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Introduzione

L’Etnomatematica studia il legame che c¢’é tra cultura e sviluppo della matematica,
e si occupa di indagare pratiche, artefatti, valori e teorie matematiche che emergono
in diversi gruppi culturali. Come disciplina, nasce per studare la matematica nelle
popolazioni indigene, mentre oggi si sta spostando verso quella occidentale, o come
verra chiamata in questa tesi, matematica NUC (Near Universal Conventional). Cio
che la differenzia da altre matematiche é I'eredita lasciata dagli antichi greci, che si
sono distinti per aver sviluppato il pensiero astratto e introdotto le dimostrazioni.
Proprio la pratica del dimostrare é divenuta il principale strumento epistemico ad
uso dei matematici, ma resta un fatto umano culturalmente situato, che ¢ mutato
nel tempo e si ¢ adattato ai valori culturali di epoca in epoca. Studiare la dimo-
strazione significa studiare un tratto identitario, forse il principale, della cultura
matematica occidentale. In questa tesi, nel capitolo uno, si fornisce una panoramica
sui risultati pin rilevanti dell’Etnomatematica, dividendoli per le dimensioni di cui
si occupa: cognitiva, concettuale, storica, epistemologica, educativo-didattica e po-
litica; cio permette di comprendere e formulare la direzione di ricerca intrapresa: lo
studio della cultura matematica che si esprime nel contesto accademico occidenta-
le. Successivamente, si riporta il problema didattico riguardante la dimostrazione,
approfondendo il suo legame con 'argomentazione e le funzioni che esercita; alla
fine di questo capitolo si hanno tutte le conoscenze per comprendere e formulare la
domanda di ricerca: quali funzioni della dimostrazione emergono dalla pratica di-
dattica e di ricerca della matematica NUC accademica? Nel terzo capitolo, si prova
a rispondere alla domanda attraverso un’indagine riguardo le convizioni di alcuni
docenti di matematica su ruoli e funzioni ricoperti dalla pratica del dimostrare nel-
la ricerca e nella didattica universitaria di oggi. Per fare cio, si sono organizzati

due diversi focus group, ricreando una micro-comunita di matematici, e sono state



somminstrate le seguenti domande:
1. Come fare matematica senza dimostrare?
2. Come insegnare matematica senza dimostrare?

Dall’analisi delle trascrizioni e delle registrazioni delle discussioni é stato possibile
individuare tre funzioni caratterizzanti del dimostrare come pratica matematica: il
capire, inteso come far comprendere a se stessi; il sistematizzare, ossia I'organizzare
i risultati ottenuti nel sistema deduttivo della matematica; e il formare I'intuizio-
ne, per la quale non si intende solamente il contribuire alla costruzione di modelli
intuitivi riguardo gli oggetti matematici, ma il costruirne anche riguardo agli og-
getti meta-matematici, come la Dimostrazione. In questo senso, si individua una
nuova funzione, qui chiamata Didattica, che si esprime nell’azione didattica e che
ha lo scopo di insegnare il ragionamento matematico, ossia le diverse modalita di
pensiero che i matematici mettono in atto per risolvere un problema. Un secondo
risultato altrettanto interessante & la quasi totale assenza del riferimento al ruolo
argomentativo che la dimostrazione dovrebbe ricoprire. Questo suggerisce che la di-
mostrazione possa essere vista come un processo non argomentativo e caratterizzato
dal suo ruolo nella comprensione, sistematizzazione e formazione di intuizione nella
disciplina. Questo risultato apre nuove strade nello studio dell’Etnomatematica, in
quanto fornisce un quadro teorico per ricercare processi dimostrativi in culture in

cui ’argomentazione per deduzione inferenziale non si ¢ diffusa.



1. Introduzione all’Etnomatematica

1.1 Cosa si intende con Etnomatematica

L’Etnomatematica ¢ ispirata dagli studi pitu generali di Etnoscienza, che iniziano a
svilupparsi agli inizi degli anni sessanta come ricerche delle pratiche scientifiche di
tribu indigene. Mentre diverse discipline scientifiche come ’astronomia, la botani-
ca e la chimica sono evidentemente influenzate dall’ambiente che offre osservazioni,
piante e materiali differenti, la variabilita della matematica é piu difficile da cogliere,
poiché ritenuta astratta, nonché stendardo di universalita, oggettivita e neutralita.
Ciononostante, gli studi portati avanti da antropologi mostrarono evidenti differenze
tra le pratiche matematiche sviluppate in diversi contesti culturali. Tali studi spin-
sero D’Ambrosio a porre le basi di una nuova disciplina che si occupasse di studiare
la mutua influenza tra cultura e matematica. Cosi, nel 1985 pubblico un impor-
tante articolo [25] in cui defini 'Etnomatematica come quel campo di ricerca che si
pone al confine tra storia e antropologia culturale, e che ha come oggetto di studio
i sistemi numerici, spaziali e relazionali. Essa si fonda sul quadro teorico in cui la
cultura é definita come l'insieme delle strategie di azione condivise dalla societa per
rispondere alla realta che scaturisce dagli eventi generati dalle azioni della societa

stessa. D’Ambrosio chiarisce questo ciclo con uno schema:
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Figura 1.1

In questa tesi il ruolo occupato dalla societa sara talvolta preso da gruppi cultura-
li specifici. L’articolo descrive, poi, un piano di ricerca con I'obiettivo di identificare
uno statuto epistemologico per I’Etnomatematica e ritiene necessario rispondere alle

seguenti domande per il suo raggiungimento:

1. Le pratiche e le soluzioni dei problemi come passano da essere ad hoc a

diventare metodi?
2. T metodi come diventano teorie?
3. Le teorie come evolvono in invenzioni scientifiche?

Il programma etnomatematico proposto da D’ Ambrosio é stato accolto da numerosi
ricercatori. Tra di essi troviamo Milton [89], che prima lo presenta: "this program is
concerned with the motives by which memebrs of specific cultures (ethno) developed,
over history, the measuring, calculating, inferring, comparing and classifying tech-
niques, and ideas (tics) that allow them to model natural and social enviroments and
contexts in order to explain and understand these phenomena (mathema).” E poi
descrive sei importanti dimensioni che si sono sviluppate dal lavoro di D’Ambrosio al
2016: cognitiva, concettuale, storica, epistemologica, educativo-didattica e politica.

Esse sono collegate tra di loro con l'obiettivo di analizzare le radici socioculturali



della conoscenza matematica. Le ricerche in matematica che si intrecciano con una
o piu di esse si raccolgono tutte sotto la disciplina Etnomatematica. Si procede ora

approfondendo ciascuna dimensione.

1.1.1 Dimensione Cognitiva

La conoscenza matematica viene acquisita, accumulata, sistematizzata e dissemina-
ta di generazione in generazione. Cosi, le idee matematiche che stanno alla base di
essa come la quantificazione, la misurazione e lo studio di relazioni; queste idee han-
no uno stretto legame con la societa e la cultura all'interno delle quali si sviluppano.
In questa tesi i termini congizione matematica, processi congitivi matematici e pen-
stero matematico saranno usati come sinonimi laddove non ¢ indicato diversamente,
e faranno riferimento a tutti quei processi mentali che coinvolgono 'acquisizione, la
comprensione e I'uso della conoscenza matematica, che comprende funzioni congi-
tive come l'elaborazione numerica, il ragionamento spaziale e il pensiero astratto.
D’Ambrosio gia nel 1985 spiega come lo studio del legame tra cultura e matematica
sia di fondamentale importanza alla luce delle ricerche che legano i processi cognitivi
all’ambiente culturale citando il lavoro di Lancy: Cross-cultural studies in cognition
and mathematics. Academic Press, New York (1983). Oggi, dopo piu di quaran-
t’anni, ne abbiamo numerose conferme. In generale sui processi cognitivi, Nisbett

[77] riporta come ci siano buone ragioni per credere alle seguenti proposizioni:

1. Alcuni contenuti cognitivi sono universali: i bambini nascono pronti a svilup-
pare particolari modelli della realta, tra come teorie della meccanica, teorie

dei tipi naturali e la teoria della mente.

2. Tali contenuti universali pongono dei vincoli alla diversita del pensiero umano

e alla varieta delle culture possibili.

3. Alcuni processi cognitivi considerati di base sono molto suscettibili al cambia-

mento anche per gli adulti.

4. Diverse culture differiscono notevolmente nel tipo di procedure inferenziali che

usano tipicamente per risolvere uno stesso problema.

5. Le differenze culturali nei processi cognitivi sono cosi legate alle differenze

culturali che risiedono nelle assunzioni di base sulla natura del mondo che la



tradizionale distinzione tra contenuto e processo inizia a sembrare in qualche

modo arbitraria.

6. Le pratiche culturali incoraggiano e sostengono certi tipi di processi cognitivi,

che a loro volta perpetuano le pratiche culturali.

A sostegno di questi punti Nisbett, riporta delle ricerche che mostrano come i fe-
nomeni culturali siano modellati da fattori cognitivi. Ad esempio, i lavori di Lévy-
Strauss |69], |70] descrivono come i miti siano costruiti su metafore del contrasto,
come quelle tra natura e cultura, tra bene e male, tra crudo e cotto. E che in ogni
societd umana si usano il corpo umano e le differenze tra maschio e femmina co-
me simboli per rappresentare diverse relazioni sia del mondo naturale che di quello
sociale. La teoria generale sui vincoli che la cognizione pone sulla cultura fu poi
esposta da Sperber e dai suoi colleghi antropologi [101], [102], [103]. Essa spiega le
caratteristiche culturali in temini di "ecologia delle credenze", secondo cui, per via
di condizioni ecologiche, ci sono idee umane che risultano "piu facili" da pensare e
da comunicare. Tali idee si sviluppano in tutte le culture e sono facilmente trasmis-
sibili da una cultura all’altra. Un esempio é riportato da Berlin e colleghi [14], [12]
che evidenziano come ci sia una consistenza sul come le persone categorizzano gli
organismi. Nello sviluppare tale tema, Atran [5], argomenta che tutti i gruppi umani
usano categorie popolari-biologiche (folk-biological categories) che sono basate sulla
nozione di specie. Risulta che la classificazione tassonomica per gruppi di ordine
dal minore al maggiore (specie, genere, famiglia, etc) sia la stessa per culture tanto
distanti come quella degli studenti americani e quella dei Maya analfabeti. Altri
lavori come quelli di Boyer [19] e di Hirschfield [56], [57] indagano relativamente le
credenze religiose e la classificazione dei gruppi sociali. Queste ricerche convincono
sul come la cultura sia modellata da fattori cognitivi. Nisbett riporta evidenze an-
che a sostengo del viceversa: come i fenomeni cognitivi sono modellati dalla cultura.
Nel suo articolo riporta che in psicologia si definisce Schema una struttura di cono-
scenze che governano il pensiero attraverso ’attenzione, la ritenzione e I'uso delle
informazioni di cui si & a disposizione; ne & un esempio la sequenza di azioni che
portano uno studente da casa a scuola: spegnere la sveglia, alzarsi dal letto, prepa-
rarsi per uscire, andare alla fermata dell’autobus, etc. Partendo da questo concetto,

D’Andrade [28] introduce I'idea di schemi culturali come dei modelli di base che co-



stituiscono un sistema di idee, pratiche e simboli che organizzano e danno senso alla
realta. Gli schemi culturali che sono condivisi intersoggettivamente in un gruppo
sono conosciuti come modelli culturali di quel gruppo [27], [58] e [96]. Tale oggetto
teorico aiuta a organizzare e spiegare come mai il contenuto della mente umana pos-
sa differire radicalmente di cultura in cultura e apre la strada all’indagine sul come
i modelli culturali possano influenzare effettivamnte i processi congitivi con cui le
persone conoscono il mondo. Una delle ipotesi pitt famose su come la cultura possa
influenzare il pensiero é conosciuta come Sapir- Whorf Hypotesis |114], che prende in
considerazione il linguaggio come attivita umana che fa parte di un qualche modello
culturale. A sostegno di quest’ipotesi, Nisbett riporta tre importanti filoni di ricer-
che. Tl primo riguarda i lavori di Berlin e Key [13] che esaminarono la classificazione
dei colori in diverse culture, ripresi in seguito da Heider e Oliver [55] e confermati
sperimentalmente da Roberson, Davies e Davidoff [38], 1 quali offrirono evidenze che
uno scarso rendimento in fatto di memoria e classificazione, pit che a una mancanza
di istruzione formale, era dovuta ad una poverta lessicale, e dunque ad un Modello
Culturale di linguaggio. Il secondo filone di ricerca riguarda il modo in cui la cate-
goria del numero viene resa grammaticalmente: lavori di Carroll e Casagrande [22]
e gli studi di Lucy e dei suoi colleghi [67], [68] esaminarono come il pensiero fosse
influenzato dall’utilizzo dei numeri nella grammatica della costruzione delle frasi. In
inglese (In modo uguale all’italiano NdA) 'aggettivo numerale pud accompagnare
direttamente il soggetto o 'oggetto che accompagna (es., una candela), mentre nella
lingua Maya Yucateca e in molte altre come il cinese e il giapponese, gli aggettivi
numerali sono sempre accompagnati da una descrizione del materiale che compone
l'oggetto (es., una cera lunga e sottile). L’esperimento proposto da Lucy richiedeva
di classificare degli oggetti attraverso delle prove non verbali e i risultati mostrarono
come i parlanti Yucatec preferissero una classificazione basata sui materiali, mentre
quelli inglesi optarono per una classificazione basata sulla forma. L’ultimo filone é
stato portato avanti da Levinson [65] e colleghi, e si concentra sul diverso modo di
riferirsi alle coordinate spaziali. In particolare, le lingue indo-europee utilizzano na-
turalmente coordinate corporali (es., la donna é a destra della macchina), mentre il
linguaggio Guugu Yiimithirr (una lingua aborigena australiana) preferisce utlizzare
coordinate cardinali (es., la donna ¢ a ovest della macchina). Utilizzando sempre dei

test non linguistici per misurare la capacita di localizzare gli oggetti e manipolando



i sistemi di riferimento con delle rotazioni si ¢ osservato che i parlanti Guugu Yiimi-
thirr non erano influenzati dalle variazioni ed erano in grado di localizzare gli oggetti
con precisione, al contrario dei parlanti inglesi, che trovarono difficolta ad orientarsi
in un sistema ruotato. Nello specifico dei processi cognitivi matematici, lo studio é
stato altrettanto ampio e proficuo. Ricerche come quella portata avanti da Wynn in
[117] mostrano che la cognizione matematica appare nei bambini fin dalla piu tenera
etd, mentre studi come quelli di Deahene e colleghi [32] o quelli di Rugani et all.
[91], [86] ne individuano radici biologiche sia nell'uomo che negli animali. D’altra
parte la storia della matematica ci mette davanti alla realta che diverse popolazioni
abbiano sviluppato sistemi numerici che differiscono sia nella scelta della base che
nel sistema di rappresentazione. Ad esempio, gli antichi babilonesi utilizzavano la
base 60, i Maya e gli Aztechi la base 20, e la rappresentazione posizionale é nota
essere stata introdotta in Europa solo nel XIII secolo da Fibonacci, che la apprese
dalle popolazioni arabe. Tali differenze sono spiegabili attraverso l'ipotesi che la
cultura influenzi in modo sostanziale il pensiero matematico. A sostegno di questa
idea e in conclusione di questo paragrafo si riporta un importante studio dovuto a
Saxe [92], il cui obiettivo é quello di indagare il contrasto che c¢’é tra la matemati-
ca scolastica occidentale e quella emergente da attivita non scolastiche. Lo studio
mostra che bambini venditori di caramelle in brasile sviluppano una comprensione
della matematica attraverso le loro attivita fuori da scuola differente da quella che
si sviluppa in un contesto scolastico di non venditori. Nella propria attivita essi
si ritrovano a dover affrontare le seguenti sfide pratiche: rappresentazione di valori
numerici grandi, aritmetica con unita di misura grandi, confronto tra rapporti e
adeguamento dei prezzi di compravendita dovuti all’inflazione. Saxe esamina in che
modo vengono risolti problemi matematici collegati ad esse e riporta come i vendito-
ri di caramelle utilizzino un sistema matematico proprio ispirato strutturalmente al
sistema valutario che utilizza la moneta corrente come medium di rappresentazione
numerica e mette in evidenza che tale sistema si distanzia sempre di piu da quello
scolastico dei coetanei non venditori con 'aumentare della complessita dei compiti.
Inoltre, mostra che ’educazione scolastica influisce sulla competenza matematica
che copre 'utilizzo simbolico dei numeri, ma non sulla correttezza della soluzione
dei problemi, sostenendo I'ipotesi che i venditori manifestino processi cognitivi ma-

tematici differenti da quelli classici e che tale manifestazione sia fondamentalmente



dovuta al contesto socio-culturale in cui crescono.

