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Introduzione

L'Etnomatematica studia il legame che c'è tra cultura e sviluppo della matematica,

e si occupa di indagare pratiche, artefatti, valori e teorie matematiche che emergono

in diversi gruppi culturali. Come disciplina, nasce per studare la matematica nelle

popolazioni indigene, mentre oggi si sta spostando verso quella occidentale, o come

verrà chiamata in questa tesi, matematica NUC (Near Universal Conventional). Ciò

che la di�erenzia da altre matematiche è l'eredità lasciata dagli antichi greci, che si

sono distinti per aver sviluppato il pensiero astratto e introdotto le dimostrazioni.

Proprio la pratica del dimostrare è divenuta il principale strumento epistemico ad

uso dei matematici, ma resta un fatto umano culturalmente situato, che è mutato

nel tempo e si è adattato ai valori culturali di epoca in epoca. Studiare la dimo-

strazione signi�ca studiare un tratto identitario, forse il principale, della cultura

matematica occidentale. In questa tesi, nel capitolo uno, si fornisce una panoramica

sui risultati più rilevanti dell'Etnomatematica, dividendoli per le dimensioni di cui

si occupa: cognitiva, concettuale, storica, epistemologica, educativo-didattica e po-

litica; ciò permette di comprendere e formulare la direzione di ricerca intrapresa: lo

studio della cultura matematica che si esprime nel contesto accademico occidenta-

le. Successivamente, si riporta il problema didattico riguardante la dimostrazione,

approfondendo il suo legame con l'argomentazione e le funzioni che esercita; alla

�ne di questo capitolo si hanno tutte le conoscenze per comprendere e formulare la

domanda di ricerca: quali funzioni della dimostrazione emergono dalla pratica di-

dattica e di ricerca della matematica NUC accademica? Nel terzo capitolo, si prova

a rispondere alla domanda attraverso un'indagine riguardo le convizioni di alcuni

docenti di matematica su ruoli e funzioni ricoperti dalla pratica del dimostrare nel-

la ricerca e nella didattica universitaria di oggi. Per fare ciò, si sono organizzati

due diversi focus group, ricreando una micro-comunità di matematici, e sono state



2

somminstrate le seguenti domande:

1. Come fare matematica senza dimostrare?

2. Come insegnare matematica senza dimostrare?

Dall'analisi delle trascrizioni e delle registrazioni delle discussioni è stato possibile

individuare tre funzioni caratterizzanti del dimostrare come pratica matematica: il

capire, inteso come far comprendere a se stessi; il sistematizzare, ossia l'organizzare

i risultati ottenuti nel sistema deduttivo della matematica; e il formare l'intuizio-

ne, per la quale non si intende solamente il contribuire alla costruzione di modelli

intuitivi riguardo gli oggetti matematici, ma il costruirne anche riguardo agli og-

getti meta-matematici, come la Dimostrazione. In questo senso, si individua una

nuova funzione, qui chiamata Didattica, che si esprime nell'azione didattica e che

ha lo scopo di insegnare il ragionamento matematico, ossia le diverse modalità di

pensiero che i matematici mettono in atto per risolvere un problema. Un secondo

risultato altrettanto interessante è la quasi totale assenza del riferimento al ruolo

argomentativo che la dimostrazione dovrebbe ricoprire. Questo suggerisce che la di-

mostrazione possa essere vista come un processo non argomentativo e caratterizzato

dal suo ruolo nella comprensione, sistematizzazione e formazione di intuizione nella

disciplina. Questo risultato apre nuove strade nello studio dell'Etnomatematica, in

quanto fornisce un quadro teorico per ricercare processi dimostrativi in culture in

cui l'argomentazione per deduzione inferenziale non si è di�usa.
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1. Introduzione all'Etnomatematica

1.1 Cosa si intende con Etnomatematica

L'Etnomatematica è ispirata dagli studi più generali di Etnoscienza, che iniziano a

svilupparsi agli inizi degli anni sessanta come ricerche delle pratiche scienti�che di

tribù indigene. Mentre diverse discipline scienti�che come l'astronomia, la botani-

ca e la chimica sono evidentemente in�uenzate dall'ambiente che o�re osservazioni,

piante e materiali di�erenti, la variabilità della matematica è più di�cile da cogliere,

poiché ritenuta astratta, nonché stendardo di universalità, oggettività e neutralità.

Ciononostante, gli studi portati avanti da antropologi mostrarono evidenti di�erenze

tra le pratiche matematiche sviluppate in diversi contesti culturali. Tali studi spin-

sero D'Ambrosio a porre le basi di una nuova disciplina che si occupasse di studiare

la mutua in�uenza tra cultura e matematica. Così, nel 1985 pubblicò un impor-

tante articolo [25] in cui de�nì l'Etnomatematica come quel campo di ricerca che si

pone al con�ne tra storia e antropologia culturale, e che ha come oggetto di studio

i sistemi numerici, spaziali e relazionali. Essa si fonda sul quadro teorico in cui la

cultura è de�nita come l'insieme delle strategie di azione condivise dalla società per

rispondere alla realtà che scaturisce dagli eventi generati dalle azioni della società

stessa. D'Ambrosio chiarisce questo ciclo con uno schema:
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Figura 1.1

In questa tesi il ruolo occupato dalla società sarà talvolta preso da gruppi cultura-

li speci�ci. L'articolo descrive, poi, un piano di ricerca con l'obiettivo di identi�care

uno statuto epistemologico per l'Etnomatematica e ritiene necessario rispondere alle

seguenti domande per il suo raggiungimento:

1. Le pratiche e le soluzioni dei problemi come passano da essere ad hoc a

diventare metodi?

2. I metodi come diventano teorie?

3. Le teorie come evolvono in invenzioni scienti�che?

Il programma etnomatematico proposto da D'Ambrosio è stato accolto da numerosi

ricercatori. Tra di essi troviamo Milton [89], che prima lo presenta: "this program is

concerned with the motives by which memebrs of speci�c cultures (ethno) developed,

over history, the measuring, calculating, inferring, comparing and classifying tech-

niques, and ideas (tics) that allow them to model natural and social enviroments and

contexts in order to explain and understand these phenomena (mathema)." E poi

descrive sei importanti dimensioni che si sono sviluppate dal lavoro di D'Ambrosio al

2016: cognitiva, concettuale, storica, epistemologica, educativo-didattica e politica.

Esse sono collegate tra di loro con l'obiettivo di analizzare le radici socioculturali
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della conoscenza matematica. Le ricerche in matematica che si intrecciano con una

o più di esse si raccolgono tutte sotto la disciplina Etnomatematica. Si procede ora

approfondendo ciascuna dimensione.

1.1.1 Dimensione Cognitiva

La conoscenza matematica viene acquisita, accumulata, sistematizzata e dissemina-

ta di generazione in generazione. Così, le idee matematiche che stanno alla base di

essa come la quanti�cazione, la misurazione e lo studio di relazioni; queste idee han-

no uno stretto legame con la società e la cultura all'interno delle quali si sviluppano.

In questa tesi i termini congizione matematica, processi congitivi matematici e pen-

siero matematico saranno usati come sinonimi laddove non è indicato diversamente,

e faranno riferimento a tutti quei processi mentali che coinvolgono l'acquisizione, la

comprensione e l'uso della conoscenza matematica, che comprende funzioni congi-

tive come l'elaborazione numerica, il ragionamento spaziale e il pensiero astratto.

D'Ambrosio già nel 1985 spiega come lo studio del legame tra cultura e matematica

sia di fondamentale importanza alla luce delle ricerche che legano i processi cognitivi

all'ambiente culturale citando il lavoro di Lancy: Cross-cultural studies in cognition

and mathematics. Academic Press, New York (1983). Oggi, dopo più di quaran-

t'anni, ne abbiamo numerose conferme. In generale sui processi cognitivi, Nisbett

[77] riporta come ci siano buone ragioni per credere alle seguenti proposizioni:

1. Alcuni contenuti cognitivi sono universali: i bambini nascono pronti a svilup-

pare particolari modelli della realtà, tra come teorie della meccanica, teorie

dei tipi naturali e la teoria della mente.

2. Tali contenuti universali pongono dei vincoli alla diversità del pensiero umano

e alla varietà delle culture possibili.

3. Alcuni processi cognitivi considerati di base sono molto suscettibili al cambia-

mento anche per gli adulti.

4. Diverse culture di�eriscono notevolmente nel tipo di procedure inferenziali che

usano tipicamente per risolvere uno stesso problema.

5. Le di�erenze culturali nei processi cognitivi sono così legate alle di�erenze

culturali che risiedono nelle assunzioni di base sulla natura del mondo che la
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tradizionale distinzione tra contenuto e processo inizia a sembrare in qualche

modo arbitraria.

6. Le pratiche culturali incoraggiano e sostengono certi tipi di processi cognitivi,

che a loro volta perpetuano le pratiche culturali.

A sostegno di questi punti Nisbett, riporta delle ricerche che mostrano come i fe-

nomeni culturali siano modellati da fattori cognitivi. Ad esempio, i lavori di Lévy-

Strauss [69], [70] descrivono come i miti siano costruiti su metafore del contrasto,

come quelle tra natura e cultura, tra bene e male, tra crudo e cotto. E che in ogni

società umana si usano il corpo umano e le di�erenze tra maschio e femmina co-

me simboli per rappresentare diverse relazioni sia del mondo naturale che di quello

sociale. La teoria generale sui vincoli che la cognizione pone sulla cultura fu poi

esposta da Sperber e dai suoi colleghi antropologi [101], [102], [103]. Essa spiega le

caratteristiche culturali in temini di "ecologia delle credenze", secondo cui, per via

di condizioni ecologiche, ci sono idee umane che risultano "più facili" da pensare e

da comunicare. Tali idee si sviluppano in tutte le culture e sono facilmente trasmis-

sibili da una cultura all'altra. Un esempio è riportato da Berlin e colleghi [14], [12]

che evidenziano come ci sia una consistenza sul come le persone categorizzano gli

organismi. Nello sviluppare tale tema, Atran [5], argomenta che tutti i gruppi umani

usano categorie popolari-biologiche (folk-biological categories) che sono basate sulla

nozione di specie. Risulta che la classi�cazione tassonomica per gruppi di ordine

dal minore al maggiore (specie, genere, famiglia, etc) sia la stessa per culture tanto

distanti come quella degli studenti americani e quella dei Maya analfabeti. Altri

lavori come quelli di Boyer [19] e di Hirsch�eld [56], [57] indagano relativamente le

credenze religiose e la classi�cazione dei gruppi sociali. Queste ricerche convincono

sul come la cultura sia modellata da fattori cognitivi. Nisbett riporta evidenze an-

che a sostengo del viceversa: come i fenomeni cognitivi sono modellati dalla cultura.

Nel suo articolo riporta che in psicologia si de�nisce Schema una struttura di cono-

scenze che governano il pensiero attraverso l'attenzione, la ritenzione e l'uso delle

informazioni di cui si è a disposizione; ne è un esempio la sequenza di azioni che

portano uno studente da casa a scuola: spegnere la sveglia, alzarsi dal letto, prepa-

rarsi per uscire, andare alla fermata dell'autobus, etc. Partendo da questo concetto,

D'Andrade [28] introduce l'idea di schemi culturali come dei modelli di base che co-
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stituiscono un sistema di idee, pratiche e simboli che organizzano e danno senso alla

realtà. Gli schemi culturali che sono condivisi intersoggettivamente in un gruppo

sono conosciuti come modelli culturali di quel gruppo [27], [58] e [96]. Tale oggetto

teorico aiuta a organizzare e spiegare come mai il contenuto della mente umana pos-

sa di�erire radicalmente di cultura in cultura e apre la strada all'indagine sul come

i modelli culturali possano in�uenzare e�ettivamnte i processi congitivi con cui le

persone conoscono il mondo. Una delle ipotesi più famose su come la cultura possa

in�uenzare il pensiero è conosciuta come Sapir-Whorf Hypotesis [114], che prende in

considerazione il linguaggio come attività umana che fa parte di un qualche modello

culturale. A sostegno di quest'ipotesi, Nisbett riporta tre importanti �loni di ricer-

che. Il primo riguarda i lavori di Berlin e Key [13] che esaminarono la classi�cazione

dei colori in diverse culture, ripresi in seguito da Heider e Oliver [55] e confermati

sperimentalmente da Roberson, Davies e Davido� [88], i quali o�rirono evidenze che

uno scarso rendimento in fatto di memoria e classi�cazione, più che a una mancanza

di istruzione formale, era dovuta ad una povertà lessicale, e dunque ad un Modello

Culturale di linguaggio. Il secondo �lone di ricerca riguarda il modo in cui la cate-

goria del numero viene resa grammaticalmente: lavori di Carroll e Casagrande [22]

e gli studi di Lucy e dei suoi colleghi [67], [68] esaminarono come il pensiero fosse

in�uenzato dall'utilizzo dei numeri nella grammatica della costruzione delle frasi. In

inglese (In modo uguale all'italiano NdA) l'aggettivo numerale può accompagnare

direttamente il soggetto o l'oggetto che accompagna (es., una candela), mentre nella

lingua Maya Yucateca e in molte altre come il cinese e il giapponese, gli aggettivi

numerali sono sempre accompagnati da una descrizione del materiale che compone

l'oggetto (es., una cera lunga e sottile). L'esperimento proposto da Lucy richiedeva

di classi�care degli oggetti attraverso delle prove non verbali e i risultati mostrarono

come i parlanti Yucatec preferissero una classi�cazione basata sui materiali, mentre

quelli inglesi optarono per una classi�cazione basata sulla forma. L'ultimo �lone è

stato portato avanti da Levinson [65] e colleghi, e si concentra sul diverso modo di

riferirsi alle coordinate spaziali. In particolare, le lingue indo-europee utilizzano na-

turalmente coordinate corporali (es., la donna è a destra della macchina), mentre il

linguaggio Guugu Yiimithirr (una lingua aborigena australiana) preferisce utlizzare

coordinate cardinali (es., la donna è a ovest della macchina). Utilizzando sempre dei

test non linguistici per misurare la capacità di localizzare gli oggetti e manipolando
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i sistemi di riferimento con delle rotazioni si è osservato che i parlanti Guugu Yiimi-

thirr non erano in�uenzati dalle variazioni ed erano in grado di localizzare gli oggetti

con precisione, al contrario dei parlanti inglesi, che trovarono di�coltà ad orientarsi

in un sistema ruotato. Nello speci�co dei processi cognitivi matematici, lo studio è

stato altrettanto ampio e pro�cuo. Ricerche come quella portata avanti da Wynn in

[117] mostrano che la cognizione matematica appare nei bambini �n dalla più tenera

età, mentre studi come quelli di Deahene e colleghi [32] o quelli di Rugani et all.

