
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE
Corso di Laurea in Informatica

Agenti generativi e pipeline
d’avanguardia:

Automazione del ciclo di
sviluppo software

Relatore:
Chiar.mo Prof.
Fabio VITALI

Correlatore Aziendale:
Chiar.mo
Marco PINELLI

Presentata da:
Gabriele FOGU

Anno Accademico 2024-2025

Indice

Introduzione 1
Panoramica della soluzione . 3
Claim e obiettivo della ricerca . 4

1 Contesto Scientifico e Tecnologico 6
1.1 Approcci popolari . 7

1.1.1 Onboarding e Prototipazione . 8
1.1.2 Uso attuale delle AI nello sviluppo software 8
1.1.3 Agenti AI via web e strumenti “agentici” 9
1.1.4 Limiti delle soluzioni popolari . 10
1.1.5 Context switching, hallucinations e documentation drift. 11

1.2 Soluzione proposta . 12

2 Descrizione ad alto livello della soluzione 13
2.1 Come funzionano gli agenti di generazione di codice 14
2.2 Dalla valutazione comparativa alla scelta di Windsurf e Lovable 16
2.3 Architettura ad alto livello: Windsurf, Lovable, MCP e rules 17

3 Implementazione della soluzione 20
3.1 Raccolta del contesto . 20
3.2 Pianificazione esplicita (plan/act) . 24
3.3 Tooling e protocolli . 26

3.3.1 Revisione e sicurezza . 27
3.3.2 Sintesi . 29

iii

3.4 Impostazione dello studio . 30
3.4.1 Ricerca dell’IDE (o del plugin VSCode) 30
3.4.2 Definizione delle regole e dei server MCP 34
3.4.3 Definizione del benchmark . 36
3.4.4 Risultati emersi . 37

3.5 Test di validazione . 38
3.6 Descrizione dell’applicativo da migrare 42

3.6.1 Descrizione funzionale . 42
3.6.2 Descrizione dell’interfaccia . 44
3.6.3 Descrizione tecnica e architettura 51

3.7 Fase “Lovable” - Remix demo, prompt e specifiche eseguibili 52
3.7.1 Prima iterazione . 53
3.7.2 Seconda iterazione . 62
3.7.3 Terza iterazione . 66

3.8 Integrazione e merge con Windsurf . 70
3.8.1 Processo di integrazione . 70
3.8.2 Prompt forniti a Windsurf . 71

4 Valutazione del sistema 75
4.1 Metodologia di valutazione . 76
4.2 Efficacia e analisi qualitativa . 77

4.2.1 Contributo di Lovable . 77
4.2.2 Contributo di Windsurf . 78
4.2.3 Qualità complessiva del risultato 79

4.3 Risultati del questionario . 79

Introduzione

Questa tesi affronta uno dei problemi più concreti e ricorrenti nello sviluppo software
moderno: la difficoltà di trasferire in modo rapido ed efficace conoscenze tecniche,
standard architetturali e convenzioni interne a nuovi sviluppatori, e la conseguente
lentezza nell’avvio di un progetto o nella costruzione di prototipi funzionali. In un
contesto aziendale basato su soluzioni full stack e su un template condiviso, come quello
adottato da Laif S.r.l., questa difficoltà si manifesta nella necessità di dedicare tempo
significativo all’allineamento iniziale e alla produzione di porzioni di codice ripetitive o
standardizzate.

L’uso del template svolge un ruolo chiave nel ridurre il lavoro di implementazione del
cosiddetto boilerplate, ossia quelle componenti strutturali che ricorrono in tutti i
progetti e che definiscono l’architettura di base del software: dalla configurazione del
back-end e delle sue rotte CRUD, all’organizzazione delle directory, alla gestione della
navigazione e dei flussi applicativi. Accanto al template, il design system aziendale
laif-ds fornisce un insieme coerente di componenti front-end, stili e pattern
d’interazione, permettendo di mantenere uniformità visiva e comportamentale tra
progetti differenti e riducendo ulteriormente il carico di implementazione ripetitiva.

Sebbene questa soluzione riduca l’overhead tecnico, rimane aperto il problema
dell’onboarding: comprendere come orientarsi rapidamente all’interno della codebase,
come rispettare gli standard, come costruire nuove feature aderendo allo stile
architetturale e visuale dell’azienda.

1

Questa tesi sostiene che tale problema può essere affrontato in modo efficace tramite
l’integrazione di un agente di Intelligenza Artificiale direttamente nell’IDE,
alimentato da una knowledge base interna strutturata secondo il template aziendale,
le rules versionate e la documentazione viva esposta tramite MCP. L’ipotesi centrale è
che, fornendo a un LLM un contesto ricco, organizzato e vincolato, l’agente sia in grado
di generare codice di qualità più che accettabile e coerente, riducendo in modo
significativo sia il time-to-productivity dei nuovi sviluppatori sia i tempi necessari alla
produzione di mockup o proof of concept per attività presales.

Nel corso della ricerca è emerso come questa pipeline agentica consenta allo
sviluppatore - anche partendo da zero - di costruire in maniera assistita applicazioni
complete, passando rapidamente da richieste semplici alla generazione multi–file di
componenti coerenti con lo stack aziendale. L’efficacia osservata non risiede nella
sostituzione del lavoro umano, bensì nel supporto continuo fornito dall’agente
attraverso un ciclo plan/act/review e nell’uso integrato di:

a) regole aziendali versionate e strutturate in Markdown,

b) accesso a specifiche e documentazione tramite MCP,

c) conoscenza del design system (laif-ds) e del template full-stack.

Questa integrazione, essendo interna al flusso di sviluppo e basata sulla codebase reale,
permette di superare i limiti degli assistenti generici: scarsa consapevolezza degli
standard, context switching tra ambienti esterni, perdita di coerenza e rischio di
documentation drift. La pipeline analizzata dimostra invece di poter produrre codice
coerente, ripetibile e allineato agli standard aziendali.
Un risultato particolarmente significativo è che la modalità sperimentata in questa
ricerca si è rivelata talmente efficace, comoda e produttiva da essere adottata
stabilmente nel processo di sviluppo aziendale, diventando parte integrante della
pipeline interna.