1.1.2 Dimensione Concettuale

Lo sviluppo della matematica ¢ strettamente collegato ai bisogni e alle sfide a cui un
determinato gruppo culturale deve rispondere nella vita di tutti i giorni per poter
sopravvivere. La dimensione concettuale comprende quali pratiche, metodi e teorie
matematiche emergono dal gruppo per rappresentare la realta. Il pit antico stru-
mento matematico a testimonianza dell’intreccio tra realta e concetto matematico é
I'osso di Lebombo: una fibula di babbuino incisa con 29 tacche. Risultati di ricerche
[37] lo fanno risalire a circa 44 mila anni fa e un’ipotesi riguardo al suo scopo avan-
zata da Overmann [82] prevede che possa essere servito per tenere conto del tempo
che scorre, in alternativa alla piu diffusa e semplice che suggerisce fosse utilizzato
per contare il bestiame. In entrambi i casi, 'osso di Lebombo mostra come alcuni
aspetti della realta possano essere rappresentati attraverso la pratica matematica
del conteggio. Proseguendo con la storia, lo storico greco antico Erodoto [13], ha
tramandato 'ipotesi ancora oggi sostenuta secondo cui la geometria in Egitto fosse
nata per la necessita di dover prevedere e arginare le esondazioni del Nilo, cosi da
proteggere il raccolto. Inoltre, si puo notare un evidente parallelismo tra la pratica
degli agrimensori e alcuni postulati e definizioni degli Elementi di FEuclide che, a
opinione diffusa, segnano la nascita della matematica astratta. Ad esempio, Giusti
[16] scrive che le tecniche introdotte dagli agrimensori egizi e utilizzate poi fino al
XVII secolo sono principalmente due: la prima ¢ il tendere una fune, la seconda
é la rotazione di una fune tesa fissata ad un chiodo per un’estremita. Tracciare
una linea retta, per Euclide, significa proprio tracciare una linea tra due estremi
in modo che giaccia uniformemente tra di essi; proprieta evidentemente analoga
all’'uniformita che una fune assume nel momento in cui viene tesa tra due chiodi
nel terreno. Nel caso della circonferenza, la sua definizione é ridotta esattamente
alla proprieta di equidistanza tra punti e centro che risulta evidente dalla pratica
dell’agrimensura'. Si pud dunque sostenere che la nascita e la struttura della stessa
matematica ellenistica’ siano state influenzate dalle sfide che il popolo greco doveva

affrontare per poter sopravvivere. E importante sottolineare 1’aggettivo ellenistica,

!Per una lettura degli Elementi e delle definizioni precise si suggerisce il lavoro di Healt [54]
2(i si riferisce a quella raccolta negli Elementi di Euclide



10

in quanto uno degli obiettivi dell’Etnomatematica ¢ proprio quello di mostrare come
esistano diverse matematiche e che ne potrebbero esisterne una varietd infinita in
potenza. Per quanto riguarda la matematica occidentale, cioé quella che discende
dall'impostazione euclidea, si possono indivudare numerosi casi in cui le pratiche e
le teorie matematiche si sono formate per affrontare le sfide emergenti dalla realta.
A sostegno di cio, Barton [l1] riporta come diversi gruppi culturali possano svi-
luppare differenti sistemi matematici di rappresentazione; di seguito ne ¢ illustrato
un esempio. Generalmente, per individuare un oggetto sul piano si utilizzano due
coordinate, metodo utilizzato fin dal tempo degli antichi greci®. Da un punto detto
origine si tracciano due rette perpendicolari; dunque, la posizione del punto ¢ de-
terminata dalle misurazioni della sua distanza dall’origine lungo la verticale e lungo
I'orizzontale. Un altro modo, che prevede pur sempre un’origine, ¢ il sistema di
coordinate polari, che utilizza I’angolo direzionale della retta che passa per I'origine
e il punto, e la loro distanza lungo tale retta. Questi sistemi possono essere entrambi
trasposti nel mondo della matematica attraverso coppie ordinate di punti apparte-
nenti ad un insieme che dipende dall’origine’. Ispirandosi al contesto Maori, invece,
Barton si immagina un sistema influenzato da una cultura in cui la localizzazione
degli oggetti sia a due osservatori, nel quale la posizione di un punto ¢ individuata

dagli angoli delle rette che passano per le due origini.

P.(c(f)
o

Figura 1.2

In questo caso, nella matematizzazione non c’é equivalenza di struttura con il

3Anche se in modo diverso. Si puod consultare [18] a pagina 185 per 1'uso delle coordinate di

Apollonio di Perga.
4Cambiare I’origine, cambia il significato di ogni elemento.
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sistema a coordinate ereditato dalla tradizione ellenistica, in quanto ogni insieme
di coppie di coordinate dipende da due origini e non da una. Dunque, il concetto
matematico che emerge dalla sfida di individuare la posizione di un oggetto nello
spazio puo svilupparsi in diversi modi. Il sistema a due osservatori & talvolta uti-
lizzato anche nella matematica occidentale; Barton si interroga sulle ragioni per le
quali si sia preferito un sistema piuttosto che ’altro e propone di ricercare la rispo-
sta nelle differenze culturali. L’elemento della cultura maori riportato per spiegare
il loro possibile sistema di localizzazione ¢ I'attenzione al punto di vista dell’inter-
locutore che si riflette prima nella lingua e poi nel sistema matematico. Nel loro
vocabolario, esistono tre aggettivi dimostrativi per indicare oggetti che sono vicino
a chi parla, lontano da chi parla, o vicino a chi ascolta. In inglese, invece, esistono
solamente this e that per indicare oggetti vicini o lontano da chi parla. Tenendo in
considerazione anche l'italiano la differenza sussiste: la parola codesto, che asserve
proprio alla funzione di localizzare oggetti vicini a chi ascolta, ha origine latina e
non greca, dunque non puo aver influenzato la nascita delle coordinate utilizzate
da Apollonio e poi riprese nel XVII secondo da Descartes e Fermat. Per quanto
riguarda I’elemento della storia occidentale che puo avere influenzato la nascita di
un sistema ad una sola origine, invece, lo si puo individuare nell’antica grecia, in
particolare nella ricerca filosofica di cui ¢ stata culla. Gli scritti classici greci sono
testimonianza della ricerca attiva nel trovare un’origine per tutte le cose, ad esempio
Talete credeva fossea ’acqua, Anassimene I’aria ed Eraclito il fuoco. Tra le risposte
a questa domanda esistenziale ritroviamo anche quella data dalla scuola pitagorica,
la quale individua il numero come ente fondamentale. Tale credenza fu un vero
e proprio stress concettuale, come direbbe Wilder [115], che porto alla costruzio-
ne di nuova conoscenza matematica conseguentemente alla scoperta di grandezze
incommensurabili. La tradizione della ricerca di un ente solo in grado di spiegare
I'universo ¢ stata poi ripresa da Descartes nel suo famoso Discorso sul Metodo [33],
fissando una visione egocentrata per la comprensione e la descrizione dell’universo;
fissando un’origine per la descrizione di cio che ci circonda, come gli oggetti e la loro

posizione.
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1.1.3 Dimensione Storica

La dimensione concettuale si interseca inevitabilmente con quella storica, che si occu-
pa di esaminare come la conoscenza matematica si ponga nelle esperienze individuali
e collettive. In questa direzione si studia come 'umanita ha analizzato e spiegato
fenomeni matematici nel corso della storia. Se non fosse che la maggior parte delle
ricerche sulla storia della matematica sono eurocentriche, I’Etnomatematica sarebbe
riconducibile allo studio della storia contemporanea. Cio risulta necessario per com-
prendere il contributo dato dalle persone nello sviluppo della conoscenza matematica
e viceversa di come la cultura dei matematici possa influenzare il lavoro dei singoli.
Un primo esempio che si vuole riportare riguarda lo sviluppo dei numeri complessi.
L’origine del concetto risale al 1545, anno in cui Cardano pubblica I’Ars magna. In
quest’opera sono studiate le soluzioni di tutte le equazioni di terzo grado, ma non
riesce a trattare in modo completo i casi che, nel processo di risoluzione, richiedono
I'estrazione di radici quadrate di numeri negativi. Cardano studio il problema per
pitt di vent’anni senza trovarne una soluzione, poiché la sua attenzione era focalizza-
ta sul trovare quale segno attribuire a tali quantita in modo che le usuali regole del
calcolo tra numeri fossero valide, non chiedendosi mai se effettivamente tale segno
potesse esistere. Sara con Bombelli e la sua introduzione di nuovi segni matematici
che si combinano in modo nuovo che si metteranno le basi per un nuovo paradig-
ma, scardinando l'idea che le radici di numeri negativi debbano avere dei segni che
seguano le regole del calcolo tra numeri reali. E interessante notare che Cardano
fosse uno studioso immerso in una comunita accademica, mentre su Bombelli non
ci sono fonti che certificano alcuna preparazione matematica, ma solo ingegneristica
[63]. Nonostante non sia 1'unico fattore, ¢ fondamentale osservare come i diversi
contesti culturali in cui sono cresciuti abbiano inevitabilmente influenzato la produ-
zione di conoscenza matematica: Cardano sviluppo la teoria delle equazioni in modo
eccellente, seguendo le regole del contesto accademico, mentre Bombelli, al di fuori
di esso, ne amplio le vedute risolvendo un problema durato decenni e scostandosi
dalle regole ritenute inviolabili. La rinuncia a regole che appaiono ovvie e necessarie
alla matematica non ¢ un evento raro, la stessa tradizione dei numeri complessi €
proseguita con la loro rappresentazione geometrica dovuta a Argand e Gauss, che

risulta particolarmente efficace per trattare le rotazioni di oggetti bidimensionali.



13

E tale idea fu poi ripresa da Hamilton che voleva costruire un analogo dei numeri
complessi in modo che si potessero trattare con pit semplicitd anche le rotazioni
nello spazio. Cosi, furono introdotti i quaternioni, che trovarono posto nella cono-
scenza matematica solo grazie alla rinuncia della proprieta commutativa. Queste
importanti tappe della storia dell’algebra sono esemplari per capire come la cultura
della, comunita matematica influenzi il pensiero dei matematici e come i contribu-
ti dei singoli possano inserirsi nel processo di costruzione di conoscenza attraverso
I’abbandono di paradigmi pre esistenti e 1’accoglienza di nuovi punti di vista, in
modo simile a quel che scrive Kuhn per tutte le altre scienze [61]. Questo fenomeno
si puo osservare anche al contrario nella tortuosa storia della geometria, nella quale
Iaccettazione effettiva delle geometrie non euclidee dovette aspettare che 'intera
comunitd matematica ripensasse al proprio statuto disciplinare. Infatti, la convin-
zione che il quinto postulato di Euclide fosse necessariamente vero accompagno i
matematici dai greci fino alla seconda meta dell’Ottocento. I tentativi di dimostrar-
ne la validita furono numerosi e fallimentari. Il pit famoso é dovuto a Saccheri, il
quale costrul un’eccellente teoria non euclidea, che ritenne errata poiché andava in
contrasto con l'idea che 'universo, a priori, non potesse che essere euclideo. Dopo
di lui, anche i lavori di Bolyai, Gauss e Lobacevskij non furono accettati finché Bel-
trami, appoggiandosi alla teoria delle superfici di Reimann, non ne dette una base
convincente [24]. Essa, pero, rimase lo stesso avvolta nella discussione del dubbio,
poiché il matematico italiano, a tutti gli effetti, costrui un modello di geometria
iperbolica situato nello spazio euclideo. Un lavoro analogo a quello che Menelao di
Alessandria fece per la geometria sferica in Sphaerica [19] piu di 2000 anni fa, in cui
il matematico alessandrino descrisse le proprieta di una geometria sferica all’interno
di uno spazio euclideo. La differenza tra Beltrami e Menelao puo essere vista di
certo in cid che studiano e nel linguaggio che adottano, ma ¢ il contesto culturale
che piu di tutto ne ha determinato I'influenza. Infatti, la pseudosfera di Beltrami fu
considerata da Ii a poco un ottimo esempio di modello matematico, concetto svilup-
patosi proprio a cavallo del 1900 e fondamentale per il cambio di paradigma, grazie
al quale si é rinunciato al senso euclideo di spazio per poter accettare nuovi tipi
di geometrie. In conclusione, ripercorrere questi fatti storici mette in luce come lo
sviluppo della matematica sia simile a quello di qualsiasi altra scienza: affinché la

disciplina possa svilupparsi, la sua comunita deve mettere in discussioni paradigmi



14

per poterne accettare di nuovi. La profonda differenza, pero, ¢ che nel XX secolo gli
studi sulla logica fatti da Godel [100] e Tarski [107] sigillano questa pratica culturale
a teorema, portando a compimento il cambiamento di concezione della matematica
suggerito da Hilbert e dai formalisti all’inizio del 1900 ed escludendo, di fatto, che
la matematica debba appoggiarsi ad assiomi veri per poter avere terreno fertile di
sviluppo. Cosi, oggi, I’accettazione di nuove idee matematiche non ¢ ostacolata dalla
necessita di ottenere un riscontro vero nella realta e teorie innovative che poggiano
su principi controintuitivi come la non universalita della commutativita o la nega-
zione del V postulato di Euclide trovano meno difficolta nel destare 'interesse della
comunita scientifica. Dunque, anche matematiche non occidentali, come quelle inte-
ressate dagli studi etnomatematici dovrebbero essere studiate e indagate per il loro
potenziale epistemologico, inteso come potenzialita di produrre conoscenza, anche

se si sviluppano in modo differente dalla matematica occidentale.