[91], [86] ne individuano radici biologiche sia nell'uomo che negli animali. D'altra

parte la storia della matematica ci mette davanti alla realtà che diverse popolazioni

abbiano sviluppato sistemi numerici che di�eriscono sia nella scelta della base che

nel sistema di rappresentazione. Ad esempio, gli antichi babilonesi utilizzavano la

base 60, i Maya e gli Aztechi la base 20, e la rappresentazione posizionale è nota

essere stata introdotta in Europa solo nel XIII secolo da Fibonacci, che la apprese

dalle popolazioni arabe. Tali di�erenze sono spiegabili attraverso l'ipotesi che la

cultura in�uenzi in modo sostanziale il pensiero matematico. A sostegno di questa

idea e in conclusione di questo paragrafo si riporta un importante studio dovuto a

Saxe [92], il cui obiettivo è quello di indagare il contrasto che c'è tra la matemati-

ca scolastica occidentale e quella emergente da attività non scolastiche. Lo studio

mostra che bambini venditori di caramelle in brasile sviluppano una comprensione

della matematica attraverso le loro attività fuori da scuola di�erente da quella che

si sviluppa in un contesto scolastico di non venditori. Nella propria attività essi

si ritrovano a dover a�rontare le seguenti s�de pratiche: rappresentazione di valori

numerici grandi, aritmetica con unità di misura grandi, confronto tra rapporti e

adeguamento dei prezzi di compravendità dovuti all'in�azione. Saxe esamina in che

modo vengono risolti problemi matematici collegati ad esse e riporta come i vendito-

ri di caramelle utilizzino un sistema matematico proprio ispirato strutturalmente al

sistema valutario che utilizza la moneta corrente come medium di rappresentazione

numerica e mette in evidenza che tale sistema si distanzia sempre di più da quello

scolastico dei coetanei non venditori con l'aumentare della complessità dei compiti.

Inoltre, mostra che l'educazione scolastica in�uisce sulla competenza matematica

che copre l'utilizzo simbolico dei numeri, ma non sulla correttezza della soluzione

dei problemi, sostenendo l'ipotesi che i venditori manifestino processi cognitivi ma-

tematici di�erenti da quelli classici e che tale manifestazione sia fondamentalmente
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dovuta al contesto socio-culturale in cui crescono.

1.1.2 Dimensione Concettuale

Lo sviluppo della matematica è strettamente collegato ai bisogni e alle s�de a cui un

determinato gruppo culturale deve rispondere nella vita di tutti i giorni per poter

sopravvivere. La dimensione concettuale comprende quali pratiche, metodi e teorie

matematiche emergono dal gruppo per rappresentare la realtà. Il più antico stru-

mento matematico a testimonianza dell'intreccio tra realtà e concetto matematico è

l'osso di Lebombo: una �bula di babbuino incisa con 29 tacche. Risultati di ricerche

[37] lo fanno risalire a circa 44 mila anni fa e un'ipotesi riguardo al suo scopo avan-

zata da Overmann [82] prevede che possa essere servito per tenere conto del tempo

che scorre, in alternativa alla più di�usa e semplice che suggerisce fosse utilizzato

per contare il bestiame. In entrambi i casi, l'osso di Lebombo mostra come alcuni

aspetti della realtà possano essere rappresentati attraverso la pratica matematica

del conteggio. Proseguendo con la storia, lo storico greco antico Erodoto [43], ha

tramandato l'ipotesi ancora oggi sostenuta secondo cui la geometria in Egitto fosse

nata per la necessità di dover prevedere e arginare le esondazioni del Nilo, così da

proteggere il raccolto. Inoltre, si può notare un evidente parallelismo tra la pratica

degli agrimensori e alcuni postulati e de�nizioni degli Elementi di Euclide che, a

opinione di�usa, segnano la nascita della matematica astratta. Ad esempio, Giusti

[46] scrive che le tecniche introdotte dagli agrimensori egizi e utilizzate poi �no al

XVII secolo sono principalmente due: la prima è il tendere una fune, la seconda

è la rotazione di una fune tesa �ssata ad un chiodo per un'estremità. Tracciare

una linea retta, per Euclide, signi�ca proprio tracciare una linea tra due estremi

in modo che giaccia uniformemente tra di essi; proprietà evidentemente analoga

all'uniformità che una fune assume nel momento in cui viene tesa tra due chiodi

nel terreno. Nel caso della circonferenza, la sua de�nizione è ridotta esattamente

alla proprietà di equidistanza tra punti e centro che risulta evidente dalla pratica

dell'agrimensura1. Si può dunque sostenere che la nascita e la struttura della stessa

matematica ellenistica2 siano state in�uenzate dalle s�de che il popolo greco doveva

a�rontare per poter sopravvivere. È importante sottolineare l'aggettivo ellenistica,

1Per una lettura degli Elementi e delle de�nizioni precise si suggerisce il lavoro di Healt [54]
2Ci si riferisce a quella raccolta negli Elementi di Euclide
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in quanto uno degli obiettivi dell'Etnomatematica è proprio quello di mostrare come

esistano diverse matematiche e che ne potrebbero esisterne una varietà in�nita in

potenza. Per quanto riguarda la matematica occidentale, cioè quella che discende

dall'impostazione euclidea, si possono indivudare numerosi casi in cui le pratiche e

le teorie matematiche si sono formate per a�rontare le s�de emergenti dalla realtà.

A sostegno di ciò, Barton [11] riporta come diversi gruppi culturali possano svi-

luppare di�erenti sistemi matematici di rappresentazione; di seguito ne è illustrato

un esempio. Generalmente, per individuare un oggetto sul piano si utilizzano due

coordinate, metodo utilizzato �n dal tempo degli antichi greci3. Da un punto detto

origine si tracciano due rette perpendicolari; dunque, la posizione del punto è de-

terminata dalle misurazioni della sua distanza dall'origine lungo la verticale e lungo

l'orizzontale. Un altro modo, che prevede pur sempre un'origine, è il sistema di

coordinate polari, che utilizza l'angolo direzionale della retta che passa per l'origine

e il punto, e la loro distanza lungo tale retta. Questi sistemi possono essere entrambi

trasposti nel mondo della matematica attraverso coppie ordinate di punti apparte-

nenti ad un insieme che dipende dall'origine4. Ispirandosi al contesto Maori, invece,

Barton si immagina un sistema in�uenzato da una cultura in cui la localizzazione

degli oggetti sia a due osservatori, nel quale la posizione di un punto è individuata

dagli angoli delle rette che passano per le due origini.

Figura 1.2

In questo caso, nella matematizzazione non c'è equivalenza di struttura con il

3Anche se in modo diverso. Si può consultare [18] a pagina 185 per l'uso delle coordinate di

Apollonio di Perga.
4Cambiare l'origine, cambia il signi�cato di ogni elemento.
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sistema a coordinate ereditato dalla tradizione ellenistica, in quanto ogni insieme

di coppie di coordinate dipende da due origini e non da una. Dunque, il concetto

matematico che emerge dalla s�da di individuare la posizione di un oggetto nello

spazio può svilupparsi in diversi modi. Il sistema a due osservatori è talvolta uti-

lizzato anche nella matematica occidentale; Barton si interroga sulle ragioni per le

quali si sia preferito un sistema piuttosto che l'altro e propone di ricercare la rispo-

sta nelle di�erenze culturali. L'elemento della cultura maori riportato per spiegare

il loro possibile sistema di localizzazione è l'attenzione al punto di vista dell'inter-

locutore che si ri�ette prima nella lingua e poi nel sistema matematico. Nel loro

vocabolario, esistono tre aggettivi dimostrativi per indicare oggetti che sono vicino

a chi parla, lontano da chi parla, o vicino a chi ascolta. In inglese, invece, esistono

solamente this e that per indicare oggetti vicini o lontano da chi parla. Tenendo in

considerazione anche l'italiano la di�erenza sussiste: la parola codesto, che asserve

proprio alla funzione di localizzare oggetti vicini a chi ascolta, ha origine latina e

non greca, dunque non può aver in�uenzato la nascita delle coordinate utilizzate

da Apollonio e poi riprese nel XVII secondo da Descartes e Fermat. Per quanto

riguarda l'elemento della storia occidentale che può avere in�uenzato la nascita di

un sistema ad una sola origine, invece, lo si può individuare nell'antica grecia, in

particolare nella ricerca �loso�ca di cui è stata culla. Gli scritti classici greci sono

testimonianza della ricerca attiva nel trovare un'origine per tutte le cose, ad esempio

Talete credeva fossea l'acqua, Anassimene l'aria ed Eraclito il fuoco. Tra le risposte

a questa domanda esistenziale ritroviamo anche quella data dalla scuola pitagorica,

la quale individua il numero come ente fondamentale. Tale credenza fu un vero

e proprio stress concettuale, come direbbe Wilder [115], che portò alla costruzio-

ne di nuova conoscenza matematica conseguentemente alla scoperta di grandezze

incommensurabili. La tradizione della ricerca di un ente solo in grado di spiegare

l'universo è stata poi ripresa da Descartes nel suo famoso Discorso sul Metodo [33],

�ssando una visione egocentrata per la comprensione e la descrizione dell'universo;

�ssando un'origine per la descrizione di ciò che ci circonda, come gli oggetti e la loro

posizione.
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1.1.3 Dimensione Storica

La dimensione concettuale si interseca inevitabilmente con quella storica, che si occu-

pa di esaminare come la conoscenza matematica si ponga nelle esperienze individuali

e collettive. In questa direzione si studia come l'umanità ha analizzato e spiegato

fenomeni matematici nel corso della storia. Se non fosse che la maggior parte delle

ricerche sulla storia della matematica sono eurocentriche, l'Etnomatematica sarebbe

riconducibile allo studio della storia contemporanea. Ciò risulta necessario per com-

prendere il contributo dato dalle persone nello sviluppo della conoscenza matematica

e viceversa di come la cultura dei matematici possa in�uenzare il lavoro dei singoli.

Un primo esempio che si vuole riportare riguarda lo sviluppo dei numeri complessi.

L'origine del concetto risale al 1545, anno in cui Cardano pubblica l'Ars magna. In

quest'opera sono studiate le soluzioni di tutte le equazioni di terzo grado, ma non

riesce a trattare in modo completo i casi che, nel processo di risoluzione, richiedono

l'estrazione di radici quadrate di numeri negativi. Cardano studiò il problema per

più di vent'anni senza trovarne una soluzione, poiché la sua attenzione era focalizza-

ta sul trovare quale segno attribuire a tali quantità in modo che le usuali regole del

calcolo tra numeri fossero valide, non chiedendosi mai se e�ettivamente tale segno

potesse esistere. Sarà con Bombelli e la sua introduzione di nuovi segni matematici

che si combinano in modo nuovo che si metteranno le basi per un nuovo paradig-

ma, scardinando l'idea che le radici di numeri negativi debbano avere dei segni che

seguano le regole del calcolo tra numeri reali. È interessante notare che Cardano

fosse uno studioso immerso in una comunità accademica, mentre su Bombelli non

ci sono fonti che certi�cano alcuna preparazione matematica, ma solo ingegneristica

[63]. Nonostante non sia l'unico fattore, è fondamentale osservare come i diversi

contesti culturali in cui sono cresciuti abbiano inevitabilmente in�uenzato la produ-

zione di conoscenza matematica: Cardano sviluppò la teoria delle equazioni in modo

eccellente, seguendo le regole del contesto accademico, mentre Bombelli, al di fuori

di esso, ne ampliò le vedute risolvendo un problema durato decenni e scostandosi

dalle regole ritenute inviolabili. La rinuncia a regole che appaiono ovvie e necessarie

alla matematica non è un evento raro, la stessa tradizione dei numeri complessi è

proseguita con la loro rappresentazione geometrica dovuta a Argand e Gauss, che

risulta particolarmente e�cace per trattare le rotazioni di oggetti bidimensionali.
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E tale idea fu poi ripresa da Hamilton che voleva costruire un analogo dei numeri

complessi in modo che si potessero trattare con più semplicità anche le rotazioni

nello spazio. Così, furono introdotti i quaternioni, che trovarono posto nella cono-

scenza matematica solo grazie alla rinuncia della proprietà commutativa. Queste

importanti tappe della storia dell'algebra sono esemplari per capire come la cultura

della comunità matematica in�uenzi il pensiero dei matematici e come i contribu-

ti dei singoli possano inserirsi nel processo di costruzione di conoscenza attraverso

l'abbandono di paradigmi pre esistenti e l'accoglienza di nuovi punti di vista, in

modo simile a quel che scrive Kuhn per tutte le altre scienze [64]. Questo fenomeno

si può osservare anche al contrario nella tortuosa storia della geometria, nella quale

l'accettazione e�ettiva delle geometrie non euclidee dovette aspettare che l'intera

comunità matematica ripensasse al proprio statuto disciplinare. Infatti, la convin-

zione che il quinto postulato di Euclide fosse necessariamente vero accompagnò i

matematici dai greci �no alla seconda metà dell'Ottocento. I tentativi di dimostrar-

ne la validità furono numerosi e fallimentari. Il più famoso è dovuto a Saccheri, il

quale costruì un'eccellente teoria non euclidea, che ritenne errata poiché andava in

contrasto con l'idea che l'universo, a priori, non potesse che essere euclideo. Dopo

di lui, anche i lavori di Bolyai, Gauss e Loba£evskij non furono accettati �nché Bel-

trami, appoggiandosi alla teoria delle super�ci di Reimann, non ne dette una base

convincente [24]. Essa, però, rimase lo stesso avvolta nella discussione del dubbio,

poiché il matematico italiano, a tutti gli e�etti, costruì un modello di geometria

iperbolica situato nello spazio euclideo. Un lavoro analogo a quello che Menelao di

Alessandria fece per la geometria sferica in Sphaerica [49] più di 2000 anni fa, in cui

il matematico alessandrino descrisse le proprietà di una geometria sferica all'interno

di uno spazio euclideo. La di�erenza tra Beltrami e Menelao può essere vista di

certo in ciò che studiano e nel linguaggio che adottano, ma è il contesto culturale

che più di tutto ne ha determinato l'in�uenza. Infatti, la pseudosfera di Beltrami fu

considerata da lì a poco un ottimo esempio di modello matematico, concetto svilup-

patosi proprio a cavallo del 1900 e fondamentale per il cambio di paradigma, grazie

al quale si è rinunciato al senso euclideo di spazio per poter accettare nuovi tipi

di geometrie. In conclusione, ripercorrere questi fatti storici mette in luce come lo

sviluppo della matematica sia simile a quello di qualsiasi altra scienza: a�nchè la

disciplina possa svilupparsi, la sua comunità deve mettere in discussioni paradigmi
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per poterne accettare di nuovi. La profonda di�erenza, però, è che nel XX secolo gli

studi sulla logica fatti da Gödel [100] e Tarski [107] sigillano questa pratica culturale

a teorema, portando a compimento il cambiamento di concezione della matematica

suggerito da Hilbert e dai formalisti all'inizio del 1900 ed escludendo, di fatto, che

la matematica debba appoggiarsi ad assiomi veri per poter avere terreno fertile di

sviluppo. Così, oggi, l'accettazione di nuove idee matematiche non è ostacolata dalla

necessità di ottenere un riscontro vero nella realtà e teorie innovative che poggiano

su principi controintuitivi come la non universalità della commutatività o la nega-

zione del V postulato di Euclide trovano meno di�coltà nel destare l'interesse della

comunità scienti�ca. Dunque, anche matematiche non occidentali, come quelle inte-

ressate dagli studi etnomatematici dovrebbero essere studiate e indagate per il loro

potenziale epistemologico, inteso come potenzialità di produrre conoscenza, anche

se si sviluppano in modo di�erente dalla matematica occidentale.

