione 2.3.1. Sia X una curva iperellittica data dal polinomio w? — h(z). Sia
r>0t.c. Z(h) C D,(0). Siano V = C\D,(0) e U = p; (V). Allora py, : U =V ¢&un
rivestimento a 2 fogli.

Applicando un po’ di teoria dei rivestimenti, possiamo dimostrare che ci sono due
classi di isomorfismo di rivestimenti a 2 fogli dello spazio V. Infatti, sappiamo che esiste
una biezione:

{rivestimenti diV a2 fogli} {m(V) — 6, omomorﬁsmi}

~

isomorfismo di rivest. coniugio

In altre parole, le classi di isomorfismo di rivestimenti di V' sono in biezione con le classi
di coniugio di omomorfismi di gruppo m(V) — &s. Dato che m(V) = Z, ci sono
esattamente due omomorfismi di gruppo m (V) — &, e non sono coniugati. Quindi
esistono due classi di isomorfismo di rivestimenti a 2 fogli di V. Non ¢ difficile trovarli:

1. Due fogli disconnessi omeomorfi all'immagine.

2. Rivestimento connesso. Concettualmente, questo corrisponde al rivestimento ¢ :
C* — C*, z+ 22, oppure ad una spirale piatta che viene schiacciata.
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(a) Rivestimento disconnesso ) Rivestimento connesso

Ovviamente questi due rivestimenti non sono isomorfi.

Torniamo adesso alla curva iperellittica. Quale delle due classi di rivestimento ¢
p1jy - U — V7 La strategia per rispondere a questa domanda ¢ di prendere un cammino
chiuso in V' che fa un giro attorno a 0 e sollevarlo allo spazio di rivestimento. Il punto
cruciale é capire se il cammino sollevato € chiuso o meno.

Vale il seguente risultato:

Proposizione 2.3.2. Sia X una curva iperellittica data dal polinomio w? — h(z). Sia
d = deg(h). Siar > 0 t.c. Z(h) C D,(0). Siano V = C\D,(0) e U = p;* (V).

Sia R > r e y(t) = Re : [0,27r] — V. Allora, una volta scelta una preimmagine
Py € p;*(7(0)), sono equivalenti:

(i) Il sollevamento di v a partire da Py rispetto al rivestimento py),, ¢ chiuso

(ii) Il rivestimento py|, : U — V ¢ disconnesso
(iii) d e pari
Dimostrazione. La equivalenza (i) <= (ii) & chiara da un punto di vista geometrico-
intuitivo: Il sollevamento del cammino al rivestimento disconnesso ¢ omeomorfo al cam-

mino stesso, quindi chiuso. D’altra parte, un cammino chiuso che fa un giro totale sullo
spazio di rivestimento a forma di spirale, nello spazio base dovrebbe fare due giri.
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Dimostro adesso che (ii) <= (iii):
Il punto R = 7(0) ha due preimmagini per p;. Per ogni scelta Py di una di queste
preimmagini, esiste un unico sollevamento 7 di v rispetto a p; t.c. ¥(0) = F.

0,20] —X—— V
Possiamo scrivere 5(t) = (y(t),n(t)). Osserviamo che 5 ¢ chiuso < 7 lo ¢. Per
costruzione di U, non ci sono punti con coordinata w uguale a 0 in U, quindi 7(¢) ¢ un

cammino in C*. Inoltre, vale che (n(t))? = h(y(t)). Questo ci dice che il cammino 7 ¢
un sollevamento del cammino h o 7 rispetto al rivestimento ¢(z) = 22 : C* — C*.

(C*
q

0,27] — 22 ¢

772@) = h(y(t)) = CHj(Reit — ) = ch rj(t)ewj(t) — CHj [Tj(t)} et 25 05(0)

Un candidato per n(t) ¢ /e[, r;(t) - 2% Cambiare il segno corrisponde a

cambiare retroimmagine p; ' (R), ma vedremo subito che queste scelte non hanno nessuna
influenza sul risultato. Vediamo se il cammino 7 € chiuso o meno:

o27) = (97) - o3 2 05(2m)
n(2m) = \JeT] rotem) e
_ (0) - e3 25(0;(0)+27)
cl |j7"j( ) - e2 2
isndgn idm
=n(0) - €227 = (0) - "7 = (0) - (~1)*

Abbiamo quindi dimostrato che 7 & chiuso < d é pari

Cerchiamo ora delle carte bucate sulle superfici iperellittiche:
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Proposizione 2.3.3 (buchi sulle curve iperellittiche). Sia X una curva iperellittica data
dal polinomio w?—h(z). Siar > 0t.c. Z(h) C D,(0). Siano V = C\D,.(0) e U = p;*(V).
Allora:

1. Se d é pari, allora su ogni componente connessa del ricoprimento U, la funzione %
¢ una carta bucata.

2. Se d ¢ dispari, allora sul ricoprimento U esiste una carta bucata ¢ con ¢? = %

Essenzialmente, ¢(z) = \/i;, che ¢ definita senza ambiguita su U.

