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Introduzione

Il presente lavoro di tesi verte sulla costruzione geometrica e sull’analisi delle superfici
iperellittiche. L’obiettivo è duplice: definire rigorosamente la superficie di Riemann
compatta a partire dalla curva algebrica affine e, successivamente, determinarne lo spazio
delle 1-forme olomorfe.

L’elaborato è strutturato in tre capitoli.
Nel Primo Capitolo introdurremo il formalismo essenziale, richiamando le definizioni

di superficie di Riemann, carta locale e curva piana.
Nel Secondo Capitolo presenteremo le curve iperellittiche affini per poi procedere alla

loro compattificazione. Definiremo rigorosamente le operazioni di incollamento necessarie
a "tappare i buchi" (i punti all’infinito), ottenendo così una superficie compatta. Tale
compattezza non è formale, ma costituisce il prerequisito indispensabile per applicare i
teoremi globali del capitolo successivo.

Il Terzo Capitolo è dedicato allo studio delle 1-forme olomorfe. Dopo averne espo-
sto le proprietà, utilizzeremo il Teorema di Riemann-Roch per stabilire teoricamente la
dimensione dello spazio vettoriale Ω1(X). Concluderemo il lavoro costruendo esplicita-
mente una base di forme per il caso iperellittico, verificando la corrispondenza tra la
geometria della curva e la struttura analitica dello spazio delle forme.
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Capitolo 1

Concetti preliminari

In questo capitolo introduco i concetti necessari per capire gli argomenti trattati in que-
sto elaborato: le superfici di Riemann, le mappe tra loro, le curve affini, ecc. Per le
dimostrazioni, il lettore può consultare ad esempio [1].

Una superficie di Riemann è uno spazio topologico la cui struttura locale è quella
del piano complesso. Questi spazi sono in particolare delle varietà lisce, orientabili di
dimensione (reale) 2. È utile ed interessante trasportare i vari concetti di analisi com-
plessa sul piano complesso al mondo delle superfici di Riemann. Vediamolo formalmente:

1.1 Superfici di Riemann

Definizione 1.1.1 (carte). Una carta complessa su uno spazio topologico X è un
omeomorfismo ϕ : U → V tra aperti U ⊆ X e V ⊆ C. ϕ è centrata in p ∈ U quando
ϕ(p) = 0.
Due carte complesse ϕ1 : U1 → V1, ϕ2 : U2 → V2 su X sono compatibili quando ogni
volta che U1 ∩ U2 ̸= ∅, la funzione di transizione

ϕ2 ◦ ϕ1
−1
| : ϕ1(U1 ∩ U2) → ϕ2(U1 ∩ U2) è olomorfa.

Definizione 1.1.2 (atlanti). Un atlante complesso su X è una collezione di carte
complesse {ϕi : Ui → Vi}i∈I a due a due compatibili, tale che X =

⋃
i Ui. Due atlanti

su X sono equivalenti se la loro unione è un atlante. Una struttura complessa su
X è una classe di equivalenza di atlanti su X, o equivalentemente un atlante massimale
(dato dal lemma di Zorn).

Questo ci porta alla definizione chiave di superficie di Riemann:
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Definizione 1.1.3. Una superficie di Riemann è uno spazio topologico X connesso,
T2 e N2, insieme ad struttura complessa.

Esempio 1.1.4. C è superficie di Riemann; come atlante si può semplicemente prendere{
id : C → C

}
.

Definizione 1.1.5 (mappe olomorfe e meromorfe). Siano X e Y due superfici di Rie-
mann. Una funzione F : X → Y è olomorfa quando ∀ϕ : U → C carta su X e
∀ψ : V → C carta su Y, la composizione ψ ◦ F ◦ ϕ−1

| (dove è definita) è olomorfa.
Se F è olomorfa e biunivoca con inversa olomorfa, allora F è un biolomorfismo e X e
Y sono superfici biolomorfe o isomorfe.
Una funzione F : X → C è meromorfa quando esiste un insieme discreto P (F ) ⊂ X
t.c. F|X\P (F ) è olomorfa e ogni p ∈ P (F ) è un polo o una singolarità rimovibile per F ,
cioè ϕ(p) è un polo/una singolarità rimovibile per F ◦ ϕ−1 per ogni carta ϕ intorno a p.
Lo spazio vettoriale delle funzioni olomorfe da X → C si indica con O(X).
Lo spazio vettoriale delle funzioni meromorfe X → C si indica con M(X).

Esempio 1.1.6 (La sfera di Riemann). Consideriamo la compattificazione di Alexan-
droff Ĉ di C. Essa è naturalmente omeomorfa sia alla sfera S2 che alla retta proiettiva
complessa CP1. Ma vale di più: Questi spazi sono biolomorfi come superfici di Riemann.
Utilizzando le proiezioni stereografiche ϕN , ϕS sulla sfera e le carte affini ϕ0 , ϕ1 su CP1,
si hanno due atlanti complessi sullo spazio topologico Ĉ. Si dimostra che tra queste due
strutture complesse essenzialmente non c’è nessuna differenza, cioè che S2 e CP1 sono
biolomorfi.

Figura 1.1: La sfera di Riemann

Fatto: Ogni superficie di Riemann è orientabile.
Da questo segue, per il teorema di classificazione delle superfici topologiche, che ogni

5



superficie di Riemann compatta è omeomorfa a Sg: La superficie chiusa, orientabile
e connessa di genere g. Quindi può essere visualizzata come la somma connessa di g
tori, i.e. il toro con g buchi:

Figura 1.2: Le superfici topologiche compatte orientabili

Ecco alcuni fatti sulla topologia delle superfici compatti:

Proposizione 1.1.7. Sia X una superficie di Riemann compatta di genere g.

• la caratteristica di Eulero χ(X) = 2− 2g

• il gruppo fondamentale

π1(X) = ⟨a1, b1, . . . , ag, bg | a1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g = 1⟩

• il primo gruppo di omologia H1(X) = Z2g

Proposizione 1.1.8. Siano X e Y due superfici di Riemann e sia F : X → Y olomorfa
e non costante. Allora ∀ p ∈ X ∃!m ≥ 1 t.c. ∃ϕ carta centrata in p ed ∃ψ carta centrata
in F (p) t.c. ψ ◦ F ◦ ϕ−1 è la funzione z 7→ zm.

Definizione 1.1.9. Siano X e Y due superfici di Riemann e sia F : X → Y olomorfa e
non costante. Il numero m dato da Proposizione 1.1.8 si chiama molteplicità di F in p
e si indica multpF .
Un punto p con multpF ≥ 2 è un punto di ramificazione per F . L’insieme dei punti
di ramificazioni di F si denota R(F ).
Se X e Y sono compatte, il grado di F è

degF :=
∑

x∈F−1(y)

multxF

dove possiamo scegliere un punto arbitrario y ∈ Y .
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Definizione 1.1.10. Sia F : X → C meromorfa e sia p ∈ X. Scelta una carta ϕ intorno
a p, possiamo esprimere F ◦ ϕ−1 come serie di Laurent

∑∞
i=m ciz

i, con m ∈ Z, cm ̸= 0.
Allora l’ordine di F in p è definito come ordpF := m. Non dipende dalla carta scelta.

Proposizione 1.1.11. Sia X compatta e F : X → C meromorfa.

=⇒
∑
p∈X

ordpF = 0

Teorema 1.1.12 (Riemann-Hurwitz). Siano X e Y superfici di Riemann compatte e sia
F : X → Y una mappa non costante olomorfa. Allora

2g(X)− 2 = deg(f)
(
2g(Y )− 2

)
+

∑
p∈R(F )

[multpF − 1]

Introduco ora una classe importante di superfici di Riemann: Le curve piane affini e
proiettive.

1.2 Curve piane
Definizione 1.2.1 (curve piane). Una curva algebrica piana affine X ⊆ C2 è il
luogo di zeri di un polinomio f ∈ C[z, w]:

X = V (f) =
{
(z, w) ∈ C2 | f(z, w) = 0

}
La curva è nonsingolare o liscia quando f è nonsingolare, i.e.