1.1.4 Dimensione Epistemologica

Un problema che emerge è come giusti�care questo potenziale epistemologico in un

ambiente in cui la neutralità e l'oggettività della matematica occidentale sono valori

condivisi dalla quasi totalità della comunità scienti�ca. Dalle ricerche riguardanti

la costruzione dei concetti matematici, sia nella contemporaneità che nella storia,

emergono delle domande riguardo a come si generano, organizzano e disseminano i

sistemi di conoscenza matematica. Alcune domande guidano l'epistemologia:

� Come si creano metodi e sperimentazioni a partire da pratiche e osservazioni?

� Come ci si sposta dalle sperimentazioni e i metodi, alla ri�essione e astrazione?

� Come si continua �no a costruire nuove teorie?

Esse vanno ri�ettute secondo gli obiettivi e i fondamenti dell'Etnomatematica che

aggiungono al dibattito la componente culturale. La s�da è quella di pensare ad

una �loso�a che contempli matematica e cultura senza rinunciare ai principi di

uguaglianza culturale rispetto alla veridicità e all'oggettività. Barton [10] spiega

come mai le correnti �loso�che attuali non risultino adeguate. Le visioni assolutiste

come Platonismo, Logicismo, Intuizionismo e Formalismo risultano immediatamen-

te incompatibili con la visione a molte matematiche. Infatti, se assumessimo una
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visione realista, per cui la verità matematica ha valore universale a priori, si po-

trebbe inserire l'aspetto culturare assumendo che le diverse visioni della matematica

siano dovute all'inadeguatezza dell'uomo a comprendere a pieno tali verità della

matematica. Dunque, ne conseguirebbe che la matematica sia un'approssimazione

culturale della verità. Un'implicazione di questo fatto sarebbe l'accettazione del-

la visione eurocentrica e colonialista per la quale esistono matematiche primitive e

matematiche so�sticate. In modo simile anche le scuole logiciste, intuizioniste e for-

maliste che spostano l'attenzione dal "Cos'è la matematica?" a "Come siamo sicuri

delle verità matematiche?" [110], sottintendono rispettivamente che ci sia una logi-

ca, un'intuizione o una forma di comprensione universali grazie alle quali, una volta

posti dei fondamenti ben sicuri per la matematica, si possano derivare conseguenze

vere. Anche in questo caso, si dedurrebbe l'esistenza di una matematica primitiva

e un'altra so�sticata, discriminate da quanto una cultura in�uenzi l'espressione di

logiche, intuizioni e forme di comprensioni tanto più vicini a quelle universali. Per

quanto riguarda le visioni relativiste, emergono altre incompatibilità. Ad esempio, il

relativitsmo storico [108] spiega come l'oggettività matematica sia illusoria e dipen-

dente dal contesto storico, e assume che i cambiamenti concettuali siano progressivi e

direzionati verso una più autentica oggettività, rendendo quella passata inadeguata.

Questa �loso�a non tiene conto del relativitsmo culturale, che per l'Etnomatematica

signi�ca che il progresso matematico avviene in diverse direzioni egualmente valide

e oggettive senza che se ne elegga una a migliore. La di�erenza con il relativismo

storico sta nel voler considerare matematica sia quella accademica occidentale, sia

quella Maori, o anche quella usata dai carpentieri. Allo stesso modo, altre visioni

come il neo-realismo [87], [71], il fallibilismo e il quasi-empirismo [110] accettano

che possano esserci più matematiche, ma che la loro coesistenza prima o poi evolve-

rà un con�itto dal quale ne emergerà una. Così, ogni cultura matematica sarebbe

solo un'ombra di quella vera. Che sia ricerca di verità, di oggettività o di senso,

l'idea che esista una matematica ideale a cui tendere permea le maggiori scuole di

�loso�a matematica e questo è un problema per gli etnomatematici; poiché, come

spiegato da Bishop [17], la matematica neutrale e universale è l'arma segreta del co-

lonialismo e dell'egemonia culturale. Dunque, il problema epistemologico risulta di

fondamentale importanza per gli etnomatematici, e Barton [10] ne propone uno. Per

poter parlare di matematica introduce il concetto di sistema QRS come sistema di
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conoscenze per dare signi�cato alle quantità, alle relazioni e allo spazio. Dopodiché

scrive della matematica come l'insieme dei diversi sistemi QRS che si sviluppano in

diversi gruppi culturali e come la matematica occidentale sia uno di essi. Quest'ul-

tima riveste un ruolo importante nelle discussioni di Etnomatematica e gli è dato

il nome di matematica NUC (Near Universal Conventional). Ora che si ha questo

nuovo modo di pensare la matematica, si hanno diverse domande a cui rispondere.

Per prima cosa si deve risolvere l'egemonia guidata da un'universalità; due popoli

con diversi sistemi QRS che si incontrano in�uenzeranno vicendevolemente i propri

sistemi; potrebbe emergerne uno nuovo o uno potrebbe prevalere sull'altro, ma non

perché uno di essi sia più vero dell'altro, ma per un processo umano e culturale

che si sviluppa internamente all'incontro tra i due gruppi. Un secondo problema

riguarda l'ontologia degli oggetti matematici: essendo un sistema QRS un modo per

dare senso alle cose, ci si può riferire alla �loso�a di Wittgenstein [116], per la quale

gli oggetti matematici esistono nel linguaggio e non al di fuori di esso. Dunque la

matematica non riguarda lo studio di qualcosa, ma è un modo di pensare a quel

qualcosa. Ci si può riferire ad essa come il modo in cui diamo senso alla tecnologia:

una diga non resiste grazie alla matematica, ma perché è costruita e�cacemente.

La matematica è un modo per discutere e capire cosa signi�chi costruire e�cace-

mente. Un altro problema da a�rontare è la sorpredente utilità della matematica,

ovvero: se la matematica è un'arbitraria invenzione umana, come mai corrispon-

de così bene al nostro mondo? Barton risponde che il processo che ha portato la

matematica ad essere simile in molte parti del mondo è analogo a un processo evo-

lutivo di adattamento all'ambiente, così come avere due occhi risulta più funzionale

per vedere, allora la quanti�cazione è un potente strumento per l'organizzazione

sociale. In questo caso l'argomentazione presenta delle criticità su cui ri�ettere e

dimostra la di�coltà del problema avanzato da Barton. Infatti, sembra considerare

la matematica più di�usa come quella migliore, più capace di rispondere alle s�de

sociali e ambientali che possono presentarsi a un gruppo culturale, ri�ettendo un'i-

dea fallibilista per spiegare come mai le matematiche tendano ad assomigliarsi. Per

ricondurci alla �loso�a per sistemi QRS ci si può appoggiare alle evidenze congitive

portate avanti dalla neuroscienza: le matematiche si somigliano poiché i processi che

quanti�cano, relazionano e danno senso allo spazio hanno radici anche biologiche.

Parallelamente, le radici culturali sulla cognizione permettono e spiegano come mai
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questa somiglianza non sia un uguaglianza. La proposta di Barton riprende i prin-

cipi di D'Ambrosio proponendo un'epistemologia disciplinare a priori. Di recente è

stato pubblicato un articolo che analizza, invece, quale �loso�a emerge dagli studi

di Etnomatematica o�rendo una prospettiva a posteriori. Il lavoro di Alghar et all.

[2] mette in evidenza come le ricerche in Etnomatematica tendano a sempli�care

troppo i concetti matematici, e trattano la conoscenza occidentale come base per

interpretare quella indigena, ad esempio ricercando l'esistenza di concetti di trian-

golo e usando i metodi occidentali per validarne la matematicità, sottintendendo

una certa gerarchia di matematiche e supportando una visione fallibilista. Inoltre,

l'interpretazione e la rappresentazione di valori culturali di un certo gruppo da parte

degli studiosi, ne provoca una distorsione che danneggia sia la metodologia di ricerca

che i valori �loso�ci etnomatematici. In primo luogo si evidenzia un uso super�ciale

dei metodi di ricerca qualitativa riguardo le ricerche etnogra�ce, in secondo luogo si

sottolinea come la distorsione vada a distruggere l'autenticità dei signi�cati espressi

da un gruppo culturale, contraddicendo la �loso�a Wittgenstaniana. Oltre a questo

studio di analisi, non mancano le risposte dirette alla �loso�a per sistemi QRS; Pais

[83] riprende la critica mossa da Rowlands e Carson [90], e sostenuta da Horsthemke

e Schäfel [59], che difendono una visione essenzialista, secondo cui la conoscenza,

seppur costruita dagli umani, resti aldilà di essi e che si manifesti attraverso gli

invarianti delle diverse matematiche, indipendentemente dalla loro verità. La forte

posizione che prendono riguardo l'epistemologia è l'esclusione degli aspetti sociali

e politici nella genesi della conoscenza. È evidente che la veridicità della �loso�a

impiegata non può essere veri�cata e la scelta di seguirne una piuttosto che l'altra

è guidata da una scelta personale. Così il tesista segue l'interpretazione a sistemi

QRS, che meno contraddice i principi di eguaglianza valoriale dell'Etnomatematica.

1.1.5 Dimensione Educativo-Didattica

L'etnomatematica, prima del manifesto di D'Ambrosio, è stata sviluppata e ricercata

dagli insegnanti che ebbero l'obiettivo di portare a lezione come la matematica fosse

collegata alle pratiche di vita quotidiana. Un esempio pioneristico è il lavoro di Za-

slavsky [118] riguardo lo studio della matematica africana e al come implementarla

nel curriculum didattico americano per mostrare come lo sviluppo della matematica
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sia legato alle s�de quotidiane e possa apparire diverso in diverse parti del mondo.

Per questo non stupisce che la dimensione dell'etnomatematica più ampia sia proprio

la didattica della matematica. Inoltre, è ormai consensuale che la didattica prenda

vita in contesti scolastici, i quali sono luoghi di educazione. Per questo Didattica

ed Educazione sono indissolubilmente intrecciate. Da questo punto di vista Milton

[89] scrive che supportare il programma etnomatematico non signi�ca ri�utare le

conoscenze e le pratiche accademiche, ma incorporarle con valori umanitari come

il rispetto, la tolleranza, la cura, la dignità, l'integrità, l'inclusione e la pace. In

questo contesto l'etnomatematica promuove un insengamento della matematica che

evidenzi le idee, le procedure e le pratiche presenti nella vita di tutti i giorni, così

che una matematica storicamente e criticamente situata possa sostenere gli scopi

umanitari guidati dai valori sopra elencati. Le ricerche relative alla didattica si sono

concentrate sullo studiare i sistemi QRS di matematiche non occidentali e su come

implementarli in aula. Questa tesi non vuole essere una raccolta di sperimentazioni

didattiche in cui sono utilizzate le ricerche etnomatematiche, ma si ritiene utile for-

nire degli esempi in questa direzione. Oltre ai lavori già citati di Zaslavsky, Eglash

[38] descrive diversi aspetti culturali dell'africa occidentale riguardo acconciature,

gioielli e l'architettura, trovando modelli frattali nella geometria africana legata a

tali aspetti. Successivamente tali studi vengono usati da Eglash [39] e Babbitt [6] per

la realizzazione di attività didattiche di matematica e informatica situate cultural-

mente. Le ricerche svolte insieme a queste attività rilevano come riferirsi a pratiche

culturali nell'azione didattica migliori l'apprendimento e inneschi un interesse mag-

giore sia per la disciplina che per la propria cultura. Anche nelle Americhe sono

stati condotti numerosi studi; Ortiz-Franco descrive esempi di matematica Spagnola

confrontandola con le matematiche Azteca e Olmeca [81], [45]. Riguardo i Nativi

Americani, sono noti i lavori di Ascher [4] e Rau� [85] che trattano come portare la

probabilità in classe con dei giochi Irochesi. Per quanto riguarda i continenti orien-

tali, invece, troviamo alcuni esempi nei lavori di Barton [11] in cui riporta la sua

esperienza nella costruzione di un linguaggio matematico per i Maori descrivendo

la tensione tra la necessità di adottare parole inglesi per parlare di alcuni oggetti

matematici e il manteminento dell'identità culturale. Tale s�da assume importan-

za nell'azione didattica poiché, come riportato da Neville e Barton [76], studenti

con lingua madre il mandarino a cui viene insegnata la matematica in inglese af-
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frontarono problemi in entrambe le lingue ottenendo risultati migliori in tutti quelli

proposti nella lingua madre, tranne che per un problema riguardante il gradiente,

unico concetto matematico insegnato per la prima volta in inglese e il cui termine

non si traduce facilmente in mandarino. La componente didattica è strettamente

legata a quella educativa: in questa direzione D'Ambrosio [36] [26] sostiene che non

è su�ciente essere un buon matematico bravo a insegnare matematica per essere

un buon insegnante, ma che ci si dovrebbe chiedere anche "Cosa sarà fatto con la

matematica che sto sviluppando?" e "Come vivranno i miei studenti? Saranno con-

sapevoli del loro impegno morale nella vita professionare che faranno?". Denuncia

come la visione ingenua di Hardy sull'innocenza dei matematici e l'inutilità della

teoria dei numeri [51] sia totalmente contraddetta da come le tecnologie militari si

appoggino quotidianamente alla matematica anche più astratta, e sostiene che sia

necessaria un'azione didattica per combattere l'ignoranza riguardo ai valori e alla

diversità culturale, la quale causa incomprensioni che portano a escalation violente.