Dimostrazione. (1) caso d pari:

Siano U™t e U~ le due componenti connesse di U. Abbiamo gia osservato che la proiezione
pp ristretta a una delle componenti connessi ¢ un omeomorfismo, e quindi é una carta.
Quindi ¢ : Ut — C*, ¢(z,w) = 1 ¢ una carta bucata (e lo stesso vale per U~). Infatti:

(i) im(¢) = D%(O) 2 D%(O) con R >r

(i) ¢=1(D3) = pr(C\Dr) Cpr (V) = U

(ii)) (¢7(D3)) = Dy’
r R
In modo identico, % é carta bucata per l'altro foglio U~.

(2) caso d dispari: Abbiamo gia visto come ¢ fatto il rivestimento p; in questo caso
e che assomiglia molto al rivestimento della funzione "quadrato" ¢ : V — V, z — 22
Dobbiamo riuscire a mappare la regione U C X in modo biolomorfo su V. Speriamo
quindi di trovare una carta sollevando p; rispetto al rivestimento g:

%
X
d>// q
- p1
U—V

Condizione necessaria e sufficiente per I'esistenza di un tale sollevamento é:

p1s(m(U)) < g (mi(V))

Sappiamo che i gruppi fondamentali 7 (U) e m1(V') sono entrambi isomorfi a Z. E
chiaro che la classe [y] del cammino () = Re" in V & un generatore di m (V). Ovvia-
mente, ¢ o v raddoppia il numero di avvolgimento di v: ¢.([y]) = 2[y]. Bisogna quindi
controllare se 'immagine di un generatore di 71(U) sia un multiplo pari di [7].
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Geometricamente, ci si convince facilmente che che ogni generatore di m(U) viene
proiettato da p; in +2[v]. Questo garantisce l’esistenza del sollevamento cercato.

p1 € q sono due rivestimenti a 2 fogli di V' e quindi dalla teoria dei rivestimenti segue
che ¢ ¢ un omeomorfismo, (= biolomorfismo).

Osserviamo che ¢(z,w)? = z, quindi se considero ¢ =

=1 = 90:\%.

%, ottengo una carta bucata:

]

Proposizione 2.3.4. Sia X una curva iperellittica. Sia X la superficie ottenuta da X
tappando i buchi delle carte date dalla Proposizione 2.3.3. Allora X & una superficie
compatta.

Definizione 2.3.5. Una superficie compatta X ottenuta da una curva iperellittica X
tappando i buchi, si chiama superficie iperellittica.

Ora che abbiamo compattificato in modo soddisfacente le curve iperellittiche, manca
poco per scoprire il loro genere. Tale numero viene fuori da una mappa tra la superfi-
cie iperellittica in questione e la sfera di Riemann, ed una semplice applicazione della
relazione di Riemann—Hurwitz.

Proposizione 2.3.6. Sia X una curva iperellittica data dal polinomio w*—h(z), deg(h) =
d. La proiezione p; : X — C si estende a una funzione olomorfa 7 : X — CP' di grado
2. I punti di ramificazione di 7 sono Z(h) x {0} e, se d & dispari, I'unico buco tappato.

Dimostrazione. Leggiamo p; nelle carte bucate per vedere il comportamento di que-
sta funzione intorno ai buchi. Nel caso in cui d é pari, la carta bucata & ¢(z) = % e
prod (z) = % ha un polo in 0, quindi ¢ meromorfa.

Se d ¢ dispari, la carta bucata ¢ ¢(z) = \/ig e anche in questo caso p; o ¢~ (z) = \/i; ha

un polo in 0. In entrambi i casi, p; diventa una funzione meromorfa su X , 0 equivalen-
temente una funzione olomorfa 7 : X — CP' dove i buchi tappati vengono mappati in
oo € CP'.