1.1.4 Dimensione Epistemologica

Un problema che emerge é come giustificare questo potenziale epistemologico in un
ambiente in cui la neutralita e I'oggettivita della matematica occidentale sono valori
condivisi dalla quasi totalita della comunita scientifica. Dalle ricerche riguardanti
la costruzione dei concetti matematici, sia nella contemporaneita che nella storia,
emergono delle domande riguardo a come si generano, organizzano e disseminano i

sistemi di conoscenza matematica. Alcune domande guidano I'epistemologia:
e Come si creano metodi e sperimentazioni a partire da pratiche e osservazioni?
e Come ci si sposta dalle sperimentazioni e i metodi, alla riflessione e astrazione?
e Come si continua fino a costruire nuove teorie?

Esse vanno riflettute secondo gli obiettivi e i fondamenti dell’Etnomatematica che
aggiungono al dibattito la componente culturale. La sfida é quella di pensare ad
una filosofia che contempli matematica e cultura senza rinunciare ai principi di
uguaglianza culturale rispetto alla veridicita e all’oggettivita. Barton [10] spiega
come mai le correnti filosofiche attuali non risultino adeguate. Le visioni assolutiste
come Platonismo, Logicismo, Intuizionismo e Formalismo risultano immediatamen-

te incompatibili con la visione a molte matematiche. Infatti, se assumessimo una
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visione realista, per cui la verita matematica ha valore universale a priori, si po-
trebbe inserire 'aspetto culturare assumendo che le diverse visioni della matematica
siano dovute all’inadeguatezza dell’'uomo a comprendere a pieno tali verita della
matematica. Dunque, ne conseguirebbe che la matematica sia un’approssimazione
culturale della verita. Un’implicazione di questo fatto sarebbe l'accettazione del-
la visione eurocentrica e colonialista per la quale esistono matematiche primitive e
matematiche sofisticate. In modo simile anche le scuole logiciste, intuizioniste e for-
maliste che spostano 'attenzione dal "Cos’é la matematica?" a "Come siamo sicuri
delle verita matematiche?" [110], sottintendono rispettivamente che ci sia una logi-
ca, un’intuizione o una forma di comprensione universali grazie alle quali, una volta
posti dei fondamenti ben sicuri per la matematica, si possano derivare conseguenze
vere. Anche in questo caso, si dedurrebbe l'esistenza di una matematica primitiva
e un’altra sofisticata, discriminate da quanto una cultura influenzi I’espressione di
logiche, intuizioni e forme di comprensioni tanto pitt vicini a quelle universali. Per
quanto riguarda le visioni relativiste, emergono altre incompatibilita. Ad esempio, il
relativitsmo storico [108] spiega come 'oggettivitd matematica sia illusoria e dipen-
dente dal contesto storico, e assume che i cambiamenti concettuali siano progressivi e
direzionati verso una pii autentica oggettivita, rendendo quella passata inadeguata.
Questa filosofia non tiene conto del relativitsmo culturale, che per I’Etnomatematica
significa che il progresso matematico avviene in diverse direzioni egualmente valide
e oggettive senza che se ne elegga una a migliore. La differenza con il relativismo
storico sta nel voler considerare matematica sia quella accademica occidentale, sia
quella Maori, o anche quella usata dai carpentieri. Allo stesso modo, altre visioni
come il neo-realismo [87], [71], il fallibilismo e il quasi-empirismo [110] accettano
che possano esserci pitt matematiche, ma che la loro coesistenza prima o poi evolve-
ra un conflitto dal quale ne emergera una. Cosi, ogni cultura matematica sarebbe
solo un’ombra di quella vera. Che sia ricerca di verita, di oggettivita o di senso,
I'idea che esista una matematica ideale a cui tendere permea le maggiori scuole di
filosofia matematica e questo &€ un problema per gli etnomatematici; poiché, come
spiegato da Bishop [17], la matematica neutrale e universale é 'arma segreta del co-
lonialismo e dell’egemonia culturale. Dunque, il problema epistemologico risulta di
fondamentale importanza per gli etnomatematici, e Barton [10] ne propone uno. Per

poter parlare di matematica introduce il concetto di sistema QRS come sistema di
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conoscenze per dare significato alle quantita, alle relazioni e allo spazio. Dopodiché
scrive della matematica come l'insieme dei diversi sistemi QRS che si sviluppano in
diversi gruppi culturali e come la matematica occidentale sia uno di essi. Quest’ul-
tima riveste un ruolo importante nelle discussioni di Etnomatematica e gli ¢ dato
il nome di matematica NUC (Near Universal Conventional). Ora che si ha questo
nuovo modo di pensare la matematica, si hanno diverse domande a cui rispondere.
Per prima cosa si deve risolvere I’egemonia guidata da un’universalita; due popoli
con diversi sistemi QRS che si incontrano influenzeranno vicendevolemente i propri
sistemi; potrebbe emergerne uno nuovo o uno potrebbe prevalere sull’altro, ma non
perché uno di essi sia piu vero dell’altro, ma per un processo umano e culturale
che si sviluppa internamente all’incontro tra i due gruppi. Un secondo problema
riguarda 'ontologia degli oggetti matematici: essendo un sistema QRS un modo per
dare senso alle cose, ci si puo riferire alla filosofia di Wittgenstein [116], per la quale
gli oggetti matematici esistono nel linguaggio e non al di fuori di esso. Dunque la
matematica non riguarda lo studio di qualcosa, ma ¢ un modo di pensare a quel
qualcosa. Ci si puo riferire ad essa come il modo in cui diamo senso alla tecnologia:
una diga non resiste grazie alla matematica, ma perché é costruita efficacemente.
La matematica ¢ un modo per discutere e capire cosa significhi costruire efficace-
mente. Un altro problema da affrontare é la sorpredente utilita della matematica,
ovvero: se la matematica ¢ un’arbitraria invenzione umana, come mai corrispon-
de cosi bene al nostro mondo? Barton risponde che il processo che ha portato la
matematica ad essere simile in molte parti del mondo é analogo a un processo evo-
lutivo di adattamento all’ambiente, cosi come avere due occhi risulta pit funzionale
per vedere, allora la quantificazione & un potente strumento per 'organizzazione
sociale. In questo caso I'argomentazione presenta delle criticita su cui riflettere e
dimostra la difficolta del problema avanzato da Barton. Infatti, sembra considerare
la matematica piu diffusa come quella migliore, pit capace di rispondere alle sfide
sociali e ambientali che possono presentarsi a un gruppo culturale, riflettendo un’i-
dea fallibilista per spiegare come mai le matematiche tendano ad assomigliarsi. Per
ricondurci alla filosofia per sistemi QRS ci si pud appoggiare alle evidenze congitive
portate avanti dalla neuroscienza: le matematiche si somigliano poiché i processi che
quantificano, relazionano e danno senso allo spazio hanno radici anche biologiche.

Parallelamente, le radici culturali sulla cognizione permettono e spiegano come mai



17

questa somiglianza non sia un uguaglianza. La proposta di Barton riprende i prin-
cipi di D’Ambrosio proponendo un’epistemologia disciplinare a priori. Di recente &
stato pubblicato un articolo che analizza, invece, quale filosofia emerge dagli studi
di Etnomatematica offrendo una prospettiva a posteriori. Il lavoro di Alghar et all.
[2] mette in evidenza come le ricerche in Etnomatematica tendano a semplificare
troppo 1 concetti matematici, e trattano la conoscenza occidentale come base per
interpretare quella indigena, ad esempio ricercando 'esistenza di concetti di trian-
golo e usando i metodi occidentali per validarne la matematicita, sottintendendo
una certa gerarchia di matematiche e supportando una visione fallibilista. Inoltre,
I'interpretazione e la rappresentazione di valori culturali di un certo gruppo da parte
degli studiosi, ne provoca una distorsione che danneggia sia la metodologia di ricerca
che i valori filosofici etnomatematici. In primo luogo si evidenzia un uso superficiale
dei metodi di ricerca qualitativa riguardo le ricerche etnografice, in secondo luogo si
sottolinea come la distorsione vada a distruggere 'autenticita dei significati espressi
da un gruppo culturale, contraddicendo la filosofia Wittgenstaniana. Oltre a questo
studio di analisi, non mancano le risposte dirette alla filosofia per sistemi QRS; Pais
[33] riprende la critica mossa da Rowlands e Carson [90], e sostenuta da Horsthemke
e Schifel [59], che difendono una visione essenzialista, secondo cui la conoscenza,
seppur costruita dagli umani, resti aldild di essi e che si manifesti attraverso gli
invarianti delle diverse matematiche, indipendentemente dalla loro verita. La forte
posizione che prendono riguardo ’epistemologia é I'esclusione degli aspetti sociali
e politici nella genesi della conoscenza. E evidente che la veridicita della filosofia
impiegata non puo essere verificata e la scelta di seguirne una piuttosto che 'altra
é guidata da una scelta personale. Cosi il tesista segue I'interpretazione a sistemi

QRS, che meno contraddice i principi di eguaglianza valoriale dell’Etnomatematica.

1.1.5 Dimensione Educativo-Didattica

L’etnomatematica, prima del manifesto di D’ Ambrosio, é stata sviluppata e ricercata
dagli insegnanti che ebbero 'obiettivo di portare a lezione come la matematica fosse
collegata alle pratiche di vita quotidiana. Un esempio pioneristico ¢ il lavoro di Za-
slavsky [118] riguardo lo studio della matematica africana e al come implementarla

nel curriculum didattico americano per mostrare come lo sviluppo della matematica
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sia legato alle sfide quotidiane e possa apparire diverso in diverse parti del mondo.
Per questo non stupisce che la dimensione dell’etnomatematica pitt ampia sia proprio
la didattica della matematica. Inoltre, ¢ ormai consensuale che la didattica prenda
vita in contesti scolastici, i quali sono luoghi di educazione. Per questo Didattica
ed Educazione sono indissolubilmente intrecciate. Da questo punto di vista Milton
[39] scrive che supportare il programma etnomatematico non significa rifiutare le
conoscenze e le pratiche accademiche, ma incorporarle con valori umanitari come
il rispetto, la tolleranza, la cura, la dignita, I'integrita, I'inclusione e la pace. In
questo contesto ’etnomatematica promuove un insengamento della matematica che
evidenzi le idee, le procedure e le pratiche presenti nella vita di tutti i giorni, cosi
che una matematica storicamente e criticamente situata possa sostenere gli scopi
umanitari guidati dai valori sopra elencati. Le ricerche relative alla didattica si sono
concentrate sullo studiare i sistemi QRS di matematiche non occidentali e su come
implementarli in aula. Questa tesi non vuole essere una raccolta di sperimentazioni
didattiche in cui sono utilizzate le ricerche etnomatematiche, ma si ritiene utile for-
nire degli esempi in questa direzione. Oltre ai lavori gia citati di Zaslavsky, Eglash
[38] descrive diversi aspetti culturali dell’africa occidentale riguardo acconciature,
gioielli e I'architettura, trovando modelli frattali nella geometria africana legata a
tali aspetti. Successivamente tali studi vengono usati da Eglash [39] e Babbitt [] per
la realizzazione di attivita didattiche di matematica e informatica situate cultural-
mente. Le ricerche svolte insieme a queste attivita rilevano come riferirsi a pratiche
culturali nell’azione didattica migliori ’apprendimento e inneschi un interesse mag-
giore sia per la disciplina che per la propria cultura. Anche nelle Americhe sono
stati condotti numerosi studi; Ortiz-Franco descrive esempi di matematica Spagnola
confrontandola con le matematiche Azteca e Olmeca [81], [15]. Riguardo i Nativi
Americani, sono noti i lavori di Ascher [1] e Rauff [85] che trattano come portare la
probabilita in classe con dei giochi Irochesi. Per quanto riguarda i continenti orien-
tali, invece, troviamo alcuni esempi nei lavori di Barton [I1] in cui riporta la sua
esperienza nella costruzione di un linguaggio matematico per i Maori descrivendo
la tensione tra la necessita di adottare parole inglesi per parlare di alcuni oggetti
matematici e il manteminento dell’identita culturale. Tale sfida assume importan-
za nell’azione didattica poiché, come riportato da Neville e Barton [76], studenti

con lingua madre il mandarino a cui viene insegnata la matematica in inglese af-
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frontarono problemi in entrambe le lingue ottenendo risultati migliori in tutti quelli
proposti nella lingua madre, tranne che per un problema riguardante il gradiente,
unico concetto matematico insegnato per la prima volta in inglese e il cui termine
non si traduce facilmente in mandarino. La componente didattica é strettamente
legata a quella educativa: in questa direzione D’Ambrosio [30] [26] sostiene che non
¢ sufficiente essere un buon matematico bravo a insegnare matematica per essere
un buon insegnante, ma che ci si dovrebbe chiedere anche "Cosa sara fatto con la
matematica che sto sviluppando?" e "Come vivranno i miei studenti? Saranno con-
sapevoli del loro impegno morale nella vita professionare che faranno?". Denuncia
come la visione ingenua di Hardy sull’innocenza dei matematici e I'inutilita della
teoria dei numeri [51] sia totalmente contraddetta da come le tecnologie militari si
appoggino quotidianamente alla matematica anche piu astratta, e sostiene che sia
necessaria un’azione didattica per combattere 1'ignoranza riguardo ai valori e alla
diversita culturale, la quale causa incomprensioni che portano a escalation violente.
Per questo, gli studi etnomatematici sono fondamentali per portare avanti la sua
idea di matematica non omicida. Da un punto di vista dell’inclusione, invece, Shir-
ley [95] scrive come 'etnomatematica in aula contribuisca a favorire I'inculturazione
[16] degli studenti di culture sottorappresentate ed esponga agli studenti sovrarap-
presentati culture nuove, cosi da favorire la costruzione del rispetto alla diversita e
all’inclusione. Alla luce di questo tra gli etnomatematici & praticamente unanime
la necessita di inserire le loro ricerche nei curriculum didattici di matematica, ma
emergono delle domande riguardo al cosa e al come. Pais [83], nonstante riconosca
I'importanza dell’etnomatematica per fare una migliore riflessione sulla storia ed
epistemologia della matematica, ritiene che le implicazioni educativo-didattiche non
siano cosi ovvie e riporta alcune critiche. Rowlands e Carson [90] sostengono che i
programmi etnomatematici sviluppati in Sud Africa abbiano aumentato le differenze
etniche sostituendo ’apprendimento della matematica formale con quella contestua-
le e pratica; secondo gli autori & proprio la matematica formale che da accesso al
mondo privilegiato e ogni studente dovrebbe avere la possibilita di accedere a que-
sto mondo. Rowlands e Carson contestano 1'uso dell’etnomatematica in aula poiché
ritengono che la scuola debba essere un luogo in cui le persone entrano in contatto
con una cultura pit universale, che di fatto é quella occidentale. Forse il problema

sta proprio nel dare per scontato che il mondo privilegiato sia privilegiato. O scritto
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come farebbe Pais: "a problematization of society and the role of school in society
1S, tn my opinion, a priority in a research program like ethnomathematics. But,
that is far from happening”. Altri argomenti che andrebbero approfonditi secondo
Skovsmose e Vithal [112]| sono innanzitutto la mancanza di attenzione riguardo la
relazione tra cultura e potere. Secondariamente sostengono che ’etnomatematica
assuma senso solamente dalla prospettiva della matematica accademica. Come terza
questione pongono la mancanza di pensiero critico riguardo al come la matemati-
ca modellizzi in effetti la realta. Infine, problematizzano il fatto che gli studi di
etnomatematica non affrontano il tema del foreground, ovvero I'insieme delle oppor-
tunita che il contesto sociale e culturale rende accessibile allo studente per accedere
a diverse possibilita per il suo futuro. Pais commenta e approfondisce queste critiche
nel suo articolo, citando anche la risposta di Adam, Alangui e Barton [1] all’articolo
di Rowlands e Carson. In questo paragrafo non si vuole approfondire ulteriormente
la questione, ma si ritiene fondamentale citarla sper capire che il dibattito riguardo
I’etnomatematica non é scontato e sono necessarie ulteriori riflessioni riguardo alle

sue implicazioni nella didattica.

