ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

Agenti generativi e pipeline
d’avanguardia:
Automazione del ciclo di
sviluppo software

Relatore: Presentata da:
Chiar.mo Prof. Gabriele FOGU
Fabio VITALI

Correlatore Aziendale:
Chiar.mo
Marco PINELLI

Anno Accademico 2024-2025

(1 Contesto Scientifico e Tecnologico|

(1.1 Approcci popolarif.

(1.1.1 ~ Onboarding e Prototipazione|.

(1.1.2 Uso attuale delle Al nello sviluppo software]

(1.1.3 Agenti Al via web e strumenti “agentici”|

(1.1.4 Limiti delle soluzioni popolari|

[1.1.5 Context switching, hallucinations e documentation drift.|

(1.2 Soluzione propostal

2D — [alio Tvello dell Tuziond

[2.1 Come funzionano gli agenti di generazione di codice]

(2.2 Dalla valutazione comparativa alla scelta di Windsurf e Lovable]
[2.3 Architettura ad alto livello: Windsurt, Lovable, MCP e rules|

[3 Implementazione della soluzione]

[3.2 Pianificazione esplicita (plan/act)o 0oL

[3.3 Tooling e protocolli|

1ii

© o o 3 O

[3.4 Impostazione dello studio|. 30

[3.4.1 Ricerca dell'IDE (o del plugin VSCode)|. 30
[3.4.2 Definizione delle regole e dei server MCP| 34
[3.4.3 Definizione del benchmarkl 36
.44 Risultati emersil 37

3.5 Test di validazionel 38
[3.6 Descrizione dell’applicativo da migrare| 42
[3.6.1 Descrizione tunzionalel 42
[3.6.2 Descrizione dell'interfaccial 44
[3.6.3 Descrizione tecnica e architettural 51

[3.7 Fase "Lovable” - Remix demo, prompt e specifiche eseguibilif 52
B.71 Primaiteraziond 53
[B.7.2 Seconda iterazione L. 62
.73 Terza iterazionel 66

[3.8 Integrazione e merge con Windsurf] 70
[3.8.1 Processo di integrazione| 70
[3.8.2 Prompt forniti a Windsurfl 71

4 Valutazione del sistemal 75
[4.1 Metodologia di valutazione| 76
[4.2 Efficacia e analisi qualitatival 7
4.2.1 Contributo di Lovablel 7
422 Contributo di Windsurfl 78
[4.2.3 Qualita complessiva del risultato] 79

(4.3 Risultati del questionario|. 79

Introduzione

Questa tesi affronta uno dei problemi piu concreti e ricorrenti nello sviluppo software
moderno: la difficolta di trasferire in modo rapido ed efficace conoscenze tecniche,
standard architetturali e convenzioni interne a nuovi sviluppatori, e la conseguente
lentezza nell’avvio di un progetto o nella costruzione di prototipi funzionali. In un
contesto aziendale basato su soluzioni full stack e su un template condiviso, come quello
adottato da Laif S.r.l., questa difficolta si manifesta nella necessita di dedicare tempo
significativo all’allineamento iniziale e alla produzione di porzioni di codice ripetitive o

standardizzate.

L’uso del template svolge un ruolo chiave nel ridurre il lavoro di implementazione del
cosiddetto boilerplate, ossia quelle componenti strutturali che ricorrono in tutti i
progetti e che definiscono ’architettura di base del software: dalla configurazione del
back-end e delle sue rotte CRUD, all’organizzazione delle directory, alla gestione della
navigazione e dei flussi applicativi. Accanto al template, il design system aziendale
laif-ds fornisce un insieme coerente di componenti front-end, stili e pattern
d’interazione, permettendo di mantenere uniformita visiva e comportamentale tra

progetti differenti e riducendo ulteriormente il carico di implementazione ripetitiva.

Sebbene questa soluzione riduca 1’overhead tecnico, rimane aperto il problema
dell’onboarding: comprendere come orientarsi rapidamente all’interno della codebase,
come rispettare gli standard, come costruire nuove feature aderendo allo stile

architetturale e visuale dell’azienda.

Questa tesi sostiene che tale problema puo essere affrontato in modo efficace tramite
I'integrazione di un agente di Intelligenza Artificiale direttamente nell'IDE,
alimentato da una knowledge base interna strutturata secondo il template aziendale,
le rules versionate e la documentazione viva esposta tramite MCP. L’ipotesi centrale e
che, fornendo a un LLM un contesto ricco, organizzato e vincolato, I’agente sia in grado
di generare codice di qualita piu che accettabile e coerente, riducendo in modo
significativo sia il time-to-productivity dei nuovi sviluppatori sia i tempi necessari alla

produzione di mockup o proof of concept per attivita presales.

Nel corso della ricerca ¢ emerso come questa pipeline agentica consenta allo
sviluppatore - anche partendo da zero - di costruire in maniera assistita applicazioni
complete, passando rapidamente da richieste semplici alla generazione multi-file di
componenti coerenti con lo stack aziendale. L’efficacia osservata non risiede nella
sostituzione del lavoro umano, bensi nel supporto continuo fornito dall’agente

attraverso un ciclo plan/act/review e nell’uso integrato di:
a) regole aziendali versionate e strutturate in Markdown,
b) accesso a specifiche e documentazione tramite MCP,
c¢) conoscenza del design system (laif-ds) e del template full-stack.

Questa integrazione, essendo interna al flusso di sviluppo e basata sulla codebase reale,
permette di superare i limiti degli assistenti generici: scarsa consapevolezza degli
standard, contexrt switching tra ambienti esterni, perdita di coerenza e rischio di
documentation drift. La pipeline analizzata dimostra invece di poter produrre codice
coerente, ripetibile e allineato agli standard aziendali.

Un risultato particolarmente significativo e che la modalita sperimentata in questa
ricerca si e rivelata talmente efficace, comoda e produttiva da essere adottata
stabilmente nel processo di sviluppo aziendale, diventando parte integrante della

pipeline interna.

Panoramica della soluzione

Per comprendere la natura e la portata dell’approccio proposto, e utile esaminare la
pipeline agentica da una prospettiva “ad alta quota”, osservando come i suoi
componenti cooperino nel trasformare un LLM generico in uno strumento operativo
profondamente contestualizzato.

L’intero impianto ruota attorno a un agente integrato nell'IDE, capace di interagire con
la codebase e con le risorse informative aziendali. La sua efficacia dipende da tre
pilastri: contesto, vincoli e accesso alla conoscenza. Il contesto ¢ garantito dal
template full-stack, che definisce la struttura portante dei progetti - dal modello dati
all’organizzazione dei componenti front-end - e funge da riferimento per ogni nuova
generazione. I vincoli sono incorporati nelle rules versionate, che descrivono
convenzioni, standard architetturali, pattern ricorrenti e pratiche di sviluppo da
rispettare. L’accesso alla conoscenza, infine, € reso possibile dal Model Context
Protocol (MCP), che collega I’agente alle fonti informative interne, come
documentazione tecnica, schemi e dati dei database o specifiche funzionali.

La pipeline opera attraverso un ciclo iterativo plan—act-review: pianificazione
dell’intervento sulla base del contesto, generazione o modifica del codice all’interno
dell’IDE, e revisione immediata per verificare la coerenza con gli standard. Questo
meccanismo permette all’agente di affrontare attivita complesse, come refactoring
multi-file, implementazione di nuove feature e costruzione di prototipi funzionali,

mantenendo un allineamento continuo con la visione architetturale aziendale.

La ricerca prende forma a partire dal claim introdotto, sviluppandosi attraverso ’analisi
dei componenti che costituiscono la pipeline agentica e delle modalita con cui essi
cooperano all’interno dell’ambiente di sviluppo. Il percorso prosegue con la costruzione
di un caso applicativo concreto, in cui la pipeline viene impiegata per realizzare, a
partire da zero, il porting completo di un’applicazione reale. Questo scenario permette
di osservare ’agente nel suo ciclo operativo, di valutarne il contributo alla generazione
multi—file e di verificare la coerenza del codice prodotto rispetto agli standard aziendali.
La valutazione empirica conclusiva consente di misurare I'impatto della pipeline sui

principali aspetti considerati: la riduzione dei tempi di onboarding, la coerenza

stilistica e architetturale del codice generato, I'accelerazione nella produzione di
prototipi e la reale integrazione del metodo nel flusso di lavoro quotidiano. Ne emerge
un quadro unitario che collega il problema iniziale alla soluzione proposta e alla sua

efficacia operativa.

Claim e obiettivo della ricerca

In termini aziendali, ’adozione di standard condivisi (template back-end/front-end,
convenzioni di naming, design system, documentazione standardizzata e condivisa)
riduce i costi di manutenzione e facilita il passaggio di consegne, ma introduce una
barriera d’ingresso per i nuovi sviluppatori.

I processi tradizionali di onboarding (wiki, affiancamento, shadowing|MK24]) sono
efficaci ma costosi e faticano a rimanere aggiornati. Parallelamente, il reparto
commerciale necessita di prototipi rapidi e realistici/plausibili per validare casi
d’uso e presentare demo a potenziali clienti. Un agente Al che “wvive” nell’IDE,
addestrato sulle regole interne e connesso a fonti vive (repositories, basi di dati,
documentazione) puo diventare un tassello fondamentale nel processo, incrementando
la produttivita, riducendo i tempi e le iterazioni, tutto cio senza sacrificare qualita e

conformita alla struttura di sviluppo reale.

Tesi (claim).

Un agente Al integrato nell’IDE, alimentato da una knowledge base interna derivata da
template, regole e asset progettuali, strutturata in maniera rigida e puntuale, riduce i
tempi e i costi di onboarding e prototipazione, aumentando la coerenza del codice
rispetto agli standard aziendali.

In particolare, si sostiene che:

o L’agente accorcia il percorso che porta un neo-assunto junior a diventare un
developer in grado di produrre valore in maniera autonoma grazie a spiegazioni

contestuali, esempi guidati e generazione assistita aderente alle rules.

La generazione di mockup (modello dati d’esempio, pagina con Ul interagibile e
design coerente) & piu rapida rispetto a pratiche manuali o ad agenti “generici”
non allineati al template e prevede anche il riutilizzo "fisico" del mockup

nell’eventuale successivo sviluppo dell’applicazione.

La qualita (lint, test, aderenza a naming/struttura, uso del design system)
migliora quando le risposte dell’agente sono vincolate da regole e playbook

versionati;

L’integrazione con fonti vive (MCP verso Notion e DB) mitiga il documentation
drift e anch’essa migliora la qualita del codice generato, riducendo

I’ambiguita dei requisiti.

Obiettivo generale.

Progettare, integrare e valutare un agente IDE-centrico - basato su regole e con

accesso controllato a documentazione e dati - capace di fornire:

a)

b)

Supporto all’onboarding: spiegazioni contestuali dei file, ricostruzione di

pattern ricorrenti, micro-task guidati su codebase reali;

Generazione assistita: creazione di unitd funzionali end-to-end (modello dati,
migrazione, controller/service, pagina UI) che si integrino con il template e che

segua gli standard di sviluppo;

Prototipazione rapida: produzione di mockup coerenti con laif-ds per casi
d’uso presales, con dati fittizi e fake API ma che rispecchino in termini di UT/UX

quello che sara il prodotto finito;

Enforcement degli standard: verifica automatica di naming, struttura del
codice, gerarchia dei file, impiego dei permessi, prassi di sicurezza, uso dei
componenti Ul proprietari, aderenza alle convenzioni di programmazione e

coerenza del codice generato rispetto alle altre codebase proprietarie.

Capitolo 1

Contesto Scientifico e Tecnologico

La valutazione avviene in uno stack specifico (FastAPI/SQLAlchemy/Alembic;
Next.js/React; laif-ds su shaden/ui [shal; PostgreSQL) e in un contesto aziendale
con template e regole gia consolidate. L’agente non sostituisce lo sviluppatore, ma
agisce come assistente strutturato capace di pianificare, proporre diff e invocare
strumenti secondo politiche controllate.

Si assume la disponibilita di rules file aggiornati, accesso MCP a Notion
(documentazione/specifiche) e a DB (schema/metadati), e 'uso di un IDE con capacita
agentiche (es. Windsurf/Cascade o estensioni VS Code compatibili), fermo restando che

la metodologia e portabile su strumenti equivalenti.

L’attivita di sviluppo software in contesti aziendali caratterizzati da un’elevata
standardizzazione di processi e strumenti presenta una duplice sfida.

Da un lato, la definizione di best practices, 'adozione di template condivisi e I'impiego
di design system proprietari consentono di ridurre i costi di manutenzione e garantire
uniformita qualitativa; dall’altro, tali convenzioni generano inevitabilmente una
barriera all’ingresso per i nuovi sviluppatori, che devono acquisire rapidamente

competenze su tecnologie, metodologie e prassi operative spesso articolate.

Il problema principale puo essere quindi formalizzato come segue:

Come ridurre ¢ tempi e i costi legati all’inserimento e alla formazione di
nuovi sviluppatori in un ambiente di sviluppo standardizzato, garantendo al

contempo il rispetto delle convenzioni aziendali e la produttivita del team?

A questa criticita si affianca un’ulteriore esigenza: supportare un reparto vendite di
dimensioni estremamente ridotte (una sola persona) nella preparazione di prototipi e
dimostrazioni da presentare ai potenziali clienti.

La possibilita di generare rapidamente applicazioni mockup, anche non pienamente
funzionali ma sufficienti a illustrare le potenzialita del prodotto, rappresenterebbe

infatti un vantaggio competitivo rilevante.

La questione si complica ulteriormente per aziende di piccole dimensioni o di recente
costituzione come la nostra, nelle quali le risorse destinate alla formazione interna
risultano limitate, e la necessita di mantenere elevata la produttivita rende oneroso
sottrarre forza lavoro alle attivita di sviluppo. In tale contesto, ridurre il tempo di
rampa dei nuovi sviluppatori e garantire ’aderenza agli standard diventa essenziale per

la sostenibilita dei progetti.

1.1 Approcci popolari

Negli ultimi anni si ¢ consolidato un insieme di pattern ricorrenti nell’'impiego di
strumenti digitali a supporto dello sviluppo software, sia in ambito accademico che
industriale. Da un lato, troviamo pratiche ormai classiche come I’ onboarding
strutturato dei nuovi sviluppatori e la prototipazione rapida di funzionalita o interi
prodotti; dall’altro, si e affermata una nuova generazione di strumenti basati su modelli
di linguaggio di grandi dimensioni (LLM), integrati sotto forma di assistenti di codice,
chatbot e agenti “semi—autonomi”.

In particolare, la letteratura e i report industriali descrivono un uso sempre piu diffuso
di strumenti Al nel ciclo di sviluppo, ma spesso con un grado di integrazione limitato
rispetto a processi, standard e architetture specifiche dell’organizzazione [Git23] [Sic24].

In questa sezione vengono quindi discussi, da un lato, gli approcci tradizionali a

7

onboarding e prototipazione e, dall’altro, le modalita con cui le aziende stanno
iniziando a sfruttare assistenti e agenti Al, evidenziandone punti di forza e limiti

rispetto al contesto oggetto di questa tesi.

1.1.1 Onboarding e Prototipazione

La letteratura recente mostra come un onboarding strutturato migliori sensibilmente la
produttivita dei nuovi assunti, incrementi ’engagement e riduca il turnover |[Phe24].
Altri lavori riportano incrementi significativi del tempo-alla-produttivita per
organizzazioni con processi strutturati [Mil22].

Anche la prototipazione é considerata una leva strategica per stimolare agilita e
innovazione [Cam+-17][Whi24], specialmente in ambito digitale: consente di visualizzare
rapidamente un’idea, verificarne la fattibilita e raccogliere feedback prima di
investimenti onerosi [Cou23|. L'integrazione di tecniche AT automatizza via via parti
del processo, con effetti sui tempi e sulla qualita [BG23]. L’onboarding tradizionale
combina wiki interne, affiancamento e formazione, che risulta essere una soluzione
efficace ma costosa. Una linea consolidata e I'uso di retrieval-augmented generation
(RAG) |Gao+23||Lew—+20], per ancorare la generazione alla documentazione interna
(anche tramite MCP [Hou+25|).

1.1.2 Uso attuale delle AI nello sviluppo software

Negli ultimi due anni, I'adozione di strumenti di Al generativa da parte degli
sviluppatori ¢ passata da fenomeno emergente a componente quasi ubiqua del flusso di
lavoro quotidiano. Una survey sponsorizzata da GitHub nel 2023, riportata nel report
Octoverse, indica che il 92% degli sviluppatori utilizza gia strumenti di AI coding nel
lavoro o nel tempo libero [Git23]. Anche analisi successive confermano che 1'uso di
assistenti di codice e chatbot & ormai percepito come “nuova normalita” nello sviluppo
software [Sha23; Dev25].

Il report State of Developer Ecosystem 2024 di JetBrains, basato su oltre 23 000
sviluppatori, evidenzia come circa quattro aziende su cinque permettano o incoraggino

I'uso di strumenti Al di terze parti nei workflow di sviluppo, mentre una quota

crescente di sviluppatori integra funzionalita Al direttamente nei prodotti [Sic24]. In
parallelo, analisi di tipo gestionale attribuiscono all’introduzione sistematica di
strumenti Al incrementi significativi di produttivita (nell’ordine del 30-35%) e
riduzioni del time-to-market [Dig24).

Nonostante cio, il modo in cui questi strumenti vengono utilizzati ¢ spesso puntuale e

non strutturato: nella maggior parte dei casi si tratta di:

completamento del codice (code completion) e generazione di snippet isolati;

scrittura o “bozza” di test unitari;

refactoring locale su uno o pochi file;

chiarimenti su errori di compilazione, API o librerie.

Sia evidenze industriali sia survey qualitative mostrano che gli LLM sono percepiti
come molto utili per compiti localizzati, ma raramente integrati in modo profondo con
architetture, standard e processi dell’organizzazione [Sic24]|Fos25]. Questo ¢
esattamente il gap che la soluzione proposta in questa tesi cerca di colmare: passare da

un uso occasionale e ad hoc dell’Al a un agente configurato sul contesto aziendale.

1.1.3 Agenti AI via web e strumenti “agentici”

Accanto ai classici chatbot e agli assistenti integrati nell’IDE, si sono diffusi negli ultimi
anni strumenti “agentici” accessibili via web (ad esempio ambienti remoti che applicano
automaticamente diff, esplorano repository e propongono modifiche strutturate al

codice). Nella pratica industriale questi agenti vengono spesso utilizzati per:
« esplorare rapidamente una nuova codebase;
e generare prototipi o mockup front-end;
e preparare demo o proof-of-concept in tempi molto brevi.

Casi di studio riportano ad esempio riduzioni del tempo di prototipazione da alcuni

giorni a poche ore (o meno) quando team di sviluppo rendono obbligatorio 1'uso di tool

come Cursor o GitHub Copilot per alcune attivita esplorative |Ins25a]. Altre survey su
team di ingegneria indicano che oltre il 60-70% delle organizzazioni utilizza piu di uno
strumento Al nel ciclo di sviluppo (IDE assistant, chatbot general-purpose, agenti web
dedicati) [Ins25b].

Questi approcci, tuttavia, presentano limitazioni strutturali rispetto a un’integrazione

profonda nel contesto aziendale:

a) Workspace parziale: I’agente opera spesso su un workspace remoto limitato a

sottoinsiemi del repository caricati di volta in volta;

b) Contesto effimero: il contesto (file aperti, conversazioni, istruzioni) tende a
perdersi tra una sessione e l’altra, rendendo difficile costruire una “memoria”

stabile del progetto;

¢) Standard debolmente modellati: le convenzioni (architettura, naming,
policy) non sono tipicamente codificate come vincoli rigidi, ma affidate a prompt

generici o linee guida testuali.

Per attivita di brainstorming, spike esplorativi o prototipazione rapida queste soluzioni
sono spesso sufficienti e portano benefici tangibili. Per un’adozione in progetti
strutturati, con forte standardizzazione interna, permangono pero dubbi su coerenza,

sicurezza e mantenibilita del codice generato.

1.1.4 Limiti delle soluzioni popolari

Gli agenti Al “generici” risultano spesso efficaci su compiti isolati, ma presentano limiti
pratici quando si richiede aderenza a standard interni e integrazione profonda nel flusso
di sviluppo.

In particolare:

a) Non incorporano le convenzioni aziendali (naming, struttura di repository,

politiche di sicurezza), generando codice eterogeneo;

b) Aumentano il rischio di data leakage perché inducono a copiare nel prompt

porzioni sensibili di codice o specifiche;

10

¢) Impongono context switching dal’IDE a strumenti esterni, con perdita di

continuita operativa;

d) Si appoggiano a wiki e note spesso soggette a documentation drift |Gau23|, cioe
disallineamento progressivo tra documentazione e codice reale e le fonti di
informazioni impiegate sono spesso "oscure" all’utente, il che porta piu facilmente

ad allucinazioni del modello.

