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Introduzione

Negli ultimi decenni, la disponibilità sempre crescente di dati, favorita dallo svi-
luppo di sistemi automatici di raccolta e archiviazione, ha reso indispensabile
lo sviluppo e l’impiego di tecniche statistiche e numeriche in grado di estrarre
informazione utile da insiemi di dati sempre più vasti e complessi.
In questo contesto si inserisce il Data Mining, disciplina che analizza grandi
moli di dati, per estrarne informazione.
Con il termine ‘informazione’ si intende il risultato di un processo di trasforma-
zione, interpretazione ed estrazione dei dati, dove questi ultimi, originariamente
grezzi e privi di un significato immediatamente evidente, vengono elaborati per
rivelare pattern, tendenze o correlazioni.
L’analisi di dati e la ricerca di modelli o regolarità è sempre stata effettuata;
ma è solo negli ultimi anni che sono stati sviluppati strumenti computazionali
capaci di esplorare strutture anche molto complesse.
Tra le strategie più diffuse di analisi di dati rientrano:

• (Caratterizzazione) Si determinano proprietà comuni di gruppi di dati;

• (Discriminanza) Si confrontano caratteristiche diverse tra gruppi di dati;

• (Appartenenza) Si riconoscono nuovi dati come membri di determinati
gruppi.

In numerosi campi applicativi, dalla biologia alla finanza, dalle scienze sociali
allo sport, l’analisi multivariata e i metodi di riduzione dimensionale rappresen-
tano ormai strumenti fondamentali per interpretare fenomeni caratterizzati da
molte variabili tra loro correlate.
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iv INDICE

Tra le tecniche maggiormente utilizzate rivestono un ruolo centrale l’Analisi
delle Componenti Principali, che permette di sintetizzare la variabilità del da-
taset riducendo il numero di variabili mediante la costruzione di nuove direzioni
dominanti, e le tecniche di clustering, che permettono di riconoscere similarità
o dissimilarità tra osservazioni o variabili e che mirano a individuare gruppi
omogenei all’interno e disomogenei all’esterno.
La finalità di questa tesi è duplice.
Da un lato presentare teoricamente gli strumenti utilizzati: nel secondo capi-
tolo si introduce l’algoritmo di PCA, le metodologie di scelta delle componenti
principali e la loro interpretazione grafica; nel terzo capitolo si analizzano le
tecniche di clustering, concentrandosi in particolare sul Complete Linkage per
i metodi gerarchici e sulle K-medie per quelli non gerarchici, con relative inter-
pretazioni grafiche.
Dall’altro lato applicare questi strumenti: nel quarto capitolo viene fatta un’a-
nalisi su un dataset reale relativo al nuoto agonistico, fornito da un dottorando
del Dipartimento di Scienze per la Qualità della Vita. Il dataset analizzato
comprende un ampio insieme di variabili antropometriche e prestative, rilevate
su nuotatori e nuotatrici di età, proporzioni fisiche e stili di nuoto più efficaci
differenti e, dal momento in cui non tutti i soggetti presentano dati completi,
l’analisi viene svolta in due fasi: su un dataset ristretto, ottenuto selezionando
solo gli individui con tutte le variabili nello stile libero disponibili; sul dataset
completo, affrontando il problema dei dati mancanti con metodi adeguati.
L’obiettivo complessivo è quindi quello di mostrare come tecniche dell’analisi
numerica, della statistica multivariata e del data mining possano essere efficace-
mente utilizzate per comprendere fenomeni complessi, rivelare strutture interne
ai dati e supportare interpretazioni coerenti in un contesto reale e applicativo,
come quello del nuoto agonistico.



Capitolo 1

Nozioni Preliminari

1.1 Le matrici

Definizione 1.1.1. Dato un campo R, si definisce lo spazio dei vettori colonna
come l’insieme i cui elementi sono successioni in colonna di n numeri di R:

Rn =




a1

a2
...

an


∣∣∣∣ a1, a2, . . . , an ∈ R


.

Definizione 1.1.2. Presi m,n, numeri interi positivi, una matrice m × n a
coefficienti in R è un insieme di mn elementi di R disposti in questo modo:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn


dove m rappresenta il numero di righe e n il numero di colonne.

In questa tesi considereremo come campo quello dei numeri reali R e denoteremo
quindi con Rm×n lo spazio delle matrici a coefficienti reali con m righe e n

colonne e con Rm lo spazio dei vettori colonna a coefficienti reali.

1



2 1. Nozioni Preliminari

Definizione 1.1.3. La trasposizione di un vettore v ∈ Rm è l’operazione di
scambio delle sue righe con le sue colonne:

v11

v21
...

vm1


T

=
(
v11 v21 · · · vm1

)
.

Definizione 1.1.4. Una matrice A ∈ Rn×n si dice diagonale se è nulla al di
fuori della diagonale principale: aij = 0 ∀i ̸= j.

Definizione 1.1.5. La matrice identità I è la matrice diagonale con tutti i
coefficienti sulla diagonale principale uguali a 1.

Definizione 1.1.6. Data A ∈ Rn×n la traccia di A è la somma dei suoi elementi

diagonali: tr(A) =
n∑

i=1

aii.

Definizione 1.1.7. Una matrice A ∈ Rn×n si dice invertibile o non singolare
se esiste A−1 ∈ Mn(K) tale che A−1A = AA−1 = I.

Osservazione 1.1.1. Se A ∈ Mn(K) è invertibile, allora anche AT è invertibile
con inversa (AT )−1 = (A−1)T .

Definizione 1.1.8. Una matrice A ∈ Rn×n si dice simmetrica se A = AT .

Definizione 1.1.9. Data una matrice A ∈ Rn×nla forma bilineare associata ad
A è l’applicazione βA : Rn × Rn → R tale che βA(x, y) = xTAY, x, y ∈ Rn.

Definizione 1.1.10. Una matrice A ∈ Rn×n si dice semidefinita positiva se
xTAx ≥ 0 ∀x ∈ Rn; si dice definita positiva se xTAx > 0 ∀x ∈ Rn \ {0}.

Definizione 1.1.11. Una matrice quadrata A ∈ Rn×n si dice ortogonale se
ATA = AAT = I, cioè se A è invertibile e AT = A−1.

Definizione 1.1.12. Una funzione ∥·∥: Rn → R è una norma vettoriale se, per
ogni x, y ∈ Rn, soddisfa le seguenti proprietà:
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1. ∥x∥≥ 0 e ∥x∥= 0 ⇐⇒ x = 0, dove 0 indica il vettore nullo;

2. ∥αx∥= |α|·∥x∥ ∀α ∈ R;

3. (disuguaglianza triangolare) ∥x+ y∥≤ ∥x∥+∥y∥.

Definizione 1.1.13. La norma-p vettoriale è definita come:

∥x∥p:= (
n∑

i=1

|xi|p)
1
p ∀x ∈ Rn; p ≥ 1.

In particolare si hanno le seguenti norme:

• (Norma-1 o del modulo) ∥x∥1=
n∑

i=1

|xi| ∀x ∈ Rn;

• (Norma-2 o euclidea) ∥x∥2=

√√√√ n∑
i=1

x2
i ∀x ∈ Rn;

• (Norma-∞ o del massimo) ∥x∥∞= max
i

|xi| ∀x ∈ Rn.

Definizione 1.1.14. Una funzione ∥·∥: Rn×n → R è una norma di matrice se,
per ogni A,B ∈ Rn×n, soddisfa le seguenti proprietà:

1. ∥A∥≥ 0 e ∥A∥= 0 ⇐⇒ A = 0, dove 0 indica la matrice nulla;

2. ∥αA∥= |α|·∥A∥ ∀α ∈ R;

3. ∥A+B∥≤ ∥A∥+∥B∥;

4. ∥AB∥≤ ∥A∥ ∥B∥, da cui ∥Am∥≤ ∥A∥m, ∀m ∈ N.

La definizione può essere generalizzata al caso rettangolare, con le opportune
modifiche sulle dimensioni delle matrici.

Definizione 1.1.15. La norma-p matriciale indotta dalla norma.p vettoriale è
definita come:

∥A∥p:= max
0̸=x∈Rn

∥Ax∥p
∥x∥p

= max
∥x∥p=1

∥Ax∥p ∀A ∈ Rn×n.
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Definizione 1.1.16. La norma di Frobenius è definita come:

∥A∥F :=

(∑
i,j

|aij|2
) 1

2

∀A ∈ Rn×n.

Proposizione 1.1.1. Alcune proprietà delle norme di matrice sono:

1. ∥A∥= ∥AT∥, ∀A ∈ Rn×n;

2. Se ∥·∥ è una norma matriciale indotta, allora ∥Ax∥≤ ∥A∥ ∥x∥, ∀x ∈ Rn;

3. Se ∥·∥ è una norma matriciale indotta, allora ∥I∥= 1 dove I indica la
matrice identità; e per una qualsiasi norma matriciale vale ∥I∥≥ 1;

4. ∥A−1∥≥ 1

∥A∥
, ∀A ∈ Rn×n matrice invertibile;

5. ∥A∥F= tr(A∗A)
1
2 , ∀A ∈ Rn×n;

6. Per ogni U, V ∈ Cn×n unitarie ∥UAV ∗∥F= ∥A∥F , A ∈ Rn×n;

7. Se D = diag(σ1, . . . , σn) ∈ Rn×n, allora ∥D∥F= (
n∑

i=1

σ2
i )

1
2 ;

8. Se A ∈ Rn×n è non singolare allora, per ogni norma indotta, si ha che
min
∥x∥=1

∥Ax∥= 1

∥A−1∥
.

1.2 Il problema agli autovalori

Definizione 1.2.1. Sia A ∈ Rm×n, un autovettore è un vettore non nullo
x ∈ Cn tale che Ax = λx con λ ∈ C autovalore di A. Inoltre, la coppia (λ, x)

viene detta autocoppia di A.

Definizione 1.2.2. Sia A ∈ Rn×n, si definisce spettro di A l’insieme:

spec(A) = Λ(A) := {λ ∈ C | λ autovalore di A}.
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Definizione 1.2.3. Sia A ∈ Rn×n, si definisce raggio spettrale di A:

ρ(A) := max{|λ|| λ ∈ Λ(A)}

e misura la massima distanza di Λ(A) dall’origine.

Definizione 1.2.4. Sia A ∈ Rn×n simmetrica, si definisce quoziente di Ray-

leight il rapporto
xTAx

xTx
; x ∈ Rn \ {0}.

In questo caso il quoziente di Rayleight è reale.

Definizione 1.2.5. Una matrice A ∈ Rn×n si dice diagonalizzabile se è simile a
una matrice diagonale, ovvero se esiste una matrice P ∈ Rn×n) invertibile tale
che PD = AP ; D ∈ Rn×n diagonale.

Definizione 1.2.6. Una matrice A ∈ Rn×n si dice normale se soddisfa:

ATA = AAT .

Proposizione 1.2.1. Per una matrice A ∈ Rn×n valgono le seguenti decompo-
sizioni:

• Se A è simmetrica, A = QΛQT con Q ∈ Rn×n ortogonale,
Λ = diag(λ1, . . . , λn) ∈ Rn×n dove λ1, . . . , λn sono gli autovalori di A;

• Se A è normale, A = QDQT con Q ∈ Rn×n ortogonale,
D ∈ Rn×n diagonale;

• Se A non è diagonalizzabile, è sempre possibile scrivere la decomposizione
di Schur: A = QRQT con Q ∈ Rn×n ortogonale e R triangolare superiore
avente sulla diagonale gli autovalori di A.

Data la matrice A ∈ Rn×n, il problema degli autovalori consiste nel calcolo della
coppia (λ, x) con λ ∈ C e 0 ̸= x ∈ Rn tale che Ax = λx.
Questo problema è non lineare, quindi non ci sono in generale algoritmi “diretti”
per la sua risoluzione.