E chiaro che questa funzione ha grado 2, poiché V 2z € C\Z(h), p;*(z) ha due controim-
magini (con molteplicita 1, dato che p; & una carta locale). I punti di ramificazione nella
parte X C X, per la Proposizione 1.2.3, sono {(z,w) : 3—5 =0} ={(2,0) : h(2) =0} =
Z(h) x {0}.

Vediamo la molteplicita di 7 nei punti all’infinito con le carte bucate:

Sappiamo che 7(c0) = 0o. Sia ¢ la carta intorno a oo € CP' e sia ¢ una delle carte
bucate su X.

dpari = 9(z) = b om0 (2) = Guel1) =2, = miltam =1

ddispari = ¢(2) = —=, ¢ '(2) = =, ¢omOoP (2)= gboo(%) =22 = mult,m =1

19



Abbiamo dunque che il punto all’infinito, se d é dispari, ¢ ramificato, mentre se d & pari,
entrambi i punti all’infinito non sono ramificati. n

Corollario 2.3.7. Sia X una curva iperellittica data dal polinomio w? — h(z), con
deg(h) =29+ 149, g >2, 6 € {0,1}. Sia X la superficie iperellittica compattificata di
X.

— X ha genere g.

Dimostrazione. Sia m : X — CP' come nella proposizione precedente. Se d = 29 + 2,
allora m ha 2¢g + 2 punti di ramificazioni sopra le radici Z(h), di molteplicita 2. Se
d = 2g + 1, allora ™ ha 2g + 1 punti di ramificazioni sopra le radici Z(h) piu un punto
di ramificazione all’infinito, tutti di molteplicita 2.

In ogni caso, ricordando che g(C]P’l) = 0, ed applicando la formula di Riemann-Hurwitz,

29(X) — 2 = deg(r) - (29(CP") — 2) + Y _ [mult,m — 1]

— 29(X)=2+42-(-2)+(29+2) =2

= g(X) =y

Introduco ora le 1-forme — il secondo oggetto centrale di questa tesi.
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Capitolo 3

Le 1-forme olomorte

Le motivazioni per voler fare integrali su superfici di Riemann sono tante: Portare stru-
menti potenti dell’analisi complessa (residui ecc.) sulle superfici di Riemann, calcolare
lunghezze, aree, e molto pit.

3.1 Definizioni e proprieta di 1-forme

Prendiamo una funzione f : X — C e proviamo ad integrarla su un cammino = :
[0,1] — X. Naturalmente, vorremmo usare la definizione di integrale in C, quindi siamo
obbligati ad usare le carte locali su X. La sfida ¢ definire I'integrale in modo che non
dipenda dalla carta scelta. Supponiamo che il cammino sia abbastanza piccola per stare

nell’intersezione U; N Uy dei domini di due carte ¢; : Uy — C e ¢o : Uy — C.
Potremmo pensare di definire 'integrale di f lungo v in questo modo:

[r=] resicra:
v ﬁ}ow
= [ (rea)(sr07) o)t
0
1
= [ (o) -@ony@a
Vediamo se cambiando la carta, resta invariato 'integrale:

fody'(z)dz = /01 (Foor") (¢2 o v(t)> (o 07)'(t) dt

P20

- /0 (for)(®)- (20 dr!) (¢107(t) - (d109)(t)dt
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Questo sarebbe uguale all'integrale nella carta ¢; se la funzione di transizione ¢yo¢; "’
avesse la derivata sempre uguale a 1. E chiaro che questo non succede, come vediamo in
questo semplice esempio:

Esempio 3.1.1.
X:(C, ¢1,¢QIC—>C, gblzid, ¢2:22d
v(t)=t, te|0,1], f(z)=2 2€C
I due integrali rispetto alle due carte sono diversi:

1
fo¢11(z)dz—/0 tdt—%

P10

1
o2 dz = otdt = 1
fod3'(2) dz /

P20

Cosa possiamo fare allora? Il fatto é che non possiamo prendere una funzione X — C
da integrare; ci serve un nuovo oggetto: Le 1-forme. Vorremmo imporre

(foor")(drov(t) = (fody')(d207(t)) - (20 ¢1") (¢107(1))
ossia, ponendo z = ¢1(v(1)),

(fodi")(z) = (foods")(da0¢i'(2)) (d20¢7")(2)

Come visto, questo si riconduce ad imporre le derivate delle funzioni di transizione ugua-
le a 1. Ma se il nostro oggetto ¢ una collezione di "espressioni" in carte con questa
condizione:

f6:(2) = f,(T(2)) - T'(2)

¢ esattemente quello che desideriamo per poter definire un integrale.