2

Panoramica della soluzione

Per comprendere la natura e la portata dell’approccio proposto, è utile esaminare la
pipeline agentica da una prospettiva “ad alta quota”, osservando come i suoi
componenti cooperino nel trasformare un LLM generico in uno strumento operativo
profondamente contestualizzato.
L’intero impianto ruota attorno a un agente integrato nell’IDE, capace di interagire con
la codebase e con le risorse informative aziendali. La sua efficacia dipende da tre
pilastri: contesto, vincoli e accesso alla conoscenza. Il contesto è garantito dal
template full-stack, che definisce la struttura portante dei progetti - dal modello dati
all’organizzazione dei componenti front-end - e funge da riferimento per ogni nuova
generazione. I vincoli sono incorporati nelle rules versionate, che descrivono
convenzioni, standard architetturali, pattern ricorrenti e pratiche di sviluppo da
rispettare. L’accesso alla conoscenza, infine, è reso possibile dal Model Context
Protocol (MCP), che collega l’agente alle fonti informative interne, come
documentazione tecnica, schemi e dati dei database o specifiche funzionali.
La pipeline opera attraverso un ciclo iterativo plan–act–review: pianificazione
dell’intervento sulla base del contesto, generazione o modifica del codice all’interno
dell’IDE, e revisione immediata per verificare la coerenza con gli standard. Questo
meccanismo permette all’agente di affrontare attività complesse, come refactoring
multi–file, implementazione di nuove feature e costruzione di prototipi funzionali,
mantenendo un allineamento continuo con la visione architetturale aziendale.

La ricerca prende forma a partire dal claim introdotto, sviluppandosi attraverso l’analisi
dei componenti che costituiscono la pipeline agentica e delle modalità con cui essi
cooperano all’interno dell’ambiente di sviluppo. Il percorso prosegue con la costruzione
di un caso applicativo concreto, in cui la pipeline viene impiegata per realizzare, a
partire da zero, il porting completo di un’applicazione reale. Questo scenario permette
di osservare l’agente nel suo ciclo operativo, di valutarne il contributo alla generazione
multi–file e di verificare la coerenza del codice prodotto rispetto agli standard aziendali.
La valutazione empirica conclusiva consente di misurare l’impatto della pipeline sui
principali aspetti considerati: la riduzione dei tempi di onboarding, la coerenza

3

stilistica e architetturale del codice generato, l’accelerazione nella produzione di
prototipi e la reale integrazione del metodo nel flusso di lavoro quotidiano. Ne emerge
un quadro unitario che collega il problema iniziale alla soluzione proposta e alla sua
efficacia operativa.

Claim e obiettivo della ricerca

In termini aziendali, l’adozione di standard condivisi (template back-end/front-end,
convenzioni di naming, design system, documentazione standardizzata e condivisa)
riduce i costi di manutenzione e facilita il passaggio di consegne, ma introduce una
barriera d’ingresso per i nuovi sviluppatori.
I processi tradizionali di onboarding (wiki, affiancamento, shadowing[MK24]) sono
efficaci ma costosi e faticano a rimanere aggiornati. Parallelamente, il reparto
commerciale necessita di prototipi rapidi e realistici/plausibili per validare casi
d’uso e presentare demo a potenziali clienti. Un agente AI che “vive” nell’IDE,
addestrato sulle regole interne e connesso a fonti vive (repositories, basi di dati,
documentazione) può diventare un tassello fondamentale nel processo, incrementando
la produttività, riducendo i tempi e le iterazioni, tutto ciò senza sacrificare qualità e
conformità alla struttura di sviluppo reale.

Tesi (claim).

Un agente AI integrato nell’IDE, alimentato da una knowledge base interna derivata da
template, regole e asset progettuali, strutturata in maniera rigida e puntuale, riduce i
tempi e i costi di onboarding e prototipazione, aumentando la coerenza del codice
rispetto agli standard aziendali.
In particolare, si sostiene che:

• L’agente accorcia il percorso che porta un neo-assunto junior a diventare un
developer in grado di produrre valore in maniera autonoma grazie a spiegazioni
contestuali, esempi guidati e generazione assistita aderente alle rules.

4

• La generazione di mockup (modello dati d’esempio, pagina con UI interagibile e
design coerente) è più rapida rispetto a pratiche manuali o ad agenti “generici”
non allineati al template e prevede anche il riutilizzo "fisico" del mockup
nell’eventuale successivo sviluppo dell’applicazione.

• La qualità (lint, test, aderenza a naming/struttura, uso del design system)
migliora quando le risposte dell’agente sono vincolate da regole e playbook
versionati;

• L’integrazione con fonti vive (MCP verso Notion e DB) mitiga il documentation
drift e anch’essa migliora la qualità del codice generato, riducendo
l’ambiguità dei requisiti.

Obiettivo generale.

Progettare, integrare e valutare un agente IDE-centrico - basato su regole e con
accesso controllato a documentazione e dati - capace di fornire:

a) Supporto all’onboarding: spiegazioni contestuali dei file, ricostruzione di
pattern ricorrenti, micro-task guidati su codebase reali;

b) Generazione assistita: creazione di unità funzionali end-to-end (modello dati,
migrazione, controller/service, pagina UI) che si integrino con il template e che
segua gli standard di sviluppo;

c) Prototipazione rapida: produzione di mockup coerenti con laif-ds per casi
d’uso presales, con dati fittizi e fake API ma che rispecchino in termini di UI/UX
quello che sarà il prodotto finito;

d) Enforcement degli standard: verifica automatica di naming, struttura del
codice, gerarchia dei file, impiego dei permessi, prassi di sicurezza, uso dei
componenti UI proprietari, aderenza alle convenzioni di programmazione e
coerenza del codice generato rispetto alle altre codebase proprietarie.