Osservazione 1.2.1. Dopo l’introduzione della definizione di autovalore è possi-
bile riscrivere alcune caratterizzazioni:
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• Una matrice A ∈ Rn×n è non invertibile o singolare se e solo se 0 ∈ Λ(A);

• Se A ∈ Rn×n è diagonale, i suoi elementi diagonali coincidono con i suoi
autovalori e gli autovettori relativi sono la base canonica;

• Se λ ∈ Λ(A), allora λ−1 ∈ Λ(A−1), ma l’autovettore relativo rimane lo
stesso;

• Sia A ∈ Rn×n simmetrica, allora A ha solo autovalori reali;

• Il determinante di A ∈ Rn×n soddisfa det(A) =
n∏

i=1

λi;

• La traccia di A ∈ Rn×n soddisfa tr(A) =
n∑

i=1

λi;

• Se A ∈ Rn×n è simmetrica e definita positiva, allora λi > 0 ∀i. Se
è semidefinita positiva λi ≥ 0 ∀i (ugualmente se definita negativa e
semidefinita negativa).

Teorema 1.2.1 (Rayleight-Ritz). Sia A ∈ Rn×n simmetrica, λ1 ≤ . . . ≤ λn

autovalori di A, vale:

λ1 ≤
vTAv

vTv
≤ λn ∀0 ̸= v ∈ Rn.

Inoltre i valori di λ1 e λn vengono effettivamente raggiunti rispettivamente per
v = xmin e v = xmax, ovvero l’autovettore più piccolo e quello più grande:

λmax = λn = max
x̸=0

xTAx

xTx
, λmin = λ1 = min

x̸=0

xTAx

xTx
.

Dimostrazione. A simmetrica si decompone: A = XΛXT con X = [x1, . . . , xn] ∈
Rn×n ortogonale e Λ = diag(λ1, . . . , λn) ∈ Rn×n.

Sia 0 ̸= v ∈ Rn, vale
vTAv

vTv
=

vTXΛXTv

vTXXTv
=

wTΛw

wTw
=

n∑
i=1

λi|wi|2

∥w∥2
.

Essendo ∥w∥= ∥v∥ perchè X ortogonale,

si ha
n∑

i=1

λi|wi|2≤ λmax

n∑
i=1

|wi|2≤ λmax∥w∥2= λmax∥v∥2.
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Avendo ordinato gli autovalori in ordine decrescente, allora λmax = λn

e si può concludere:
vTAv

vTv
≤ λn ∀0 ̸= v ∈ Rn.

Conti analoghi permettono di ottenere l’altra disuguaglianza.

Corollario 1.2.1. Siano A = XΛXT , λ1 ≤ . . . ≤ λn autovalori di A,
X = [x1, . . . , xn] ∈ Rn×n ortogonale, Λ = diag(λ1, . . . , λn) ∈ Rn×n e sia (λ1, x1)

la più piccola autocoppia di A; allora min
0̸=x⊥x1

xTAx

xTx
= λ2.

Dimostrazione. Sia x ⊥ x1 ⇒ xT
1 x = 0 e, definendo q := XTx, si ha ∥x∥= ∥q∥.

Quindi xTAx =
n∑

i=1

λi|qTi qi|2=
n∑

i>1

λi|qTi qi|2≥ λ2

n∑
i>1

|qTi qi|2= λ2

n∑
i=1

|qTi qi|2=

λ2x
Tx

L’inf di xTAx viene raggiunto e si ha il min.

Osservazione 1.2.2. Il risultato del corollario si può generalizzare:

min
0̸=x⊥x1,...,xk−1

xTAx

xTx
= λk; k = 2, . . . , n.





Capitolo 2

Analisi delle componenti principali

2.1 Elementi di statistica descrittiva

multivariata

In genere, con il termine statistica si intende la disciplina che studia le tecniche
per la raccolta dei dati e la loro elaborazione, in modo da ottenere il più elevato
numero di informazioni in riferimento al fenomeno in studio. Quando si raccol-
gono informazioni in riferimento ad un certo fenomeno, ci si trova ad avere a che
fare con una mole notevole di dati grezzi, di conseguenza, il primo problema che
ci si trova ad affrontare è quello di sintetizzare la massa di dati grezzi in pochi
numeri o indicatori particolarmente informativi, utilizzando metodiche grafiche
o numeriche che siano in grado di descrivere la massa di dati senza alterarne il
senso complessivo. Questa parte della statistica è nota con il nome di statistica
descrittiva.

Definizione 2.1.1. Si dice matrice dei dati la matrice X ∈ Rn×p, dove n sono
le osservazioni e p le variabili.

Definizione 2.1.2. Sia X ∈ Rn×p matrice dei dati, si dice media campionaria

il vettore riga x̄ = [x̄1, . . . , x̄p] ∈ R1×p dove x̄i =
1

n

n∑
j=1

xji ∀i = 1, . . . , p è la

media campionaria degli elementi della i-esima colonna di X, cioè dell’i-esima
variabile.

9



10 2. Analisi delle componenti principali

Definizione 2.1.3. Sia X ∈ Rn×p matrice dei dati, si dice matrice di covarian-
za campionaria la matrice S ∈ Rp×p:

S =


s11 s12 · · · s1p

s12 s22 · · · s2p
...

... . . . ...
s1p s2p · · · spp

 , sik =
1

n− 1

n∑
j=1

(xji − x̄i)(xjk − x̄k) 1 ≤ i, k ≤ p.

Osservazione 2.1.1. La matrice di covarianza campionaria è un indice di disper-
sione, ovvero una misura statistica che descrive quanto i dati in un campione
sono sparsi attorno a un valore centrale: la media.
Il coefficiente sik è grande se entrambe xji, xjk sono dispersive.

Definizione 2.1.4. Sia S ∈ Rp×p la matrice di covarianza campionaria, la

varianza totale campionaria è data da: tr(S) :=

p∑
i=1

sii.

Osservazione 2.1.2. La varianza totale campionaria non è molto indicativa
perchè non tiene conto della covarianza tra variabili.

Definizione 2.1.5. Sia X ∈ Rn×p matrice dei dati, si dice matrice di correla-
zione campionaria la matrice R ∈ Rp×p:

R =


r11 r12 · · · r1p

r12 r22 · · · r2p
...

... . . . ...
r1p r2p · · · rpp

 , rik =
sik√
siiskk

1 ≤ i, k ≤ p.

Osservazione 2.1.3. La matrice di correlazione campionaria è una matrice sim-
metrica semidefinita positiva e adimensionale che coglie solo la variabilità lineare
dei dati.
La correlazione tra due variabili è un numero appartenente all’intervallo [−1, 1]

ed è positiva quando al crescere di una variabile l’altra cresce; negativa quando
al crescere di una variabile l’altra cala.
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Definizione 2.1.6. Sia X ∈ Rn×p matrice dei dati, R ∈ Rp×p matrice di corre-
lazione campionaria e {(λi, vi)}i=1,...,p autocoppie di R; il rapporto di variabilità

è definito come: rv ∈ Rp tale che rvi =
1

tr(R)

∑
k≤i

λk e rappresenta l’importanza

dei primi i autovalori rispetto a tutti.

2.2 Componenti principali di un campione di da-

ti

La Principal Component Analysis (PCA) è una tecnica di apprendimento non
supervisionato utilizzata nella moderna analisi di dati e riguardante diversi cam-
pi di ricerca: dalle neuroscienze alla computer graphic.
È un metodo relativamente semplice per l’estrazione di informazioni rilevanti
da dati di difficile interpretazione; l’idea alla base della PCA è di ridurre la
dimensionalità del dataset, mantenendo quanta più varianza possibile nei dati.
La riduzione viene fatta passando da un set di variabili di dimensione n × p a
un nuovo set di variabili di dimensione n × k con k << p latenti (ovvero non
misurabili), non correlate tra loro e ordinate in modo che le prime mantengano
la maggior parte della varianza presente in tutte le variabili originali.
In altre parole, l’obiettivo della PCA è trovare una base vettoriale alternativa
{y1, . . . , yp}, combinazione lineare della base originale {x1, . . . , xp}, che meglio
esprima le proprietà del data set, filtrando il rumore e rivelando la struttura
prima dei dati.

Sia X = [x1, . . . , xp] ∈ Rn×p matrice dei dati, S ∈ Rp×p matrice di covarianza,
λ1 ≥ . . . ≥ λp ≥ 0 autovalori della matrice di covarianza e R ∈ Rp×p matrice
di correlazione, lo scopo è determinare A = [a1, . . . , ap] ∈ Rn×p matrice dei
coefficienti tale che Y = XA con Y = [y1, . . . , yp] ∈ Rn×p, con {y1, . . . , yp} non
correlate (covarianza nulla) e che massimizzino la variabilità che ognuna delle
p variabili ha nel campione considerato.
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Le p colonne di Y sono combinazione lineare delle p colonne di X:
y1 = Xa1 = x1a11 + x2a12 + . . .+ xpa1p

y2 = Xa2 = x1a21 + x2a22 + . . .+ xpa2p
...
yp = Xa1 = x1ap1 + x2ap2 + . . .+ xpapp

con varianza campionaria var(yi) = aTi Sai ∀i = 1, . . . , p e covarianza campio-
naria cov(yi, yj) = aTi Saj ∀i, j = 1, . . . , p, i ̸= j.
La prima componente principale è y1 = Xa1, che massimizza var(y1) = aT1 Sa1.
La seconda componente principale è y2 = Xa2, che massimizza var(y2) = aT2 Sa2

e risulta ortogonale in senso di covarianza a y1, ossia soddisfa cov(y1, y2) =

aT1 Sa2 = 0.
E, in generale, la i-esima componente principale è yi = Xai, che massimizza
var(yi) = aTi Sai e risulta ortogonale in senso di covarianza a yk con k < i, ossia
soddisfa cov(yk, yi) = aTk Sai = 0 ∀k < i.
Trovare a1 che massimizzi la varianza campionaria, significa trovare:

max
a1∈R,∥a1∥=1

aT1 Sa1.

Per il Teorema 1.2.1 tale massimo è il più grande autovalore λ1 della matrice di
covarianza, ottenuto scegliendo a1 come primo autovettore di S.
Trovare a2 che massimizzi la varianza campionaria, sotto il vincolo che la
seconda componente principale y2 sia non correlata a y1, significa trovare:

max
a2∈R,∥a2∥=1

aT2 Sa2 | aT1 Sa2 = 0

cioè, unendo queste due condizioni, trovare:

max
a2∈R,∥a2∥=1,Xa2⊥Xa1

aT2 Sa2.

Per il Corollario 1.2.1 si è osservato che tale massimo è il più grande autovalore
escluso λ1 (ovvero λ2) della matrice di covarianza, ottenuto scegliendo a2 come
secondo autovettore di S.
Iterando questo ragionamento, si determina ap, osservando che A = V con V =
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[v1, . . . , vp] matrice degli autovettori della matrice di covarianza relativi agli
autovalori λ1 ≥ . . . ≥ λp ≥ 0.

Proposizione 2.2.1. Data S ∈ Rp×p matrice di covarianza e (λ1, v1), . . . , (λp, vp)

autocoppie di S tali che λ1 ≥ . . . ≥ λp ≥ 0; definendo le componenti principali
yi = Xai = Xvi come sopra, allora:

1. (Varianza campionaria) var(yi) = λi ∀i = 1, . . . , p;

2. (Covarianza campionaria) cov(yk, yi) = 0 ∀i ̸= k;

3. (Varianza totale campionaria)
p∑

i=1

λi.

Dimostrazione. Sia yi = Xai con ai ∈ Rp, ∥ai∥= 1, ricordando che la i-esima
componente principale è stata ottenuta scegliendo ai = vi con vi autovettore di S,

1. var(yi) = aTi Sai = vTi Svi = vTi (λivi) = λi(v
T
i vi) = λi;

2. cov(yk, yi) = aTk Sai = vTk Svi = vTk (λivi) = λi(v
T
k vi) = 0, perchè gli

autovettori di S formano una base ortonormale;

3. per il sesto punto dell’Osservazione 1.2.1, la traccia della matrice S è pari
alla somma dei suoi autovalori.

Osservazione 2.2.1. Le componenti principali costruite da S e da R non sono
uguali, in generale però sarà chiaro dal contesto quale matrice viene utilizzata.

2.3 Componenti principali per un campione con

dati standardizzati

Quando i dati del campione presentano unità di misura o ordini di grandezza
differenti, procedendo con le componenti principali ottenute dalla matrice di
covarianza l’analisi può diventare fuorviante.



