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Introduction

The thesis lies within the field of Diophantine approximation, which aims to
study how well elements of a number field can be approximated by rational num-
bers or by elements of simpler subfields. This approach, originally developed in the
study of Diophantine equations, has made it possible to deepen the understanding
of the interactions between the arithmetic properties of numbers and the structures
of number fields. To address such problems it is essential to analyze the properties
of absolute values on number fields, through which one can define the notion of
distance between two elements, as well as the “height” of an element, understood
informally as a measure of its arithmetic size and complexity. This perspective natu-
rally leads to the study of algebraic varieties and curves, with particular attention to
elliptic curves, which provide a privileged setting in which Diophantine techniques
can be applied effectively. We will see how elliptic curves are endowed with a group
structure, which will be essential in determining properties related to height and
distances defined on the curve. Finally, the analysis culminates in Siegel’s Theo-
rem, which provides a fundamental result concerning the finite number of integral
points on elliptic curves defined over number fields. The thesis aims to illustrate how
the ideas of Diophantine approximation, combined with geometric and arithmetic
tools, lead to concrete results in the understanding of integral solutions of algebraic

equations.
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Chapter 1
Preliminary notions

In this chapter we gathers the fundamental concepts and theoretical tools nec-
essary for the development of the main results of the thesis. We will remark what
is a number field and the basic properties that it has, standard properties of the
Galois group, what is an algebraic closure of a field and some facts about the ring
of integers of a field. Then we will also see what is an affine space and a projective

space over a field, necessary tools that will be used to introduce varieties and curves.

1.1 Fields

In this section we summarize some of the basic definitions and facts about fields
that we will use throughout all the thesis. We give particular attentions to number
fields, finite extension of the rational numbers, which will be the main object of

interest.

Definition 1.1.1. Let K be a field. An element 5 is called algebraic over K if
there exists K C L extension of field such that B € L and it is possible to find a
polynomial f € K[z] such that f(8) =0 . [ is transcendental over K if it is not
algebraic. We call algebraic (transcendental) number an element B that is algebraic

(transcendental) over Q.

Definition 1.1.2. Let K be a field and B algebraic over K. Then q € K|[x] is the
minimal polynomial of § over K if q(5) = 0 and q is a monic polynomial of

least degree among all polynomials F € K|[z| such that F(S) = 0.

The fact that this polynomial has minimal degree and is monic ensures that it

is unique.



2 Preliminary notions

Definition 1.1.3. Let 8 algebraic over Q and f € Q[z] its minimal polynomial;
we define the degree of [ as deg = deg f. Suppose deg S = n and consider
B = Bi,...,0, € C all complex roots of f; these are called conjugates of [3.
Notice that:

n

f(x) =]~ 5)

i=1
Remark 1.1.4. If 3 is an algebraic number and ¢(z) = 2" + riz" ' + ... 4+ r, his
minimal polynomial, with r; € Q (and 1o = 1). We can suppose r; = a;/b; with
a;,b; € Z; then we can multiply this polynomial by B = lem(by,...,b,) and get
riB €Z . 1t d=ged(rB,...,r,B), we get f(z) = Zg(z) = coz" + 12" + ¢,
with ¢; = m,B/d € Z and ged(cy, ..., c,) = 1. f is called the primitive minimal

polynomial for .

Definition 1.1.5. Let K a number field , [K : Q] =n. 0 : K — C is an embedding
of K in C if o is a field homomorphism and o(q) = q for all ¢ € Q.

Notice that, if 8 € K such that K = Q[f], called primitive element for K,

then an embedding o is uniquely determined by the image of j3.

Proposition 1.1.6. If K number field, suppose [K : Q] = n , B € K such that
K = Q|[B] and f minimal polynomial for 5 and = [i,..., [, conjugates of [5.
Then there are exactly n distinct embeddings corresponding to the roots of f, more

precisely, there is exactly an embedding sending 5 — [; for all i.

If an embedding sends [ in a real root, then its image in contained in R and
we call it a real embedding. Otherwise, there will be two distinct embeddings o, &
corresponding to complex conjugates root. The notation is justified from the fact

that o(x) = a(x) for all z € K.

Definition 1.1.7. Let K a field. We say that K is algebraically closed if every

non constant polynomial f € K[z| has at least a root in K.

Example 1.1.8. R is not algebraically closed, because the polynomial 2%+ 1 has no

real roots. The fundamental theorem of algebra says that C is algebraically closed.

Definition 1.1.9. Let K be a field. An algebraic closure of K is a field L that

contains K and it is algebraically closed.

It can be proved that an algebraic closure of a field K always exists and that is
unique up up to an isomorphism that fixes K. We will usually denote the algebraic
closure K. Note that the algebraic closure of K is exactly the set of all algebraic

elements over K.
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Example 1.1.10. C is the algebraic closure of R. Q is the set of all algebraic
elements over Q. Note that Q C C.

Then we define the norm function for an algebraic field extension.

Definition 1.1.11. Let L/K be a finite extension. Then, for all « € L, we can

consider the linear map
Me: L — L, my(z)=a-z

Then, we define:
Nmp,/ k(o) := det(mq)

Next we see some properties about this norm.

Proposition 1.1.12. Let L/K be a finite extension, [L : K| =n. Then :
e Nmy /k(af) = Nmp k(o) Nmp,(8), for all o, f € L;
e Nmy/kx(a) =0 <= a=0;

o If L/K/Q finite extension, Nmy k() = [[o(a), where the product is for
every embedding of L in C fixing K.

Example 1.1.13. Consider K = Q[v/d] with d € Z square free, [K : Q] = 2. Then
N g(a+ bVd) = o1(a+ bVd) - oz(a+ bVd) = a® — db’

where we wrote a € Q[vV/d] as a + bV/d, with a,b € Q.

1.2 Affine and Projective spaces

In this section we just give the definitions of Affine spaces and Projective spaces.

We will see later that a variety is a subset of this spaces.
Definition 1.2.1 (Affine space). An Affine n-space over K s :

A"=A"(K)={P=(x1,...,2,) :7; € K}.
The set of K-rational points of A™ is

A"K)=A{P = (z1,...,2,) : x; € K}.
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We can image an affine space as a n- dimensional vector space. Then, defining
an equivalence relation on an affine space, we can define a projective space. We can

image it as the set of all "lines” in the affine space.

Definition 1.2.2. Given a field K, we can define P"(K) n-dimensional projective

space as

P"(K) = (A""\{0})/ ~

where (o, ..., Tn) ~ (Yo,--.,Yn) <= there exists \ € K* : y; = A\x; for all
i =0,...,n. We will usually denote an element of P*"(K) by [zo, ..., Tp].

1.3 Rings

In this section, we quickly review some facts about rings, such as prime ideals,
which will be needed when introducing curves. We then define and examine the
properties of the ring of integers of a field. Studying the ring of integers forms the
foundation of number theory, but the proofs of certain results are far from trivial,
so we limit ourselves to the statements only. Readers who wish to explore this topic

further can consult J.S. Milne’s notes ” Algebraic Number Theory” [1].

Definition 1.3.1. Given a commutative ring (A, +,-), we say that I C A is an
Ideal of A if it is an additive subgroup and for all x € I, for alla € A, ax € I.
An ideal I s prime if I # A and the following is true for all x,y € A:

zyel = zxzeloryel
Let o € I, then we define (z) := {az : a € A} to be the ideal generated by z.

Example 1.3.2. An ideal {0} # I C Z is prime if and only if I = (p) = pZ for
some prime p. If 0 # f € K[z| irreducible over K, then (f) is a prime ideal.

Definition 1.3.3. An ideal I C A is a maximal ideal if there is no ideal J # A
such that I C J.

It can be easily proved that a maximal ideal is always prime.
Definition 1.3.4. A ring A is a local ring if A has a unique mazimal ideal m.
Next we state a result about local rings that we will use later.

Proposition 1.3.5. Let A local ring with mazimal ideal m, then A\m corresponds

to the units of the ring.
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Before giving some examples, let’s give a useful definition:
Definition 1.3.6. Let A be a domain. We can define its fraction field as:

Frac(A) := {% ra,be A b F# O}

where a/b is an equivalence class of A x (A\{0}) and we define operations between

fractions as usual.

Obviously the fraction field is a field. Moreover, it’s the smallest field containing

the ring A.
Example 1.3.7. Let p C A be a prime ideal, then
a
A, = {E € Frac(A4) : b §Zp}

is a local ring with maximal ideal pA,. This ring is called the localization of A at

p.To see an easy example, take:

Lp) = {% ra,beZ,b#0 mod (p)}
where p is a prime.

Definition 1.3.8. A ring A is said to be a discrete valuation ring if it is local

and its unique maximal itdeal is principal.

For a discrete valuation ring, it is easy to see that any non zero ideal is a power
of its unique maximal ideal. Then it is easy to see that, if we consider K = Frac(A),
then for all z € K*, x = u-7", where u invertible in A,7 is a generator of the unique

maximal ideal and n € Z. Then we can define a function:
v:K* —7Z v(x):=n

This function is called discrete valuation. Then we introduce the ring of integers of

a number field.

Definition 1.3.9. Let K be a number field. We say that a € K s integral over A,
where A C K ring if there exists f € Alx| monic polynomial such that f(a) = 0.
Then we define the ring of integers of K as

Ok :={z € K : z is integral over Z}.
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The ring of integers of a field is very important to understand properties of the
field. For example it can be proved that a ring K is the fraction field of Ox. Another
non trivial fact is that the ring of integers is finitely generated as a Z- module, namely
there exists wq,...,w, € Ok such that all z € O is a linear combination of the

W;-S.

Example 1.3.10. As expected,the ring of integers of QQ is Z. The ring of integers
of a quadratic extension of Q, say K = Q[v/d], with d € Z square-free has ring of

integers equals to

Ok =Z[Vd] if d=2,3 mod 4;
Ok =Z[(1++d)/2]ifd=1 mod 4.

It can be also proven that O is integrally closed, i.e. if an element of K is
integral over Ok then it is in O and that every prime ideal of the ring of integers
is maximal. This properties ensures that Ok is a Dedeking Domain. Then every
localization (Of), at some prime ideal p is discrete valuation ring. We denote v,
the discrete valuation associated to (Og),. Then we state a useful theorem, that
it is true for all Dedeking’s domain but we see its application only for the ring of

integers:

Theorem 1.3.11. Let K be a field and Ok its ring of integers. Then for all proper

non zero ideal a C Ok can be written in the form:

n
T
a=]]»
=1

where p; C Ok distinct prime ideals and n,r; € Z,n,r; > 0 for all i. All p;-s and

r;-S are uniquely determined.

Remark 1.3.12. Let z € K* and consider Ok = {za : o € Ok}. Since K is the
fraction field of Ok, there exists a,b € Ok, b # 0, such that x = a/b. Since a.b can

be written as product of powers of prime ideals, we can say that

(z) = Hp?

with n; € Z. (z) is what is called a fractional ideal. In this case, we can easily

prove that v,(z) =n; € Z.

Thanks to this remark we can characterize the ring of integers in terms of all v,:
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Proposition 1.3.13. Let K be a field and O its ring of integers. Then:
Ok ={z € K : vy(z) > Oforall p primeideal }

Proof. Given z € Ok, since Og C (Ok), for all p prime ideal, then it must be
vy(x) > 0. Conversely, suppose z has vy(x) > 0 for all prime ideals. From what we

have seen in the last remark, since () can be written as :

(x) = ﬁ prr®
=1

The hypothesis on x, implies that (z) C Ok, then z € Ok. ]

Definition 1.3.14. Let K be a field and S a finite set of prime ideals of Ox. We

define the ring of S-integers as :
Ok :={r € K : v,(z) > 0,forallp & S}

Example 1.3.15. If S = M, Ogs = Ok. Note that Ox C Okg. In general ,
taking the ring of S-integers means to take elements from the ring of integers and
allow them to have denominators that are product of elements in the primes in S.

For example, for K = Q, S = {p1,...,p,} finite set of prime numbers, then

1 1

0 S:z[_,...,_]
v b1 DPn






Chapter 2
Diophantine approximation

In this chapter we introduce the fundamental concepts of Diophantine approx-
imation. Historically, the problem arose in the study of solutions of Diophantine
equations, and aims to understand how well an algebraic number can be approx-
imated by a rational number. We will present the main results related to this
problem, and then show that the problem can be generalized to an arbitrary num-
ber field, thanks to the introduction of the concepts of absolute value, which allows
us to measure how close two elements are, and of height, which allows us to measure
the quality of the approximation in terms of the ‘complexity’ of the approximating
elements. Finally, we will present Roth’s theorem, which represents the best possible

result in this area.

2.1 Classical results on Diophantine approxima-
tion

We formally introduce the problem of Diophantine approximation, as well as
a notion of height for rational numbers, and then we review historically the main
theorems that have contributed to the field of Diophantine approximation. We will
also see how some of these results can be used to determine how many solutions there
are for Diophantine equations and, more generally, the close connection between

Diophantine equations and Diophantine approximation.

Definition 2.1.1 (Height of a rational number). Let r € Q. If r = p/q, with
ged(p,q) =1, we define

H(r) := max(pl, l¢|)-

9
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Definition 2.1.2 (Mahler measure). Let 3 be an algebraic number and q(z) =
apr? + a1t + .+ ag = ao [[{_,(z — B:) be the primitive minimal polynomial of
B =061 . The Mahler Measure of (3 is defined as

M(8) = ao ] [ max(1,|.)

i=1
One of the first results on the diophantine approximation of algebraic numbers

was given by Dirichlet and Liouville.

Theorem 2.1.3 (Dirichlet, 1842). Let 5 be an algebraic number, then the inequality
1
7

'B—g‘ < (2.1.1)

has infinitely many integer solutions (p,q) € Z?