1.1.6 Dimensione Politica

[’etnomatematica ha ’obiettivo di studiare la storia, la tradizione e il pensiero mate-
matico di diversi gruppi culturali. Riconoscere e rispettare le radici socioculturali di
un gruppo diverso dal proprio rinforza tali radici attraverso il dialogo tra culture nel
rispetto e nell’accoglienza della diversita. Per raggiungere questo obiettivo ¢ impor-
tante guidare gli studenti ad assumere maggiore consapevolezza anche della propria
cultura riconoscendo l'origine della conoscenza matematica contestualizzandola sto-
ricamente e culturalmente. Gli studi che toccano questa dimensione rispondono ad
alcune critiche riportate da Pais e comprendono l'indagine della relazione tra ma-
tematica e potere, e lo studio dei modelli matematici culturalmente situati usati
per rappresentare la realtd. L’articolo gia citato di D’Ambrosio [36] a supporto di
una matematica non omicida coinvolge esplicitamente anche la scuola proponendo
un curriculum che integri tali valori attraverso un insegnamento che tenga conto
delle sfide umane per cui é stata sviluppata. Per D’ambrosio la sopravvivenza della

vita umana procede finché non si rompe il triangolo formato dai vertici: individuo,
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societa e natura i cui lati sono le relazioni tra essi; questo schema relazionale é detto
triangolo primordiale. Inoltre, ciascuna relazione ¢ investigata e potenziata natural-
mente dall'uomo. Questo fenomeno ¢ detto trascendenza, in quanto significa vivere
oltre al sopravvivere. In questo caso, il triangolo che rappresenta la stabilita di que-
sta strascendenza é detto triangolo migliorato ed ¢é costituito dai vertici: linguaggio,

strumenti e produzione.

Individuo

Linguaggio Strumenti

L Natura
Societa

Produzione

Figura 1.3: Triangolo migliorato.

Il mantenimento della pace individuale, sociale, ambientale e militare é necessario
per non distruggere questi triangoli, e dunque per non distruggere la vita umana.
Il sapere matematico, d’altronde, ¢ intrinsecamente legato a questo mantenimento,
ma la storia e le evidenze insegnano come conduca anche alla sua possibile rottura
e alla minaccia di estinzione. Per questo, il curriculum pensato da D’Ambrosio
prevede I'insegnamento della matematica attraverso due step necessari per rendere
studenti e matematici consapevoli e preparati a contribuire all’idea di matematica

non omicidas:

1. " Life explained as the solidarity of individual, other(s), nature and how they
relate. A methodology is to discuss the primordial triangle and explain the
biological factors keeping its integrity. A first mention of the primordial ethics

s important in this moment. "
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2. "In discussing the evolution of the human species, to reach the enhanced trian-
gle, we elaborate on individual, other(s), reality, instruments, language and
production. Attention should be given to the concept of reality, as enlarged
perception of nature, comprising natural, cultural and social environments. A

return to the primordial ethics is needed. "

Un’altra sfida che emerge in un qualsiasi gruppo culturale, che risulta estremamente
attuale nei paesi piu sviluppati, riguarda la gestione delle tecnologie che esistono
proprio grazie allo sviluppo della matematica. Skovsmose espone la sua idea di edu-
cazione critica intesa come una didattica che discute le condizioni fondamentali per
ottenere conoscienza, con consapevolezza riguardo i problemi sociali, di disugua-
glianza, soppressione etc., la didattica critica deve guardare all’insegnamento come
una forza di progresso sociale reagendo alle contraddizioni della societa [99]. Skov-
smose scrive che la didattica della matematica debba essere orientata allo sviluppo
di competenza matematica, competenza tecnologica e competenza riflessiva®. Per
competenza matematica si intende quella individuata da Niss [78]: La competenza
matematica & labilita di capire, giudicare, fare e usare matematica in una varie-
ta di contesti e situazioni (intra e extra matematici) in cui la matematica gioca o
potrebbe giocare un ruolo. Con competenza tecnologica non si fa riferimento alle
tecnologie utilizzabili a scopo didattico, bensi a quelle la cui progettazione ¢ influen-
zata profondamente dalla matematica. Infine, la competenza riflessiva fa riferimen-
to alla capacita di saper valutare criticamente ’'uso della matematica e le possibili
conseguenze nell’uso di tecnologie che la coinvolgono. Per Skovsmose gli approcci
epistemologici usati in didattica della matematica sviano da questo pensiero critico,
poiché ignorano la componente umana e culturale che sta alla genesi della conoscen-
za matematica, ed é solo attraverso una riflessione sulle conseguenze dell’impresa
tecnologica che puo esserci una reale didattica della matematica. Per poter raggiun-
gere questi obiettivi & importante chiedersi quali valori e quali fattori socio-culturali
emergono nell’attivita scientifica, prima che il sapere diventi oggetto di insegnamen-
to. Per fare cio, uno strumento adatto allo studio del complesso rapporto che c¢’é tra
matematica, potere, tecnologia e politica é quello del Family Resemblance Approach
[60], secondo il quale la produzione di conoscenza scientifica descritta dagli obietti-

vi disciplinari, i metodi, le pratiche e le conoscenze risulta immersa in un contesto

5In originale & conoscenza e non competenza, ma Skovsmose stesso poi parla di competenza.
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sociale e istituzionale, che nell’ottica etnomatematica sono indissolubilmente legati
a fattori culturali. Per Family Resemblance Approach (FRA) si intende un modo
per modellizzare e descrivere ’attivita scientifica in cui ogni singola scienza ¢ distin-
ta dal proprio statuto epistemologico, ma risulta accomunata alle altre per alcune
caratteristiche, proprio come accade in una famiglia. Considerare la matematica
come attivitd umana immersa in un contesto culturale permette di farla rientrare
in questa grande famiglia di scienze, e dunque é possibile individuare tutte quelle
categorie descritte dal FRA che caratterizzano la matematica come attivita scienti-
fica e studiarne il legame con la cultura. Ad oggi le categorie individuate sono 12
e si dividono tra Epistemiche-Cognitive (1-4) e Sociali-Istituzionali (5-12) [10], [11],

[61]. Si riportano le proposte in lingua originale:

1. Aims and Values: the scientific enterprise is underpinned by adherence to
a set of values that guide scientific practices. These aims and values are of-
ten implicit and they may include accuracy, objectivity, consistency, skeptici-
sm, rationality, simplicity, empirical adequacy, prediction, testability, novelty,

fruitfulness, commitment to logic, viability, and explanatory power.

2. Scientific practices: the scientific enterprise encompasses a wide range of
cognitive, epistemic, and discursive practices. Scientific practices such as ob-
servation, classification, and experimentation utilize a variety of methods to
gather observational, historical, or experimental data. Cognitive practices,
such as explaining, modeling, and predicting, are closely linked to discursive

practices involving argumentation and easoning.

3. Methods and methodological rules: scientists engage in disciplined inqui-
ry by utilizing a variety of observational, investigative, and analytical methods
to generate reliable evidence and construct theories, laws, and models in a gi-
ven science discipline, which are guided by particular methodological rules.
Scientific methods are revisionary in nature, with different methods produ-
cing different forms of evidence, leading to clearer understandings and more

coherent explanations of scientific phenomena.

4. Scientific knowledge: theories, laws, and models (TLM) are inter-related

products of the scientific enterprise that generate and/or validate scientific
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knowledge and provide logical and consistent explanations to develop scien-
tific understanding. Scientific knowledge is holistic and relational, and TLM
are conceptualized as a coherent network, not as discrete and disconnected

fragments of knowledge.

. Professional activities: scientists engage in a number of professional ac-

tivities to enable them to communicate their research, including conference
attendance and presentation, writing manuscripts for peer-reviewed journals,

reviewing papers, developing grant proposals, and securing funding.

Scientific ethos: scientists are expected to abide by a set of norms both
within their own work, and during their interactions with colleagues and
scientists from other institutions. These norms may include organized skep-
ticism, universalism, communalism and disinterestedness, freedom and open-
ness, intellectual honesty, respect for research subjects, and respect for the

environment.

Social certification and dissemination: bypresenting their work at con-
ferences, and writing manuscripts for peer-reviewed journals, scientists’ work
is reviewed and critically evaluated by their peers. This form of social qua-
lity control aids in the validation of new scientific knowledge by the broader

scientific community.

. Social values of science: the scientific enterprise embodies various social

values including social utility, respecting the environment, freedom, decentra-

lizing power, addressing human needs, and equality of intellectual authority.

Social organizations and interactions: science is socially organized in
various institutions including universities and research centers. The nature of
social interactions among members of a research team working on different
projects is governed by an organizational hierarchy. In a wider organizational
context, the institute of science has been linked to industry and the defense

force.

Political power structures: the scientific enterprise operates within a poli-

tical environment that influences the direction and use of science. The outco-
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mes of science are not always beneficial for individuals, groups, communities,

or cultures.

11. Financial systems: the scientific enterprise is mediated by economic factors.
Scientists require funding in order to carry out their work, and state and natio-
nal level governing bodies provide significant levels of funding to universities
and research centers. Assuch, these organizations have an influence on the

types of scientific research funded, and ultimately conducted.

12. Reward systems: is possible to identify two types of reward in science:
intellectual and non-intellectual. The intellectual reward is driven by the cu-
riosity to understand the workings of nature and constituted by the sense of
achievement and satisfaction one gets when one makes a scientific discovery
or invention. Non-intellectual rewards can be classified as social, professional,
and mate rial. Social rewards consist of recognition and prestige in the scien-
tific community and gaining high status in the society. Professional rewards
are about moving up the career lad der. Finally, material rewards can be mo-
netary, larger lab space and better equipment, and so on. Sometimes, winning
a prize as prestigious as the Nobel Prize brings fame, prestige, high status and

sizable financial gain all at once.

In riferimento a questo modello, in questa tesi si vuole indagare la pratica espitemica
del dimostrare, che piu di ogni altro fenomeno culturale caratterizza la matemati-
ca NUC, studiandola con 'obiettivo di caratterizzarla attraverso le funzioni della
dimostrazione che emergono sia come attivita scientifica che didattica. Per capire
come questo approccio sia innovativo e utile alla ricerca in didattica della mate-
matica, si entrera nel dettaglio dei principali risultati delle ricerche riguardanti la

dimostrazione.
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2. La dimostrazione in didattica

Questo capitolo riguarda le ricerche sulla matematica NUC, per questo motivo, ogni

volta che si scrivera matematica, si intendera quella NUC.

2.1 Dimostrare come problema didattico

Chi fa matematica al giorno d’oggi dovra, prima o poi, confrontarsi con il complesso
compito di dimostrare una qualche congettura. Questa pratica é indissolubilmen-
te legata alla materia fin dagli antichi greci ed é cio che la distingue dalle scienze
sperimentali. L.a competenza matematica non é ridotta solamente al saper produr-
re dimostrazioni, ma resta necessario imparare a farlo, poiché significa imparare il
ragionamento matematico. Questa visione ¢ ampiamente diffusa sia in ambito ac-
cademico che in ambito scolastico ed ¢ descritta da Niss e Hpjgaard in [79], in cui
descrivono le varie dimensioni della competenza matematica, tra cui quella del ra-

gionamento:

"The core of the mathematical reasoning competency is to analyse or produce arqu-
ments (i.e., chains of statements linked by inferences) put forward in oral or written
form to justify mathematical claims. This competency involves both constructively
providing justification of mathematical claims and critically analysing and assessing
existing or proposed justification attempts. The competency deals with a wide spec-
trum of forms of justification, ranging from reviewing or providing examples (or
counter-examples) over heuristics and local deduction to rigorous proof based on lo-

gical deduction from certain azioms.”