Per questo, gli studi etnomatematici sono fondamentali per portare avanti la sua

idea di matematica non omicida. Da un punto di vista dell'inclusione, invece, Shir-

ley [95] scrive come l'etnomatematica in aula contribuisca a favorire l'inculturazione

[16] degli studenti di culture sottorappresentate ed esponga agli studenti sovrarap-

presentati culture nuove, così da favorire la costruzione del rispetto alla diversità e

all'inclusione. Alla luce di questo tra gli etnomatematici è praticamente unanime

la necessità di inserire le loro ricerche nei curriculum didattici di matematica, ma

emergono delle domande riguardo al cosa e al come. Pais [83], nonstante riconosca

l'importanza dell'etnomatematica per fare una migliore ri�essione sulla storia ed

epistemologia della matematica, ritiene che le implicazioni educativo-didattiche non

siano così ovvie e riporta alcune critiche. Rowlands e Carson [90] sostengono che i

programmi etnomatematici sviluppati in Sud Africa abbiano aumentato le di�erenze

etniche sostituendo l'apprendimento della matematica formale con quella contestua-

le e pratica; secondo gli autori è proprio la matematica formale che dà accesso al

mondo privilegiato e ogni studente dovrebbe avere la possibilità di accedere a que-

sto mondo. Rowlands e Carson contestano l'uso dell'etnomatematica in aula poiché

ritengono che la scuola debba essere un luogo in cui le persone entrano in contatto

con una cultura più universale, che di fatto è quella occidentale. Forse il problema

sta proprio nel dare per scontato che il mondo privilegiato sia privilegiato. O scritto
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come farebbe Pais: "a problematization of society and the role of school in society

is, in my opinion, a priority in a research program like ethnomathematics. But,

that is far from happening". Altri argomenti che andrebbero approfonditi secondo

Skovsmose e Vithal [112] sono innanzitutto la mancanza di attenzione riguardo la

relazione tra cultura e potere. Secondariamente sostengono che l'etnomatematica

assuma senso solamente dalla prospettiva della matematica accademica. Come terza

questione pongono la mancanza di pensiero critico riguardo al come la matemati-

ca modellizzi in e�etti la realtà. In�ne, problematizzano il fatto che gli studi di

etnomatematica non a�rontano il tema del foreground, ovvero l'insieme delle oppor-

tunità che il contesto sociale e culturale rende accessibile allo studente per accedere

a diverse possibilità per il suo futuro. Pais commenta e approfondisce queste critiche

nel suo articolo, citando anche la risposta di Adam, Alangui e Barton [1] all'articolo

di Rowlands e Carson. In questo paragrafo non si vuole approfondire ulteriormente

la questione, ma si ritiene fondamentale citarla sper capire che il dibattito riguardo

l'etnomatematica non è scontato e sono necessarie ulteriori ri�essioni riguardo alle

sue implicazioni nella didattica.

1.1.6 Dimensione Politica

L'etnomatematica ha l'obiettivo di studiare la storia, la tradizione e il pensiero mate-

matico di diversi gruppi culturali. Riconoscere e rispettare le radici socioculturali di

un gruppo diverso dal proprio rinforza tali radici attraverso il dialogo tra culture nel

rispetto e nell'accoglienza della diversità. Per raggiungere questo obiettivo è impor-

tante guidare gli studenti ad assumere maggiore consapevolezza anche della propria

cultura riconoscendo l'origine della conoscenza matematica contestualizzandola sto-

ricamente e culturalmente. Gli studi che toccano questa dimensione rispondono ad

alcune critiche riportate da Pais e comprendono l'indagine della relazione tra ma-

tematica e potere, e lo studio dei modelli matematici culturalmente situati usati

per rappresentare la realtà. L'articolo già citato di D'Ambrosio [36] a supporto di

una matematica non omicida coinvolge esplicitamente anche la scuola proponendo

un curriculum che integri tali valori attraverso un insegnamento che tenga conto

delle s�de umane per cui è stata sviluppata. Per D'ambrosio la sopravvivenza della

vita umana procede �nché non si rompe il triangolo formato dai vertici: individuo,
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società e natura i cui lati sono le relazioni tra essi; questo schema relazionale è detto

triangolo primordiale. Inoltre, ciascuna relazione è investigata e potenziata natural-

mente dall'uomo. Questo fenomeno è detto trascendenza, in quanto signi�ca vivere

oltre al sopravvivere. In questo caso, il triangolo che rappresenta la stabilità di que-

sta strascendenza è detto triangolo migliorato ed è costituito dai vertici: linguaggio,

strumenti e produzione.

Figura 1.3: Triangolo migliorato.

Il mantenimento della pace individuale, sociale, ambientale e militare è necessario

per non distruggere questi triangoli, e dunque per non distruggere la vita umana.

Il sapere matematico, d'altronde, è intrinsecamente legato a questo mantenimento,

ma la storia e le evidenze insegnano come conduca anche alla sua possibile rottura

e alla minaccia di estinzione. Per questo, il curriculum pensato da D'Ambrosio

prevede l'insegnamento della matematica attraverso due step necessari per rendere

studenti e matematici consapevoli e preparati a contribuire all'idea di matematica

non omicida:

1. " Life explained as the solidarity of individual, other(s), nature and how they

relate. A methodology is to discuss the primordial triangle and explain the

biological factors keeping its integrity. A �rst mention of the primordial ethics

is important in this moment."
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2. "In discussing the evolution of the human species, to reach the enhanced trian-

gle, we elaborate on individual, other(s), reality, instruments, language and

production. Attention should be given to the concept of reality, as enlarged

perception of nature, comprising natural, cultural and social environments. A

return to the primordial ethics is needed."

Un'altra s�da che emerge in un qualsiasi gruppo culturale, che risulta estremamente

attuale nei paesi più sviluppati, riguarda la gestione delle tecnologie che esistono

proprio grazie allo sviluppo della matematica. Skovsmose espone la sua idea di edu-

cazione critica intesa come una didattica che discute le condizioni fondamentali per

ottenere conoscienza, con consapevolezza riguardo i problemi sociali, di disugua-

glianza, soppressione etc., la didattica critica deve guardare all'insegnamento come

una forza di progresso sociale reagendo alle contraddizioni della società [99]. Skov-

smose scrive che la didattica della matematica debba essere orientata allo sviluppo

di competenza matematica, competenza tecnologica e competenza ri�essiva5. Per

competenza matematica si intende quella individuata da Niss [78]: La competenza

matematica è l'abilità di capire, giudicare, fare e usare matematica in una varie-

tà di contesti e situazioni (intra e extra matematici) in cui la matematica gioca o

potrebbe giocare un ruolo. Con competenza tecnologica non si fa riferimento alle

tecnologie utilizzabili a scopo didattico, bensì a quelle la cui progettazione è in�uen-

zata profondamente dalla matematica. In�ne, la competenza ri�essiva fa riferimen-

to alla capacità di saper valutare criticamente l'uso della matematica e le possibili

conseguenze nell'uso di tecnologie che la coinvolgono. Per Skovsmose gli approcci

epistemologici usati in didattica della matematica sviano da questo pensiero critico,

poiché ignorano la componente umana e culturale che sta alla genesi della conoscen-

za matematica, ed è solo attraverso una ri�essione sulle conseguenze dell'impresa

tecnologica che può esserci una reale didattica della matematica. Per poter raggiun-

gere questi obiettivi è importante chiedersi quali valori e quali fattori socio-culturali

emergono nell'attività scienti�ca, prima che il sapere diventi oggetto di insegnamen-

to. Per fare ciò, uno strumento adatto allo studio del complesso rapporto che c'è tra

matematica, potere, tecnologia e politica è quello del Family Resemblance Approach

[60], secondo il quale la produzione di conoscenza scienti�ca descritta dagli obietti-

vi disciplinari, i metodi, le pratiche e le conoscenze risulta immersa in un contesto

5In originale è conoscenza e non competenza, ma Skovsmose stesso poi parla di competenza.
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sociale e istituzionale, che nell'ottica etnomatematica sono indissolubilmente legati

a fattori culturali. Per Family Resemblance Approach (FRA) si intende un modo

per modellizzare e descrivere l'attività scienti�ca in cui ogni singola scienza è distin-

ta dal proprio statuto epistemologico, ma risulta accomunata alle altre per alcune

caratteristiche, proprio come accade in una famiglia. Considerare la matematica

come attività umana immersa in un contesto culturale permette di farla rientrare

in questa grande famiglia di scienze, e dunque è possibile individuare tutte quelle

categorie descritte dal FRA che caratterizzano la matematica come attività scienti-

�ca e studiarne il legame con la cultura. Ad oggi le categorie individuate sono 12

e si dividono tra Epistemiche-Cognitive (1-4) e Sociali-Istituzionali (5-12) [40], [41],

[61]. Si riportano le proposte in lingua originale:

1. Aims and Values: the scienti�c enterprise is underpinned by adherence to

a set of values that guide scienti�c practices. These aims and values are of-

ten implicit and they may include accuracy, objectivity, consistency, skeptici-

sm, rationality, simplicity, empirical adequacy, prediction, testability, novelty,

fruitfulness, commitment to logic, viability, and explanatory power.

2. Scienti�c practices: the scienti�c enterprise encompasses a wide range of

cognitive, epistemic, and discursive practices. Scienti�c practices such as ob-

servation, classi�cation, and experimentation utilize a variety of methods to

gather observational, historical, or experimental data. Cognitive practices,

such as explaining, modeling, and predicting, are closely linked to discursive

practices involving argumentation and easoning.

3. Methods and methodological rules: scientists engage in disciplined inqui-

ry by utilizing a variety of observational, investigative, and analytical methods

to generate reliable evidence and construct theories, laws, and models in a gi-

ven science discipline, which are guided by particular methodological rules.

Scienti�c methods are revisionary in nature, with di�erent methods produ-

cing di�erent forms of evidence, leading to clearer understandings and more

coherent explanations of scienti�c phenomena.

4. Scienti�c knowledge: theories, laws, and models (TLM) are inter-related

products of the scienti�c enterprise that generate and/or validate scienti�c
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knowledge and provide logical and consistent explanations to develop scien-

ti�c understanding. Scienti�c knowledge is holistic and relational, and TLM

are conceptualized as a coherent network, not as discrete and disconnected

fragments of knowledge.

5. Professional activities: scientists engage in a number of professional ac-

tivities to enable them to communicate their research, including conference

attendance and presentation, writing manuscripts for peer-reviewed journals,

reviewing papers, developing grant proposals, and securing funding.

6. Scienti�c ethos: scientists are expected to abide by a set of norms both

within their own work, and during their interactions with colleagues and

scientists from other institutions. These norms may include organized skep-

ticism, universalism, communalism and disinterestedness, freedom and open-

ness, intellectual honesty, respect for research subjects, and respect for the

environment.

7. Social certi�cation and dissemination: bypresenting their work at con-

ferences, and writing manuscripts for peer-reviewed journals, scientists' work

is reviewed and critically evaluated by their peers. This form of social qua-

lity control aids in the validation of new scienti�c knowledge by the broader

scienti�c community.

8. Social values of science: the scienti�c enterprise embodies various social

values including social utility, respecting the environment, freedom, decentra-

lizing power, addressing human needs, and equality of intellectual authority.

9. Social organizations and interactions: science is socially organized in

various institutions including universities and research centers. The nature of

social interactions among members of a research team working on di�erent

projects is governed by an organizational hierarchy. In a wider organizational

context, the institute of science has been linked to industry and the defense

force.

10. Political power structures: the scienti�c enterprise operates within a poli-

tical environment that in�uences the direction and use of science. The outco-
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mes of science are not always bene�cial for individuals, groups, communities,

or cultures.

11. Financial systems: the scienti�c enterprise is mediated by economic factors.

Scientists require funding in order to carry out their work, and state and natio-

nal level governing bodies provide signi�cant levels of funding to universities

and research centers. Assuch, these organizations have an in�uence on the

types of scienti�c research funded, and ultimately conducted.

12. Reward systems: is possible to identify two types of reward in science:

intellectual and non-intellectual. The intellectual reward is driven by the cu-

riosity to understand the workings of nature and constituted by the sense of

achievement and satisfaction one gets when one makes a scienti�c discovery

or invention. Non-intellectual rewards can be classi�ed as social, professional,

and mate rial. Social rewards consist of recognition and prestige in the scien-

ti�c community and gaining high status in the society. Professional rewards

are about moving up the career lad der. Finally, material rewards can be mo-

netary, larger lab space and better equipment, and so on. Sometimes, winning

a prize as prestigious as the Nobel Prize brings fame, prestige, high status and

sizable �nancial gain all at once.

In riferimento a questo modello, in questa tesi si vuole indagare la pratica espitemica

del dimostrare, che più di ogni altro fenomeno culturale caratterizza la matemati-

ca NUC, studiandola con l'obiettivo di caratterizzarla attraverso le funzioni della

dimostrazione che emergono sia come attività scienti�ca che didattica. Per capire

come questo approccio sia innovativo e utile alla ricerca in didattica della mate-

matica, si entrerà nel dettaglio dei principali risultati delle ricerche riguardanti la

dimostrazione.
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2. La dimostrazione in didattica

Questo capitolo riguarda le ricerche sulla matematica NUC, per questo motivo, ogni

volta che si scriverà matematica, si intenderà quella NUC.

2.1 Dimostrare come problema didattico

Chi fa matematica al giorno d'oggi dovrà, prima o poi, confrontarsi con il complesso

compito di dimostrare una qualche congettura. Questa pratica è indissolubilmen-

te legata alla materia �n dagli antichi greci ed è ciò che la distingue dalle scienze

sperimentali. La competenza matematica non è ridotta solamente al saper produr-

re dimostrazioni, ma resta necessario imparare a farlo, poiché signi�ca imparare il

ragionamento matematico. Questa visione è ampiamente di�usa sia in ambito ac-

cademico che in ambito scolastico ed è descritta da Niss e Højgaard in [79], in cui

descrivono le varie dimensioni della competenza matematica, tra cui quella del ra-

gionamento:

"The core of the mathematical reasoning competency is to analyse or produce argu-

ments (i.e., chains of statements linked by inferences) put forward in oral or written

form to justify mathematical claims. This competency involves both constructively

providing justi�cation of mathematical claims and critically analysing and assessing

existing or proposed justi�cation attempts. The competency deals with a wide spec-

trum of forms of justi�cation, ranging from reviewing or providing examples (or

counter-examples) over heuristics and local deduction to rigorous proof based on lo-

gical deduction from certain axioms."