14 2. Analisi delle componenti principali

La covarianza, infatti, dipende direttamente dalle unità di misura: variabili con
varianza elevata (perché espresse in unità grandi o perché numericamente molto
più disperse) contribuiscono in modo sproporzionato al valore del quoziente di
Rayleigh. Poiché la PCA seleziona le direzioni che massimizzano la varianza,
le variabili con valori numerici assoluti maggiori tendono automaticamente a
dominare la costruzione delle componenti principali, anche quando non rappre-
sentano la relazione statistica più rilevante nel dataset.
Per evitare l’insorgere di queste problematiche, si applica la standardizzazione,
che rende confrontabili tutte le variabili e consente alle componenti principali
di descrivere in modo più fedele le relazioni presenti nei dati.
Al posto della matrice di dati X ∈ Rn×p si utilizzerà Z ∈ Rn×p tale che:

zi = (xi − x̄i
T )D− 1

2 =



x1i − x̄i√
s11

x2i − x̄i√
s22
...

xni − x̄i√
spp


, i = 1, . . . , p,

con D = diag(s11, . . . , spp).

Osservazione 2.3.1. Ogni variabile standardizzata zi soddisfa:

• (Varianza campionaria) var(zi) = 1;

• (Media campionaria) z̄i = 0;

• (Covarianza campionaria) cov(zk, zi) =
ski√
skksii

= rki.

Definendo la matrice media X̄ ∈ Rn×p tale che ogni riga è della forma x̄1, . . . , x̄p;
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Z = (X − X̄)D− 1
2 =


x11 − x̄1 x12 − x̄2 · · · x1p − x̄p

x21 − x̄1 x22 − x̄2 · · · x2p − x̄p

...
... . . . ...

xn1 − x̄1 xn2 − x̄2 · · · xnp − x̄p




1√
s11

0 · · · 0

0 1√
s22

· · · 0
...

... . . . ...
0 0 · · · 1√

spp

 =

=



x11 − x̄1√
s11

x12 − x̄2√
s22

· · · x1p − x̄p√
spp

x21 − x̄1√
s11

x22 − x̄2√
s22

· · · x2p − x̄p√
spp

...
... . . . ...

xn1 − x̄1√
s11

xn2 − x̄2√
s22

· · · xnp − x̄p√
spp


.

A questo punto la matrice di covarianza sarà uguale alla matrice di correlazione
S :=

1

n− 1
ZTZ, e quindi anche le sue autocoppie.

Le componenti principali, in questo caso, saranno combinazioni lineari delle p
colonne di Z.

Proposizione 2.3.1. Data R ∈ Rp×p matrice di correlazione e (λ1, v1), . . . , (λp, vp)

autocoppie di R tali che λ1 ≥ . . . ≥ λp ≥ 0; definendo le componenti principali
yi = Xai = Xvi come sopra, allora:

1. (Varianza campionaria) var(yi) = λi ∀i = 1, . . . , p;

2. (Covarianza campionaria) cov(yk, yi) = 0 ∀i ̸= k;

3. (Varianza totale campionaria)
p∑

i=1

λi.

2.4 Scelta delle componenti principali

Dal momento in cui la matrice delle componenti principali è data da:

Y = Z∗V con
Z ∈ Rn×p matrice dei dati standardizzati,
V ∈ Rp×p matrice degli autovettori della matrice di correlazione;

ogni elemento vij della matrice V dice quanto la variabile originaria standardiz-
zata zj contribuisca alla componente principale yi.
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Come già osservato precedentemente, ciascuna componente principale può es-
sere interpretata come una combinazione lineare delle variabili iniziali orientata
lungo una direzione che massimizza la variabilità spiegata.
Essendo ogni componente principale associata a una direzione che massimizza
la variabilità residua del dataset, le componenti possono essere naturalmente
ordinate in base alla quantità di varianza che spiegano. È proprio da questa
struttura gerarchica che discende l’obiettivo principale della PCA, ovvero quello
di sintetizzare p variabili in un numero k di variabili, con k << p in modo da
avere una minima perdita di informazione con una grossa riduzione di dati.
Non vi è una procedura standard poichè ci sono molteplici fattori da tenere
in considerazione per fare questa scelta. I metodi più comuni e che verranno
illustrati e utilizzati in questa tesi sono tre:

1. (Valutazione grafica) Si traccia il grafico degli autovalori di S o R, pre-
cedentemente messi in ordine decrescente, e si cerca il "gomito", ovve-
ro il cambio di pendenza oltre il quale l’incremento di varianza diventa
marginale.

2. (Percentuale di varianza spiegata) Si scelgono le prime k componenti prin-
cipali che spiegano almeno il 60-80% della varianza totale del dataset, ov-
vero si calcola il vettore rapporto di variabilità e si sceglie il numero di
componenti di rv maggiori di una certa soglia 0.6-0.8;

3. (Autovalori maggiori della media) Si scelgono i k autovettori (o compo-
nenti principali) corrispondenti ai k autovalori maggiori della media degli
autovalori stessi (se i dati sono standardizzati la media degli autovalori è
1).

2.5 Interpretazione grafica

Per comprendere appieno le trasformazioni effettuate dall’algoritmo PCA e per
interpretarne correttamente i risultati, un ruolo centrale è svolto dalla rappre-
sentazione grafica dei dati. L’osservazione dei grafici di dispersione, infatti,



2.5 Interpretazione grafica 17

consente di cogliere aspetti strutturali che non emergerebbero dal solo esame
matriciale o numerico, poichè permette di localizzare casi anomali o al contrario
identificare zone con maggior concentrazione di dati.
Utile è analizzare tre principali tipi di grafici:

1. (Tra due variabili originali) I grafici di dispersione costruiti tra le varia-
bili originali, consentono una prima valutazione della struttura interna
del dataset prima di qualsiasi trasformazione, permettendo di individuare
correlazioni lineari tra coppie di variabili, ridondanze tra misure, pattern
non lineari, outlier (o osservazioni anomale) che si presentano come punti
isolati e cluster naturali già presenti nello spazio.

2. (Tra una variabile originale e una componente principale) I grafici che
mettono in relazione le variabili originali con le componenti principali,
consentono di interpretare meglio le nuove coordinate ottenute tramite
PCA. Da questo tipo di grafico si può intuire quanto ogni variabile con-
tribuisce a una particolare componente principale, in altre parole, quanto
una variabile originale sia ben rappresentata in una specifica componente.
In generale, se le nubi di punti appaiono inclinate o orientate, si ha una
forte rappresentazione della relazione fra le variabili; al contrario, nubi
prevalentemente orizzontali o verticali indicano una rappresentazione de-
bole. Questo passaggio è essenziale per assegnare un significato concreto
alle componenti principali.

3. (Tra due componenti principali) Gli scatter plot costruiti nello spazio delle
componenti principali (ad esempio grafici 2D tra PC1–PC2 o grafici 3D
tra PC1–PC2-PC3) sono gli strumenti grafici più utilizzati nell’interpreta-
zione pratica della PCA, infatti, le componenti principali sono ortogonali
e non correlate, oltre a conservare la quota massima possibile di varianza
del dataset. Questi grafici consentono di visualizzare cluster, individuare
outlier e confrontare differenze tra sottogruppi di dati. La visualizzazione
nello spazio PC1–PC2, oppure in quello PC1-PC2-PC3, costituisce quindi
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un efficace riassunto della struttura dei dati e una base solida per analisi
successive, come le tecniche di clustering.



Capitolo 3

Clustering

Il clustering è un processo di raggruppamento di elementi simili, rispetto a de-
terminate caratteristiche, in un insieme di dati. L’obiettivo è individuare una
struttura nei dati tale per cui gli oggetti appartenenti allo stesso cluster risultino
simili tra loro, ma dissimili da oggetti appartenenti a cluster differenti. Poichè i
risultati dipendono sia dall’obiettivo dell’indagine che dal contesto applicativo,
è necessario scegliere con attenzione la procedura di raggruppamento e la di-
stanza più adatta per il tipo di dati presi in esame. Questo processo può essere
applicato in molti ambiti per aiutare a identificare pattern di raggruppamento
e a suddividere le osservazioni in sottogruppi con caratteristiche simili.

3.1 Misure di dissimilarità e distanza

Un primo metodo per formare o separare gruppi di oggetti è quello dei criteri
di somiglianza o dissimilarità.

Definizione 3.1.1. Date p variabili binarie, si definisce la tabella di contingen-
za:

1 0 totali

1 a b a+ b

0 c d c+ d

totali a+ c b+ d p = a+ b+ c+ d

a frequenza 1− 1; d frequenza 0− 0;

b frequenza 1− 0; c frequenza 0− 1.

19
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Definizione 3.1.2. Sia X un insieme qualunque, una funzione s : X ×X → R
si dice coefficiente di similarità su X se, per ogni P,Q ∈ X valgono almeno le
seguenti proprietà:

1. (Simmetria) s(P,Q) = s(Q,P );

2. (Non negatività) d(P,Q) ≥ 0;

3. (Massima similarità sull’identità) d(P, P ) = max s;

4. (Monotonicità crescente) s(P,Q) ↗;

5. (Normalizzazione) 0 ≤ d(P,Q) ≤ 1 (non sempre da soddisfare).

Definizione 3.1.3. Alcuni esempi di coefficienti di similarità sono:

• s(P,Q) =
a

p
stabilisce che P,Q sono simili quando entrambi sono 1;

• (Simple matching) s(P,Q) =
a+ d

p
stabilisce che P,Q sono simili quando

hanno entrambi lo stesso peso;

• (Coefficiente Jaccard) s(P,Q) =
a

a+ b+ c
attribuisce peso nullo al ter-

mine 0− 0;

• (Coefficiente Sorensen-Dice) s(P,Q) =
2a

2a+ b+ c
attribuisce peso doppio

al termine 1− 1;

• (Coefficiente Sokal-Sneath) s(P,Q) =
2(a+ d)

2(a+ d) + b+ c
attribuisce peso

doppio ai termini 1− 1 e 0− 0;

• (Coefficiente Rogers-Tanimoto) s(P,Q) =
a+ d

2(b+ c) + a+ d
attribuisce

peso doppio ai termini 1− 0 e 0− 1;

Definizione 3.1.4. Sia X un insieme qualunque, una funzione d : X ×X → R
si dice distanza su X se, per ogni P,Q,R ∈ X valgono le seguenti proprietà:

1. (Simmetria) d(P,Q) = d(Q,P );
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2. (Non negatività) d(P,Q) ≥ 0;

3. (Identità degli indiscernibili) d(P,Q) = 0 ⇐⇒ P = Q;

4. (Disuguaglianza triangolare) d(P,Q) ≤ d(P,R) + d(R,Q).

Definizione 3.1.5. Siano x, y ∈ Rp è possibile definire le seguenti misure di
distanza:

• (Distanza euclidea) d(x, y) =
√
(x− y)T (x− y);

• (Distanza cityblock) d(x, y) =

p∑
i=1

|xi − yi|;

• (Distanza cosine) d(x, y) = 1− xTy

∥x∥ ∥y∥
;

• (Distanza Mahalanobis o statistica) d(x, y) =
√
(x− y)TS−1(x− y),

S matrice di covarianza;

• (Distanza di Minkowsky) d(x, y) = (

p∑
i=1

|xi − yi|m)
1
m .

Osservazione 3.1.1. Esistono due tipologie di distanze:

• "within" the group, che indica quanto sono vicine le osservazioni all’interno
di un gruppo, consente di valutarne la coesione e di verificare se una
diversa scelta di raggruppamento potrebbe risultare più appropriata;

• "between" the groups, che indica quanto sono distanti tra loro i gruppi.

3.2 Metodi gerarchici

I metodi gerarchici di clustering sono una categoria di metodi di analisi multiva-
riata che costruiscono un dendrogramma, ovvero un diagramma ad albero, per
rappresentare come le osservazioni o le variabili si uniscono progressivamente in
gruppi, senza richiedere a priori il numero di cluster.
Questo gruppo di metodi è ulteriormente suddivisibile in base all’approccio che
viene adottato:
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• (Metodi agglomerativi) Si parte da n cluster singoli, uno per ciascuna
osservazione (è possibile farlo anche con le variabili) e a ogni passo si
uniscono i due gruppi più simili secondo un criterio di distanza fissato
all’inizio. Il processo continua finché tutte le osservazioni formano un
unico cluster.