Lo sviluppo di questa competenza, per quanto fondamentale, risulta estremamente
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delicato e complesso. Mariotti scrive come le ricerche rivelino che studenti di ogni
grado scolare facciano fatica a produrre argomenti a sostegno delle proprie affer-
mazioni e presenta delle ipotesi alla base di questa difficolta [72]. La prima cosa
che mette in luce é la ricezione che hanno gli studenti alla richiesta di spiegare un
certo risultato; sembra che i contratti didattici [20] passino in modo inconsapevole
e che la richiesta di un perché sia percepita come il voler portare alla luce un errore
commesso, piitt che al voler capire la ragione dietro un’affermazione. Gli studi di
Anthony e Walshaw [113], Bicknell [15], e Ruthven e Coen [23]| supportano questa
tesi mostrando come gli studenti possano sentirsi a disagio nello spiegare il proprio
ragionamento ad altri e come esprimano anche incertezza riguardo alle aspettative
dell’insegnante che chiede spiegazioni: perché lo fa?. La stipulazione di questo patto
implicito, probabilmente, ha origine nelle pratiche didattiche guidate dal Compor-
tamentismo, che individuano la risposta corretta come giustificazione di un ragiona-
mento corretto, con la conseguente mancanza di necessita di argomentare da parte
dello studente. La riluttanza nell’accompagnare una risposta é dunque spiegabile
dalla convinzione che 'insegnante debba spiegare e lo studente apprendere; renden-
do di fatto rinunciabile I'insegnare ad argomentare. Le ricerche di oggi in merito a
questo tema forniscono nuove prospettive e sostengono 'importanza di insegnare la
pratica dimostrativa. Per comprende in che modo, é necessario richiamare alcuni
punti fondamentali delle teorie dell’apprendimento pit recenti. I Comportamenti-
smo pone la base fondamentale su cosa sia effettivamente 'apprendimento, ovvero
una modificazione del comportamento di un soggetto in seguito a determinati sti-
moli. Il limite di questa teoria sta nel ritenere indagabile il processo mentale che c¢’é
tra ricezione dello stimolo e comportamento di risposta, e che ottenere una risposta
attesa da un determinato stimolo sia sufficiente per dire che il soggetto abbia appre-
so correttamente. Le ricerche dimostrano che tale fenomeno non comporta un reale
apprendimento [7]. Il Cognitivismo, con l'obiettivo di spiegare come avviene tale
modificazione, introduce il concetto di processo cognitivo come collegamento inter-
no al soggetto tra stimolo e comportamento. Le ricerche cognitiviste individuano e
spiegano come tali processi cambiare all’interno del soggetto attraverso assimilazione
e accomodamento, ma non tengono conto delle componenti sociali e culturali di chi
sta apprendendo. Questa integrazione avviene con il Socio-Costruttivismo, che vede

I"apprendimento come un processo in cui il soggetto da senso alle proprie esperienze
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attraverso la costruzione di significati nell’interazione con I'ambiente [93]. Cio che
resta oscuro a queste teorie € cosa effettivamente significhi costruire significati per
dare senso alle esperienze. Una possibile risposta la fornisce la recente teoria del
Connettivismo introdotta da Siemens [97] e ripresa da Downes [34] e Goldie [17]. Il
connettivismo nasce come teoria dell’apprendimento nell’era digitale in cui imparare
viene visto come costruzione di significati tra reti umane e non umane. Tra i suoi

principi troviamo:

e [’apprendimento é un processo di connessione tra nodi o risorse di informa-

zione.
e La capacita di conoscere é pitu importante della conoscenza in possesso.

e La capacita di vedere connessioni tra campi, idee e concetti ¢ un’abilita fon-

damentale per I’apprendimento.

Dimostrare significa costruire una relazione tra ipotesi e tesi, che possono essere
interpretate come nodi o risorse di informazione; dunque, dimostrare qualcosa signi-
fica apprendere qualcosa. Inoltre, imparare a dimostrare non si riduce ad imparare
a memoria una serie di passaggi, ma implica 'ampliamento della capacita di cono-
scere attraverso lo sviluppo della competenza dell’argomentazione, che permette di
spostarsi tra diversi oggetti e fatti matematici (sempre nodi e risorse di informazio-
ne), nonché di vedere connessioni tra campi, idee e concetti matematici. In questo
quadro teorico, dimostrare risulta fondamentale non solo per il valore che assume
nello statuto disciplinare, ma anche per ’apprendimento diretto della matematica.
Alla luce di tutto questo, é importante avere a disposizione dei modelli per poter
descrivere le dimostrazioni, valutarle e insegnare a produrle senza cadere nell’ap-
prendimento puramente mnemonico. Un importante studio in questa direzione é
stato fatto da Harel e Sowder [52] che classificano diversi schemi dimostrativi a cui
gli studenti del college attingono per accertarsi che le proprie affermazioni siano
giustificate adeguatamente; ottengono una tassonomia assai ampia composta da 16
diversi schemi raggruppati in tre categorie: Convinzione esterna, Empirica e Ana-
litica. Tale ricerca ¢ interessante e porta un contributo indiscutibile riguardo alle
possibili concezioni che gli studenti hanno riguardo le dimostrazioni, ma come scrive

Mariotti: "Il contributo & certamente interessante, ma proprio per la ricchezza e
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varieta delle categorie non sembra offrire uno strumento unificante per comprendere
e quindi per superare le difficolta che descrive” |72]. Dunque, si ricercano modelli
meno ampi che possano offrire nuove chiavi di lettura e che risultino piu utilizzabili
ai fini della ricerca e dell’insegnamento. La strada che si intraprende esce dalla di-
dattica della matematica e conduce ad un quadro teorico che vede la dimostrazione

come una particolare argomentazione.

2.2 Dimostrazione come argomentazione

Il rapporto tra dimostrazione e argomentazione € complesso; entrambe le pratiche
sembra abbiano origine nell’antica grecia, la prima per andare alla ricerca della ve-
rita, la seconda per convincere o persuadere gli interlocutori della validita di un’af-
fermazione. Questa distinzione ha accompagnato 'uomo fino al secolo scorso. La
crisi dei fondamenti della matematica del XX secolo ha radicalmente cambiato lo
statuto epistemologico della matematica, portando i matematici ad abbandonare
la ricerca della verita oggettiva in virtu del trovare giustificazioni adeguate per le
proprie affermazioni, partendo da assiomi non necessariamente veri. Il focus della
matematica si sposta dal dimostrare per capire se qualcosa ¢ vero al capire se la
dimostrazione sia una giustificazione adeguata. Per chi si occupa di matematica la
differenza puo apparire invisibile, ma per chi fa ricerca in didattica questo ha im-
plicazioni profonde: cid che si considera una buona giustificazione non é oggettivo,
non si puo entrare nella comunita dei matematici e capire i criteri di accettabilita
di una dimostrazione da un giorno all’altro, anche perché cambiano al variare del
settore disciplinare e sarebbe umanamente impossibile comprenderli tutti [66]. Dun-
que, risulta necessaria una riflessione su cosa significhi giustificare adequatamente in
ottica di insegnare a dimostrare. Il tema delle giustificazioni non riguarda solo la
matematica, in ogni disciplina giustificare risulta necessario e viene perseguito con
la pratica dell’argomentazione. Nella seconda meta del 900 gli studi a riguardo
si concentrano sull’osservare, analizzare e descrivere le modalita di argomentazione
che emergono da contesti e situazioni reali. Perelman e Olbrechts-Tyteca in |34]
propongono la prospettiva secondo cui efficacia di un argomento dipende da chi
ascolta e non fa ricorso alla nozione di verita. L’obiettivo di un’argomentazione é

influenzare I'uditorio cercando di convincerlo o persuaderlo ad accettare una certa
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affermazione. Il caso in cui 'obiettivo sia convincere, ovvero rendere 1’ascoltatore
certo di qualcosa, ¢ studiato nel dettaglio da Toulmin, che vede un’argomentazio-
ne come un discorso costituito da giustificazioni e ragioni a sostegno di una data

affermazione [109]. Toulmin individua in ogni argomentazione sei diverse parti:
1. Conclusione: I'affermazione sostenuta che si vuole argomentare.
2. Dati: 'insieme dei dati che sono in relazioni con la conclusione.
3. Garanzia: la regola di inferenza che collega i Dati alla Conclusione.

4. Forza: il grado di certezza che 'argomentazione esprime, espresso attraverso

avverbi come probabilmente o necessariamente.

5. Confutazione: un possibile caso in cui i dati non possono concludere 'affer-
mazione sostenuta, in genere un’aggiunta di qualche elemento che invalida

I’argomentazione.

6. Supporto: il supporto alla Garanzia che permette di accettare la regola di

inferenza.

N

Egli afferma che questo scheletro ¢ invariante dal contesto, mente cid che cambia
é il campo dell’argomento; con le parole di Toulmin: "Si dira che due argoment:
appartenengono allo stesso campo quandi ¢ dati e le conclusioni in ciascuno dei due
argomenti sono rispettivamente, dello stesso tipo logico: si dira che provengono da
campo diversi quando il supporto o le conclusioni in ciascuno dei due argomenti non
sono dello stesso tipo logico Le dimostrazioni negli Elementi di Euclide, ad esempio,
appartengono a un campo, i calcoli esequiti nella preparazione di un numero dell’Al-
manacco Nautico appartengono ad un altro”. Il campo varia da contesto a contesto,
anche all'interno della stessa disciplina, un po’ come accade nella distinzione tra
Congettura e Teorema: la prima ha un’argomentazione informale, il secondo ha
una dimostrazione accettata dalla comunitd: i dati e le conclusioni possono essere
gli stessi, mentre le logiche a supporto dell’argomentazione cambiano. Riguardo a
queste logiche, sulla scia degli studi di Perelman, Olbrechts-Tyteca e Toulmin si
inserisce Duval, che individua una differenza tra la dimosrazione e gli altri tipi di
argomentazione seguendo un approccio cognitivista. Duval introduce il concetto di

valore epistemico come il grado di affidabilita posseduto da un’affermazione, non



31

troppo diverso da cid che Toulmin chiama Forza dell’argomentazione, ma associato
alla giustificazione (o Garanzia per Toulmin). E sostiene che, nelle dimostrazioni, il
valore epistemico dipenda piu dallo statuto teorico che dal valore semantico di cio
che si afferma [35]; dove lo statuto teorico di una proposizione ¢ la sua validita teori-
ca all’interno di una teoria, ossia 1’essere una definizione, un assioma, o un teorema.
Questa distinzione sposta ’attenzione dal valutare la semantica di una proposizione
al valutarne la validita teorica, che dipende dai criteri di accettabilita della teoria di
riferimento, ovvero dipende da cosa si accetta come definizione, assioma, o teorema.
Riguardo a quest’ultima istanza, i criteri di accettabilita di un teorema dipendono
da quelli della dimostrazione che lo accompagna, che come si ¢ detto prima, dipen-
dono dal contesto e si differenziano da gruppo culturale in gruppo culturale. La
ricerca fin’ora si é concentrata sulla didattica, in particolare Stylianides scrive qua-
li caratteristiche dovrebbe avere una dimostrazione in un contesto di classe [105]:
usare enunciati accettati dalla comunita della classe che sono ritanuti veri e acces-
sibili senza ulteriore giustificazione; usare forme di ragionamento validi e conosciuti
dalla comunita della classe; ¢ comunicata attraverso forme di espressione che sono
appropriate per la comunita della classe [7]. Risulta cruciale, dunque, condividere i
criteri di accettabilita, e per farlo é importante che sia condiviso anche il senso di

una dimostrazione, ossia a quali obiettivi risponde, quando si richiede e perché.

2.3  Funzioni della dimostrazione

Per poter portare la dimostrazione in classe, ¢ importante sapere quale senso abbia
per la comunita dei matematici ed ¢ in questa direzione che si muove questa tesi.
Prima di portare il punto di vista del’Etnomatematica, é presentato un riassun-
to delle pit importanti ricerche svolte finora. Come riporta Mariotti, gli studenti
evidenziano come per loro non sia affatto chiaro a cosa servano le dimostrazioni,
specialmente quando accompagnano fatti ritenuti ovvi [72]. La tensione che si crea
riguarda le dimostrazioni che non spiegano il perché le cose funzionino in un certo
modo. Il tema é affrontato per la prima volta da un punto di vista filosofico da Stei-
ner [104] e successivamente ripreso per aspetti didattici da Hanna [50], in entrambi
i lavori emerge come ci sono dimostrazioni che spiegano e altre che dimostrano sol-

tanto. Per le dimostrazioni che non spiegano ci sono svariati esempi: spesso quelle
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per induzione non spiegano, ma mostrano che le cose funzionano in un certo modo
applicando un principio accettato dalla comunita; notevole é I’esempio della somma
di Gauss dei primi n numeri. Anche le dimostrazioni per assurdo, che si appoggiano
al principio, condiviso e spesso non formalizzato, del terzo escluso, tendono a non
avanzare spiegazioni soddisfacenti; se la dimostrazione dell’irrazionalita della radice
di due puo sembrare che spieghi qualcosa, mostrare I'irrazionalita di 7 é totalmente
un’altra questione'. Trovare dimostrazioni che spiegano non ¢ semplice e a volte pro-
prio non ce ne sono; anche capire cosa significhi che una dimostrazione spieghi non
é per nulla banale. In questa direzione risultano fondamentali i lavori ben spiegati
da Mariotti? di Mopondi [73] che considera la spiegazione come un atto che mira a
far comprendere; e i lavori di Sierpinska [98] e Sfard [94] che cercano di mettere in
luce cosa significhi in effetti comprendere. Per Sierpinska un atto di comprensione &
un processo mentale personale e soggettivo che si realizza mettendo in relazione un
oggetto noto, detto base, ad un oggetto non noto, detto di comprensione. In presen-
za di un oggetto non noto che il soggetto ¢ intenzionato a capire, la comprensione
avviene per costruzione di una rete di atti di comprensione legati da inferenze e de-
duzioni a partire da una base nota. Dopodiché, ci si puo riferire allo spiegare come
una produzione discorsiva con l'obiettivo di far costruire questa rete attraverso la
descrizione dell’oggetto nuovo e I’argomentazione del perché accettare tale oggetto.
Un interessante contributo su come possa svilupparsi un discorso di spiegazione €
dato da Lolli [66], che fa riferimento a cinque diversi modi in cui una dimostrazione
possa spiegare. Innanzitutto, ci si pud ricondurre agli assiomi, in corrispondenza
all’idea di Sierpinksa e anche alle origini storiche della dimostazione. Per secondo,
una spiegazione puo avvenire mediante la generalizzazione di un risultato: passare
da esempi che supportano una congettura alla dimostrazione pud mettere in evi-
denza quali proprieta degli oggetti in gioco siano fondamentali affinché il teorema
sia vero. Un terzo modo € per sussunzione, specialmente nel caso di fatti strani,
o sorprendenti: passare da una teoria particolare ad una teoria piu generale puo
spiegare molto piu di un singolo fatto, si pensi a come cambia la comprensione del-
I’analisi reale alla luce dei risultati di analisi complessa. Un quarto fatto riguarda lo

spiegare mediante semantica, trovando le ragioni di un fatto nella struttura teorica

!Come si puo vedere dalla dimostrazione di Niven [30]
Zsempre in |72].
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che lo riguarda, spiegando caratteristiche della struttura, piu che del fatto. Infine,
una dimostrazione puo spiegare perché non, come quelle che riguardano I'impossi-
bilita di costruzioni con riga e compasso, o i teoremi d’indipendenza, come quello
sull’ipotesi del continuo. Lolli individua altre 34 funzioni della dimostrazione, che
spesso sono sfumature della stessa, come accade per la spiegazione. Il suo contributo
sara ripreso nel terzo capitolo quando si parlera del rapporto tra dimostrazione e
intuizione. Un lavoro pitt compatto e degno di nota ¢é stato fatto da De Viller [111],
che oltre a riprendere V'esplicativita, descrive altre quattro funzioni fondamentali:

convincimento, sistematizzazione, comunicazione e scoperta.

2.3.1 Dimostrare per convincere

Convincere é un po’ il cuore della dimostrazione e riprende la sua natura argomen-
tativa. De Viller scrive che, tranne poche eccezioni, gli insegnanti di matematica
credono che una dimostrazione conferisca lo stato di assoluta certezza al matematico
e che sia 'unica via per dare validita ad una congettura in modo che diventi teorema.
Nella realta dei fatti, prima di fornire una dimostrazione, sembra si debba gia essere
convinti in qualche modo di cio che si sta dimostrando e che la scrittura formale
assuma pil un ruolo giustificativo, non sulla verita del teorema, ma sul modo in cui

dalle ipotesi si possa dedurre la tesi.