Proof. Let N € N and let’s consider 6, := {nf} = np — [np]| € [0,1) for n €
0,1,...,N. We can now divide [0,1) into N subintervals of length 1/N. So, since
there are N+1 terms and N subintervals, according to the pigeonhole principle,
di,5 € 0,...,N,i < j such that |§; — 6;] < 1/N. If ¢ := j—i < N and p :=
78] — [iB], we get |8; — ;] = |gf — p| < 1/N. This implies:

The second inequality is true because N > q. For each N, we choose a solution for
which |8 — p/q| is minimal. Then choose a natural number N, and take the solution
Po/qo following the above procedure. By induction, suppose we have p,, /g, solution
to the inequality; then by choosing N > |p,/q,— 3|7, we can take p,,1/¢n+1 solution

different from the others. In fact:

Pn+1
‘6-_ n+1

dn+1

%

N qn+1

Then p,.1/gnr1 must be different from the previous solutions. We proved that
Vn € N, 3(pn, ¢,) € Z* different solutions to (2.1.1). O

So, we proved that there exist infinitely many pairs of integers x,y such that
|8 — %1 < [y|~* For such solutions, we have [y8 — x| < [y|™! < 1, because y € Z,
then |z| < |By| +1 < (|8] + 1)]y|. Writing r = x/y we can deduce that Je¢(5) > 0 ,
c(8) = (|8] + 1)? such that

|8 —r| <c(B)H(r)"? for infinitely many r € Q. (2.1.2)
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This is true because 1/y* < ¢(3)/H(r)?* ; this can be verified easily.
Below I report the theorem but with an alternative proof with respect to Liouville,
took from [0], Theorem 6.1 .

Theorem 2.1.4 (Liouville, 1851). If 8 is an algebraic number, then there is a
computable number c(B) > 0 such that

|6 = 7| = c(B)H (r)~"? (2.1.3)
1s true Vr € Q,r #

Proof. Let’s consider ¢(x) primitive minimal polynomial of 3 and P(X,Y) = Y%q(X/Y) =
ao [IL (X = B;Y). Let r = z/y, (x,y) € Z2,ged(z,y) = 1 and 7 # 3, then

P(,y)| e ao [T, (= = Biy)
20IM(B)H(r)® 20100 [T, max(1, |5i]) (max(|z], [y]))
_ |z — Byl ﬁ |z — Byl
max(1, 3) - max(|z], [y]) +1 2max(1,[3]) - max(|z], [y])

We can easily see that the last productory is < 1, because |z — f;y| < |z| + |Biy|, so

we can split it in two fractions, both < 1/2, for all ¢; also

|z — By o
max(L, B) - maa(el o) = Py

because the denominator is > |y|. Then we get

[Pz, y)| oz
ZM(B)H () = '6 y

Since r # 3, |P(z,y)| > 1. Together with the inequality above, this implies (2.1.3)
with ¢(3) := 214M(B)~.
[l

One of the central problems in Diophantine approximation is to obtain improve-
ments of (2.1.3). More precisely the problem is whether 37 < d and J¢(5,7) > 0
such that

B—r|Zc(B,m)H(r)" VreQ (2.1.4)
By Dirichlet’s theorem, precisely in equation 2.1.2, we proved that there exist in-
finitely many rationals r € Q such that |3 — 7| < ¢(8)H(r)~2. This shows that

it’s impossible to put 7 < 2 in (2.1.4). In particular, for rationals and quadratic

numbers (deg() = 1 or 2), Liouville’s Theorem gives the best possible result.
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Proposition 2.1.5. Let 3 be a real algebraic number of deg(f) > 3 and m > 2, m €
R. Then they are equivalent:

1. N7 > m,3c(B,7) > 0 such that (2.1.4) is true
2. N1 > m,NC > 0 the inequality
6 —r| < CH(r)™" (2.1.5)
has only finitely many solutions r € Q

Proof. (1. = 2.)
Let 7,6 > m,d > 7, then , by contradiction, let’s suppose that (2.1.5) has infinitely
many rational solutions, then 3{r,} € Q, with H(r,) "=5° oo ( if H(r,) were

limited, then we would have only finitely choices for different r,). With (1), we get
(B, ) H(ry) T <[B =] < CH(rn)_é’

this implies ¢(8,7) < CH(r,)"° — 0 as n — oo , but this contradicts c¢(3,7) > 0.
(2. = 1)
Let 7 > m and
= inf H(r)"|6 —r|.
o(f,7) = inf H(r)"|f —r|

By contradiction, if it were ¢(3,7) = 0 then {7, }neny € Q all distinct, such that
H(r,)™|8—rn] — 0. So In > 0 such that |f—r,| < CH(r)"",¥n > n, but this gives
infinitely many rationals solutions to (2), so it is a contradiction. Then it must be
c(B,7) >0and c(B,7) < H(r)"|p —r|,¥r € Q. O

Theorem 2.1.6 (Thue’s theorem). If 3 is an algebraic number, with deg() > 1
(i.e. B irrational), and T > deg(3)/2 + 1, then the inequality:

B —r| < H(r)™"
has only finitely many rational solutions r € Q.

Corollary 2.1.7. Let P € Z[z,y| be an homogeneous polynomial of degree d > 3
irreducible over Z. If m € 7Z, then equation P(x,y) = m has finitely many integer

solutions (z,y) € Z*.

Proof. Let P(z,y) € Z[x,y] be an homogeneous polynomial of degree d > 3, irre-
ducible over Z, m € Z. Suppose (z,y) € Z? solution to P(x,y) = m. Let r := z/y
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and let 7 > d/2 4+ 1. By proposition (2.1.5), we can assume an equivalent form of

Thue’s theorem, i.e. if § is an algebraic number, 7 > d/2+ 1, 3¢(5, 7) > 0 such that
B8 —r]>c(B,T)H(r)" VreQ (2.1.6)

Now, if y = 0 then P(z,0) = apz? = m has a maximum of d roots in C .We can
repeat the argument for solutions (0,y). Then we can consider solutions (z,y) with
x,y # 0.

We prove the inequality only for pairs of integers(z, y) with |y| > |z|, so |y| > H(r)
(it is y = H(r) if and only if ged(z,y) = 1). Then the inequality can be deduced
for pairs (z,y) with |z| > |y| by interchanging x and y and repeating the argument
below.

Let p(X) := P(X,1),p € Z[z]. p is irreducible over Z with degree > 3. We can
write p(z) = ao [[;_,(x — 3;). Note that, as p is irreducible , the f;-s are all distinct.
Using the homogeneity of P once again, we have P(x,y) = y%p(r), then

d
P(z,y) =m <— aode(T — Bi) = m.

i=1
Now let » = z/y, j € 1,...,d such that |§; — r| = min, |5; — r|. Note that Vi # j we

have
1B; = Bil < 1B —r|+1[r—Bil <2[8i —rl.
then |5, —r| > %Wj — B;|. Using this inequality, the assumption |y| > |z| and (2.1.6),

we get

d
1 —T
im| = [y |aol [T Ir — Bl > lao (H 5165 = 5z‘|> c(B;,7)H(r)!
i=1 i
Calling C' := |ao|c(8j,7) [T, 516, — Bil, we can see that C' > 0, because ag # 0,
c(B;, ) > 0, and being the f;-s all distinct, the productory isn’t 0. Therefore C'

does not depend on z and y. So we get:

Where we chose d/2+ 1 < 7 < d; such 7 exists because d > 3. In other words, H(r)
is bounded, and this implies that we have limited choices for  and y, so finitely

many solutions. O]

Remark 2.1.8. This result stands in sharp contrast with the case deg(P) = 2, in

which it is possible to have an infinite number of solutions. For example, Pell’s
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equation z? — Dy? = 1 has infinite many solutions if D € Z not a perfect square.
Hence, we can deduce an important fact: considering the equation z"™ — Dy"™ = 1,

with D € Z,n > 2, and (z,y) € Z? is a solution then

" 1
oot
Y y"

i.e. x/y is a good approximation of the n-th root of D. So, the results above tell us
that every square root can be approximated by infinitely many rational numbers,

but this property does not hold for cubic, quartic, and higher roots.

2.2 Absolute values for fields

Here we define formally what an absolute value is, see how an absolute value
define a distance and then a topology, and we will ask how many absolute values
that induce different topologies on K there are. We will see that the answer is
strictly related to the algebraic property of a number field. We will report only
the theorems and fundamental properties that we will use later, leaving aside more
technical details or advanced developments that go beyond the main focus of this

discussion.

Definition 2.2.1. Let K be a field, |- | : K — R is an absolute value for K if
o |z| >0,Vx € K* and |0| = 0;
o |zy| = |zllyl,Va,y € K;
o |z +y| <|z|+ |y|,Va,y € K (triangle inequality).

Therefore, if the stronger condition |r + y| < max(|z|, |y|), called ultrametric in-
equality or strong triangle inequality, holds for all x,y € K, then | -| is called
non-archimedean absolute value. If it does not satisfy the ultrametric inequal-

ity, then the absolute value is called Archimedean.

We can remark that | - | is a group homomorphism K* to RT(multiplicative
group). This implies that on every finite field K can be defined only the triv-
ial absolute value,because v(K*) is a finite multiplicative subgroup of R, then
v(K*) = {1}.

Definition 2.2.2. If | - | nonarchimeden absolute value, we can also define v(x) =

—log|x| (log with base e > 1 for some real e. v is an additive valuation,i.e. it’s
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true that v(zy) = v(z) +v(y) and v(z+y) > min(v(z),v(y)). An additive valuation
is discrete if v(K*) =7. We formally define v(0) := oo.

Example 2.2.3. 1. For every field K we can define the trivial absolute value

|x| = 1,Vx € K* and |0| = 0. It is obviously non-archimedean.

2. For C, the standard euclidean norm |z| = \/(Rz)? 4 (Sz)? is archimedean.

3. If K number field and o : K < C embedding, then |z| = |o(z)| is an absolute

value.

4. In Q, for every p prime we define ord,(z) = r if x = §p", with r € Z and
ptab. Then if e € Re > 1, |z|, := e~ %@ is a non-archimedean absolute
value, called p-adic absolute value. If e = p , we call | - |, the normalized
absolute value; in this case v,(x) = ord,(x). We can generalize to K, taking

ord : K* — 7 discrete valuation and set |z| = e~ @)

Remark 2.2.4. An absolute value on K defines a distance function d(z,y) = |z —yl|,
so we can consider the topology associated with the metric d on K. Therefore it
seems natural to ask the following question: when do two absolute values induce

the same topology on K7

Proposition 2.2.5. Let |- |1, |- |2 be absolute values on K. The following conditions

are equivalent:

1. |-]1 and |- |2 defines the same topology on K.

2. Je > 0 such that |x|; = |z|§, Vo € K.
If one of these two is true we say that | - | and | - |2 are equivalent and write
[~ ] e

Definition 2.2.6. For a field K, we can define My :={ |-| nontrivial absolute value
on K'}/~. Therefore we can define Mp® C My to be the set of archimedean absolute
values and MY C My to be the set of non-archimedean ones. The elements of M
are called places ( or primes of K ). Notice that My = M} L M{°.

Example 2.2.7. If K = Q, there is a theorem of Ostrowski (see [1] Theorem 7.12)
that tells us that

Mg = {] - loo} U{] - [ with p prime },

where | - | is the standard absolute value on Q.
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Theorem 2.2.8 (Product formula for Q). For all x € Q different than 0:

IT 1zl =1

vEMg
Proof. If we set 7(x) := [],eny, |2|o, we notice that 7 is multiplicative, then if suffices
to show that w(—1) = 1 (that it’s trivial) and 7 (p) = 1 for every prime p. From the
example v = p , with p prime or v = oo . We have |p|, = 1/p, |p|, = 1 for every

prime g # p and |p|o, = p, then 7(p) = 1. O

Now we can ask if it is possible to extend this result to a number field K and
the answer is ”yes”, up to slightly modifying this formula. To do this we need to
know how absolute values extends to an extension of K. If we have w,v places
respectively of L and K, L extension of K, we say that w divides v and write w|v
if | - |,, restricted to K is equal to | - |,. Then we introduce complete fields in respect

to an absolute value.

Definition 2.2.9. Let K be a field and v € Mg. A sequence (an)neny € K is said
to be a Cauchy sequence if , for all € > 0, there exists n. € N such that:

lap, — aml, < e, foralln,m > n..

K is said to be complete if every Cauchy sequence has a limit in K i.e. it exists
r € Q such that:

lim |a, — 7|, =0
n—oo

Note that, if we consider v € MY, then it suffices to have |a,1 — a,|, < € for all

n > n. to prove that a sequence is Cauchy, thanks to the ultrametric inequality.

Example 2.2.10. By its definition, R is complete in respect to the standard absolute
value, while QQ isn’t complete. Moreover, QQ isn’t complete in respect to every p-adic
absolute value. A way to prove this is to consider the sequence (a,) defined as ag = 1

and

2
a, — P

Apy1 = Qp — 2
n

It is a Cauchy sequence, in fact
2 — n—oo
|@ni1 — anlp <la, —pl, <p™" —— 0.

If it had a rational limit # € Q, then , by continuity, it should hold z? = p, then we

get a contradiction.
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Now it would naturally arise to ask whether it is possible, by extending the field

and the absolute value, to obtain a complete field.

Definition 2.2.11. Let K be a field and v € Mg. A completion of K is a field
K with w € Mg, and an embedding i : K — K, such that w|v, K is complete in
respect to w and the following property holds:

If L is another field with w' € My, w'|v, then there exists a unique homomorphism:
¢: K — L

such that ¢ oi = idg, preserving the absolute value, i.e. w'(Pp(x)) = w(x), for all

MRS K.

It can be proven that it is always possible to find a completion and it is unique up
to field isomorphism. It is also possible to consider the completion as a field exten-
sion, identifying K as a subfield of K through ¢. We usually denote the completion
of K in respect to v € M as K,.