Per mitigare tali criticita, risultano piu efficaci approcci che: (a) vincolano la
generazione a regole versionate (file Markdown) e a playbook operativi; (b/c)
integrano I'agente direttamente nell’IDE [Mic|, cosi da lavorare su codebase e
toolchain reali (lint, test, migrazioni) senza cambiare contesto; (d) sfruttano MCP per
l’accesso in sola lettura a fonti “vive” (Notion per documentazione/specifiche, database

per schemi e metadati), riducendo ambiguita e drift.

1.1.5 Context switching, hallucinations e documentation drift.

Studi sul lavoro frammentato mostrano che, in media, dopo un’interruzione servono
circa 23 minuti per ritornare pienamente concentrati sul compito originario [MGKOS|,
dato spesso citato anche in letteratura divulgativa sul tema della produttivita. Nel caso
di sviluppatori che alternano continuamente IDE, browser e interfacce web per
interagire con I’Al, questo costo cognitivo si traduce in perdita di efficienza e maggiore
probabilita di errore.

Sul fronte della qualita delle risposte, survey sistematiche sulle hallucinations nei
modelli generativi [Ji423] e linee guida industriali sulla sicurezza dei sistemi generativi
[Ser24] sottolineano come 'assenza di una base di conoscenza strutturata e di vincoli
espliciti aumenti il rischio di contenuti plausibili ma non corretti. In parallelo, lavori
recenti sul fenomeno del documentation drift evidenziano che, in assenza di meccanismi
automatizzati di allineamento, la documentazione tende rapidamente a divergere dal
codice reale, con impatti negativi su manutenzione e onboarding [Gos22| [Moh+25].
Questi elementi motivano 'adozione di approcci che riducono il copia/incolla manuale,
ancorano la generazione a fonti “vive” (repository, database, KB) e mantengono le

regole aziendali sotto controllo di versione.

11

1.2 Soluzione proposta

Obiettivo: progettare un agente Al integrato nell’'IDE che sfrutti:

documentazione interna (Notion via MCP);

« specifiche e task (Notion via MCP);

o rules di generazione (.md nel filesystem);

 accesso in lettura al database (PostgreSQL via MCP) per schema e metadati;
o conoscenza del design system laif-ds;

e repository completa del progetto (architettura, convenzioni, componenti).

Scopi: assistenza ai nuovi sviluppatori, enforcement degli standard, generazione rapida
di mockup a supporto del reparto vendite.

La progettazione e la valutazione di questa architettura agentica saranno descritte nei
capitoli successivi, a partire dalla comparazione fra IDE e strumenti assistivi adottati

nel contesto aziendale.

12

Capitolo 2

Descrizione ad alto livello della

soluzione

In questo capitolo descriviamo ad alto livello ’architettura della soluzione proposta,
partendo dal funzionamento generale degli agenti di generazione di codice, passando
per la valutazione comparativa degli strumenti piu diffusi e arrivando alla motivazione
della scelta finale. L’obiettivo e mostrare come sia possibile passare da un uso
occasionale di LLM “general purpose” a un agente configurato sul contesto aziendale,
integrato nell'IDE e capace di rispettare regole, template e design system esistenti.
Anticipiamo fin da subito che, sebbene strumenti ormai molto diffusi come Cursor e
GitHub Copilot forniscano gia risposte efficaci alle esigenze considerate in questa
ricerca, nel contesto specifico di Laif la combinazione fra Windsurf e Lovable si ¢
rivelata la soluzione complessivamente piu adatta. Essa consente infatti di generare
soluzioni complete a partire da zero - sia quando I’obiettivo & produrre il mockup di
un’applicazione, sia quando si tratta di completare lo sviluppo di un progetto non
eccessivamente complesso - mantenendo al contempo un buon controllo sul codice
prodotto.

I1 ruolo dello sviluppatore resta comunque centrale: € necessario definire e mantenere
aggiornate le regole aziendali, curare ’accesso alla documentazione tramite MCP,
strutturare prompt in pseudo-markup coerenti con i template esistenti e, soprattutto,

revisionare e rifinire il codice generato. L’agente non sostituisce quindi il

13

programmatore umano, ma ne estende la capacita operativa all’interno di un processo

piu strutturato (human-in-the-loop [Wu+22|).

2.1 Come funzionano gli agenti di generazione di

codice

Gli agenti di generazione di codice moderni non sono semplici sistemi di
completamento automatico, ma architetture composte che combinano modelli
linguistici di grandi dimensioni (LLM), protocolli di estensione e meccanismi di
revisione iterativa. Rispetto ai primi tool di autocomplete, la differenza principale & che
I’agente ragiona in termini di obiettivi, piani e azioni, avvicinandosi ai modelli
deliberativi della letteratura sugli intelligent agents [WJ95].

In termini astratti, il comportamento di un agente di codice puo essere descritto come
un ciclo deliberativo che, nel caso specifico dello sviluppo software, assume

tipicamente la forma:

a) Raccolta del contesto L’agente costruisce una rappresentazione del problema a
partire da diversi input: il prompt dello sviluppatore, i file aperti nell'IDE, la
struttura della codebase, eventuali asset di documentazione (ad esempio
accessibili via RAG o MCP) e, in alcuni casi, lo stato dei test o del sistema di
build. In questa fase il modello deve selezionare e comprimere in un contesto
limitato le informazioni piu rilevanti [Liu+24] [Yan+25|, gestendo il compromesso
tra ampiezza (quante parti della codebase considerare) e profondita (quanti

dettagli includere).

b) Pianificazione Sulla base del contesto, I'agente elabora un piano di azione, che
puo essere esplicito (lista di passi, task list, pseudo—codice) o implicito nelle sue
istruzioni interne. Tecniche come la Chain-of-Thought, il Plan-and-Solve o
approcci in stile ReAct [Wei+22] [Wan+-23| [Yao+23| mirano proprio a rendere
piu stabile questa fase di ragionamento, separando il “che cosa fare” dal “come

modificare concretamente il codice”. In ambito sviluppo, cio si traduce per

14

esempio nel decidere quali file creare o modificare, quali endpoint aggiungere,

quali test aggiornare, prima ancora di produrre il codice effettivo.

¢) Invocazione di strumenti Una volta definito il piano, ’agente invoca strumenti
esterni per agire sull’ambiente: lettura e scrittura di file, esecuzione di test,
interrogazione del database, chiamate a servizi HT'TP, ricerca nella
documentazione o nel sistema di ticketing. L’uso di protocolli come MCP
[Hou+25| e di meccanismi di tool calling [Sch+23] consente di modellare queste
capacita come funzioni tipizzate, riducendo il rischio di errori (ad esempio,
generare percorsi o query non valide) e rendendo piu osservabile il

comportamento dell’agente.

d) Revisione e output Infine, 'agente valuta ’esito delle azioni: confronta il codice
modificato con il piano iniziale, interpreta 'output dei test o dei comandi eseguiti,
individua eventuali errori e, se necessario, aggiorna il piano e ripete il ciclo. Solo
quando il risultato é ritenuto soddisfacente, propone al programmatore un set di
diff o di file completi da applicare alla codebase. In questo passaggio la presenza
del programmatore umano € cruciale per approvare, modificare o rifiutare i

cambiamenti, mantenendo il controllo finale sulla qualita del software [Wu+22].

Nella pratica, gli strumenti oggi disponibili nel panorama industriale implementano
questo ciclo con gradi diversi di visibilita e configurabilita. Alcuni prodotti si
presentano piu come “autocomplete potenziati”, limitandosi a generare snippet locali
all’editor; altri offrono un vero e proprio agente in grado di esplorare la codebase,
eseguire comandi e proporre modifiche multi—file. La soluzione proposta in questa tesi
appartiene a questa seconda categoria, ma introduce vincoli aggiuntivi legati

all’allineamento con standard aziendali, template di progetto e design system condivisi.

15

2.2

Dalla valutazione comparativa alla scelta di

Windsurf e Lovable

Prima di progettare I'architettura definitiva e stato necessario confrontare le principali

soluzioni disponibili per lo sviluppo assistito da Al, con particolare attenzione a tre

dimensioni:

Profondita dell’integrazione con I'IDE: capacita di lavorare sull’intera
codebase, eseguire comandi, lanciare test, gestire diff e interagire con il sistema di

versionamento;

Allineamento con standard e template esistenti: possibilita di imporre
regole di naming, struttura del progetto, uso di pattern e design system

proprietari;

Supporto a onboarding e prototipazione: facilita nel creare rapidamente
applicazioni dimostrative coerenti con lo stack aziendale, riutilizzabili per

I’onboarding dei nuovi sviluppatori e per le attivita del reparto vendite.

Strumenti come Cursor e GitHub Copilot si collocano in una posizione molto forte

lungo la prima dimensione: sono pienamente integrati nell'IDE, offrono assistenza

contestuale nello sviluppo quotidiano e consentono in alcuni casi di orchestrare task

complessi (ad esempio esecuzione di test o refactoring multi—file). Tuttavia, nel

contesto specifico di Laif presentano due limiti principali:

a)

Configurabilita limitata rispetto a template e regole aziendali E possibile
guidare il comportamento dell’assistente tramite prompt generali o linee guida,
ma non esiste (allo stato dei fatti durante lo svolgimento di questa tesi) un
meccanismo nativo per caricare e versionare in modo strutturato un insieme di
rules Markdown legate a uno specifico repository, differenziate per stack o

progetto.

Supporto alla prototipazione end-to-end meno spinto Sebbene 'assistente

sia in grado di generare file e componenti, la responsabilita di orchestrare I'intera

16

applicazione (struttura del progetto, routing, configurazione dello stack) ricade in
larga parte sullo sviluppatore, che deve guidare manualmente ogni passo della

creazione.

Per rispondere meglio alle esigenze emerse in precedenza - onboarding guidato, rispetto
dei template aziendali, generazione di mockup completi per il reparto vendite - si e

quindi scelto di adottare una combinazione di strumenti complementari:

e Windsurf come IDE agentico principale, grazie alla sua capacita di orchestrare
un agente su un workspace locale, integrare protocolli come MCP e lavorare in

modo trasparente su file, comandi e test;

« Lovable |Lov| come generatore di prototipi end-to-end, in grado di creare
rapidamente applicazioni complete (front-end e back-end) a partire da specifiche

testuali, da utilizzare come base di lavoro o come mockup da presentare ai clienti.

La combinazione di questi strumenti permette di coprire in modo sinergico due esigenze:
da un lato la generazione rapida di applicazioni coerenti con uno stack moderno
(Next.js/React + FastAPI/SQLAlchemy); dall’altro I'integrazione profonda dell’agente

nel workflow quotidiano di sviluppo, con accesso controllato alle risorse aziendali.

2.3 Architettura ad alto livello: Windsurf, Lovable,
MCP e rules

L’architettura proposta si basa sull’idea di utilizzare Lovable per generare
rapidamente applicazioni o porzioni di applicazione coerenti con lo stack aziendale, per
poi importarle in un workspace Windsurf dove un agente configurato opera su tre

pilastri principali:

a) Rules file versionati nel repository Per ciascun progetto o famiglia di
progetti vengono definiti uno o piu file Markdown contenenti le regole di sviluppo

(rules file): convenzioni di naming, struttura delle directory, pattern

17

architetturali (ad esempio I'uso del template “standard” basato su
RoleBasedCRUDService), linee guida per 1'uso del design system laif-ds, vincoli
su validazione, sicurezza e gestione degli errori. Questi file sono versionati insieme
al codice e possono essere referenziati esplicitamente nei prompt, in modo che

I’agente li utilizzi come vincoli operativi.

Accesso MCP alle risorse aziendali Come descritto nei capitoli precedenti,

sono stati configurati server MCP per:

o PostgreSQL, che espone strumenti per interrogare la base dati (esecuzione
di query SQL, introspezione del catalogo: schemi, tabelle, colonne, tipi,
vincoli), permettendo all’agente di ragionare sui modelli reali e non su una

descrizione approssimativa;

» Notion, che consente di ricercare e recuperare documentazione aziendale
relativa a prodotti, progetti, specifiche funzionali e tecniche, mantenendo

struttura gerarchica e metadati (titoli, stati, tag, relazioni).

In questo modo I'agente lavora su fonti “vive” e aggiornate, riducendo il
documentation drift e la necessita di copiare manualmente lunghi estratti nella

finestra di prompt.

Integrazione con lo stack e il design system aziendale Lo stack tecnologico
di riferimento comprende Fast APT/SQLAlchemy/Alembic sul backend,
Next.js/React sul frontend, il design system laif-ds basato su shadcn/ui e
PostgreSQL come database principale. Le rules codificano in modo esplicito:

« come creare nuovi endpoint seguendo il template standard;

o come definire modelli e schemi coerenti con i modelli SQLAlchemy esistenti;

o come utilizzare i componenti laif-ds per produrre interfacce utente

coerenti con il resto della piattaforma;

e come organizzare i file e i moduli in linea con le convenzioni interne

(naming, cartelle, pattern).

18

L’agente in Windsurf, operando su questo contesto, € in grado di proporre
modifiche che rispettano lo stile aziendale, riducendo la necessita di correzioni

manuali a posteriori.
I1 flusso tipico puo essere cosi sintetizzato:

e per una nuova funzionalita o un nuovo prodotto dimostrativo, si utilizza Lovable
per generare un primo mockup applicativo, che fornisce la struttura generale

(routing, pagine principali, componenti base);

« il codice generato viene importato nel repository aziendale e aperto in Windsurf

per essere normalizzato rispetto ai template interni;

o allinterno di Windsurf, I’agente - guidato da rules, MCP e documentazione - si
occupa di completare o rifinire I'implementazione: integrazione con il backend,
adeguamento ai modelli dati reali, allineamento al design system e alla struttura

degli applicativi aziendali e aggiunta della logica di business;

« lo sviluppatore umano revisiona i diff, esegue i test, valuta la coerenza con i
requisiti e, se necessario, aggiorna le rules sulla base delle lezioni apprese, in un

ciclo iterativo di miglioramento continuo.

Questa architettura permette di conciliare due obiettivi: da un lato, accelerare in modo
significativo il time-to-prototype e supportare un reparto vendite di dimensioni ridotte
nella preparazione di demo e mockup; dall’altro, mantenere un elevato livello di
controllo sugli standard di sviluppo, riducendo la barriera all’ingresso per i nuovi
sviluppatori e rendendo piu ripetibile il processo di generazione assistita. 1 capitoli
successivi mostreranno in dettaglio come questa soluzione sia stata applicata a casi
reali e quali risultati siano stati osservati in termini di qualita del codice, velocita di

implementazione e facilita di onboarding.

19

Capitolo 3
Implementazione della soluzione

In questo capitolo si entra nel dettaglio operativo dell’architettura proposta,
descrivendo passo per passo le fasi che hanno caratterizzato la descrizione della pipeline
agentica utilizzata in Laif. Se nel capitolo precedente e stata presentata una visione ad
alto livello del ruolo degli agenti e degli strumenti (Windsurf, Lovable, MCP), qui
I’attenzione si sposta sulla loro implementazione concreta: come viene raccolto il
contesto, in che modo vengono costruiti i prompt, quali chiamate ai modelli OpenAl
vengono effettuate e quali meccanismi di controllo vengono applicati sui risultati.
Vengono quindi analizzate le strategie di gestione del contesto (inclusione di
documentazione, schema del database, regole versionate), le tecniche di prompting

utilizzate e le fasi di generazione e validazione del codice.

3.1 Raccolta del contesto

La comprensione del contesto ¢ il punto di partenza per ogni agente. Essa si articola in
due componenti principali: I'analisi statica e quella dinamica.

Nella fase statica, I’agente legge la struttura del progetto e i file sorgente disponibili. In
un progetto software, questo significa estrarre I’albero delle directory, le dipendenze
dichiarate (ad esempio in package. json o requirements.txt) e, quando possibile,

analizzare la sintassi tramite Abstract Syntaz Tree (AST).

20

/ Expr\
expr_prefix factor
expr_prefix factor add op factor_prefix postfix_expr
/ \ factor pre‘flx postfix_expr mul_op pnn;ary
' b
factor preflx postflx expr primary . '
) IDENTIFIER (o)
I\ primary id
id IDENTIFIER (b)
IDENTIFIER (&)

Figura 3.1: AST

Rappresentazione ad albero della struttura sintattica di un programma

L’AST permette di ricostruire le relazioni semantiche tra classi, funzioni e variabili e
costituisce una rappresentazione intermedia utile per ragionamenti di tipo semantico
(ad esempio, individuare dove una funzione ¢ definita e dove ¢ utilizzata).

Nella fase dinamica, 'agente osserva ’esecuzione del codice e i feedback del sistema.
Questo include la raccolta di messaggi d’errore, stack trace, output dei test unitari o
funzionali, e persino comandi eseguiti in un terminale controllato (es. pytest, npm run
build, docker compose, ecc...). Tali segnali sono fondamentali perché forniscono

informazioni non direttamente ricavabili dalla sola analisi sintattica.

Per gestire progetti di grandi dimensioni e, dunque, leggere i file disponibili, I’agente
non si limita ad aggregare tutto il codice sorgente nella finestra contestuale del
modello. Un LLM infatti, ha una finestra di contesto limitata e puo leggere e ragionare
solo su un certo numero di token. D’altra parte, un progetto puo contenere anche
centinaia di milioni di righe di codice organizzate in centinaia, se non migliaia, di file
diversi.

Gli LLM piu all’avanguardia hanno a disposizione finestre di contesto molto estese (fino

21

a 10M token per Llama 4 Scout; 2,097,152 token per Gemini 1.5 Pro), che permettono
di fornire all’LLM parti ampie del progetto o corpora multi-documento; tuttavia, non e
sufficiente “incollare tutto” nel prompt. Studi sistematici mostrano che I’aggiunta di
contenuto irrilevante o la collocazione sfavorevole dell’informazione chiave causano
degradazione della qualita: il fenomeno lost-in-the-middle documenta come
I’accuratezza cali quando le informazioni rilevanti si trovano in posizioni centrali di un
contesto molto lungo [Liu+24], mentre benchmark controllati evidenziano che
contesto irrilevante distrae il ragionamento e riduce la precisione, specialmente con
piu distrattori [Yan+25|. In scenari RAG, 'aumento dei passaggi recuperati oltre un
certo punto puo introdurre “hard negatives” che peggiorano I'output, richiedendo il
riordino del retrieval o del fine-tuning mirato alla robustezza |Jin+25].

Quando un agente o un sistema RAG recupera documenti per arricchire il contesto del

modello, non tutti i documenti sono ugualmente utili; li dividiamo in:
o Positivi: frammenti che contengono la risposta o informazioni rilevanti.

o Negativi facili (easy negatives): documenti evidentemente irrilevanti (es. un

articolo sportivo quando si cerca documentazione Python).

o Negativi difficili (hard negatives): documenti che sono molto simili
superficialmente alla query (quindi hanno embedding vicini), ma non contengono

la risposta corretta o contengono informazioni fuorvianti o contraddittorie.

22

Tabella 3.1: Confronto sintetico di modelli per finestra di contesto [LLM].

Modello Contesto (token)
® Llama 4 Scout 10,000,000
& Gemini 1.5 Pro 2,097,152
& Gemini 1.5 Flash 1,048,576
& Gemini 1.5 Flash 8B 1,048,576
& Gemini 2.0 Flash 1,048,576
& Gemini 2.0 Flash-Lite 1,048,576
& Gemini 2.5 Flash 1,048,576
& Gemini 2.5 Flash-Lite 1,048,576
& Gemini 2.5 Pro 1,048,576
& Gemini 2.5 Pro Preview 06-05 1,048,576
® GPT-4.1 1,047,576
& GPT-4.1 mini 1,047,576
® GPT-4.1 nano 1,047,576
® Llama 4 Maverick 1,000,000
& GPT-5 400,000
® GPT-5 mini 400,000
® GPT-5 nano 400,000

Tl numero rappresenta la massima finestra di contesto gestibile (in token) per ciascun modello per

singola richiesta.

Se anche fosse possibile fornire tutto il codice sorgente ad un ipotetico LLM con
finestra di contesto illimitata, il modello riceverebbe molto rumore irrilevante che
farebbe calare drasticamente la qualita delle risposte.

Viene dunque costruito un contesto organizzato:

C= (Cstatim Cdynamim Cretrieved)
dove:

o Ciatic Tappresenta la conoscenza ottenuta dall’analisi dei file e dell’AST;

e Claynamic raccoglie log, errori e output runtime;

23

o Cletrieved © I'insieme di documenti recuperati da basi esterne (wiki, database, APT)

mediante tecniche di retrieval-augmented generation (RAG) [Lew+20].