Lo sviluppo di questa competenza, per quanto fondamentale, risulta estremamente
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delicato e complesso. Mariotti scrive come le ricerche rivelino che studenti di ogni

grado scolare facciano fatica a produrre argomenti a sostegno delle proprie a�er-

mazioni e presenta delle ipotesi alla base di questa di�coltà [72]. La prima cosa

che mette in luce è la ricezione che hanno gli studenti alla richiesta di spiegare un

certo risultato; sembra che i contratti didattici [20] passino in modo inconsapevole

e che la richiesta di un perché sia percepita come il voler portare alla luce un errore

commesso, più che al voler capire la ragione dietro un'a�ermazione. Gli studi di

Anthony e Walshaw [113], Bicknell [15], e Ruthven e Coen [23] supportano questa

tesi mostrando come gli studenti possano sentirsi a disagio nello spiegare il proprio

ragionamento ad altri e come esprimano anche incertezza riguardo alle aspettative

dell'insegnante che chiede spiegazioni: perché lo fa?. La stipulazione di questo patto

implicito, probabilmente, ha origine nelle pratiche didattiche guidate dal Compor-

tamentismo, che individuano la risposta corretta come giusti�cazione di un ragiona-

mento corretto, con la conseguente mancanza di necessità di argomentare da parte

dello studente. La riluttanza nell'accompagnare una risposta è dunque spiegabile

dalla convinzione che l'insegnante debba spiegare e lo studente apprendere; renden-

do di fatto rinunciabile l'insegnare ad argomentare. Le ricerche di oggi in merito a

questo tema forniscono nuove prospettive e sostengono l'importanza di insegnare la

pratica dimostrativa. Per comprende in che modo, è necessario richiamare alcuni

punti fondamentali delle teorie dell'apprendimento più recenti. Il Comportamenti-

smo pone la base fondamentale su cosa sia e�ettivamente l'apprendimento, ovvero

una modi�cazione del comportamento di un soggetto in seguito a determinati sti-

moli. Il limite di questa teoria sta nel ritenere indagabile il processo mentale che c'è

tra ricezione dello stimolo e comportamento di risposta, e che ottenere una risposta

attesa da un determinato stimolo sia su�ciente per dire che il soggetto abbia appre-

so correttamente. Le ricerche dimostrano che tale fenomeno non comporta un reale

apprendimento [7]. Il Cognitivismo, con l'obiettivo di spiegare come avviene tale

modi�cazione, introduce il concetto di processo cognitivo come collegamento inter-

no al soggetto tra stimolo e comportamento. Le ricerche cognitiviste individuano e

spiegano come tali processi cambiare all'interno del soggetto attraverso assimilazione

e accomodamento, ma non tengono conto delle componenti sociali e culturali di chi

sta apprendendo. Questa integrazione avviene con il Socio-Costruttivismo, che vede

l'apprendimento come un processo in cui il soggetto dà senso alle proprie esperienze
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attraverso la costruzione di signi�cati nell'interazione con l'ambiente [93]. Ciò che

resta oscuro a queste teorie è cosa e�ettivamente signi�chi costruire signi�cati per

dare senso alle esperienze. Una possibile risposta la fornisce la recente teoria del

Connettivismo introdotta da Siemens [97] e ripresa da Downes [34] e Goldie [47]. Il

connettivismo nasce come teoria dell'apprendimento nell'era digitale in cui imparare

viene visto come costruzione di signi�cati tra reti umane e non umane. Tra i suoi

principi troviamo:

� L'apprendimento è un processo di connessione tra nodi o risorse di informa-

zione.

� La capacità di conoscere è più importante della conoscenza in possesso.

� La capacità di vedere connessioni tra campi, idee e concetti è un'abilità fon-

damentale per l'apprendimento.

Dimostrare signi�ca costruire una relazione tra ipotesi e tesi, che possono essere

interpretate come nodi o risorse di informazione; dunque, dimostrare qualcosa signi-

�ca apprendere qualcosa. Inoltre, imparare a dimostrare non si riduce ad imparare

a memoria una serie di passaggi, ma implica l'ampliamento della capacità di cono-

scere attraverso lo sviluppo della competenza dell'argomentazione, che permette di

spostarsi tra diversi oggetti e fatti matematici (sempre nodi e risorse di informazio-

ne), nonchè di vedere connessioni tra campi, idee e concetti matematici. In questo

quadro teorico, dimostrare risulta fondamentale non solo per il valore che assume

nello statuto disciplinare, ma anche per l'apprendimento diretto della matematica.

Alla luce di tutto questo, è importante avere a disposizione dei modelli per poter

descrivere le dimostrazioni, valutarle e insegnare a produrle senza cadere nell'ap-

prendimento puramente mnemonico. Un importante studio in questa direzione è

stato fatto da Harel e Sowder [52] che classi�cano diversi schemi dimostrativi a cui

gli studenti del college attingono per accertarsi che le proprie a�ermazioni siano

giusti�cate adeguatamente; ottengono una tassonomia assai ampia composta da 16

diversi schemi raggruppati in tre categorie: Convinzione esterna, Empirica e Ana-

litica. Tale ricerca è interessante e porta un contributo indiscutibile riguardo alle

possibili concezioni che gli studenti hanno riguardo le dimostrazioni, ma come scrive

Mariotti: "Il contributo è certamente interessante, ma proprio per la ricchezza e
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varietà delle categorie non sembra o�rire uno strumento uni�cante per comprendere

e quindi per superare le di�coltà che descrive" [72]. Dunque, si ricercano modelli

meno ampi che possano o�rire nuove chiavi di lettura e che risultino più utilizzabili

ai �ni della ricerca e dell'insegnamento. La strada che si intraprende esce dalla di-

dattica della matematica e conduce ad un quadro teorico che vede la dimostrazione

come una particolare argomentazione.

2.2 Dimostrazione come argomentazione

Il rapporto tra dimostrazione e argomentazione è complesso; entrambe le pratiche

sembra abbiano origine nell'antica grecia, la prima per andare alla ricerca della ve-

rità, la seconda per convincere o persuadere gli interlocutori della validità di un'af-

fermazione. Questa distinzione ha accompagnato l'uomo �no al secolo scorso. La

crisi dei fondamenti della matematica del XX secolo ha radicalmente cambiato lo

statuto epistemologico della matematica, portando i matematici ad abbandonare

la ricerca della verità oggettiva in virtù del trovare giusti�cazioni adeguate per le

proprie a�ermazioni, partendo da assiomi non necessariamente veri. Il focus della

matematica si sposta dal dimostrare per capire se qualcosa è vero al capire se la

dimostrazione sia una giusti�cazione adeguata. Per chi si occupa di matematica la

di�erenza può apparire invisibile, ma per chi fa ricerca in didattica questo ha im-

plicazioni profonde: ciò che si considera una buona giusti�cazione non è oggettivo,

non si può entrare nella comunità dei matematici e capire i criteri di accettabilità

di una dimostrazione da un giorno all'altro, anche perchè cambiano al variare del

settore disciplinare e sarebbe umanamente impossibile comprenderli tutti [66]. Dun-

que, risulta necessaria una ri�essione su cosa signi�chi giusti�care adeguatamente in

ottica di insegnare a dimostrare. Il tema delle giusti�cazioni non riguarda solo la

matematica, in ogni disciplina giusti�care risulta necessario e viene perseguito con

la pratica dell'argomentazione. Nella seconda metà del '900 gli studi a riguardo

si concentrano sull'osservare, analizzare e descrivere le modalità di argomentazione

che emergono da contesti e situazioni reali. Perelman e Olbrechts-Tyteca in [84]

propongono la prospettiva secondo cui l'e�cacia di un argomento dipende da chi

ascolta e non fa ricorso alla nozione di verità. L'obiettivo di un'argomentazione è

in�uenzare l'uditorio cercando di convincerlo o persuaderlo ad accettare una certa
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a�ermazione. Il caso in cui l'obiettivo sia convincere, ovvero rendere l'ascoltatore

certo di qualcosa, è studiato nel dettaglio da Toulmin, che vede un'argomentazio-

ne come un discorso costituito da giusti�cazioni e ragioni a sostegno di una data

a�ermazione [109]. Toulmin individua in ogni argomentazione sei diverse parti:

1. Conclusione: l'a�ermazione sostenuta che si vuole argomentare.

2. Dati: l'insieme dei dati che sono in relazioni con la conclusione.

3. Garanzia: la regola di inferenza che collega i Dati alla Conclusione.

4. Forza: il grado di certezza che l'argomentazione esprime, espresso attraverso

avverbi come probabilmente o necessariamente.

5. Confutazione: un possibile caso in cui i dati non possono concludere l'a�er-

mazione sostenuta, in genere un'aggiunta di qualche elemento che invalida

l'argomentazione.

6. Supporto: il supporto alla Garanzia che permette di accettare la regola di

inferenza.

Egli a�erma che questo scheletro è invariante dal contesto, mente ciò che cambia

è il campo dell'argomento; con le parole di Toulmin: "Si dirà che due argomenti

appartenengono allo stesso campo quandi i dati e le conclusioni in ciascuno dei due

argomenti sono rispettivamente, dello stesso tipo logico: si dirà che provengono da

campo diversi quando il supporto o le conclusioni in ciascuno dei due argomenti non

sono dello stesso tipo logico Le dimostrazioni negli Elementi di Euclide, ad esempio,

appartengono a un campo, i calcoli eseguiti nella preparazione di un numero dell'Al-

manacco Nautico appartengono ad un altro". Il campo varia da contesto a contesto,

anche all'interno della stessa disciplina, un po' come accade nella distinzione tra

Congettura e Teorema: la prima ha un'argomentazione informale, il secondo ha

una dimostrazione accettata dalla comunità: i dati e le conclusioni possono essere

gli stessi, mentre le logiche a supporto dell'argomentazione cambiano. Riguardo a

queste logiche, sulla scia degli studi di Perelman, Olbrechts-Tyteca e Toulmin si

inserisce Duval, che individua una di�erenza tra la dimosrazione e gli altri tipi di

argomentazione seguendo un approccio cognitivista. Duval introduce il concetto di

valore epistemico come il grado di a�dabilità posseduto da un'a�ermazione, non
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troppo diverso da ciò che Toulmin chiama Forza dell'argomentazione, ma associato

alla giusti�cazione (o Garanzia per Toulmin). E sostiene che, nelle dimostrazioni, il

valore epistemico dipenda più dallo statuto teorico che dal valore semantico di ciò

che si a�erma [35]; dove lo statuto teorico di una proposizione è la sua validità teori-

ca all'interno di una teoria, ossia l'essere una de�nizione, un assioma, o un teorema.

Questa distinzione sposta l'attenzione dal valutare la semantica di una proposizione

al valutarne la validità teorica, che dipende dai criteri di accettabilità della teoria di

riferimento, ovvero dipende da cosa si accetta come de�nizione, assioma, o teorema.

Riguardo a quest'ultima istanza, i criteri di accettabilità di un teorema dipendono

da quelli della dimostrazione che lo accompagna, che come si è detto prima, dipen-

dono dal contesto e si di�erenziano da gruppo culturale in gruppo culturale. La

ricerca �n'ora si è concentrata sulla didattica, in particolare Stylianides scrive qua-

li caratteristiche dovrebbe avere una dimostrazione in un contesto di classe [105]:

usare enunciati accettati dalla comunità della classe che sono ritanuti veri e acces-

sibili senza ulteriore giusti�cazione; usare forme di ragionamento validi e conosciuti

dalla comunità della classe; è comunicata attraverso forme di espressione che sono

appropriate per la comunità della classe [7]. Risulta cruciale, dunque, condividere i

criteri di accettabilità, e per farlo è importante che sia condiviso anche il senso di

una dimostrazione, ossia a quali obiettivi risponde, quando si richiede e perchè.

2.3 Funzioni della dimostrazione

Per poter portare la dimostrazione in classe, è importante sapere quale senso abbia

per la comunità dei matematici ed è in questa direzione che si muove questa tesi.

Prima di portare il punto di vista dell'Etnomatematica, è presentato un riassun-

to delle più importanti ricerche svolte �nora. Come riporta Mariotti, gli studenti

evidenziano come per loro non sia a�atto chiaro a cosa servano le dimostrazioni,

specialmente quando accompagnano fatti ritenuti ovvi [72]. La tensione che si crea

riguarda le dimostrazioni che non spiegano il perché le cose funzionino in un certo

modo. Il tema è a�rontato per la prima volta da un punto di vista �loso�co da Stei-

ner [104] e successivamente ripreso per aspetti didattici da Hanna [50], in entrambi

i lavori emerge come ci sono dimostrazioni che spiegano e altre che dimostrano sol-

tanto. Per le dimostrazioni che non spiegano ci sono svariati esempi: spesso quelle
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per induzione non spiegano, ma mostrano che le cose funzionano in un certo modo

applicando un principio accettato dalla comunità; notevole è l'esempio della somma

di Gauss dei primi n numeri. Anche le dimostrazioni per assurdo, che si appoggiano

al principio, condiviso e spesso non formalizzato, del terzo escluso, tendono a non

avanzare spiegazioni soddisfacenti; se la dimostrazione dell'irrazionalità della radice

di due può sembrare che spieghi qualcosa, mostrare l'irrazionalità di π è totalmente

un'altra questione1. Trovare dimostrazioni che spiegano non è semplice e a volte pro-

prio non ce ne sono; anche capire cosa signi�chi che una dimostrazione spieghi non

è per nulla banale. In questa direzione risultano fondamentali i lavori ben spiegati

da Mariotti2 di Mopondi [73] che considera la spiegazione come un atto che mira a

far comprendere; e i lavori di Sierpinska [98] e Sfard [94] che cercano di mettere in

luce cosa signi�chi in e�etti comprendere. Per Sierpinska un atto di comprensione è

un processo mentale personale e soggettivo che si realizza mettendo in relazione un

oggetto noto, detto base, ad un oggetto non noto, detto di comprensione. In presen-

za di un oggetto non noto che il soggetto è intenzionato a capire, la comprensione

avviene per costruzione di una rete di atti di comprensione legati da inferenze e de-

duzioni a partire da una base nota. Dopodichè, ci si può riferire allo spiegare come

una produzione discorsiva con l'obiettivo di far costruire questa rete attraverso la

descrizione dell'oggetto nuovo e l'argomentazione del perchè accettare tale oggetto.

Un interessante contributo su come possa svilupparsi un discorso di spiegazione è

dato da Lolli [66], che fa riferimento a cinque diversi modi in cui una dimostrazione

possa spiegare. Innanzitutto, ci si può ricondurre agli assiomi, in corrispondenza

all'idea di Sierpinksa e anche alle origini storiche della dimostazione. Per secondo,

una spiegazione può avvenire mediante la generalizzazione di un risultato: passare

da esempi che supportano una congettura alla dimostrazione può mettere in evi-

denza quali proprietà degli oggetti in gioco siano fondamentali a�nchè il teorema

sia vero. Un terzo modo è per sussunzione, specialmente nel caso di fatti strani,

o sorprendenti: passare da una teoria particolare ad una teoria più generale può

spiegare molto più di un singolo fatto, si pensi a come cambia la comprensione del-

l'analisi reale alla luce dei risultati di analisi complessa. Un quarto fatto riguarda lo

spiegare mediante semantica, trovando le ragioni di un fatto nella struttura teorica

1Come si può vedere dalla dimostrazione di Niven [80]
2sempre in [72].
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che lo riguarda, spiegando caratteristiche della struttura, più che del fatto. In�ne,

una dimostrazione può spiegare perché non, come quelle che riguardano l'impossi-

bilità di costruzioni con riga e compasso, o i teoremi d'indipendenza, come quello

sull'ipotesi del continuo. Lolli individua altre 34 funzioni della dimostrazione, che

spesso sono sfumature della stessa, come accade per la spiegazione. Il suo contributo

sarà ripreso nel terzo capitolo quando si parlerà del rapporto tra dimostrazione e

intuizione. Un lavoro più compatto e degno di nota è stato fatto da De Viller [111],

che oltre a riprendere l'esplicatività, descrive altre quattro funzioni fondamentali:

convincimento, sistematizzazione, comunicazione e scoperta.