Example 2.2.12. R is the completion of QQ in respect to the standard absolute
value. The completion of QQ in respect to a p-adic absolute value can be described

as

QPZ{Zanp”:amnoEZ,Ogan <p}'

n=ng
To verify this equality, one must show that every series written in that form, called
the p-adic expansion of a € Q,, converges in @, and that every a € Q, has a

unique p-adic expansion. Therefore, for a = >""°  “a,p" it must be v,(a) = no.
Theorem 2.2.13. Let K be a number field, then there is exactly one place v € Mk :
1. for each prime ideal p, when v € MY ;
2. for each o : K — R real embedding;
3. for each 0,0 : K — C pair of conjugate complex embeddings.

This theorem allows us to completely characterize classes of equivalence of ab-

solute values on a field K:

e top C Ok corresponds v, (z), discrete additive valuation associated to (Ok),,
defined in 1.1.2. ;

e to 0 : K — R corresponds |z|, = |o(x)] ;
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e to 0,0 : K — C corresponds |z|, = |o(x)| = |o(x)|.

Where in the last two, we consider the standard absolute value for R and C. Showing
the correspondence between prime ideals and non-archimedean absolute values is
rather involved; therefore, we shall omit its proof. Instead, we will illustrate how to
establish the correspondence between archimedean absolute values and embeddings.

Before seeing this, we first see a useful result.

Proposition 2.2.14.

Let L/ K be a finite separable extension. If K is complete in respect to v € My, this

absolute value extends uniquely to w € My and we have the following equality:
™) = | Nmgx(a)l, (2.2.1)
for all a € L.

Note that this theorem implies that a non archimedean absolute value can only
extend to a non archimedean absolute value, and the same holds for archimedean
ones. Then we can reinterpret a characterization of the ring of integers, proposition

1.3.13, and the ring of S-integers , as follows

Corollary 2.2.15. Let K be a number field, Ok its ring of integers and Mz C
S C Mg, S finite set. Then:

Ok ={z € K :v(z) > 0,forallv € My}
Oks={re€ K:v(z) > 0forallv ¢ S}

Note that, thanks to Theorem 2.2.13 , the number of archimedean absolute values

corresponds to the number of embeddings , then it is finite for a number field.

Remark 2.2.16. If we let L/K be a finite separable extension , say L = Kla],
and we consider | - |, in K, an extension |- |, in L (then w|v), we can complete K
respect to v and L in respect to w and obtain L, and K,. By construction, L, is
an extension of K, . More precisely L, = K,[a], since K,[a] is complete (In respect
to unique extension v) and contains L. If we take f € K[z] minimal polynomial for
a, we can consider thanks to the natural inclusion i : K — K, f € K,[z]. Then

the minimal polynomial of o in K,[z] must divide f. We get
Ly : K, <[L: K] <o

Thanks to this remark we can give a powerful definition:
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Definition 2.2.17 (Local degree). Let K/Q be a finite extension, w,v places of,
respectively, K and Q, such that w|v. We define the local degree at w the following
natural number:
Ny = [Ky 0 Q.

Remark 2.2.18. If v|oo, then Q. = R and K, is a finite complete extension
of R, then K, =2 R or K, = C, then n,, = 1 or 2 respectively. If we consider
j : K — K, natural map and i : K, — R (or C) topological isomorphism, then
|z, = |j(x)], = |i(j(x))|. Notice that o :=i0j: K — R (or C) is an embedding.
Conversely, two embeddings o1, 05 defines the same place in K if and only if they
are real and equal or complex conjugates. This follows easily from the definition
of equivalent places. In particular there are exactly r; + o absolute values in Mg
extending standard absolute value, where r; = #{0 : K — R embedding} and
ry = #{0,0 : K — C} pair of conjugates embeddings}. Therefore, we see that

> Ty =r142r=[K: Q) (2.2.2)

wloo

Actually this is a specific case of the formula (2.2.5) that we state in the next

proposition. In addition to this one, in the next proposition we present other im-

portant properties that will be used to prove the product formula for K.

Proposition 2.2.19. Let L/K be a finite separable field extension, o € L,v € M,
then:

e v extends to finitely many places w in L. Therefore:

Nmpg(a)= [ Nmp,x, (@) (2.2.3)

weMp wlv

e From the previous results it follows easily that:

[T lady =INmyk ()], (2.2.4)

weEMp wlv

e if L/K/Q is a finite separable extension, then

> ny=[L:K]n, (2.2.5)
weMp,wlv
Proof. We don’t prove (2.2.3), but using it and (2.2.1) we can prove (2.2.4) and
(2.2.5): Since K, is complete, |al,” = [Nmr, x, (@)]v, then T[,, [e[i = [T, | Nmz,/x, ()], =
|Nmy,x(a)ly. Then (2.2.3) is true Va € L, in particular if « € K* we have
Nmy, g(a) = oKl and [T

that || 5™ = |a|>"™ . From here (2.2.5) follows. O

|| = \a|§”w. Putting these 3 together we see
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Now we are ready to state and prove the following theorem:

Theorem 2.2.20 (Product formula for K number field). Let K be a number field.
Then, for all « € K, a # 0, we have

I lalp =1 (2.2.6)

weEMg

Proof.

IT lel =TI [ I Jlel ] “2” I INmyx(a)l, =1

weMg vEMgy \weMg,wlv vEMg

Where the last equality comes from the product formula for Q, since, by definition,
NmL/K(a) - Q [l

2.3 Heights

Now we are ready to define the concept of Height for any number field K. To do
this we will use projective space. It is not necessary to do this but it will be needed
later for define heights also on curves. We will see how the height over a number
field K is defined via the absolute values on K, and we will derive many properties
of the height from those of the absolute values. We will also introduce the definition
of the absolute height, which makes it possible to measure the height of an algebraic
number, thus removing the dependence of the height on the number field. It will be
crucial to see that the set of elements whose height is bounded by a given constant

is finite. This property is in fact at the heart of Roth’s proof of his theorem.

Definition 2.3.1 (Height for P*(K)). Let K be a number field. For every P €
P K), P = [xq,...,x,| we set

HK(P> = H max(|xo|v, ceey |xn|v)nv

'UEMK

We call this object the Height of P relative to K.
Next we see that the height is well defined and some basic properties.

Proposition 2.3.2. let K be a number field, P € P"(K), then the following prop-

erties are true:

1. Hg(P) does not depends on the choice of coordinates for P.
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2. for every P, Hx(P) > 1.
3. If L/K finite separable extension,

Hp(P) = Hg(P)E

Proof. 1) For A € K*,

[[ max(iAzilo)™ =TT AL T max(leil.)™
vEME vEME vEME
Then 1 follows from the product formula (2.2.6), indeed A € K* implies [ |
1.

2) It is trivial, because , since it can’t be that every coordinates of P is 0, it is always

Ny
|)\’vv -

vEMK

possible to choose homogeneous coordinates for P such that one of the coordinates

is 1. Then every factors defining the height of P is at least 1.

3)
m(P) = T max(odo = T T maxodo)™
weMp, vEMK weMp wlv
= H mlax(|xi|v)[L:K]n“ = Hy(P)LHK],
veEMg

where in the first equality we use only the definition, in the second we use an
equivalent way of viewing the product, and we replace w with v since z; is in K;

then we use (2.2.3) and again the definition. O

Remark 2.3.3 (Height in P*(Q)). The projective n-dimensional space over QQ has a
very good property: for every P € P"(Q), we can choose homogeneous coordinates
for P, zg,...,z, such that z; € Z and ged(x;) = 1. This is easy to see since from
rational coordinates we can multiply them all to the least common denominator to
turn them into integers and then divide by the greatest common divisor of those
integers. With this choice, if v € M3, |7;|, < 1 and and it must hold for at least
one index i, |z;|, = 1 (otherwise there will be a common factor for all the x;-s), then

max; |z;|, = 1. Hence, using the definition for Hg, we get
Ho(P) = max(|zo|ooy - - -+ [Tnloo)
We can observe that for every constant C' > 0, the set:
[P e PNQ)|Ho(P) < C}

is finite. That’s because every index z; can assume only 2C + 1 values, then the set
has a maximum of (2C + 1)" elements. An important fact , more difficult to prove,

is that this result is true also for X number field.
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Now we are finally ready to define the height of a point in an algebraic closure

of Q, i.e. of overy algebraic number over Q.

Definition 2.3.4. For P € P*(Q) , chosen a number field K such that P € P"*(K)
we set the absolute height of P as H(P) := Hx(P)Y¥U, Forz € Q, H(x) :=
H([x,1]). Similarly for a field K, Hx(z) := Hg([z,1]).

Remark 2.3.5. e The absolute height is well defined thanks to propostion (2.3.2)
point 3 and the tower law, indeed if L/K/Q separable finite extension:

HL(p)l/[L:Q] — HK<p)[L:K]/[L:Q] _ HK(p)l/[K:Q]'

e Qur initial definition of the height for Q is coherent with this definition, indeed
if r=p/q
H(r) = Ho([p/q,1]) = max(|p|sc, [9]o)-

Example 2.3.6. Taking o = Vk, k € Z, k square-free, we choose K = Q[a], o € K.
Since k square-free, £ —k is irreducible in QQ, then it must be the minimal polynomial
of o and [K : Q] = 1. Then

H(a) = Hg (o, 1]) = H max(1, |al,)™.
vEMK
Note that |a|? = [V/k|[" = |k, for the multiplicative property of absolute values,
then |of, = |k:|i/" Vv € My. If v € MY, v|p for some prime p; since k € Z, we
have that |k|, = |k|, < 1, then Yo € MY, max(1,|a|,) = 1. If v € M}?, v|oo and
lal, = |k|'/", then we have:
H(a) = TTORm = (Rt Eerer
v]oo

From (2.2.2) we know that the exponent is equal to [K : Q] = n, then H(«) = |k|.

As we said before, an important result we would like to have is that the set of
elements of K with bounded height is a finite set. This result would allow us, given
a problem in which one seeks solutions in Q (or P*(Q), to search for an upper bound

on the height of a solution; if such a bound is found, then the problem has a finite

number of solutions.

Proposition 2.3.7. Let P € P*(Q) and o € Gal(Q/Q). Then

H(P) = H(P") (2.3.1)
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Proof. Let K/Q such that P is defined in P"(K); then o gives an isomorphism

o: K — K7, also o likewise identifies the absolute values of K and K7 :

g

o: Mg — Mgo , v—v

Then, fixed v € Mg sigma gives also an isomorphism between K, and KJ,. So the

local degrees satisfies n, = n,o. Also if x € K, |27|,» = |z|,. Putting all together:

(P =[] moefafize = T macfofis = [] maxfefi = He(P)
’LUGMKU ‘ ’UGMK ! UGMK !
Since [K : Q] = [K? : Q], we have the desired result. O

Proposition 2.3.8. Let f(z) = apz"+a1z" '+.. .+aqs = ap Hle(x—aj) polynomial
in Q[x], then:

d
H([ao, ... aq)) < 27" [ H(ey) (2.3.2)

We do not give the proof of this fact, as it involves a lot of calculations.
Theorem 2.3.9. Let K/Q finite separable extension, C' > 0 a constant. Then
{PeP"(K): Hx(P) < C} (2.3.3)
1S a finite set of points.
Proof. Let P = [x,...,x,] € P"(K) . Easily we have:

Hg(P) = H miax|xl-\ﬁ” > max H max(|z;|,, )™ = mZaXHK(xi)
veMy veMy,
Thus it suffices to prove that the set {o € K : Hg(a) < C} is finite. In fact, if this
were true, then Hg(P) < C = Hg(x;) < C for all i, but then we can choose
every coordinate x; in finitely many way and therefore there would be only finitely
many points P. Suppose a € K with Hg(a) < C, we can then take the minimal
polynomial for «, call it f(z) = 2% + ayz¢™! + ... + a4. Notice that d < [K : Q]. If

a = q,...,qq are the conjugates of «, for (2.3.2) we have:
d
H([1,a1, ... a4)) <27 [ H(ew) = 2 H(a)"
i=1
Where the equality comes from (2.3.1). Now, since a; € Q, H([1,ay,...,aq)) =
Ho([1,ay,...,a4)) and H(a) = Hg (o)W we have:

HQ([L ag, - .., aq]) < 2d71HK(a)d/[K:Q} < odd/[K Q)
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From what we have already seen in the example (2.3.3), this fact implies that there
are finitely many possibilities for the a;-s , and therefore for f. Since f has at most
[K : Q] roots , from this finite set of polynomials , each of them contributes to our

set with at most d elements, then our set must be finite. O

2.4 Roth’s theorem

Finally, we have all the necessary tools to generalize the concept of approximation
of algebraic numbers, over a field K rather than only over Q, using rationals (which
will now be elements of the field). With these tools it is possible to reinterpret
Liouville’s and Thue’s theorems in a field K, and moreover we will state Roth’s

theorem. To do all this, we first give the following definition:

Definition 2.4.1 (Approximation exponent). Let K be a number field , v € Mg
and 7 : N — R*. We say that K has approximation exponent T (in respect to
v) if the following property holds true:

Let o € K, d = [K[a] : K] and choose one of the extensions of v in K|, which we
still call v. Then, for all C' > 0, the inequality:

la — a], < CHg(2)™@ (2.4.1)
has only finitely many solutions.

Example 2.4.2. Liouville (2.1.3) says that Q has approximation exponent 7(d) = d
in respect to the standard absolute value.
Thue (2.1.5) says that Q has approximation exponent 7(d) = d/2 4+ 1 + ¢ for all

e > 0 in respect to the standard absolute value.

Theorem 2.4.3 (Roth’s Theorem). For every € > 0, every number field K of

degree d has approximation exponent:
7(d) =2 +e.

The proof does not require very deep results, but the details required are lenghty.