11 recupero avviene tramite modelli di embedding (es. text-embedding-3-large di
OpenAl), che mappano documenti e query in uno spazio vettoriale R? (dove d ¢ la
dimensione del vettore di embedding). L’agente calcola quindi la similarita
(tipicamente coseno) per selezionare i frammenti piu rilevanti per consentire all’agente
di includere nel prompt solamente i frammenti pit pertinenti selezionati dal retriever,
spingendo il contesto effettivo ben oltre la capacita di attenzione del modello, senza

sovraccaricarlo con tutto il codice sorgente.

3.2 Pianificazione esplicita (plan/act)

Una volta acquisito il contesto, ’agente passa alla fase di pianificazione. Diversamente
dagli approcci basati esclusivamente su predizione sequenziale, gli agenti moderni
adottano un ciclo deliberativo, producendo, come gia accennato, un vero e proprio
piano testuale multi-step, che puo includere azioni come “creare un nuovo file”,
“scrivere una classe Customer”, “eseguire i test di integrazione” o “leggere la
documentazione dell’API”. Questo approccio, teorizzato nel paradigma ReAct
[Yao+23|, prevede la combinazione di ragionamento testuale (reasoning) e azioni

concrete (acting).

Molti agenti implementano un ciclo deliberativo basato su chain-of-thought nascosta
[Wei+22| e su Planning con Large Language Models [Wan+23]. Un tipico
algoritmo adottato (ispirato a ReAct) é:

a) il modello genera un piano multi-step (Plan);
b) T'utente o un Policy Manager approva il piano;
¢) il modello esegue azioni atomiche (Act), come creare un file o lanciare i test;

d) il ciclo continua fino al raggiungimento dell’obiettivo.

24

OpenAl Codex e le versioni specializzate per GitHub Copilot sfruttano varianti di
reinforcement learning from human feedback (RLHF) per ottimizzare la

pianificazione e I'esecuzione, riducendo errori e allucinazioni.

Il valore aggiunto di questo schema e duplice: da un lato garantisce trasparenza nei
confronti dell’'utente, che ha la possibilita di esaminare e modificare il piano proposto;
dall’altro consente di correggere eventuali errori durante I’esecuzione, seguendo un ciclo

iterativo che ricorda da vicino quello adottato da uno sviluppatore umano.

Formalmente, ad ogni iterazione ¢ si puo descrivere il processo come
(atﬂ”t) ~ We(a | C, ht—l)a

dove a; rappresenta ’azione scelta, r; la risposta dell’ambiente (ad esempio 'esito di un
test), C' il contesto corrente e h,_; la storia delle interazioni precedenti.

I simbolo “~” indica che la coppia (a;, ;) € campionata da una policy stocastica my:
non si tratta dunque di una relazione deterministica, ma di un processo probabilistico
in cui, dato lo stato definito dal contesto e dalla storia, la policy specifica una
distribuzione sulle possibili azioni da cui viene selezionata a;. L’ambiente restituisce

quindi una ricompensa o un segnale di feedback r; in funzione dell’azione compiuta.

Nel contesto di OpenAl, come anche di altri LLM paragonabili, questa fase di scelta
viene ulteriormente potenziata da tecniche di addestramento basate su reinforcement
learning from human feedback (RLHF) |Chr+17] e sul piu recente
reinforcement learning from AI feedback (RLAIF) [Bai+22]. In entrambi i
casi, la policy my non viene ottimizzata solo tramite dati supervisionati, ma anche
attraverso segnali di preferenza esterni: nel caso di RLHF derivano da annotatori
umani, mentre in RLAIF sono generati automaticamente da altri modelli o da metriche

predefinite, come la correttezza di compilazione o il successo nei test.

25

3.3 Tooling e protocolli

Un elemento che distingue un agente realmente efficace ¢ la sua capacita di
interfacciarsi con strumenti esterni. A questo scopo sono stati sviluppati protocolli
come il Model Context Protocol (MCP) [Hou+25|, che forniscono un’interfaccia
standard per collegare ’agente a database, sistemi di knowledge management o API
aziendali. MCP consente di trattare tali risorse come vere e proprie “estensioni di

contesto”, richiamabili on demand dal modello.

:} Agente / LLM Client ‘

l Discover /Invoke

Risultato MCP Server ‘

lChiamata ai tool

Strumenti registrati (API, DB, filesystem, ...)

Figura 3.2: Schema di flusso di funzionamento degli MCP: I'agente comunica con il
server MCP per scoprire e invocare strumenti, che a loro volta accedono a risorse esterne

e ritornano 1 risultati.

OpenAl ha introdotto inoltre la Function Calling API [Opeal, che trasforma le
predizioni testuali in invocazioni strutturate di funzioni. In questo schema, 'LLM non
produce soltanto testo libero ma genera output in formato JSON, immediatamente
traducibile in chiamate a procedure lato client (ad esempio create_file() o
query_database()). Cio garantisce maggiore robustezza e riduce 'ambiguita

semantica tipica dell’output naturale.

26

Prompt utente

4

A

‘ LLM (ragionamento e pianificazione) ‘

l

Si Strumenti esterni

API, DB, calcolatrici, ...

Utilizzo di strumento?

[Risposta finale all’utente J

Figura 3.3: Function Calling API: il modello non esegue codice; emette JSON strut-

turato che il client traduce in chiamate di funzione controllate.

Pitu in generale, l'integrazione di strumenti ¢ al centro di paradigmi come Toolformer
[Sch+-23], dove i modelli vengono addestrati a decidere autonomamente quando e quali
strumenti invocare. Tuttavia, questo introduce anche sfide di sicurezza: 1’esecuzione

di codice o I'accesso a dati sensibili richiede sandboxing, autorizzazioni esplicite e

tracciamento delle azioni per mantenere affidabilita e controllo umano.

3.3.1 Revisione e sicurezza

Ogni modifica proposta dall’agente deve essere tracciabile e sicura. A tal fine, i sistemi
pit maturi adottano strategie di diff-based editing, dove 'output consiste in patch
incrementali applicabili ai file, piuttosto che in interi blocchi di codice.

Questo non solo facilita la revisione manuale, ma riduce il rischio di sovrascritture

accidentali.

27

Prompt utente
LLM <
lJSON Sfunction
Client / Applicazione Risultato

lFunctz’on call

Funzioni locali

create_file(), query_db(), ...

Figura 3.4: Paradigma Toolformer: il modello decide se usare uno strumento; in caso

affermativo invoca il tool, ne integra il risultato e prosegue lungo il flusso principale.

make this game 15x15

Accept ¥+ Reject®&® Ad

init_ (self):

.board = [' ' for _ in range(9)]
__init__(self, size=15):
.board = [' ' for _ in range(sizexsize)]
.current_winner = None

Figura 3.5: Diff-Based Editing su Windsurf

Dal punto di vista architetturale, si stanno affermando soluzioni client-first o BYOK
(bring your own key), in cui il codice e le credenziali rimangono sulla macchina locale e
non vengono trasmessi a server remoti senza esplicita autorizzazione dall’utente, Questo
tipo di approccio riduce la superficie di attacco e i rischi di data leakage. Un esempio
concreto ¢ l'estensione Cline per VS Code [Mar25a], che adotta un’architettura in cui
I'LLM remoto riceve solo prompt sintetizzati e mai 'intero contenuto sensibile del

progetto, lasciando I'esecuzione dei comandi e ’accesso ai file al client locale.

A livello di sicurezza, OpenAl integra sistemi di content moderation e policy

28

enforcement [Opeb|, progettati per prevenire la fuoriuscita di dati personali, segreti
aziendali o informazioni protette. Questi meccanismi si basano su filtri addestrati per
intercettare input/output rischiosi e bloccare ’esecuzione di operazioni non conformi.
Tecniche complementari includono la red-teaming automation [Per+22|, in cui
squadre di ricercatori (o agenti automatici) generano scenari malevoli per testare la
robustezza dei filtri e la Constitutional AI [Bai+22], un insieme di principi normativi
e linee guida predefinite (es. “non produrre contenuti dannosi”, “fornire risposte utili
ed oneste”), che il modello utilizza come criteri di revisione, riducendo la necessita di

supervisione umana.

Piu in generale, la letteratura recente in sicurezza degli LLM sottolinea la necessita di
combinare diversi livelli di difesa: isolamento del contesto (sandboxing), controlli sulle
chiamate a strumenti esterni, e auditing delle interazioni [She+23} Kas22|. Questo
porta verso un modello di sicurezza stratificato, in cui i protocolli di interfacciamento
(es. MCP), i moderation systems e le architetture client-first concorrono insieme a

garantire affidabilita e compliance normativa.

3.3.2 Sintesi

In definitiva, un agente di generazione di codice puo essere visto come un sistema
ibrido, dove un LLM funge da policy centrale che orchestra strumenti, contesto e
revisione. L’evoluzione recente mostra una tendenza verso agenti sempre piu autonomi
e integrabili, capaci non solo di generare codice ma di pianificare, agire, verificare e
interagire in un ciclo simile a quello di uno sviluppatore umano, con il vantaggio di
una velocita e di una capacita di scalare informazioni che superano ampiamente quelle

delle pratiche tradizionali.

29

3.4 Impostazione dello studio

La ricerca e stata organizzata come lavoro di gruppo a 5, coordinata da un

responsabile ed e stata suddivisa in 4 fasi:

a)

Fase 1 — Ricerca dell’IDE (o del plugin VSCode): La prima fase ¢ stata
una fase di sperimentazione pratica atta a determinare quale fosse 'IDE

"agentico" o il plugin per VSCode da impiegare come standard aziendale.

Fase 2 — Definizione delle regole e dei server MCP: La seconda fase ¢ stata
la fase di definizione di regole in formato markdow che coprissero tutte le
specifiche da sottoporre all’agente in fase di generazione delle risposte in modo da
ottenere codice che seguisse gli standard d’azienda e da poter fornire un rules-set
ad ogni sviluppatore in Laif. Oltre a cio in questa fase e stato definito I'insieme

dei server MCP da far utilizzare all’agente.

Fase 3 — Test di validazione: La terza fase e stata quella forse pit importante
ed interessante. La fase di test e valutazione dell’efficacia del lavoro svolto: &
stato eseguito il porting di un’applicazione reale per un cliente reale tentando di
impiegare meno risorse umane possibile. In questa fase sono stati raccolti dati sia
quantitativi che qualitativi finalizzati alla valutazione definitiva della soluzione

trovata.

Fase 4 — Raccolta e analisi dei risultati: L’ultima fase e stata quella di
raccolta, elaborazione e studio dei dati raccolti in fase 3 con l'obiettivo di
determinare la validita dello strumento (o pipeline di strumenti) definiti ed

eventualemente renderlo uno standard aziendale.

3.4.1 Ricerca dell’IDE (o del plugin VSCode)

11 gruppo di ricerca & formato da sei individui, di cui uno (M.P.) ¢ il responsabile del

lavoro; 11 lavoro e stato organizzato per testare quattro soluzioni possibili selezionate

fra le piu popolari ed efficaci, mantenendo, quando possibile, il workflow su VS Code

(per evitare cambi di IDE):

30

o Cline (estensione VS Code), assegnato a il sottoscritto, G.F., & un agent
open-source per VS Code con Plan/Act, uso trasparente dei token, BYOK e forte
integrazione MCP; gira client-side (codice e segreti non passano su server

proprietari) |Cli; Mar25a; Doc25].

« Roo Code (fork potenziato di Cline), assegnato a C.V., nasce come fork
potenziato di Cline; aggiunge modi configurabili (code-review, test), esegue
comandi e integra MCP; una review tecnica indipendente riporta buoni risultati
pratici ma un consumo di token rilevante (BYOK) e una sessione per finestra
[Qub25; |(Cod25; Mar25b].

« Windsurf (IDE di Codeium), assegnato a ML.P. e C.P., ¢ un IDE con agente
(Cascade) che orchestra passaggi multipli, raccoglie contesto automaticamente e
propone piani eseguibili; diverse analisi gli attribuiscono un’ottima codebase

awareness e una Ul curata, con pricing competitivo [Cod| |[Bui25||Zap|[Dat25].

e Cursor (IDE basato su un fork di VS Code), assegnato a S.B., ¢ un IDE
“Al-first” basato su un fork di VS Code, con assistente integrato e supporto a piu
modelli (OpenAl/Anthropic ecc.), orientato a refactor multi-file, debug e
implementazioni guidate [Lab25| [Ver25]. Confronti indipendenti lo descrivono
come molto rapido e con grande base utenti, ma non sempre il migliore nel
ragionamento profondo su codebase estese rispetto a Windsurf [Zap| [AI25]
[Dat25].

Il lavoro di ricerca dell'IDE é stato diviso in due fasi della durata complessiva di 15
giorni lavorativi; per i primi 5 giorni ci e stato chiesto di iniziare ad impiegare gli
agenti (in modalita Pro tramite una Api key OpenAlI fornita dall’azienda) per lo
svolgimento dei task quotidiani relativi al nostro ruolo in azienda, il tutto a partire da
due file di regole e descrizione dei flussi e delle tecnologie di lavoro in formato

markdown condivisi fra tutti da fornire all’agente:

« [l file laif-rules.md contenente una descrizione dettagliata della struttura dello
stack tecnologico di Laif (quindi descrizione del template, delle librerie impiegate,
dei flussi di lavoro e dell’organizzazione generale di un qualunque progetto

dell’azienda).

31

+ 890 £ a ge.tsx index deleteltemModal.tsx X deleteltemModal.tsx (Working Tree)
frontend > src > components deleteltemModal.tsx DeleteltemModal

v Task X const DeleteItemModal = ({

Dobbiamo definire una nuova pagina per la visualizzazione di un nuovo tipo di dato 5 T e

"CustomerComplaints" con anche backend rotte e frontend

Title
Tokens: 10 4 0 D W s16xs item: any;
closeHandler:
0 K confirmHandler:
loading: boole:

const intl = useIntl();
APl Request...
r | Explain |
ion onConfirm()
confirmHandler(iter
closeHandler(

return (
Modal
isDismissable={fal
closeButton
aria-labelledby="modal-title"
isOpen={true}
onClose={closeHandler

ModalContent:
ModalHeader:
div>{title
Moda lHeader-

Mada1Rr

PROBLEM: OUTPUT D NSOLE TERMINAL

gabrielefogu@Mac scheduler-roloplast % []

Auto-approve: \/ Enabled

Figura 3.6: Interfaccia della finestra integrata di Cline all’interno di VSCode durante

una richiesta in fase di planning.

32

« Il file global.md Contenente indicazioni su come fornire le risposte e su come

organizzare il flusso di generazione del codice, dunque:

a) Partire dalla definizione di un data-model se non presente e del relativo

schema.

b) La definizione delle rotte CRUD e dei service necessari a soddisfare i

requisiti definiti nel prompt.

¢) L’invocazione di uno script proprietario per la generazione di un data-access
layer TypeScript completo e tipizzato, composto da types.gen.ts per tutte
le definizioni di tipo, client.gen.ts che emette un client Axios
configurabile, sdk.gen.ts che genera una funzione low-level 1:1 con ogni

endpoint piu altri file wrapper e di configurazione.

d) In fine I'implementazione del frontend e il binding fra interfaccia e dati.

Questa fase si € conclusa con una riunione di condivisione dei risultati ottenuti fra tutti
i componenti del team di ricerca.

Dal mio canto ¢ stato evidente da subito che Cline fosse un plugin gia di per se molto
efficace nella gestione della parte backend in special modo. L’agente ¢ stato in grado di
definire data-model, schemas, rotte backend e soprattutto servizi anche molto

articolati in python senza troppi problemi.

Nello specifico, Cline fornisce due modalita per ’agente che lo rendono particolarmente

efficace e di facile utilizzo:

o La modalita pianificazione nella quale I’agente definisce la scaletta delle azioni
che intende svolgere per soddisfare le richieste descritte dal prompt; in questa fase
¢ possibile interagire tramite la chat integrata a VSCode per correggere eventuali

errori o scelte poco chiare che I'agente intende seguire.

o La modalita "execute" nella quale I'agente passa all’effettiva modifica della

codebase per I'implementazione pratica delle richieste.

33

Anche per quanto riguarda il frontend il lavoro mi era stato agevolato notevolmente,
tuttavia e apparso evidente che I’agente non fosse stato in grado di interpretare
correttamente le mie richieste in termini di estetica, di usabilita e di organizzazione del
layout.

Se da una parte il mio intervento e stato essenziale al perfezionamento del codice in
modo che fosse anche solo eseguibile senza errori, d’altra parte ¢ stato da subito
evidente che il potenziale dello strumento fosse di elevato interesse per I'azienda in
quanto ’agente era stato in grado di fornire anche a frontend un ottimo punto di
partenza alla mia fase di sviluppo "umano" se paragonato al "foglio bianco" con cui si
ha a che fare nello sviluppo tradizionale. Va considerato inoltre che si tratta di quella
che potremmo identificare come la fase 1.1 della ricerca e che non ci si aspettava

risultati neanche vicini all’ottimalita.

Inoltre, & importante ricordare che in questa fase il design system di Laif non era
ancora stato rilasciato e il frontend delle nostre codebase era costituito da
componenti ed interfacce poco standardizzate, per chiarirci: non era insolito trovare
una stessa soluzione implementata utilizzando componenti e librerie differenti. Una
volta condivisa la mia esperienza, ascoltata quella degli altri e presa nota dei punti di
forza e di debolezza di ogni soluzione testata, non potendo affermare con certezza quale
agente fosse il migliore relativamente all’utilizzo che ne volevamo fare, si ¢ passati alla
fase successiva del lavoro, nella quale ci e stato chiesto di continuare ad utilizzare gli
agenti che ci erano stati assegnati, questa volta pero con 'obiettivo di renderli il piu
raffinati possibile tramite la stesura di regole markdown piu specifiche ed elaborate e

tramite 'impiego di server MCP a nostra discrezione.

3.4.2 Definizione delle regole e dei server MCP

Fase della durata di 10 giorni che si ¢ rivelata particolarmente dinamica e complessa,
poiché non era possibile definire a priori un insieme di regole che potessero considerarsi
ottimali in modo definitivo. Per questo motivo, una volta scelto I'agente da utilizzare in

modo arbitrario, ho deciso di adottare un approccio iterativo articolato in piu step:

a) In primo luogo, individuavo un task reale del progetto su cui stavo lavorando e

34

fornivo all’agente un prompt il piu possibile dettagliato e privo di ambiguita,

chiedendogli di proporre una soluzione completa.

b) Poiché I'output iniziale risultava spesso distante dal risultato atteso, la fase
successiva consisteva nel definire o affinare un insieme di regole in formato
Markdown pensate per ridurre 'ambiguita del prompt e orientare meglio la

generazione del codice.
¢) In base alla qualita dell’output prodotto:

« se l'output era inutilizzabile, scartavo il codice e riproponevo la richiesta in
una nuova istanza di chat, cosi da evitare che il contesto della

conversazione precedente influenzasse le risposte successive;

« se l'output risultava accettabile, mantenevo la conversazione e proseguivo
lo sviluppo a partire da quel risultato, eventualmente estendendolo o

correggendolo.

In entrambi i casi continuavo la conversazione fino al completamento del task o

all’avvio di uno nuovo.

d) Infine, quando mi trovavo ad affrontare un task simile a uno gia gestito in
precedenza, procedevo a raffinare ulteriormente la regola corrispondente,

incorporando le osservazioni e le correzioni emerse dalle iterazioni precedenti.

Parallelamente alla definizione progressiva delle regole, ho configurato una serie di
server MCP (Model Context Protocol) per fornire all’agente accesso diretto e
strutturato alle risorse aziendali. Nello specifico, ho individuato due integrazioni

fondamentali:

e PostgreSQL, che tramite una singola connection string espone all’agente un
insieme di strumenti per I’esecuzione di query SQL e per l'introspezione del
catalogo (schemi, tabelle, colonne, vincoli, tipi — inclusi gli ENUM), offrendo cosi un

accesso diretto e tipizzato alla base dati;

35

» Notion, che attraverso un token con ambito ristretto all’area di interesse,
permette all’agente di ricercare e recuperare la documentazione aziendale (pagine,
database, blocchi), preservandone la struttura gerarchica e le proprieta (titoli,
campi, relazioni, tag), fornendo un accesso organizzato alla knowledge base

documentale.

Queste due connessioni rappresentano i primi esempi di integrazione diretta tra
agente e risorse aziendali, consentendo un retrieval di informazioni piu affidabile e
contestualizzato rispetto all’uso di fonti esterne o di prompt puramente testuali.
L’agente, grazie a tali connessioni, ¢ in grado di combinare la generazione di codice con
la conoscenza strutturata, migliorando sensibilmente la qualita e la coerenza delle
risposte.