5

Capitolo 1

Contesto Scientifico e Tecnologico

La valutazione avviene in uno stack specifico (FastAPI/SQLAlchemy/Alembic;
Next.js/React; laif-ds su shadcn/ui [sha]; PostgreSQL) e in un contesto aziendale
con template e regole già consolidate. L’agente non sostituisce lo sviluppatore, ma
agisce come assistente strutturato capace di pianificare, proporre diff e invocare
strumenti secondo politiche controllate.
Si assume la disponibilità di rules file aggiornati, accesso MCP a Notion
(documentazione/specifiche) e a DB (schema/metadati), e l’uso di un IDE con capacità
agentiche (es. Windsurf/Cascade o estensioni VS Code compatibili), fermo restando che
la metodologia è portabile su strumenti equivalenti.

L’attività di sviluppo software in contesti aziendali caratterizzati da un’elevata
standardizzazione di processi e strumenti presenta una duplice sfida.
Da un lato, la definizione di best practices, l’adozione di template condivisi e l’impiego
di design system proprietari consentono di ridurre i costi di manutenzione e garantire
uniformità qualitativa; dall’altro, tali convenzioni generano inevitabilmente una
barriera all’ingresso per i nuovi sviluppatori, che devono acquisire rapidamente
competenze su tecnologie, metodologie e prassi operative spesso articolate.

6

Il problema principale può essere quindi formalizzato come segue:

Come ridurre i tempi e i costi legati all’inserimento e alla formazione di
nuovi sviluppatori in un ambiente di sviluppo standardizzato, garantendo al
contempo il rispetto delle convenzioni aziendali e la produttività del team?

A questa criticità si affianca un’ulteriore esigenza: supportare un reparto vendite di
dimensioni estremamente ridotte (una sola persona) nella preparazione di prototipi e
dimostrazioni da presentare ai potenziali clienti.
La possibilità di generare rapidamente applicazioni mockup, anche non pienamente
funzionali ma sufficienti a illustrare le potenzialità del prodotto, rappresenterebbe
infatti un vantaggio competitivo rilevante.

La questione si complica ulteriormente per aziende di piccole dimensioni o di recente
costituzione come la nostra, nelle quali le risorse destinate alla formazione interna
risultano limitate, e la necessità di mantenere elevata la produttività rende oneroso
sottrarre forza lavoro alle attività di sviluppo. In tale contesto, ridurre il tempo di
rampa dei nuovi sviluppatori e garantire l’aderenza agli standard diventa essenziale per
la sostenibilità dei progetti.

1.1 Approcci popolari

Negli ultimi anni si è consolidato un insieme di pattern ricorrenti nell’impiego di
strumenti digitali a supporto dello sviluppo software, sia in ambito accademico che
industriale. Da un lato, troviamo pratiche ormai classiche come l’onboarding
strutturato dei nuovi sviluppatori e la prototipazione rapida di funzionalità o interi
prodotti; dall’altro, si è affermata una nuova generazione di strumenti basati su modelli
di linguaggio di grandi dimensioni (LLM), integrati sotto forma di assistenti di codice,
chatbot e agenti “semi–autonomi”.
In particolare, la letteratura e i report industriali descrivono un uso sempre più diffuso
di strumenti AI nel ciclo di sviluppo, ma spesso con un grado di integrazione limitato
rispetto a processi, standard e architetture specifiche dell’organizzazione [Git23] [Sic24].
In questa sezione vengono quindi discussi, da un lato, gli approcci tradizionali a

7

onboarding e prototipazione e, dall’altro, le modalità con cui le aziende stanno
iniziando a sfruttare assistenti e agenti AI, evidenziandone punti di forza e limiti
rispetto al contesto oggetto di questa tesi.

1.1.1 Onboarding e Prototipazione

La letteratura recente mostra come un onboarding strutturato migliori sensibilmente la
produttività dei nuovi assunti, incrementi l’engagement e riduca il turnover [Phe24].
Altri lavori riportano incrementi significativi del tempo-alla-produttività per
organizzazioni con processi strutturati [Mil22].
Anche la prototipazione è considerata una leva strategica per stimolare agilità e
innovazione [Cam+17][Whi24], specialmente in ambito digitale: consente di visualizzare
rapidamente un’idea, verificarne la fattibilità e raccogliere feedback prima di
investimenti onerosi [Cou23]. L’integrazione di tecniche AI automatizza via via parti
del processo, con effetti sui tempi e sulla qualità [BG23]. L’onboarding tradizionale
combina wiki interne, affiancamento e formazione, che risulta essere una soluzione
efficace ma costosa. Una linea consolidata è l’uso di retrieval-augmented generation
(RAG) [Gao+23][Lew+20], per ancorare la generazione alla documentazione interna
(anche tramite MCP [Hou+25]).

1.1.2 Uso attuale delle AI nello sviluppo software

Negli ultimi due anni, l’adozione di strumenti di AI generativa da parte degli
sviluppatori è passata da fenomeno emergente a componente quasi ubiqua del flusso di
lavoro quotidiano. Una survey sponsorizzata da GitHub nel 2023, riportata nel report
Octoverse, indica che il 92% degli sviluppatori utilizza già strumenti di AI coding nel
lavoro o nel tempo libero [Git23]. Anche analisi successive confermano che l’uso di
assistenti di codice e chatbot è ormai percepito come “nuova normalità” nello sviluppo
software [Sha23; Dev25].
Il report State of Developer Ecosystem 2024 di JetBrains, basato su oltre 23 000
sviluppatori, evidenzia come circa quattro aziende su cinque permettano o incoraggino
l’uso di strumenti AI di terze parti nei workflow di sviluppo, mentre una quota

8

crescente di sviluppatori integra funzionalità AI direttamente nei prodotti [Sic24]. In
parallelo, analisi di tipo gestionale attribuiscono all’introduzione sistematica di
strumenti AI incrementi significativi di produttività (nell’ordine del 30–35%) e
riduzioni del time-to-market [Dig24].
Nonostante ciò, il modo in cui questi strumenti vengono utilizzati è spesso puntuale e
non strutturato: nella maggior parte dei casi si tratta di:

• completamento del codice (code completion) e generazione di snippet isolati;

• scrittura o “bozza” di test unitari;

• refactoring locale su uno o pochi file;

• chiarimenti su errori di compilazione, API o librerie.