We only describe how the proof proceeds.

Sketch of the proof of Roth’s Theorem. Fixed o € K, through elementary estimates
and the pigeonhole principle, one can construct a polynomial P(X,...,X,,) €
Ok[X1,...,X,,] that vanishes of high order at («, ..., «) with controlled degree and
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coefficients with controlled heights. Then we proceed by contradiction, supposing
there are infinitely many different x; € K such that inequality 2.4.1 with 7(d) = 2+¢
holds. Using Taylor expansion, we can prove that |P(xy,...,2Z,)|, is fairy small.
Then, one must prove a non vanishing result, namely Roth’s Lemma. This result
says that a polynomial that vanishes to (xy,..., %, ) such that the height of this
element is fairly increasing, depending on m and the degree of the polynomial, then
P cannot vanish to high order at (z1,...,xz,,). This part is the most delicate of the
proof. Indeed, Thue did not have this result at his disposal, but a weaker one, which
led him to prove a weaker version of Roth’s theorem. Once we have this results,
making assumption on the rate of growth of the height of x;, using Roth’s Lemma,
we can prove that there is a low order partial derivative such that, calculated at
(1,...,2Tm), is different from 0. We call this element z and we can prove that |z|, is
fairly small, from what we said earlier. On the other hand, using product formula,
we can prove that |z|, > Hg(2)~!. Using another bound for Hy(z)™!, we obtain a

contradiction for |z|,, which would be both too small and too large. O






Chapter 3
Introduction to Curves

The study of curves constitutes a natural point of contact between algebra, geom-
etry, and number theory. Historically, curves arise as the zero sets of polynomials in
two variables, but their importance goes far beyond this elementary viewpoint: they
provide the natural setting for understanding deep geometric phenomena through
purely algebraic tools. In this chapter we introduce the fundamental notions related
to algebraic curves, with the aim of developing a rigorous language that allows us
to describe their properties. The main purpose of this discussion is to prepare the
ground for the introduction of the genus of a curve, a fundamental invariant. We
will then study divisors and differentials associated with the curve, and the Rie-
mann-Roch theorem, which will illustrate a relation between these objects and will

allow us to define the genus.

3.1 Varieties

We briefly recall the notion of an algebraic variety, both in the affine and projec-
tive setting. This provides the basic geometric framework in which curves naturally
arise and allows us to fix the language and notation that will be used throughout
the chapter.

Given a field K and its algebraic closure K, from eachideal I ¢ K[X] = K[X1,..., X,)]

we associate the set:
Vi={PeA": f(P)=0forall fel}.

Definition 3.1.1. V C A" is an algebraic set if there exists I C K|[X] such that
V =V}, In this case, such an ideal is called ideal of V and:

I(V)={f € K[X]: f(P)=0 for all P € A"}

27



28 Introduction to Curves

V is said to be defined over K if I(V) can be generated by polynomials in K[X];
in this case we write V/K and define [(V/K) = 1(V) N K[X].

Definition 3.1.2. Let V' C A™ be an algebraic set with ideal I(V). V is a variety
if I(V) is a prime ideal of K[X].

Definition 3.1.3. If V/K is a variety, we define the set of K-rational points
of V as follows
V(K)=VNA"(K).

If Ok g ring of S integers for some finite S C My, we can similarly define the set
of S-integral points of V :

V(O}gs) =VnN An(ons)

Notice that A" is a variety, because I(V) = (0) is a prime ideal.
In this thesis we will always consider variety in A2, usually defined over K, which
ideal is generated by only one polynomial f € K|[X] irreducible. In this case we will

write:
Vi flaz,y)=0 (a)
This is a notation meaning V = {(z,y) € K : f(z,y) = 0}. An interesting
and very complicated problem concerning this objects is to determine the set of K-

integral points V(K).

Definition 3.1.4. Let V/K be a variety. We define affine coordinate ring of

V/K as:
K[X]
K|\V]:=
SRNTUATS
We define also the function field of V/K its fraction field K(V) := Frac(K[V]).
Similarly are defined K[V] and K(V), replacing K with K.

Next we want to define a notion of dimension for a variety ; we notice that K (V)
is an extension of K but it may not be algebraic, so we have to define the concept

of "transcendence degree” for a trascendence field extension.

Definition 3.1.5. Let L/K field extension. We say that S = {xy,...,x,} C L is

algebraically independent over K, if
VP e K[Xy,...,X,]\{0}, P(s1,...,8,) #0

L/K is a finite transcendental extension if 35 = {s1,...,s,} C L non empty

algebraically independent such that L is an algebraic extension of K(s1,...,8,). In
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this case that n is unique and it is called the transcendental degree of L/K.

Notice that if S is empty, then n =0 and L/K is an algebraic extension.

Definition 3.1.6 (Dimension of a variety and Curve). Let V' be a variety. We
define its dimension as the transcendental degree of K(V) over K. V is a curve if

its dimension is equal to 1.

Example 3.1.7. The dimension of A" is n because K(A") = K(zy,...,2,). Then
if V variety defined by a non constant polynomial f, V : f(zq,...,2,) = 0, then
dim(V)=n— 1.

Then the objects we are interested in are curves. We will usually denote curves
by C.

Remark 3.1.8. Notice that we can give all these definitions replacing A"(K') with
P*"(K). Then V' C P"(K) makes sense when V' is generated by homogeneous polyno-
mials, in fact f(P) = 0 does not depend on the choice of homogeneous coordinates
for P. In this case V is called projective variety. There is a very close connection
between varieties and projective varieties. In fact, given a variety, one can uniquely
associate a projective variety to it by “homogenizing” the polynomials in its ideal.
This process is done like this: Let f(xy,...,2,) polynomial of degree d, we can

homogenize it adding one variable obtaining :

f*(xl,...,xn+1)_xn+1f( - )

) 3
Tn+1 Tn+41

This remark leads us to give the following definition.

Definition 3.1.9. Let V' C A™ be a variety. We define the projective closure
of V as V. C P" by his ideal I(V) = {f*(X) : f € I(V)}. Notice that to every

P = [20,...,Zpn41] € V with x,41 # 0 corresponds a unique point in 'V, namely
P = (20/Tpi1,-- -, Tn/Tns1). Points in V with x,,1 = 0 are called points at
infinity.

Usually, given a variety V' is useful to consider its projective closure, because

it may be easier to deal with homogeneous polynomials, for example to determine
V(K).

Example 3.1.10. Consider
C:2+y*=p
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where p is a prime, p Z 1 mod (4). We want to determine V(Q). If we consider
C : 22 +y* = pz%; suppose P € C(Q), it is possible to find homogeneous coordinates
x,1, z such that x,y, 2 € Z and ged(z, y, 2) = 1, then 22 = —y? mod(p). Since p Z 1
mod 4, —1 is not a square mod(p), then it must be x = y = 0 mod (p). Then it

must be , from the equation, that 3|z , in contradiction with ged(z,y, z) = 1. Then
C(Q) = 0.

Definition 3.1.11. Let V/K be a variety, V : f(z1,...,2,) = 0. P € V is a
singularity for V if %(P) =0 foralli=1,...,n. IfV does not have singularities

18 satd to be smooth.

Definition 3.1.12. Let C/K be a curve and P € C' a smooth point. The Local ring
of C at P is K[X]p={F € K(C): F(X) = f(x)/g(x) and g(P) # 0}. f € K(C)
is reqular at P if f € K|[C|p. Therefore Mp := {f € K[C] : f(P) = 0} is the
mazximal ideal of the local ring. For d € N, M& = (f1...fa: fi € Mp) . The

valuation on this ring is given by:

ordp : K[Clp — NU {0}
f — max(d€Z: fe M.

Since K(C) is the fraction field of K[C] we can extend the valuation at P to
K(C) in the following way:

Definition 3.1.13. Let C'/K be a curve and P a smooth point. We define the order
of f at P as
ordp: K(C) — ZU{o0}
F=f/g — ordp(f)—ordp(g)
We call a uniformizer of C' at P any function t € K(C') with ordp(t) =1, i.e. a
generator for Mp. Also ifordp(f) > 0, fis said to be regular at P; if ordp(f) > 0,
f has a zero at P; else ordp(f) <0, f has a pole at P.

Remark 3.1.14. Notice that if ¢, uniformizers at P, then they are generators for
Mp, then Ju € K[V]p such that ¢ = ut. But u & Mp, otherwise ' = ut € M3
contradicts the fact that ¢’ is a generator for Mp. Then u € K[V]|p\Mp, that it’s

the group units for K[V]p, so u invertible.

Notice that the definition of Mp can be given also for varieties. Next we give a

proposition that would be useful to calculate orders.

Proposition 3.1.15. Let V/K be a variety and P € V' a smooth point. Then:
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Example 3.1.16. Consider
C:yP=a+u

and P = (0,0) € C. P is a smooth point. Notice that Mp is surely generated by
the polynomials X, Y € K(C), then ordp(X) and ordp(Y") are greater or equal to 1.
Now M3 is generated by X2, Y2 XY, but in K(C) we have X = Y?— X%.X € M2,
then Mp/M% is generated by only Y. Observe that in MA/M}, X = Y? # 0

mod M3. From what we observed follows that:
ordp(Y) =1; ordp(X) =2.

Below we give the definition of morphism between varieties. We will use only
morphisms between curves, but it is useful to see the most general definition possible.

We divide it into several parts.

Definition 3.1.17. Let V1,V, C P"(K) wvarieties defined over K. A rational
map (defined over K) from Vi to Vy is a map of the form ¢ = [fo,..., fu] with
fi € K(V1), not necessarily defined at every point of Vi, but if f; is reqular at P for
all i, then ¢(P) € Vo. We say that ¢ is regular at P if there exists g € K(V;) such
that gf; is reqular at P and [(gf1)(P),...,(gfn)(P)] € V. In this case we define

¢(P) = [(9f0)(P), .- (9fa)(P)].

Definition 3.1.18. Let V;,Vy, € P(K) and ¢ : Vi — Vs rational map. ¢ is a
morphism if it is reqular at every point of V1. Then ¢ can be defined for all point
P e Vi. We say that ¢ is an tsomorphism if there exists a morphism 1 : Vo — Vi
such that ¢ o1 and 1) o ¢ are identities.

Example 3.1.19. Let V : X? +Y? = 7%V C P?*(K). Consider
6V P (XY, Z) = [X+2Y]

We can see that ¢ is regular at every P, except possibly at points of V' such that
X+Z =Y =0. The only point with this property is [1,0, —1]. Take g € K(V),g =
X — Z. We have that:

(X4+2)(X=2),Y(X=2)] = [X?-Z2Y(X-2)] = [-Y*,YV(X-2)] = [-Y, X~ Z].

where we used that X? — Z? = —Y? in K[V]. Then ¢([1,0,—1]) = [0,2] = [0, 1] and

¢ is a morphism. One can also prove that ¢ is an isomorphism.
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3.2 Maps between curves

We could generalize and define a morphism between varieties of projective space
of different dimensions. It’s not hard to do, but since we are mainly interested in
elliptic curves and we will see them as subset of P2, is not necessary. Let’s note

some properties of maps between curves.

Proposition 3.2.1. Let C' be a curve and V' a variety. If C is smooth and ¢ : C' —

V' rational map, then ¢ is a morphism.

Proof. Suppose ¢ = [fo, ..., fa], with f; € K(C) and P € C. Choose t € K(C)

uniformizer at P, then if n = min;(ordp(f;)), then:
ordp(t™"f;) >0, ordp(t™"f;) =0 for some j.
Then ¢t™" f; is regular at P for all ¢ and ¢t~ f;(P) # 0. O

Proposition 3.2.2. Let ¢ : C; — Cy be a morphism between curves, then ¢ is

constant or surjective.
Proof. O
We will use this fact later.

Remark 3.2.3. Let C/K be a smooth curve and f € K(C). Then we can define a

rational map, that we also call f, in this way:

f:C — P!
pPo— [f(P),1]

By proposition (3.2.1), f is a morphism. Following the proof , we can give f an
explicit form f(P) = [f(P),1] if f is regular at P, otherwise f(P) = [1 : 0]. Con-
versely if we have a rational map, ¢ : C' — P!, ¢ = [f,g] and f,g € K(C), then or
g = 0 then ¢ = [1 : 0] constant map, otherwise ¢ corresponds to the map defined by
f/g . We can repeat this argument replacing K and K, then there is a one to one

correspondence between K (C') U {co} and rational maps C' to P! defined over K.

Proposition 3.2.4. Let C' be a smooth curve, then f € K(C), f # 0 has finitely

many zeros and poles.

Proof. Suppose f € K[C] and f # 0 and f non constant (this case is trivial). We
first prove that f has finitely many zeros. We can consider K[f] C K[C]. Since
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f € K and K algebraically closed, then K[f] has trascendental degree equal to 1
and K[C]/K|f] is a finite algebraic extension. If we consider B to be the integral
closure of K[f] in K[C], then it is not hard to see that B is a Dedeking domain.
Then we can consider the ideal (f) in B , using Theorem 1.3.11, we get

(/)B =p7---p

where n < oo and each ideal p; corresponds to zeros of f. Then f must have finitely
many zeros. Now, taking ' € K(C), F = f/g where f,g € K|[C], zeros of F
corresponds to the zeros of f and poles of F' corresponds to zeros of g, then the

conclusion follows from what was shown above. O]

Notice that, given C/K,Cy/K curves defined over K, and a non constant map

¢ : C7 — Cy we can induce an injection :

¢": K(Co) = K(Ch), ¢*(f) = foo.

Then, since ¢* is injective , K(C}) is an extension of the field ¢*(K(Cs)) and we

can easily see that ¢* fixes K.