∀ p ∈ X,
(∂f
∂z

(p),
∂f

∂w
(p)

)
̸=

(
0, 0

)
La curva è irriducibile quando f è irriducibile.
Una curva algebrica piana proiettiva X ⊆ CP2 è il luogo di zeri V (F ) =

{
[x : y : z] ∈

CP2 | F (x, y, z) = 0
}

di un polinomio omogeneo F ∈ C[x, y, z]. La curva è irriducibile
quando F è irriducibile, nonsingolare quando F è nonsingolare, i.e.

∀ p ∈ X,
(∂F
∂x

(p),
∂F

∂y
(p),

∂F

∂z
(p)

)
̸=

(
0, 0, 0

)
Proposizione 1.2.2. Ogni curva piana affine X = V (f) liscia ed irriducibile è una
superficie di Riemann.

Dimostrazione. Le proprietà T2 e N2 sono ereditate da C2. La connessione deriva dal-
l’irriducibilità di f attraverso un risultato profondo in geometria algebrica, che non dimo-
strerò quì. L’atlante complesso è garantito dal teorema della funzione implicita olomorfa:
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Sia p ∈ X con ∂f
∂z
(p) ̸= 0. Allora ∃ un intorno U di p: U = {(g(z), z)} per una funzione

olomorfa g : V ⊂ C → C e come carta intorno a p si prende una restrizione della pro-
iezione p2(z, w) = w. In tutti gli altri punti, ∂f

∂w
(p) ̸= 0 e p1(z, w) = z (ristretta) è una

carta. Queste carte sono compatibili tra loro, perché le funzioni di transizione sono o id
o la funzione implicita olomorfa g.

Per semplificare le notazioni, ogni tanto userò i simboli z e w per indicare le proiezioni
p1 e p2, che possono essere delle carte se definite su intorni opportuni; in ogni caso sono
funzioni olomorfe.

Osservazione. Anche le curve proiettive, se lisce ed irriducibili, sono delle superfici di
Riemann. Le carte si ottengono come composizioni delle carte affini in CP2 con le carte
delle curve affini.

Proposizione 1.2.3. Sia X = V (f) ⊂ C2 una curva affine. I punti di ramificazione
delle proiezioni p1 e p2 sono caratterizzati come segue:

P ∈ R(p1) ⇐⇒ ∂f

∂w
(P ) = 0

P ∈ R(p2) ⇐⇒ ∂f

∂z
(P ) = 0

Definizione 1.2.4. Data una curva piana affine X = V (f), la sua chiusura proiettiva
X

P ⊆ CP2 è il luogo di zeri dell’omogenizzazione fh di f :

fh := zd · f(x
z
,
y

z
) ∈ Cd[x, y, z] , dove d = deg(f)

X
P
:= V (fh)

Attenzione: Non è detto che XP sia ancora una superficie di Riemann.

Un caso particolare delle curve piane affini sono le curve iperellittiche – gli oggetti
centrali di questa tesi.
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Capitolo 2

Le superfici iperellittiche

2.1 Curve iperellittiche
Proposizione 2.1.1. Sia h ∈ C[z] un polinomio di grado ≥ 1, e sia f(z, w) = w2−h(z).
Allora:

1. f è irriducibile ⇐⇒ h non è un quadrato in C[z]

2. f è nonsingolare ⇐⇒ h è libero da quadrati

In particolare:
V (f) è una superficie di Riemann ⇐⇒ tutte le radici di h sono semplici.

Definizione 2.1.2. Una curva affine iperellittica è una curva piana affine X = V (f)
data da f(z, w) = w2 − h(z) con deg(h) ≥ 5 e h senza radici multiple.
Se deg(h) ∈ {3, 4}, X si chiama curva affine ellittica.

Più avanti scopriremo che se deg(h) = 2g + 1 + δ, con g ≥ 2, δ ∈ {0, 1}, il numero g
corrisponde al genere di un opportuna compattificazione di X, che chiamerò "superficie
iperellittica". Il numero δ non influenza il genere.

Definizione 2.1.3. Data una curva affine iperellittica X, la funzione olomorfa

ι : X → X si chiama involuzione iperellittica.
(z, w) 7→ (z,−w)

Osservazione. X = V (w2 − h(z)) non è mai compatta: La proiezione p1 : X →
C, (z, w) 7→ z è continua e suriettiva. Se X fosse compatta, im(p1) dovrebbe essere
limitato.
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Alcuni degli strumenti di analisi complessa più potenti funzionano solo sulle superfici
compatti. Anche per la mia missione di trovare tutte le 1-forme olomorfe su una super-
ficie iperellittica è necessario avere a che fare con una superficie compatta. Proviamo
quindi a compattificare la curva iperellittica X = V (f) in modo che resti una superficie
di Riemann.

Un primo tentativo per immergereX in una superficie di Riemann compatta potrebbe
essere di prendere la sua chiusura proiettiva:

se f(z, w) = w2 − h(z) = w2 − c

d∏
i=1

(z − αi)

F = zd · f(x
z
,
y

z
) = zd−2 · y2 − c

d∏
i=1

(x− αiz), X
P
= V (F )

Purtroppo vediamo subito che questo tentativo fallisce proprio per qualsiasi curva ipe-
rellittica, poiché compare sempre una singolarità nel punto [0 : 1 : 0].

F (0, 1, 0) = 0 =⇒ [0 : 1 : 0] ∈ X
P

∂F

∂y
= 2zd−1y

∂F

∂x
= −c

d∑
i=1

∏
k ̸=i

(x− αkz)

∂F

∂z
= (d− 2)zd−3y2 − c

d∑
i=1

[
− αi

∏
k ̸=i

(x− αkz)
]

=⇒ ∇F [0 : 1 : 0] = 0

Quindi abbiamo bisogno di un altro concetto di compattificazione.

Possiamo vedere la non-compattezza di X come se la superficie si avvolgesse attorno
ad un buco, dove però questo buco si trova all’infinito. Torna comodo vedere il com-
portamento della curva non compatta in questo modo, perché abbiamo un metodo per
tappare buchi nelle superfici di Riemann con dei dischi in modo naturale, e soprattutto
in modo olomorfo.

2.2 Incollare spazi e tappare buchi
In questa sezione spiegherò prima come si possono incollare due superfici di Riemann per
ottenerne una nuova. Dopodiché, introdurró il concetto di carta bucata su una superficie
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di Riemann e darò un metodo per "tappare il buco" di una tale carta bucata. Infine,
farò vedere come si puó ottenere in questo modo una compattificazione "bella" delle
superficie di partenza.

Innanzitutto, incolliamo due spazi topologici:

Definizione 2.2.1. Siano X e Y due spazi topologici, e U ⊆ X, V ⊆ Y due aperti
omeomorfi: φ : U

∼=−→ V . L’incollamento di X e Y lungo U e V tramite φ è lo
spazio topologico X ⊔φ Y :=

(
X ⊔ Y

)
/∼, con la relazione d’equivalenza generata da:

x ∼ φ(x) ∀x ∈ U .

Un altro modo per chiamare questo spazio è: L’incollamento di X lungo U a Y lungo
V (tramite φ). Per avere un’immagine intuitiva: È come mettere della colla su U e su
V ed incollarli. I restanti pezzi di X e Y rimangano separati.

Figura 2.1: Incollamento

Mettiamoci ora nel caso in cui X e Y sono superfici di Riemann e U e V sono due
aperti biolomorfi (in particolare omeomorfi). Possiamo allora sperare che l’incollamento
di X e Y lungo U e V sia ancora una superficie di Riemann. L’unico vero pericolo è che
l’incollamento non sia più uno spazio di Hausdorff.

Proposizione 2.2.2 (incollamento di superfici). Siano X e Y superfici di Riemann, e
siano U ⊆ X, V ⊆ Y sottoinsiemi aperti biolomorfi:

φ : U
∼=−→ V biolomorfismo
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Sia Z = X ⊔φ Y l’incollamento lungo φ. Allora esiste un’unica struttura complessa su
Z tale che le inclusioni iX : X ↪→ Z e iY : Y ↪→ Z siano olomorfe. Inoltre, Z è connesso
e N2.