Una volta decorso il periodo di 10 giorni che avevamo disposto per questa fase dello
studio, abbiamo affrontato una riunione di condivisione delle informazioni e discussione
dei risultati ottenuti da ognuno dei partecipanti, valutati tramite parametri soggettivi
di qualita dello strumento e del codice in output.

A questo punto, sotto indicazione del Project Manager, C.V. ha ricevuto il compito di
sintetizzare dai file di regole prodotti da ognuno di noi un insieme ristretto di regole
comuni da impiegare nell’ultimo passaggio di questa fase: predisporre una base

condivisa per testare 'efficacia degli strumenti su un benchmark unificato.

3.4.3 Definizione del benchmark

Per garantire omogeneita nei test, il gruppo ha concordato di misurare le performance
di ciascun agente nella generazione di una pagina completa end-to-end,

comprendente:

¢ la definizione del data model con campi principali e relazioni;

la generazione delle rotte API (CRUD) e del relativo service backend,;

la creazione del frontend conforme al design system aziendale;

una pagina di visualizzazione dati sotto forma di tabella, con funzionalita di

creazione, aggiornamento ed eliminazione dei record.

36

L’obiettivo era verificare se ciascun agente fosse in grado di produrre una funzionalita
completa, coerente con gli standard aziendali, riducendo al minimo gli interventi
manuali e mantenendo un equilibrio tra qualita del codice, coerenza architetturale e

produttivita complessiva.

3.4.4 Risultati emersi

Nei nostri scenari di test, costituiti da repository TypeScript/React per il frontend e
FastAPI/SQLAlchemy con migrazioni per il backend, Windsurf ha offerto il miglior

equilibrio tra:

o codebase awareness (capacita di ricostruire pattern di progetto e rispettare i

vincoli architetturali);

» qualita dei piani multi-file (refactor e implementazioni additive con minima

perdita di contesto);
o integrazione “senza attrito” con terminale, task, lint e test;
o costo prevedibile su base seat/trial rispetto agli altri flussi sperimentati.

Cursor si ¢ dimostrato estremamente fluido e veloce per iterazioni individuali e
incrementi di piccola scala, mentre Cline e Roo Code hanno convinto quando
I'obiettivo era restare dentro VS Code, mantenendo pieno controllo sui modelli
(BYOK) e un’integrazione diretta con MCP.

I risultati ottenuti sono risultati coerenti con le analisi pubbliche disponibili in
letteratura e nei test comparativi esterni |AI25; Dat25; Zap|, confermando che
Windsurf risulta leggermente superiore nel deep codebase work, mentre Cursor
eccelle in rapidita e diffusione tra la community.

In sintesi, il benchmark condiviso ha permesso di evidenziare punti di forza e limiti
concreti di ogni soluzione, fornendo al gruppo le evidenze necessarie per convergere su
Windsurf come strumento di riferimento per la fase successiva di validazione su

progetto reale.

37

3.5 Test di validazione

Questa terza fase della ricerca ha rappresentato il punto di svolta del lavoro, in quanto
si e trattato del primo test di validazione su progetto reale partendo da zero.
L’obiettivo principale era verificare la reale efficacia combinata delle componenti
selezionate - 'IDE Windsurf, i ruleset aziendali e le integrazioni MCP - all’interno
di un flusso di sviluppo effettivo, misurando quanto la pipeline agentica potesse ridurre

I'intervento umano nel porting e nella ricostruzione di un’applicazione esistente.

In questo stesso periodo (tra la seconda e la terza fase dello studio) era emerso un
nuovo strumento: Lovable [Lov|, una piattaforma web-based di AI App Building
sviluppata con 'obiettivo di consentire la creazione di interfacce applicative complete
partendo da prompt in linguaggio naturale. Lovable adotta un approccio simile a
quello dei moderni ambienti di generazione controllata (es. Replit Al o Builder.io), ma

si distingue per alcune caratteristiche tecniche rilevanti nel contesto di questo studio:

integra nativamente un motore LLIM multi-step capace di generare struttura,

componenti Ul e logica di interazione in un unico ciclo;

o supporta la modalita “Remix”, che consente di forkare o duplicare un progetto
esistente e di intervenire su di esso con nuovi prompt incrementali, favorendo

Iiterazione rapida e il riutilizzo di codice;

o offre un builder visuale interattivo per modifiche dirette all’interfaccia, con
esportazione immediata in React/Next. js, facilitando il passaggio da mockup a

prototipo reale;

o produce codice front-end leggibile, modulare e aderente ai principi di
componentizzazione tipici dei design system moderni (nel nostro caso, analoghi a
laif-ds).

Si tratta di una piattaforma particolarmente adatta alla fase di rapid prototyping, e per
questo motivo e stata integrata sperimentalmente nel processo di validazione: non

come sostituto dell’agente IDE, ma come strumento complementare per accelerare la

38

definizione dell’interfaccia e fornire un primo “scheletro” di navigazione e layout

coerente con lo stile aziendale.

Il test di validazione ¢ stato assegnato a me e consisteva nell’eseguire il porting di
un’applicazione reale sviluppata da un’altra azienda verso il nostro
ecosistema, adattando la codebase al template e agli standard interni di Laif S.r.l.

L’obiettivo operativo era duplice:

a) verificare la capacita dell’agente (tramite Windsurf e ruleset) di adattare codice

preesistente ad un nuovo contesto architetturale e stilistico;

b) misurare quanto fosse possibile ridurre il carico manuale di riscrittura, delegando
all’agente e ai suoi strumenti di pianificazione I'implementazione e la rifinitura dei

moduli.

Per avviare questa fase, ho iniziato definendo un set di prompt all’interno di
Lovable, partendo da un remiz di una demo predefinita preparata dal Project
Manager come baseline di riferimento. La demo rappresentava un’interfaccia utente
con struttura e logica analoghe a quelle delle nostre applicazioni interne - quindi
sidebar di navigazione, header con breadcrumb, tabella dati e viste CRUD - ed era
stata arricchita da alcune pagine aggiuntive che simulavano funzioni tipiche dei

nostri progetti, fungendo da mockup di un prodotto reale dell’azienda.

39

@ Preview | & p v+ m/ no G Share 4y () Publish
L F D Dashboard @
DATADENOGAACY

@ Dashboard Raccomandazioni

Menu

@® Dashboard

® Prodotti

® Venditori Dashboard Raccomandazioni

Mario Rossi Q4 2024 Y Filtri & Esporta O

2, Clienti Gestisci le tue proposte commerciali e monitora le performance

€1.8M 24
Forecast Attuale Gap su Target Win Rate Proposte Attive
Clienti e Raccomandazioni (3) Y Filri v Ordina per: Potenziale Azioni Bulk
FoodPack Italia SpA
&
Premium
85% 3
Pot Win Rat
® Ultima visita: 2 giorni fa Trattativa in corso
77 Top Raccomandazioni
Linea Packaging Alimentare Premium ®
Margine: 35% 2%
T 8w & 8
impostazioni
Imballaggi Termosigillanti Pro o}
@ Gestione Utenti
Margine: 42% 8%
Ask Lovable..
® Ssupporto m B Folowwe & O
® Edit Q @ G

Figura 3.7: Interfaccia di Lowvable: a sinistra la chat LLM per i prompt; a destra il

progetto laif-demo usato come base dei Remix.

Attraverso il comando Remix, Lovable ha generato una nuova istanza del progetto
(una sorta di branch parallelo) su cui ho potuto intervenire liberamente, combinando
input visivo e testuale. A partire da questo punto, ho iniziato ad interagire con il

sistema tramite prompt mirati, che specificavano:

o la struttura e I'organizzazione generale delle pagine (ad esempio: “crea una

sezione di gestione utenti con tabella e form di creazione”);

o il comportamento dei componenti dinamici (dialog di editing, validazioni,

messaggistica);

« la coerenza stilistica con il design system aziendale (palette, tipografia, spaziatura

coerenti con laif-ds);
« eventuali integrazioni simulate con backend (mock APT o dati fittizi).

Il risultato di questa prima fase in Lovable ¢ stato un prototipo navigabile e

coerente, utile come base visiva e semantica per la fase successiva: il porting effettivo

40

in Windsurf. In questa seconda parte del test, ho importato 'output generato da
Lovable nel mio workspace di Windsurf, dove ho ripreso il flusso di sviluppo

utilizzando:

« il ruleset aziendale (in formato Markdown) per vincolare la generazione del

codice ai nostri standard architetturali;

o iserver MCP gia configurati (PostgreSQL e Notion), cosi da fornire all’agente

contesto reale sulla struttura dati e sulla documentazione interna;

o icomandi nativi dell’agente Cascade per orchestrare la generazione multi-file

(schema — controller — service — frontend).

Durante questa fase, Windsurf ha dimostrato un’elevata capacita di ricostruire la
logica applicativa esistente, riconoscendo pattern e nomi delle entita provenienti
dalla codebase originale e traducendoli in strutture aderenti al nostro template

Fast API/SQLAlchemy sul lato backend e React/Next.js sul lato frontend.

Il sistema MCP ha rivestito un ruolo determinante nel processo di adattamento
automatico delle entita e, piu in generale, nella comprensione strutturale del dominio
dati dell’applicativo da migrare. Grazie all’accesso in lettura al database
PostgreSQL dell’azienda di provenienza, ['agente WindSurf ha potuto
ispezionare direttamente i datamodel dell’applicazione sorgente, analizzando
in modo sistematico schemi, tabelle, vincoli, relazioni e tipi di dato.

Questa capacita di esplorazione semantica ha consentito di generare una migrazione
iniziale automatica in grado di portare il database interno del progetto -
originariamente nello stato “template” - a una configurazione completamente allineata
1:1 con il database dell’applicazione originaria. Tale processo non si ¢ limitato
alla mera riproduzione delle strutture, ma ha incluso anche la definizione coerente dei
vincoli di integrita, delle chiavi esterne e delle relazioni tra le entita, assicurando una
corrispondenza logica e funzionale con il sistema di partenza. Una volta ottenuta
questa corrispondenza strutturale, e risultato immediato procedere al trasferimento
dei dati reali tramite lo script interno transfer_data.py, concepito per copiare in
modo controllato i contenuti da un database all’altro. In questo modo, I'accesso MCP

ha rappresentato non solo un ponte conoscitivo tra due domini dati, ma anche il punto

41

di partenza per un processo di allineamento e popolamento completamente
automatizzato, che ha permesso di integrare senza soluzione di continuita ’applicativo

migrato all’interno della nostra infrastruttura.

Il test, in sintesi, ha rappresentato un caso realistico di porting aziendale in cui
Lovable e Windsurf sono stati impiegati in sinergia: il primo per accelerare la fase di
prototipazione e di definizione dell’interfaccia, il secondo per assicurare ’aderenza del
codice generato agli standard aziendali e la completa integrazione con il backend. La
combinazione dei due strumenti ha permesso di verificare in pratica quanto il ciclo
plan/act /review potesse essere applicato anche a scenari complessi, nei quali 1'obiettivo
non e generare da zero, ma adattare e integrare codice preesistente con il minimo

sforzo manuale e massima coerenza stilistica e funzionale.

3.6 Descrizione dell’applicativo da migrare

L’applicativo oggetto della migrazione, di seguito denominato semplicemente Tintoria,
¢ una piattaforma gestionale focalizzata sulla schedulazione operativa dei flussi di
lavorazione in tintoria industriale. Originariamente realizzato e mantenuto da un altro
fornitore, il progetto & stato successivamente trasferito al nostro team a seguito
dell’impossibilita, da parte del precedente manutentore, di proseguirne il supporto
evolutivo. Tale passaggio ha reso necessario un intervento di migrazione strutturale
e tecnologica, al fine di assicurarne la continuita operativa, 1’allineamento agli

standard infrastrutturali interni e 'integrazione con la nostra toolchain.

3.6.1 Descrizione funzionale

Lo scopo dell’applicativo ¢ ottimizzare la pianificazione giornaliera delle
lavorazioni per massimizzare il numero di ordini completati, rispettando vincoli di
capacita e sequenziamento delle macchine/impianti. Ogni ordine ¢ composto da uno o
piu item, ciascuno associato a una sequenza di fasi/operazioni (routing) su specifiche
risorse produttive. Il sistema supporta differenti criteri di priorita, configurabili per

la generazione dei piani:

42

Priorita al cliente (es. clienti strategici);

Priorita alla data di consegna (minimizzazione del ritardo).

Gli attori principali sono:

Pianificazione: definisce priorita, orizzonte temporale, vincoli e scenari; avvia lo

scheduler e valida il piano;

Responsabile di produzione: supervisiona saturazione risorse, colli di bottiglia

e ribilanciamenti;
Operatori di linea: consultano le code di lavorazione e eseguono avanzamenti;

Direzione: monitora KPI di puntualita, throughput e saturazione.

I processi principali sono:

a)

Acquisizione e normalizzazione degli ordini: import/registrazione di ordini

e item;

Definizione vincoli: capacita per macchina/centro di lavoro, turni e calendari,

tempi di set-up, compatibilita per materiale/trattamento, lotti min/max;

Schedulazione: generazione del piano tramite algoritmo ottimizzante (obiettivi
tipici: massimizzare ordini completati, minimizzare tardivita, ridurre tempi di

attesa/setup), secondo il criterio di priorita selezionato;

Esecuzione e avanzamento: pubblicazione delle sequenze su ogni macchina,
registrazione start/stop e stati operazione; gestione eccezioni (fermi,

rilavorazioni);

Monitoraggio e ricalcolo: analisi KPI (quality, saturation, OTIF, WOTIF') ed

eventuale riplanificazione;

Ciclo giornaliero: consolidamento serale e preparazione del piano del giorno

successivo.

Le entita dati principali includono:

43

o Ordine, Item, Operazione/Fase, Routing;
e Macchina/ Centro di lavoro, Calendario/Turno, Matrice di setup/compatibilita;

o Lotto di lavorazione (aggregazione di item omogenei), Piano/Schedule, Run di

schedulazione (traccia esiti e parametri).

Black-box scheduling ed ETL

Per motivi organizzativi e di vincoli temporali, lo schedulatore ¢ il processo ETL
sono stati trattati come black-box. Entrambi risultavano gia funzionanti e validati in
esercizio presso 'azienda di provenienza; di conseguenza, una loro revisione interna
avrebbe comportato un’attivita di ricerca e ottimizzazione che esulava dagli obiettivi
della migrazione.

Durante il porting, il lavoro si ¢ quindi concentrato sull’adattamento del contesto
applicativo, sull’integrazione con l'infrastruttura esistente e sulla conservazione della
piena compatibilita con i moduli di schedulazione preesistenti, garantendo la continuita

operativa e la riproducibilita dei risultati.

3.6.2 Descrizione dell’interfaccia

L’interfaccia utente offre viste operative specifiche:

¢« Gantt o Tabella di produzione: sequenze per macchina con evidenza di colli
di bottiglia e slack;

» Visualizzazione degli ordini non schedulati e delle motivazioni (macchine

non disponibili, articoli senza parametri necessari, ecc...);

e Visualizzazione e modifica dei parametri: ogni schedulazione viene lanciata
con parametri specifici che ne definiscono le priorita ed in generale la funzione

da minimizzare;
o Interfaccia per il lancio di una nuova schedulazione;

o Indicatori KPI: (quality, saturation, OTIF, WOTIF)

44

Per completezza, si riportano di seguito alcune schermate significative dell’interfaccia

utente, che illustrano le principali funzionalita operative del sistema.

e

L/Marr.o Vita

Admin)

& Schedulazione >

Tintoria Emiliana - Anagram

Gestione Schedulazioni

& Gestione utenze 5 lﬂ
GESTIONE SCHEDULAZIONI
NUOVA SCHEDULAZIONE

Audit

Supporto

Figura 3.8: Home dell’applicativo

45

” Lista Schedulazioni

e
Marco Vita
Admin
\

26/08/2025 10/09/2025 APPLICA
Q Home
& Schedulazione > () 9

I} Gestione Schedulazioni

; INIZIO FINE A
8% Gestione utenze TITOLO DESCRIZIONE STATO DATA MODALITA
TURNI TURNI
® O C DO @ G) &
PRS
Nightly SCHED -
7 694 heduled 06:00 21:30 26/08/2025 Lent:
“ 9: un Scheduled run ENDED - 3 enta

SUCCESS

[Audit

&3 Supporto

Figura 3.9: Lista delle schedulazioni con vista tabellare delle schedulazioni (nell’imma-

gine I'unica schedulazione visibile per questioni tecniche & quella identificata dall’id 694)
Cliccando con il mouse su di un elemento della tabella, si viene reindirizzati alla pagina

di dettaglio, nella quale & possibile visualizzare le specifiche operazioni della

schedulazione in modalita gantt o tabellare e gli ordini non schedulati:

46

va

PIANIFICATO
TESSATIVO

=)

26/05/2025

CODICE
MACCHINA

] 31/05/2025

CLIENTE

ATTIVITA

MILNOR 13 X
MILNOR 8 X

MILNOR9 X

COMMESSA

@ =

ARTICOLO

VARIANTE

()

O C

MILNOR 8

MILNOR 8

MILNOR 8

LUBIAM
MODA PER
L' UOMO
SPA

Setup
iniziale

Produzione

Cambio
vascata

1036/it,
1094/ita

A5LB167450LD ,
A5LB16757/10LD

0038

Figura 3.10: La vista tabellare ¢ disponibile a prescindere dai filtri inseriti, mentre quella

con grafico Gantt diventa disponibile tramite bottone Switch solo dopo aver selezionato

almeno un centro di lavorazione nella Select in alto a sinistra della pagina.

47

° Centro di Lavorazione
(VISUALIZZA PARAMETRI INSERITI >
/ Macchine
(' Marco Vita
_ Admin MILNOR 10 X
pa A MILNOR 12 X
() 26/05/2025 (%) 31/05/2025 MILNORTS @] E
MILNOR 8 X
Q Home MILNOR 9 X
& Sschedulazione >
It} Gestione Schedulazioni
& Gestione utenze
. LUBIAM MODA PER L' UOMO SPA . ROTA SRL . SPORTSWEAR COMPANY SPA
@ FGF INDUSTRY SPA
Il Il
May 26 03:00 06:00 09:00 12:00 15:00 18:00 21:00 May 27
5 g 3 8 8
L) e = = S
[® Audit MILNOR 8 : v o o :
® © o] g
=] o 13 =] S
&8 Supporto © © =] = S

Figura 3.11: 11 Gantt permette la visualizzazione delle singole task della schedulazione,
portando il mouse in hover su di un blocco del Gantt ne si vedono i dettagli e cliccandoci
sopra si apre un modale che fornisce le informazioni in modo dettagliato. Notiamo poi
un pulsante "MODIFICA" che abilita la modalita di edit dei valori dei blocchi tramite il
modale di cui sopra. Inoltre, ¢ possiblie tramite un input Range modificare 'intervallo

di tempo del quale visualizzare i task.

” MILNOR 10

(Marco Vita
\ Admin
e

096 - 10.0
0047 -18.13
0074 - 16.46

Attivita: production
Articolo: P5LB160220LD , P5LB168860LD
Variante: 0035

MILNOR 12
Peso vascata: 5.29

0071-8.0
0020 - 6.29
0033-9.34
0071-2.36

Codice lavorazione: TO

@ Home

6 Schedulazione

Inizio: 26/05/25, 06:05

Fine: 26/05/25, 08:05
MILNOR 13
W} Gestione Schedulazioni

0010 - 4.87
0010 -4.34
0067 - 9.19
0097 - 1.57
0096 - 3.07

&2 Gestione utenze

»0 50 60 »0 50 60
oD .0 N
& £ N
g e 2 g e
N N N
8 © 8 8 ©
100 % 56.99999999999999 % 98 % 99 %
m Audit QUAL SAT OTIF WOTIF
) () ())

&3 Supporto

Figura 3.12: Oltre al Gantt, in questa visuad#zazione sono visibili anche i valori dei KPI.

DETTAGLIO SCHEDULAZIONE ORDINI NON SCHEDULATI

Macchine senza ora di inizio o ora di fine 0 =
Macchine senza pesomin 0 =

Macchine senza pesomax -
Macchine senza durata ciclo 0 =
Macchine senza tempocambio 0 =
Macchine senza tempopulizia 0 =

Articoli senza peso unitario

Articoli senza lavorazione

Articoli con lavorazione presente ma non presente in lavxmacchine

Articoli con lavorazione presente presente in lavxmacchine ma non ° -
associabili ad una macchina esistente -
Articoli con data di consegna non valorizzata 0 =
Articoli inseriti in vascate con 0 capi 0 =

Articoli gia tinti

Articoli non pianificati per vincoli pesi macchina

Produzioni bloccate senza corrispondenza nei turni di lavoro della
macchina

Vascate non pianificate per vincoli pesi macchina

Figura 3.13: Gli ordini non schedulati organizzati per "problematica', in alto possiamo

notare i bottoni che permettono di passare da questa vista a quella del dettaglio.