• (Metodi divisivi) Si parte da un unico cluster contenente tutte le osserva-
zioni (è possibile farlo anche con le variabili) e lo si suddivide iterativa-
mente in gruppi più piccoli.

Algoritmo 3.2.1. La tipica procedura in un metodo gerarchico agglomerativo
è la seguente:

1. Si inizia con n gruppi e una matrice simmetrica D ∈ Rn×n delle distanze;

2. Si determina la coppia di elementi u, v più vicini (in termini della distanza
scelta) e si forma poi il gruppo (u, v);

3. Si aggiorna D, la quale diventerà (n− 1)× (n− 1), sostituendo alle due
righe di u e v una sola riga con le distanze del gruppetto (u, v) dagli alti
oggetti;

4. Si ripetono tutti i passaggi a partire dal punto 2, fino a quando D ∈ R1×1.

Tra i metodi gerarchici agglomerativi si possono trovare quelli di connessione o
linkage che, in base al tipo di distanza, vengono suddivisi in:

• (Single Linkage) La distanza tra due cluster è la minima distanza tra i
rispettivi elementi;

• (Complete Linkage) La distanza tra due cluster è la massima distanza tra
i rispettivi elementi;

• (Average Linkage) La distanza tra due cluster è la media delle distanze
tra i rispettivi elementi.
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Osservazione 3.2.1. Alcune proprietà dei metodi agglomerativi sono:

• Il livello a cui avviene il raggruppamento è importante perchè evidenzia
l’effettiva distanza di un elemento dal cluster in cui viene inserito;

• Se la matrice delle distanze D ha minimi uguali con indici diversi, si
raggruppano i cluster separatamente:

es: D =



0 9 3 6 11

9 0 7 2 10

3 7 0 9 2

6 2 9 0 8

11 10 2 8 0


, min di,j = 2

si hanno due possibilità
i = 5, j = 3 ⇒ (3, 5) gruppo

∧
i = 4, j = 2 ⇒ (4, 2) gruppo;

• Se D ha minimi uguali con indici in comune, si raggruppano solo gli oggetti
con la stessa distanza:

es: D =



0 9 3 6 11

9 0 2 5 10

3 2 0 9 2

6 5 9 0 8

11 10 2 8 0


, min di,j = 2

si hanno due possibilità
i = 5, j = 3

i = 3, j = 2
ma d5,2 = 10

⇒ (3, 5)∨̇(3, 2) gruppo, ma non (2, 3, 5);
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• i cluster e i dendrogrammi rimangono inalterati se si usano distanze che
mantengono lo stesso ordine.

Definizione 3.2.1. Un dendrogramma è un diagramma ad albero che rappre-
senta visivamente la disposizione dei cluster prodotti dal clustering gerarchico.
È uno strumento cruciale in statistica, analisi dei dati e data science; in partico-
lare quando si ha a che fare con dataset complessi che richiedono l’identificazione
di relazioni tra vari punti dati.
Sull’asse delle ascisse del seguente grafico si trovano le osservazioni, mentre
sull’asse delle ordinate la distanza. Un aspetto rilevante consiste nell’effettua-
re un taglio orizzontale, a una certa distanza fissata, in modo da individuare
chiaramente i gruppi che emergono dalla struttura gerarchica.

3.3 Metodi non gerarchici

I metodi di clustering non gerarchici, chiamati anche metodi di partizione, sono
algoritmi di apprendimento non supervisionato che dividono un insieme di dati
in un numero predefinito k di gruppi.
A differenza dei metodi gerarchici non creano una struttura ad albero, ma suddi-
vidono direttamente lo spazio in modo che gli elementi appartenenti allo stesso
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cluster siano il più possibile simili tra loro, mentre quelli appartenenti a cluster
diversi siano il più possibile dissimili.
Un possibile approccio per ottenere questo risultato potrebbe consistere nell’e-
lencare tutti i possibili raggruppamenti in k gruppi costruibili con i dati di par-
tenza, e scegliere come migliore soluzione, quella che ottimizza un determinato
criterio predefinito. Sfortunatamente un tale approccio diventerebbe rapida-
mente inapplicabile, specialmente per grandi dataset, poiché richiederebbe una
quantità enorme di tempo macchina e di spazio di memoria. Di conseguenza
tutte le tecniche di clustering disponibili sono iterative e operano solo su un
numero molto ristretto di enumerazioni.
Di questo gruppo di metodi fa parte l’algoritmo delle K-medie, che opera cate-
gorizzando i punti dati in k cluster sulla base di una misura di distanza mate-
matica dal centro di ogni cluster.
L’obiettivo è minimizzare la somma delle distanze tra i punti dati e i cluster asse-

gnati: SSE =
k∑

j=1

∑
xi∈Cj

∥xi−µj∥2, dove Cj è il cluster j-esimo e µj il suo centroide.

Un valore k più alto indica cluster più piccoli con maggiori dettagli, mentre un
valore k più basso si traduce in cluster più grandi con meno dettagli.

Definizione 3.3.1. Si dice centroide di un gruppo o cluster la media (come nel
caso di K-medie) o la mediana di tutti i punti all’interno del cluster.

Algoritmo 3.3.1. La tipica procedura per il metodo delle K-medie è la seguente:

1. Si suddividono gli oggetti in k gruppi, con k dato in input, e si calcola (in
termini della distanza scelta) il centroide di ognuno di essi;

2. Si calcola, per ogni osservazione, la distanza dai centroidi di ogni gruppo;

3. Si riposiziona ogni oggetto nel cluster con centroide più vicino;

4. Si ricalcolano i centroidi dei cluster che hanno acquisito o perso almeno
un oggetto;

5. Si ripetono tutti i passaggi a partire dal punto 2, fino a quando nessun
oggetto cambia più cluster.
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Per rappresentare graficamente i risultati di questo metodo è possibile fare un
plot delle prime 2 o 3 componenti principali ottenute con la PCA, evidenziando
con diversi colori i gruppi ricavati e con delle × i centroidi di ogni gruppo.

Osservazione 3.3.1. Per verificare la stabilità del risultato bisognerà applicare
più volte l’algoritmo cambiando l’inizializzazione, ovvero il parametro k oppure
il tipo di distanza usata.

Osservazione 3.3.2. Il problema della determinazione del valore di k da fornire in
input può essere risolto utilizzando il grafico a gomito, che mostra l’andamento
dell’errore quadratico totale ("within-cluster sum of squares" - SSE), al variare
di k.
Questo valore misura quanto i punti sono vicini al centroide del proprio cluster:
valori più bassi indicano una migliore coesione interna.
Aumentando k, SSE tende a diminuire; l’obiettivo è trovare un punto oltre il
quale l’incremento di k non porta un miglioramento significativo: questo punto
è chiamato “gomito”.

Osservazione 3.3.3. Sebbene l’algoritmo delle K-medie sia uno degli algoritmi
di clustering più diffusi per la sua semplicità e velocità, non è sempre la scelta
migliore a causa della sua pesantezza e lentezza nell’adattarsi ad una grande
mole di dati. Infatti ha una complessità computazionale O(r · n · k · i · p) che
cresce linearmente con n (numero di osservazioni), k (numero di cluster), i

(numero di iterazioni), r (numero di riavvii) e p (numero di variabili), quindi
su dataset molto grandi può risultare computazionalmente costoso, soprattutto
senza ottimizzazioni.
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3.4 Confronto tra metodi

Caratteristica
Gerarchico Agglomerativo

(Complete Linkage) K-medie

Tipo di algoritmo
Deterministico;

costruisce una gerarchia di fusione tra cluster
Stocastico;

la soluzione dipende dall’inizializzazione

Input richiesti
Non richiede il numero di cluster a priori;

usa solo la matrice delle distanze Richiede a priori il numero di cluster k

Struttura prodotta Dendrogramma multilivello Partizione unica in k gruppi

Forma dei cluster Cluster di forme arbitrarie Cluster compatti e sferici

Sensibilità agli outlier Moderata (complete è più robusto di single) Alta: gli outlier influenzano i centroidi

Costo computazionale Elevato: O(n2)
Più efficiente: circa O(n · k · p) per iterazione,

senza considerare i riavii

Interpretazione Molto intuitiva via dendrogramma Meno intuitiva ad alte dimensioni

Stabilità della soluzione Alta stabilità Bassa stabilità (richiede più riavvii)





Capitolo 4

Applicazione a un dataset

4.1 Presentazione del dataset

I dati analizzati in questa tesi sono stati forniti da Vittorio Coloretti, dottorando
presso il Dipartimento di Scienze per la Qualità della Vita (Unibo). Tale dataset
è costituito da un campione di 73 individui, per ciascuno dei quali sono state
raccolte 47 tra variabili antropometriche e prestative relative ai quattro diversi
stili del nuoto.

• Sesso (M=0/F=1)

dati antropometrici

• Età (anni)

• Altezza (cm)

• Peso (kg)

• Altezza in stream (cm)

• Distanza biacromiale (cm)

• Larghezza delle spalle in stream (cm)

• BMI (kg/cm2)

dati prestativi

• PB sui 50 metri (s)

• Punti FINA relativi a quel personale

• Ft (N)

• Vmax (m/s)

• Fp (N)

• Ka (N)

• Kp (N)

• Kcin

• SR Vmax (cicli/min)

• SL Vmax (m)

• SR Ft (cicli/min)

29
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Definizione 4.1.1. La distanza biacromiale è la distanza in linea retta tra i
due acromion, ossia due processi ossei della scapola che formano la parte più
alta e posteriore delle spalle, collegandosi alla clavicole.

Definizione 4.1.2. La posizione di "streamline" (o semplicemente "stream"),
nel nuoto, è una posizione del corpo idrodinamica e affusolata assunta durante
le fasi subacquee come a seguito di partenza o virate, per minimizzare l’attrito
e massimizzare la velocità. Si ottiene allineando braccia, tronco e gambe, con
le braccia unite sopra la testa e i gomiti stretti intorno alle orecchie: il corpo è
il più possibile orizzontale con la testa allineata.

Definizione 4.1.3. Il BMI o Indice di Massa Corporea è un valore che indica
il rapporto tra il peso e l’altezza di una persona, calcolato dividendo il peso in
chilogrammi per il quadrato dell’altezza in metri. Non è utile a valutare la quan-
tità di grasso, ma fornisce una rapida e generale stima dello stato nutrizionale,
classificando il peso come sottopeso, normopeso, sovrappeso o obeso.

Definizione 4.1.4. I punti FINA sono un sistema di valutazione, per confron-
tare le prestazioni nel nuoto, che assegna un punteggio più alto a chi si avvicina
o supera i tempi base stabiliti annualmente da World Aquatics. Il punteggio di-
pende dal tempo ottenuto rispetto a un tempo di base prestabilito, che è basato
sui record mondiali più recenti e si differenzia tra vasca corta e vasca lunga.

Definizione 4.1.5. La forza propulsiva (Fp) è la forza generata dal nuotatore
per vincere la resistenza idrodinamica e produrre avanzamento.

Definizione 4.1.6. La forza al full tethered (Ft) è la massima forza propulsiva
che il nuotatore è in grado di esprimere durante una nuotata stazionaria, cioè
vincolata a un punto fisso tramite un cavo.

Definizione 4.1.7. In generale il drag rappresenta la forza di resistenza che il
fluido esercita sul corpo che si muove al suo interno e tende a crescere all’au-
mentare della forza propulsiva e della velocità.
Nel nuotatore agiscono diversi tipi di drag:
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• (Drag attivo - Ka) Resistenza idrodinamica che il nuotatore incontra men-
tre si muove per generare propulsione, influenzata da tecnica, posizione
del corpo,turbolenze e movimenti di braccia e gambe.

• (Drag passivo - Kp) Resistenza idrodinamica sull’atleta immobile in posi-
zione streamline, determinata principalmente da forma, superficie frontale
e profilo del corpo.

• (Drag cinetico - Kcin) Resistenza creata dalle turbolenze generate dal
movimento degli arti, dipendente da variazioni posturali e dal modo in
cui i segmenti attraversano il fluido. Esso è la somma tra Ka e Kp.