Proposition 3.2.5. Let ¢ : C7 — Cy be a non constant morphism of curves defined

over K, then:

Proof. By definition K(C;) and K(C3) are finitely generated extension fields of
transcendence degree 1 of K, then also ¢*(K (C2)) have this property. Then it must
be that this extension if algebraic and finite. O]

Definition 3.2.6. Let ¢ : Cy — C5 be a non-constant morphism of curves defined
over K. We define its degree to be deg ¢ := [K(C1) : ¢*(K(Cs))]. If ¢ is constant,
we set degp = 0. We say that ¢ is separable (or inseparable) if the extension
K(Cy)/¢*(K(Cy)) have the correspondent property and define degy(¢) and deg;(¢)

to be the separable and inseparable degree of the extension.

Remark 3.2.7. We don’t see all details, but a morphism of degree 1 between smooth
curves is an isomorphism. This can be proved using proposition (3.2.1) and the fact
that given ¢ : K(Cy) — K(C}) injection fixing K , then there exists a unique
¢ : C7y — C5 morphism such that ¢* = 4. This is why we have called this function

¢".
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Definition 3.2.8 (Ramification index). Let ¢ : C1 — Cy be a non-constant mor-
phism of smooth curves and P € Cy. We define the ramification index of ¢ at P

as :
ep(P) := ordp(¢”(tg(p))) = ordp(tep) © ¢),
where typy € K(Cs) is a uniformizer at ¢(P). Note that eg(P) > 1. We say that ¢

ramifies at P if es(P) > 1. Therefore, ¢ is unramified if, for all P € Cy, we have
6¢(P) =1.

From remark (3.1.14), we see that the ramification index does not depend on the
choice of the uniformizer, indeed if ¢, ¢ uniformizers at ¢(P) , Ju € K(Cy) invertible
such that ¢ = ut, then

ordp(¢*(t)) = ordp(¢" (u)¢" (t)) = ord,(¢"(u)) + ordp(¢7 (1)) = ordp(¢" (1)),

where we used the fact that ¢* is an homomorphism of fields, then ¢*(u) must be
invertible. This fact implies that ordp(¢*(u)) = 0.

Proposition 3.2.9. Let ¢ : C; — C5 be a non-constant map between smooth curves,
then

o forallQ € Cy , 3 pey1(q) es(P) = deg¢;
o For all but finitely many Q € Co, #¢ Q) = deg, ¢.

Observe that this two properties implies that if ¢ separable map, then it has
finitely many ramification points. In fact, in this case #¢~(Q) = > pes1(q) €o(P)
implies e4(P) = 1 for all but finitely many Q € Cs, then all points P € ¢~(Q) are

unramified.

Example 3.2.10. Let ¢ : P! - P! ¢([X : Y]) = [X™: Y™"] for some n € Z, n > 2.
In affine coordinates, say ¢t = X/Y, we can describe this map as ¢(t) = t". For

P =0, we can choose t4py =, then
eyp(P) = ordp(t") =n

We get the same result for P = oo, considering typy = s = 1/t. For P = a # 0, 00,

we can choose t4) =t — a and see that
6¢<P) =1.

We notice that what we have found is consistent with the last proposition; indeed
for P # 0,00, we have #¢~1(P) = deg$ = n, while for P = 0 or P = oo, ¢~ '(P)

has only one point, but the first point of the last proposition is satisfied.
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3.3 Divisors and differentials

Now let us give an introduction to divisors and differentials. Divisors allow us
to encode algebraically the distribution of zeros and poles of rational functions,
while differentials provide a tool to study finer properties of the curve, such as its
fundamental invariants. These concepts will form the basis for the definition of

genus and for the application of the Riemann—Roch theorem.

Definition 3.3.1. Let C be a smooth curve, then we define Div(C') as a free abelian
group generated by points of C'. Then

Div(C) := {D = Z np(P) :np € Z,n, =0 for all but finitely many P € C’}
pPeC

If D € Div(C), then we define its degree as deg D := ) p o ny € Z. We can also
define :
div: K(C)* — Div(C)
[ Ypecordp(f)(P)

Note that the map div is well defined thanks to proposition (3.2.4), and it is
also an homomorphism of groups, because ordp is an additive valuation. Then
the following is true for all f,g € K(C): div(fg) = div(f) + div(g). Thanks to
this property, we can define an equivalence relation ~ on Div(C) as follows: if
Dy, Dy € Div(C), Dy ~ D, if 3f € K(C), such that D; — Dy, = div(f). If D ~ 0,

we say that D is principal.

Definition 3.3.2. Let C' a smooth curve, then we define its Picard group (or
divisor class group) as Pic(C) := Div(C)/ ~ .

Definition 3.3.3. Given ¢ : C; — Cy map between smooth curves, we can induce:
& Div(Ca) = DIV(C1) 3((Q)) = X per(o) es(P)(P)
and extends by Z-linearity to all divisors.

Notice that we have the same notation ¢* for two different functions , one between
divisors and one between function fields. Then we give some useful properties of

divisors:

Proposition 3.3.4. Let ¢ : C; — Cy be a map between smooth curves, then:

a) deg(¢™(D)) = deg(¢) deg(D);
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b) ¢*(div(f)) = div(¢*(f));
c) for all f € K(Cy)*, deg(div(f)) = 0.

Proof. a) Since deg : Div(Cy) — Z and ¢* are both Z-linear, it suffices to prove this
only for D = (Q), for some point Q) € Cy. By definition:

deg(¢"(Q)) = Y ey(P) = deg(9)

Peop~1(Q)

where the last equality comes from proposition (3.2.9).
b) By linearity, it suffices to prove that ordp(¢*(f)) = es(P)ordgpy(f). Take a
uniformizer t4py at ¢(P), then we can suppose f = uty p), where m = ordg(py(f)

and u invertible, then

ordp(¢*(f)) = ordp(¢*(ut$(P))) = mordp(¢*(tsp)).

The last element is equal, by definitions, to e,(P) ordyp)(f).
¢) Recall that, if f € K(C)*, we defined f: C — P! . Identifying P* = K U {cc},
so that [0 : 1] corresponds to 0 and [1 : 0] to oo, we obatin directly from definitions:

div(f)= Y ordp()(P)= D ef(P)P)= Y ef(P)P)= f((0)—(00)).

PeCy Pef=1(0) pPef=t(oo)
Then we get deg(div(f)) = deg(f*((0) — (00)) = deg f(1 — 1) = 0 using a). O

This proposition tells us that if D € Div(C') principal divisor, deg(D) = deg(div(f)) =
0, for some f € K(C1). Then we can define Div’(C) := {D € Div(C) : deg(D) = 0}
and notice that the set of principal divisor is a subgroup of Div’(C). Then we can
define Pic’(C) := Div’(C)/ ~. The first two points tell us that ¢* sends divisors of
degree 0 in divisors of degree 0 (a) and principal divisors to principal divisors, then
¢* induces a well defined map between Pic’(Cy) to Pic’(C}). Next, we talk a bit

about differentials:

Definition 3.3.5. Let C' be a smooth curve, the space of differential forms on
C, s
Qc:={df : f € K(O)}

where we want the usual relations, for all f,g € K(C):
o d(f+g) =df +dyg;

e d(fg)=df -g+ f-dg;
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e do=0 foralla € K.

With this definition, we can prove that ¢ is a K(C') vector space of dimension
1, generated by any uniformizer ¢. Then, for every w € ¢, chosen a uniformizer t,

there must exists a unique g € K(C'), such that:
w=g-dt.

We can also prove that, if f € K(C) is regular at P, t uniformizer at P, then df /dt

is regular at P. It is easy to define all these things also for functions in K(C).

Definition 3.3.6. Let w € Q¢, P € C' and tp uniformizer at P, then we can define
ordp(w) := ordp(w/dt). Also div(w) := Y p.oordp(w/dtp)(P) € Div(C). For a
divisor D € Div(C'), we say that D is canonical if there exists w € Q¢ such that
D = div(w).

Observe that the first definition does not depend on the choice of the uniformizer:

let ¢,# be two uniformizers at P, then we have w = g -dt = ¢’ - dt’:
ordp(w/dt') = ordp(w/dt) + ordp(dt/dt")

but ordp(dt/dt') = 0 because t,t" are regular at P, then dt/dt’ and dt'/dt are both
regular at P and this can happen only if ordp(dt/dt’) = 0.

3.4 The genus of a curve

Now we are ready to define the genus of a curve. We will introduce the notion
of ordering among divisors, and thanks to this we can construct vector spaces as-
sociated with each divisor. Finally, the Riemann—Roch theorem provides a formula
relating the dimension of these vector spaces to the divisors that define them, show-
ing how the dimension of a vector space associated with a canonical divisor does not

depend on the divisor itself. This last invariant will be the definition of the genus.

Definition 3.4.1. Let Dy, D, € Div(C). If Dy = ) p.onp(P), we say that Dy is
positive and write D1 > 0, if np > 0 for all P € C. Also Dy < D5 if Dy — Dy > 0.
We define

L(D):={f € K(C)*: div(f) > -D} U {0}.

This notation is useful to summarize informations about poles and zeros of a
function f, for example: f € L(n(P) — (Q)) tells us that f has a pole of order at
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most n in P and a zero at Q. Notice also that £(D) is a K-vector space. This is
easy to see, because div(f; + f2) > min(div(f;),div(fz)) and div(\f;) = div(f;) are
true for all f1, fo € K(C) and A € K*.

Definition 3.4.2. Let D € Div(C), then (D) := dimg L(D).

Remark 3.4.3. We want to prove that ¢(D) < oo. It is easy to see that , if
f € L(D)\{0}, then, from proposition 3.3.4.c:

0 = deg(div(f)) > —deg D.

Then, if deg D < 0, £L(D) = {0} and ¢(D) = 0. Observe also that £(0) = K and
¢(0) = 1. This comes from the fact that div(f) > 0 implies that f has no poles,
but then f cannot have any zeros in order to respect deg(div(f)) = 0. This implies
feK.

Lastly, if deg D > 0, we can prove that ¢(D) < deg D+ 1. First, suppose D = n(P),
for some point P and n > 0; then div(f) > —n(P) implies that ordp(f) > —n and
f regular at all other points. We know that £(0) = 1, then by induction, we can
suppose {(n(P)) < n+1 and prove that ((n+1)(P)) < n+2. Suppose there exists
frg € L((n+ 1)(P))/L(n(P)) linearly independent, then f,g have poles at P of
order —n — 1 and no other zeros. Then ¢ := f/g is such that ordp ¢ = 0. If we take
A = ¢(P), then h := f — \g is such that ordp(h) > —n — 1 and h € L(n(P)), then
f = Ag. This implies {((n+ 1)(P)) < {l(n(P))+1<n+2.

We are finally ready to state, but don’t prove, the Riemann-Roch theorem.

Theorem 3.4.4 (Riemann-Roch theorem). Let C' be a smooth curve and Ko €
Div(C) canonical divisor on C' and D € Div(C). Then there exists a unique g(C') =
g€ Z,g>0, depending only on C', that we call the genus of C such that:

(D) —U¢(K¢c — D) =deg(D) — g+ 1.

Corollary 3.4.5. Let C be a smooth curve and Ko € Div(C') canonical divisor on
C. Then

a) g ={(Kc);
b) deg Ko = 29 — 2;
c) if deg D > 2g — 2, then :

((D)=degD+1—g.
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Proof. a) This comes directly from the Riemann-Roch theorem with D = 0 and the
fact that ¢(0) = 1.

b) We use (a) and Riemann-Roch theorem with D = K¢ and we get that deg K¢ =
2g — 2.

c¢) Using b), we get that, if deg D > 2g — 2, deg(K¢ — D) < 0, and from a previous
remark , this implies /(Ko — D) = 0. Applying again Riemann-Roch theorem we
finish the proof. O

Example 3.4.6 (Genus of P'). We are gonna prove that the genus of P'(K) is
equal to 0. We can take ¢t € K(P') coordinate function, i.e. ¢([X,Y] = X/Y and
t([1,0]) = oo (a bijection P}(K) = K U oco). Now we can see that Vo € K, t — « is
a uniformizer at P = [z,y] if & = z/y, then ordp(dt) = ordp(d(t — «)) = 0. Else
P =[1:0] = oo, then ordp(dt) = ordp(—t*d(1/t)) = —2, because 1/t uniformizer
at oo. Then:

div(dt) = —2(c0) deg(div(dt)) = —2

Then, from the fact that if w € Q¢, there exists g € K(C) such that w = g - dt, we
have div(w) = div(g) 4 div(dt), taking the degree:

deg(div(w)) = deg(div(w)) = =2
Using Corollary.3.4.5.b, we get g(P'(K)) = 0.

Then we can give a theorem that gives a relation between the genus of two curves

if there is a non constant separable map linking them:

Theorem 3.4.7 (Hurwitz). Let ¢ : C; — Cy, be a non-constant separable map
between smooth curves defined over K, with gy, 9o being, respectively, the genus of

Cy and Cs. If one of the following is true:
e char(K) =0
e char(K) =p >0 and p does not divide eys(P) for all P € Cy

We then have the following formula :

2g; — 2 = (deg ¢) (292 — 2) + Y _(es(P) — 1).
pPeC

Example 3.4.8 (Genus of an elliptic curve). We want to use this theorem to de-

termine the genus of a curve C' defined as follows:

C:y? = f(z) = apr® + a12* + agx + as
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where f € K|[z] for some field K with char(K) # 2, and suppose f(x) has distinct
roots, i.e. ged(f, f') = 1. Py = (20, y0) € C singularity for C' if and only if

2y0 = f'(z0) =0

But then (since 2 # 0), yo = 0 and z would be a double root of f, then C' must be
non singular.