49

[4 N Nuova Schedulazione

Laif

https://github.com/laif-group)
ey

(Marcovita

NUOVA SCHEDULAZIONE
Titolo Schedulazione Descrizione
{2} Home
TEST 123 PROVA
& Schedulazione v
Lista Schedulazioni
Parametri Anagram
Nuova Schedulazione
It} Gestione Schedulazioni
83 Gestione utenze Priorita Cliente Bilanciato Rispetto Consegne
[Lento] Veloce

Inizio Turno Fine Turno

Salva Configurazione Corrente
B Audit

&3 Supporto

AVVIA NUOVA SCHEDULAZIONE

Figura 3.14: Pagina per il lancio di una nuova schedulazione, dove e possibile impostare

titolo e descrizione oltre che ai parametri dell’ottimizzatore.

Per brevita non viene riportata la pagina della "Gestione Schedulazioni" che ¢ possibile
notare nella navigazione laterale, in quanto identica a quella del lancio di una nuova
schedulazione a meno dei campi "titolo" e "descrizione" e della possibilita di lanciare la

schedulazione, in quanto ¢ una pagina dedicata alla definizione della configurazione
default.

Come possiamo osservare, le pagine sono sostanzialmente 6, di cui solamente 4 esposte

dalla barra di navigazione laterale:

1. Home del progetto, vedremo che ¢ stato deciso di rimuovere questa pagina in

quanto ritenuta superflua;

2. Lista schedulazioni: Pagina adibita alla visualizzazione tabellare dello storico
delle schedulazioni, una volta selezionato un elemento dalla tabella si accede alla
Pagina dettaglio della schedulazione, costituita da due pagine non esposte

nella navbar:

50

2.1. Pagina dettaglio di base: fornisce la vista gantt o tabellare della

schedulazione;

2.2. Pagina ordini non schedulati: fornisce la vista tabellare del numero di

ordini non schedulati raggruppati per la causa della non-schedulazione;

3. Nuova schedulazione: pagina dedicata alla configurazione e al lancio manuale

di una nuova schedulazione;

4. Gestione schedulazioni: pagina di impostazione della configurazione default

delle schedulazioni;

3.6.3 Descrizione tecnica e architettura

Tintoria eredita 'impostazione tecnologica di un template generalizzato per

applicazioni web e pipeline ETL, con esecuzione locale e distribuita.

o Frontend: SPA React servita via Nginx; viste Gantt/queue e pannelli KPT;

« Backend: FastAPI (Uvicorn) con CLI Typer (run.py) per ruoli e migrazioni
Alembic;

« Database: PostgreSQL (schema versionato); entita per ordini, item, routing,

risorse, calendari, schedule e run;

e Schedulazione: job Celery per generazione piani; code SQS per orchestrazione;

persistenza dei risultati e dei parametri run;

o Automazioni: run giornaliero (notturno) per consolidamento e preparazione

piano successivo; ricalcolo on-demand;

« Documentazione e test: Sphinx; pytest/httpx per validazione APT e logiche di

pianificazione;

o Infrastruttura: Docker Compose per ambienti locali; deploy su AWS tramite

strumenti di provisioning (es. aCli/CDK).

ol

Sicurezza e operativita

L’applicativo adotta pratiche standard di sicurezza e controllo operativo. I container
backend vengono eseguiti con utenti non-root e le credenziali sono gestite tramite
servizi di secret management in cloud. Le pipeline CI/CD garantiscono tracciabilita dei
rilasci e coerenza tra ambienti. Le migrazioni di schema sono gestite con Alembic,
mentre i run di schedulazione sono pienamente auditabili e riproducibili, con

storicizzazione dei parametri e degli esiti di ogni esecuzione.

3.7 Fase “Lovable” - Remix demo, prompt e
specifiche eseguibili

In questa fase partendo dal progetto laif-demo (mockup minimale con layout,
architettura, componenti laif-ds gia configurati), sfruttiamo la funzione Remix di
Lovable per generare automaticamente una nuova codebase che replichi struttura e
funzionalita dell’applicazione target, mantenendo stile e pattern Laif.

Questa fase ¢ caratterizzata da 3 passaggi chiave:

« Remix dal laif-demo: Lovable clona la base e genera una nuova repository
GitHub modificata in tempo reale per rispecchiare lo stato dell’applicazione

fornita in output da Lovable.

o Allineamento UI dagli screen forniti: gli screenshot dell’applicazione da
imitare fungono da specifica visuale (layout, densita, gerarchie, interazioni) e

conseguenti commit sulla repository.

o Cascata di prompt (iterazioni): applichiamo manualmente una catena di
prompt di raffinamento (migliorie, correzioni, aggiunte) fino a soddisfare i criteri

di accettazione.

Partendo dalla configurazione Lovable definita dal responsabile della ricerca (M.P.) -
che manterremo privata per strategia aziendale - ¢ stato eseguito un remix della demo
Laif, che va immaginato, come detto, come un fork di una repository GitHub. Dunque

¢ iniziato il processo iterativo fornendo il primo prompt al modello LLM di Lovable.

52

3.7.1 Prima iterazione

Prompt:

Dobbiamo modificare pagine e contenuti, utilizza laif-ds
per tutto ove possibile, le pagine disponibili saranno:
- Schedulazioni

-- Lista schedulazioni

-— Nuova schedulazione

- Gestione Schedulazioni

[page] Lista Schedulazioni:
Input Date dat_start, label "Da";
affianco Input Date dat_end, label "A";
affianco Button "Applica" per filtrare il contenuto in quel range.
Sotto, Tabella con search input,
filtri (proprieta della tabella laif-ds) e Button di download.
Le colonne sono:
[ID, Titolo (con hyperlink a "Dettaglio schedulazione"), descrizione,
Stato (enum mockup), Inizio turni (hh:mm), fine turni (hh:mm),

data (date), Modalita (Enum Veloce/Lento), Saturazione, OTIF, Utente]

[page] Dettaglio Schedulazione:
[tabs] Tab con:

- Dettagli

— Ordini non schedulati

[tab] Dettagli:
AppSelect "Centro di lavorazione'", con opzioni
[Tutti, Campionario, Campionario cesto unico, lavorazioni speciali,
olandese, rotativa a pressione,

rotativa a scomparti, rotativa cesto unico];

53

affianco popover "Visualizza Parametri" con:

input slider con valori "priorita cliente", "bilanciato",

"priorita consegne"; sotto "inizio turno: hh:mm" e "fine turno hh:mm";
sotto "modalitd: mode" (es. enum Veloce/Lento);

affianco AsyncSelect "Macchine" multi con dei badge

per tutta la lunghezza

della pagina con wrap per ogni valore selezionato che mostrano il nome
della macchina e hanno una x per essere rimossi dalla selezione;
sotto "Da" input Date, "A" input Date;

affianco (se e solo se AppSelect "Centro di lavorazione"

non ha selezionato il valore "Tutti") switch button "Gantt"/"Tabella"
(Gantt default se disponibile, se nulla & selezionato nel select
"Seleziona un centro di lavorazione",

se selezionato tutti solo tabella visibile);

sotto (sse selezionato valore in AppSelect "Centro di lavorazione")
tabella come la tabella di prima

(filtri per ogni colonna, search, download button), con colonne:
[Pianificato Tassativo (T/F con icona di lucchetto

chiuso/aperto associata),

Codice macchina, cliente (str), attivitd (enum: Setup Iniziale
/Produzione/Candeggio/Cambio vascata), commessa (str cod),

Articolo (str[l),

variante (str cod), peso vascata (double), Lavorazioni vascata

(enum mockup "lavorazioni"),

scadenza (date), quantita capi, numero vascata, inizio (datetime),
fine (Datetime), lista lavorazioni (enum lavorazionil[]),

scadenza originale (date)].
Sotto (sse gantt disponibile) {

Button "modifica" (se clicco su modifica compaiono button

"conferma" e "annulla";

54

durante la modifica posso cliccare su un blocco e ottengo

il modale in screenshot #3;

ho sempre un hover sui blocchi come quello in screenshot #4 e
quando non € in modifica

ho un modale di solo recap #5);

sotto gantt con righe macchine e colonne datetime

(con zoom range draggable)

da primo datetime schedulazione a ultimo,

i blocchi gant sono le attivitd schedulate.

Sotto a Gantt (altrimenti nulla) 4 indicatori CircularProgress
0-100 con (label, IconInfoHover):

[(QUAL, "Percentuale di qualita della produzione"),

(SAT, "Percentuale di saturazione delle ore lavorative"),
(OTIF, "Percentuale di ordini in orario"),

(WOTIF, "Percentuale di ordini in orario pesata

per priorita degli ordini")].

}

[tab] Ordini non schedulati: vedi screenshot con componente a righe.

[page] Nuova schedulazione: Input nome, Input descrizione;
sotto label "parametri anagram";
sotto {
input slider come prima, switch button "veloce/lento" e
input hh:mm
Inizio/fine Turno;
+
Qconfig sotto checkbox (default=F) "Salva configurazione corrente";

affianco Button "avvia nuova schedulazione".

%)

[page] Configurazione schedulazioni:

come Qconfig; sotto Button "Imposta come default".

Il prompt & stato poi arricchito dagli stessi screenshot descritti nel capitolo [3.6.2] oltre

a immagini raffiguranti elementi piu specifici dell’applicazione, nello specifico:

INFO MODIFICA

MODIFICA SCHEDULAZIONE

Cliente: LUBIAM MODA PER L' UOMO SPA

®

Attivita: production
Cliente: LUBIAM MODA PER L' UOMO SPA
Articolo: ASLB16906LANA
Commessa: 1071/serb
Codice vascata: VASCATA ASSIGNED BY AMMAGAMMA
Variante: 3033
Quantita capi: 5
Peso vascata: 2.9
Lavorazioni della vascata: TW
Lista lavorazioni: [TW, AL, FWST]

Data di ingresso: 19/05/2025
Data di consegna: 26/08/2025
Note produzione:

Nuovo Macchinario

MACCHINA 14

Nuova Data Inizio

) 26/05/2025

Nuova Data Fine

%) 26/05/2025

Figura 3.15: Modale di visualizzazione Non tassativo

dei dettagh di un Gantt Block. ANNULLA

Figura 3.16: Lo stesso modale della
figura in modalitd modifica.

Per agevolare I'interpretazione del prompt da parte del modello LLM, ho definito uno
pseudo-markup testuale concepito come linguaggio intermedio tra la descrizione
naturale e la struttura formale di un layout. Tale sintassi adotta una notazione a
blocchi ispirata alla gerarchia delle interfacce React, con marcatori delimitati tra
parentesi quadre che indicano la natura e la profondita semantica di ciascun elemento.

Gli elementi principali dello pseudo-markup sono:

o [pagel - identifica una pagina o vista logica dell’applicativo (es. [page] Lista

Schedulazioni);

56

(VISUALIZZA PARAMETRI INSERITI A)

S

Priorita Cliente Bilanciato Rispetto Consegne
Inizio Turno: 06:00
Fine Turno: 21:30

Xk Modalita Lenta
Figura 3.17: Dropdown del tasto "VISUALIZZA PARAMETRI INSERITI"

e [tab] - definisce una sezione interna a una pagina, normalmente corrispondente a

un componente con tabulazione o contenuto dinamico;

e [component] o blocchi impliciti - descrivono i singoli elementi UI, come Input,

Button, AppSelect, AsyncSelect, Switch o Gantt;

o le indentazioni (rafforzate dall’'uso di "-") e le strutture annidate rappresentano la

gerarchia visiva e funzionale tra i componenti.

Questa forma testuale, pur non essendo un linguaggio formale, ¢ risultata efficace nel
rendere il prompt autoesplicativo e non ambiguo, in quanto univa la leggibilita del
linguaggio naturale a una rappresentazione strutturata dell’interfaccia. In pratica, lo
pseudo-markup ha permesso di comunicare al modello non solo il contenuto, ma anche
la relazione gerarchica tra gli elementi, il loro comportamento e il contesto d’uso, in
questo modo, la combinazione tra il prompt pseudo-strutturato e gli screenshot di
supporto ha permesso di fornire al sistema un contesto visivo e sintattico preciso,

analogo a una specification by example[Adz11].

57

Tabella 3.2: Metriche di esecuzione del primo prompt

Parametro Valore Unita
File modificati 7 -
Tempo di scrittura del prompt ~22 min
Tempo di reasoning 16 s
Tempo di elaborazione modello 3.57 min
Tempo totale ~26.13 min

Primo output generato

Il primo output generato dal modello a seguito del prompt di schedulazione ha

mostrato risultati parzialmente coerenti con le specifiche fornite. In questa fase iniziale,

I'interfaccia prodotta da Lovable ha riprodotto correttamente la struttura generale delle

pagine e la navigazione specifica di Tintoria, ma ha evidenziato diverse semplificazioni

e imprecisioni nella logica dei componenti, come illustrato nelle figure seguenti.

9 Lista Schedulazioni

£ Nuova Schedulazione

L F D Schedulazioni
DATADEMOCRAGY
Lista Schedulazioni

Wenu &}
@ Dashboard
© Gt Lista Schedulazioni
@ Venditori Gestisci e monitora tutte le schedulazioni di produzione
2, Clienti
SN £ Da: dd/mmfyyyy O A ddmmlyyyy O Applica

Nuova Schedulazione:

& Download

Figura 3.18: Pagina principale con pulsante Filiri e collegamento corretto a

schedulazione”.

58

% Configurazione Q_ Cerca schedulaziont Y Filtri
nizio Fine
D Titolo Descrizione Stato Data Modalita Saturazione ~ OTIF Utente
Turni Turni
SCHO01 Schedulazione Maggio - Lubiam Schedulazione mensile per cliente Lubiam 06:00 18:00 26/05/2024 85% 92% Mario Rossi
Schedul: u te - -
scHooz oonedulazions Urgente Lavorazione urgente campionario per fiera ... 07:00 19:00 27/05/2024 Lento 78% 88% Anna Verdi
Campionario
Luigi
H Prodi Weekend hedulazi itardi prodi 16: 2 2024 Vel 2% %
SCH003 Produzione Weeken: Schedulazione per recupero ritardi produzi [Pianificato JENVT) 6:00 8/05/20: 9 95 e
Impostazioni
@® Gestione Utenti
® Supporto
=R)
“Nuova

La navigazione mockup precedente e stata mantenuta erroneamente: si notano infatti

due sezioni di navigazione, Menu e Schedulazioni, quando ci si sarebbe aspettati

unicamente la seconda come sezione principale. La pagina “Lista schedulazioni” & stata

tuttavia generata in modo corretto anche nei dettagli.

SAT O OTIF©

Percentuale di saturazione delle
ore lavorative

F @D Schedulazioni > Dettaglio @
DATADEMOCAACY
Dettaglio Schedulazione
Menu B8
@ Dashboard
Prodotti . "
& Ao Dettaglio Schedulazione SCHOO1
® venditori Gestisci i dettagli e monitora lo stato della schedulazione
2 Clienti
Dettagli Ordini non schedulati
Schedulazioni
B Lista Schedulazioni
Centro dilavorazione: Campionario Visualizza Parametri
E? Nuova Schedulazione
& Configurazione Macchine: Priorita
MACCHINA 17 © landT&to Priorita consegne
MACCHINA14 X MACCHINA1S X MAC! Inizio turno: 11:20 Fine turno: 12:50
Modalita: Vel
Da: 26/05/2025 O A 27057202 ool eot®
Vista Gantt
® Gestione Utenti
May 26 May 27
@ Supporto MACCHINA
. 14
=5 N
Vista Gantt
LUBIAM MODA PER L' UOMO SPA @ Modifica
May 26 May 27
MACCHINA
14

WOTIF ©

Figura 3.19: Vista Gantt generata dal modello: nella parte superiore (in alto) la sezione

dei controlli e filtri, in basso la rappresentazione grafica delle lavorazioni. Il layout risulta

approssimativo, ma la logica di visualizzazione e interazione ¢ correttamente interpretata.

Nel complesso si tratta di un output di buona qualita: pur con alcune approssimazioni

grafiche, il modello ha compreso la logica dei filtri e la relazione tra i componenti. Il

grafico Gantt in sé risulta tuttavia incompleto e privo della modalita di modifica.

59

Menu
@ Dashboard
® Prodotti
® Venditori

2, Clienti

Schedulazioni
B Lista Schedulazioni
2 Nuova Schedulazione

%8 Configurazione

Impostazioni

@ Gestione Utenti

O Sschedulazioni > Dettaglio

=) Dettaglio Schedulazione

Dettaglio Schedulazione SCHO01

Gestisci i dettagli e monitora lo stato della schedulazione

Dettagli Ordini non schedulati

Centro di lavorazione: Tutti v @ Visualizza Parametri

Macchine:

Seleziona macchine

Da: 26/05/2026 B A 27/05/2025 0

@ Dashboard
@ Prodotti
® Venditori

& Clienti

Schedulazioni
B Lista Schedulazioni
£} Nuova Schedulazione

@ Configurazione

Impostazioni

@ Gestione Utent
® supporto

0% ¢

® Supporto
=it
Figura 3.20: Pagina di dettaglio: vista tabellare assente.
F @O Schedulazion > Dettaglio
. ‘ & Dettaglio Schedulazione

Dettaglio Schedulazione SCHO01

Gestisci i dettagli e monitora lo stato della schedulazione

Dettagli Ordini non schedulati

Ordini non schedulati

LUBIAM MODA PER L' UOMO SPA (@D

Articolo: ASLB16906LANA

Fashion Group SRL

Articol 024COTTON

denza 0
Lavorazioni: AL, DR?

Y

Schedula

Schedula

Figura 3.21: Tab “Ordini non schedulati”: contenuto inventato completamente, non

corrispondente alle specifiche del prompt.

60

D Schedulazioni > Nuova @

Nuova Schedulazione
Menu B

@ Dashooard

© Rez Nuova Schedulazione Tornaslla fsta
@ venditor Crea una nuova schedulazione di produzione
& Clienti

Informazioni Generali
Schec

Nome Schedulazione *
£ Nuova Schedulazione.

@ configurazione

Parametri ANAGRAM

Priorita di Schedulazione

Modalita Inizio Turno Fine Turno

Figura 3.22: Sezioni “Configurazione” e “Parametri avanzati”: pressoché corrette, con

I'unico errore dello slider espresso su scala 0-100 invece che su tre valori discreti.

AR o o o °

5 Configurazione Schedulazioni
I

@ Dashboard

© REz Configurazione Schedulazioni
® Venditori Gestisci | parametri predefiniti per le schedulazioni
& Clent

Parametri ANAGRAM Predefiniti
Schoduazion

£ Lista Schedulaziont Priorita di Schedulazione

£ Nuova Schedulazione e Biancin Priorita consegne.

% Configurazione Bilanciato (50%)
Modalita Predafinita Inizio Turno Predefinito

Parametri Avanzati

Timeout Schedulazione (minuti Massime terazioni
30 1000

Target di Performance

Target QUAL (%) Target SAT (%) Target OTIF (%) Target WOTIF (%)
9% 80 B 8

Imposta come Default

Figura 3.23: Pagina di configurazione: corretta nella parte superiore, ma con sezione

“Parametri avanzati” aggiunta spontaneamente dal modello e non richiesta dal prompt.

61

Nel complesso, il primo output puo essere considerato una versione solo
parzialmente conforme alle specifiche richieste. Pur avendo individuato
correttamente la struttura generale delle pagine, il modello ha mostrato una
comprensione incompleta della logica applicativa, introducendo elementi arbitrari
(come la sezione “Parametri avanzati”) e omettendo funzionalita fondamentali quali i
filtri tabellari e la modalita di modifica del Gantt. L’interfaccia risultante, sebbene
coerente nella forma, si discosta in piu punti dalle direttive del prompt, evidenziando la

necessita di un intervento correttivo pit mirato.

ottenere un output piu aderente e controllato. In questa seconda iterazione, le
istruzioni sono state rese piu vincolanti e dettagliate, con 'obiettivo di limitare la

liberta interpretativa del modello e di correggere gli errori emersi nella fase precedente.

3.7.2 Seconda iterazione

Per ragioni di sintesi, verranno presentate meno immagini, concentrandosi sui punti

salienti e sulle differenze piu rilevanti rispetto al primo output.