Dimostrazione. Dimostrare che Z sia connesso e N2 è elementare. Costruiamo l’atlante
cercato:
Se vogliamo che le inclusioni siano olomorfe, allora ∀ ϕ carta su X e ∀ ψ presunta carta
su Z, deve valere che ψ ◦ iX ◦ϕ−1 è olomorfa. Notiamo che ϕ ◦ i−1

X è un omeomorfismo, e
che la condizione su ψ ◦ iX ◦ ϕ−1 è esattamente la compatibilità tra le carte ψ e ϕ ◦ i−1

X .
Quindi, ogni atlante su Z rispetto al quale le inclusioni sono olomorfe contiene le carte
ϕ ◦ i−1

X nel suo atlante massimale. Simmetricamente, la stessa cosa vale per Y . Quindi,
scelti due atlanti

{
(Uα, ϕα)

}
α

per X,
{
(Wα, ψα)

}
α

per Y , consideriamo{(
iX(Uα), ϕα ◦ i−1

X

)}
α
∪

{(
iY (Wα), ψα ◦ i−1

Y

)}
α

È immediato dimostrare che questo è un atlante, e per l’osservazione sull’atlante massi-
male, definisce l’unica struttura complessa con le proprietà richieste.

Non è scontato che uno spazio incollato in questo modo sia anche uno spazio di Hau-
sdorff. Per avere uno spazio di Hausdorff, servono delle ipotesi in più.

Lemma 2.2.3. Siano X e Y due spazi topologici T2 e N1, e siano U ⊆ X, V ⊆ Y due
aperti omeomorfi: φ : U

∼=−→ V . Allora sono equivalenti:

(i) Lo spazio di incollamento X ⊔φ Y è Hausdorff

(ii) Non esistono successioni (xn) in U convergenti ad un punto in ∂XU t.c. φ(xn) →
y ∈ ∂Y V .

Vediamo adesso cosa si intende per un "buco" in una superficie di Riemann e come
si può tappare.

Definizione 2.2.4 (carte bucate). Una carta ϕ : U → C su una superficie di Riemann
X è una carta bucata quando:

(i) im(ϕ) contiene un disco aperto bucato D∗
ε(0)

(ii) ϕ−1(D∗
ε(0))

X
⊆ U

(iii) ϕ
(
ϕ−1D∗

ε(0)
X
)
= Dε(0)

C
\{0}.
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Figura 2.2: carta bucata

In altre parole, una carta bucata trasporta una regione di una superficie di Riemann
ad un disco di C con un foro nel centro. Sul piano complesso C, la chiusura di questo
disco chiude il foro. Il nostro obiettivo è di fare lo stesso anche sulla superficie: chiudere
il foro.

Tappare un buco: In presenza di una carta bucata ϕ :W → C su una superficie di
Riemann X, con D∗

ε ⊆ im(ϕ), possiamo costruire il seguente incollamento: Sia Y = Dε

il disco aperto (non bucato) e sia V = D∗
ε ⊂ Y . Sia U = ϕ−1(D∗

ε). Allora U ⊆ W e la
funzione φ = ϕ|U : U

∼=−→ V è un biolomorfismo tra due aperti U di X e V di Y . Quindi è
ben definito l’incollamento X̂ := X ⊔φDε. Diciamo che X̂ è ottenuto da X tappando
il buco della carta ϕ.

Proposizione 2.2.5 (tappare un buco). Sia X una superficie di Riemann con una carta
bucata ϕ. Allora lo spazio X̂ ottenuto da X tappando il buco di ϕ è una superficie di
Riemann.

Dimostrazione. Per la Proposizione 2.2.2, basta dimostrare che X̂ è di Hausdorff. Pro-
viamo ad usare il Lemma 2.2.3: Sia (xn) una successione in U = ϕ−1(D∗

ε) t.c.

xn → x ∈ ∂XU = ∂X
(
ϕ−1(D∗

ε)
)
⊆ ϕ−1(D∗

ε)
X

⇒ x ∈ U per (ii) e ϕ(P ) ∈ (Dε)
∗ per (iii). Supponiamo per assurdo che

ϕ(xn) → P ∈ ∂Y V = ∂Dε
(
D∗
ε

)
= {z0}

Per continuità ϕ(xn) → ϕ(P ) = z0, assurdo.

Osserviamo che nella coordinata locale della carta bucata ϕ, il nuovo punto, cioè il
buco tappato, ha coordinata 0.
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Esempio 2.2.6. Possiamo ottenere la sfera di Riemann Ĉ da C tappando un buco al-
l’infinito. La carta ϕ(z) = 1

z
: C∗ → C∗ è naturalmente una carta bucata sulla superficie

C. Incolliamo il disco unitario D lungo D∗ a C lungo ϕ−1(D∗) = C\D. Topologicamente,
otteniamo la sfera S2. In termini di analisi complessa, otteniamo la sfera con un atlante
complesso. Le carte sono quelle garantite dalle proposizioni precedenti sugli incollamenti
e sui buchi: ϕ1(z) = z su Ĉ\{∞} e

ϕ2 : Ĉ\{0} → C, ϕ2(z) =

{
1
z
, z ∈ Ĉ\{0,∞}

0, z = ∞

Proposizione 2.2.7 (compattificazione tappando i buchi). Sia X una superficie di Rie-
mann e siano ϕi : Ui → Vi ⊇ D∗

ϵi
, i = 1, . . . , n un numero finito di carte bucate su X.

Supponiamo che X\
⋃
i ϕ

−1
i (D∗

i ) sia compatto. Allora la superficie ottenuta tappando
tutti i buchi delle ϕi è compatta.

Dimostrazione. Sia Z =
(
X ⊔ Dϵ1 ⊔ · · · ⊔ Dϵn

)
/ ∼ lo spazio di incollamento, e π la

proiezione al quoziente. Possiamo scomporre

Z = π
((
X\

⋃
i

ϕ−1
i (D∗

ϵi
)
))

∪
⋃
i

π(Dϵi)

o anche Z = π
((
X\

⋃
i

ϕ−1
i (D∗

ϵi
)
))

∪
⋃
i

π(Dϵi)

Sappiamo che ϕ−1(D∗
ϵi
) ∼= Dϵi

∗, quindi π(Dϵi) = ϕ−1(D∗
ϵ ) ∪ {Pi} ∼= Dϵi che è compatto.

Quindi Z è l’unione finita di spazi compatti, perciò è compatto.

Figura 2.3: compattificazione

Applichiamo questa tecnica per compattificare le curve iperellittiche:
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2.3 La compattificazione delle curve iperellittiche
Sia X = V (f) = V (w2 − h(z)) una curva affine iperellittica, con

h(z) = c ·
d∏
j=1

(z − αj)

D’ora in poi chiamerò p1, p2 : X → C le proiezioni naturali, ristrette alla curva.

Notiamo che ∂f
∂w

= 2w e ∀ (z, w) ∈ X, w = 0 ⇔ h(z) = 0. Quindi la proiezione
p1(z, w) = z, opportunemente ristretta, è una carta locale in tutti i punti di X con
h(z) ̸= 0.

Per compattificare la curva, vediamo cosa succede "all’infinito", i.e., allontanandoci
sempre di più dal punto (0, 0). Consideriamo un disco Dr(0) ⊂ C abbastanza grande da
contenere tutte gli zeri Z(h) di h.
Siano V = C\Dr(0) e U = p−1

1 (V ). Notiamo che ∀ z ∈ V, p−1
1 (z) = {(z,±

√
h(z))} ha

cardinalità 2 (h(z) ̸= 0). Inoltre, per quanto appena detto, p1 è un omeomorfismo locale
su U . Concludiamo che p1|U : U → V è un rivestimento a 2 fogli. Raccolgo queste
informazioni in una proposizione:

Proposizione 2.3.1. Sia X una curva iperellittica data dal polinomio w2 − h(z). Sia
r > 0 t.c. Z(h) ⊂ Dr(0). Siano V = C\Dr(0) e U = p−1

1 (V ). Allora p1|U : U → V è un
rivestimento a 2 fogli.