Notice that there is only one point at infinity O = [0,1,0], in fact homogenizing
and put z = 0, it must be z = 0. Then we can define ¢ : C' — P!, ¢(x,y) = x and
sending O to [1,0] = co € PL. Notice that ¢ is separable , then deg¢ = #¢ ()
for all but finitely many . It is clear that for a generic xy € K, y*> = f(z0) has two
solutions, then deg ¢ = 2. Also a point is of ramification if and only if ¢~!(zy) has
only one point, because Zped)_l(xo) es(P) = 2 . In that case, zo is a root of f or
xo = 00. Then ¢ has exactly 4 ramification points with ramification index 2. Using

Hurwitz’s theorem 3.4.7 we get:

29(C)—2=2(2-0-2)4+4=0 = g¢g(C)=1.
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Elliptic curves

Finally we can introduce Elliptic curves. We will begin by providing the defini-
tion of an elliptic curve as a non-singular curve of genus one equipped with a base
point, and we will illustrate its representation via the Weierstrass equation. Next,
we will introduce the group structure on elliptic curves, which allows us to define a
law of addition between points, and we will discuss the main properties of isogenies,
i.e. group morphisms between elliptic curves. We will then consider heights on
elliptic curves, and finally, using Roth’s theorem, we will show how these notions
allow us to prove Siegel’s theorem, which ensures that an elliptic curve defined over

a number field has only a finite number of integral points.

4.1 Weierstrass equation

In this section, we see how every elliptic curve can be described by a Weierstrass
equation. We then consider the inverse problem, that is, when a curve defined
by a Weierstrass equation is an elliptic curve, introducing the discriminant and

J-invariant.

Definition 4.1.1 (Elliptic curve). An Elliptic curve is a pair (E,O), where E/K
is a non singular curve of genus 1 and O € E. There ezists x,y € K(E), called
such that the map ¢ - E — P*(K), ¢ = [z,y,1] gives an isomorphism between E /K

and a curve C € P?, given by a Weierstrass equation.:
C:Y*Z4+aXYZ+asYZ? = X?+ayX*Z + ays X Z* + ag 2>, (4.1.1)

where a; € K and ¢(0O) = [0, 1,0].

41
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We will consider an elliptic curve to be a curve given by a Weierstrass equation
with base point [0,1,0]. However, we will often write it in its non-homogeneous
form:

Y2+ azy + asy = 23 + asr? + aur + ag (4.1.2)

keeping in mind that [0, 1, 0] is the only point at infinity. Now we need to focus on a
problem, namely when a Weierstrass equation gives a singular curve or not, because
we would like to consider only non singular curves. Before doing this, let’s analyze

a Weierstrass equation more closely.

Remark 4.1.2. Suppose char(K) # 2,3 and let E elliptic curve given by a Weier-
strass equation of the form (4.1.2). Then the substitution

1
y——%é(y—wnx——aﬁ
gives an equation of the form:
E :y? = 42 + byx® + 2byx + bg

where we have defined by = a1 + 4a4 , by = 2a4 + aja3 , bg = a% + 4ag.

Another substitution of the form:

(z,y) — (

x—3by y
36 108

gives the simpler equation:
E:y? = 2% — 27cyw — 5dcg

where ¢4 = b3 — 24by , cg = —bj + 36baby — 216bs. We can also define by = ajag +
dasag — ajasaq + aga?,, — ai. This tell us that if we are in characteristic different than
2 and 3, we can find A, B € K such that our elliptic curve F/K has the form:

E:y*=2"+Az+B (4.1.3)

All these quantities we have defined along the way are useful for the next definition

of a quantity related to the elliptic curve and its properties.

Definition 4.1.3. Let E be an elliptic curve given by a Weierstrass equation (4.1.2),

we define the discriminant of E the following:
A = —b3bg — 8b3 — 27b; + 9byb,bg

When A # 0, we can also define the j- invariant j := c3/A.
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This definition might seem like a tedious and useless computation, but in reality
calculating this discriminant will allow us to determine immediately whether a curve
is singular or not. Meanwhile, the j-invariant will be used to compare two curves,
which will be isomorphic if and only if they have the same j-invariant. Moreover,
A and j have a simpler and more compact form in the case of the simpler equation
(4.1.3):

A = —16(44% +27B2), j= —1728U4L

Remark 4.1.4. We may ask how A and j behave if we change coordinates of
a Weierstrass equation, and also when a change of coordinate effectively gives us
another Weierstrass equation (and fixes the point at infinity [0 : 1 : 0]. One can

prove that the change of variables
¥ =vlr+r, Yy =udy+uisy+t (4.1.4)

where u,7,s,t € K,u # 0 fixes [0, 1,0] and, calling A’, j/, respectively, the discrimi-
nant and the j-invariant of the new Weierstrass equation, u'2A’ = A and ¢, = u'cy.
A # 0 implies A’ # 0, so in that case j' = j. This requires a lot of calculations so
we don’t see the proof; an important thing is that actually only this type of change
of coordinates preserves the Weierstrass form. If one have this result , then it’s clear

why the j-invariant is called like this.

Remark 4.1.5 (Singular points of E). P = (x,y) is a singular point for £ if P € £

and , if f(z,y) = y? + a1zy + azy — 2° — e — asx — ag, L(z,y) = g—i(:c,y) =0. It

follows that there are o, 3 € K such that the Taylor expansion of f(x,%) at P has

the form:

fla,y) = (@0, 0) = (¥ — wo) — alz —20))((y — yo) — Bz — x0)) — (z — z)°

with y — yo = a(x — xo) and y — yo = S(z — x¢) tangent lines at P.

Definition 4.1.6. Let E elliptic curve, P € E a singular point and o, 3 € K
obtained as in (4.1.5). Then :

e P is anode if a = [(; in this case there exists two distinct tangent lines at P;
e P s a cusp if a = f3; in this case there is only one tangent line at P.

The names "node” and ”cusp” derive from their geometric visualization. Here I

report an example:



44 Elliptic curves

AN .
.

y?> =23, P = (0,0) cusp y? =2® + 22 P = (0,0) node

Proposition 4.1.7. Let E/K elliptic curve with Weierstrass equation (4.1.2). Then
1. E s singular <— A =0;
2. E has a node <= A =0 and ¢4y # 0;
3. E has a cusp <= A =0 and cy = 0.

Proof. Firstly, we show that the point at infinity O = [0, 1, 0] is never singular. If

E has Weierstrass equation in homogeneous form:
E:F(X,)Y,2)=Y*Z+aXYZ+a3sYZ* ~ X® —a;X?Z — ay X 7* — agZ> = 0

Then g—g(O) =120, then O isn’t a singular point. Now suppose E with Weierstrass
equation non homogeneous (4.1.2) singular at Py = (xo,4), then the substitution
r=1a 4+ x9and y = 3 + yo leaves A and ¢, invariant (as we have seen in Re-
mark.4.1.4), so without loss of generality we can suppose P = (0,0). Then :

ag = f(0,0) =0, as=55(0,0)=0, as=5(0,0)=0.

so E has equation of the form:
E:y2+a1xy—a:3—aga:2 =0

Calculating the discriminant and ¢y ,we get A = 0 and ¢4 = (a? + 4az)*>. By
definition, P is a node (respectively a cusp) if the quadratic form y? + ayzy — asz?
has distinct factors (respectively equal), which occurs if and only if its discriminant
is different than 0 ( respectively equal to 0), but the discriminant is (a? 4+ 4as). This

proves the ”if” part of 1), 2) and 3). It remains to prove that F non singular implies
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A # 0. To simplify the computation, we assume char(K) # 2, then we can consider
E with Weierstrass equation y? = 413 + byx? + 2byx + bg. P = (x9,yo) is singular
for E if

2y = 1225 + 2baxg + 2by = 0

Since 2 # 0, it must be yg = 0 . Then P = (z0,0) and xz( is a double root of the
cubic polynomial 423 + byx? + 2bsx + bg; this occurs only if its discriminant, which
is equal to 16A (from Remark.4.1.4), is 0. This completes the proof. O

Proposition 4.1.8. Let E/K,E'/K be elliptic curves with j(E),j(E') their j-

]
invariant. Then E and E' are isomorphic if and only if j(E) = j(E').
Proof. If E and E’ are isomorphic, then there exists a change of coordinates of the
Weierstrass equation for F that gives the equation for E’, then from Remark(4.1.4)

they have same j- invariant. Conversely, suppose char(K) > 5 , then there exists
A, B, A’, B' € K such that

E:y*=23+Ax+B; E :y? =2+ A2+ B.

Having the same j- invariant means that:

(44 A

4A3 +27B?  4A% 4+ 27B"”

From this we obtain:
A3B/2 — A,332.

If we find a change of coordinates (z,y) — (u2’,u*y"), uw € K, such that the

equation defining F becomes the equation of E” we finish. Consider three cases:

e A =0, then j(E) = j(F') = 0 and B # 0 (the case A = B = 0 leads us
to a curve of the form y? = 23 which is singular, then not an elliptic curve).

It must be that A’ = 0 and B’ # 0. In this case we have an isomorphism if
u=(B/B)",

e B=0,then j(F) =j(E') = 1728 and A # 0, that implies B’ = 0 and A’ # 0.
We can take u = (A/A’)1/4;

e AB # 0, then we have A’B’ # 0, since if one of them were 0, then both of
them would be 0. We can take u = (A/A")'/* = (B/B’)'/S.
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Now we have an effectively computable method to determine whether a Weierstrass
equation defines an elliptic curve — namely, compute the discriminant and check
that it is nonzero — and a method to compare two Weierstrass equations to see
whether they define isomorphic elliptic curve. Another important fact is that “there
are many different elliptic curves”; that is, given j, € K,one can find a curve with
jJ-invariant equal to jo. We do not show this formally (although it reduces to simple

calculations), but the curve

36 1

E: 2 — 3_ _
Yoy = T s T o — 1728

have j—invariant equals to j;. Notice that the cases j, = 0,1728 are special cases
not covered from this equation (if jo = 0 its discriminant is 0, then it isn’t an elliptic
curve). Looking at the last proof | these cases correspond ,respectively, to curves
E:y* =234+ Ar + B with A =0 and B = 0.

4.2 Group Law and Isogenies

In this chapter we will see how to define a group structure on an elliptic curve and
how this structure can help us determine the K-rational points of the curve. We
will also study isogenies, which are morphisms between elliptic curves. We will then
examine the properties that distinguish elliptic curves from other curves and how

these properties can be used to understand their arithmetic and geometric structure.

Definition 4.2.1 (Group Law). Given E elliptic curve, with O = [0, 1,0] point at
mfinity. We can define a group law in this way. Let P,Q) € E and take the line L
through P and Q (if P = Q we define L as the tangent line of the curve at P) ; L
intersects E in another point, call it R. Then take the line L' through O and R . L'
intersects our curve E at R, O and another point, that we call P & Q.

Note that this definition use the fact that we have an equation of degree 3, so the
intersection between a line L C P? and the curve consists of three points , not
necessarily distinct. We give next a geometric visualization of how this operation

works:



Group Law and Isogenies 47

o
~Uree

E:y?=23+1

Proposition 4.2.2. Let E be an elliptic curve and ® : Ex E — E defined as above.

So the following are true:

a) If L line and L N E consists of three points P,Q, R not necessarily distinct,
then
(POQ)®dR=0

b) P®O =P for every P€ E

c) PEQ=Q®P, for every Q,P € E

d) for P € E, there exists ©P € E such that P& (6P) = O
e) Let P,QQ,R€ FE then (P®Q)®PR=P®(Q®R)

Proof. a) It is obvious by construction, because P @ @) gives us a point that is on
the line through R and O, then we sum that point to R and obtain O.

b) From definition, if @) = O, we have that L and L’ are the same. Then L intersects
Eat PO,Rand L' at R,O,P& O, then P& O = P.

¢) It is clear by definition.

d) From a), we can take the line though P and O intersects R then:

O=(Pa30)OR=P&R

Then 6P = R,
e) The geometric proof requires to verify a lot of different cases . One can also give

explicit formulas for sum and verify by calculations. We skip this part.
m



48 Elliptic curves

Remark 4.2.3. This theorem tells us that (£, @) is an abelian group with identity
element O. From now on, to easy notation, we will denote the operation @ simply
with +.

Having this structure of group on an elliptic curve helps us to study them , in
particular to try to determine the set of K rational points E(K). In fact , letting
E with Weierstrass equation with non homogeneous coordinates (4.1.2) , P, =
(x1,11), Py = (x2,y2) € E, one can give an explicit formula for calculate coordinates
of P+ () and —(@, namely:

Py = (900, —Yo — a1To — a3);

(4.2.1)
P1+P2:()\2—|—a1>\—a2—a:1—xg,—()\+a1)x3—y—a3)

where x3 is the first coordinate of P + () and A and v are functions depending on
x1, Ta, Y1, Y2 if P # @ and also on a;, with¢=1,...,6. If E/K | from this formulas
.even if we don’t have an explicit one for P + @), we can easily see that E(K) is
a subgroup of E, because starting from points with coordinates in K, we obtain
coordinates of P + () with operations in K. We can see this also geometrically, in

fact A and v are defined in such a way that y = Az + v is the line through P and Q.

Another important fact that we will use later is that the operations + and — defines
morphisms. Next we give the definition of even function for an elliptic curve, that

will be used later.

Definition 4.2.4. Let E/K be an elliptic curve, f € K(FE) is said to be an even
function if f(P) = f(—P), for all P € K(C)

Example 4.2.5. Let f =z € K(F) the z-coordinate function. z is an even func-
tion, because we have seen in equation 4.2.1 that P and —P have the same z-

coordinates.
Let’s see another property of the z-coordinate and y-coordinate for an elliptic curve.

Proposition 4.2.6. Let E elliptic curve, and consider x,y € K(FE) respectively x

and y coordinate, then
a) O is the only pole for x, with ordp(x) = —2;
b) O is the only pole for y with ordp(y) = —3.