Prompt:

modifiche da apportare:

- globali:

-— PER TUTTE LE PAGINE (mantieni la sezione di titolo,

sottotitolo e icona solo nella navbar superiore;

eliminala dal contenuto delle pagine)

—-- aumenta il numero di dati mockup

-- elimina le voci di navigazione precedentemente esistenti
(Menu[Dashboard, Prodotti, Venditori, Clienti])

-— le tabelle devono usare le proprietd del laif-ds e devono
essere paginate (con pit dati mockup sara possibile testarlo)

-- gli slider di prioritad possono assumere solo i valori

agli estremi e al centro (-1, 0, 1)

62

[page] Configurazione (rename in Configurazioni):

- elimina la sezione Parametri avanzati

[page] Lista Schedulazioni:

- I1 button nuova schedulazione impostalo come customNavComponent
-- la searchbar e i filtri sono impostabili tramite proprietd della
table laif-ds

[page] Dettaglio schedulazione:

—- Quando seleziono "Tutti" la tabella deve essere visibile,
la label deve essere "Tutti (tabella per sola esportazione")

-- Modifica deve aggiungere un tab al modale dei task del gantt,
ti invio sia il modale con selezionato il tab in questione
(screenshot #1) che il gantt (#2) in quanto il tuo & approssimativo:
manca lo zoom, gli orari, i blocchi sono piccoli, on hover deve
mostrare i dettagli principali dell’attivita (task) (#3)

—- Alla tabella mancano i filtri, la searchbar e il button download

-- La tab degli ordini non schedulati é errata, ti mando 1’immagine

#4 come reference

Anche per questo prompt sono state fornite delle immagini di riferimento.

Tabella 3.3: Metriche di esecuzione del secondo prompt

Parametro Valore Unita
File modificati 8 -
Tempo di scrittura del prompt ~12 min
Tempo di reasoning 17 S
Tempo di elaborazione modello 6.08 min
Tempo totale ~18.25 min

Secondo output generato

Il secondo output, prodotto a seguito del nuovo prompt correttivo, ha mostrato un

sensibile miglioramento nella coerenza complessiva e nell’aderenza alle specifiche

63

funzionali.

Le modifiche globali sono state quasi tutte applicate correttamente: la rimozione
delle sezioni di titolo e sottotitolo dalle pagine & avvenuta come richiesto, le voci di
navigazione superflue sono state eliminate, la pagina degli ordini schedulati
finalmente corretta e priva di allucinazioni e il layout generale risulta piu ordinato e
leggibile. Il problema principale riguarda I'implementazione delle tabelle: il modello
non ha potuto applicare le proprieta aggiornate del laif-ds a cui si faceva riferimento
nel prompt, probabilmente a causa dell’assenza di una versione recente della libreria nel
contesto di generazione. Oltre a questo, la pagina del Gantt presenta numerose

problematiche che verranno affrontate nel prompt successivo.

Vista Gantt

LUBIAM MODA PER L' UOMO SPA Zoom: exm—) 200% [NCANVETY

LUBIAM MODA PER L' UoMO SPA [l ROTASRL [l SPORTSWEAR COMPANY SPA [ll FGF INDUSTRY SPA

May 26

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:0

MILNOR 8

09:16 - 20:70
00:09 - 10:0

QUAL O oo WOTIE O

00:14 - 8:0

Figura 3.24: La pagina dedicata alla visualizzazione Gantt dei task risulta ancora errata:

i filtri sono errati e non funzionanti, mentre gli indicatori dei KPIs sono sovrapposti al

grafico

64

Dettaglio Attivita
INFO MODIFICA

MODIFICA SCHEDULAZIONE
te: LUBIAM MOE L'Uo

Nuovo Macchinario

MILNOR 8

Nuova Data Inizio ora

dd/mm/jyyyy O 00:59 ©
Nuova Data Fine oOra
dd/mm/jyyyy 0 16:47 @
([Non tassativo
ANNULLA MODIFICA

Figura 3.25: La tab di modifica all’interno del modale ¢ corretta, I'unica inesattezza ¢
che deve essere visibile esclusivamente dopo averla attivata tramite I’omonimo pulsante

sopra il grafico.

Ordini non schedulati

Articoli con ma non

Figura 3.26: Sezione degli ordini schedulati corretta.

In conclusione, il secondo output rappresenta un passo avanti rispetto alla prima

iterazione, sia in termini estetici e di usabilita, sia di aderenza logica alle specifiche.
Tuttavia, la qualita finale é risultata condizionata da un fattore esterno non noto al
momento dei test: la discrepanza tra lo stato della documentazione del design

system (fornita al modello come riferimento) e la versione effettivamente in uso

65

nella generazione di codice del laif-ds. Quest’ultima, infatti, risultava gia piu
avanzata e includeva componenti tabellari e parametri aggiornati non ancora descritti
nella documentazione ufficiale. Questa incongruenza ha inevitabilmente influenzato la
generazione dei componenti, in particolare delle tabelle e dei filtri, determinando errori

non imputabili alla logica di interpretazione del modello.

3.7.3 Terza iterazione

Convinto che il problema dipendesse da una formulazione ancora troppo vaga delle
istruzioni, nella terza iterazione, oltre a fornire le istruzioni su come migliorare la

pagina del Gantt, ho fornito indicazioni per una ristrutturazione delle tabelle.

Prompt:

Modifiche da apportare:
- qui c’é la documentazione del laif-ds:
https://laif-group.github.io/ds/
ristruttura le tabelle usando la documentazione come riferimento.
- in Dettaglio schedulazione
-- Visualizza parametri: 1lo slider deve essere read-only
-—- Filtri: Niente deve essere selezionabile finché
centro di lavorazione non & stato selezionato
-— lo zoom del gantt deve essere uno slider con due button draggable,
lungo quanto il gantt, se entrambi i button sono ai
rispettivi estremi viene visualizzato tutto il range delle attiviti,
spostandoli si modifica datetime di inizio e fine
visualizzazione dei task: se ad esempio i task vanno dal 26 maggio
al 4 giugno, con tutto il range si vedono tutti i giorni,
pild lo restringo e piu dettaglio vedo sulla barra del gantt
(da che si vedono solo i giorni, vedo anche la divisione in ore)
-- la modifica attiva il secondo tab "modifica" del modale
delle attivita, se non siamo in stato di modifica il tab non &

nemmeno visibile

66

—-- Ordini schedulati, le righe non hanno un button x per essere rimosse
- Configurazioni

-- rimuovi il "(value)" da sotto allo slider,

- Nuova configurazione

-- non deve essere possibile preme avvia finché mancano nome e descrizione

Tabella 3.4: Metriche di esecuzione del terzo prompt

Parametro Valore Unita
File modificati 4 —
Tempo di scrittura del prompt ~6 min
Tempo di reasoning 9 S
Tempo di elaborazione modello 2.57 min
Tempo totale ~9.06 min

67

Terzo output generato

Dato 'output pressoche perfetto della pagina del Gantt e data anche ’assenza di
risultati tangibili nella modifica delle tabelle causata dall’incongruenza discussa nella

sottosezione [3.7.2] questa ¢ stata 1'ultima iterazione eseguita tramite Lovable.

Vista Gantt
LUBIAM MODA PER L' UOMO SPA @ Modifica
Zoom timeline (dall'inizio alla fine delle attivita):
O
26 Maggio 00:00 C 27 Maggio 23:59

Range: 13% - 77% (Zoom: 64%)

LUBIAM MODA PER L' UOMO SPA . ROTA SRL . SPORTSWEAR COMPANY SPA . FGF INDUSTRY SPA

May 26 May 27
04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

MILNOR 8

09:16 - 20:70
MILNOR 9 Attivita: Produzione

Articolo: FGF789PREMIUM
Variante: PREM001
Peso vascata: 28.3

MILNOR 10

Codice lavorazione: ST
MILNOR 12 S Inizio: 26/05/2025 00:14

Fine: 26/05/2025 08:0

MILNOR 13

100% @ 100% 100%

QUAL © SAT © OTIF © WOTIF ©

Figura 3.27: Visualizzazione Gantt pressoché corretta ad eccezione del secondo pulsante

di drag assente e dei task che vanno in overflow oltre il blocco del grafico.

Il Gantt risulta coerente e ben strutturato nella resa grafica: il meccanismo di zoom
mediante slider ¢ effettivamente funzionante e permette di modificare 'intervallo
temporale visualizzato, riproducendo il comportamento previsto dal prompt.
Permangono tuttavia alcune imperfezioni marginali che ho considerato non significative
per gli obiettivi del test. In questa fase, I'intervento tramite ulteriori prompt sarebbe
risultato pitt oneroso e meno efficace rispetto a una correzione manuale diretta nel

codice sorgente.

68

Tabella 3.5: Tabella delle tempistiche complessive

Iterazione Totale parziale (min)

Tterazione 1 ~26.13
Iterazione 2 ~18.25
Iterazione 3 ~9.06
Totale ~53.44

A questo punto, il processo di generazione puo considerarsi sostanzialmente completato.
Il risultato ottenuto e stabile e coerente con le specifiche, anche se rimane un certo
margine di miglioramento, in particolare sul fronte della standardizzazione dei prompt
tramite la definizione di un linguaggio di istruzioni piu uniforme. In ogni caso, il
modello ha raggiunto un livello di qualita tale da consentire il passaggio alla fase
operativa successiva: ’esportazione della codebase generata e la sua integrazione
all’interno della repository ottenuta dal fork del template aziendale, cosi da consolidare

il porting all’interno dell’architettura del progetto principale.

69

3.8 Integrazione e merge con Windsurf

Conclusa la fase di generazione in Lovable, il passo successivo - e conclusivo - ¢
consistito nell’'unire il codice prodotto da Lovable con 'architettura del template
aziendale, cosi da ottenere un’unica codebase coerente con gli standard Laif. Per
farlo, ho utilizzato Windsurf come agente di integrazione e refactoring, affidandogli il
compito di adattare la struttura del progetto generato ai vincoli architetturali e

stilistici imposti dai ruleset interni.

3.8.1 Processo di integrazione

Le due repository - quella generata da Lovable e quella del progetto Laif - sono state
collocate nella stessa directory, da cui e stato avviato I’agente. Questa scelta ha
permesso al modello di operare su un contesto unificato, comprendente sia il codice
applicativo completo delle interfacce prodotto da Lovable, sia la repository aziendale
dedicata al progetto, da cui desumere struttura, organizzazione e convenzioni del
template (frontend e backend). In questo modo ¢ risultato possibile facilitare il
trasferimento della logica e dei componenti provenienti da Lovable all’interno delle
sezioni app/ del progetto aziendale, mantenendo intatta la separazione con la parte

template/, condivisa da tutte le istanze.

Per guidare ’agente nella comprensione del progetto e delle sue dipendenze, ho fornito
un file descrittivo, PROJECT _DESCRIPTION.md, impiegato come manifesto tecnico della
repository. Il documento riportava la struttura del progetto, la suddivisione dei moduli,
le principali librerie frontend e backend, e le istruzioni di script, build e deploy. In
questo modo Windsurf poteva pianificare le modifiche rispettando i vincoli di

organizzazione e compatibilita dell’ecosistema Laif.

Dopo aver predisposto il contesto, ho avviato una nuova sessione di Windsurf e fornito
un prompt sintetico, concepito per chiedere all’agente di migrare i file e riallineare
import, dipendenze, configurazioni e scelte strutturali, mantenendo piena aderenza al

rules-set aziendale.

70

Il processo ¢ stato condotto come un ciclo di iterazioni convalidato manualmente:
Windsurf ha analizzato entrambe le repository, identificato le corrispondenze e
proposto piani di merging multi—file. A ogni iterazione ho verificato e approvato i

passaggi principali, intervenendo manualmente dove necessario.

Nel complesso, I'intero flusso di merge e refactoring - comprendente analisi, iterazioni
con 'agente e interventi manuali - si € completato in poco piu dodici ore di lavoro
effettivo. Il risultato finale e stato un progetto perfettamente integrato, con il codice
di Lovable incorporato nel framework aziendale e pienamente compatibile con la

struttura monorepo (FastAPI + Next.js).

E importante sottolineare, tuttavia, che il percorso che ha portato alla versione finale e
funzionante non e stato affatto lineare. Alcune rules si sono rivelate troppo ambigue
per essere interpretate correttamente dal modello, e non sono mancati episodi di
allucinazioni, errori logici, incongruenze di tipizzazione nei fra frontend e backend e
internamente ai componenti, oltre a innumerevoli difetti di coerenza strutturale. Ogni
iterazione del prompt ha richiesto una serie di interventi correttivi spesso
time—consuming, necessari per riportare il progetto in uno stato consistente.

Di seguito riporto, a titolo esemplificativo, alcuni dei prompt iniziali utilizzati durante

la fase di integrazione.

3.8.2 Prompt forniti a Windsurf

Prompt 1 (elaborazione: ~13.43 min).

Ti ho fornito due repository: @tintoria-lovable

(output completo di Lovable) e @tintoria-sched

(repo Laif con architettura template).

Trasferisci tutte le funzionalitd implementate in tintoria-lovable
dentro 1’app Laif, collocando i file nelle sezioni

@frontend/app e @backend/app rispettando integralmente

le rules presenti nella cartella Qrules/.

Presta attenzione a navigation, datamodel, schema e CRUD,

71

adeguando tutto agli standard del template.
Segui OPROJECT_DESCRIPTION.md per panoramica del progetto.

72

Prompt 2 (elaborazione: ~8.12 min).

Ho generato tutti i tipi TypeScript per il frontend sulla base

dei nuovi schema e delle chiamate CRUD che hai creato nel backend,
seguendo la stessa organizzazione delle altre app del template Laif.
Integra i tipi nei componenti migrati da tintoria-lovable,

allinea gli import e correggi gli errori.

Prompt 3 (elaborazione: ~9.02 min).

Procedi con le correzioni:
- La navigation va fatta seguendo quella del template,
non all’interno dei singoli componenti ma in @navigation.tsx
- Utilizza le chiamate CRUD generate presenti in @clien.gen.ts
e verifica la coerenza tra datamodel, schema e servizi.
Continua a proporre fix fino a ottenere una build pulita lato frontend

e backend mantenendo la piena conformita al template.

Come anticipato in precedenza, a seguito di ciascun output generato da Windsurf si
sono resi necessari numerosi interventi correttivi: alcuni dovuti ad ambiguita presenti
nelle rules, altri a errori di tipizzazione, incoerenze tra datamodel e schema, o
semplicemente a scelte strutturali non allineate al template aziendale. Le iterazioni
riportate sopra rappresentano quindi solo una parte del lavoro svolto: ogni prompt ha
innescato una catena di aggiustamenti manuali e validazioni successive, indispensabili
per riportare il progetto in uno stato consistente e conforme agli standard Laif.
Nonostante cio, il processo ha evidenziato la capacita dell’agente di fornire una base
solida su cui intervenire, permettendo di concentrare ’effort umano sulle decisioni

architetturali pitt complesse e non sulla riscrittura del codice.

In sintesi, questa fase ha rappresentato la chiusura del test di validazione, dimostrando
la possibilita di un flusso unificato e replicabile Lovable — Windsurf — Template Laif,
in cui la generazione, 'adattamento e 'integrazione del codice possono avvenire in

modo coordinato, pur richiedendo un intervento umano non solo di supervisione

73

architetturale e gestione dei conflitti, ma anche di programmazione tradizionale nei casi

in cui 'agente non era in grado di completare correttamente i task richiesti.

74

Capitolo 4
Valutazione del sistema

La valutazione del sistema presenta alcune peculiarita: trattandosi di un processo
interattivo, non deterministico e fortemente dipendente dal contesto, non e possibile
costruire un vero e proprio benchmark numerico. Le prestazioni dell’agente variano
infatti in funzione della qualita dei rules, del contenuto della knowledge base, della
natura del prompt e dell’intervento umano nelle fasi di refactoring.

Per questa ragione, le poche metriche quantitative disponibili (tempi di elaborazione e
numero di iterazioni necessarie) vanno lette come indicazioni empiriche e non come
misure assolute. La valutazione che segue adotta quindi un approccio misto, in cui
alcuni dati numerici servono da supporto a un’analisi principalmente qualitativa,
centrata su coerenza strutturale, qualita del codice, robustezza del processo e riduzione
del carico di lavoro effettivo.

Accanto a queste osservazioni e stata introdotta una piccola componente di valutazione
soggettiva, tramite questionari ispirati alla System Usability Scale (SUS) [Bro96|, per
raccogliere in modo piu sistematico la percezione di usabilita e utilita degli strumenti

da parte del gruppo di ricerca.

75

4.1 Metodologia di valutazione
La strategia di valutazione combina tre fonti principali di evidenza:

e Analisi qualitativa del codice e del processo, lungo l'intero flusso di lavoro:

dalla generazione iniziale in Lovable all’integrazione finale in Windsurf;

« Osservazioni quantitative leggere, quali tempi indicativi e numero di

iterazioni agentiche richieste per completare un task;

o Valutazione soggettiva tramite questionario, rivolta ai membri del gruppo

di ricerca.

Il questionario ¢ stato progettato prendendo a riferimento la System Usability Scale,
una scala standardizzata a 10 domande chiuse con risposte su scala Likert a 5 punti,
ampiamente utilizzata per misurare 1'usabilita percepita di sistemi interattivi. La
struttura e stata adattata al dominio degli strumenti agentici per lo sviluppo software e
riducendo il numero di domande, conservando pero l'idea di un giudizio sintetico e
confrontabile.

I questionario & stato somministrato ai sei membri del gruppo di ricerca (incluso
l'autore), tutti con esperienza nello sviluppo software e, in misura diversa, con
esposizione pregressa a strumenti Al per il codice. Per ciascuno dei due strumenti

considerati (Windsurf e Lovable) sono stati previsti due momenti di compilazione:

e un questionario iniziale, al termine della prima fase di ricerca e

sperimentazione;

e un questionario finale, al termine dell’ultima fase descritta nei capitoli

precedenti.

La numerosita ridotta del campione non consente inferenze statistiche forti; i risultati
vanno quindi letti come un complemento qualitativo all’analisi tecnica, utile per capire

come gli strumenti vengano percepiti dopo un uso realistico.

76

4.2 Efficacia e analisi qualitativa

La valutazione qualitativa considera il comportamento del sistema lungo I'intero flusso
di lavoro, dalla generazione iniziale in Lovable all’integrazione finale in Windsurf. Dato
che le attivita svolte non sono pienamente ripetibili in modo deterministico,

I’attenzione e posta su:

» coerenza strutturale del codice prodotto;
o aderenza al template aziendale;
e robustezza delle modifiche multi-file;

o reale riduzione del carico operativo rispetto a un approccio interamente manuale.

4.2.1 Contributo di Lovable

La fase di generazione in Lovable ha mostrato un’elevata efficacia nella ricostruzione
dell’interfaccia utente. A partire dagli screenshot e dallo pseudo—markup, il modello ha

prodotto:

una struttura navigabile completa e coerente;
e pagine e componenti Ul vicini allo stile desiderato;

« un Gantt implementato in React (task non banale) via via piu accurato

attraverso le iterazioni;

« uno scheletro di progetto abbastanza robusto da poter essere riutilizzato.

Nonostante errori, approssimazioni e alcune allucinazioni, Lovable si ¢ dimostrato
molto efficace nella fase di rapid prototyping, riducendo drasticamente il tempo
necessario per ottenere una base visiva e funzionale da perfezionare nelle fasi successive.
In termini pratici, la qualita e 'ampiezza del risultato ottenuto in poche ore
corrispondono a quello che, con uno sviluppo tradizionale, avrebbe verosimilmente

richiesto almeno 2/3 di giorni di lavoro (/20 ore-uomo |[UNI16]).

7

4.2.2 Contributo di Windsurf

L’integrazione tramite Windsurf ha rappresentato il momento di consolidamento

dell’intero progetto. L’agente ¢ riuscito a:

applicare in larga parte gli standard architetturali del template Laif;

generare e allineare datamodel, schema e CRUD;

propagare modifiche multi—file in modo coerente;

integrare le componenti Lovable in un contesto monorepo FastAPI+Next.js.

Questa fase ha pero richiesto un contributo umano significativo: correzione di errori
logici, rifinitura dei tipi, aggiustamento dei componenti, chiarimento delle rules e, in
diversi casi, interventi di programmazione tradizionale. In altre parole, Windsurf si e
comportato da forte acceleratore per molte attivita ripetitive e di impianto, ma non
e risultato affidabile in autonomia sull’intero flusso.