Questo ragionamento motiva la seguente:

Definizione 3.1.2. Una 1-forma olomorfa su un aperto V' C C ¢ un’espressione
w = f(2)dz, dove f : V — C ¢ una funzione olomorfa. Analogamente, w si chiama
1-forma meromorfa quando f é meromorfa.

Definizione 3.1.3. Sia X una superficie di Riemann. Una 1-forma olomorfa (mero-
morfa) su X ¢& una collezione {w; };e; di 1-forme olomorfe (meromorfe) "locali” su aperti
V; C C, una per ogni carta dell’atlante massimale {¢; : U; — V;}ies, con la seguente
proprieta di compatibilita:

Vi, j €1, siano w; = fi(2)dz, w; = fij(2)dz , e T = ¢; ogbl-_1
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— fi(2) = fi(T(2)) - T'(z) Vz € a(UiNU;)

Indichiamo con Q!(X) I'insieme delle 1-forme olomorfe su X e con M!(X) I'insieme delle
1-forme meromorfe su X.

Osservazione. La compatibilita nella definizione é una relazione di equivalenza:
(R) se 1 :] =T= idaT, = 17 fZ(Z) - fl(z) ’ Tl(’Z)

(8) se filz) = £i(T(2)) - T'(2)  su du(U;NT)
— fyw) = HEZOD (T w)) (T (w)  su (U N T)

(T) se fi(z) = fi(T(2)) - T'(2), [i(w) = fi(S(w)) - 5" (w)
= [i(2) = fi(§oT(2)) - 5(T(2)) - T'(2) = fi(S o T(2)) - (SoT) ()

La prossima proposizione afferma che per definire una 1-forma su una superficie di
Riemann, non é necessario dare una 1-forma locale per ogni possibile carta. Basta una
1-forma locale per ogni carta di un atlante.

Proposizione 3.1.4. Sia X una superficie di Riemann, e sia A = {¢; : U; — V;} un
atlante (non neccessariamente massimale). Siano date 1-forme olomorfe sui V; Vi, con
la condizione di compatibilita tra queste 1-forme.

Allora si estendono in modo unico a tutte le altre carte su X, cioé definiscono un’unica
1-forma olomorfa su X.

Dimostrazione. Sia 1 : U — V una carta qualsiasi su X. Cerchiamo |'unica 1-forma su
V' compatibile con quelle che gia abbiamo.

unicita: Supponiamo che esista la 1-forma cercata: w, = fy(2)dz. Scegliamo zy € V/,
po = ¥ (2,) € U; per un qualche 7. Allora:

Vzep(UNU), fu(2) = fildpo™(2)) - (pro ™) (2)

= f, & fissata sull’aperto ¢(U N U;) = su tutto V per il teorema dell’identita.

esistenza: Come prima, scelgo zo € V e scelgo U; 3 ¢ '(z) e posso definire fy
su (U NU;). Al variare di 29 € V, definisco cosi delle funzioni fy ., i cul domini
coprono tutto V. Se dimostro che queste funzioni sono d’accordo sui loro domini comuni,
la dimostrazione & completa perché f, ., € localmente olomorfa. Una volta scelto z,
confrontiamo due scelte di carte ¢;, ¢; con ¥~ (z) € U; N Uj.

(I) = fildio™'(2)) - (¢ 0™ 1) (2) in (U NUj)
(I1) = fi(g; 0971 (2)) - (¢ 007 (2) in (U NU;)

Per compatibilita,
fi(w) = fi(¢i 0 ¢; (w)) - (¢i 0 ¢; 1) (w) in ¢;(U; N ;)
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— Vzep(UnUnU;), (IT) = fi(g;o™"(2) - (pjov™ ") (2) =

= fiodioh ™ (2) - (¢i0d; ") (d5007(2)) - (pj 007 (2)
= fiodiop H(z) - (giod; opjor ) (2) = (1)

E chiaro che & soddisfatta la compatibilita con le altre forme. O

Vale una cosa ancora piu forte:

Proposizione 3.1.5. Siano X una superficie di Riemann, ¢y : Uy — Vj una carta e
a = f(z)dz una 1-forma su Vj. Supponiamo che Jw 1-forma su X t.c. wy, = a. Allora
w € in realta 'unica 1-forma su X con questa forma locale per ¢y.