2.3.2 Dimostrare per sistematizzare

La dimostrazione svolge il cruciale ruolo di costruire un’assiomatizzazione della ma-
tematica a posteriori, aiuta a identificare le minime ipotesi affinché certi risultati
siano veri, li semplifica e li unisce fornendo una prospetiva globale sull’albero del-
la conoscenza matematica. In pratica la dimostrazione permette di organizzare gli
oggetti matematici per assiomi, definizioni e teoremi. Ripensando alle ricerche di
Duval sull'importanza dello statuto teorico nella didattica della dimostrazione, la

funzione di sistematizzazione risulta fondamentale.

2.3.3 Dimostrare per comunicare

Il terzo ruolo cruciale che la dimostrazione assume nella condivisione del sapere

matematico riguarda proprio la comunicazione della matematica. Si pensi che di-
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mostrare, nella maggior parte delle volte, &€ proprio una forma di discorso, un modo
di comunicare tra matematici. Non avrebbe alcun senso produrre una dimostrazione
che non possa essere comunicata, poiché nasce dall’esigenza sociale di condividere
nuova conoscenza, e come argomenta anche De Toffoli [30]: la comunicabilita di una

dimostrazione ¢ un criterio di accettabilita pit fondamentale del suo rigore [30].

2.3.4 Dimostrare per scoprire

La quarta funzione che si realizza dimostrando ¢ quella di scoperta. Cid puod av-
venire direttamente, come si pud vedere nella storia delle geometrie non euclidee:
la costruzione di nuovi spazi avviene proprio grazie alla dimostrazione di teoremi
a partire da nuovi assiomi. O pud anche avvenire con una lettura a posteriori: il
processo di generalizzazione che avviene dimostrando porta a vedere una serie di
esempi, apparentemente scollegati tra di loro, da una prospettiva pitt ampia; cosi, il
matematico vede nuove strade da sviluppare nel mondo della conoscenza e individua
delle proprieta che contribuiscono in modo essenziale alla sussistenza del teorema.
Per un approfondimento di questa funzione si rimanda ad un altro lavoro di De

Villier, in cui illustra il ruolo esplicativo e di scoperta delle dimostrazioni [31].

L’ultimo contributo che si vuole citare riguarda un’importante ricerca sperimen-
tale portata avanti da Healy e Hoyles [53] sulle concezioni che studenti di 14 e 15 anni
hanno riguardo le dimostrazioni di algebra. Lo studio risponde a diverse domande di
ricerca, tra cui una di particolare interesse per questa tesi: quali convinzioni emer-
gono sulla funzione della dimostrazione? La maggior parte degli studenti riconosce
che dimostrare sia uno strumento di convincimento o di spiegazione, ¢ solo '1%
riconosce i ruoli di scoperta e sistematizzazione. Un altro dato sorprendente é che i
risultati non sembrano dipendere dagli insegnanti, i quali sono formati in ambienti
accademici diversi; questo, in un’ottica Etnomatematica, apre la strada a cercare
cause pitt generali dietro la sedimentazione di certe convinzioni: apre la strada al-
la ricerca di cause culturali. Quali valori guidano la didattica della dimostrazione?
Quali vengono trasmessi? Quali funzioni della dimostrazione emergono dalla pratica
didattica e di ricerca che si svolge in ambiente accademico? Quest’ultima domanda

é proprio cio a cui questa ricerca vuole dare una risposta.



35

3. Ricerca e risultati

La maggior parte della produzione scientifica riguardo la cultura occidentale della
matematica é scritta da singoli matematici che ritengono il problema rilevante. I
numerosi quadri teorici che si sviluppano hanno bisogno di essere ricercati e verifi-
cati. L’Etnomatematica, fino ad oggi, si ¢ occupata di studiare le culture indigene
conforntandole implicitamente con la propria, spesso e volentieri occidentale. Ma si
é sicuri di conoscere questa cultura? Tale domanda apre una voragine apparente-
mente incolmabile e che richiede uno sforzo collettivo per poter essere risposta. La
ricerca presentata in seguito ¢ un piccolo mattone nel palazzo che si vuole costruire
e indaga la pratica culturale della dimostrazione negli ambienti accademici, in par-
ticolare si chiede quali aspetti culturali emergono dalla pratica didattica e di ricerca

della dimostrazione.

3.1 Metodologia

Come evidenziato anche da Morgan [29], i focus group sono ottimi per analizza-
re motivazioni e convinzioni legate ad un certo argomento e possono produrre una
grande quantita di dati. Per questo motivo, tale metodologia ¢ stata ritenuta parti-
colarmente adatta per far emergere e studiare aspetti culturali della didattica della
dimostrazione in universita. Inoltre, 'analisi é stata mirata a individuare pochi

aspetti specifici, cosi da evitare di ottenere molti dati tutti diversi.

3.1.1 Composizione dei Focus Group.

Sono stati organizzati due diversi focus group di docenti universitari di matemati-

ca sul tema della dimostrazione, denominati FGA (Focus Group A) e FGB (Focus
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Group B). Ciascuno di essi ¢ stato composto in modo da avere rappresentati di diver-
si settori disciplinari, cercando di ricostituire una micro comunitd matematica sulla
base dei dati raccolti da Morana e Sagramora dal Portale dei dati dell’Istruzione
Superiore riguardo la distribuzione di docenti STEM per grado di carriera accade-
mica e genere |71], [75]. T dati riportano le seguenti percentuali: il personale docente
e ricercatore degli atenei statali nell’area delle scienze matematiche e informatiche
¢ cosi distribuito: professori di I e II fascia 59,7%; ricercatori 23,6% e titolari di
assegni di ricerca 16,7%. La presenza femminile nel sistema universitario italiano si
assesta al 50% tra i titolari di assegni di ricerca, al 46% tra i ricercatori universitari,
al 42% tra i professori associati e al 27% tra i1 professori ordinari. Al gruppo FGA
hanno partecipato un professore associato di analisi, una professoressa associata di
didattica della matematica, una professoressa associata di geometria, un professore
ordinario di probabilita, un ricercatore di analisi numerica e un dottorando di ana-
lisi. Al gruppo FGB hanno partecipato un professore associato di analisi numerica,
una professoressa associata di storia della matematica, una professoressa associata
di algebra, un professore associato di fisica matematica e una dottoranda di alge-
bra. Inoltre, in entrambi il tesista & stato moderatore, mentre solo nel primo é stato

presente un osservatore col solo scopo di prendere appunti.
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Settore disciplinare Grado in carriera | Genere | Codice
MAT /03 (Geometria) Associato F GAFA
MAT /04 (Matematiche Complementari) Associato F DAFA
MAT/05 (Analisi Matematica) Associato M AAMA
MAT/05 (Analisi matematica) Dottorando M ADMA
MAT/06 (Probabilita e Statistica Matematica) Ordinario M POMA
MAT /08 (Analisi Numerica) Ricercatore M NRMA
Tabella 3.1: Composizione Focus Group A
Settore disciplinare Grado in carriera | Genere | Codice
MAT/02 (Algebra) Associato F AAFB
MAT /02 (Algebra) Dottorando F ADFB
MAT /04 (Matematiche Complementari) Associato F SAFB
MAT/07 (Fisica Matematica) Associato M FAMB
MAT/08 (Analisi numerica) Associato M NAMB

Tabella 3.2: Composizione Focus Group B
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3.1.2 Progettazione e gestione del Focus Group.

Ogni focus group é stato svolto online in una videochiamata di cui ¢ stata fatta una
registrazione audiovisiva. Ciascuna intervista ¢ durata circa due ore ed é stata scan-
dita da quattro fasi: dopo aver spiegato come si sarebbe strutturata la discussione,
¢ stata presentata a ciascun partecipante una prima domanda: "Come fare mate-
matica senza dimostrare?" (Q1). Ogni partecipante ha risposto privatamente e non
anonimamente attraverso il software web Padlet, una lavagna virtuale. La scelta di
iniziare con una parte scritta € stata fatta per dare il tempo ai partecipanti di racco-
gliere le idee e potersi focalizzare sull’argomento per evitare momenti di dispersione
durante la successiva discussione, nonché per contenere alcune dinamiche di gruppo
come l'effetto di conformita di Asch [3], secondo il quale il comportamento degli
individui in un gruppo ¢ influenzato da come si comporta la maggioranza, o come
il pensiero di gruppo, per il quale 'opinione del singolo non viene espressa critica-
mente per mantenere la coesione all’interno del gruppo [62]. Dopo una lettura delle
risposte da parte del moderatore, € stato chiesto ai partecipanti di esporre la rispo-
sta per iniziare la discussione di gruppo. Dopodiché, ¢ iniziata la seconda fase del
focus group, nel quale gli intervistati hanno prima risposto ad una seconda doman-
da per iscritto privatamente: "Come insegnare matematica senza dimostrazione?"
(Q2), per poi avviare la discussione nelle stesse modalita della prima. Talvolta, il
moderatore é intervenuto con lo scopo di chiedere chiarimenti o approfondimenti su

alcuni argomenti emersi.

3.1.3 Analisi

L’analisi condotta ha seguito le linee guida espresse da Raibee [12], che si rifa ai
celeberrimi lavori di Krueger. Per ogni gruppo si é prodotta una trascrizione del-
Iintervista e per ogni frase detta da ciascun intervistato si é risposto alla sequenza

di domande:

1. Il partecipante risponde alla domanda?
2. La risposta aggiunge qualcosa di importante all’argomento?

3. Cisono commenti aggiuntivi che pur non rispondendo alla domanda risultano

rilevanti nel tema di ricerca?
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4. La risposta é gia stata data in precedenza?

L’ultima domanda ha permesso di creare delle categorie di risposta caratterizzate
dalle parole utilizzate, dal contesto emergente, dalla consistenza dimostrata, dalla
frequenza, intensita e specificita della risposta. Questo processo é stato svolto per
cido che emerge durante la discussione, mentre la parte scritta ¢ stata usata per
controllare la consistenza interna delle risposte. Le domande guida della discussione
sono poste in modo tale da far risaltare cio che resta quando si toglie la dimostrazione
o cio che bisogna far emergere in assenza di essa. Per questo sono emerse risposte
che esprimono convizioni e motivazioni implicitamente. Eccone un esempio: "[.../
[senza dimostrazione NdA] non sei sicuro che funzioni. [...] si vede qui si vede
anche la mia ignoranza di matematica applicata. Una cosa che ho pensato invece é
che possono succedere delle cose, del tipo 10 scrivo un algoritmo e vedo che funziona
e magari non ho la dimostrazione completa pero lo studio, un po’ come se fosse uno
studio sperimentale.” In questo intervento, AAFB allude a come si possa capire il
funzionamento di un fatto matematico in assenza della dimostrazione, evidenziando
come, in presenza di quest’ultima, il problema non si porrebbe. In questo senso

diversi altri interventi sono stati inseriti nelle categorie di riferimento.

3.2 Risultati

Quali funzioni emergono dalla pratica di ricerca e didattica del dimostrare in univer-
sita? Il principale risultato della ricerca ¢é I'aver individuato delle possibili funzioni
della dimostrazione, che la caratterizzano come una pratica matematica che segue
determinati obiettivi disciplinari: capire il mondo matematico, sistematizzare la
conoscenza matematica e formare 'intuizione matematica . Questo approccio per-
mette di vedere i processi dimostrativi staccati dai processi argomentativi, cosi che

possano essere individuati anche in pratiche non accademiche.

3.2.1 Dimostrare per capire la matematica.

L’unita di analisi considerata sono entrambe le discussioni, nelle quali sono stati
ricercati 1 verbi capire, apprendere, spiegarsi, dare un senso, funzionare con even-

tuali desinenze. Ecco una lista delle ricorrenze di termini quando usati esclusiva-
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mente in rifermento a come dimostrare serva a comprendere il mondo matematico

accompagnati da un esempio:

e Capire: 16, AAFB: "Se vuoi poi davvero capire cos’e¢ la matematica, secondo

me una dimostrazione ci va.”

e Funzionare: 9, DAFA: "io [..] la dimostrazione U'ho sempre intesa [...] come

il momento in cui capisci per davvero come funzionano le cose”.

e Dare un senso: 6, AAMA: "|...] senza dimostrazione di fatto la matematica

non c¢’e, ci sono piccoli pezzi di matematica. Ma non c’é il senso pieno”.

e Apprendere: 2, NRMA: "[...] si potra fare matematica senza dimostrazione,
ma trovo che si perderebbe proprio uno strumento in qualche modo didattico

per apprendere appieno un risultato”.

e Spiegarsi: 2, NRMA: "[...] in realta la dimostrazione é una spiegazione del

risultato stesso’.

Tali termini ricorrono sia all’inizio, che a meta, che alla fine dell’intervista, mo-
strando una certa stabilita della convinzione che la dimostrazione serva a capire la
matematica. Alcuni interventi non contengono le parole ricercate, ma rientrano co-

munque nella semantica della comprensione.

NRMA: [...] mi sono accorto sempre di pit come una dimostrazione sia in qual-
che modo una spiegazione del risultato stesso, soprattutto quando si sottolineano 1
ruoli specifice delle varie ipotesi. Una volta capito il risultato, grazie anche alla sua
dimostrazione, st puo poi apprezzare anche [impatto che questo risultato ha. In
conclusione, si potra sicuramente fare matematica senza dimostrazioni, ma credo
che si toglierebbe un importante strumento per comprendere ed assimilare a pieno la

matematica stessa.

NRMA avvia cosi la discussione di gruppo esponendo agli altri partecipanti cio
che ha scritto. Tale affermazione tratta il dimostrare come un’attivita che il mate-
matico svolge per se stesso e la dimostrazione come strumento. Questo aspetto ¢ di
fondamentale importanza per comprendere la sfumatura nell’affermazione: "Si di-

mostra per comprendere”". GAFA la esprime spontaneamente durante la discussione:
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GAFA: "[...] prima di imbarcarsi nel leggere una dimostrazione io mi devo fida-

re che il risultato ha un certo valore di verita".

In questa frase, che viene accolta dal gruppo e mai contestata, si evidenzia come
la convizione della verita di un fatto debba essere precedente alla sua dimostrazio-
ne. Questo aspetto é cosi fondamentale anche per DAFA, che dice di aver criticato
aspramente, in passato, le dimostrazioni portate a termine con l'ausilio di un cal-
colatore, come quella del Teorema dei quattro colori. In questa critica emerge una
sorta di frustrazione dovuta al dover rinunciare a un aspetto del cercare una dimo-
strazione, anche considerando la sua citazione riguardo al valore affettivo che lega

alla dimostrazione:

DAFA: "[...] a me la dimostrazione mi & sempre piaciuta da morire perché [...]
secondo me ha una valenza estetica e affettiva, nel senso che quando riesci a fare la
dimostrazione di un risultato [...] che hai in mente e tutte le cose ti vanno a posto,
¢ il momento secondo me bello del fare matematica e & il momento gratificante del

fare matematica”.