Sia evidenze industriali sia survey qualitative mostrano che gli LLM sono percepiti
come molto utili per compiti localizzati, ma raramente integrati in modo profondo con
architetture, standard e processi dell’organizzazione [Sic24][Fos25]. Questo è
esattamente il gap che la soluzione proposta in questa tesi cerca di colmare: passare da
un uso occasionale e ad hoc dell’AI a un agente configurato sul contesto aziendale.

1.1.3 Agenti AI via web e strumenti “agentici”

Accanto ai classici chatbot e agli assistenti integrati nell’IDE, si sono diffusi negli ultimi
anni strumenti “agentici” accessibili via web (ad esempio ambienti remoti che applicano
automaticamente diff, esplorano repository e propongono modifiche strutturate al
codice). Nella pratica industriale questi agenti vengono spesso utilizzati per:

• esplorare rapidamente una nuova codebase;

• generare prototipi o mockup front-end;

• preparare demo o proof-of-concept in tempi molto brevi.

Casi di studio riportano ad esempio riduzioni del tempo di prototipazione da alcuni
giorni a poche ore (o meno) quando team di sviluppo rendono obbligatorio l’uso di tool

9

come Cursor o GitHub Copilot per alcune attività esplorative [Ins25a]. Altre survey su
team di ingegneria indicano che oltre il 60–70% delle organizzazioni utilizza più di uno
strumento AI nel ciclo di sviluppo (IDE assistant, chatbot general-purpose, agenti web
dedicati) [Ins25b].
Questi approcci, tuttavia, presentano limitazioni strutturali rispetto a un’integrazione
profonda nel contesto aziendale:

a) Workspace parziale: l’agente opera spesso su un workspace remoto limitato a
sottoinsiemi del repository caricati di volta in volta;

b) Contesto effimero: il contesto (file aperti, conversazioni, istruzioni) tende a
perdersi tra una sessione e l’altra, rendendo difficile costruire una “memoria”
stabile del progetto;

c) Standard debolmente modellati: le convenzioni (architettura, naming,
policy) non sono tipicamente codificate come vincoli rigidi, ma affidate a prompt
generici o linee guida testuali.

Per attività di brainstorming, spike esplorativi o prototipazione rapida queste soluzioni
sono spesso sufficienti e portano benefici tangibili. Per un’adozione in progetti
strutturati, con forte standardizzazione interna, permangono però dubbi su coerenza,
sicurezza e mantenibilità del codice generato.

1.1.4 Limiti delle soluzioni popolari

Gli agenti AI “generici” risultano spesso efficaci su compiti isolati, ma presentano limiti
pratici quando si richiede aderenza a standard interni e integrazione profonda nel flusso
di sviluppo.
In particolare:

a) Non incorporano le convenzioni aziendali (naming, struttura di repository,
politiche di sicurezza), generando codice eterogeneo;

b) Aumentano il rischio di data leakage perché inducono a copiare nel prompt
porzioni sensibili di codice o specifiche;

10

c) Impongono context switching dall’IDE a strumenti esterni, con perdita di
continuità operativa;

d) Si appoggiano a wiki e note spesso soggette a documentation drift [Gau23], cioè
disallineamento progressivo tra documentazione e codice reale e le fonti di
informazioni impiegate sono spesso "oscure" all’utente, il che porta più facilmente
ad allucinazioni del modello.

Per mitigare tali criticità, risultano più efficaci approcci che: (a) vincolano la
generazione a regole versionate (file Markdown) e a playbook operativi; (b/c)
integrano l’agente direttamente nell’IDE [Mic], così da lavorare su codebase e
toolchain reali (lint, test, migrazioni) senza cambiare contesto; (d) sfruttano MCP per
l’accesso in sola lettura a fonti “vive” (Notion per documentazione/specifiche, database
per schemi e metadati), riducendo ambiguità e drift.

1.1.5 Context switching, hallucinations e documentation drift.

Studi sul lavoro frammentato mostrano che, in media, dopo un’interruzione servono
circa 23 minuti per ritornare pienamente concentrati sul compito originario [MGK08],
dato spesso citato anche in letteratura divulgativa sul tema della produttività. Nel caso
di sviluppatori che alternano continuamente IDE, browser e interfacce web per
interagire con l’AI, questo costo cognitivo si traduce in perdita di efficienza e maggiore
probabilità di errore.
Sul fronte della qualità delle risposte, survey sistematiche sulle hallucinations nei
modelli generativi [Ji+23] e linee guida industriali sulla sicurezza dei sistemi generativi
[Ser24] sottolineano come l’assenza di una base di conoscenza strutturata e di vincoli
espliciti aumenti il rischio di contenuti plausibili ma non corretti. In parallelo, lavori
recenti sul fenomeno del documentation drift evidenziano che, in assenza di meccanismi
automatizzati di allineamento, la documentazione tende rapidamente a divergere dal
codice reale, con impatti negativi su manutenzione e onboarding [Gos22] [Moh+25].
Questi elementi motivano l’adozione di approcci che riducono il copia/incolla manuale,
ancorano la generazione a fonti “vive” (repository, database, KB) e mantengono le
regole aziendali sotto controllo di versione.

11

1.2 Soluzione proposta

Obiettivo: progettare un agente AI integrato nell’IDE che sfrutti:

• documentazione interna (Notion via MCP);

• specifiche e task (Notion via MCP);

• rules di generazione (.md nel filesystem);

• accesso in lettura al database (PostgreSQL via MCP) per schema e metadati;

• conoscenza del design system laif-ds;

• repository completa del progetto (architettura, convenzioni, componenti).

Scopi: assistenza ai nuovi sviluppatori, enforcement degli standard, generazione rapida
di mockup a supporto del reparto vendite.
La progettazione e la valutazione di questa architettura agentica saranno descritte nei
capitoli successivi, a partire dalla comparazione fra IDE e strumenti assistivi adottati
nel contesto aziendale.