Definizione 4.1.8. Il ciclo di bracciata nel nuoto è la sequenza completa di
movimenti che una singola mano compie dall’entrata in acqua fino al suo succes-
sivo rientro. Si suddivide in quattro fasi principali: appoggio/presa, trazione,
spinta e recupero. A stile libero e a dorso un ciclo equivale a due bracciate,
mentre a rana e delfino a una bracciata.

Definizione 4.1.9. La frequenza di bracciata (SR) è il numero di cicli di
bracciata completati in un minuto (o un altro intervallo di tempo prestabilito).

Definizione 4.1.10. L’ampiezza di bracciata (SL) è la distanza coperta da
un ciclo completo di bracciata (dall’ingresso della mano in acqua all’ingresso
successivo della stessa mano).

Il dataset considerato, di dimensioni 73× 47, presenta diversi valori mancanti.
La gestione di questi valori rappresenta una delle problematiche più rilevanti e,
al tempo stesso, più delicate nell’ambito della statistica applicata e dell’analisi
di dati (si vedano [4] e [3]).
Si parla di dati mancanti quando uno o più valori all’interno di un set di dati
non risultano disponibili o, in altre parole, quando, per una determinata va-
riabile o osservazione, l’informazione attesa non è presente. Le cause possono
essere molteplici: errori nella fase di raccolta o digitalizzazione dei dati, risposte
omesse nei questionari o nei sondaggi, malfunzionamenti di strumenti o sensori
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durante la registrazione di misure, perdita accidentale o danneggiamento di ar-
chivi informatici, rifiuto di partecipazione da parte dei soggetti o incapacità di
completare la procedura sperimentale.
Qualunque sia la motivazione, la presenza di valori mancanti può compromet-
tere in modo significativo la qualità delle analisi statistiche successive, influen-
zando la bontà delle stime, la validità delle inferenze, la generalizzabilità dei
risultati e la capacità predittiva dei modelli.
La letteratura classifica i meccanismi di generazione della mancanza in tre
principali categorie:

• (MCAR – Missing Completely At Random) La mancanza avviene in modo
completamente casuale, senza alcuna relazione con le variabili osservate
né con i valori mancanti stessi.

• (MAR – Missing At Random) La probabilità che un valore sia mancante
dipende dai valori osservati di altre variabili, ma non dai valori mancanti
stessi.

• (MNAR – Missing Not At Random) La mancanza dipende direttamen-
te dal valore non osservato, cosa che rende MNAR il meccanismo più
complesso e problematico.

Oltre al meccanismo, i dati mancanti possono essere caratterizzati da:

• (Tasso di mancanza) Proporzione di celle mancanti sul totale del dataset.
Si considera in genere mancanza lieve se inferiore al 10%, moderata tra
10% e 25%, elevata tra 25% e 50% e eccessiva oltre il 50%.

• (Modello di mancanza) Descrive la distribuzione dei valori mancanti nelle
variabili e può essere categorizzato come univariato (mancano dati in una
sola variabile), multivariato (mancano dati in più variabili), monotono
(mancano dati in una direzione del dataset), non monotono e connesso (i
dati completi sono raggiungibili tramite movimenti orizzontali o verticali
all’interno di un dataset tabulare).
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Le strategie per affrontare il problema dei dati mancanti si articolano in tre
grandi classi di metodi: eliminazione, imputazione e apprendimento della rap-
presentazione.
I metodi di eliminazione rappresentano l’approccio più semplice e immediato
e si suddividono ulteriormente in metodi di eliminazione listwise, che rimuovo-
no tutte le osservazioni le cui righe di variabili contengono almeno un valore
mancante, e metodi di eliminazione pairwise, che escludono le osservazioni a cui
mancano alcuni dati solo durante l’analisi che le comprende. Questi approcci
sono validi solo se i dati sono MCAR e il tasso di mancanza è contenuto.
I metodi di imputazione si propongono di sostituire i valori mancanti con sti-
me plausibili, preservando la struttura multivariata del dataset e si dividono in
metodi di imputazione singola, multipla e basata su decomposizione.
Nel caso di imputazione singola, le stime possono essere ottenute tramite regole
statistiche, ad esempio media, mediana o moda dei valori non mancanti della
colonna; tramite modelli di regressione lineare o logistica; tramite sostituzione
con valori non mancanti, ad esempio il valore dell’osservazione precedente o suc-
cessiva (LOCF o NOBC) o il valore del vicino più prossimo in base alla distanza
scelta (KNN); tramite modelli probabilistici, ad esempio l’algorito iterativo EM,
che stima i valori mancanti massimizzando la funzione di verosimiglianza sot-
to uno specifico modello probabilistico; oppure tramite modelli predittivi, ad
esempio alberi decisionali e foreste casuali. Quando la quantità di dati man-
canti cresce, l’imputazione singola può risultare insufficiente. In questi casi
vengono utilizzate tecniche di imputazione multipla, nelle quali si generano più
versioni complete del dataset, ciascuna con imputazioni leggermente differenti,
e si combinano i risultati per ottenere stime robuste. Nel caso di imputazione
basata su decomposizione, si utilizzano versioni modificate dell’algoritmo PCA
o della SVD per stimare i valori mancanti in base alle componenti principali o
alle strutture latenti identificate.
I metodi di apprendimento della rappresentazione sono invece tecniche più sofi-
sticate, introdotte con l’evoluzione dell’intrelligenza artificiale, che si basano su
reti neurali profonde, autoencoder o modelli probabilistici latenti, apprendendo
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automaticamente strutture e relazioni complesse nei dati grezzi poi utilizzate
per migliorare la qualità e l’accuratezza delle imputazioni.
Ai fini dell’analisi presentata in questa tesi, risulta fondamentale comprendere
come gestire l’incompletezza del dataset nell’ambito della PCA.
Diversi approcci sono stati proposti nel tempo per risolvere questo problema,
come l’imputazione basata su SVD (I-SVD), in cui le voci mancanti vengono
riempite e aggiornate a ogni iterazione della SVD fino alla convergenza, e l’a-
dattamento dell’algoritmo Nonlinear Iterative Partial Least Squares (NIPALS),
in grado di saltare le voci mancanti durante la stima dei minimi quadrati di
scores e loadings. Tuttavia, sono state segnalate alcune limitazioni per entram-
bi gli approcci: la convergenza dell’algoritmo I-SVD può essere molto lenta per
set di dati con un’alta percentuale di missings e, quando si utilizza NIPALS, le
proprietà di ortogonalità tra scores e loadings potrebbero essere perse.
Per risolvere questi problemi, è possibile utilizzare un algoritmo denominato
Orthogonalized-Alternating Least Squares (O-ALS), ovvero un algoritmo di
minimi quadrati alternati che stima scores e loadings, soggetti al vincolo di
ortogonalizzazione di Gram-Schmid (si vedano [2] per un’analisi completa sugli
approcci da usare nella PCA con valori mancanti e [1] per un confronto tra i
tre metodi appena citati).
L’algoritmo O-ALS inizia con una stima, solitamente casuale o basata su una
prima approssimazione, della matrice dei loadings e successivamente procede in
modo iterativo secondo uno schema alternato (alternating scheme):

• stima riga per riga della matrice di loadings con i minimi quadrati, appli-
cando a ogni colonna della matrice stessa il vincolo di ortogonalizzazione
di Gram-Schmidt;

• stima colonna per colonna della matrice di scores con i minimi quadrati,
applicando a ogni riga della matrice stessa il vincolo di ortogonalizzazione
di Gram-Schmidt;

e prosegue fino a convergenza.



4.2 Analisi con dataset ristretto 35

4.2 Analisi con dataset ristretto

L’analisi è stata condotta inizialmente su un sottoinsieme di 42 individui per
i quali sono presenti sia le variabili antropometriche sia quelle prestative nello
stile libero. Il dataset considerato ha quindi dimensione 42× 19.

sesso età(anni) alt.(cm) peso(kg) alt.stream(cm) dist.biac.(cm) larg.spal.stream(cm) BMI(kg/cm2)

s1 0 22 177 73 243 36 35 23.3
s2 0 19 177 70 240 37 38 22.3
s3 0 22 180 78 248 35 37 24.1
s4 0 20 190 87 263 41 40 24.1
s5 0 22 183 76 250 39 39 22.7
s6 0 21 178 83 246 37 39 26.2
s7 1 18 169 55 228 32 31 19.3
s8 1 21 161 56 219 33 35 21.6
s9 1 13 163 55 224 31 34 20.7
s10 1 15 163 54 225 31 32 20.3
s11 1 18 162 57 222 31 33 21.7
s12 1 16 160 55 225 33 32 21.5
s13 0 14 176 69 240 34 33 22.3
s14 1 13 149 39 205 31 33 17.6
s15 0 27 185 83 256 37 40 24.3
s16 0 16 181 74 243 35 38 22.6
s17 1 13 171 53 229 32 34 18.1
s18 1 13 165 60 232 35 32 22.0
s19 1 14 164 60 222 32 32 22.3
s20 1 18 168 60 234 32 36 21.3
s21 1 18 168 61 227 36 36 21.6
s22 1 23 178 72 243 36 38 22.7
s23 1 23 177 68 238 35 33 21.7
s24 1 21 173 63 234 36 34 21.0
s25 1 23 182 70 249 37 35 21.1
s26 1 18 175 65 237 35 34 21.2
s27 0 18 187 76 258 38 35 21.7
s28 1 18 165 60 222 33 36 22.0
s29 1 15 165 56 229 33 33 20.6
s30 1 20 169 63 227 32 32 22.1
s31 1 20 170 58 233 32 35 20.1
s32 1 24 161 57 220 32 33 22.0
s33 0 19 183 75 244 36 38 22.4
s34 0 23 183 90 247 38 39 26.9
s35 0 20 181 69 251 36 35 21.1
s36 1 20 169 62 223 32 34 21.7
s37 0 24 168 63 229 34 37 22.3
s38 0 22 189 73 261 38 36 20.4
s40 0 21 193 81 265 39 37 21.7
s41 0 26 181 78 253 37 37 23.8
s53 0 27 184 73 256 38 34 21.6
s58 1 25 172 63 231 31 36 21.3
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PB50(s) FINApoints Ft(N) Vmax(m/s) Fp(N) Ka(kg/m) Kp(kg/m) Kcin SRvmax(cicli/min) SLvmax(m) SRFt(cicli/min)