Dimostrazione. Siano wy,ws 1-forme su X con la stessa forma locale per ¢q. Sia (U, ¢)
una qualsiasi altra carta, e siano py € Uy, ¢ € U. Poiché X ¢é connesso e localmente
euclideo, X ¢ anche CPA. Quindi 3y : [0,1] — X, 7(0) = po, 7(1) = g. Considero un
atlante A su X. Allora v~ !(A) ¢ un ricoprimento aperto di [0,1]. Per compattezza,

AUp,..., Uy, = U € A: im(y) C Y, Ui e UyNU;z1 # @Vi. Siano wéi_),wéj) le forme
locali rispettivamente di wy,ws nella carta ¢;. Per ipotesi w;t) = o.z(fo), quindi ("')2511) =

wfl) coincidono sull’aperto Uy N U;. Ma quindi per il teorema di identita wéll) = wéi).

Iterando questo ragionamento, segue che wq(bl) = wc(f). Per l'arbitrarieta della carta (U, ¢),

concludiamo che w; = wy O

Proposizione 3.1.6. Q'(X) e M'(X) sono C-spazi vettoriali.

Dimostrazione. Se wy, wy € Q'(X), la loro somma ¢ definita in questo modo: Per ogni
scelta di una carta ¢ : U — V, sono date le forme locali wy o = f1(2)dz, wa gy = fo(2)dz

su V. Definiamo quindi (wy + wa)s = (f1 + f2)(2)dz. La compatibilita & un esercizio
immediato. Si procede analogamente per definire ¢ - w;, V ¢ € C. Infine, con le forme
meromorfe la dimostrazione ¢ identica. O

Esempio 3.1.7. Q'(CP!) ha dimensione 0:
Vediamo CP! come uno spazio incollato (Esempio 2.2.6), con le carte ereditate da
¢1 =1d: C — C intorno a 0 e ¢g = % intorno a co.
Sia w una 1-forma olomorfa su CP!. Sia wy, = f(2)dz, f: C — C. Usiamo la compa-
tibilita della forma con l'altra carta: ¢ = ¢ : CP'\{0} - C. Sia T =1 :C* — C*
la funzione di transizione. Sia w., = g¢(z)dz la forma di w nella carta ¢oo. Allora
9(z) = f(T(2))-T'(z) = f(2)- = Vz € C*. Poich¢ per ipotesi w ¢ una 1-forma olomorfa,
0 & . larita ri iy .—f(%)z%oo

¢ una singolarita rimovibile per g, per cui —= —— c € C.
Quindi f(2) ha uno zero di ordine > 2 in 0, = f(z) 27,0, quindi f si estende ad una
funzione olomorfa f ; CIP)} — C. Sappiamo che le uniche funzioni olomorfe su CP* sono

quelle costanti. Inoltre, f(co) =0= f=0 = w =0.

24



Vediamo alcuni concetti importanti legati alle 1-forme:

Definizione 3.1.8 (differenziale di una funzione). Sia X una superficie di Riemann, e
sia f : X — C olomorfa. Il differenziale di f ¢ la 1-forma olomorfa df su X definita in
questo modo: V carta ¢ : U — V, definiamo

(df)p = (fo ¢_1)/(2’) dz suV

Proposizione 3.1.9. Il differenziale df é ben definito. Inoltre, se g : X — C & un altra
funzione olomorfa e ¢ € C, allora:

d(cf) =c-df, d(f+g)=df +dg
Dimostrazione. Siano ¢ : U — V e ¢ : Uy — V5 due carte. Allora, Vz € ¢(U N Us),
(foo ™) (2)=(fody opaod™)(2)
(

= (fody")(¢2007'(2)) (¢2007")(2)
=(fo¢")(T(2) T'(z), dove T =¢po00™

Quindi le forme locali sono tutte compatibili tra loro. La proprieta di linearita ¢ una
diretta conseguenza della linearita della derivata usuale in C. O]

Proposizione 3.1.10. Sia X una superficie di Riemann. Siano F': X — C una funzione
meromorfa e w € M®(X) una 1-forma meromorfa. Definiamo la 1-forma meromorfa
F - w in questo modo: V carta ¢ : U — V, se wy = ¢(z)dz, definiamo

(F-w)y=(Fod)(2)-g(z)dz suV

Questa definizione ¢ ben posta. Inoltre, se sia F' che w sono olomorfe, allora anche F - w
é olomorfa.