Applicando un po’ di teoria dei rivestimenti, possiamo dimostrare che ci sono due
classi di isomorfismo di rivestimenti a 2 fogli dello spazio V . Infatti, sappiamo che esiste
una biezione:{

rivestimenti di V a 2 fogli
}

isomorfismo di rivest.
∼=

{
π1(V ) → S2 omomorfismi

}
coniugio

In altre parole, le classi di isomorfismo di rivestimenti di V sono in biezione con le classi
di coniugio di omomorfismi di gruppo π1(V ) → S2. Dato che π1(V ) ∼= Z, ci sono
esattamente due omomorfismi di gruppo π1(V ) → S2, e non sono coniugati. Quindi
esistono due classi di isomorfismo di rivestimenti a 2 fogli di V . Non è difficile trovarli:

1. Due fogli disconnessi omeomorfi all’immagine.

2. Rivestimento connesso. Concettualmente, questo corrisponde al rivestimento q :
C∗ → C∗, z 7→ z2, oppure ad una spirale piatta che viene schiacciata.
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(a) Rivestimento disconnesso (b) Rivestimento connesso

Ovviamente questi due rivestimenti non sono isomorfi.

Torniamo adesso alla curva iperellittica. Quale delle due classi di rivestimento è
p1|U : U → V ? La strategia per rispondere a questa domanda è di prendere un cammino
chiuso in V che fa un giro attorno a 0 e sollevarlo allo spazio di rivestimento. Il punto
cruciale è capire se il cammino sollevato è chiuso o meno.

Vale il seguente risultato:

Proposizione 2.3.2. Sia X una curva iperellittica data dal polinomio w2 − h(z). Sia
d = deg(h). Sia r > 0 t.c. Z(h) ⊂ Dr(0). Siano V = C\Dr(0) e U = p−1

1 (V ).
Sia R > r e γ(t) = Reit : [0, 2π] → V . Allora, una volta scelta una preimmagine
P0 ∈ p−1

1 (γ(0)), sono equivalenti:

(i) Il sollevamento di γ a partire da P0 rispetto al rivestimento p1|U è chiuso

(ii) Il rivestimento p1|U : U → V è disconnesso

(iii) d è pari

Dimostrazione. La equivalenza (i) ⇐⇒ (ii) è chiara da un punto di vista geometrico-
intuitivo: Il sollevamento del cammino al rivestimento disconnesso è omeomorfo al cam-
mino stesso, quindi chiuso. D’altra parte, un cammino chiuso che fa un giro totale sullo
spazio di rivestimento a forma di spirale, nello spazio base dovrebbe fare due giri.
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Dimostro adesso che (ii) ⇐⇒ (iii):
Il punto R = γ(0) ha due preimmagini per p1. Per ogni scelta P0 di una di queste
preimmagini, esiste un unico sollevamento γ̃ di γ rispetto a p1 t.c. γ̃(0) = P0.

U

[0, 2π] V

p1
γ̃

γ

Possiamo scrivere γ̃(t) =
(
γ(t), η(t)

)
. Osserviamo che γ̃ è chiuso ⇔ η lo è. Per

costruzione di U , non ci sono punti con coordinata w uguale a 0 in U , quindi η(t) è un
cammino in C∗. Inoltre, vale che (η(t))2 = h(γ(t)). Questo ci dice che il cammino η è
un sollevamento del cammino h ◦ γ rispetto al rivestimento q(z) = z2 : C∗ → C∗.

C∗

[0, 2π] C∗

q
η

h◦γ

η2(t) = h(γ(t)) = c
∏

j
(Reit − αj) = c

∏
j
rj(t)e

iθj(t) = c
∏

j

[
rj(t)

]
· ei

∑
j θj(t)

Un candidato per η(t) è
√
c
∏

j rj(t) · e
i
2

∑
j θj(t). Cambiare il segno corrisponde a

cambiare retroimmagine p−1
1 (R), ma vedremo subito che queste scelte non hanno nessuna

influenza sul risultato. Vediamo se il cammino η è chiuso o meno:

η(2π) =

√
c
∏

j
rj(2π) · e

i
2

∑
j θj(2π)

=

√
c
∏

j
rj(0) · e

i
2

∑
j(θj(0)+2π)

= η(0) · e
i
2

∑d
j 2π = η(0) · eidπ = η(0) · (−1)d

Abbiamo quindi dimostrato che γ̃ è chiuso ⇔ d è pari

Cerchiamo ora delle carte bucate sulle superfici iperellittiche:
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Proposizione 2.3.3 (buchi sulle curve iperellittiche). Sia X una curva iperellittica data
dal polinomio w2−h(z). Sia r > 0 t.c. Z(h) ⊂ Dr(0). Siano V = C\Dr(0) e U = p−1

1 (V ).
Allora:

1. Se d è pari, allora su ogni componente connessa del ricoprimento U , la funzione 1
z

è una carta bucata.

2. Se d è dispari, allora sul ricoprimento U esiste una carta bucata ϕ con ϕ2 = 1
z
.

Essenzialmente, ϕ(z) = 1√
z
, che è definita senza ambiguità su U .

Dimostrazione. (1) caso d pari:
Siano U+ e U− le due componenti connesse di U . Abbiamo già osservato che la proiezione
p1 ristretta a una delle componenti connessi è un omeomorfismo, e quindi è una carta.
Quindi ϕ : U+ → C∗, ϕ(z, w) = 1

z
è una carta bucata (e lo stesso vale per U−). Infatti:

(i) im(ϕ) = D 1
r
(0) ⊇ D∗

1
R

(0) con R > r

(ii) ϕ−1(D∗
1
R

) = p−1
1 (C\DR) ⊆ p−1

1 (V ) = U

(iii) ϕ
(
ϕ−1(D∗

1
R

)
)
= D 1

R

∗

In modo identico, 1
z

è carta bucata per l’altro foglio U−.

(2) caso d dispari: Abbiamo già visto come è fatto il rivestimento p1 in questo caso
e che assomiglia molto al rivestimento della funzione "quadrato" q : V → V , z 7→ z2.
Dobbiamo riuscire a mappare la regione U ⊂ X in modo biolomorfo su V . Speriamo
quindi di trovare una carta sollevando p1 rispetto al rivestimento q:

V

U V

q
ϕ

p1

Condizione necessaria e sufficiente per l’esistenza di un tale sollevamento è:

p1∗
(
π1(U)

)
≤ q∗

(
π1(V )

)
Sappiamo che i gruppi fondamentali π1(U) e π1(V ) sono entrambi isomorfi a Z. È

chiaro che la classe [γ] del cammino γ(t) = Reit in V è un generatore di π1(V ). Ovvia-
mente, q ◦ γ raddoppia il numero di avvolgimento di γ: q∗([γ]) = 2[γ]. Bisogna quindi
controllare se l’immagine di un generatore di π1(U) sia un multiplo pari di [γ].
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Geometricamente, ci si convince facilmente che che ogni generatore di π1(U) viene
proiettato da p1 in ±2[γ]. Questo garantisce l’esistenza del sollevamento cercato.

p1 e q sono due rivestimenti a 2 fogli di V e quindi dalla teoria dei rivestimenti segue
che ϕ è un omeomorfismo, (⇒ biolomorfismo).

Osserviamo che ϕ(z, w)2 = z, quindi se considero φ = 1
ϕ
, ottengo una carta bucata:

φ2 = 1
z

⇐⇒ φ = 1√
z
.

Proposizione 2.3.4. Sia X una curva iperellittica. Sia X̂ la superficie ottenuta da X
tappando i buchi delle carte date dalla Proposizione 2.3.3. Allora X̂ è una superficie
compatta.

Definizione 2.3.5. Una superficie compatta X̂ ottenuta da una curva iperellittica X
tappando i buchi, si chiama superficie iperellittica.

Ora che abbiamo compattificato in modo soddisfacente le curve iperellittiche, manca
poco per scoprire il loro genere. Tale numero viene fuori da una mappa tra la superfi-
cie iperellittica in questione e la sfera di Riemann, ed una semplice applicazione della
relazione di Riemann–Hurwitz.

Proposizione 2.3.6. SiaX una curva iperellittica data dal polinomio w2−h(z), deg(h) =
d. La proiezione p1 : X → C si estende a una funzione olomorfa π : X̂ → CP1 di grado
2. I punti di ramificazione di π sono Z(h)× {0} e, se d è dispari, l’unico buco tappato.