s1 24.76 539 148.9 1.82 142.8 43.6 22.8 1.91 58.0 1.88 59.4

s2 25.08 519 134.8 1.81 134.8 43.0 23.7 1.81 59.5 1.83 54.7

s3 24.65 547 158.8 1.81 147.5 48.9 29.8 1.64 53.7 2.02 53.5

s4 24.10 585 192.0 1.73 178.5 56.6 29.7 1.91 54.0 1.92 56.2

s5 24.32 569 180.7 1.92 153.5 47.9 26.3 1.82 57.1 2.02 60.0

s6 25.34 503 169.2 1.71 152.7 58.0 27.1 2.14 52.5 1.95 51.9

s7 28.00 549 105.5 1.58 95.3 40.4 21.3 1.90 58.6 1.62 62.8

s8 28.50 520 94.9 1.45 88.1 45.0 21.7 2.07 57.3 1.52 55.8

s9 29.65 462 96.1 1.58 94.9 40.9 27.4 1.49 54.4 1.74 48.7

s10 32.49 337 101.0 1.59 91.1 39.2 20.0 1.96 56.0 1.70 57.0

s11 26.52 646 113.0 1.68 107.5 39.2 20.6 1.90 57.4 1.76 67.0

s12 26.13 675 116.1 1.64 113.8 41.7 20.2 2.06 57.0 1.73 57.6

s13 23.83 600 159.5 1.85 157.1 45.5 32.1 1.42 65.8 1.69 61.9

s14 30.75 414 86.6 1.54 83.4 38.7 17.6 2.20 53.1 1.74 55.3

s15 23.20 656 191.8 1.82 180.1 55.0 24.5 2.24 61.9 1.76 60.7

s16 23.59 624 166.4 1.84 147.5 45.8 28.2 1.62 56.2 1.96 55.4

s17 26.30 662 128.7 1.70 115.1 42.6 20.8 2.05 57.0 1.79 62.2

s18 28.71 509 106.9 1.59 99.6 42.9 23.1 1.86 56.8 1.68 51.5

s19 28.06 545 103.8 1.57 99.9 43.4 22.4 1.94 54.9 1.72 54.1

s20 25.81 701 108.6 1.58 102.4 42.4 23.1 1.84 52.0 1.82 54.6

s21 27.41 585 126.2 1.61 122.1 49.8 21.5 2.32 54.1 1.79 53.6

s22 24.77 793 122.9 1.67 108.3 45.6 24.9 1.83 51.6 1.94 49.8

s23 26.99 613 89.2 1.63 89.0 35.7 24.5 1.46 58.5 1.67 55.0

s24 27.70 567 96.7 1.70 91.4 34.6 22.3 1.55 58.7 1.74 55.3

s25 28.00 549 88.9 1.66 92.0 35.1 24.2 1.45 53.2 1.87 49.1

s26 27.96 551 107.1 1.64 103.0 42.0 17.4 2.41 56.2 1.75 52.6

s27 24.83 535 155.3 1.81 144.0 46.8 23.5 1.99 53.0 2.05 53.1

s28 27.28 593 89.8 1.55 95.5 36.8 19.8 1.86 52.2 1.78 52.5

s29 26.46 650 107.5 1.68 93.5 36.7 17.5 2.10 55.6 1.81 52.0

s30 26.41 654 120.8 1.61 102.2 44.4 23.1 1.92 50.2 1.92 50.5

s31 29.52 468 91.4 1.53 89.3 41.6 22.9 1.82 46.5 1.97 45.6

s32 26.43 653 109.1 1.64 109.0 42.2 22.3 1.89 58.6 1.68 59.1

s33 22.92 680 180.1 1.91 160.8 46.3 22.9 2.02 62.2 1.84 60.1

s34 23.50 631 174.3 1.87 175.5 50.9 25.3 2.01 59.1 1.90 60.3

s35 26.00 466 125.7 1.71 103.2 38.3 25.0 1.53 55.2 1.86 53.6

s36 28.27 533 91.7 1.53 92.8 40.9 23.2 1.76 52.9 1.74 48.0

s37 26.97 417 103.2 1.61 102.9 42.5 22.3 1.91 57.0 1.69 60.0

s38 23.20 656 164.5 1.83 147.7 46.3 23.8 1.95 52.9 2.08 52.8

s40 23.80 608 163.1 1.85 148.0 45.6 26.6 1.71 54.9 2.02 59.0

s41 24.10 585 160.2 1.86 160.4 46.1 28.0 1.65 62.0 1.80 61.6

s53 24.50 557 134.6 1.80 131.7 40.6 24.2 1.68 52.6 2.05 52.5

s58 27.20 599 105.3 1.58 93.0 40.1 23.0 1.74 52.8 1.80 50.9

Dapprima è stata calcolata la matrice di correlazione per valutare le relazioni
lineari tra le variabili e successivamente applicata la Principal Component Ana-
lysis (PCA) allo scopo di ridurre la dimensionalità del dataset e individuare le
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componenti principali maggiormente rappresentative.
In seguito, i risultati ottenuti sono stati impiegati per eseguire un’analisi di clu-
stering mediante algoritmi di tipo Complete Linkage e K-medie, con l’obiettivo
di individuare possibili raggruppamenti omogenei tra i soggetti.
Per evitare che l’unica variabile binaria del dataset (il sesso) influenzasse l’ana-
lisi, l’intera procedura è stata ripetuta separando i dati per sesso. Sono stati
quindi analizzati distintamente i sottoinsiemi uomini e donne, applicando in
ciascun caso le fasi di calcolo delle correlazioni, PCA e clustering.
Infine il dataset è stato anche suddiviso per tipologia di variabili: dati antro-
pometrici e dati prestativi (stile libero). Le strutture di cluster ottenute nei
due casi sono state confrontate per evidenziare differenze o somiglianze tra la
configurazione antropometrica e quella prestativa dei soggetti.

4.2.1 Analisi della matrice di correlazione

Dopo aver standardizzato i dati è stata calcolata la matrice di correlazione
associata. In rosso sono evidenziati i valori di alta correlazione, in blu di bassa
correlazione.

Osservando la matrice di correlazione, emergono alcune relazioni lineari marca-
te tra le variabili.
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Le variabili antropometriche mostrano in generale correlazione positiva ed eleva-
ta, a conferma del fatto che le grandezze corporee tendono a crescere in maniera
proporzionale. Ad esempio la correlazione tra ‘altezza’ e ‘peso’ è pari a 0.8996
e addirittura quella tra ‘altezza’ e ‘altezza in stream’ raggiunge un valore di
0.9692.
Un altro aspetto interessante da osservare riguarda la variabile ’sesso’ che, in
accordo con quanto ci si aspetterebbe, risulta essere negativamente correlata
con tutte le variabili antropometriche. Infatti, assumendo la codifica binaria
0=uomo e 1=donna, una correlazione negativa implica che nel passaggio da
0 a 1, i valori di ‘altezza’, ‘peso’, ‘altezza in stream’, ‘distanza biacromiale’,
‘larghezza spalle in stream’ e ‘BMI’ tendano a diminuire. In altre parole, nel
campione analizzato, le donne presentano mediamente valori inferiori rispet-
to agli uomini per queste caratteristiche fisiche. Anche rispetto alle variabili
prestative il ’sesso’ mostra correlazioni negative, confermando che gli uomini
ottengono mediamente prestazioni migliori, ovvero nuotano più velocemente.
Fanno eccezione la variabile ‘PB sui 50 metri’, con cui la correlazione è positiva
(0.7612 ) poiché gli uomini nuotano tempi più bassi e le variabili ‘FINA points’
e ‘Kcin’, le cui correlazioni con il ’sesso’ risultano essere deboli (rispettivamente
0.0303 e 0.1282 ), non fornendo quindi informazioni significative.
Osservando ora le variabili prestative si possono notare alcuni gruppi con cor-
relazioni significative, coerenti con l’andamento generale delle performance.
In particolare ‘PB sui 50 metri’ e ‘Vmax’ mostrano una forte correlazione nega-
tiva (-0.8385 ), in linea con il fatto che tempi minori corrispondono a velocità
maggiori; il gruppo di variabili composto da ‘Fp’, ‘Ft’, ‘Vmax’ risulta essere ben
correlato positivamente, indicando che queste tre variabili tendono ad aumen-
tare insieme.
Di particolare interesse è anche l’analisi delle tre variabili di ’drag’ (quello attivo
(Ka), quello passivo, (Kp), e quello cinetico (Kcin)), che si notano (in parti-
colare Ka e Kp) avere una forte correlazione positiva con la ’forza al tethered’
(Ft) e con la ’forza propulsiva’ (Fp), coerentemente con l’aspetto biomeccanico
del nuoto. Inoltre è possibile notare che nel campione considerato, i soggetti
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più alti (ka-altezza: 0.4690, kp-altezza: 0.6052 ) e pesanti (ka-peso: 0.6647,
kp-peso: 0.6775 ) hanno un maggior drag, ovvero sono soggetti a una maggio-
re resistenza idrodinamica. Questo aspetto è ulteriormente evidenziato dalle
correlazioni negative elevate tra ‘Ka’ e ‘Kp’ con il ’sesso’ (ka-sesso: -0.5827,
kp-sesso: -0.6200 ), che indicano come i soggetti maschili tendano ad avere un
’drag’ generalmente maggiore rispetto a quelli femminili.
Altra correlazione incrociata interessante tra variabili antropometriche e pre-
stative è quella tra soggetti alti e pesanti e soggetti con ’forza propulsiva’ e ’ve-
locità massima’ maggiori (altezza-Fp: 0.7303, altezza-Vmax: 0.7701 e peso-Fp:
0.8380, peso-Vmax: 0.7546 ), evidenziando come la maggiore massa corporea si
associ spesso a una maggiore potenza nonostante la resistenza idrodinamica sia
maggiore.
Infine si evidenzia una correlazione negativa moderata (-0.4432 ) tra le variabili
‘SR vmax’ e ‘SL vmax’, a conferma del fatto che un aumento della frequenza
di bracciata comporta una riduzione della lunghezza della stessa.

4.2.2 Grafici di dispersione tra le variabili iniziali

Si procede ora all’esame dettagliato di alcuni grafici di dispersione tra le varia-
bili, analizzandone le principali caratteristiche.

Figura 4.1: Relazione tra ’altezza’ e ’altezza in stream’
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In Figura 4.1 si ossserva che la correlazione tra le due variabili (0.9692) è diretta
o positiva, cioè all’aumentare di una anche l’altra aumenta, e forte. Si nota
infatti che l’andamento dei punti rappresentati è approssimabile a una retta
crescente. Individui più alti tendono ad avere anche una maggiore estensione del
corpo nella posizione di scivolamento (“streamline”). Emerge che l’osservazione
s14 è distante dal resto dei punti. Ciò sta a indicare un comportamento anomalo,
confermato dai dati presi in esame: il soggetto è una donna con età molto minore
rispetto al resto del campione e con misurazioni conseguentemente basse.

Figura 4.2: Relazione tra ’sesso’ e ’forza propulsiva’

In Figura 4.2 si osserva che la correlazione tra queste due variabili (-0.8472) è
inversa o negativa, cioè all’aumentare della variabile sesso diminuisce la forza
propulsiva, e forte. Essendo la variabile sesso binaria (0=uomini, 1=donne),
passando da 0 a 1, ovvero da uomo a donna, la forza propulsiva tende a di-
minuire. Nel grafico si osservano infatti due gruppi distinti di punti: quelli
con ascissa minore (uomini) presentano valori di forza propulsiva mediamente
più elevati (ordinata maggiore), mentre quelli con ascissa maggiore (donne) si
collocano su valori inferiori (ordinata minore). Questo andamento conferma la
differenza di forza muscolare tra i due sessi, già nota in letteratura per quanto
riguarda la produzione di forza in acqua.
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Figura 4.3: Relazione tra ’drag attivo’ e ’frequenza di bracciata’

In Figura 4.3 si osserva che la correlazione tra queste due variabili (0.0923) è
diretta o positiva e debole. Ciò significa che, pur esistendo una leggera tendenza
all’aumento della frequenza di bracciata con l’aumentare del drag attivo, la
relazione è poco significativa. Il grafico mostra infatti una nuvola di punti
diffusa e priva di una direzione predominante, indice del fatto che la frequenza
di bracciata non dipende in modo lineare dal drag attivo, ma è probabilmente
influenzata da altri fattori biomeccanici o tecnici (ad esempio la coordinazione
o la potenza specifica degli arti superiori).

4.2.3 Analisi delle componenti principali

La presenza di numerosi valori elevati, evidenziati in rosso nella matrice di cor-
relazione Figura 4.2.1, è segnale che molte variabili sono fortemente correlate
tra loro. Si parla in questo caso di ridondanza informativa. Questa espressione
sta ad indicare che due o più variabili portano informazioni molto simili tra loro,
ovvero la loro variazione viene in gran parte spiegata da un’unica “direzione”.
Nel contesto dell’analisi di dati, il fatto di avere ridondanza informativa rende
l’analisi più complessa, sprecando capacità computazionale e ostacolando l’in-
terpretazione; ciò giustifica l’uso della PCA.
Dopo aver standardizzato il dataset, vengono calcolati la matrice di correlazio-
ne e i suoi autovettori e autovalori, per poi dedurre le componenti principali.
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[n,p]=size(X) % n=42 (numero righe), p=19 (numero colonne)

Z = zscore(X); % Z è la matrice 42x19 dei dati standardizzati

R = corr(Z); % R è la matrice 19×19 di correlazione di Z

[V,D] = eig(R); % V è la matrice 19×19 con gli autovettori di R

% D è la matrice diagonale 19×19 che sulla

% diagonale ha i relativi autovalori di R

lambda=diag(D); % metto gli autovalori in un vettore colonna

[lambda_sorted,idx]=sort(lambda,’descend’);

% ordino gli autovalori in ordine decrescente

% e metto in memoria gli indici

V=V(:,idx); % ordino le colonne di V in modo coerente

Y=Z*V % matrice delle componenti principali

Attraverso i tre metodi descritti in Sezione 2.4 si deduce il numero necessario
delle componenti principali.