Proof. As we have seen , to the function x € K(F) is associated a morphism ¢, :
E — P!, such that ¢,(P) = [x(P), 1], and ¢,(P) = [1 : 0] = oo if P is a pole for
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x. But consider E in its homogeneous form, x = X/Z, then P is a pole for z if
P is a point at infinity, then it must be P = O, because O is the only point at
infinity. Now deg ¢, = [K(F) : K(P')] = [K(z,y) : K(x)], but now , the weierstrass
equation defining E, tells us that y is a root of a degree 2 polynomial in K (x), then
deg ¢, = 2. Then we can use the first point of Proposition 3.2.9 with ) = O to get
that

s, (0) =2 = —ordp(z)

This proves a). Using the same type of argument for y, we get deg ¢, = 3 and then
ordp(y) = —3.
m

Now we define isogenies, that are particular map between elliptic curves.

Definition 4.2.7. Let Fy, E5 be elliptic curves . ¢ : E1 — FEs is an tsogeny if
¢ is a morphism and ¢(O) = O. If ¢ non-constant , we say that Ey and Ey are

1s0genous.

It follows from proposition (3.2.2) that ¢(E;) = {O} or ¢(F;) = E,. Next we see
that an isogeny respects the group law; before doing that, let’s see that (Pic(F), +),
where ”+” is the natural operation of summing two divisors (actually class of divi-

sors), is isomorphic to (E, @) as groups.

Proposition 4.2.8. Let E elliptic curve, then there exists a map ¢ : B — PicO(E)

bijection of sets.

Proof. We can define this function as :

¢: E — Pic”(E)

(4.2.2)
P — [(P)—(O)]

where [(P)—(O)] means the class of that divisor. Now we prove that ¢ is a bijection.
It is an injection , because if ¥(P) = (Q), then (P) ~ (@), then 3f € K(C') such
that div(f) = (P) — (Q). But then f € L£((Q)). From Riemann-Roch theorem,
precisely Corollary (3.4.5.c), £((Q)) = 1, then f must be a constant and f(P) =0
implies f = 0 and P = (). To prove that it is surjective, we have to prove that
VD € Div’(E) there exists a point P € E such that D ~ (P) — (O). Reapplying
Corollary (3.4.5.c) to D + (O), that is a divisor of degree 1, we get:

{(D + (0)) =dimg L(D+ (0)) =1
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We can choose f € L(D + (O)) non zero, then we know that :
div(f) = —D — (0) deg(div(f)) = 0

Then there exists P € E such that div(f) = —D — (O) + (P), which means that
D ~ (P) = (0). O

Proposition 4.2.9. Let v : E — Pic’(E) defined as in the proof of last proposition
(4.2.2), then (P + Q) = ¢(P)+v(Q) for all P,Q € E, in other words v is a group

1somorphism.

Proof. Fixed P,Q) € E, take, ,as in the definition of group law L : f(X,Y,Z) =
aX + Y +~vZ = 0 line through P and @ and a third point R, L' : f/(X,Y,Z) =
o' X + BY ++'Z = 0 line through R, O and P + ). Then, since the line Z = 0

intersects O with multiplicity 3, we have:

div(f/2) = (P)+(Q) + (R) = 3(0), div(f'/Z) = (R) + (P + Q) —2(0)

Then:
div(f'/f) = (P+Q) = (P) = (Q) + (0)
This means that (P + Q) — (P) — (@) 4+ (O) ~ 0 ; in terms of image through -

Y(P+Q)—p(P) - (@) =0

Proposition 4.2.10. Let ¢ : £y — F5 be an isogeny, then if P,Q) € F;

(P +Q) = o(P) +¢(Q)

Proof. If we take ¢, : Div’(FE)) — Div’(E,) defined by (P) — (6#(P)) and then
extending by Z-linearity, we can see that this map is well defined and sends principal
divisors to principal divisors, then we can quotient and obtain a map ¢, : PicO(El) —
Pic’(E,) and this is an homomorphism (in respect to "+ for classes of divisors). By
last proposition , there exists 1; : £; — Pic’(E;) group isomorphisms for i = 1,2,

then ¢ = ;! 0 ¢, 0 1)y, in other words ¢ is a composition of homomorphisms. [

From this proposition follows the fact that an isomorphism of elliptic curves F;, F»
(an injective isogeny) gives a group isomorphism between E;(K) and Es(K). Now
that our curve has a structure of group we may ask if there are points with finite or

infinite order, then we give next definition:
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Definition 4.2.11. For P € E and m € 7Z, we define the point [m]P as :

e ifm=0, [0]P:=0

e ifm>0,[m|P:=P+P+...+ P, m times

e ifm<0, [m|P:=—-P—P—...— P, |m| times
Notice that [m] : E — E is a morphism and also an isogeny (O is clearly sent
in itself). One can prove that ¥m # 0 the map [m] is nonconstant, then it is
surjective. So we can also define the m-torsion group as E[m| := ker([m]) =
{P € E:[m|P = O} and the torsion group as the set of all elements of finite order:

Eiors := | J E[m].

meZ

If E is defined over K, then E,.s(K) is the set of points of finite order in E(K).
Next we want to prove that E[m] is a finite group .

Proposition 4.2.12. Let ¢ : By — Ey be a non-zero isogeny. Then ker ¢ = ¢~1(O)
is a finite group of E.

Proof. 1t is a subgroup thanks to proposition (4.2.10) and it is finite because, from
proposition (3.2.9) :
#kerd =#¢7(0) < Y eyp) =dego
Pe¢=1(0)
m

In particular, from this proposition follows that E[m] = ker[m| is a finite group
of order at most deg[m]. We don’t see the details, but we can characterize E[m]
for all m € Z\{0}. This can be done by proving that [m] is separable and that
deg[m] = m? and from this deduce that #E[m] = m? . Moreover if char(K) = 0
or p = char(K) > 0 and p ¥ m, E[m| = (Z/mZ)?, otherwise E[p?] = {O} or
E[p¢] = Z/p°Z for all e = 1,2,.... It is not the main goal of this thesis, but this
results helps to determine Ey,,.s(K), because E(K)[m] is a subgroup of E[m]; then
knowing the structure of E[m] reduces possibilities for E(K)[m]. Next, we give a

lemma that would be useful later.

Lemma 4.2.13. Let E be an elliptic curve and m € Z, m > 2. Then, for R € F,

there are exzactly m? solutions to
[m|P =R

for P € E.
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Proof. Notice that, from what we said early, [m] : E — E has # ker[m] = #E[m| =
m?. Since

Tr:E—F 7(P)=P—-R

is an isomorphism, then 7_p o [m] has a kernel of exactly m? elements. But P €
ker(7g o [m]) if and only if
[m|P = R.

4.3 Height for elliptic curves

In this section, we will focus on the concept of height on elliptic curves. We will
begin by illustrating how to define the height of a point by choosing an element
in the function field of the curve, starting from the absolute height already defined
over Q. Next, we will see how to relate the group structure to heights, connecting
the height of the sum of two points to the heights of the individual points. These

properties will be central in the proof of Siegel’s theorem.

Definition 4.3.1. In P*"(Q), we can define the absolute logarithmic height as

hPYQ) — R
P — log(H(P))

where H s the absolute height, already defined in Definition 2.3.4.

This new definition will be useful to have an ”addition behavior” and not a multi-
plicative one, so it will simplify a little bit. Therefore it doesn’t change much the
properties of H. Notice that, from Proposition 2.3.2.b, we have H(P) > 1 and then
h(P) > 0 for all P € P*(Q). Now, we want to extend the concept of height to an
elliptic curve. Recalling the fact that every element f of the function field K (C)
determines a surjective morphism, also called f, such that f: E — P'. We can use

this to give the next definition:

Definition 4.3.2. Let E be an elliptic curve, f € K(E) non-constant function. We
define the height on E (relative to f) as

Observe that, fixed f € K(FE), if P is a pole or a zero for f, then h;(P) = 0. That
is because f(P) = [0,1], if P is a zero ,and f(P) = [1,0] if P is a pole for f, but
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H([1,0]) = H([0,1]) = Hg([1,0]) = max(|0],|1]) = 1, then hs(P) = 0. Next we
see that the finiteness result of Proposition 2.3.9 holds true also for the height on

elliptic curve.

Proposition 4.3.3. Let E/K be an elliptic curve , f € K(E) non-constant , and

C > 0 a real constant, then
[P e K(E): hy(P) < C}
18 a finite set.

Proof. We know that f maps point of E(K) to point of P!(K), and an element
of P*(K) can only have finitely many preimages, otherwise it would be possible to

define a nonzero g € K(C') with infinitely many zeros. We can see that f maps the
set {P € K(E):hg(P)<C}in

{Q e PY(K): H(Q) < e“} (4.3.1)
The condition H(Q) < €%, since Q € P}(K), is equivalent to
HK(Q) < e[K:Q}C‘

Then we know that the set in (4.3.1) is finite, from Proposition 2.3.9. Since for every
point of this set there are only finitely many preimages, we get what we wanted to

prove. [

We recall the standard definition of O(1) for real- valued functions:
If f, g real valued functions, then f = g+ O(1) if there exists C,Cy € R such that
for all P:

Ci < f(P) —g(P) < Cy

Then we give a property for heights that would be useful later to prove Siegel’s
theorem. We do not prove it because the proof is very long and full of explicit

calculations.

Proposition 4.3.4. Let E/K be an elliptic curve, f € K(E) even function, i.e.
f(P)= f(=P) for all P € E(K). Then, for all P,Q € E(K), we have:

he(P+ Q)+ hy(P — Q) =2hs(P) +2h(Q) + O(1),
where O(1) depend only on E and f and not on the points P, Q.

Corollary 4.3.5. Let E/K be an elliptic curve, [ € K(FE) even function.
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a) Let Q € E(K), then for all P € E(K)
hy(P + Q) < 2hy(P) +O(1)
where O(1) depends only on E| f and Q.

b) Let m € Z, then
h([m]P) = m*hy(P) + O(1)

for all P € E(K), where O(1) depends only on E, f and m.

Proof. a) From the previos proposition, since hy(P — Q) > 0 we get that a) is true.
b) Notice that for m = 0, 1, the result is trivial. Then we can use induction to finish
the proof. Suppose the formula holds true for m € Z and m — 1, we prove it for

m + 1. We use previous proposition with [m|P and P, then we get:

hi([m 4 1]P) = —hs([m — 1]P) + 2h;([m]P) + 2h(P) + O(1)
= —(m —1)%hs(P) + 2hs(P)(m* + 1) + O(1)
= (m+ 1)*hs(P) + O(1).

4.4 Mordell-Weil Theorem

In this section, we will present a sketch of the proof of the Mordell-Weil theorem
in its strong form, starting from the weak form. We will show how the properties
of heights on the rational points of an elliptic curve, together with the descent
procedure, allow one to pass from the weak result to the strong form. We first

stating its weak form.

Theorem 4.4.1 (Weak Mordell-Weil Theorem). Let K be a number field, and E /K

an elliptic curve defined over K, then for all m € Z, m > 2 we have that:
E(K)/mE(K)
18 a finite group.

Only through the tools defined in these theses it is difficult to prove this theorem,
which requires precise properties and a function called the “Kummer pairing.” If one
wishes to see the proof, one can read chapter VIII.1 of the book " The Arithmetic of

Elliptic Curves” of Joseph H. Silverman [I]. Then we can state its stronger form.
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Theorem 4.4.2 (Mordell-Weil Theorem). Let E/K be an elliptic curve defined over
K number field. Then E(K) is finitely generated.

Since E(K) is abelian and finitely generated, by the classification theorem of these
groups, we have

E(K) % Eyps(K) X Z7
with r € Z, r > 0, called the rank of an elliptic curve.

Now we state a key theorem, which holds for any abelian group and is the key to
the proof of the Mordell-Weil Theorem.

Theorem 4.4.3 (Descent procedure). Let A an abelian group, and suppose there

exists a function h : A — R with the following properties:

a) Let Q) € A, then there exists a constant Cy depending only on A, Q) such that:
h(P+ Q) < 2h(P)+ Cy
forall P e A

b) There exists m € Z,m > 2 and a constant Cy depending only on A, such that:
h(mP) < m?*h(P) — C,
for all P € A.

c¢) For any constant C > 0, the set
{PeA:h(P)<(C}
18 a finite set.

d) for the same integer m of b), suppose A/mA is a finite group. If we have all
these properties, then A is finitely generated.

This theorem is not very hard to prove, but we don’t see its proof here. Then we

see how the Mordell-Weil theorem can be proved using all the tools we have.

Proof (of Mordell-Weil Theorem 4.4.2). Let f € K(E) be a non-constant even
function, for example f = x, where x is the first coordinate function. Now let’see
that the height function hy : E(K) — R satisfies all the required properties to apply
the descent procedure theorem 4.4.3.

Properties a) and b), for m = 2, are exactly a) and b) of the corollary 4.3.5 ap-
plying the definition of O(1). c) is exactly the proposition 4.3.3, while d) is the
Weak Mordell-Weil theorem 4.4.1 applied for m = 2. Then we can apply descent
procedure theorem and conclude that E(K) is finitely generated. O]






Chapter 5

Diophantine Approximation on

Curves

In this chapter, we will finally see how the methods of Diophantine approximation
and its results, in particular Roth’s theorem, can be reinterpreted on elliptic curves.
Starting from the fundamental definition of distance on curves, we will illustrate how
to combine these notions with the properties of the group of points of an elliptic curve
to obtain finiteness results. In particular, we will show how these techniques allow us
to prove Siegel’s theorem, which states that the number of S-integral solutions on an
elliptic curve defined over a number field is finite, thus directly linking Diophantine

approximation with classical arithmetic problems on curves.

5.1 Distances on curves

Firstly, we must introduce the notion of the distance between two points on a curve,
defined in terms of the image of one point under a uniformizer at the other. Then
we will consider certain useful limits in the v-adic topology, which will allow us to
understand how a morphism changes the distance between two points and how to
reinterpret Roth’s theorem in this setting. Note that everything we discuss in this

section holds for all curves, not just elliptic ones. We begin with a lemma.