Dimostrazione. Leggiamo p1 nelle carte bucate per vedere il comportamento di que-
sta funzione intorno ai buchi. Nel caso in cui d è pari, la carta bucata è ϕ(z) = 1

z
e

p1 ◦ ϕ−1(z) = 1
z

ha un polo in 0, quindi è meromorfa.
Se d è dispari, la carta bucata è ϕ(z) = 1√

z
e anche in questo caso p1 ◦ ϕ−1(z) = 1√

z
ha

un polo in 0. In entrambi i casi, p1 diventa una funzione meromorfa su X̂, o equivalen-
temente una funzione olomorfa π : X̂ → CP1 dove i buchi tappati vengono mappati in
∞ ∈ CP1.
È chiaro che questa funzione ha grado 2, poiché ∀ z ∈ C\Z(h), p−1

1 (z) ha due controim-
magini (con molteplicità 1, dato che p1 è una carta locale). I punti di ramificazione nella
parte X ⊂ X̂, per la Proposizione 1.2.3, sono {(z, w) : ∂f

∂w
= 0} = {(z, 0) : h(z) = 0} =

Z(h)× {0}.
Vediamo la molteplicità di π nei punti all’infinito con le carte bucate:
Sappiamo che π(∞) = ∞. Sia ϕ∞ la carta intorno a ∞ ∈ CP1 e sia ϕ una delle carte
bucate su X̂.

d pari ⇒ ϕ(z) =
1

z
, ϕ∞ ◦ π ◦ ϕ−1(z) = ϕ∞(

1

z
) = z, ⇒ mult∞π = 1

d dispari ⇒ ϕ(z) =
1√
z
, ϕ−1(z) =

1

z2
, ϕ∞ ◦ π ◦ ϕ−1(z) = ϕ∞(

1

z2
) = z2,⇒ mult∞π = 1
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Abbiamo dunque che il punto all’infinito, se d è dispari, è ramificato, mentre se d è pari,
entrambi i punti all’infinito non sono ramificati.

Corollario 2.3.7. Sia X una curva iperellittica data dal polinomio w2 − h(z), con
deg(h) = 2g+1+ δ, g ≥ 2, δ ∈ {0, 1}. Sia X̂ la superficie iperellittica compattificata di
X.
=⇒ X̂ ha genere g.

Dimostrazione. Sia π : X̂ → CP1 come nella proposizione precedente. Se d = 2g + 2,
allora π ha 2g + 2 punti di ramificazioni sopra le radici Z(h), di molteplicità 2. Se
d = 2g + 1, allora π ha 2g + 1 punti di ramificazioni sopra le radici Z(h) più un punto
di ramificazione all’infinito, tutti di molteplicità 2.
In ogni caso, ricordando che g(CP1) = 0, ed applicando la formula di Riemann-Hurwitz,

2g(X̂)− 2 = deg(π) · (2g(CP1)− 2) +

2g+2∑
k=1

[multpπ − 1]

=⇒ 2g(X̂) = 2 + 2 · (−2) + (2g + 2) = 2g

=⇒ g(X̂) = g

Introduco ora le 1-forme – il secondo oggetto centrale di questa tesi.
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Capitolo 3

Le 1-forme olomorfe

Le motivazioni per voler fare integrali su superfici di Riemann sono tante: Portare stru-
menti potenti dell’analisi complessa (residui ecc.) sulle superfici di Riemann, calcolare
lunghezze, aree, e molto più.

3.1 Definizioni e proprietà di 1-forme
Prendiamo una funzione f : X → C e proviamo ad integrarla su un cammino γ :
[0, 1] → X. Naturalmente, vorremmo usare la definizione di integrale in C, quindi siamo
obbligati ad usare le carte locali su X. La sfida è definire l’integrale in modo che non
dipenda dalla carta scelta. Supponiamo che il cammino sia abbastanza piccola per stare
nell’intersezione U1 ∩ U2 dei domini di due carte ϕ1 : U1 → C e ϕ2 : U2 → C.

Potremmo pensare di definire l’integrale di f lungo γ in questo modo:∫
γ

f :=

∫
ϕ1◦γ

f ◦ ϕ−1
1 (z) dz

=

∫ 1

0

(
f ◦ ϕ−1

1

)(
ϕ1 ◦ γ(t)

)
· (ϕ1 ◦ γ)′(t) dt

=

∫ 1

0

(
f ◦ γ(t)

)
· (ϕ1 ◦ γ)′(t) dt

Vediamo se cambiando la carta, resta invariato l’integrale:∫
ϕ2◦γ

f ◦ ϕ−1
2 (z) dz =

∫ 1

0

(
f ◦ ϕ−1

2

)(
ϕ2 ◦ γ(t)

)
· (ϕ2 ◦ γ)′(t) dt

=

∫ 1

0

(
f ◦ γ

)
(t) · (ϕ2 ◦ ϕ−1

1 )′(ϕ1 ◦ γ(t)) · (ϕ1 ◦ γ)′(t) dt
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Questo sarebbe uguale all’integrale nella carta ϕ1 se la funzione di transizione ϕ2◦ϕ−1
1

avesse la derivata sempre uguale a 1. È chiaro che questo non succede, come vediamo in
questo semplice esempio:

Esempio 3.1.1.

X = C , ϕ1, ϕ2 : C → C, ϕ1 = id, ϕ2 = 2id

γ(t) = t, t ∈ [0, 1], f(z) = z, z ∈ C

I due integrali rispetto alle due carte sono diversi:∫
ϕ1◦γ

f ◦ ϕ−1
1 (z) dz =

∫ 1

0

t dt =
1

2∫
ϕ2◦γ

f ◦ ϕ−1
2 (z) dz =

∫ 1

0

2t dt = 1

Cosa possiamo fare allora? Il fatto è che non possiamo prendere una funzione X → C
da integrare; ci serve un nuovo oggetto: Le 1-forme. Vorremmo imporre(

f ◦ ϕ−1
1

)(
ϕ1 ◦ γ(t)

)
=

(
f ◦ ϕ−1

2

)(
ϕ2 ◦ γ(t)

)
· (ϕ2 ◦ ϕ−1

1 )′(ϕ1 ◦ γ(t))

ossia, ponendo z = ϕ1(γ(t)),(
f ◦ ϕ−1

1

)
(z) =

(
f ◦ ϕ−1

2

)(
ϕ2 ◦ ϕ−1

1 (z)) · (ϕ2 ◦ ϕ−1
1 )′(z)

Come visto, questo si riconduce ad imporre le derivate delle funzioni di transizione ugua-
le a 1. Ma se il nostro oggetto è una collezione di "espressioni" in carte con questa
condizione:

fϕ1(z) = fϕ2(T (z)) · T ′(z)

è esattemente quello che desideriamo per poter definire un integrale.

Questo ragionamento motiva la seguente:

Definizione 3.1.2. Una 1-forma olomorfa su un aperto V ⊆ C è un’espressione
ω = f(z)dz, dove f : V → C è una funzione olomorfa. Analogamente, ω si chiama
1-forma meromorfa quando f è meromorfa.

Definizione 3.1.3. Sia X una superficie di Riemann. Una 1-forma olomorfa (mero-
morfa) su X è una collezione {ωi}i∈I di 1-forme olomorfe (meromorfe) "locali" su aperti
Vi ⊆ C, una per ogni carta dell’atlante massimale {ϕi : Ui → Vi}i∈I , con la seguente
proprietà di compatibilità:

∀ i, j ∈ I, siano ωi = fi(z)dz, ωj = fj(z)dz , e T = ϕj ◦ ϕ−1
i
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=⇒ fi(z) = fj(T (z)) · T ′(z) ∀z ∈ ϕi(Ui ∩ Uj)
Indichiamo con Ω1(X) l’insieme delle 1-forme olomorfe su X e con M1(X) l’insieme delle
1-forme meromorfe su X.

Osservazione. La compatibilità nella definizione è una relazione di equivalenza:

(R) se i = j ⇒ T = id, T ′ ≡ 1, fi(z) = fi(z) · T ′(z)

(S) se fi(z) = fj(T (z)) · T ′(z) su ϕi(Ui ∩ Uj)
=⇒ fj(w) =

fi(T
−1(w))

T ′(T−1(w))
= fi(T

−1(w)) · (T−1)′(w) su ϕj(Ui ∩ Uj)

(T) se fi(z) = fj(T (z)) · T ′(z), fj(w) = fk(S(w)) · S ′(w)
=⇒ fi(z) = fk(S ◦ T (z)) · S ′(T (z)) · T ′(z) = fk(S ◦ T (z)) · (S ◦ T )′(z)

La prossima proposizione afferma che per definire una 1-forma su una superficie di
Riemann, non è necessario dare una 1-forma locale per ogni possibile carta. Basta una
1-forma locale per ogni carta di un atlante.