1. (Valutazione grafica)

Figura 4.4: Distribuzione degli autovalori ordinati della matrice di correlazione
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2. (Percentuale di varianza spiegata)

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

rvk 0.5409 0.6627 0.7498 0.8144 0.8706 0.9168 0.9400 0.9571 0.9729 0.9828 0.9894 0.9957 0.9972 0.9986 0.9995 0.9997 0.9999 1.0000 1.0000

3. (Autovalori maggiori della media)

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

λk 10.2768 2.3146 1.6544 1.2269 1.0680 0.8778 0.4408 0.3263 0.2986 0.1883 0.1266 0.1182 0.0298 0.0257 0.0172 0.0046 0.0035 0.0012 0.0005

L’analisi congiunta di questi 3 metodi, permette di prendere anche solo le prime
3 componenti, rappresentando in questo modo il 75% della varianza.
Si guardano ora le componenti principali (colonne di V ) per capire quali variabili
rappresentano maggiormente, ovvero si cercano i valori più alti in modulo di
ciascun autovettore vi.

Figura 4.5: Rappresentazione delle prime sei colonne di V

Dalla Figura 4.5, si nota che la prima componente principale è associata so-
prattutto a ’sesso’, ’altezza’, ’peso’, ’altezza in stream’, ’PB sui 50’, ’Ft’ e ’Fp’,
rappresentando così tutte le “dimensioni”: categoriale, antropomentrica e pre-
stativa; la seconda componente principale è associata soprattutto a ’SR vmax’,
’SL vmax’ e ’SR Ft’, rappresentando così la “dimensione” prestativa relativa alla
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bracciata; la terza componente principale è associata soprattutto a ’Ka’, ’Kp’
e ’Kcin’, rappresentando così la “dimensione” prestativa relativa alla resistenza
idrodinamica.
Quest’ultima osservazione, si può dedurre anche analizzando alcuni grafici di
disperione tra le prime tre componenti principali e le variabili originarie stan-
dardizzate.

Figura 4.6: Relazione tra la prima
componente principale e ’Fp’

Figura 4.7: Relazione tra la seconda
componente principale e ’SR Ft’

Figura 4.8: Relazione tra la prima
componente principale e ’peso’

Figura 4.9: Relazione tra la terza com-
ponente principale e ’Kcin’
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In Figura 4.6, in Figura 4.8 e in Figura 4.9 l’andamento dei punti è appros-
simabile a una retta crescente, a conferma del fatto che la prima componente
principale rappresenta bene la ’forza propulsiva’ (v13,1 = 0.2913) e il ’peso’
(v4,1 = 0.2973) e che la terza componente principale rappresenta bene il ’drag
cinetico’ (v16,3 = 0.7040).
In Figura 4.7, invece, l’andamento dei punti è approssimabile a una retta decre-
scente, a conferma del fatto che la seconda componente principale rappresenta
bene la ’frequenza di bracciata al full tethered’, ma è inversamente proporzionale
a essa (v19,2 = −0.5611).

Figura 4.10: Grafico delle prime due componenti principali

In Figura 4.10 è mostrato il grafico 2D dei dati. Più precisamente sulle ascisse
è rappresentata la prima componente principale y1 e sulle ordinate la seconda
y2, le quali complessivamente spiegano il 66.27% della varianza totale.
Si nota come la distribuzione dei punti sia abbastanza diffusa e priva di rag-
gruppamenti netti, nonostante siano abbastanza distinguibili il gruppo delle
donne da quello degli uomini, evidenziati con colori differenti. Ciò indica che
y1, y2 riescono a rappresentare in maniera abbastanza efficiente l’informazione
del dataset, ma che le differenze tra i soggetti si distribuiscono in modo continuo
senza formare sottogruppi omogenei o cluster separati.
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Figura 4.11: Grafico delle prime tre componenti principali

In Figura 4.11 è mostrato il grafico 3D dei dati. Più precisamente sugli as-
si vengono rappresentate le prime tre componenti principali y1, y2, y3, le quali
complessivamente spiegano il 74.98% della varianza totale. L’aggiunta di y3

consente di migliorare la separabilità visiva di alcune osservazioni e cogliere ul-
teriori sfumature di variabilità legate a caratteristiche secondarie. Tuttavia la
distribuzione continua a non mostrare una netta suddivisione in gruppi distinti
nonostante siano abbastanza distinguibili il gruppo delle donne da quello degli
uomini, evidenziati con colori differenti.

Quest’analisi grafica suggerisce che la variabilità in questo dataset è progressi-
va, cioè le differenze tra i soggetti considerati derivano da combinazioni di più
caratteristiche che si intrecciano lungo diverse “direzioni” della varianza.

4.2.4 Complete linkage

Ai fini dell’analisi con Complete Linkage, introdotto nella Sezione 3.2, sono
state utilizzate quattro distanze differenti quali Euclidea, Cityblock, Cosine e
Mahalanobis (viste nella Definizione 3.1.5), in quanto la forma e la scala del
dendrogramma dipendono fortemente dal tipo di metrica adottata.
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1. (EUCLIDEA) Questa distanza è in generale la scelta più solida e accurata
su dati standardizzati.

Figura 4.12: Dendrogramma per osservazioni con distanza euclidea

In Figura 4.12 si nota che la struttura del dendrogramma è ben bilanciata:
le altezze di fusione aumentano gradualmente, segno che la similarità tra
soggetti è lineare. I gruppi risultano compatti e interpretabili. Si distin-
guono 3–4 cluster principali, separati a livelli di distanza attorno a 8–10,
che si articolano ulteriormente in 7-8 sottogruppi, separati attorno a 5–6.

2. (CITYBLOCK) Questa distanza è meno sensibile a outlier o a singole
variabili con varianza elevata, in quanto pone uguale enfasi su tutte le
coordinate.

Figura 4.13: Dendrogramma per osservazioni con distanza cityblock
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In Figura 4.13 si nota che la struttura del dendrogramma è simile a quella
euclidea: le altezze di fusione sono più omogenee, segno che l’uso di que-
sta distanza ha ridotto l’effetto di soggetti “estremi”. I gruppi risultano
leggermente più equilibrati. Si distinguono 3–4 cluster principali, separati
a livelli di distanza attorno a 25-30, che si articolano ulteriormente in 7
sottogruppi, attorno a 20.

3. (COSINE) Questa distanza valuta la direzione piuttosto che la magnitu-
dine (due soggetti con le stesse proporzioni risulteranno vicini).

Figura 4.14: Dendrogramma per osservazioni con distanza cosine

In Figura 4.14 si nota che la struttura del dendrogramma è molto diversa
da quella euclidea: le altezze di fusione sono molto più basse, segno che
questa distanza valuta l’angolo tra i profili e non le differenze assolute.
I piccoli gruppi sono numerosi e si uniscono tardi e alcuni gruppi sono
separati o ricombinati rispetto ai precedenti. Si distinguono 3–4 cluster
principali, separati a livelli di distanza attorno a 1.2-1.4, che si articolano
ulteriormente in 10 sottogruppi attorno a 0.8.

4. (MAHALANOBIS) Questa distanza è teoricamente più raffinata dell’eu-
clidea e in grado di eliminare la ridondanza tra variabili correlate, ma
instabile nel momento in cui ci sono variabili fortemente correlate (come
nel nostro caso).
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Figura 4.15: Dendrogramma per osservazioni con distanza Mahalanobis

In Figura 4.15 si nota che la struttura del dendrogramma è irregolare e
schiacciata: le altezze di fusione sono molto simili tra loro senza che ci
siano chiari salti, segno che la matrice di covarianza è molto correlata. Si
distinguono 6-7 cluster principali, separati a livelli di distanza attorno a
7.5, che si articolano ulteriormente in 28 sottogruppi attorno a 5.

4.2.5 K-medie

Ai fini dell’analisi con K-medie, introdotto nella Sezione 3.3, come nel Complete
Linkage, sono importanti le scelte di inizializzazione dell’algoritmo.
Per individuare il numero di ‘Replicates’=riavvii da fare per garantire una mag-
gior precisione del risultato, si stampa in Matlab una tabella Replicates-SSE più
bassa e si cerca di capire quanto cambia quest’ultima se si aumenta il numero
di riavvii. Si ottiene che il numero ottimale di riavii è 20 e si fissa.
Altro parametro da inizializzare è il numero di gruppi da ottenere che, coeren-
temente con i risultati ottenuti dal Complete Linkage, viene fissato a 4 e 8.
Per quanto riguarda la distanza per identificare i gruppi, sono state considerate
SqEuclidean, Cityblock e Cosine.

Definizione 4.2.1. La distanza SqEuclidean è definita come:

d(x, y) = (x− y)T (x− y) ∀x, y ∈ Rp.
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1. SQEUCLIDEAN - 4 CLUSTER

group1

s7,s8,s9,s10,s11,
s12,s14,s17,s18,s19,
s21,s26,s29,s32,s37

group2 s4,s6,s15,s34

group3
s1,s2,s3,s5,s13,s16,s27,
s33,s35,s38,s40,s41,s53

group4
s20,s22,s23,s24,s25,
s28,s30,s31,s36,s58

I cluster sono ben compatti e separati e le frontiere appaiono regolari.
Questa risulta essere la soluzione più stabile e interpretabile e coincide in
gran parte con i gruppi del Complete Linkage euclideo.

2. SQEUCLIDEAN - 8 CLUSTER

group1 s21,s26

group2 s7,s11,s12,s17,s32

group3 s22,s27,s38,s40,s53

group4 s10,s14

group5 s4,s6,s15,s34

group6
s1,s2,s3,s5,

s13,s16,s33,s41

group7
s8,s9,s18,s19,s20,s28,

s29,s30,s31,s36,s37,s58

group8 s23,s24,s25,s35
L’aumento da 4 a 8 gruppi porta a una suddivisione coerente dei cluster
originari: i grandi gruppi si spezzano in sottogruppi interni più piccoli ma
compatti, ben distinti lungo la prima e la seconda componente principa-
le. La distribuzione dei centroidi è equilibrata, segno che la partizione è
numericamente stabile.
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3. CITYBLOCK - 4 CLUSTER

group1

s7,s8,s9,s10,s11,
s12,s14,s17,s18,s19,
s20,s21,s26,s28,s29,

s30,s31,s32,s36,s37,s58

group2
s1,s2,s13,s15,
s33,s34,s41

group3 s22,s23,s24,s25,s35

group4
s3,s4,s5,s6,s16,
s27,s38,s40,s53

La struttura è simile all’euclidea ma con cluster leggermente più equili-
brati (alcune osservazioni cambiano gruppo). Le frontiere sono più “ret-
tangolari” (spezzate e più ortogonali rispetto agli assi) e le fusioni tra
cluster centrali avvengono a distanze minori. Essendo questa distanza
meno sensibile ai valori anomali, considera le differenze coordinate senza
amplificare i picchi.

4. CITYBLOCK - 8 CLUSTER
group1 s31

group2
s20,s21,s22,s28,
s30,s36,s37,s58

group3 s7,s11,s12,s17,s29,s32

group4 s8,s9,s10,s14,s18,s19

group5 s4,s5,s6,s15,s34

group6 s3,s27,s38,s40,s53

group7 s23,s24,s25,s26,s35

group8 s1,s2,s13,s16,s33,s41
L’aumento da 4 a 8 gruppi porta a una struttura più granulare, suddivi-
dendo i cluster principali in sottogruppi più piccoli e compatti. Questa
scelta non modifica sostanzialmente la struttura generale dei dati, ma si
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notano alcuni confini meno netti, dovuti al fatto che alcuni centroidi sono
più vicini tra loro. Inoltre, il numero di membri per gruppo risulta essere
più uniforme ed emergono alcuni gruppi con pochissimi elementi.

5. COSINE - 4 CLUSTER

group1

s7,s8,s10,s11,s12,
s14,s17,s18,s19,
s21,s26,s29,s32

group2
s9,s20,s22,s28,
s30,s31,s36,s58

group3

s1,s2,s3,s4,s5,s6,
s13,s15,s16,s27,s33,
s34,s38,s40,s41,s53

group4 s23,s24,s25,s35,s37

Il grafico mostra cluster più vicini i cui centroidi distano meno rispetto
alle precedenti figure: questo perché gli angoli tra vettori sono general-
mente piccoli. Alcuni individui che nei precedenti modelli appartenevano
a gruppi distinti vengono qui accorpati in maniera differente in quanto
ricombinati per similitudine di “pattern”.