12

Capitolo 2

Descrizione ad alto livello della
soluzione

In questo capitolo descriviamo ad alto livello l’architettura della soluzione proposta,
partendo dal funzionamento generale degli agenti di generazione di codice, passando
per la valutazione comparativa degli strumenti più diffusi e arrivando alla motivazione
della scelta finale. L’obiettivo è mostrare come sia possibile passare da un uso
occasionale di LLM “general purpose” a un agente configurato sul contesto aziendale,
integrato nell’IDE e capace di rispettare regole, template e design system esistenti.
Anticipiamo fin da subito che, sebbene strumenti ormai molto diffusi come Cursor e
GitHub Copilot forniscano già risposte efficaci alle esigenze considerate in questa
ricerca, nel contesto specifico di Laif la combinazione fra Windsurf e Lovable si è
rivelata la soluzione complessivamente più adatta. Essa consente infatti di generare
soluzioni complete a partire da zero - sia quando l’obiettivo è produrre il mockup di
un’applicazione, sia quando si tratta di completare lo sviluppo di un progetto non
eccessivamente complesso - mantenendo al contempo un buon controllo sul codice
prodotto.
Il ruolo dello sviluppatore resta comunque centrale: è necessario definire e mantenere
aggiornate le regole aziendali, curare l’accesso alla documentazione tramite MCP,
strutturare prompt in pseudo-markup coerenti con i template esistenti e, soprattutto,
revisionare e rifinire il codice generato. L’agente non sostituisce quindi il

13

programmatore umano, ma ne estende la capacità operativa all’interno di un processo
più strutturato (human-in-the-loop [Wu+22]).

2.1 Come funzionano gli agenti di generazione di
codice

Gli agenti di generazione di codice moderni non sono semplici sistemi di
completamento automatico, ma architetture composte che combinano modelli
linguistici di grandi dimensioni (LLM), protocolli di estensione e meccanismi di
revisione iterativa. Rispetto ai primi tool di autocomplete, la differenza principale è che
l’agente ragiona in termini di obiettivi, piani e azioni, avvicinandosi ai modelli
deliberativi della letteratura sugli intelligent agents [WJ95].
In termini astratti, il comportamento di un agente di codice può essere descritto come
un ciclo deliberativo che, nel caso specifico dello sviluppo software, assume
tipicamente la forma:

a) Raccolta del contesto L’agente costruisce una rappresentazione del problema a
partire da diversi input: il prompt dello sviluppatore, i file aperti nell’IDE, la
struttura della codebase, eventuali asset di documentazione (ad esempio
accessibili via RAG o MCP) e, in alcuni casi, lo stato dei test o del sistema di
build. In questa fase il modello deve selezionare e comprimere in un contesto
limitato le informazioni più rilevanti [Liu+24] [Yan+25], gestendo il compromesso
tra ampiezza (quante parti della codebase considerare) e profondità (quanti
dettagli includere).

b) Pianificazione Sulla base del contesto, l’agente elabora un piano di azione, che
può essere esplicito (lista di passi, task list, pseudo–codice) o implicito nelle sue
istruzioni interne. Tecniche come la Chain-of-Thought, il Plan-and-Solve o
approcci in stile ReAct [Wei+22] [Wan+23] [Yao+23] mirano proprio a rendere
più stabile questa fase di ragionamento, separando il “che cosa fare” dal “come
modificare concretamente il codice”. In ambito sviluppo, ciò si traduce per

14

esempio nel decidere quali file creare o modificare, quali endpoint aggiungere,
quali test aggiornare, prima ancora di produrre il codice effettivo.

c) Invocazione di strumenti Una volta definito il piano, l’agente invoca strumenti
esterni per agire sull’ambiente: lettura e scrittura di file, esecuzione di test,
interrogazione del database, chiamate a servizi HTTP, ricerca nella
documentazione o nel sistema di ticketing. L’uso di protocolli come MCP
[Hou+25] e di meccanismi di tool calling [Sch+23] consente di modellare queste
capacità come funzioni tipizzate, riducendo il rischio di errori (ad esempio,
generare percorsi o query non valide) e rendendo più osservabile il
comportamento dell’agente.

d) Revisione e output Infine, l’agente valuta l’esito delle azioni: confronta il codice
modificato con il piano iniziale, interpreta l’output dei test o dei comandi eseguiti,
individua eventuali errori e, se necessario, aggiorna il piano e ripete il ciclo. Solo
quando il risultato è ritenuto soddisfacente, propone al programmatore un set di
diff o di file completi da applicare alla codebase. In questo passaggio la presenza
del programmatore umano è cruciale per approvare, modificare o rifiutare i
cambiamenti, mantenendo il controllo finale sulla qualità del software [Wu+22].

Nella pratica, gli strumenti oggi disponibili nel panorama industriale implementano
questo ciclo con gradi diversi di visibilità e configurabilità. Alcuni prodotti si
presentano più come “autocomplete potenziati”, limitandosi a generare snippet locali
all’editor; altri offrono un vero e proprio agente in grado di esplorare la codebase,
eseguire comandi e proporre modifiche multi–file. La soluzione proposta in questa tesi
appartiene a questa seconda categoria, ma introduce vincoli aggiuntivi legati
all’allineamento con standard aziendali, template di progetto e design system condivisi.

15

2.2 Dalla valutazione comparativa alla scelta di
Windsurf e Lovable

Prima di progettare l’architettura definitiva è stato necessario confrontare le principali
soluzioni disponibili per lo sviluppo assistito da AI, con particolare attenzione a tre
dimensioni:

• Profondità dell’integrazione con l’IDE: capacità di lavorare sull’intera
codebase, eseguire comandi, lanciare test, gestire diff e interagire con il sistema di
versionamento;

• Allineamento con standard e template esistenti: possibilità di imporre
regole di naming, struttura del progetto, uso di pattern e design system
proprietari;

• Supporto a onboarding e prototipazione: facilità nel creare rapidamente
applicazioni dimostrative coerenti con lo stack aziendale, riutilizzabili per
l’onboarding dei nuovi sviluppatori e per le attività del reparto vendite.