Proposizione 3.1.4. Sia X una superficie di Riemann, e sia A = {ϕi : Ui → Vi} un
atlante (non neccessariamente massimale). Siano date 1-forme olomorfe sui Vi ∀ i, con
la condizione di compatibilità tra queste 1-forme.
Allora si estendono in modo unico a tutte le altre carte su X, cioè definiscono un’unica
1-forma olomorfa su X.

Dimostrazione. Sia ψ : U → V una carta qualsiasi su X. Cerchiamo l’unica 1-forma su
V compatibile con quelle che già abbiamo.

unicità: Supponiamo che esista la 1-forma cercata: ωψ = fψ(z)dz. Scegliamo z0 ∈ V ,
p0 = ψ−1(zo) ∈ Ui per un qualche i. Allora:

∀ z ∈ ψ(U ∩ Ui), fψ(z) = fi(ϕ ◦ ψ−1(z)) · (ϕ1 ◦ ψ−1)′(z)

=⇒ fψ è fissata sull’aperto ψ(U ∩ Ui) ⇒ su tutto V per il teorema dell’identità.
esistenza: Come prima, scelgo z0 ∈ V e scelgo Ui ∋ ψ−1(z0) e posso definire fψ

su ψ(U ∩ Ui). Al variare di z0 ∈ V , definisco così delle funzioni fψ,z0 i cui domini
coprono tutto V . Se dimostro che queste funzioni sono d’accordo sui loro domini comuni,
la dimostrazione è completa perché fψ,z0 è localmente olomorfa. Una volta scelto z0,
confrontiamo due scelte di carte ϕi, ϕj con ψ−1(z0) ∈ Ui ∩ Uj.

(I) = fi(ϕi ◦ ψ−1(z)) · (ϕi ◦ ψ−1)′(z) in ψ(U ∩ Ui)

(II) = fj(ϕj ◦ ψ−1(z)) · (ϕj ◦ ψ−1)′(z) in ψ(U ∩ Uj)
Per compatibilità,

fj(w) = fi(ϕi ◦ ϕ−1
j (w)) · (ϕi ◦ ϕ−1

j )′(w) in ϕj(Ui ∩ Uj)
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=⇒ ∀ z ∈ ψ(U ∩ Ui ∩ Uj), (II) = fj(ϕj ◦ ψ−1(z)) · (ϕj ◦ ψ−1)′(z) =

= fi ◦ ϕi ◦ ψ−1(z) · (ϕi ◦ ϕ−1
j )′(ϕj ◦ ψ−1(z)) · (ϕj ◦ ψ−1)′(z)

= fi ◦ ϕi ◦ ψ−1(z) · (ϕi ◦ ϕ−1
j ◦ ϕj ◦ ψ−1)′(z) = (I)

È chiaro che è soddisfatta la compatibilità con le altre forme.

Vale una cosa ancora più forte:

Proposizione 3.1.5. Siano X una superficie di Riemann, ϕ0 : U0 → V0 una carta e
α = f(z)dz una 1-forma su V0. Supponiamo che ∃ω 1-forma su X t.c. ωϕ0 = α. Allora
ω è in realtà l’unica 1-forma su X con questa forma locale per ϕ0.

Dimostrazione. Siano ω1, ω2 1-forme su X con la stessa forma locale per ϕ0. Sia (U, ϕ)
una qualsiasi altra carta, e siano p0 ∈ U0, q ∈ U . Poiché X è connesso e localmente
euclideo, X è anche CPA. Quindi ∃γ : [0, 1] → X, γ(0) = p0, γ(1) = q. Considero un
atlante A su X. Allora γ−1(A) è un ricoprimento aperto di [0, 1]. Per compattezza,
∃U0, . . . , Uk = U ∈ A: im(γ) ⊆

⋃
i Ui e Ui ∩ Ui+1 ̸= ∅∀ i. Siano ω

(1)
ϕi
, ω

(2)
ϕi

le forme
locali rispettivamente di ω1, ω2 nella carta ϕi. Per ipotesi ω(1)

ϕ0
= ω

(2)
ϕ0

, quindi ω(1)
ϕ1

=

ω
(2)
ϕ1

coincidono sull’aperto U0 ∩ U1. Ma quindi per il teorema di identità ω
(1)
ϕ1

= ω
(2)
ϕ1

.
Iterando questo ragionamento, segue che ω(1)

ϕ = ω
(2)
ϕ . Per l’arbitrarietà della carta (U, ϕ),

concludiamo che ω1 = ω2

Proposizione 3.1.6. Ω1(X) e M1(X) sono C-spazi vettoriali.

Dimostrazione. Se ω1, ω2 ∈ Ω1(X), la loro somma è definita in questo modo: Per ogni
scelta di una carta ϕ : U → V , sono date le forme locali ω1,ϕ = f1(z)dz, ω2,ϕ = f2(z)dz
su V . Definiamo quindi (ω1 + ω2)ϕ := (f1 + f2)(z)dz. La compatibilità è un esercizio
immediato. Si procede analogamente per definire c · ω1, ∀ c ∈ C. Infine, con le forme
meromorfe la dimostrazione è identica.

Esempio 3.1.7. Ω1(CP1) ha dimensione 0:
Vediamo CP1 come uno spazio incollato (Esempio 2.2.6), con le carte ereditate da
ϕ1 = id : C → C intorno a 0 e ϕ2 =

1
z

intorno a ∞.
Sia ω una 1-forma olomorfa su CP1. Sia ωϕ1 = f(z)dz, f : C → C. Usiamo la compa-
tibilità della forma con l’altra carta: ϕ∞ = ϕ2 : CP1\{0} → C. Sia T = 1

z
: C∗ → C∗

la funzione di transizione. Sia ω∞ = g(z)dz la forma di ω nella carta ϕ∞. Allora
g(z) = f(T (z)) ·T ′(z) = f(1

z
) · −1

z2
∀ z ∈ C∗. Poiché per ipotesi ω è una 1-forma olomorfa,

0 è una singolarità rimovibile per g, per cui −f( 1
z
)

z2
z→∞−−−→ c ∈ C.

Quindi f(1
z
) ha uno zero di ordine ≥ 2 in 0, ⇒ f(z)

z→∞−−−→ 0, quindi f si estende ad una
funzione olomorfa f̂ : CP1 → C. Sappiamo che le uniche funzioni olomorfe su CP1 sono
quelle costanti. Inoltre, f̂(∞) = 0 ⇒ f ≡ 0 =⇒ ω = 0.
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Vediamo alcuni concetti importanti legati alle 1-forme:

Definizione 3.1.8 (differenziale di una funzione). Sia X una superficie di Riemann, e
sia f : X → C olomorfa. Il differenziale di f è la 1-forma olomorfa df su X definita in
questo modo: ∀ carta ϕ : U → V , definiamo

(df)ϕ = (f ◦ ϕ−1)′(z) dz su V

Proposizione 3.1.9. Il differenziale df è ben definito. Inoltre, se g : X → C è un altra
funzione olomorfa e c ∈ C, allora:

d(cf) = c · df, d(f + g) = df + dg

Dimostrazione. Siano ϕ : U → V e ϕ2 : U2 → V2 due carte. Allora, ∀ z ∈ ϕ(U ∩ U2),

(f ◦ ϕ−1)′(z) = (f ◦ ϕ−1
2 ◦ ϕ2 ◦ ϕ−1)′(z)

= (f ◦ ϕ−1
2 )′(ϕ2 ◦ ϕ−1(z)) · (ϕ2 ◦ ϕ−1)′(z)

= (f ◦ ϕ−1
2 )′(T (z)) · T ′(z), dove T = ϕ2 ◦ ϕ−1

Quindi le forme locali sono tutte compatibili tra loro. La proprietà di linearità è una
diretta conseguenza della linearità della derivata usuale in C.

Proposizione 3.1.10. Sia X una superficie di Riemann. Siano F : X → C una funzione
meromorfa e ω ∈ M(1)(X) una 1-forma meromorfa. Definiamo la 1-forma meromorfa
F · ω in questo modo: ∀ carta ϕ : U → V , se ωϕ = g(z)dz, definiamo

(F · ω)ϕ = (F ◦ ϕ−1)(z) · g(z) dz su V

Questa definizione è ben posta. Inoltre, se sia F che ω sono olomorfe, allora anche F · ω
è olomorfa.