Questo quadro e coerente con quanto riportato in letteratura: gli LLM eccellono nel
riconoscere pattern locali e nel generare blocchi di codice plausibili, ma incontrano
difficolta nel mantenere una coerenza architetturale globale quando le modifiche
coinvolgono molti file e dipendenze [Bor23|[HL25|. Studi su modelli specializzati nel
codice (come Codex e derivati [Che+21]) mostrano limiti analoghi nel rispetto di
vincoli impliciti e nella gestione di progetti reali con logiche complesse [YTO22].

Un ulteriore elemento emerso in questo studio € la forte dipendenza dalla qualita del
prompt e delle rules: se un vincolo non € espresso in modo chiaro, il modello tende a
“colmare i vuoti” con soluzioni plausibili ma non sempre corrette. Questo
comportamento, spesso descritto come completamento superficiale di pattern, ¢
una delle ragioni per cui la supervisione umana resta necessaria [Zho-+24].

Nel complesso, i risultati confermano il paradigma human-in-the-loop: I'agente e pit
efficace quando lo sviluppatore mantiene il ruolo di supervisore critico e orchestratore
del processo, sfruttando I’Al per accelerare boilerplate, CRUD, componenti Ul e
refactoring locali, ma riservando le decisioni architetturali e le verifiche di coerenza

globale al giudizio umano

78

4.2.3 Qualita complessiva del risultato

L’integrazione tra Lovable e Windsurf ha prodotto un sistema in larga parte coerente
con il template aziendale, ma non privo di imperfezioni. Pur avendo generato una base

applicativa solida e riutilizzabile, alcune componenti hanno richiesto:

 riorganizzazione di file e cartelle;

correzione di dipendenze non gestite correttamente;

riallineamento tra datamodel e schema;

riscrittura parziale di logiche applicative.

In piu punti sono stati necessari piu cicli di revisione per raggiungere una qualita
considerata accettabile. Il risultato finale rappresenta quindi un punto di partenza
valido ma non rifinito: sufficiente per impostare le fasi successive di sviluppo, ma
non ancora pronto per un uso produttivo senza un ulteriore passaggio di

consolidamento umano.

4.3 Risultati del questionario

I risultati del questionario offrono una conferma, dal punto di vista soggettivo, del
quadro emerso dall’analisi qualitativa. In generale, le variazioni tra questionario iniziale
e finale sono moderate per Lovable e piu marcate per Windsurf, in particolare su
facilitd d’uso e utilitd percepita. E importante sottolineare che questi miglioramenti
non derivano soltanto da una maggiore familiarita degli sviluppatori con gli strumenti,
ma soprattutto dal lavoro di configurazione mirata svolto sulla pipeline: definizione
di rules dedicate, integrazione MCP verso Notion e PostgreSQL, raffinamento
progressivo dei prompt e numerosi cicli di test iterativi.

La Tabella seguente riporta i punteggi medi (scala 1-5) per le principali dimensioni

considerate, distinti per strumento e per momento di compilazione (pre/post).

79

Lovable Windsurf

Dimensione Pre Post Pre Post
Facilita d’uso 3.6 40 3.0 4.2
Fiducia nello strumento 3.4 3.6 2.8 3.6
Controllo percepito 3.0 32 32 36
Utilita complessiva 3.8 4.2 3.0 4.2

Tabella 4.1: Punteggi medi del questionario per Lovable e Windsurf (5 partecipanti,
scala 1-5).

In sintesi:

« Lovable parte da una percezione gia positiva, soprattutto per facilita d’uso e
utilita complessiva, e mostra un miglioramento contenuto ma coerente su tutte le
voci. Questo ¢ in linea con il suo ruolo: uno strumento molto efficace per la
prototipazione rapida che beneficia solo in parte della personalizzazione,

poiché lavora comunque in un contesto meno vincolato agli standard aziendali.

e Windsurf parte da valori iniziali piu bassi, ma dopo la fase di configurazione
ad hoc (rules versionate, integrazione MCP, prompt strutturati, numerosi cicli di
prova e correzione) registra un aumento piu deciso, fino a raggiungere punteggi
comparabili o leggermente superiori a quelli di Lovable su alcune dimensioni, in
particolare su facilita d’uso percepita e utilita complessiva nel flusso reale di

sviluppo.

La Tabella seguente riassume le variazioni medie (A = post — pre) per ciascuna

dimensione.

80

Dimensione A Lovable A Windsurf

Facilita d'uso +0.4 +1.2
Fiducia nello strumento +0.2 +0.8
Controllo percepito +0.2 +0.4
Utilita complessiva +0.4 +1.2

Tabella 4.2: Variazione media dei punteggi tra questionario iniziale e finale.

Queste variazioni vanno lette in chiave configurativa piu che “formativa”: non si
tratta solo di sviluppatori che imparano gradualmente a usare un nuovo IDE, ma di
uno strumento che diventa via via piu utile perché viene modellato sul contesto

aziendale. Nel caso di Windsurf, I'aumento dei punteggi ¢ strettamente legato a:

la presenza di rules specifiche per il template Laif e per lo stack tecnologico

adottato;
o l’accesso strutturato a schema e metadati via MCP verso PostgreSQL;

 la possibilita di interrogare la documentazione reale tramite MCP Notion e

accesso diretto al design system proprietario;

« il raffinamento iterativo di prompt e flussi di lavoro sulla base di numerosi test

pratici.

Per alcuni partecipanti almeno una dimensione ¢ rimasta pressoché invariata tra pre e
post, mentre nelle altre si & osservato un miglioramento pitt 0 meno marcato. Anche
questo e coerente con il ridimensionamento delle aspettative iniziali: 'idea di un agente
“magico” lascia spazio a una visione piu realistica, in cui il valore non e dato dallo
strumento in sé, ma dall’integrazione stretta tra pipeline configurata ad hoc e
supervisione umana.

Nel complesso, il questionario restituisce una valutazione cautamente positiva:
Lovable e Windsurf sono percepiti come strumenti che migliorano il flusso di lavoro e

riducono il carico operativo, ma non eliminano i problemi di complessita architetturale,

81

standardizzazione e qualita del codice. Il loro contributo emerge soprattutto quando
fanno parte di una pipeline definita e mantenuta su misura per 'azienda e per
I’architettura che impiega e inserita in un modello human-in-the-loop in cui lo
sviluppatore mantiene il controllo sulle decisioni chiave. Nel capitolo conclusivo queste
evidenze verranno rilette in chiave piu ampia, discutendo il ruolo strategico di una
pipeline Lovable — Windsurf configurata per il contesto Laif nei processi di sviluppo
aziendali.

Per completezza, di seguito vengono riportate le tabelle complessiva delle valutazioni

per Lovable e Windsurf.

Lovable (pre) Lovable (post)

Partecipante FdU Fid Ctrl Ut FdU Fid Ctrl Ut

G.F. 4 3 3 4 4 4 3 5
M.P. 4 3 3 4 4 4 3 4
C.V. 4 4 3 4 4 4 4 4
C.P. 3 4 3 4 4 3 3 4
S.B. 3 3 3 3 4 3 3 4
Media 36 34 3.0 38 40 3.6 3.2 4.2

Tabella 4.3: Valutazioni individuali per Lovable .

Windsurf (pre) Windsurf (post)

Partecipante FdU Fid Ctrl Ut FdU Fid Ctrl Ut

G.F. 3 3 3 3 4 4 3 4
M.P. 3 3 3 3 4 4 4 5
C.V. 3 3 4 3 5 4 4 5
C.p. 4 3 3 4) 3 4 4
S.B. 2 2 3 2 3 3 3 3
Media 3.0 28 32 30 42 36 36 4.2

Tabella 4.4: Valutazioni individuali per Windsurf.

82

Conclusioni

In questo lavoro non si € inteso valutare la bonta di uno strumento di generazione in sé,
quanto piuttosto verificare I’efficacia complessiva di una pipeline agentica
configurata sul contesto aziendale Laif nel soddisfare il claim introdotto nel Capitolo 1.
In quell’occasione era stato formulato il presupposto teorico secondo cui un agente
integrato nell'IDE, guidato da rules versionate, alimentato dal template aziendale e
supportato da fonti vive tramite MCP, potesse ridurre tempi e costi delle prime fasi di
sviluppo, migliorando al contempo la coerenza del codice e mitigando fenomeni di
documentation drift. L’intero percorso di ricerca - dall’analisi preliminare alla
sperimentazione su progetto reale - & stato strutturato per verificare se tali ipotesi

trovassero riscontro pratico.

I risultati ottenuti mostrano che tutte le ipotesi del claim risultano soddisfatte.
Nel Capitolo 1 e stato affrontato il problema di un onboarding tradizionalmente lento e
costoso, in cui la comprensione dell’architettura e delle convenzioni interne rappresenta
un ostacolo significativo per i nuovi sviluppatori. La pipeline proposta interviene
direttamente su questo limite, mettendo I'agente in condizione di generare fin da subito

codice aderente agli standard del team e riducendo cosi il carico cognitivo iniziale.

Nel Capitolo 2 ¢ stata approfondita la struttura tecnica dell’approccio, evidenziando la
sinergia fra Lovable, Windsurf, MCP e il sistema di rules. La sperimentazione ha
confermato che tale combinazione permette all’agente di operare in modo coerente con
lo stack Laif, producendo file e interfacce che rispettano pattern ricorrenti, strutture

dati aziendali e linee guida architetturali. Ne emerge che l'efficacia della pipeline non

83

dipende tanto dall’autonomia generativa dello strumento, quanto dalla qualita del

contesto, delle istruzioni e dei vincoli che lo guidano.

Il Capitolo 3 ha mostrato come questo impianto teorico prenda forma nella pratica,
mettendo in luce il ruolo del ciclo plan—act-review e la capacita dell’agente di operare
su progetti multi-file, interpretare modifiche trasversali e riportare codice eterogeneo a
un impianto coerente. La validazione descritta nel Capitolo 4, condotta mediante il
porting di un’applicazione reale, ha confermato in modo netto I'impatto della pipeline:
la riduzione dell’effort umano nelle fasi ripetitive, ’accelerazione nella generazione del
primo impianto applicativo e il miglioramento della consistenza interna del codice

prodotto costituiscono evidenze robuste a supporto del claim.

Nel complesso, la pipeline Lovable — Windsurf, orientata da rules e integrata con MCP,
risolve in modo efficace le problematiche delineate nei capitoli introduttivi e
rappresenta una soluzione praticabile per ridurre tempi, costi e complessita nelle prime
fasi di sviluppo software. L’approccio non sostituisce lo sviluppatore, ma ne amplifica

I'efficacia, trasformando I’agente in uno strumento operativo che aumenta la qualita del

lavoro e accelera i processi senza compromettere il controllo progettuale.

A conferma della sua efficacia, la modalita introdotta durante questa ricerca si
rivelata talmente comoda, funzionale e produttiva da essere adottata stabilmente nel
flusso di lavoro aziendale, diventando parte integrante della pipeline di sviluppo.
Questa transizione dallo stadio sperimentale all’uso quotidiano costituisce, in ultima

analisi, la validazione piu evidente della sua utilita.

84

Al come fattore competitivo

Nel panorama industriale contemporaneo, I’adozione di strumenti di generazione
automatica non puo piu essere considerata opzionale. Le aziende che
riusciranno a integrare efficacemente gli agenti nei processi di sviluppo godranno di un
vantaggio competitivo significativo, mentre ignorare tali tecnologie comportera un
ritardo crescente rispetto ai concorrenti. Pur non sostituendo lo sviluppatore, I’Al
attuale agisce come un moltiplicatore di produttivita: non utilizzarla equivarrebbe,

nei prossimi anni, a rinunciare a una leva strategica fondamentale.

Valore della pipeline Lovable — Windsurf

Il contributo piu evidente emerso dallo studio ¢ la capacita della pipeline, quando
configurata sulle regole e sull’architettura Laif, di anticipare rapidamente la fase
di prototipazione. Lovable consente di ottenere, in poche ore, un’interfaccia navigabile,
credibile e ricca di componenti complessi, mentre Windsurf permette di integrare tale
struttura nell’architettura aziendale, riducendo drasticamente la produzione manuale di
boilerplate, CRUD e logiche ripetitive.

Questo produce un valore immediato in due direzioni:

o prototipazione rapida per clienti e stakeholder, utile per validare

funzionalita e ottenere feedback immediati;

e riduzione del cost-to-build nelle prime fasi di sviluppo, dove

tradizionalmente si concentra il costo umano maggiore [YT022].

La pipeline cosi configurata consente di ridurre in modo significativo il lavoro
necessario alla definizione del “primo impianto” dell’applicazione, pur richiedendo
rifinitura umana nelle fasi successive, in attinenza con il paradigma human-in-the-loop
[Wu+22].

85

L’impatto ambientale: un costo sistemico

Accanto ai benefici operativi, non puo essere ignorato I'impatto ambientale legato
all’adozione massiva di LLM. Gli studi piu recenti mostrano come la fase di
addestramento rappresenti solo una parte del problema: anche 1'uso quotidiano di
modelli di grandi dimensioni comporta consumi energetici rilevanti [SGM19].
L’aumento della domanda di generazione - se esteso all’intero settore industriale -
potrebbe portare a un incremento significativo delle emissioni, aggravando un trend gia
noto per i data center [Jonl§].

Inoltre, I’evoluzione verso modelli sempre piu grandi rischia di aumentare
drasticamente i costi ambientali per ogni token generato [Sch+20], a meno di progressi
sostanziali in efficienza hardware e modellistica.

Si tratta di un costo sistemico che I'industria non puo ignorare. La letteratura recente
sottolinea infatti come la sostenibilita dell’AI dipenda non solo dall’efficienza del
training, ma anche dall’ottimizzazione dei modelli in fase di inferenza [Sch+-20).

In futuro sara quindi cruciale introdurre:
« pratiche di prompting piu efficienti e consapevoli del costo energetico [Hen+20];

e modelli smaller-but-smarter, ottenuti tramite distillazione o ottimizzazioni

architetturali per contesti specifici [Pat+21];

o strategie di caching, distillazione e pruning, gia riconosciute come strumenti

chiave per ridurre drasticamente il costo di esecuzione |[Jou+21];

o metriche ambientali integrate nei processi decisionali aziendali e nella

documentazione tecnica dei modelli [SGM19).

Sviluppi futuri

Il lavoro svolto apre a numerose direzioni di miglioramento, molti dei quali legati alla
necessita di rendere la pipeline pitt matura, ripetibile e collettivamente adottabile

all’interno del team.

86

Estensione del processo al team

Un primo sviluppo riguarda 1’adozione sistematica della pipeline da parte dell’intero
gruppo di sviluppo. Cio richiede linee guida condivise per prompting, naming e
gestione del contesto, cosi da ridurre la variabilita individuale e garantire risultati piu
stabili. Parallelamente, anche tramite i feedback dei componenti del team, le rules
dovranno essere rese piu granulari e meno ambigue, in modo da fornire all’agente

vincoli piu chiari.

Potenziamento della knowledge base MCP e test automatici

Un’altra direzione fondamentale consiste nel rafforzamento della KB MCP,
arricchendola con documentazione strutturata, esempi, anti-pattern [Bro+98| e casi
d’uso reali. Una knowledge base pitt completa aumenta la capacita del modello di
rispettare convenzioni architetturali e riduce la necessita di correzioni manuali. In
questo contesto, strumenti per la valutazione automatica della qualita del codice

generato permetterebbero di identificare rapidamente errori e incoerenze.

Integrazione nei workflow aziendali

Infine, sara cruciale standardizzare i workflow di prototipazione e integrazione,
collegando la pipeline a processi CI/CD che possano orchestrare generazione,
validazione e deploy. In questa prospettiva, l’agente potra evolvere da strumento

sperimentale a componente stabile dell’infrastruttura di sviluppo aziendale.

Considerazioni finali

Il ruolo dell’AI nello sviluppo software non e quello di sostituire I'ingegnere, ma di
amplificarne le capacita: ridurre il carico operativo, aumentare la superficie creativa e
abbreviare la distanza tra idea, prototipo e implementazione. I risultati ottenuti
mostrano che una pipeline intelligente, configurata ad hoc sul contesto aziendale
e ben orchestrata, puo trasformare il modo in cui i team affrontano porting,

refactoring e design di nuove applicazioni.

87

La direzione ¢ ormai chiara: i sistemi agentici diventeranno parte integrante dei processi
di sviluppo, e la loro adozione non dipendera piu dalla disponibilita tecnologica, ma
dalla capacita delle aziende di integrarli in modo consapevole e sostenibile.

La sfida che si prospetta non riguarda piu 'opportunita del loro utilizzo, ma la capacita

di indirizzarne I'impiego in modo rigoroso, controllato e sostenibile.

88

Bibliografia

[Adz11] G. Adzic. Specification by Example: How Successful Teams Deliver the
Right Software. Manning, 2011. 1SBN: 9781638351368. URL:
https://books.google.it/books?id=fDszEAAAQBAJL

[Bai+22] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell,
Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie,
Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli,
Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller,
Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite,
Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer,
Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson,
Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk,
Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly,
Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds,
Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown
e Jared Kaplan. «Constitutional AI: Harmlessness from AI Feedbacky. In:
(2022). DOI: 2212.08073v1. URL: https://arxiv.org/abs/2212.08073v1.

[BG23| Stephan Bohm e Stefan Graser. « Al-based Mobile App Prototyping Status
Quo, Perspectives and Preliminary Insights from Experimental Case
Studies». In: nov. 2023.

[Bor23| Ali Borji. «A Categorical Archive of ChatGPT Failures». In: (feb. 2023).
DOI: 10.21203/rs.3.rs-2895792/v1.

90

https://books.google.it/books?id=fDszEAAAQBAJ
https://doi.org/2212.08073v1
https://arxiv.org/abs/2212.08073v1
https://doi.org/10.21203/rs.3.rs-2895792/v1

[Bro+98]

[Bro96]

[Cam+17]

[Che+21]

[Chr+-17]

[Gao+23]

[Hen-+20]

William H. Brown, Raphael C. Malveau, Hays W. "Skip" McCormick e

Thomas J. Mowbray. AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis. 1st. USA: John Wiley & Sons, Inc., 1998. 1SBN:

0471197130.

John Brooke. «SUS: A “Quick and Dirty” Usability Scale». In: Usability
Fuvaluation in Industry. A cura di Patrick W. Jordan, Bruce Thomas,
Ian L. McClelland e Bernard A. Weerdmeester. Taylor & Francis, 1996.

Bradley Camburn, Vimal Viswanathan, Julie Linsey, David Anderson,
Daniel Jensen, Kevin Otto e Kristin Wood. «Design prototyping methods:
State of the art in strategies, techniques, and guidelinesy». In: Design
Science 3 (ago. 2017). DOI: 10.1017/dsj.2017.10.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde,
Jared Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph,

Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov,
Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray e
Wojciech Zaremba. «Evaluating Large Language Models Trained on
Code». In: (lug. 2021). DOI: 10.48550/arXiv.2107.03374.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg e
Dario Amodei. «Deep reinforcement learning from human preferencesy. In:
Proceedings of the 31st International Conference on Neural Information
Processing Systems. NIPS’17. Long Beach, California, USA: Curran
Associates Inc., 2017, pp. 4302—4310. 1SBN: 9781510860964.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi,
Yi Dai, Jiawei Sun, Qianyu Guo, Meng Wang e Haofen Wang.
«Retrieval-Augmented Generation for Large Language Models: A Survey».
In: ArXiv abs/2312.10997 (2023). URL:
https://api.semanticscholar.org/CorpusID:266359151.

Peter Henderson, Jie Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky e

Joelle Pineau. «Towards the Systematic Reporting of the Energy and

91

https://doi.org/10.1017/dsj.2017.10
https://doi.org/10.48550/arXiv.2107.03374
https://api.semanticscholar.org/CorpusID:266359151

[HL25]

[Hou+25]

[Ji+23]

[Jin+25]

[Jon18]

[Jou+21]

[Kas22]

Carbon Footprints of Machine Learning». In: ArXiv abs/2002.05651
(2020). URL: https://api.semanticscholar.org/CorpusID:211096620.

Nam Huynh e Beiyu Lin. «Large Language Models for Code Generation: A
Comprehensive Survey of Challenges, Techniques, Evaluation, and
Applications». In: ArXiv abs/2503.01245 (2025). URL:
https://api.semanticscholar.org/CorpusID:276742040.

Xinyi Hou, Yanjie Zhao, Shenao Wang e Haoyu Wang. «Model Context
Protocol (MCP): Landscape, Security Threats, and Future Research
Directions». In: ArXiv abs/2503.23278 (2025). URL:
https://api.semanticscholar.org/CorpusID:277452486.

Zihao Ji, Nayeon Lee, Michael A. Hedderich, Danqi Chen e Percy Liang.
«Survey of Hallucination in Natural Language Generation». In: ACM
Computing Surveys 55 (2023). DOI: 10.1145/3571730.