Strumenti come Cursor e GitHub Copilot si collocano in una posizione molto forte
lungo la prima dimensione: sono pienamente integrati nell’IDE, offrono assistenza
contestuale nello sviluppo quotidiano e consentono in alcuni casi di orchestrare task
complessi (ad esempio esecuzione di test o refactoring multi–file). Tuttavia, nel
contesto specifico di Laif presentano due limiti principali:

a) Configurabilità limitata rispetto a template e regole aziendali È possibile
guidare il comportamento dell’assistente tramite prompt generali o linee guida,
ma non esiste (allo stato dei fatti durante lo svolgimento di questa tesi) un
meccanismo nativo per caricare e versionare in modo strutturato un insieme di
rules Markdown legate a uno specifico repository, differenziate per stack o
progetto.

b) Supporto alla prototipazione end-to-end meno spinto Sebbene l’assistente
sia in grado di generare file e componenti, la responsabilità di orchestrare l’intera

16

applicazione (struttura del progetto, routing, configurazione dello stack) ricade in
larga parte sullo sviluppatore, che deve guidare manualmente ogni passo della
creazione.

Per rispondere meglio alle esigenze emerse in precedenza - onboarding guidato, rispetto
dei template aziendali, generazione di mockup completi per il reparto vendite - si è
quindi scelto di adottare una combinazione di strumenti complementari:

• Windsurf come IDE agentico principale, grazie alla sua capacità di orchestrare
un agente su un workspace locale, integrare protocolli come MCP e lavorare in
modo trasparente su file, comandi e test;

• Lovable [Lov] come generatore di prototipi end-to-end, in grado di creare
rapidamente applicazioni complete (front-end e back-end) a partire da specifiche
testuali, da utilizzare come base di lavoro o come mockup da presentare ai clienti.

La combinazione di questi strumenti permette di coprire in modo sinergico due esigenze:
da un lato la generazione rapida di applicazioni coerenti con uno stack moderno
(Next.js/React + FastAPI/SQLAlchemy); dall’altro l’integrazione profonda dell’agente
nel workflow quotidiano di sviluppo, con accesso controllato alle risorse aziendali.

2.3 Architettura ad alto livello: Windsurf, Lovable,
MCP e rules

L’architettura proposta si basa sull’idea di utilizzare Lovable per generare
rapidamente applicazioni o porzioni di applicazione coerenti con lo stack aziendale, per
poi importarle in un workspace Windsurf dove un agente configurato opera su tre
pilastri principali:

a) Rules file versionati nel repository Per ciascun progetto o famiglia di
progetti vengono definiti uno o più file Markdown contenenti le regole di sviluppo
(rules file): convenzioni di naming, struttura delle directory, pattern

17

architetturali (ad esempio l’uso del template “standard” basato su
RoleBasedCRUDService), linee guida per l’uso del design system laif-ds, vincoli
su validazione, sicurezza e gestione degli errori. Questi file sono versionati insieme
al codice e possono essere referenziati esplicitamente nei prompt, in modo che
l’agente li utilizzi come vincoli operativi.

b) Accesso MCP alle risorse aziendali Come descritto nei capitoli precedenti,
sono stati configurati server MCP per:

• PostgreSQL, che espone strumenti per interrogare la base dati (esecuzione
di query SQL, introspezione del catalogo: schemi, tabelle, colonne, tipi,
vincoli), permettendo all’agente di ragionare sui modelli reali e non su una
descrizione approssimativa;

• Notion, che consente di ricercare e recuperare documentazione aziendale
relativa a prodotti, progetti, specifiche funzionali e tecniche, mantenendo
struttura gerarchica e metadati (titoli, stati, tag, relazioni).

In questo modo l’agente lavora su fonti “vive” e aggiornate, riducendo il
documentation drift e la necessità di copiare manualmente lunghi estratti nella
finestra di prompt.

c) Integrazione con lo stack e il design system aziendale Lo stack tecnologico
di riferimento comprende FastAPI/SQLAlchemy/Alembic sul backend,
Next.js/React sul frontend, il design system laif-ds basato su shadcn/ui e
PostgreSQL come database principale. Le rules codificano in modo esplicito:

• come creare nuovi endpoint seguendo il template standard;

• come definire modelli e schemi coerenti con i modelli SQLAlchemy esistenti;

• come utilizzare i componenti laif-ds per produrre interfacce utente
coerenti con il resto della piattaforma;

• come organizzare i file e i moduli in linea con le convenzioni interne
(naming, cartelle, pattern).

18

L’agente in Windsurf, operando su questo contesto, è in grado di proporre
modifiche che rispettano lo stile aziendale, riducendo la necessità di correzioni
manuali a posteriori.

Il flusso tipico può essere così sintetizzato:

• per una nuova funzionalità o un nuovo prodotto dimostrativo, si utilizza Lovable
per generare un primo mockup applicativo, che fornisce la struttura generale
(routing, pagine principali, componenti base);

• il codice generato viene importato nel repository aziendale e aperto in Windsurf
per essere normalizzato rispetto ai template interni;

• all’interno di Windsurf, l’agente - guidato da rules, MCP e documentazione - si
occupa di completare o rifinire l’implementazione: integrazione con il backend,
adeguamento ai modelli dati reali, allineamento al design system e alla struttura
degli applicativi aziendali e aggiunta della logica di business;

• lo sviluppatore umano revisiona i diff, esegue i test, valuta la coerenza con i
requisiti e, se necessario, aggiorna le rules sulla base delle lezioni apprese, in un
ciclo iterativo di miglioramento continuo.

Questa architettura permette di conciliare due obiettivi: da un lato, accelerare in modo
significativo il time-to-prototype e supportare un reparto vendite di dimensioni ridotte
nella preparazione di demo e mockup; dall’altro, mantenere un elevato livello di
controllo sugli standard di sviluppo, riducendo la barriera all’ingresso per i nuovi
sviluppatori e rendendo più ripetibile il processo di generazione assistita. I capitoli
successivi mostreranno in dettaglio come questa soluzione sia stata applicata a casi
reali e quali risultati siano stati osservati in termini di qualità del codice, velocità di
implementazione e facilità di onboarding.