Dimostrazione. Dimostro la compatibilita delle forme locali: Siano ¢ : U — V e ¢ :
Uy — Va due carte. Siano wy = g(2)dz, wy, = g2(z)dz. Allora, Vz € ¢(U N Us),

(Foo™)(2) g(2) = (F oy )(¢2007'(2) g2(d20 67 (2)) - ($2067")(2)
= (Fo¢y")(T(2) 92T (2)) - T'(2), dove T=¢r0¢ "
O

Proposizione 3.1.11. Sia X una superficie di Riemann e sia ' : X — C una funzione
costante: F'=c € C. Allora dF' = 0.

Dimostrazione. ¥ ¢ carta, Fo¢p ' =c = (Fo¢ ') =0 = (dF), = 0dz O
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Proposizione 3.1.12. Sia X una superficie di Riemann. Siano F : X — W C C e
¢ : W — C funzioni olomorfe.

= d(poF)= (¢ oF)-dF
Dimostrazione. Sia ¢ : U — V una carta. Confrontiamo le forme locali per ¢:

d(poF)y=(poFo¢ ) (2)dz=¢/(Fod ' (2)) (Fog¢™')(z)dz
(¢ 0 F)dF)y = (&' 0 Fo¢ ') (z) - (F o) (2)dz

]

Osservazione. Nel caso in cui X ¢ una curva affine in C2?, abbiamo due forme olomorfe
naturali dz e dw date dai differenziali delle proiezioni sui fattori. Inoltre, per Proposizione
3.1.10, Vk € Clz,w], le 1-forme k(z,w)dz e k(z,w)dw sono olomorfe, e Vr € C(z,w)
funzione razionale, le 1-forme r(z,w)dz e r(z, w)dw sono meromorfe. In particolare, gli
spazi Q'(X) e M(X) sono di dimensione infinita.

Osservazione. La Proposizione 3.1.12 é utile quando si vuole semplificare un’espressione
come ad esempio d(z?) su una curva affine. Infatti, possiamo dire che d(2?) = 2zdz.

Proposizione 3.1.13. Sia X C C? una curva affine e sia F': X — C olomorfa. Allora
dF = 2dz + Ldw

Lemma 3.1.14. Sia X una superficie di Riemann e siano wy,w, € M*(X), con w; # 0.
Allora 3! f : X — C meromorfa, tale che wy = f - wy

Daro ora la definizione di integrale di un 1-forma olomorfa.

Definizione 3.1.15 (integrale). Sia X una superficie di Riemann. Sia w una 1-forma
olomorfa su X e sia 7 : [0,1] — X un cammino. Per compattezza dell’intervallo chiuso,
possiamo partizionare 0 = ag < a; < -+ < a, = 1 t.c. le restrizioni v; = V(4 a:41]
abbiano immagine inclusa in una carta (U;, ¢;) di X. Siano f;(z)dz le espressioni locali
di w nelle carte ¢;. L’integrale di w lungo v ¢ il numero complesso

n—1

Lw = Z fi(z)dz

i=0 Y $iovi
= nzl/aaH ((fz' o ;0 7)@) (¢ 0y)(t)dt

La precedente definizione dell’integrale é ben posta:
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Dimostrazione. L’invarianza per riparametrizzazioni e per ripartizioni di v sono conse-
guenze immediate dei risultati analoghi per gli integrali in C. Infatti, I'integrale di w
¢ definito come somma di integrali in C e riparametrizzare o ripartizionare vy significa
riparametrizzare /ripartizionare i cammini ¢; o ;. Dimostro ora l'invarianza per scelte di
carta, a cui ho gia accennato nell’introduzione di questa sezione. A meno di raffinamento
della partizione dei cammini, possiamo assumere che im(y) C U; N Us,, dove sono date
due carte ¢; : U; — V;, e 1-forme locali f; : V; — C, per i = 1,2. Per compatibilita delle
forme, f1(2) = fol 0 67 (2)) - (620 611 () V= € 61(Us N Uy). Quindi

Az = [ (fodron) (@) (eron) (D)
(faodao)(t) - (¢20¢1 ") (drov(t)) - (¢107)(t)dt
(faoda0v)(t) - (d20 1" 0dron)(t)dt

1

(fz O g0 7) (t) ) <¢2 © 7)/(75) dt

P10

— S —

= fa(2)dz

$p207y

O

L’integrale &€ C-lineare nelle 1-forme ed é lineare per partizione del cammino: Se w1, wo
sono due 1-forme su X, ¢ € C e v = 71 * 7, (come concatenazione), allora

/(c-w1+w2):c-/w1+/w2

¥ v ¥
/ wlz/wl—i—/wl
Y1*7Y2 71 Y2

Definizione 3.1.16 (poli, ordini e residuo). Sia w una 1-forma meromorfa su X, sia
p € X. péun polo di w quando in una carta locale (U, ¢), 'espressione f(z)dz di w ha
un polo in zg = ¢(p). Definiamo inoltre il suo ordine di polo: ord,(w) = ord,,(f).
Sviluppando f in serie di Laurent, f(z) = > ;= ¢z, si definisce il residuo di w in p
come Res,(w) = c_;.