Piu nello specifico scrive anche:

DAFA: "[...] nella simulazione tu hai un qualcosa che non controlli fino in fon-
do, [...] a me questa cosa qui istintivamente mi é sempre sembrata una cosa che
[-..] toglie tutto il gusto del lavoro, no? Nel senso che cioé ti rimane un qualcosa

del quale non ti fidi perché non lo sai come é stato trovato”.

Questo legame affettivo si lega alla mancanza di comprensione: la dimostrazione
permette di fidarsi in quanto aiuta a stabilire il grado di verita un risultato, tale
fiducia conclude il processo di comprensione. Infine, é notevole la presa di posizione

riguardo al formalismo:

DAFA: "Ecco, io non l’ho mai intesa come una cosa di formalismo, la dimostrazione

I’ho sempre intesa pit, come a un certo punto diceva NRMA come il momento in cui
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capisci per davvero come funzionano le cose”

Da cui emerge la convinzione che un pensiero dimostrativo considerabile tale ¢
quello di comprensione, non quello di formalizzazione. Tuttavita, questa visione
pare non essere del tutto condivisa dal gruppo, alcuni membri si riferiscono all’at-

to di dimostrare come fase finale di un processo di scoperta e intuizione matematica:

ADMA: "[...] la dimostrazione serve a rendere rigoroso [...] un ragionamento che é
stato fatto, pero secondo me il focus deve rimanere un po su l’idea, anche intuitiva,

che ti ha portato a fare.. A impostare un problema in un certo modo.”

GAFA: "Quindi DUattivita di dimostrazione é un’attivita che arriva alla fine di qual-
cosa molto lungo, nel senso che é la fase finale di un processo in cui uno di solito
prima studia tanto per capire qual é il contesto, cerca di fare delle ipotesi, st fa un
sacco di esempi e tenta di fare dei controesempi per smontare le ipotesi e poi alla
fine, quando ¢é abbastanza convinto che l'affermazione che sta scrivendo é un affer-
mazione sensata, tenta di fare una dimostrazione un pochino pit formale [...]. La

dimostrazione ¢ una fase di un percorso molto pit lungo.”

Eppure, anche se sembrano in contrasto, le due visioni rientrano nella stessa ca-
tegoria; infatti, questa fase finale di dimostrazione risponde all’esigenza della co-
munita dei matematici di sistematizzare la conoscenza, ma nell’ottica del soggetto
dimostratore, risponde alla necessita di voler accettare una nuova conoscenza mate-
matica che prima aveva solo intuito. In questo senso, la comprensione coincide con
l’accettazione che cio che si ha intuito sia effettivamente parte integrante del mondo
matematico. Questo raggiungimento avviene attraverso il processo dimostrativo, e
si puo quindi estrapolare la seguente caratterizzazione: un processo matematico
che permette al soggetto che lo attua la comprensione di un fatto mate-

matico & un possibile processo dimostrativo.

In parallelo, nella discussione portata avanti dal FGB, AAFB ha sostenuto le stesse

idee con parole molto simili:
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"Se non hai dimostrato qualcosa, o non U'ha dimostrata qualcun altro, non puoi

essere sicuro che sia vera."

"mon é che io non faccio la dimostrazione. Io nella mia testa me la sono fatta,

magari non la scrivo nell’articolo pero lo so che funziona.”

"[...] i sono computer che fanno dimostrazioni automatiche, pero non é tanto

quello che vogliamo la mia idea ¢ che poi la dimostrazione ti da un po’ le certezze. "

Mentre FAMB prende posizione su come per lui la dimostrazione debba essere per

comprendere e non per dimostrare:

"[...] Da questo punto di vista, per esempio, io tendo a non raccontare quasi mai
le dimostrazioni per contraddizione, ma solo quelle per quelle costruttive. Non dico
che non servano, pero diciamo che per quello che insegno io tipicamente do molto

pit peso alla costruzione di un risultato, di un modello, eccetera”.

Altri partecipanti, invece, il dimostrare per capire non lo esplicitano, esprimendo
una certa necessita del dover dimostrare per fare matematica, senza rendere chiaro

a cosa risponda questa necessita.

ADFB: "Non si puo fare matematica senza dimostrare. Anche perché cosa sarebbe
la matematica senza le dimostrazioni? Una serie di frasi prese per vere/false senza

verifica?"

ADFB: "[...] & vero che perd la congettura la vogliamo dimostrare, quindi cioé co-
munque stiamo andando verso, cioé puntiamo alla dimostrazione e dalla congettura

nascono cioé piccoli risultati per dimostrare o per confutare la congettura.”

SAFB: "[...] quando ho letto la domanda [Q1 NdA] la mia risposta immediata

sarebbe stata di dire che non era possibile fare matematica senza dimostrazione.”

SAFB:"Diciamo per le esperienze didattiche che ho, la dimostrazione faccio un po’
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fatica a evitarla, magart in alcuni casi provo ad assegnare gli studenti la lettura di
dimostrazioni fatte da altri e poi di commentare con loro [...] il procedimento. |[...]

non riesco a non far vedere le dimostrazioni.”

3.2.2 Dimostrare per sistematizzare la conoscenza matema-

tica.

La sistematizzazione é I'azione collettiva di una comunita per costruire una cono-
scenza condivisa tramandabile e comunicabile. In matematica questo avviene grazie
alla dimostrazione delle congetture: un teorema entra a fare parte dell’insieme del-
la conoscenza sistematizzata quando € dimostrato in una teoria. Dalle discussioni

questo emerge chiaramente:

FAMB: "[...] Parisi ha vinto il Nobel a partire dalla sua soluzione di questo modello.
La dimostrazione é arrivata anni e anni e anni dopo. Pero [...[ lui ha sviluppato una
tecnica simil rigorosa, cioé non rigorosa.[...] finché non ha avuto la dimostrazione

di matematica nessuno aveva il coraggio di parlarne come se fosse matematica.”

AAMA: "[...] senza dimostrazione di fatto la matematica non c¢’é, ci sono picco-
li pezzi di matematica. [...] Tant’é vero che nessuno di noi credo che se sottomette
un articolo qualsiasi, poi la rivista scientifica, glielo prendono solo perché c’é una

bella intuizione, ma poi non c’é scritto una dimostrazione”.

AAFB: "Se non hai dimostrato qualcosa, o non l’ha dimostrata qualcun altro, non

puoi essere sicuro che sia vera."

ADFB: "La dimostrazione fornisce ['universalita modulo essersi concordati sulle re-

gole".
[M: Come fare matematica senza dimostrare?]:

DAFA: "La risposta istintiva e immediata é, per quanto mi riguarda, "impossibile”.

Nella mia esperienza sia di studente che di ricercatore, la dimostrazione & sempre



45

stata uno dei cardini del fare matematica”.

AAMA: "In senso pieno, non st puo fare. Rimanendo a livello dell’intuizione o

della procedura, st fa una matematica monca".

ADFB: "Non si puo fare matematica senza dimostrare. Anche perché cosa sarebbe
la matematica senza le dimostrazioni? Una serie di frasi prese per vere/false senza

verifica?"

Cid che é meno ovvio di quanto sembri é come le dimostrazioni dimostrino le con-
getture e dunque come avvenga in concreto la sistematizzazione. Il problema non é
banale ed é sollevato e affrontato da De Toffoli [30], in cui discute come la maggior
parte delle presunte dimostrazioni che esistono siano in realta simil-dimostrazions,
ovvero argomenti che soddisfano i criteri di accettabilita per dimostrazioni di una
determinata comunita matematica. Lolli [66] definisce le dimostrazioni come bolle
di accompagnamento che certificano la sussistenza di "A implica B", e ci tiene a non
definire meglio cosa sia una bolla di accompagnamento o come essa possa in effetti
certificare la validita di un ragionamento, poiché non ¢ possibile farlo: nella storia
e nelle diverse sottodiscipline della matematica se ne trovano di tutti i formati, ed
é difficile ricondurli tutti ad uno stile unico. La cosa fondamentale ¢ che il ragiona-
mento sia finito per poterlo trasmettere. In conclusione, cid che é una dimostrazione
non ¢ universale, ed ¢ dunque ragionevole considerare che ogni cultura possa svi-
luppare i propri criteri dimostrativi e possa condividere proprie simil-dimostrazioni.
Questo fatto emerge in FGA in risposta ad una domanda posta dal moderatore su

quali siano i criteri di accettabilita di una dimostrazione:

GAFA: "[...] io faccio topologia e da noi per le dimostrazioni si guardano immaging
[-..], prima di leggere un risultato guardi la figura [OK] nel senso che di solito la
figura é portatrice di pit informazioni che non il testo che la accompagna, quindi
abbiamo dei criteri di accettabilita molto diversi da, per esempio, il mio collega di
ufficio che fa lanalista e non ha mai una figura dentro un articolo e quindi credo

che la risposta sia che dipende dalla comunita.”
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DAFA: "Io se mi posso esprimere su questa cosa sono perfettamente d’accordo con

quello che dice GAFA sul discorso della comunita di riferimento.”

AAMA: "direi che tantissimo lo fa il contesto, un po’ come hanno detto adesso
GAFA e DAFA, [...] io vengo da una nottata di correzione esami, all’interno dello
stesso esame c’erano cose che valutavo positivamente pur non essendo dimostrazio-
ni rigorose dall’inizio alla fine e altre in cui seccavo git perché andavano fatte per
bene, perché erano magari consequenze dirette di definizioni quindi andavano fatte.

Quindi boh, direi che il contesto fa tutto.”

E per quanto riguarda la matematica NUC, da entrambe le discussioni emerge esse-

re rigoroso come condizione necessaria affinché un argomento sia una dimostrazione:

ADMA: "[...] la dimostrazione serve a rendere rigoroso, eh, un ragionamento che é

stato fatto".

GAFA: "[...] quando é abbastanza convinto che laffermazione che sta scrivendo

¢ un affermazione sensata, tenta di fare una dimostrazione un pochino piu formale”.

AAMA: "E vero che ¢ bellissimo quando uno vede quel passaggio che fa tornare
qualcosa, & uno delle esperienze pit gratificanti, e perd questo é come il primo passo

che pot ti porta alla formalizzazione di tutto”.

ADMA: "[...] te hai avuto lidea, hai avuto Uintuizione, poi la devi formalizzare.

La formalizzazione puo essere molto tecnica, molto difficile.”

NAMB: "Quindi io vedo la dimostrazione come un’applicazione rigorosissima e giu-
stissima, cioé che forse é quella pit riconoscibile nella matematica in generale, pero

& specchio di uno dei processi della mente umana, cioé logici, che é la deduzione".

SAFB: "[A studenti non di matematica NdA] non ho necessita di formalizzare in
maniera rigorosa tulli © risultali so, non ho necessita di dare la dimostrazione dei

teorems”.
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Per concludere il ragionamento citiamo il lavoro di Burgess e De Toffoli [21] in cui
scrivono che il rigore ¢ ci0o che garantisce la correttezza di un risultato; ne consegue
che una dimostrazione rigorosa é corretta, che a sua volta implica che sistematizza
la conoscenza. Come fatto per la funzione di capire la matematica, si trova una nuo-
va possibile caratterizzazione del dimostrare nella matematica NUC: un processo
matematico che ha lo scopo di sistematizzare la conoscenza matematica

é un possibile processo dimostrativo.

3.2.3 Dimostrare per formare ’'intuizione matematica.

Per Fischbein [11] un’intuizione é una conoscenza matematica auto-esplicativa, ov-
vero non che richiede I'esigenza di essere giustificata; risulta evidente alla mente,
cioé facilmente immaginabile, ed é intrinsecamente certa, indipendentemente dalla
percezione di quanto sia giustificiabile. Le intuizioni sono perseveranti e coercitive,
ossia rimangono nel tempo e sono difficili da abbandonare, e spesso sono organizzate
in strutture simili a teorie, da cui si possono anche estrapolare nuove conoscenze.
Piu intuizioni possono organizzarsi in sistemi utilizzabili come modelli per la risolu-
zione di problemi; in generale un sistema B rappresenta un modello del sistema A
se, sulla base di un certo isomorfismo, una descrizione o una soluzione prodotta in
termini di A puo essere riportata coerentemente in termini di B e viceversa. Quan-
do il sistema B é un sistema di intuizioni, allora il modello é detto intuitivo. Tali
costruzioni mentali intervengono nella risoluzione di problemi e questo paragrafo
supporta l'ipotesi che dimostrare ha la funzione di costruire un modello intuitivo
per la dimostrazione o la confutazione di congetture. Innanzitutto sono presentati
alcuni interventi introduttivi sulla differenza che c’¢ tra studenti di triennale e di

magistrale.

NAMB: "[...] si presuppone abbiano gia acquisito, essendo magari la laurea ma-
gistrale, [...] la capacita [...] di analizzare una dimostrazione a loro fornita senza
doverla ripercorrere passo passo e si presuppone abbiano le capacita di sequire tutts

passi di questa dimostrazione nel momento in cut la dimostrazione non presupponga
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passi molto particolari. [...] nel fare didattica [...] si da per scontato che gli studenti
possano sequirla da soli, o che si possa adattare una dimostrazione in maniera ab-

bastanza facile. "

AAFB: "[...] io penso che una volta che loro sanno cos’e una dimostrazione puoi
anche permetterts di dire: ve la andate a vedere, non te la devo rifare tutta. Pero
questa idea che & dentro all’essenza della matematica, cioé [...] avere visto una di-

mostrazione, in effetti ce ’ho."”

NRMA: "[...] se io scelgo di dimostrare un certo risultato é perché penso che [...]
la dimostrazione di quel risultato dia un valore aggiunto [...] forse questo va anche
un po’ nella direzione di una matematica o di un insegnamento della matematica o
di qualche disciplina della matematica anche senza dimostrazioni, pero anche ad un
liwello un po’ pit avanzato. Cioé non stamo al primo anno della triennale, ma sia-
mo con studenti al primo, secondo anno della magistrale, che hanno una confidenza

maggiore anche con gli strumenti della matematica.”

GAFA: "E pin preoccupante quando sono poco in grado di muoversi, soprattutto
pensando a matematici, quando sono un po’ pit grandi, cioe nel senso, quando tu
arrivi cot corsi sulla magistrale e c¢’e di nuovo il problema che se non mett: tutts

dettagli da soli non riescono a cavarseli fuori, quello diventa un po’ problematico”.