2.3.1 Dimostrare per convincere

Convincere è un po' il cuore della dimostrazione e riprende la sua natura argomen-

tativa. De Viller scrive che, tranne poche eccezioni, gli insegnanti di matematica

credono che una dimostrazione conferisca lo stato di assoluta certezza al matematico

e che sia l'unica via per dare validità ad una congettura in modo che diventi teorema.

Nella realtà dei fatti, prima di fornire una dimostrazione, sembra si debba già essere

convinti in qualche modo di ciò che si sta dimostrando e che la scrittura formale

assuma più un ruolo giusti�cativo, non sulla verità del teorema, ma sul modo in cui

dalle ipotesi si possa dedurre la tesi.

2.3.2 Dimostrare per sistematizzare

La dimostrazione svolge il cruciale ruolo di costruire un'assiomatizzazione della ma-

tematica a posteriori, aiuta a identi�care le minime ipotesi a�nchè certi risultati

siano veri, li sempli�ca e li unisce fornendo una prospetiva globale sull'albero del-

la conoscenza matematica. In pratica la dimostrazione permette di organizzare gli

oggetti matematici per assiomi, de�nizioni e teoremi. Ripensando alle ricerche di

Duval sull'importanza dello statuto teorico nella didattica della dimostrazione, la

funzione di sistematizzazione risulta fondamentale.

2.3.3 Dimostrare per comunicare

Il terzo ruolo cruciale che la dimostrazione assume nella condivisione del sapere

matematico riguarda proprio la comunicazione della matematica. Si pensi che di-
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mostrare, nella maggior parte delle volte, è proprio una forma di discorso, un modo

di comunicare tra matematici. Non avrebbe alcun senso produrre una dimostrazione

che non possa essere comunicata, poichè nasce dall'esigenza sociale di condividere

nuova conoscenza, e come argomenta anche De To�oli [30]: la comunicabilità di una

dimostrazione è un criterio di accettabilità più fondamentale del suo rigore [30].

2.3.4 Dimostrare per scoprire

La quarta funzione che si realizza dimostrando è quella di scoperta. Ciò può av-

venire direttamente, come si può vedere nella storia delle geometrie non euclidee:

la costruzione di nuovi spazi avviene proprio grazie alla dimostrazione di teoremi

a partire da nuovi assiomi. O può anche avvenire con una lettura a posteriori: il

processo di generalizzazione che avviene dimostrando porta a vedere una serie di

esempi, apparentemente scollegati tra di loro, da una prospettiva più ampia; così, il

matematico vede nuove strade da sviluppare nel mondo della conoscenza e individua

delle proprietà che contribuiscono in modo essenziale alla sussistenza del teorema.

Per un approfondimento di questa funzione si rimanda ad un altro lavoro di De

Villier, in cui illustra il ruolo esplicativo e di scoperta delle dimostrazioni [31].

L'ultimo contributo che si vuole citare riguarda un'importante ricerca sperimen-

tale portata avanti da Healy e Hoyles [53] sulle concezioni che studenti di 14 e 15 anni

hanno riguardo le dimostrazioni di algebra. Lo studio risponde a diverse domande di

ricerca, tra cui una di particolare interesse per questa tesi: quali convinzioni emer-

gono sulla funzione della dimostrazione? La maggior parte degli studenti riconosce

che dimostrare sia uno strumento di convincimento o di spiegazione, e solo l'1%

riconosce i ruoli di scoperta e sistematizzazione. Un altro dato sorprendente è che i

risultati non sembrano dipendere dagli insegnanti, i quali sono formati in ambienti

accademici diversi; questo, in un'ottica Etnomatematica, apre la strada a cercare

cause più generali dietro la sedimentazione di certe convinzioni: apre la strada al-

la ricerca di cause culturali. Quali valori guidano la didattica della dimostrazione?

Quali vengono trasmessi? Quali funzioni della dimostrazione emergono dalla pratica

didattica e di ricerca che si svolge in ambiente accademico? Quest'ultima domanda

è proprio ciò a cui questa ricerca vuole dare una risposta.
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3. Ricerca e risultati

La maggior parte della produzione scienti�ca riguardo la cultura occidentale della

matematica è scritta da singoli matematici che ritengono il problema rilevante. I

numerosi quadri teorici che si sviluppano hanno bisogno di essere ricercati e veri�-

cati. L'Etnomatematica, �no ad oggi, si è occupata di studiare le culture indigene

conforntandole implicitamente con la propria, spesso e volentieri occidentale. Ma si

è sicuri di conoscere questa cultura? Tale domanda apre una voragine apparente-

mente incolmabile e che richiede uno sforzo collettivo per poter essere risposta. La

ricerca presentata in seguito è un piccolo mattone nel palazzo che si vuole costruire

e indaga la pratica culturale della dimostrazione negli ambienti accademici, in par-

ticolare si chiede quali aspetti culturali emergono dalla pratica didattica e di ricerca

della dimostrazione.

3.1 Metodologia

Come evidenziato anche da Morgan [29], i focus group sono ottimi per analizza-

re motivazioni e convinzioni legate ad un certo argomento e possono produrre una

grande quantità di dati. Per questo motivo, tale metodologia è stata ritenuta parti-

colarmente adatta per far emergere e studiare aspetti culturali della didattica della

dimostrazione in università. Inoltre, l'analisi è stata mirata a individuare pochi

aspetti speci�ci, così da evitare di ottenere molti dati tutti diversi.

3.1.1 Composizione dei Focus Group.

Sono stati organizzati due diversi focus group di docenti universitari di matemati-

ca sul tema della dimostrazione, denominati FGA (Focus Group A) e FGB (Focus
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Group B). Ciascuno di essi è stato composto in modo da avere rappresentati di diver-

si settori disciplinari, cercando di ricostituire una micro comunità matematica sulla

base dei dati raccolti da Morana e Sagramora dal Portale dei dati dell'Istruzione

Superiore riguardo la distribuzione di docenti STEM per grado di carriera accade-

mica e genere [74], [75]. I dati riportano le seguenti percentuali: il personale docente

e ricercatore degli atenei statali nell'area delle scienze matematiche e informatiche

è così distribuito: professori di I e II fascia 59,7%; ricercatori 23,6% e titolari di

assegni di ricerca 16,7%. La presenza femminile nel sistema universitario italiano si

assesta al 50% tra i titolari di assegni di ricerca, al 46% tra i ricercatori universitari,

al 42% tra i professori associati e al 27% tra i professori ordinari. Al gruppo FGA

hanno partecipato un professore associato di analisi, una professoressa associata di

didattica della matematica, una professoressa associata di geometria, un professore

ordinario di probabilità, un ricercatore di analisi numerica e un dottorando di ana-

lisi. Al gruppo FGB hanno partecipato un professore associato di analisi numerica,

una professoressa associata di storia della matematica, una professoressa associata

di algebra, un professore associato di �sica matematica e una dottoranda di alge-

bra. Inoltre, in entrambi il tesista è stato moderatore, mentre solo nel primo è stato

presente un osservatore col solo scopo di prendere appunti.
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Settore disciplinare Grado in carriera Genere Codice

MAT/03 (Geometria) Associato F GAFA

MAT/04 (Matematiche Complementari) Associato F DAFA

MAT/05 (Analisi Matematica) Associato M AAMA

MAT/05 (Analisi matematica) Dottorando M ADMA

MAT/06 (Probabilità e Statistica Matematica) Ordinario M POMA

MAT/08 (Analisi Numerica) Ricercatore M NRMA

Tabella 3.1: Composizione Focus Group A

Settore disciplinare Grado in carriera Genere Codice

MAT/02 (Algebra) Associato F AAFB

MAT/02 (Algebra) Dottorando F ADFB

MAT/04 (Matematiche Complementari) Associato F SAFB

MAT/07 (Fisica Matematica) Associato M FAMB

MAT/08 (Analisi numerica) Associato M NAMB

Tabella 3.2: Composizione Focus Group B
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3.1.2 Progettazione e gestione del Focus Group.

Ogni focus group è stato svolto online in una videochiamata di cui è stata fatta una

registrazione audiovisiva. Ciascuna intervista è durata circa due ore ed è stata scan-

dita da quattro fasi: dopo aver spiegato come si sarebbe strutturata la discussione,

è stata presentata a ciascun partecipante una prima domanda: "Come fare mate-

matica senza dimostrare?" (Q1). Ogni partecipante ha risposto privatamente e non

anonimamente attraverso il software web Padlet, una lavagna virtuale. La scelta di

iniziare con una parte scritta è stata fatta per dare il tempo ai partecipanti di racco-

gliere le idee e potersi focalizzare sull'argomento per evitare momenti di dispersione

durante la successiva discussione, nonchè per contenere alcune dinamiche di gruppo

come l'e�etto di conformità di Asch [3], secondo il quale il comportamento degli

individui in un gruppo è in�uenzato da come si comporta la maggioranza, o come

il pensiero di gruppo, per il quale l'opinione del singolo non viene espressa critica-

mente per mantenere la coesione all'interno del gruppo [62]. Dopo una lettura delle

risposte da parte del moderatore, è stato chiesto ai partecipanti di esporre la rispo-

sta per iniziare la discussione di gruppo. Dopodiché, è iniziata la seconda fase del

focus group, nel quale gli intervistati hanno prima risposto ad una seconda doman-

da per iscritto privatamente: "Come insegnare matematica senza dimostrazione?"

(Q2), per poi avviare la discussione nelle stesse modalità della prima. Talvolta, il

moderatore è intervenuto con lo scopo di chiedere chiarimenti o approfondimenti su

alcuni argomenti emersi.

3.1.3 Analisi

L'analisi condotta ha seguito le linee guida espresse da Raibee [42], che si rifà ai

celeberrimi lavori di Krueger. Per ogni gruppo si è prodotta una trascrizione del-

l'intervista e per ogni frase detta da ciascun intervistato si è risposto alla sequenza

di domande:

1. Il partecipante risponde alla domanda?

2. La risposta aggiunge qualcosa di importante all'argomento?

3. Ci sono commenti aggiuntivi che pur non rispondendo alla domanda risultano

rilevanti nel tema di ricerca?
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4. La risposta è già stata data in precedenza?

L'ultima domanda ha permesso di creare delle categorie di risposta caratterizzate

dalle parole utilizzate, dal contesto emergente, dalla consistenza dimostrata, dalla

frequenza, intensità e speci�cità della risposta. Questo processo è stato svolto per

ciò che emerge durante la discussione, mentre la parte scritta è stata usata per

controllare la consistenza interna delle risposte. Le domande guida della discussione

sono poste in modo tale da far risaltare ciò che resta quando si toglie la dimostrazione

o ciò che bisogna far emergere in assenza di essa. Per questo sono emerse risposte

che esprimono convizioni e motivazioni implicitamente. Eccone un esempio: "[...]

[senza dimostrazione NdA] non sei sicuro che funzioni. [...] si vede qui si vede

anche la mia ignoranza di matematica applicata. Una cosa che ho pensato invece è

che possono succedere delle cose, del tipo io scrivo un algoritmo e vedo che funziona

e magari non ho la dimostrazione completa però lo studio, un po' come se fosse uno

studio sperimentale." In questo intervento, AAFB allude a come si possa capire il

funzionamento di un fatto matematico in assenza della dimostrazione, evidenziando

come, in presenza di quest'ultima, il problema non si porrebbe. In questo senso

diversi altri interventi sono stati inseriti nelle categorie di riferimento.

3.2 Risultati

Quali funzioni emergono dalla pratica di ricerca e didattica del dimostrare in univer-

sità? Il principale risultato della ricerca è l'aver individuato delle possibili funzioni

della dimostrazione, che la caratterizzano come una pratica matematica che segue

determinati obiettivi disciplinari: capire il mondo matematico, sistematizzare la

conoscenza matematica e formare l'intuizione matematica . Questo approccio per-

mette di vedere i processi dimostrativi staccati dai processi argomentativi, così che

possano essere individuati anche in pratiche non accademiche.

3.2.1 Dimostrare per capire la matematica.

L'unità di analisi considerata sono entrambe le discussioni, nelle quali sono stati

ricercati i verbi capire, apprendere, spiegarsi, dare un senso, funzionare con even-

tuali desinenze. Ecco una lista delle ricorrenze di termini quando usati esclusiva-



40

mente in rifermento a come dimostrare serva a comprendere il mondo matematico

accompagnati da un esempio:

� Capire: 16, AAFB: "Se vuoi poi davvero capire cos'è la matematica, secondo

me una dimostrazione ci va."

� Funzionare: 9, DAFA: "io [..] la dimostrazione l'ho sempre intesa [...] come

il momento in cui capisci per davvero come funzionano le cose".

� Dare un senso: 6, AAMA: "[...] senza dimostrazione di fatto la matematica

non c'è, ci sono piccoli pezzi di matematica. Ma non c'è il senso pieno".

� Apprendere: 2, NRMA: "[...] si potrà fare matematica senza dimostrazione,

ma trovo che si perderebbe proprio uno strumento in qualche modo didattico

per apprendere appieno un risultato".

� Spiegarsi: 2, NRMA: "[...] in realtà la dimostrazione è una spiegazione del

risultato stesso".

Tali termini ricorrono sia all'inizio, che a metà, che alla �ne dell'intervista, mo-

strando una certa stabilità della convinzione che la dimostrazione serva a capire la

matematica. Alcuni interventi non contengono le parole ricercate, ma rientrano co-

munque nella semantica della comprensione.

NRMA: [...] mi sono accorto sempre di più come una dimostrazione sia in qual-

che modo una spiegazione del risultato stesso, soprattutto quando si sottolineano i

ruoli speci�ci delle varie ipotesi. Una volta capito il risultato, grazie anche alla sua

dimostrazione, si può poi apprezzare anche l'impatto che questo risultato ha. In

conclusione, si potrà sicuramente fare matematica senza dimostrazioni, ma credo

che si toglierebbe un importante strumento per comprendere ed assimilare a pieno la

matematica stessa.

NRMA avvia così la discussione di gruppo esponendo agli altri partecipanti ciò

che ha scritto. Tale a�ermazione tratta il dimostrare come un'attività che il mate-

matico svolge per se stesso e la dimostrazione come strumento. Questo aspetto è di

fondamentale importanza per comprendere la sfumatura nell'a�ermazione: "Si di-

mostra per comprendere". GAFA la esprime spontaneamente durante la discussione:
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GAFA: "[...] prima di imbarcarsi nel leggere una dimostrazione io mi devo �da-

re che il risultato ha un certo valore di verità".