Lemma 5.1.1. Let C/K be a smooth curve defined over K, with genus g, and let
ec€Z,e>g+1. For every QQ € C, there exists a function tg € K(C') such that

e () is a zero for tg with ordg(tg) > e;
e () is the only zero for .

o7
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Proof. From Riemann-Roch theorem 3.4.4, then since e(Q) is a divisor of degree e,

fixing K¢ a canonical divisor, we have:
le(Q)=e+1—g+lKc—D)>2

Then there must exists a non constant f € L(e(Q)), but this means that f has
a pole at @) of order at least e and no other poles. Take ty := 1/f finishes the
proof. O]

Now we can use this lemma to define a distance function , depending on a fixed

absolute value in K, on a curve.

Definition 5.1.2. Let C/K be a smooth curve, v € Mg and a point Q) € C(K,)
and choose tg € K(C) as in the previous lemma. Then we can define the v-adic
distance from P to tg , for all point P € C(K,) as

dy(P,tq) := min (|tg(P)[}/, 1) .

v )

Where if P is a pole at tg, we set |[tq(P)| = oo to have d,(P,tg) = 1. Also, for
P € C(K,) , we say that P approaches () in the v-adic topology and write
P—Q, ifd,(P,Q)— 0.

Remark 5.1.3. For our purposes, we will write d,(P, )) to mean d,(P,tg), where
we choose some tg. Actually, if we fix a point P, the value of d,(P, Q) depend on
the choice of the function ¢g. Since we will use d,, , fixed a point () and see how d,
behave where we take points that approach to (), this will not be a problem for the

next theorem.

Proposition 5.1.4. Let Q € C(K,) and F € K,(C) that vanishes at @, then the

limit:
i log |F(P)|,
P—Qlogd,(P,Q)

then the limit does not depend on the choice of tg used to define d,.

= ordg(F)

Proof. Choose a function tg to define d,(P, Q) and define e := ordg(tg) > 1, f =
ordg(F) > 1. We can take ¢ := Fe/té and this function has ordg(¢) =ef —ef =0
. Since ¢ doesn’t have poles, because if P # () pole, it would be a zero for tg, but
this isn’t possible for its definition. Then |¢(P)|, < oo as P approaches ). We can
also suppose , since P approaches ) that d,(P,tg) < 1. We get

1/e fle
Jim llog|F<P)lv iy 0glo(P)]e +10g1|feQ(P)|v — 4 lim log |p(P)ls s
—Qlogd,(P,Q) P2 log |to(P)|s P—Q logltq(P)l

]
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Now we see a property of the distance functions:

Lemma 5.1.5. Let C/K be a smooth curve and suppose f € K(C) such that

div(f) =n1(Q1) + ... + n.(Q).

Replacing K with an extension such that Q; € K(C) and let v € My, we have

log min(|f (P anquQ +0(1)

for all P € C(K,). Here O(1) depends only on f

Proof. We have the expression of div(f) that tells us that @;-s are the only zeros

for f of order n;. Then we can suppose

T
f:a'Htgi‘u
i=1

where a € K, and tg, uniformizers at @;, and v € C(K,) invertible. Then it must

be that |u(P)|, =1 for all P € K,(C). Then , doing some computation, we get

log min(|f(P)l,, 1) an (P,Q:) + O(1).

=1

Next we see how maps between curves change the distance between points:

Proposition 5.1.6. Let ¢ : Cy — Cs be a non-constant map defined over K and v
an absolute value for K. Let Q € C1(K,) and es(Q) its ramification index. Then

- log d,(¢(P), (Q))
P—Q  logd,(P,Q)

= e4(Q)

Proof. Let tg € K,(C4) function to define d,(P, Q) and tyq) € K,(Cs) to define
d,(6(P), ¢(Q)), respectively with order ej,eos > 1 at (). From the definition of

ramification index:

ordo(te(q) © @) = €4(Q) ordy(q) to) = €4(Q)ex
Similarly to the previous proposition, we can take

t o @)t
(to) © @) c

=
€¢(Q)62
tg

Kv(Cl)‘
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This is a function of order zero at @, then |f(P)|, < oo as P approaches ). We
finally get

o log |[f(P)lo
= PI%HQ €¢(Q) + lo—g ’tQ(P) 3/61 = €¢<Q).

iy 108 du(0(P), 9(Q))
P—Q  log(dy(P,Q))

]

In the next proposition we can reinterpret Roth’s theorem in terms of distance
function, a result that will allow us to transfer this statement into the setting of
functions between curves and height functions, and which will be essential in the

proof of Siegel’s Theorem.

Proposition 5.1.7. Let C/K be a curve defined over K, v € Mg ,f € K(C) non
constant function and Q) € C(K). Then

. logdy (P, Q)

1 f—— 2 > 2

P~ log Hye(f(P)) =
Proof. Noticing that Hx((1/f)(P)) = Hg(f(P)), we can replace f with 1/f in

order to have @ not a pole for f. Then the function f — f(Q) € K(C) certainly has
a zero at Q; call e > 1 its order at (). Then for Proposition 5.1.4, we have:

. Jdoglf(P)— f(Q)le
e g d(PQ)

Next, we use this fact into our limit:

logd,(P,Q) 1 log |f(P) = f(@)ls _

lim inf = — lim inf

P=Q log Hx(f(P)) e P=Q  log Hx(f(P))

1 <10g(HK(f(P))T|f(P) - (@) 7)

= - llgnﬁl%f log Hi (f(P))

We can take 7 = 2 + ¢, for any € > 0, then from Roth’s theorem 2.4.3, we know
that:

Hi (f(P))[f(P) = Q)] = 1

for almost all P € K(C). Using this inequality into our limit we get

lim inf log dy(P, Q)

P g e (F(P)) ©

T>_@+e).
(&

Here we used e > 1. Since the inequality holds for all ¢ > 0, taking the limit as
e — 0, we get the desired result. O]
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Remark 5.1.8. We can see the limit in the previous theorem in another way. Notice
that, chosen f € K(F),

1
hg(P) = h(f(P)) =log H(f(P)) = w.Q log Hi (f(P)).
If we suppose P € E(K), the previous limit can be written as:
. logdy(P,Q) .

5.2 Siegel’s theorem and consequences

We are finally ready to state and prove Siegel’s theorem. This theorem then tells us
that as a point on the curve becomes “large” relative to the chosen height function,
its distance to any fixed point becomes negligible compared to that height. Next,
we will examine two consequences of Siegel’s theorem. The first, which was largely
anticipated earlier in the thesis, concerns the finiteness of S-integer points on a curve,
while the second reinterprets this result in the case of rational points, showing that
if one considers an infinite sequence of rational points on an elliptic curve and looks
at their x-coordinates, then the numerator and denominator of x will tend to have

the same number of digits.

Theorem 5.2.1 (Siegel’s Theorem). Let E/K be an elliptic curve, v € M,
suppose that #E(K) = oo, fit Q € E(K) and f € K(F) non-constant even function.
Then,

lim  08h(PQ)
pPeE(K)  hy(P)
hf(P)-)OO

Proof. Let’s choose a sequence of points P; € F(K) such that:

lim 085, Q) L logdu(P Q)
imoo hy(F) PeEW) hy(P)

Since d,(P;, Q) < 1 and hy(P;) > 0 for all P, it must be L < 0. Then it suffices
to prove that L > 0. Notice also that, if it is not true that P; — @), the thesis is
trivial, because in that case d,(P;, @) is bounded away from 0 ,Uthat implies that
log d,(P;, Q) is bounded away from infinity. This means that L must be 0. So we can
suppose P; — ). Take m € Z, m > 2, by the weak Mordell-Weil Theorem 4.4.1, we
have that EEK )/mE(K) is finite. By the pigeon principle, there are infinitely many
P;-s in one of the classes of F(K)/mFE(K). By replacing {P;} with a subsequence,
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which does not change the limit, we can assume [P = [R], where R € E(K), in
other words

P = [mIP, + R
where P/ € E(K) , for all i € N. Now , since we have P; — @, it must be that
[m]P! — @ — R. This implies that the sequence P/ approaches v-adically at least

one of the m? solutions @’ to [m]Q’ = Q — R (using Lemma 4.2.13). Again, by

replacing { P/} by a subsequence, we can assume
F =@, Q=[mQ+R.

Define ¢ : E — FE as ¢(P) = [m]P + R, since [m] is non constant, also ¢ is. Then

we can apply Proposition 5.1.6, we get:

. logd,(P;,Q)
hm —_————
100 log dv<Pz‘/7 Q/)

Let’s relate the height of P; and P!, using Proposition 4.3.5 a) and b):

=ep(Q) i=e=>1

m*hy(P]) = he([m|P}) + O(1) = hy(P; — R) + O(1) < 2hs(P;) + O(1)

Notice also that .
hy(Pl) = hy(Pi = R) > Shy(Py) + O(1).

Again by using Proposition 4.3.5.a. Since as i — oo, hy(P;) — oo, it must be that
1—00

also hp(P]) — oo. Now, using the last three facts, we get:

I lim IOg dv(-Pia Q) > lim 610g dv(-PZ‘” Q/) % . log dv(_PZ,/, Q’)
T T (P ! = ljm 2w/
ivoe hy(B) T imeo gm2hy(P) + O(1)  m?isee hy(P)

Where we inverted the inequality due to the fact that the term "logd,” are negative.

Now we know that P/ — @' and P/ € E(K), then we can use the result of Dio-
v

phantine approximation, Theorem 5.1.7, precisely, we use what we saw in Remark

5.1.8:
log d, (P}, Q')

li > —2|K:
I = Ey = Ak
Finally, we get
Py —HlE Q)
m

Since we took m as an arbitrary integer, then L > 0, which finishes the proof.
O

We proved this theorem only for even function, but it can be proved for every
function f € K(F). Thanks to this theorem, various finiteness results for solutions
to different problems can be shown; we focus on one in particular, namely the

following:
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Corollary 5.2.2. Let E/K be an elliptic curve, S C Mg a finite set containing
all archimedean absolute values, so M C S C Mg and let Rg be the ring of S-

integers. Then

{P € E(K):z(P) € Rs}
is a finite set.
Proof. By contradiction, suppose there is a sequence {P,};cy of distinct points, all
points with z(P;) € Rg. By definition, we have:

1
(K- Q)

ha(P;) = log H (x(F;)) =

> log(max(L, [z(P);"))

1
[K : Q] veES
where we take the sum only for v € 5, because if v ¢ S we have |z(FP;)|, < 1 and
then the part of the sum for v € S is equal to 0. Since S is finite, we can find a v € S
such that log(max(1, |z(F;)|5")) maximized among all v € S for infinitely many i.

Then we can take a subsequence, call it again {P,;};en, such that:
ha(F;) < #8Slog(max(L, [z(F;)]s))

where we used that ny; < [K : Q] (see Remark 2.2.16). Notice that it must be that,
since P; are all distinct, Proposition 4.3.3 implies that |z(FP;)|; 2% 50, We know
from Proposition 4.2.6, that 1/z is a function with only zero O of order 2, then we

can see that, by the definition of v-adic distance:
4(P,0) = min (Ja(P)J; %, 1) = 0.

Then , for ¢ sufficiently large:

—log(ds(P;, O)) - 1
ha(F;) T 2#S

but this contradicts Siegel’s theorem 5.2.1 since the first term must tend to 0 as

17— 00. O

From this corollary, it easily follows that all the points with S-integral coordinates
are finite. this finiteness result is striking because, in general, the number of points
on a curve with coordinates in a given field K can be infinite, but if we restrict to
S-integral points, they are always finite in number. Note that, having used Roth’s
theorem, this result is also ineffective: we only know that the S-integral points of

an elliptic curve are finite, but we cannot give an estimate of how many there are.
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Notice also that this result slightly improved what we had in Corollary 2.1.7: taking

K = Q and a weierstrass equation:
y2 + a2y + azy = 2 4 asx® + agx + ag

with a; € Q, then there are finitely many solutions (z,y) € Z? (taking S = {oo}).
This result says also that if we allow x,y € Z[1/p1,...,1/p,], where p; finitely
distinct primes, then there are finitely many solutions. Now we remark how we can

restate Siegel’s theorem 5.2.1 with K = Q.

Corollary 5.2.3. Let E/Q be an elliptic curve with x,y Weierstrass coordinates for
E and suppose #E(Q) = oo. Suppose {P;}ien € E(Q) in order of non decreasing
height, for the height h,. If x(P;) = a;/b;, a;,b; € Z, we have

lim 108191l _
i—o0 log | oo

Proof. Let v = 0o and assume { P, };en as in the hypotheses; then from the definitions

bi 71>;

=t
a;

we have

log d,(P;, O) = log min (ll/x(Pi)\%, 1) = 1log min (
ho(P;) = h(a;i/b;) = log max(|ail, |bs])-

where we used that O is the only pole for z of order 2. Next, using Siegel’s Theorem
with K =Q, @ = O, S = {o0}, we get:

9 lim logd,(P;, 0) _ lim min(log(|b;/a;|,0)

=0
imoo hy(P) i—oo log(max(|a;l, |bi]))

Then we can use Lemma 5.1.5, suppose that () and @5 are the two zeros for x (note

that the case @)1 = @) is allowed), and we get:
log min(|z(P)]y, 1) = d,(P, Q1) + dy(P, Q2) + O(1)

for all P € E(Q). Then we obtain:

min(log |a;/b;|,0) log min(|x(F;)|, 1)

lim = lim =
i—o0 log(max(|aj|, [bi])) — i—oo he(F;)

Where in the last inequality we used Siegel’s Theorem 5.2.1 and the fact that O(1)
doesn’t depend on F;. Putting together the two limits we wrote, we prove the
thesis. O]
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