Da queste risposte emerge, innanzitutto, come il dimostrare a lezione abbia un ca-
rattere fortemente didattico, poiché si riduce con I'aumento della competenza dello
studente da cui ci si aspetta una certa autonomia. Inoltre, si evidenziano quali siano
queste competenze attese, ovvero il sapere analizzare, capire e produrre dimostra-
zioni di fatti noti. Il commento di GAFA esprime una condizione precisa riguardo
al possibile fallimento di tale azione, ovvero l'incapacita dello studente di risolvere i
problemi che possono emergere nello studio o nella produzione di una dimostrazio-
ne senza l'aiuto di un esperto. Chiarito 'obiettivo, risulta interssante come questo

viene perseguito:

AAFB: "[...] devo dire e il problema & dopo capire se loro hanno recepito cosa
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vuol dire davvero dimostrare una cosa. E secondo me, nella loro testa loro ’hanno
dimostrato, ma non é vero [...| e finché non gliele faccio, anche un tot., secondo me

loro la differenza non la capiscono.”

AAMA: "[...] se tu sei al primo anno e io ti devo introdurre a questa nuova co-
sa della dimostrazione, ¢’¢ bisogno che io te le faccia vedere un po’. [...] poi piano

piano cerco di accompagnarts nel fartele da sole. "

GAFA: "[...] fare alcune dimostrazioni insegna [...] delle tecniche di dimostra-

zione."”

AAMA: "Perché si possa, come dire, sperare che lo studente impari a muoversi,
impari magari a scrivere una dimostrazione, io devo, direi, come minimo fornirti

un pacchetto di dimostraziont che ho fatto per bene.”

GAFA: "[Fare alcune dimostrazioni NdA] é molto importante nella matematica,
quindi dictamo o dimostrazioni che insegnano qualcosa dal punto di vista del fare
la dimostrazione oppure l’altro motivo per cui si fanno dimostrazioni é per allenare,
[...] questa & una cosa che ¢ messa anche prima, cioé il valore della dimostrazione
¢ quello di ripulire Uidea. [...] Quindi fare dimostrazioni ti allena o comunque ti

impone di parlare a qualcun altro.”

ADFB: "[...] ¢’¢ una gran differenza tra triennale e magistrale, come si diceva gia
anche adesso, quindi in triennale impari cos’e una dimostrazione, [...] impari a ma-
neggiarla eccetera; In magistrale [...] ha senso mostrare una dimostrazione [...] che
usa tecniche magari nuove, innovative, diverse rispetto a quelle precedenti e quindi

che sono tecniche che tu studente poi potresti riapplicare nel tuo progetto di ricerca.”

In un quadretto quasi umoristico, pare che dimostrare a lezione sia una pratica
necessaria per insegnare a dimostrare. Di certo per dimostrare a lezione non si
intende il cercare la dimostrazione di una congettura, ma il trovare dimostrazioni
a fatti gia noti e ben sistematizzati. Dunque é corretto dire: dimostrare a lezione

fatti noti & una pratica necessaria per insegnare a dimostrare fatti non noti. Questa
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pratica didattica persegue proprio lo scopo di far costruire agli studenti un modello
intuitivo da usare quando si deve affrontare un problema nuovo: si é visto che la
Dimostrazione ha una definizione molto vaga e per nulla operativa, cosi risulta ne-
cessario fornire allo studente un pacchetto di esempi di dimostrazione abbastanza
grande a cui poter attingere nel momento in cui affronta un problema nuovo. Quello
che si ritiene succeda é qualcosa di molto simile alla formazione di diverse concept
image [106] del concetto matematico astratto di dimostrazione. Oltre all’evidenze
esplicite riportate sopra, dalle interviste risulta che le parole intuzione e intuitivo/a
relative al fare matematica e/o dimostrare emergono 14 volte nel FGA e 8 volte
nel FGB, questi dati indicano che gli intervistati ritengono che dimostrare sia in
qualche modo legato all’intuizione matematica in generale. Cid viene messo in evi-
denza anche dal fatto che 'intuizione matematica é cio che si vuole salvare in una

matematica senza dimostrazioni.

ADMA: "secondo me il focus deve rimanere un po’ sull’idea, anche intuitiva, che ti

ha portato a fare.. A impostare un problema in un certo modo."”

DAFA: "[La dimostrazione NdA] ¢ la parte proprio in cui a un certo punto le rotel-
line del cervello ti si mettono al posto giusto, no? E questa cosa & completamente
cancellata, secondo me, dal lavoro [...] in cui tu hai una scatola nera [Dimostratori

automatici NdA], il passaggio [...] che lo fa da solo."

POMA: "[Sull’insegnare senza dimostrare NdA] [...] io trovo molto divertente e
istruttivo usare i controesempi. [...] controesempi controintuitivi, cioé controesempi
che si possono costruire ma che sfuggono all’intuizione, casi pit patologici, [...] que-
sta matematica negativa di dimostrare cio che non ¢ vero attraverso controesempi

credo sta molto istruttivo e anche fantasioso”.

NAMB: "[...] bisogna fargli far capire loro, cioé insomma, far capire loro che il
rigore nel ragionamento & importantissimo anche per gli ingegneri. Attenzione, Eh,
non solo per i matematici, ma anche per gli ingegneri, per cui in quel caso li effet-

tivamente la dimostrazione secondo me si che acquisisce veramente importanza.”
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Questo legame che emerge implicitamente non é ben supportato dai dati, in quanto
le affermazioni risultano poco precise. Pero, questa funzione della dimostrazione
in grado di domare le intuizioni & ben riconosciuta in storia della matematica. La
famosa frase di Cantor: "lo vedo, ma non lo credo”, riguardo la dimostrazione sul-
I'equipotenza di un quadrato e del suo lato ne ¢ la prova esemplare. Lolli scrive
che dimostrare puo avere la funzione di sostituire, permettere, raffinare e definire
I’intuizione, portando il matematico a vedere quel che non c¢’é, ovvero a formare una
nuova intuizione sul mondo matematico [66]. Si puo finalmente concludere che un
processo matematico con lo scopo di formare un’intuizione matematica
o un modello intuitivo sulle dimostrazioni € un possibile processo dimo-

strativo.
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4. Conclusioni e Implicazioni

Questa tesi rientra nel campo di ricerca dell’Etnomatematica, ossia il campo di ri-
cerca posto al confine tra storia, antropologia culturale e matematica. La letteratura
offre un’ampia varieta di ricerche che toccano diverse dimensioni. La dimensione co-
gnitiva indaga le origini biologiche e culturali della cognizione matematica e fornisce
un supporto teorico di ampio consenso su come aspetti cognitivi e culturali siano
due facce della stessa medaglia; la dimensione concettuale si occupa di studiare come
un problema reale possa essere affrontato in modi diversi e come ciascuno di essi
porti allo sviluppo di differenti astrazioni e modelli della realta, tutti con un pro-
prio potenziale epistemologico; la dimensione storica offre delle evidenze tratte dalla
storia della scienza riguardo a come lo sviluppo delle idee matematiche sia effetti-
vamente influenzato da aspetti culturali e viceversa; la dimensione epistemologica
fornisce nuovi quadri teorici per poter parlare di matematica, ampliando il dibattito
filosofico includendo gli aspetti culturali. La dimensione educativo-didattica si oc-
cupa di proporre nuove prospettive educative e didattiche proponendo curriculum
che non snaturarino l'insegnamento della matematica, ma che tengano conto delle
ricerche, dei principi e dei valori del’Etnomatematica; infine, la dimensione politica
si concentra sullo studio degli aspetti culturali di diversi gruppi, cosi da riconoscere
le radici socioculturali, in modo da promuovere il rispetto alla diversita, il dialogo
interculturale e aumentare la consapevolezza riguardo la conoscenza matematica.
Questa ricerca supporta le proposte epistemologiche piut recenti' e si pone nell’in-
tersezione tra la dimensione educativo-didattica e quella politica: negli studi svolti
finora ci si & concentrati sulle matematiche non occidentali, spesso confrontandole
implicitamente con un’idea di matematica occidentale mai formalizzata e data per

scontata. Questa ricerca promuove questa formalizzazione e vuole evidenziare quali

'Barton, [10].
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aspetti possono davvero essere dati per scontati e quali no. Il tesista, con I'obiet-
tivo di contribuire alla ricerca sugli aspetti culturali della matematica NUC, si é
interrogato su quali funzioni della dimostrazione emergessero nella pratica del di-
mostrare nel lavoro del matematico. Tenendo conto dell’ampio bagaglio di ricerche
sul tema della dimostrazione, sono stati organizzati due focus group composti da
docenti universitari per individuare quali funzioni ricopre il dimostrare nell’attivita
del matematico. I dati sono stati analizzati una volta e richiederebbero almeno una
seconda analisi per poter garantire la validita delle interpretazioni date. Le risposte
che si sono raggiunte possono considerarsi comunque soddisfacenti per le nuove pro-
spettive che offrono, anche se non rispondono definitivamente ad alcuna questione.
Di seguito si conclude la discussione sull’analisi dei dati e sono presentate nuove

strade di ricerca sia in didattica che in Etnomatematica.

4.1 La funzione Didattica della dimostrazione

Un interessante dato che emerge é che il termine argomentare non viene mai detto
da nessun’intervistatore. Come interpretarlo? E possibile che sia sempre sottinteso?
Nel secondo capitolo si € visto come 'essere un’argomentazione emerga dalla funzio-
ne di convincimento; i riferimenti ad essa, cercati attraverso le parole: convincere,
validare, o sostantivi derivati, si presentano solamente 5 volte nel FGA e una volta

nel FGB:

GAFA: "[...] ¢’e un livello di convinzione di validita del risultato, indipendente-

mente dalla dimostrazione.”

POMA: "[...] cioé invece di dimostrare, si fa 'enunciato, si fa la figura, si cer-

ca di convincersi cosi sul buon senso empiricamente della validita dell’enunciato”.
POMA: "[Fare matematica per controesempi NdA] E una matematica senza dimo-
strazione. Pero diciamo dove riesci ad ottenere un convincimento della validita

dell’enunciato, ecco”.

GAFA: "[Il matematico NdA] quando ¢é abbastanza convinto che l'affermazione che
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sta scrivendo é un affermazione sensata, tenta di fare una dimostrazione un pochino

pit formale.".

GAFA: "Voglio dire: lipotesi di Riemann, c’é una comunita intera che pensa che
sia vera, che ha un certo convincimento sul fatto che sia vera, anche se non esiste

una dimostrazione’.

NAMB: "[...] trovo che sia limitativo pensare alla matematica solo, e nessuno ha
detto, solo come processo di deduzione. Perché si rischia di creare delle bellissime
cose valide, ma di non aggiungere magari delle, come dire, delle altre cose che pos-

sono essere ricavate con processi logici diversi che possono essere I’abduzione.

Quest’ultimo commento é I'unico che sembra far emergere la funzione di convin-
cere/validare, anche se il riferimento scritto riguarda i processi deduttivi, non le
dimostrazioni, e come ben descritto dalle ricerche? non basta che un’argomentazio-
ne sia deduttiva per essere una dimostrazione. Dagli altri interventi, invece, sembra
che il convincersi della validita di un risultato avvenga prima della produzione di una
dimostrazione. Cosi, un’interpretazione dei dati piu coerente € che la dimostrazione,
vista come ultimo tassello di un lungo lavoro di ricerca matematica, o vista come
bolla di accompagnamento ad un’affermazione, & un processo non necessariamente
argomentativo. Dall’analisi dei focus group emergono, invece, altre convinzioni ri-
guardo il ruolo della dimostrazione nella ricerca in matematica e nella sua didattica.
Si individuano tre funzioni che potrebbero caratterizzare un processo dimostrativo

senza fare uso del concetto di argomentazione:
e dimostrare per capire la matematica;
e dimostrare per sistematizzare la matematica;
e dimostrare per formare I'intuizione matematica.

Per capire si intende far comprendere a se stessi: dimostrare, per un matematico,
svolge la funzione di spiegare a se stesso fatti e concetti matematici. Per sistema-

tizzare si intende proprio la funzione individuata da De Villier di organizzazione dei

2Toulmin [109], Duval [35], Balacheff 2], [9].



29

vari tipi di risultato nel sistema deduttivo della matematica. Infine, per formare
I'intuizione non si intende solamente il contribuire alla costruzione di modelli intui-
tivi riguardo gli oggetti matematici, come ne discute Lolli, ma di costruirne anche
riguardo agli oggetti meta-matematici come la Dimostrazione. In questo senso si
individua una nuova funzione della dimostrazione che si esprime nell’azione didatti-
ca e che si pone lo scopo di insegnare il ragionamento matematico, ossia le diverse
modalita di pensiero che i matematici mettono in atto per risolvere un problema.
La si chiamera funzione Didattica. Aver individuato questa funzione apre nuove
domande di ricerca: ¢ vero che dimostrare a lezione forma un’intuizione a riguardo?

Se si, quali modalita favoriscono o inibiscono questo processo di apprenimento?

4.2 Sistemi QRS e Processi CSI

I lavori di Bishop e Barton studiano quali processi matematici possono essere consi-
derati universali®, e la dimostrazione non rientra tra di essi. Questo puo essere dovu-
to alla visione tradizionale dell’accostare dimostrazione ad argomentazione: se una
popolazione non ha la tradizione di argomentare alcuni fatti, allora non dimostra.
Questo ragionamento pare molto simile a: se una popolazione non ha sviluppato
un sistema assiomatico, allora non fa matematica; che é proprio cio che le ricer-
che in Etnomatematica confutano. QQuesta tesi mostra come la dimostrazione possa
essere vista come un processo non argomentativo e caratterizzato dal suo ruolo nel-
la comprensione, sistematizzazione e formazione di intuizione della disciplina. Tali
funzioni potrebbero essere, per la pratica scientifica matematica e la dimostrazione,
cio che quantita, relazioni e spazialita sono per i sistemi QRS e la matematica NUC;
e potrebbero essere una buona caratterizzazione per individuare un nuovo processo,
detto CSI (Capire, Sistematizzare, formare [’Intuzione), comune a piu culture e cosl
definito: un Processo CSI é un processo matematico, ossia una pratica svi-
luppata in un sistema QRS, che esercita le funzioni di: capire il sistema
QRS, sistematizzare il sistema QRS e formare ’intuizione riguardo al si-
stema QRS. Dove formare I'Intuizione riguardo al sistema QRS significa costruire
Iintuizione sugli oggetti del sistema e sui possibili processi CSI accettati dal gruppo;

la Dimostrazione (NUC) ¢ un Processo CSI e le dimostrazioni sono processi CSI.

30ssia condivisi da tutte le culture conosciute.
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Chiaramente questo singolo studio non prova I'universalita di tali processi, ma puo
fornire un nuovo quadro teorico per poter parlare di dimostrazione in contesti al di

fuori della matematica NUC.

Sistema QRS

Matematica NUC

Processo CSI «— Dimostrazione NUC

Figura 4.1: Schema rapporto Processo CSI - Dimostrazione NUC

Un possibile sviluppo di ricerca pud essere proprio quello di cercare questi pro-

cessi in sistemi QRS diversi dalla matematica NUC.
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