In questa frase, che viene accolta dal gruppo e mai contestata, si evidenzia come

la convizione della verità di un fatto debba essere precedente alla sua dimostrazio-

ne. Questo aspetto è così fondamentale anche per DAFA, che dice di aver criticato

aspramente, in passato, le dimostrazioni portate a termine con l'ausilio di un cal-

colatore, come quella del Teorema dei quattro colori. In questa critica emerge una

sorta di frustrazione dovuta al dover rinunciare a un aspetto del cercare una dimo-

strazione, anche considerando la sua citazione riguardo al valore a�ettivo che lega

alla dimostrazione:

DAFA: "[...] a me la dimostrazione mi è sempre piaciuta da morire perché [...]

secondo me ha una valenza estetica e a�ettiva, nel senso che quando riesci a fare la

dimostrazione di un risultato [...] che hai in mente e tutte le cose ti vanno a posto,

è il momento secondo me bello del fare matematica e è il momento grati�cante del

fare matematica".

Più nello speci�co scrive anche:

DAFA: "[...] nella simulazione tu hai un qualcosa che non controlli �no in fon-

do, [...] a me questa cosa qui istintivamente mi è sempre sembrata una cosa che

[...] toglie tutto il gusto del lavoro, no? Nel senso che cioè ti rimane un qualcosa

del quale non ti �di perché non lo sai come è stato trovato".

Questo legame a�ettivo si lega alla mancanza di comprensione: la dimostrazione

permette di �darsi in quanto aiuta a stabilire il grado di verità un risultato, tale

�ducia conclude il processo di comprensione. In�ne, è notevole la presa di posizione

riguardo al formalismo:

DAFA: "Ecco, io non l'ho mai intesa come una cosa di formalismo, la dimostrazione

l'ho sempre intesa più come a un certo punto diceva NRMA come il momento in cui
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capisci per davvero come funzionano le cose"

Da cui emerge la convinzione che un pensiero dimostrativo considerabile tale è

quello di comprensione, non quello di formalizzazione. Tuttavita, questa visione

pare non essere del tutto condivisa dal gruppo, alcuni membri si riferiscono all'at-

to di dimostrare come fase �nale di un processo di scoperta e intuizione matematica:

ADMA: "[...] la dimostrazione serve a rendere rigoroso [...] un ragionamento che è

stato fatto, però secondo me il focus deve rimanere un po su l'idea, anche intuitiva,

che ti ha portato a fare.. A impostare un problema in un certo modo."

GAFA: "Quindi l'attività di dimostrazione è un'attività che arriva alla �ne di qual-

cosa molto lungo, nel senso che è la fase �nale di un processo in cui uno di solito

prima studia tanto per capire qual è il contesto, cerca di fare delle ipotesi, si fa un

sacco di esempi e tenta di fare dei controesempi per smontare le ipotesi e poi alla

�ne, quando è abbastanza convinto che l'a�ermazione che sta scrivendo è un a�er-

mazione sensata, tenta di fare una dimostrazione un pochino più formale [...]. La

dimostrazione è una fase di un percorso molto più lungo."

Eppure, anche se sembrano in contrasto, le due visioni rientrano nella stessa ca-

tegoria; infatti, questa fase �nale di dimostrazione risponde all'esigenza della co-

munità dei matematici di sistematizzare la conoscenza, ma nell'ottica del soggetto

dimostratore, risponde alla necessità di voler accettare una nuova conoscenza mate-

matica che prima aveva solo intuito. In questo senso, la comprensione coincide con

l'accettazione che ciò che si ha intuito sia e�ettivamente parte integrante del mondo

matematico. Questo raggiungimento avviene attraverso il processo dimostrativo, e

si può quindi estrapolare la seguente caratterizzazione: un processo matematico

che permette al soggetto che lo attua la comprensione di un fatto mate-

matico è un possibile processo dimostrativo.

In parallelo, nella discussione portata avanti dal FGB, AAFB ha sostenuto le stesse

idee con parole molto simili:
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"Se non hai dimostrato qualcosa, o non l'ha dimostrata qualcun altro, non puoi

essere sicuro che sia vera."

"non è che io non faccio la dimostrazione. Io nella mia testa me la sono fatta,

magari non la scrivo nell'articolo però lo so che funziona."

"[...] ci sono computer che fanno dimostrazioni automatiche, però non è tanto

quello che vogliamo la mia idea è che poi la dimostrazione ti dà un po' le certezze."

Mentre FAMB prende posizione su come per lui la dimostrazione debba essere per

comprendere e non per dimostrare:

"[...] Da questo punto di vista, per esempio, io tendo a non raccontare quasi mai

le dimostrazioni per contraddizione, ma solo quelle per quelle costruttive. Non dico

che non servano, però diciamo che per quello che insegno io tipicamente do molto

più peso alla costruzione di un risultato, di un modello, eccetera".

Altri partecipanti, invece, il dimostrare per capire non lo esplicitano, esprimendo

una certa necessità del dover dimostrare per fare matematica, senza rendere chiaro

a cosa risponda questa necessità.

ADFB: "Non si può fare matematica senza dimostrare. Anche perché cosa sarebbe

la matematica senza le dimostrazioni? Una serie di frasi prese per vere/false senza

veri�ca?"

ADFB: "[...] è vero che però la congettura la vogliamo dimostrare, quindi cioè co-

munque stiamo andando verso, cioè puntiamo alla dimostrazione e dalla congettura

nascono cioè piccoli risultati per dimostrare o per confutare la congettura."

SAFB: "[...] quando ho letto la domanda [Q1 NdA] la mia risposta immediata

sarebbe stata di dire che non era possibile fare matematica senza dimostrazione."

SAFB:"Diciamo per le esperienze didattiche che ho, la dimostrazione faccio un po'
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fatica a evitarla, magari in alcuni casi provo ad assegnare gli studenti la lettura di

dimostrazioni fatte da altri e poi di commentare con loro [...] il procedimento. [...]

non riesco a non far vedere le dimostrazioni."

3.2.2 Dimostrare per sistematizzare la conoscenza matema-

tica.

La sistematizzazione è l'azione collettiva di una comunità per costruire una cono-

scenza condivisa tramandabile e comunicabile. In matematica questo avviene grazie

alla dimostrazione delle congetture: un teorema entra a fare parte dell'insieme del-

la conoscenza sistematizzata quando è dimostrato in una teoria. Dalle discussioni

questo emerge chiaramente:

FAMB: "[...] Parisi ha vinto il Nobel a partire dalla sua soluzione di questo modello.

La dimostrazione è arrivata anni e anni e anni dopo. Però [...] lui ha sviluppato una

tecnica simil rigorosa, cioè non rigorosa.[...] �nché non ha avuto la dimostrazione

di matematica nessuno aveva il coraggio di parlarne come se fosse matematica."

AAMA: "[...] senza dimostrazione di fatto la matematica non c'è, ci sono picco-

li pezzi di matematica. [...] Tant'è vero che nessuno di noi credo che se sottomette

un articolo qualsiasi, poi la rivista scienti�ca, glielo prendono solo perché c'è una

bella intuizione, ma poi non c'è scritto una dimostrazione".

AAFB: "Se non hai dimostrato qualcosa, o non l'ha dimostrata qualcun altro, non

puoi essere sicuro che sia vera."

ADFB: "La dimostrazione fornisce l'universalità modulo essersi concordati sulle re-

gole".

[M: Come fare matematica senza dimostrare?] :

DAFA: "La risposta istintiva e immediata è, per quanto mi riguarda, "impossibile".

Nella mia esperienza sia di studente che di ricercatore, la dimostrazione è sempre
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stata uno dei cardini del fare matematica".

AAMA: "In senso pieno, non si può fare. Rimanendo a livello dell'intuizione o

della procedura, si fa una matematica monca".

ADFB: "Non si può fare matematica senza dimostrare. Anche perché cosa sarebbe

la matematica senza le dimostrazioni? Una serie di frasi prese per vere/false senza

veri�ca?"

Ciò che è meno ovvio di quanto sembri è come le dimostrazioni dimostrino le con-

getture e dunque come avvenga in concreto la sistematizzazione. Il problema non è

banale ed è sollevato e a�rontato da De To�oli [30], in cui discute come la maggior

parte delle presunte dimostrazioni che esistono siano in realtà simil-dimostrazioni,

ovvero argomenti che soddisfano i criteri di accettabilità per dimostrazioni di una

determinata comunità matematica. Lolli [66] de�nisce le dimostrazioni come bolle

di accompagnamento che certi�cano la sussistenza di "A implica B", e ci tiene a non

de�nire meglio cosa sia una bolla di accompagnamento o come essa possa in e�etti

certi�care la validità di un ragionamento, poiché non è possibile farlo: nella storia

e nelle diverse sottodiscipline della matematica se ne trovano di tutti i formati, ed

è di�cile ricondurli tutti ad uno stile unico. La cosa fondamentale è che il ragiona-

mento sia �nito per poterlo trasmettere. In conclusione, ciò che è una dimostrazione

non è universale, ed è dunque ragionevole considerare che ogni cultura possa svi-

luppare i propri criteri dimostrativi e possa condividere proprie simil-dimostrazioni.

Questo fatto emerge in FGA in risposta ad una domanda posta dal moderatore su

quali siano i criteri di accettabilità di una dimostrazione:

GAFA: "[...] io faccio topologia e da noi per le dimostrazioni si guardano immagini

[...], prima di leggere un risultato guardi la �gura [OK] nel senso che di solito la

�gura è portatrice di più informazioni che non il testo che la accompagna, quindi

abbiamo dei criteri di accettabilità molto diversi da, per esempio, il mio collega di

u�cio che fa l'analista e non ha mai una �gura dentro un articolo e quindi credo

che la risposta sia che dipende dalla comunità."
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DAFA: "Io se mi posso esprimere su questa cosa sono perfettamente d'accordo con

quello che dice GAFA sul discorso della comunità di riferimento."

AAMA: "direi che tantissimo lo fa il contesto, un po' come hanno detto adesso

GAFA e DAFA, [...] io vengo da una nottata di correzione esami, all'interno dello

stesso esame c'erano cose che valutavo positivamente pur non essendo dimostrazio-

ni rigorose dall'inizio alla �ne e altre in cui seccavo giù perché andavano fatte per

bene, perché erano magari conseguenze dirette di de�nizioni quindi andavano fatte.

Quindi boh, direi che il contesto fa tutto."

E per quanto riguarda la matematica NUC, da entrambe le discussioni emerge esse-

re rigoroso come condizione necessaria a�nché un argomento sia una dimostrazione:

ADMA: "[...] la dimostrazione serve a rendere rigoroso, eh, un ragionamento che è

stato fatto".

GAFA: "[...] quando è abbastanza convinto che l'a�ermazione che sta scrivendo

è un a�ermazione sensata, tenta di fare una dimostrazione un pochino più formale".

AAMA: "È vero che è bellissimo quando uno vede quel passaggio che fa tornare

qualcosa, è uno delle esperienze più grati�canti, e però questo è come il primo passo

che poi ti porta alla formalizzazione di tutto".

ADMA: "[...] te hai avuto l'idea, hai avuto l'intuizione, poi la devi formalizzare.

La formalizzazione può essere molto tecnica, molto di�cile."

NAMB: "Quindi io vedo la dimostrazione come un'applicazione rigorosissima e giu-

stissima, cioè che forse è quella più riconoscibile nella matematica in generale, però

è specchio di uno dei processi della mente umana, cioè logici, che è la deduzione".

SAFB: "[A studenti non di matematica NdA] non ho necessità di formalizzare in

maniera rigorosa tutti i risultati so, non ho necessità di dare la dimostrazione dei

teoremi".
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Per concludere il ragionamento citiamo il lavoro di Burgess e De To�oli [21] in cui

scrivono che il rigore è ciò che garantisce la correttezza di un risultato; ne consegue

che una dimostrazione rigorosa è corretta, che a sua volta implica che sistematizza

la conoscenza. Come fatto per la funzione di capire la matematica, si trova una nuo-

va possibile caratterizzazione del dimostrare nella matematica NUC: un processo

matematico che ha lo scopo di sistematizzare la conoscenza matematica

è un possibile processo dimostrativo.

3.2.3 Dimostrare per formare l'intuizione matematica.

Per Fischbein [44] un'intuizione è una conoscenza matematica auto-esplicativa, ov-

vero non che richiede l'esigenza di essere giusti�cata; risulta evidente alla mente,

cioè facilmente immaginabile, ed è intrinsecamente certa, indipendentemente dalla

percezione di quanto sia giusti�ciabile. Le intuizioni sono perseveranti e coercitive,

ossia rimangono nel tempo e sono di�cili da abbandonare, e spesso sono organizzate

in strutture simili a teorie, da cui si possono anche estrapolare nuove conoscenze.

Più intuizioni possono organizzarsi in sistemi utilizzabili come modelli per la risolu-

zione di problemi; in generale un sistema B rappresenta un modello del sistema A

se, sulla base di un certo isomor�smo, una descrizione o una soluzione prodotta in

termini di A può essere riportata coerentemente in termini di B e viceversa. Quan-

do il sistema B è un sistema di intuizioni, allora il modello è detto intuitivo. Tali

costruzioni mentali intervengono nella risoluzione di problemi e questo paragrafo

supporta l'ipotesi che dimostrare ha la funzione di costruire un modello intuitivo

per la dimostrazione o la confutazione di congetture. Innanzitutto sono presentati

alcuni interventi introduttivi sulla di�erenza che c'è tra studenti di triennale e di

magistrale.

NAMB: "[...] si presuppone abbiano già acquisito, essendo magari la laurea ma-

gistrale, [...] la capacità [...] di analizzare una dimostrazione a loro fornita senza

doverla ripercorrere passo passo e si presuppone abbiano le capacità di seguire tutti

passi di questa dimostrazione nel momento in cui la dimostrazione non presupponga
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passi molto particolari. [...] nel fare didattica [...] si dà per scontato che gli studenti

possano seguirla da soli, o che si possa adattare una dimostrazione in maniera ab-

bastanza facile. "

AAFB: "[...] io penso che una volta che loro sanno cos'è una dimostrazione puoi

anche permetterti di dire: ve la andate a vedere, non te la devo rifare tutta. Però

questa idea che è dentro all'essenza della matematica, cioè [...] avere visto una di-

mostrazione, in e�etti ce l'ho."

NRMA: "[...] se io scelgo di dimostrare un certo risultato è perché penso che [...]

la dimostrazione di quel risultato dia un valore aggiunto [...] forse questo va anche

un po' nella direzione di una matematica o di un insegnamento della matematica o

di qualche disciplina della matematica anche senza dimostrazioni, però anche ad un

livello un po' più avanzato. Cioè non siamo al primo anno della triennale, ma sia-

mo con studenti al primo, secondo anno della magistrale, che hanno una con�denza

maggiore anche con gli strumenti della matematica."

GAFA: "È più preoccupante quando sono poco in grado di muoversi, soprattutto

pensando a matematici, quando sono un po' più grandi, cioè nel senso, quando tu

arrivi coi corsi sulla magistrale e c'è di nuovo il problema che se non metti tutti i

dettagli da soli non riescono a cavarseli fuori, quello diventa un po' problematico".