Dimostrazione. Dimostro la compatibilità delle forme locali: Siano ϕ : U → V e ϕ2 :
U2 → V2 due carte. Siano ωϕ = g(z)dz, ωϕ2 = g2(z)dz. Allora, ∀ z ∈ ϕ(U ∩ U2),

(F ◦ ϕ−1)(z) · g(z) = (F ◦ ϕ−1
2 )(ϕ2 ◦ ϕ−1(z)) · g2(ϕ2 ◦ ϕ−1(z)) · (ϕ2 ◦ ϕ−1)′(z)

= (F ◦ ϕ−1
2 )(T (z)) · g2(T (z)) · T ′(z), dove T = ϕ2 ◦ ϕ−1

Proposizione 3.1.11. Sia X una superficie di Riemann e sia F : X → C una funzione
costante: F ≡ c ∈ C. Allora dF = 0.

Dimostrazione. ∀ ϕ carta, F ◦ ϕ−1 ≡ c =⇒ (F ◦ ϕ−1)′ ≡ 0 =⇒ (dF )ϕ = 0dz
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Proposizione 3.1.12. Sia X una superficie di Riemann. Siano F : X → W ⊆ C e
φ : W → C funzioni olomorfe.

=⇒ d(φ ◦ F ) = (φ′ ◦ F ) · dF

Dimostrazione. Sia ϕ : U → V una carta. Confrontiamo le forme locali per ϕ:

d(φ ◦ F )ϕ = (φ ◦ F ◦ ϕ−1)′(z)dz = φ′(F ◦ ϕ−1(z)) · (F ◦ ϕ−1)′(z)dz

((φ′ ◦ F )dF )ϕ = (φ′ ◦ F ◦ ϕ−1)(z) · (F ◦ ϕ−1)′(z)dz

Osservazione. Nel caso in cui X è una curva affine in C2, abbiamo due forme olomorfe
naturali dz e dw date dai differenziali delle proiezioni sui fattori. Inoltre, per Proposizione
3.1.10, ∀ k ∈ C[z, w], le 1-forme k(z, w)dz e k(z, w)dw sono olomorfe, e ∀ r ∈ C(z, w)
funzione razionale, le 1-forme r(z, w)dz e r(z, w)dw sono meromorfe. In particolare, gli
spazi Ω1(X) e M(X) sono di dimensione infinita.

Osservazione. La Proposizione 3.1.12 è utile quando si vuole semplificare un’espressione
come ad esempio d(z2) su una curva affine. Infatti, possiamo dire che d(z2) = 2zdz.

Proposizione 3.1.13. Sia X ⊂ C2 una curva affine e sia F : X → C olomorfa. Allora
dF = ∂F

∂z
dz + ∂F

∂w
dw

Lemma 3.1.14. Sia X una superficie di Riemann e siano ω1, ω2 ∈ M1(X), con ω1 ̸= 0.
Allora ∃! f : X → C meromorfa, tale che ω2 = f · ω1

Darò ora la definizione di integrale di un 1-forma olomorfa.

Definizione 3.1.15 (integrale). Sia X una superficie di Riemann. Sia ω una 1-forma
olomorfa su X e sia γ : [0, 1] → X un cammino. Per compattezza dell’intervallo chiuso,
possiamo partizionare 0 = a0 < a1 < · · · < an = 1 t.c. le restrizioni γi = γ|[ai,ai+1]

abbiano immagine inclusa in una carta (Ui, ϕi) di X. Siano fi(z)dz le espressioni locali
di ω nelle carte ϕi. L’integrale di ω lungo γ è il numero complesso∫

γ

ω :=
n−1∑
i=0

∫
ϕi◦γi

fi(z)dz

=
n−1∑
i=0

∫ ai+1

ai

(
(fi ◦ ϕi ◦ γ)(t)

)
· (ϕi ◦ γ)′(t)dt

La precedente definizione dell’integrale è ben posta:
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Dimostrazione. L’invarianza per riparametrizzazioni e per ripartizioni di γ sono conse-
guenze immediate dei risultati analoghi per gli integrali in C. Infatti, l’integrale di ω
è definito come somma di integrali in C e riparametrizzare o ripartizionare γ significa
riparametrizzare/ripartizionare i cammini ϕi ◦ γi. Dimostro ora l’invarianza per scelte di
carta, a cui ho già accennato nell’introduzione di questa sezione. A meno di raffinamento
della partizione dei cammini, possiamo assumere che im(γ) ⊆ U1 ∩ U2, dove sono date
due carte ϕi : Ui → Vi, e 1-forme locali fi : Vi → C, per i = 1, 2. Per compatibilità delle
forme, f1(z) = f2(ϕ2 ◦ ϕ−1

1 (z)) · (ϕ2 ◦ ϕ−1
1 )′(z) ∀ z ∈ ϕ1(U1 ∩ U2). Quindi∫

ϕ1◦γ
f1(z)dz =

∫ 1

0

(
f1 ◦ ϕ1 ◦ γ

)
(t) · (ϕ1 ◦ γ)′(t) dt

=

∫ 1

0

(
f2 ◦ ϕ2 ◦ γ

)
(t) · (ϕ2 ◦ ϕ−1

1 )′(ϕ1 ◦ γ(t)) · (ϕ1 ◦ γ)′(t) dt

=

∫ 1

0

(
f2 ◦ ϕ2 ◦ γ

)
(t) · (ϕ2 ◦ ϕ−1

1 ◦ ϕ1 ◦ γ)′(t) dt

=

∫ 1

0

(
f2 ◦ ϕ2 ◦ γ

)
(t) · (ϕ2 ◦ γ)′(t) dt

=

∫
ϕ2◦γ

f2(z)dz

L’integrale è C-lineare nelle 1-forme ed è lineare per partizione del cammino: Se ω1, ω2

sono due 1-forme su X, c ∈ C e γ = γ1 ∗ γ2 (come concatenazione), allora∫
γ

(c · ω1 + ω2) = c ·
∫
γ

ω1 +

∫
γ

ω2

∫
γ1∗γ2

ω1 =

∫
γ1

ω1 +

∫
γ2

ω1

Definizione 3.1.16 (poli, ordini e residuo). Sia ω una 1-forma meromorfa su X, sia
p ∈ X. p è un polo di ω quando in una carta locale (U, ϕ), l’espressione f(z)dz di ω ha
un polo in z0 = ϕ(p). Definiamo inoltre il suo ordine di polo: ordp(ω) = ordz0(f).
Sviluppando f in serie di Laurent, f(z) =

∑∞
i=−m ciz

i, si definisce il residuo di ω in p
come Resp(ω) = c−1.

Osservazione. È facile verificare che la proprietà di essere un polo di una 1-forma me-
romorfa e il suo ordine non dipendono dalla carta scelta. La prossima proposizione
garantisce che anche il residuo è ben definito.
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Proposizione 3.1.17.

Resp(ω) =
1

2πi

∫
γ

ω

dove γ è un cammino con numero di avvolgimento 1 attorno a p e 0 attorno a tutti gli
altri poli.

Dimostrazione. Si usano carte e il risultato analogo in analisi complessa su C.

Proposizione 3.1.18.

f : X → C =⇒
∫
γ

df = f(γ(1))− f(γ(0))

3.2 La dimensione dello spazio Ω1(X)

Fatto: Per una superficie di Riemann X compatta, lo spazio Ω1(X) ha dimensione finita.
Più precisamente, se X è compatta di genere g,

dimΩ1(X) = g

Questo fatto segue dal celebre teorema di Riemann-Roch, la cui dimostrazione completa
va oltre allo scopo di questa tesi, perciò delineerò soltanto i punti essenziali.

Definizione 3.2.1. Sia X una superficie di Riemann. Un divisore D su X è una
funzione D : X → Z t.c. il suo supporto suppD = D−1(Z∗) sia discreto. Si usa la
seguente notazione:

D =
∑
p∈X

D(p) · p

Se X è compatta, allora suppD è finito e definiamo

degD :=
∑
p∈X

D(p) ∈ Z

Denotiamo Div(X) il gruppo degli divisori su X.