Osservazione. E facile verificare che la proprieta di essere un polo di una 1-forma me-
romorfa e il suo ordine non dipendono dalla carta scelta. La prossima proposizione
garantisce che anche il residuo é ben definito.
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Proposizione 3.1.17.

1
Res,(w) = 37 /w
v

dove v € un cammino con numero di avvolgimento 1 attorno a p e 0 attorno a tutti gli
altri poli.

Dimostrazione. Si usano carte e il risultato analogo in analisi complessa su C. O

Proposizione 3.1.18.

fXsC = / af = F(v(1) — F(2(0))

3.2 La dimensione dello spazio Q!(X)

Fatto: Per una superficie di Riemann X compatta, lo spazio 2'(X) ha dimensione finita.
Piu precisamente, se X ¢ compatta di genere g,

dim Q' (X) =g

Questo fatto segue dal celebre teorema di Riemann-Roch, la cui dimostrazione completa
va oltre allo scopo di questa tesi, percio delineero soltanto i punti essenziali.

Definizione 3.2.1. Sia X una superficie di Riemann. Un divisore D su X ¢ una
funzione D : X — Z t.c. il suo supporto suppD = D~(Z*) sia discreto. Si usa la

seguente notazione:
D=Y"D(p)p
peX

Se X & compatta, allora suppD é finito e definiamo

degD := ZD(p) €Z

peX
Denotiamo Div(X) il gruppo degli divisori su X.
Osservazione. C’¢ un’ovvia relazione di ordine parziale su Div(X):
Dy <Dy <= Di(P)<Dy(P) YVPeX

Definizione 3.2.2 (divisori principali e canonici). Data una superficie di Riemann
compatta e una funzione meromorfa f : X — C, definiamo

(f):= D ordy(f)-p

peX
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Un divisore di questa forma si chiama divisore principale. Nello stesso modo, data
una 1-forma meromorfa w su X,

(w) ==Y ordy(w) - p
peX
Un divisore di questa forma si chiama divisore canonico.

Osservazione. 1l grado di ogni divisore principale ¢ 0. Questo segue dalla Proposizione
1.1.11

Definizione 3.2.3. Sia D un divisore su una superficie di Riemann compatta X. Defi-
niamo lo spazio delle funzioni meromorfe su X con poli limitati da D:

L(D) = {f X e M(X) | (f) > —D}
I(D) := dim(L(D))

Ho dunque introdotto tutti i concetti necessari per capire I’enunciato del teorema di
Riemann-Roch.

Teorema 3.2.4 (Riemann-Roch). Sia X una superficie di Riemann compatta di genere
g, e sia K un divisore canonico su X. Allora per ogni divisore D su X, vale:

(D) =deg(D)+1—-g+ (K — D)
Corollario 3.2.5. Sia X una superficie di Riemann compatta di genere g.
— dimQY(X) =g
Dimostrazione. Usiamo Riemann-Roch con D = 0:
1(0) = deg(0) +1 — g+ [(K)

E ovvio che deg(0) = 0. Inoltre, L(0) = O(X) e, poiché ogni funzione olomorfa su una
superficie di Riemann compatta é costante, [(0) = 1. Sia K = (wp). Allora, usando
anche il Lemma 3.1.14,

QY(X) = {we M'(X) ] (w) >0}
:{f~w0!f€M(X), (f - wo) 20}

= {f e M(X), | (f) = —(w0)}
= L(K)

Mettendo tutto insieme, abbiamo che:

dimQY(X)=1(K) =g
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3.3 Le 1-forme olomorfe sulle superfici iperellittiche

Consideriamo nuovamente una curva iperellittica X definita da w? — h(z), dove

d
h(z):c-H(z—ozj), d=deg(h) =29+ 1+dcong>2edec{0,1}.