6. COSINE - 8 CLUSTER

group1
s3,s4,s6,s16,s22,
s27,s38,s40,s53

group2 s7,s11,s12,s17,s32

group3 s37

group4 s
s1,s2,s5,s13,

s15,s33,s34,s41

group5 s20,s28,s30,s31,s36,s58

group6 s23,s24,s25,s35

group7 s8,s9,s10,s14,s18,s19,s29

group8 s21,s26
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L’aumento da 4 a 8 gruppi porta a una una forte densità centrale: i cen-
troidi sono vicini e i cluster risultano più numerosi e meno separati nel
piano, cioè meno chiari visivamente.

Osservazione 4.2.1. Nel complesso, la distanza SqEuclidean rimane la scelta più
coerente e stabile per rappresentare la struttura globale del dataset.
La distanza Cityblock conferma la robustezza dei risultati e riduce l’influenza
di osservazioni anomale.
La distanza Cosine offre invece una prospettiva complementare, utile per indi-
viduare pattern di proporzionalità tra le variabili.

Osservazione 4.2.2. Per eliminare l’influenza dell’unica variabile binaria del da-
taset (il sesso), l’intera procedura è stata ripetuta dividendo per sesso. Sono
stati quindi analizzati separatamente i sottoinsiemi donne e uomini (calcolo cor-
relazioni, analisi delle componenti principali e clustering con Complete Linkage
e K-medie).
La varianza totale risulta essere distribuita in un numero maggiore di componen-
ti per le donne e minore per gli uomini. Questo indica che il gruppo femminile
presenta una struttura più complessa, dove le caratteristiche antropometriche e
prestative non sono dominanti su un’unica direzione di variazione, ma si distri-
buiscono su più fattori. Ciò è confermato dai grafici 2D delle osservazioni che
hanno sugli assi le prime due componenti principali.

Figura 4.16: Grafico delle prime due
componenti principali per donne

Figura 4.17: Grafico delle prime due
componenti principali per uomini
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In Figura 4.16 i punti sono dispersi, indicando assenza di sottogruppi ben se-
parabili. La nube è più concentrata e meno varia lungo la prima componente
principale, mentre più uniforme lungo la seconda. Le prime due componenti,
che sembrano spiegare variabilità differenti, spiegano il 54.03% della varianza.
In Figura 4.17 i punti si dispongono più orientati lungo una retta decrescente.
La nube è più larga sulla prima componente principale (che raccoglie una quota
maggiore di varianza), mentre più contenuta sulla seconda. Le prime due com-
ponenti spiegano il 58.58% della varianza.
Aggiungendo una componente principale sia per le donne che per gli uomini, la
varianza spiegata sale rispettivamente a 67.48% e a 74.52%.
Procedendo con l’analisi con Complete Linkage con distanza Euclidea, rivela-
tasi la più informativa per la tipologia di dati presi in esame, si conferma una
struttura più frammentata per le donne e una più coerente per gli uomini, in
linea con le differenze di varianza spiegata, evidenziate precedentemente. Si no-
ta che, negli uomini, le aggregazioni avvengono a distanze di fusione maggiori,
suggerendo la presenza di cluster più separati.

Figura 4.18: Dendrogramma per os-
servazioni per donne

Figura 4.19: Dendrogramma per os-
servazioni per uomini

Sia in Figura 4.18 che in Figura 4.19 si distinguono 4-5 cluster principali, sepa-
rati a livelli di distanza attorno a 8.
Si conclude con l’analisi con K-medie con distanza SqEuclidean, mantenen-
do a 20 il numero di riavvii e fissando, coerentemente con l’osservazione dei
dendrogrammi precedenti, a 5 il numero di gruppi. Ancora una volta viene
confermata una maggiore eterogeneità interna nel gruppo femminile, intuibile
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dalla disposizione meno compatta dei punti e da confini tra gruppi più sfumati
in Figura 4.20. Si evidenzia inoltre, in Figura 4.21, che i centroidi risultano
essere più ben distinti.

Figura 4.20: Osservazioni delle donne
sul grafico delle prime due componenti
principali

Figura 4.21: Osservazioni degli uomini
sul grafico delle prime due componenti
principali

Osservazione 4.2.3. Si procede separando le variabili antropometriche da quelle
prestative, al fine di verificare se le differenze osservate tra uomini e donne deri-
vino principalmente da fattori antropometrici, prestativi o da una combinazione
dei due.
Dall’analisi condotta si evince che, per il gruppo femminile del dataset preso
in considerazione, le prestazioni derivano da una combinazione più articolata
di fattori morfologici e biomeccanici, mentre negli uomini prevale un modello
prestativo più lineare e omogeneo.
La struttura dei dendrogrammi con distanza Euclidea risulta più ramificata e
graduale per quanto riguarda le donne e compatta con alcune separazioni più
marcate a distanza maggiore, per quanto riguarda gli uomini.
Andando a rifare l’analisi di Complete Linkage con distanza Cosine, si può no-
tare come le donne risultano avere, invece, alcuni pattern e proporzioni simili.
I risultati ottenuti dall’algoritmo di Complete Linkage vegono confermati da
quelli ottenuti con le K-medie: per le donne i confini tra i cluster non sono netti
con distanza SqEuclidean e, invece, meglio delineati con distanza Cosine. Al
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contrario, gli uomini confermano essere distinti in gruppi meglio definiti, con
centroidi più separati.

4.3 Analisi con dataset completo

Nonostante i dati disponibili non risultino completi per tutti i soggetti, si può
procedere ad un’analisi analoga alla precedente, adottando le dovute accortezze
(vedi Sezione 4.1). In questo caso si tengono già divisi i soggetti in base al sesso.
Le matrici dei dati saranno quindi: D ∈ R27×47 per le donne e U ∈ R46×47 per
gli uomini.
Siccome il livello di incompletezza delle due matrici risulta essere particolarmen-
te elevato, prima di procedere con l’analisi, è necessario filtrare i dati eliminando
righe e colonne con una percentuale di dati mancanti maggiori del 40% della
totalità fino ad ottenere due matrici: D ∈ R23×47 e U ∈ R15×21.

Per entrambe le matrici si sceglie di adottare come metodo di imputazione dei
dati la PCA con algoritmo ALS, inizializzando k con un valore appartenente
all’intervallo [2, p− 1] e uguale circa al 30% di p.
L’algoritmo restituisce:

• coeffT
ALS ∈ Rp×k matrice di loadings;

• scoreALS ∈ Rn×k matrice di scores;

• muALS ∈ Rn×1 vettore delle medie usate nella PCA.

Questi tre elementi consentono di ricostruire la matrice dei dati imputata:

Zimp = scoreALS ∗ coeffT
ALS +muALS.

Una volta ricostruita la matrice dei dati, dopo averla standardizzata, si procede
ad un’analisi mediante PCA classica, applicando un procedimento analogo a
quello mostrato nello Script 4.2.3.
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Figura 4.22: Varianza cumulata spie-
gata per le donne

Figura 4.23: Grafico delle prime due
componenti principali per le donne

Figura 4.24: Varianza cumulata spie-
gata per gli uomini

Figura 4.25: Grafico delle prime due
componenti principali per gli uomini

Sia in Figura 4.22 che in Figura 4.24 viene evidenziata una crescita molto ra-
pida della varianza cumulata spiegata, al crescere del numero di componenti
principali. Nel dataset femminile sono necessarie 5 componenti principali per
superare la soglia del 70% di varianza spiegata; mentre in quello maschile lo
stesso livello informativo viene raggiunto con sole 3 componenti, indicando una
struttura più compatta nello spazio delle variabili. Questa differenza suggerisce
che il gruppo maschile presenti pattern più coerenti e correlati tra le variabili,
tali da poter essere riassunti in modo più efficiente da un numero ridotto di
componenti principali; al contrario del gruppo femminile, che sembra caratte-
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rizzato da una maggiore eterogeneità interna.
Osservando i grafici delle prime due componenti principali si evidenziano alcune
differenze tra donne e uomini. La Figura 4.23 mostra una buona dispersione dei
punti nello spazio bidimensionale, senza sovrapposizioni strette o appiattimenti
lungo un asse. Non emergono cluster netti, ma si osservano piccoli sottogruppi
con profili simili (ad esempio s11, s12, s17 oppure s9, s31, s36) oltre a soggetti a
distanza maggiore dal nucleo centrale del gruppo (ad esempio s14 oppure s22).
La Figura 4.25 mostra invece una maggiore dispersione dei punti lungo PC1
rispetto a PC2. Non emergono cluster definiti ma, più che nel caso femminile,
si notano soggetti fuori centro, ovvero potenziali outlier.

Ai fini dell’analisi con Complete Linkage, introdotto nella Sezione 3.2, è stata
utilizzata solo la distanza Euclidea.

Figura 4.26: Dendrogramma per osservazioni per donne

In Figura 4.26 si osserva una struttura piuttosto articolata, con numerose fusio-
ni che avvengono a quote relativamente alte di distanza. Due coppie di soggetti
(s28, s36 e s23, s24) vengono unite molto precocemente rispetto al resto del-
le osservazioni, suggerendo una forte similarità tra i due soggetti della coppia.
Procedendo verso l’alto, le fusioni diventano più eterogenee. Si può notare ad
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esempio che s11, s12 e s14 si uniscono solo ad alte distanze, suggerendo che tali
soggetti siano più distanti dal resto del gruppo e possano rappresentare valori
atipici.

Figura 4.27: Dendrogramma per osservazioni per uomini

In Figura 4.27 si osserva una struttura più compatta e meno frammentata ri-
spetto a quella in Figura 4.26, con fusioni progressive che avvengono a quote
più contenute rispetto al caso femminile, che indica una maggiore omogeneità
del gruppo. Due coppie di soggetti (s1, s2 e s15, s34) vengono unite prima
rispetto al resto delle osservazioni, suggerendo una forte similarità tra i due
soggetti della coppia. Solo nelle fasi finali si evidenziano individui più distanti,
tra cui s13 e la coppia formata da s5 e s7, suggerendo che tali soggetti possano
rappresentare valori atipici.
In sintesi, il Complete Linkage euclideo evidenzia una maggiore eterogeneità
nelle donne e una struttura più compatta negli uomini, in piena coerenza con
quanto osservato precedentemente.
Per quanto riguarda l’analisi con K-medie, introdotta della Sezione 3.3, si ini-
zializza a 20 il numero di riavvii, a 4 il numero di cluster e come distanza si
considera SqEuclidean, coerentemente con l’analisi con Complete Linkage.
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Figura 4.28: Cluster per donne sul grafico delle prime due componenti principali

Figura 4.29: Cluster per uomini sul grafico delle prime due componenti princi-
pali
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In Figura 4.28 si osserva una distribuzione non perfettamente compatta e dif-
ferenze di densità interna tra i gruppi, coerenti con la maggiore variabilità
riscontrata nel dataset femminile. I Cluster 1 e 4 includono un insieme di sog-
getti omogenei; il Cluster 2 contiene soggetti piuttosto dispersi lungo PC1 e il
Cluster 3 contiene casi anomali e distanti rispetto al resto del campione.
In Figura 4.29 si osserva una distribuzione più raccolta lungo PC2, con suddi-
visione più netta tra i gruppi. I Cluster 1 e 4 includono un insieme di soggetti
omogenei; il Cluster 2 contiene soggetti localizzati a PC1 positivi, con s6 spo-
stato rispetto agli altri tre elementi del gruppo e il Cluster 3 contiene solo s13
che, avendo una coordinata in PC2 elevata, risulta essere un potenziale outlier.
I risultati ottenuti con K-medie appaiono complementari a quelli derivanti dal
Complete Linkage.
In conclusione: le donne presentano una variabilità più ampia, visibile nel grafi-
co di disperione PC1-PC2 (Figura 4.23), nelle fusioni tardive del dendrogramma
(Figura 4.26) e nei cluster parzialmente sovrapposti ottenuti da K-medie (Fi-
gura 4.28); gli uomini mostrano una struttura più compatta e regolare, con
cluster più definiti e stabili in entrambi i metodi, coerenti con una riduzione
dimensionale più efficiente (Figura 4.24).
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