19

Capitolo 3

Implementazione della soluzione

In questo capitolo si entra nel dettaglio operativo dell’architettura proposta,
descrivendo passo per passo le fasi che hanno caratterizzato la descrizione della pipeline
agentica utilizzata in Laif. Se nel capitolo precedente è stata presentata una visione ad
alto livello del ruolo degli agenti e degli strumenti (Windsurf, Lovable, MCP), qui
l’attenzione si sposta sulla loro implementazione concreta: come viene raccolto il
contesto, in che modo vengono costruiti i prompt, quali chiamate ai modelli OpenAI
vengono effettuate e quali meccanismi di controllo vengono applicati sui risultati.
Vengono quindi analizzate le strategie di gestione del contesto (inclusione di
documentazione, schema del database, regole versionate), le tecniche di prompting
utilizzate e le fasi di generazione e validazione del codice.

3.1 Raccolta del contesto

La comprensione del contesto è il punto di partenza per ogni agente. Essa si articola in
due componenti principali: l’analisi statica e quella dinamica.
Nella fase statica, l’agente legge la struttura del progetto e i file sorgente disponibili. In
un progetto software, questo significa estrarre l’albero delle directory, le dipendenze
dichiarate (ad esempio in package.json o requirements.txt) e, quando possibile,
analizzare la sintassi tramite Abstract Syntax Tree (AST).

20

Figura 3.1: AST
Rappresentazione ad albero della struttura sintattica di un programma

L’AST permette di ricostruire le relazioni semantiche tra classi, funzioni e variabili e
costituisce una rappresentazione intermedia utile per ragionamenti di tipo semantico
(ad esempio, individuare dove una funzione è definita e dove è utilizzata).
Nella fase dinamica, l’agente osserva l’esecuzione del codice e i feedback del sistema.
Questo include la raccolta di messaggi d’errore, stack trace, output dei test unitari o
funzionali, e persino comandi eseguiti in un terminale controllato (es. pytest, npm run

build, docker compose, ecc...). Tali segnali sono fondamentali perché forniscono
informazioni non direttamente ricavabili dalla sola analisi sintattica.

Per gestire progetti di grandi dimensioni e, dunque, leggere i file disponibili, l’agente
non si limita ad aggregare tutto il codice sorgente nella finestra contestuale del
modello. Un LLM infatti, ha una finestra di contesto limitata e può leggere e ragionare
solo su un certo numero di token. D’altra parte, un progetto può contenere anche
centinaia di milioni di righe di codice organizzate in centinaia, se non migliaia, di file
diversi.
Gli LLM più all’avanguardia hanno a disposizione finestre di contesto molto estese (fino

21

a 10M token per Llama 4 Scout; 2,097,152 token per Gemini 1.5 Pro), che permettono
di fornire all’LLM parti ampie del progetto o corpora multi-documento; tuttavia, non è
sufficiente “incollare tutto” nel prompt. Studi sistematici mostrano che l’aggiunta di
contenuto irrilevante o la collocazione sfavorevole dell’informazione chiave causano
degradazione della qualità: il fenomeno lost-in-the-middle documenta come
l’accuratezza cali quando le informazioni rilevanti si trovano in posizioni centrali di un
contesto molto lungo [Liu+24], mentre benchmark controllati evidenziano che
contesto irrilevante distrae il ragionamento e riduce la precisione, specialmente con
più distrattori [Yan+25]. In scenari RAG, l’aumento dei passaggi recuperati oltre un
certo punto può introdurre “hard negatives” che peggiorano l’output, richiedendo il
riordino del retrieval o del fine-tuning mirato alla robustezza [Jin+25].
Quando un agente o un sistema RAG recupera documenti per arricchire il contesto del
modello, non tutti i documenti sono ugualmente utili; li dividiamo in:

• Positivi: frammenti che contengono la risposta o informazioni rilevanti.

• Negativi facili (easy negatives): documenti evidentemente irrilevanti (es. un
articolo sportivo quando si cerca documentazione Python).

• Negativi difficili (hard negatives): documenti che sono molto simili
superficialmente alla query (quindi hanno embedding vicini), ma non contengono
la risposta corretta o contengono informazioni fuorvianti o contraddittorie.

22

Tabella 3.1: Confronto sintetico di modelli per finestra di contesto [LLM].

Modello Contesto (token)

Llama 4 Scout 10,000,000

Gemini 1.5 Pro 2,097,152

Gemini 1.5 Flash 1,048,576

Gemini 1.5 Flash 8B 1,048,576

Gemini 2.0 Flash 1,048,576

Gemini 2.0 Flash-Lite 1,048,576

Gemini 2.5 Flash 1,048,576

Gemini 2.5 Flash-Lite 1,048,576

Gemini 2.5 Pro 1,048,576

Gemini 2.5 Pro Preview 06-05 1,048,576

GPT-4.1 1,047,576

GPT-4.1 mini 1,047,576

GPT-4.1 nano 1,047,576

Llama 4 Maverick 1,000,000

GPT-5 400,000

GPT-5 mini 400,000

GPT-5 nano 400,000

Il numero rappresenta la massima finestra di contesto gestibile (in token) per ciascun modello per
singola richiesta.

Se anche fosse possibile fornire tutto il codice sorgente ad un ipotetico LLM con
finestra di contesto illimitata, il modello riceverebbe molto rumore irrilevante che
farebbe calare drasticamente la qualità delle risposte.
Viene dunque costruito un contesto organizzato:

C =
(
Cstatic, Cdynamic, Cretrieved

)
dove:

• Cstatic rappresenta la conoscenza ottenuta dall’analisi dei file e dell’AST;

• Cdynamic raccoglie log, errori e output runtime;

23

• Cretrieved è l’insieme di documenti recuperati da basi esterne (wiki, database, API)
mediante tecniche di retrieval-augmented generation (RAG) [Lew+20].