=1

Sia X la superficie iperellittica compattificata di X. Abbiamo scoperto nel capitolo 2
che X ha genere g, e abbiamo scoperto nella precedente sezione che dim Q'(X) = g. In
questa ultima sezione della mia tesi dard una costruzione esplicita di una base per lo
spazio Q'(X).

Partiamo con un’osservazione semplice, ma importante: La funzione f = w?— h(z)
0 é una funzione costante su X, quindi il suo differenziale é nullo. Allora

df = d(w® — h(2)) = d(w?) — d(h(2)) = 2wdw — k' (z)dz = 0.

= 2wdw = h(2)dz
Questa relazione ci sara molto utile per trovare 1-forme olomorfe su X.

Proposizione 3.3.1. Le 1-forme dz e dw — olomorfe se considerate solo su X — non si
estendono in modo olomorfo su X.

Dimostrazione. Partiamo con dz.
(1) caso d pari: Intorno a ciascuno dei due buchi all’infinito abbiamo la coordinata
t = % Da questa relazione segue che z — 1 = 0, cioé ¢ una funzione costante su un

t
aperto di X. Allora
1 1 —1
d(z — ;) =0 = dz= d(;) = t_th come forme.

Ma se dz fosse olomorfa su tutto X , la funzione ;—21 dovrebbe essere olomorfa in 0, cosa
che non ¢ vera.

(2) caso d dispari: La coordinata all'infinito ¢ 7 con la relazione 7 = 1. Quindi,
analogamente a prima,

;—f non € continua in 0 = dz non ¢é olomorfa su X.

Si dimostra in modo analogo che dw non puo essere una 1-forma olomorfa su X. O]

Lemma 3.3.2.

1
— - dz € Q1(X)
w
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Dimostrazione. A priori, ‘fﬂ—z é solo una 1-forma meromorfa su X.

Vediamo il comportamento dei suoi possibili poli P = (a;,0): In punto con h(z) = 0,
poiché h non ha radici multiple, segue che h'(z) # 0.
Quindi, ricordando che 2w dw = h/(z) dz, in un intorno opportuno di P abbiamo

d 2
- ——dw,  che ¢ olomorfa in P perché abbiamo detto che h'(a;) # 0.

w W(z)

Proposizione 3.3.3. Sia p(z) € C[z].

La forma @dz ¢ olomorfa su X < deg(p) <g-—1
w

Dimostrazione.
Sia p(z) = apz” + O(zP~") per z — oo

(1) caso d pari: d = 2g + 2. La carta bucata all'infinito, su ciascuna componente
connessa, € : t = é

-1 _ (1
Tt SV ) PO LCOp
t2 w wt?

Bisogna fare vedere che ¢ olomorfa per ¢ — 0. Conviene prendere il quadrato. Abbiamo:
p2(2) = ah2*P + 0(2*P7Y) perz — o0
pz(%) =aht P + Ot *P™) pert — 0
A B ORI NG I
witt () -ttt (- o) ctt . 1—ajt
_ pQ(%)C—ltd—4 H = (a3t720 4 O(t~2DH1))pd 4! H

j ;

1
~1 2 4d—4-2D d—2D-3
= | | t +O(t
¢ 1 jt<aD ( )

1
1—Cth

1—Oéjt

J
olomorfapert -0 < d—4—-2D>02D<d—-4=29—2< D<g-—1

2) caso d dispari: d = 2g + 1. La carta all’infinito ¢ 7 = -1, piu precisamente,
g vz

T=¢(2): ¥ (2) =3

p(z), _ ()

3 dr
w 3w

1 -2
T T
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)T el (% - ay)

W (5)  W(E)  AdhTTP 4+ O(rTPH)
- T

_ a7 + O(r71P+2)) . 72
76¢ - 1 —a;r?
1
_ 1_2d—6 4D —4D+2
4C T (a T + O(T )) H 1——(W

J

olomorfa per 7 -0 <= 2d—6—-4D >0 <= D<(d—3)=g—1

Corollario 3.3.4. L’insieme

dz zdz 297 dz
{_ }

w w’ T w
& una base di Q'(X).
Dimostrazione. La proposizione precedente garantisce che sono proprio degli elementi di

ot (X ). Se dimostro che sono linearmente indipendenti, la conclusione segue dal corollario
del teorema di Riemann-Roch che afferma che dimQ!'(X) = g.

Sia
1 2971
ap—dz + -+ ag— dz =10
w
= su un aperto di C, %(ao + -+-ag-1297') = 0 = per continuazione analitica,
ag+ - ag_129*1 =0suC.
ag=---=ag_1 =0
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