Osservazione. C’è un’ovvia relazione di ordine parziale su Div(X):

D1 ≤ D2 ⇐⇒ D1(P ) ≤ D2(P ) ∀P ∈ X

Definizione 3.2.2 (divisori principali e canonici). Data una superficie di Riemann
compatta e una funzione meromorfa f : X → C, definiamo

(f) :=
∑
p∈X

ordp(f) · p
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Un divisore di questa forma si chiama divisore principale. Nello stesso modo, data
una 1-forma meromorfa ω su X,

(ω) :=
∑
p∈X

ordp(ω) · p

Un divisore di questa forma si chiama divisore canonico.

Osservazione. Il grado di ogni divisore principale è 0. Questo segue dalla Proposizione
1.1.11

Definizione 3.2.3. Sia D un divisore su una superficie di Riemann compatta X. Defi-
niamo lo spazio delle funzioni meromorfe su X con poli limitati da D:

L(D) :=
{
f : X ∈ M(X) | (f) ≥ −D

}
l(D) := dim(L(D))

Ho dunque introdotto tutti i concetti necessari per capire l’enunciato del teorema di
Riemann-Roch.

Teorema 3.2.4 (Riemann-Roch). Sia X una superficie di Riemann compatta di genere
g, e sia K un divisore canonico su X. Allora per ogni divisore D su X, vale:

l(D) = deg(D) + 1− g + l(K −D)

Corollario 3.2.5. Sia X una superficie di Riemann compatta di genere g.

=⇒ dimΩ1(X) = g

Dimostrazione. Usiamo Riemann-Roch con D = 0:

l(0) = deg(0) + 1− g + l(K)

È ovvio che deg(0) = 0. Inoltre, L(0) = O(X) e, poiché ogni funzione olomorfa su una
superficie di Riemann compatta è costante, l(0) = 1. Sia K = (ω0). Allora, usando
anche il Lemma 3.1.14,

Ω1(X) =
{
ω ∈ M1(X) | (ω) ≥ 0

}
=

{
f · ω0 | f ∈ M(X), (f · ω0) ≥ 0

}
∼=

{
f ∈ M(X), | (f) ≥ −(ω0)

}
= L(K)

Mettendo tutto insieme, abbiamo che:

dimΩ1(X) = l(K) = g
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3.3 Le 1-forme olomorfe sulle superfici iperellittiche
Consideriamo nuovamente una curva iperellittica X definita da w2 − h(z), dove

h(z) = c ·
d∏
j=1

(z − αj), d = deg(h) = 2g + 1 + δ con g ≥ 2 e δ ∈ {0, 1}.

Sia X̂ la superficie iperellittica compattificata di X. Abbiamo scoperto nel capitolo 2
che X̂ ha genere g, e abbiamo scoperto nella precedente sezione che dimΩ1(X) = g. In
questa ultima sezione della mia tesi darò una costruzione esplicita di una base per lo
spazio Ω1(X).

Partiamo con un’osservazione semplice, ma importante: La funzione f = w2−h(z) ≡
0 è una funzione costante su X, quindi il suo differenziale è nullo. Allora

df = d(w2 − h(z)) = d(w2)− d(h(z)) = 2wdw − h′(z)dz = 0.

=⇒ 2w dw = h′(z)dz

Questa relazione ci sarà molto utile per trovare 1-forme olomorfe su X̂.

Proposizione 3.3.1. Le 1-forme dz e dw – olomorfe se considerate solo su X – non si
estendono in modo olomorfo su X̂.

Dimostrazione. Partiamo con dz.
(1) caso d pari: Intorno a ciascuno dei due buchi all’infinito abbiamo la coordinata
t = 1

z
. Da questa relazione segue che z − 1

t
= 0, cioè è una funzione costante su un

aperto di X. Allora

d(z − 1

t
) = 0 =⇒ dz = d(

1

t
) =

−1

t2
dt come forme.

Ma se dz fosse olomorfa su tutto X̂, la funzione −1
t2

dovrebbe essere olomorfa in 0, cosa
che non è vera.
(2) caso d dispari: La coordinata all’infinito è τ con la relazione τ 2 = 1

z
. Quindi,

analogamente a prima,

dz = d(
1

τ 2
) =

−2

τ 3
dτ

−2
τ3

non è continua in 0 =⇒ dz non è olomorfa su X̂.
Si dimostra in modo analogo che dw non può essere una 1-forma olomorfa su X̂.

Lemma 3.3.2.
1

w
· dz ∈ Ω1(X)
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Dimostrazione. A priori, dz
w

è solo una 1-forma meromorfa su X.
Vediamo il comportamento dei suoi possibili poli P = (αj, 0): In punto con h(z) = 0,
poiché h non ha radici multiple, segue che h′(z) ̸= 0.
Quindi, ricordando che 2w dw = h′(z) dz, in un intorno opportuno di P abbiamo

dz

w
=

2

h′(z)
dw, che è olomorfa in P perché abbiamo detto che h′(αj) ̸= 0.

Proposizione 3.3.3. Sia p(z) ∈ C[z].

La forma
p(z)

w
dz è olomorfa su X̂ ⇐⇒ deg(p) ≤ g − 1

Dimostrazione.
Sia p(z) = aDz

D +O(zD−1) per z → ∞

(1) caso d pari: d = 2g + 2. La carta bucata all’infinito, su ciascuna componente
connessa, è : t = 1

z
.

=⇒ dz =
−1

t2
dt ⇒ p(z)

w
dz =

−p(1
t
)

wt2
dt

Bisogna fare vedere che è olomorfa per t→ 0. Conviene prendere il quadrato. Abbiamo:

p2(z) = a2Dz
2D +O(z2D−1) per z → ∞

p2(
1

t
) = a2Dt

−2D +O(t−2D+1) per t→ 0

=⇒
p2(1

t
)

w2t4
=

p2(1
t
)

h(1
t
) · t4

=
p2(1

t
)

ct4
∏

j(
1
t
− αj)

=
p2(1

t
)

ct4
·
∏
j

t

1− αjt

= p2(
1

t
)c−1td−4

∏
j

1

1− αjt
= (a2Dt

−2D +O(t−2D+1))td−4c−1
∏
j

1

1− αjt

= c−1
∏
j

1

1− αjt
(a2Dt

d−4−2D +O(td−2D−3))

olomorfa per t→ 0 ⇐⇒ d− 4− 2D ≥ 0 ⇔ 2D ≤ d− 4 = 2g − 2 ⇔ D ≤ g − 1

(2) caso d dispari: d = 2g + 1. La carta all’infinito è τ = 1√
z
, più precisamente,

τ = φ(z) : φ2(z) = 1
z

=⇒ z =
1

τ 2
=⇒ dz =

−2

τ 3
dτ =⇒ p(z)

w
dz =

−2p( 1
τ2
)

τ 3w
dτ
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p2(
1

τ 2
) = a2Dτ

−4D +O(τ−4D+2)

=⇒
4p2( 1

τ2
)

τ 6w2
=

4p2( 1
τ2
)

τ 6h( 1
τ2
)
=

4(a2Dτ
−4D +O(τ−4D+2))

τ 6c
∏

j(
1
τ2

− αj)

=
4(a2Dτ

−4D +O(τ−4D+2))

τ 6c
·
∏
j

τ 2

1− αjτ 2

= 4c−1τ 2d−6(aDτ
−4D +O(τ−4D+2))

∏
j

1

1− αjτ 2

olomorfa per τ → 0 ⇐⇒ 2d− 6− 4D ≥ 0 ⇐⇒ D ≤ 1
2
(d− 3) = g − 1

Corollario 3.3.4. L’insieme {dz
w
,
zdz

w
, · · · , z

g−1dz

w

}
è una base di Ω1(X̂).

Dimostrazione. La proposizione precedente garantisce che sono proprio degli elementi di
Ω1(X̂). Se dimostro che sono linearmente indipendenti, la conclusione segue dal corollario
del teorema di Riemann-Roch che afferma che dimΩ1(X̂) = g.
Sia

a0
1

w
dz + · · ·+ ag−1

zg−1

w
dz = 0

⇒ su un aperto di C, 1
w
(a0 + · · · ag−1z

g−1) = 0 =⇒ per continuazione analitica,
a0 + · · · ag−1z

g−1 = 0 su C.
a0 = · · · = ag−1 = 0
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