Da queste risposte emerge, innanzitutto, come il dimostrare a lezione abbia un ca-

rattere fortemente didattico, poiché si riduce con l'aumento della competenza dello

studente da cui ci si aspetta una certa autonomia. Inoltre, si evidenziano quali siano

queste competenze attese, ovvero il sapere analizzare, capire e produrre dimostra-

zioni di fatti noti. Il commento di GAFA esprime una condizione precisa riguardo

al possibile fallimento di tale azione, ovvero l'incapacità dello studente di risolvere i

problemi che possono emergere nello studio o nella produzione di una dimostrazio-

ne senza l'aiuto di un esperto. Chiarito l'obiettivo, risulta interssante come questo

viene perseguito:

AAFB: "[...] devo dire e il problema è dopo capire se loro hanno recepito cosa



49

vuol dire davvero dimostrare una cosa. E secondo me, nella loro testa loro l'hanno

dimostrato, ma non è vero [...] e �nché non gliele faccio, anche un tot., secondo me

loro la di�erenza non la capiscono."

AAMA: "[...] se tu sei al primo anno e io ti devo introdurre a questa nuova co-

sa della dimostrazione, c'è bisogno che io te le faccia vedere un po'. [...] poi piano

piano cerco di accompagnarti nel fartele da sole. "

GAFA: "[...] fare alcune dimostrazioni insegna [...] delle tecniche di dimostra-

zione."

AAMA: "Perché si possa, come dire, sperare che lo studente impari a muoversi,

impari magari a scrivere una dimostrazione, io devo, direi, come minimo fornirti

un pacchetto di dimostrazioni che ho fatto per bene."

GAFA: "[Fare alcune dimostrazioni NdA] è molto importante nella matematica,

quindi diciamo o dimostrazioni che insegnano qualcosa dal punto di vista del fare

la dimostrazione oppure l'altro motivo per cui si fanno dimostrazioni è per allenare,

[...] questa è una cosa che è messa anche prima, cioè il valore della dimostrazione

è quello di ripulire l'idea. [...] Quindi fare dimostrazioni ti allena o comunque ti

impone di parlare a qualcun altro."

ADFB: "[...] c'è una gran di�erenza tra triennale e magistrale, come si diceva già

anche adesso, quindi in triennale impari cos'è una dimostrazione, [...] impari a ma-

neggiarla eccetera; In magistrale [...] ha senso mostrare una dimostrazione [...] che

usa tecniche magari nuove, innovative, diverse rispetto a quelle precedenti e quindi

che sono tecniche che tu studente poi potresti riapplicare nel tuo progetto di ricerca."

In un quadretto quasi umoristico, pare che dimostrare a lezione sia una pratica

necessaria per insegnare a dimostrare. Di certo per dimostrare a lezione non si

intende il cercare la dimostrazione di una congettura, ma il trovare dimostrazioni

a fatti già noti e ben sistematizzati. Dunque è corretto dire: dimostrare a lezione

fatti noti è una pratica necessaria per insegnare a dimostrare fatti non noti. Questa
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pratica didattica persegue proprio lo scopo di far costruire agli studenti un modello

intuitivo da usare quando si deve a�rontare un problema nuovo: si è visto che la

Dimostrazione ha una de�nizione molto vaga e per nulla operativa, così risulta ne-

cessario fornire allo studente un pacchetto di esempi di dimostrazione abbastanza

grande a cui poter attingere nel momento in cui a�ronta un problema nuovo. Quello

che si ritiene succeda è qualcosa di molto simile alla formazione di diverse concept

image [106] del concetto matematico astratto di dimostrazione. Oltre all'evidenze

esplicite riportate sopra, dalle interviste risulta che le parole intuzione e intuitivo/a

relative al fare matematica e/o dimostrare emergono 14 volte nel FGA e 8 volte

nel FGB, questi dati indicano che gli intervistati ritengono che dimostrare sia in

qualche modo legato all'intuizione matematica in generale. Ciò viene messo in evi-

denza anche dal fatto che l'intuizione matematica è ciò che si vuole salvare in una

matematica senza dimostrazioni.

ADMA: "secondo me il focus deve rimanere un po' sull'idea, anche intuitiva, che ti

ha portato a fare.. A impostare un problema in un certo modo."

DAFA: "[La dimostrazione NdA] è la parte proprio in cui a un certo punto le rotel-

line del cervello ti si mettono al posto giusto, no? E questa cosa è completamente

cancellata, secondo me, dal lavoro [...] in cui tu hai una scatola nera [Dimostratori

automatici NdA], il passaggio [...] che lo fa da solo."

POMA: "[Sull'insegnare senza dimostrare NdA] [...] io trovo molto divertente e

istruttivo usare i controesempi. [...] controesempi controintuitivi, cioè controesempi

che si possono costruire ma che sfuggono all'intuizione, casi più patologici, [...] que-

sta matematica negativa di dimostrare ciò che non è vero attraverso controesempi

credo sia molto istruttivo e anche fantasioso".

NAMB: "[...] bisogna fargli far capire loro, cioè insomma, far capire loro che il

rigore nel ragionamento è importantissimo anche per gli ingegneri. Attenzione, Eh,

non solo per i matematici, ma anche per gli ingegneri, per cui in quel caso lì e�et-

tivamente la dimostrazione secondo me sì che acquisisce veramente importanza."
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Questo legame che emerge implicitamente non è ben supportato dai dati, in quanto

le a�ermazioni risultano poco precise. Però, questa funzione della dimostrazione

in grado di domare le intuizioni è ben riconosciuta in storia della matematica. La

famosa frase di Cantor: "Io vedo, ma non lo credo", riguardo la dimostrazione sul-

l'equipotenza di un quadrato e del suo lato ne è la prova esemplare. Lolli scrive

che dimostrare può avere la funzione di sostituire, permettere, ra�nare e de�nire

l'intuizione, portando il matematico a vedere quel che non c'è, ovvero a formare una

nuova intuizione sul mondo matematico [66]. Si può �nalmente concludere che un

processo matematico con lo scopo di formare un'intuizione matematica

o un modello intuitivo sulle dimostrazioni è un possibile processo dimo-

strativo.
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4. Conclusioni e Implicazioni

Questa tesi rientra nel campo di ricerca dell'Etnomatematica, ossia il campo di ri-

cerca posto al con�ne tra storia, antropologia culturale e matematica. La letteratura

o�re un'ampia varietà di ricerche che toccano diverse dimensioni. La dimensione co-

gnitiva indaga le origini biologiche e culturali della cognizione matematica e fornisce

un supporto teorico di ampio consenso su come aspetti cognitivi e culturali siano

due facce della stessa medaglia; la dimensione concettuale si occupa di studiare come

un problema reale possa essere a�rontato in modi diversi e come ciascuno di essi

porti allo sviluppo di di�erenti astrazioni e modelli della realtà, tutti con un pro-

prio potenziale epistemologico; la dimensione storica o�re delle evidenze tratte dalla

storia della scienza riguardo a come lo sviluppo delle idee matematiche sia e�etti-

vamente in�uenzato da aspetti culturali e viceversa; la dimensione epistemologica

fornisce nuovi quadri teorici per poter parlare di matematica, ampliando il dibattito

�loso�co includendo gli aspetti culturali. La dimensione educativo-didattica si oc-

cupa di proporre nuove prospettive educative e didattiche proponendo curriculum

che non snaturarino l'insegnamento della matematica, ma che tengano conto delle

ricerche, dei principi e dei valori dell'Etnomatematica; in�ne, la dimensione politica

si concentra sullo studio degli aspetti culturali di diversi gruppi, così da riconoscere

le radici socioculturali, in modo da promuovere il rispetto alla diversità, il dialogo

interculturale e aumentare la consapevolezza riguardo la conoscenza matematica.

Questa ricerca supporta le proposte epistemologiche più recenti1 e si pone nell'in-

tersezione tra la dimensione educativo-didattica e quella politica: negli studi svolti

�nora ci si è concentrati sulle matematiche non occidentali, spesso confrontandole

implicitamente con un'idea di matematica occidentale mai formalizzata e data per

scontata. Questa ricerca promuove questa formalizzazione e vuole evidenziare quali

1Barton, [10].
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aspetti possono davvero essere dati per scontati e quali no. Il tesista, con l'obiet-

tivo di contribuire alla ricerca sugli aspetti culturali della matematica NUC, si è

interrogato su quali funzioni della dimostrazione emergessero nella pratica del di-

mostrare nel lavoro del matematico. Tenendo conto dell'ampio bagaglio di ricerche

sul tema della dimostrazione, sono stati organizzati due focus group composti da

docenti universitari per individuare quali funzioni ricopre il dimostrare nell'attività

del matematico. I dati sono stati analizzati una volta e richiederebbero almeno una

seconda analisi per poter garantire la validità delle interpretazioni date. Le risposte

che si sono raggiunte possono considerarsi comunque soddisfacenti per le nuove pro-

spettive che o�rono, anche se non rispondono de�nitivamente ad alcuna questione.

Di seguito si conclude la discussione sull'analisi dei dati e sono presentate nuove

strade di ricerca sia in didattica che in Etnomatematica.

4.1 La funzione Didattica della dimostrazione

Un interessante dato che emerge è che il termine argomentare non viene mai detto

da nessun'intervistatore. Come interpretarlo? È possibile che sia sempre sottinteso?

Nel secondo capitolo si è visto come l'essere un'argomentazione emerga dalla funzio-

ne di convincimento; i riferimenti ad essa, cercati attraverso le parole: convincere,

validare, o sostantivi derivati, si presentano solamente 5 volte nel FGA e una volta

nel FGB:

GAFA: "[...] c'è un livello di convinzione di validità del risultato, indipendente-

mente dalla dimostrazione."

POMA: "[...] cioè invece di dimostrare, si fa l'enunciato, si fa la �gura, si cer-

ca di convincersi così sul buon senso empiricamente della validità dell'enunciato".

POMA: "[Fare matematica per controesempi NdA] È una matematica senza dimo-

strazione. Però diciamo dove riesci ad ottenere un convincimento della validità

dell'enunciato, ecco".

GAFA: "[Il matematico NdA] quando è abbastanza convinto che l'a�ermazione che
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sta scrivendo è un a�ermazione sensata, tenta di fare una dimostrazione un pochino

più formale.".

GAFA: "Voglio dire: l'ipotesi di Riemann, c'è una comunità intera che pensa che

sia vera, che ha un certo convincimento sul fatto che sia vera, anche se non esiste

una dimostrazione".

NAMB: "[...] trovo che sia limitativo pensare alla matematica solo, e nessuno l'ha

detto, solo come processo di deduzione. Perché si rischia di creare delle bellissime

cose valide, ma di non aggiungere magari delle, come dire, delle altre cose che pos-

sono essere ricavate con processi logici diversi che possono essere l'abduzione".

Quest'ultimo commento è l'unico che sembra far emergere la funzione di convin-

cere/validare, anche se il riferimento scritto riguarda i processi deduttivi, non le

dimostrazioni, e come ben descritto dalle ricerche2 non basta che un'argomentazio-

ne sia deduttiva per essere una dimostrazione. Dagli altri interventi, invece, sembra

che il convincersi della validità di un risultato avvenga prima della produzione di una

dimostrazione. Così, un'interpretazione dei dati più coerente è che la dimostrazione,

vista come ultimo tassello di un lungo lavoro di ricerca matematica, o vista come

bolla di accompagnamento ad un'a�ermazione, è un processo non necessariamente

argomentativo. Dall'analisi dei focus group emergono, invece, altre convinzioni ri-

guardo il ruolo della dimostrazione nella ricerca in matematica e nella sua didattica.

Si individuano tre funzioni che potrebbero caratterizzare un processo dimostrativo

senza fare uso del concetto di argomentazione:

� dimostrare per capire la matematica;

� dimostrare per sistematizzare la matematica;

� dimostrare per formare l'intuizione matematica.

Per capire si intende far comprendere a se stessi: dimostrare, per un matematico,

svolge la funzione di spiegare a se stesso fatti e concetti matematici. Per sistema-

tizzare si intende proprio la funzione individuata da De Villier di organizzazione dei

2Toulmin [109], Duval [35], Balache� [8], [9].
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vari tipi di risultato nel sistema deduttivo della matematica. In�ne, per formare

l'intuizione non si intende solamente il contribuire alla costruzione di modelli intui-

tivi riguardo gli oggetti matematici, come ne discute Lolli, ma di costruirne anche

riguardo agli oggetti meta-matematici come la Dimostrazione. In questo senso si

individua una nuova funzione della dimostrazione che si esprime nell'azione didatti-

ca e che si pone lo scopo di insegnare il ragionamento matematico, ossia le diverse

modalità di pensiero che i matematici mettono in atto per risolvere un problema.

La si chiamerà funzione Didattica. Aver individuato questa funzione apre nuove

domande di ricerca: è vero che dimostrare a lezione forma un'intuizione a riguardo?

Se sì, quali modalità favoriscono o inibiscono questo processo di apprenimento?

4.2 Sistemi QRS e Processi CSI

I lavori di Bishop e Barton studiano quali processi matematici possono essere consi-

derati universali3, e la dimostrazione non rientra tra di essi. Questo può essere dovu-

to alla visione tradizionale dell'accostare dimostrazione ad argomentazione: se una

popolazione non ha la tradizione di argomentare alcuni fatti, allora non dimostra.

Questo ragionamento pare molto simile a: se una popolazione non ha sviluppato

un sistema assiomatico, allora non fa matematica; che è proprio ciò che le ricer-

che in Etnomatematica confutano. Questa tesi mostra come la dimostrazione possa

essere vista come un processo non argomentativo e caratterizzato dal suo ruolo nel-

la comprensione, sistematizzazione e formazione di intuizione della disciplina. Tali

funzioni potrebbero essere, per la pratica scienti�ca matematica e la dimostrazione,

ciò che quantità, relazioni e spazialità sono per i sistemi QRS e la matematica NUC;

e potrebbero essere una buona caratterizzazione per individuare un nuovo processo,

detto CSI (Capire, Sistematizzare, formare l'Intuzione), comune a più culture e così

de�nito: un Processo CSI è un processo matematico, ossia una pratica svi-

luppata in un sistema QRS, che esercita le funzioni di: capire il sistema

QRS, sistematizzare il sistema QRS e formare l'intuizione riguardo al si-

stema QRS. Dove formare l'Intuizione riguardo al sistema QRS signi�ca costruire

l'intuizione sugli oggetti del sistema e sui possibili processi CSI accettati dal gruppo;

la Dimostrazione (NUC) è un Processo CSI e le dimostrazioni sono processi CSI.

3Ossia condivisi da tutte le culture conosciute.
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Chiaramente questo singolo studio non prova l'universalità di tali processi, ma può

fornire un nuovo quadro teorico per poter parlare di dimostrazione in contesti al di

fuori della matematica NUC.

Figura 4.1: Schema rapporto Processo CSI - Dimostrazione NUC

Un possibile sviluppo di ricerca può essere proprio quello di cercare questi pro-

cessi in sistemi QRS diversi dalla matematica NUC.
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