Bowen Jin, Jinsung Yoon, Jiawei Han e Sercan O Arik. «Long-Context
LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG». In:
The Thirteenth International Conference on Learning Representations.

2025. URL: https://openreview.net/forum?id=oU3tpaR8fm.

Nicola Jones. «How to Stop Data Centres from Gobbling Up Electricity».
In: Nature 561.7722 (2018).

Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B. Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma,
Xiaoyu Ma, Thomas Norrie, Nishant Patil, Sushma Prasad, Cliff Young,
Zongwei Zhou e David Patterson. «Ten Lessons From Three Generations
Shaped Google’s TPUv4i : Industrial Product». In: 2021 ACM/IEEE /8th
Annual International Symposium on Computer Architecture (ISCA). 2021,
pp. 1-14. por: 10.1109/ISCA52012.2021.00010.

Atoosa Kasirzadeh. «Taxonomy of Risks posed by Language Modelsy. In:
ACM: ACM, 2022, pp. 214-229. URL:
https://philsci-archive.pitt.edu/21523/.

92

https://api.semanticscholar.org/CorpusID:211096620
https://api.semanticscholar.org/CorpusID:276742040
https://api.semanticscholar.org/CorpusID:277452486
https://doi.org/10.1145/3571730
https://openreview.net/forum?id=oU3tpaR8fm
https://doi.org/10.1109/ISCA52012.2021.00010
https://philsci-archive.pitt.edu/21523/

[Lew+20] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni,
Vladimir Karpukhin, Naman Goyal, Heinrich Kiittler, Mike Lewis,
Wen-tau Yih, Tim Rocktéschel, Sebastian Riedel e Douwe Kiela.
«Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks».
In: Advances in Neural Information Processing Systems. A cura di
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan e H. Lin. Vol. 33.
Curran Associates, Inc., 2020, pp. 9459-9474. URL:
https://proceedings.neurips.cc/paper_files/paper/2020/file/
6b493230205£780e1bc26945df7481e5-Paper . pdf|

[Liu+24] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape,
Michele Bevilacqua, Fabio Petroni e Percy Liang. «Lost in the Middle:
How Language Models Use Long Contexts». In: Transactions of the
Association for Computational Linguistics 12 (feb. 2024), pp. 157-173.
ISSN: 2307-387X. DOI: 10.1162/tacl _a 00638. eprint:
https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl_a_00638/2336043/tacl_a_00638.pdf. URL:
https://doi.org/10.1162/tacl_a_00638.

[MGKO08] Gloria Mark, Daniela Gudith e Ulrich Klocke. «The cost of interrupted
work: more speed and stressy. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI "08. Florence, Italy:
Association for Computing Machinery, 2008, pp. 107-110. 1SBN:
9781605580111. DOI1: 110.1145/1357054.1357072. URL:
https://doi.org/10.1145/1357054.1357072.

[MK24] Ieva Margevica-Grinberga e Aija Kaleja. «Job Shadowing as a Method in
Further Education». In: Society. Integration. Education. Proceedings of the
International Scientific Conference. Vol. 2. 2024. DOI:
10.17770/s1e2024v012.7916.

[Moh+25] Abdelrahman Mohamed, Mariam Jan, Rahma Badran, Sama Mohamed,
Yousra Amr e Nada Shorim. « A Review on Detecting and Managing

Documentation Drift in Software Developmenty. In: 2025 International

93

https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.1162/tacl_a_00638
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00638/2336043/tacl_a_00638.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00638/2336043/tacl_a_00638.pdf
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1145/1357054.1357072
https://doi.org/10.1145/1357054.1357072
https://doi.org/10.17770/sie2024vol2.7916

[Pat+21]

[Per+-22]

[Sch+20]

[Sch+23]

[SGM19]

[She+23]

Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). 2025,
pp. 546-552. DOI: |10.1109/MIUCC66482.2025.11196773.

David A. Patterson, Joseph Gonzalez, Quoc V. Le, Chen Liang,
Lluis-Miquel Munguia, Daniel Rothchild, David R. So, Maud Texier e
Jeff Dean. «Carbon Emissions and Large Neural Network Training». In:
ArXiv abs/2104.10350 (2021). URL:
https://api.semanticscholar.org/CorpusID:233324338.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring,

John Aslanides, Amelia Glaese, Nat McAleese e Geoffrey Irving. «Red
Teaming Language Models with Language Models». In: Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing. A
cura di Yoav Goldberg, Zornitsa Kozareva e Yue Zhang. Abu Dhabi,
United Arab Emirates: Association for Computational Linguistics, dic.
2022, pp. 3419-3448. DOI: |10.18653/v1/2022.emnlp-main.225. URL:
https://aclanthology.org/2022.emnlp-main.225/.

Roy Schwartz, Jesse Dodge, Noah A. Smith e Oren Etzioni. « Green Alx.
In: Commun. ACM 63.12 (nov. 2020), pp. 54-63. 1SSN: 0001-0782. DOT:
10.1145/3381831. URL: https://doi.org/10.1145/3381831.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu,

Maria Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda e
Thomas Scialom. «Toolformer: language models can teach themselves to
use tools». In: Proceedings of the 37th International Conference on Neural
Information Processing Systems. NIPS ’23. New Orleans, LA, USA: Curran
Associates Inc., 2023.

Emma Strubell, Ananya Ganesh e Andrew Mccallum. «Energy and Policy
Considerations for Deep Learning in NLP». In: gen. 2019, pp. 3645-3650.
DOI: 10.18653/v1/P19-1355.

Toby Shevlane, Sebastian Farquhar, Ben Garfinkel, Mary Phuong,
Jess Whittlestone, Jade Leung, Daniel Kokotajlo, Nahema Marchal,
Markus Anderljung, Noam Kolt, Lewis Ho, Divya Siddarth, Shahar Avin,

94

https://doi.org/10.1109/MIUCC66482.2025.11196773
https://api.semanticscholar.org/CorpusID:233324338
https://doi.org/10.18653/v1/2022.emnlp-main.225
https://aclanthology.org/2022.emnlp-main.225/
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831
https://doi.org/10.18653/v1/P19-1355

[UNT16]

[Wan+23]

[Wei+22]

[WJ95]

[Wu+22]

[Yan+25]

Will Hawkins, Been Kim, Iason Gabriel, Vijay Bolina, Jack Clark,
Yoshua Bengio e Allan Dafoe. «Model evaluation for extreme risks». In:
(mag. 2023). DOI: |10.48550/arXiv.2305.15324.

UNI - Ente Italiano di Normazione. UNI 11648:2016 Attivita professionali
non regolamentate — Project manager — Definizione dei requisiti di

conoscenza, abilita e competenza. Norma tecnica italiana. Milano: Ente
Italiano di Normazione (UNI), 2016.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhigiang Hu, Yunshi Lan,

Roy Ka-Wei Lee e Ee-Peng Lim. «Plan-and-Solve Prompting: Improving
Zero-Shot Chain-of-Thought Reasoning by Large Language Models». In:
(mag. 2023). DOI: 10.48550/arXiv.2305.04091.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter,
Fei Xia, Ed H. Chi, Quoc V. Le e Denny Zhou. «Chain-of-thought
prompting elicits reasoning in large language models». In: Proceedings of
the 36th International Conference on Neural Information Processing
Systems. NIPS ’22. New Orleans, LA, USA: Curran Associates Inc., 2022.
ISBN: 9781713871088.

Michael Wooldridge e Nicholas R. Jennings. «Intelligent agents: theory and
practice». In: The Knowledge Engineering Review 10.2 (1995),
pp- 115-152. DOI1: 10.1017/S0269838900008122.

Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma e
Liang He. «A survey of human-in-the-loop for machine learning». In:
Future Generation Computer Systems 135 (2022), pp. 364-381. 1SSN:
0167-739X. DOI: https://doi.org/10.1016/7.future.2022.05.014!
URL: https:
//www.sciencedirect.com/science/article/pii/S0167739X22001790.

Minglai Yang, Ethan Huang, Liang Zhang, Mihai Surdeanu,

William Yang Wang e Liangming Pan. «How Is LLM Reasoning Distracted
by Irrelevant Context? An Analysis Using a Controlled Benchmark». In:
Proceedings of the 2025 Conference on Empirical Methods in Natural

95

https://doi.org/10.48550/arXiv.2305.15324
https://doi.org/10.48550/arXiv.2305.04091
https://doi.org/10.1017/S0269888900008122
https://doi.org/https://doi.org/10.1016/j.future.2022.05.014
https://www.sciencedirect.com/science/article/pii/S0167739X22001790
https://www.sciencedirect.com/science/article/pii/S0167739X22001790

[Yao+23]

[YTO22]

[Zho+24]

Language Processing. A cura di Christos Christodoulopoulos,

Tanmoy Chakraborty, Carolyn Rose e Violet Peng. Suzhou, China:
Association for Computational Linguistics, nov. 2025, pp. 13340-13358.
ISBN: 979-8-89176-332-6. DOI: 10.18653/v1/2025.emnlp-main.674. URL:
https://aclanthology.org/2025.emnlp-main.674/.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran,

Karthik R Narasimhan e Yuan Cao. «ReAct: Synergizing Reasoning and
Acting in Language Modelsy. In: The FEleventh International Conference
on Learning Representations. 2023. URL:

https://openreview.net/forum?id=WE_v1uYUL-X.

Burak Yetistiren, Eray Tiiziin e Isik Ozsoy. «Assessing the Quality of
GitHub Copilot’s Code Generation». In: nov. 2022. DOTI:
10.1145/3558489.3559072.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li,
Yuming Lou, Luning Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan,
Guohao Dai, Xiao-Ping Zhang, Yuhan Dong e Yu Wang. «A Survey on
Efficient Inference for Large Language Modelsy». In: ArXiv abs/2404.14294
(2024). URL: https://api.semanticscholar.org/CorpusID:269293007.

96

https://doi.org/10.18653/v1/2025.emnlp-main.674
https://aclanthology.org/2025.emnlp-main.674/
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.1145/3558489.3559072
https://api.semanticscholar.org/CorpusID:269293007

Sitografia

[AI25]

[Bui25]

[Cli

[Cod]

[Cod25]
[Cou23|

[Dat25]

[Dev25]

[Dig24]

[Doc25]

Qodo Al. Windsurf vs Cursor: A Detailed Comparison.
https://qodo.ai/blog/windsurf-vs-cursor. 2025.

Builder.io. Windsurf vs Cursor: Which AI IDFE is Better?
https://www.builder.io/blog/windsurf-vs-cursor. 2025.

Cline. Cline: Open-Source AI Coding Agent. https://cline.bot/. Ultima
visita: 3 dicembre 2025.

Codeium. Windsurf — Official Website. https://codeium.com/windsurf.
Ultima visita: 3 dicembre 2025.

Roo Code. Roo Code Site. https://roocode.com/. 2025.

Coursera. Prototyping Tools.

https://www.coursera.org/articles/prototyping-tools. 2023.

DataCamp. Windsurf vs Cursor: Which AI IDE Should You Use?
https://www.datacamp.com/blog/windsurf-vs-cursor. 2025.

Netcorp Software Development. Will AI Replace Programmers? The Future
of Coding in the Age of Artificial Intelligence.
https://www.netcorpsoftwaredevelopment.com/article/will-ai-

replace-programmers| 2025.

McKinsey Digital. State of Al in Software Development 2024.
https://www.mckinsey.com/capabilities/quantumblack/our-

insights/the-state-of-ai-2024. 2024.

Cline Docs. Installing Cline & Getting Started.
https://docs.cline.bot/introduction/welcome. 2025.

97

https://qodo.ai/blog/windsurf-vs-cursor
https://www.builder.io/blog/windsurf-vs-cursor
https://cline.bot/
https://codeium.com/windsurf
https://roocode.com/
https://www.coursera.org/articles/prototyping-tools
https://www.datacamp.com/blog/windsurf-vs-cursor
https://www.netcorpsoftwaredevelopment.com/article/will-ai-replace-programmers
https://www.netcorpsoftwaredevelopment.com/article/will-ai-replace-programmers
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-2024
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-2024
https://docs.cline.bot/introduction/welcome

[Fos25]

[Gau23]

Git23]

[Gos22]

[Ins25al

[Ins25b]

[Lab25]

[LLM]

[Lov]

[Mar25a]

Ryan Foster. The Complete Guide to Al in Software Development:
Transforming Code Creation in 2025.
https://emmo.ai/blog/ai-in-software-development. 2025.

M. Gaudion. What is Documentation Drift and How to Avoid It.
https://gaudion.dev/blog/documentation-drift. 2023.

GitHub. Octoverse: The State of Open Source and the Rise of Al
https://github.blog/news-insights/research/the-state-of-open-

source—and-ai/. 2023.

Dan Goslen. How to Get Software Documentation Right. https:
//dangoslen.me/blog/how-to-get-software-documentation-right/.
2022.

Business Insider. Perplezity’s engineers use 2 Al coding tools, and they ve
cut development time from days to hours.
https://www.businessinsider.com/perplexity-engineers-ai-tools-

cut-development-time-days-hours-2025-77op=1. 2025.

Business Insider. These Are the Most Popular AI Coding Tools Among
Engineers. https://www.businessinsider.com/ai-coding-tools-
popular-github-gemini-code-assist-cursor-q-2025-77op=1. 2025.
Engine Labs. Cursor Al: An In-Depth Review.

https://blog.enginelabs.ai/cursor-ai-an-in-depth-review. 2025.

LLM-Stats. LLM Comparison Dashboard. https://1lm-stats.com.
Ultima visita: 3 dicembre 2025.

Lovable.dev. AI-Powered App Builder. https://lovable.dev. Ultima
visita: 3 dicembre 2025.

Visual Studio Marketplace. Cline — AI Coding Agent.
https://marketplace.visualstudio.com/items?itemName=

saoudrizwan.claude-dev. 2025.

98

https://emmo.ai/blog/ai-in-software-development
https://gaudion.dev/blog/documentation-drift
https://github.blog/news-insights/research/the-state-of-open-source-and-ai/
https://github.blog/news-insights/research/the-state-of-open-source-and-ai/
https://dangoslen.me/blog/how-to-get-software-documentation-right/
https://dangoslen.me/blog/how-to-get-software-documentation-right/
https://www.businessinsider.com/perplexity-engineers-ai-tools-cut-development-time-days-hours-2025-7?op=1
https://www.businessinsider.com/perplexity-engineers-ai-tools-cut-development-time-days-hours-2025-7?op=1
https://www.businessinsider.com/ai-coding-tools-popular-github-gemini-code-assist-cursor-q-2025-7?op=1
https://www.businessinsider.com/ai-coding-tools-popular-github-gemini-code-assist-cursor-q-2025-7?op=1
https://blog.enginelabs.ai/cursor-ai-an-in-depth-review
https://llm-stats.com
https://lovable.dev
https://marketplace.visualstudio.com/items?itemName=saoudrizwan.claude-dev
https://marketplace.visualstudio.com/items?itemName=saoudrizwan.claude-dev

[Mar25b]

[Mic]

[Mil22]

[Opeal

[Opeb]

[Phe24]

[Qub25]

[Ser24]

[shal

[Sha23|

[Sic24]

Visual Studio Marketplace. Roo Code - AI Agent. https://marketplace.

visualstudio.com/items?itemName=RooVeterinaryInc.roo-cline.
2025.

Microsoft. Visual Studio Code Extension API Documentation.
https://code.visualstudio.com/api. Ultima visita: 3 dicembre 2025.

Tara Milburn. Why Effective Onboarding Is Critical To Employee
Retention. https://www.forbes.com/councils/
forbesbusinesscouncil/2022/12/02/why-effective-onboarding-is-

critical-to-employee-retention/. 2022.

OpenAl. Function Calling and JSON Mode.
https://platform.openai.com/docs/guides/function-calling.
Ultima visita: 3 dicembre 2025.

OpenAl. Safety System Overview. https://openai.com/it-IT/safety/.
Ultima visita: 3 dicembre 2025.

Julia Phelan. Onboarding New Employees Without Overwhelming Them.
https://hbr.org/2024/04/onboarding-new-employees-without-
overwhelming-them. 2024.

Qubika. A Practical Review of Roo Code.
https://www.qubika.com/blog/roo-code-review. 2025.

Amazon Web Services. Security Considerations for Data in Generative Al
https://docs.aws.amazon.com/whitepapers/latest/security-data-

generative-ail 2024.

shaden. shaden/ui Documentation. https://ui.shadcn. com. Ultima

visita: 3 dicembre 2025.

Inbal Shani. Survey Reveals AI’s Impact on the Developer FExperience.
https://github.blog/news-insights/research/survey-reveals-ais-

impact-on-the-developer-experience/. 2023.

Anastassiya Sichkarenko. The State of Developer Ecosystem 2024.
https://www.jetbrains.com/lp/devecosystem-2024. 2024.

99

https://marketplace.visualstudio.com/items?itemName=RooVeterinaryInc.roo-cline
https://marketplace.visualstudio.com/items?itemName=RooVeterinaryInc.roo-cline
https://code.visualstudio.com/api
https://www.forbes.com/councils/forbesbusinesscouncil/2022/12/02/why-effective-onboarding-is-critical-to-employee-retention/
https://www.forbes.com/councils/forbesbusinesscouncil/2022/12/02/why-effective-onboarding-is-critical-to-employee-retention/
https://www.forbes.com/councils/forbesbusinesscouncil/2022/12/02/why-effective-onboarding-is-critical-to-employee-retention/
https://platform.openai.com/docs/guides/function-calling
https://openai.com/it-IT/safety/
https://hbr.org/2024/04/onboarding-new-employees-without-overwhelming-them
https://hbr.org/2024/04/onboarding-new-employees-without-overwhelming-them
https://www.qubika.com/blog/roo-code-review
https://docs.aws.amazon.com/whitepapers/latest/security-data-generative-ai
https://docs.aws.amazon.com/whitepapers/latest/security-data-generative-ai
https://ui.shadcn.com
https://github.blog/news-insights/research/survey-reveals-ais-impact-on-the-developer-experience/
https://github.blog/news-insights/research/survey-reveals-ais-impact-on-the-developer-experience/
https://www.jetbrains.com/lp/devecosystem-2024

[Ver25]

[Whi24]

The Verge. Can Cursor AI Automate Programming?
https://www.theverge.com/tech/cursor-ai. 2025.

Stacy Ledesma Whitenight. Why Prototyping is the Breakthrough Strategy
for Innovation. https://code.likeagirl.io/why-prototyping-is-the-
breakthrough-strategy-for-innovation-bbaaalb12b84. 2024.

Zapier. Windsurf vs Cursor.
https://zapier.com/blog/windsurf-vs-cursor. Ultima visita: 3
dicembre 2025.

100

https://www.theverge.com/tech/cursor-ai
https://code.likeagirl.io/why-prototyping-is-the-breakthrough-strategy-for-innovation-b5aaa1b12b84
https://code.likeagirl.io/why-prototyping-is-the-breakthrough-strategy-for-innovation-b5aaa1b12b84
https://zapier.com/blog/windsurf-vs-cursor

Ringraziamenti

Scrivi qui i tuoi ringraziamenti.

	Introduzione
	Panoramica della soluzione
	Claim e obiettivo della ricerca

	Contesto Scientifico e Tecnologico
	Approcci popolari
	Onboarding e Prototipazione
	Uso attuale delle AI nello sviluppo software
	Agenti AI via web e strumenti ``agentici''
	Limiti delle soluzioni popolari
	Context switching, hallucinations e documentation drift.

	Soluzione proposta

	Descrizione ad alto livello della soluzione
	Come funzionano gli agenti di generazione di codice
	Dalla valutazione comparativa alla scelta di Windsurf e Lovable
	Architettura ad alto livello: Windsurf, Lovable, MCP e rules

	Implementazione della soluzione
	Raccolta del contesto
	Pianificazione esplicita (plan/act)
	Tooling e protocolli
	Revisione e sicurezza
	Sintesi

	Impostazione dello studio
	Ricerca dell'IDE (o del plugin VSCode)
	Definizione delle regole e dei server MCP
	Definizione del benchmark
	Risultati emersi

	Test di validazione
	Descrizione dell’applicativo da migrare
	Descrizione funzionale
	Descrizione dell'interfaccia
	Descrizione tecnica e architettura

	Fase “Lovable” - Remix demo, prompt e specifiche eseguibili
	Prima iterazione
	Seconda iterazione
	Terza iterazione

	Integrazione e merge con Windsurf
	Processo di integrazione
	Prompt forniti a Windsurf

	Valutazione del sistema
	Metodologia di valutazione
	Efficacia e analisi qualitativa
	Contributo di Lovable
	Contributo di Windsurf
	Qualità complessiva del risultato

	Risultati del questionario