Il recupero avviene tramite modelli di embedding (es. text-embedding-3-large di
OpenAI), che mappano documenti e query in uno spazio vettoriale Rd (dove d è la
dimensione del vettore di embedding). L’agente calcola quindi la similarità
(tipicamente coseno) per selezionare i frammenti più rilevanti per consentire all’agente
di includere nel prompt solamente i frammenti più pertinenti selezionati dal retriever,
spingendo il contesto effettivo ben oltre la capacità di attenzione del modello, senza
sovraccaricarlo con tutto il codice sorgente.

3.2 Pianificazione esplicita (plan/act)

Una volta acquisito il contesto, l’agente passa alla fase di pianificazione. Diversamente
dagli approcci basati esclusivamente su predizione sequenziale, gli agenti moderni
adottano un ciclo deliberativo, producendo, come già accennato, un vero e proprio
piano testuale multi-step, che può includere azioni come “creare un nuovo file”,
“scrivere una classe Customer”, “eseguire i test di integrazione” o “leggere la
documentazione dell’API”. Questo approccio, teorizzato nel paradigma ReAct
[Yao+23], prevede la combinazione di ragionamento testuale (reasoning) e azioni
concrete (acting).

Molti agenti implementano un ciclo deliberativo basato su chain-of-thought nascosta
[Wei+22] e su Planning con Large Language Models [Wan+23]. Un tipico
algoritmo adottato (ispirato a ReAct) è:

a) il modello genera un piano multi-step (Plan);

b) l’utente o un Policy Manager approva il piano;

c) il modello esegue azioni atomiche (Act), come creare un file o lanciare i test;

d) il ciclo continua fino al raggiungimento dell’obiettivo.

24

OpenAI Codex e le versioni specializzate per GitHub Copilot sfruttano varianti di
reinforcement learning from human feedback (RLHF) per ottimizzare la
pianificazione e l’esecuzione, riducendo errori e allucinazioni.

Il valore aggiunto di questo schema è duplice: da un lato garantisce trasparenza nei
confronti dell’utente, che ha la possibilità di esaminare e modificare il piano proposto;
dall’altro consente di correggere eventuali errori durante l’esecuzione, seguendo un ciclo
iterativo che ricorda da vicino quello adottato da uno sviluppatore umano.

Formalmente, ad ogni iterazione t si può descrivere il processo come

(at, rt) ∼ πθ(a | C, ht−1),

dove at rappresenta l’azione scelta, rt la risposta dell’ambiente (ad esempio l’esito di un
test), C il contesto corrente e ht−1 la storia delle interazioni precedenti.
Il simbolo “∼” indica che la coppia (at, rt) è campionata da una policy stocastica πθ:
non si tratta dunque di una relazione deterministica, ma di un processo probabilistico
in cui, dato lo stato definito dal contesto e dalla storia, la policy specifica una
distribuzione sulle possibili azioni da cui viene selezionata at. L’ambiente restituisce
quindi una ricompensa o un segnale di feedback rt in funzione dell’azione compiuta.

Nel contesto di OpenAI, come anche di altri LLM paragonabili, questa fase di scelta
viene ulteriormente potenziata da tecniche di addestramento basate su reinforcement
learning from human feedback (RLHF) [Chr+17] e sul più recente
reinforcement learning from AI feedback (RLAIF) [Bai+22]. In entrambi i
casi, la policy πθ non viene ottimizzata solo tramite dati supervisionati, ma anche
attraverso segnali di preferenza esterni: nel caso di RLHF derivano da annotatori
umani, mentre in RLAIF sono generati automaticamente da altri modelli o da metriche
predefinite, come la correttezza di compilazione o il successo nei test.

25

3.3 Tooling e protocolli

Un elemento che distingue un agente realmente efficace è la sua capacità di
interfacciarsi con strumenti esterni. A questo scopo sono stati sviluppati protocolli
come il Model Context Protocol (MCP) [Hou+25], che forniscono un’interfaccia
standard per collegare l’agente a database, sistemi di knowledge management o API
aziendali. MCP consente di trattare tali risorse come vere e proprie “estensioni di
contesto”, richiamabili on demand dal modello.

Agente / LLM Client

MCP Server

Strumenti registrati (API, DB, filesystem, . . .)

Discover/Invoke

Chiamata ai tool

Risultato

Figura 3.2: Schema di flusso di funzionamento degli MCP: l’agente comunica con il
server MCP per scoprire e invocare strumenti, che a loro volta accedono a risorse esterne
e ritornano i risultati.

OpenAI ha introdotto inoltre la Function Calling API [Opea], che trasforma le
predizioni testuali in invocazioni strutturate di funzioni. In questo schema, l’LLM non
produce soltanto testo libero ma genera output in formato JSON, immediatamente
traducibile in chiamate a procedure lato client (ad esempio create_file() o
query_database()). Ciò garantisce maggiore robustezza e riduce l’ambiguità
semantica tipica dell’output naturale.

26

Prompt utente

LLM (ragionamento e pianificazione)

Utilizzo di strumento?
Strumenti esterni

API, DB, calcolatrici, . . .

Risposta finale all’utente

No

Sì

Figura 3.3: Function Calling API: il modello non esegue codice; emette JSON strut-
turato che il client traduce in chiamate di funzione controllate.

Più in generale, l’integrazione di strumenti è al centro di paradigmi come Toolformer
[Sch+23], dove i modelli vengono addestrati a decidere autonomamente quando e quali
strumenti invocare. Tuttavia, questo introduce anche sfide di sicurezza: l’esecuzione
di codice o l’accesso a dati sensibili richiede sandboxing, autorizzazioni esplicite e
tracciamento delle azioni per mantenere affidabilità e controllo umano.

3.3.1 Revisione e sicurezza

Ogni modifica proposta dall’agente deve essere tracciabile e sicura. A tal fine, i sistemi
più maturi adottano strategie di diff-based editing, dove l’output consiste in patch
incrementali applicabili ai file, piuttosto che in interi blocchi di codice.
Questo non solo facilita la revisione manuale, ma riduce il rischio di sovrascritture
accidentali.

27

Prompt utente

LLM

Client / Applicazione

Funzioni locali
create_file(), query_db(), . . .

JSON function

Function call

Risultato

Figura 3.4: Paradigma Toolformer: il modello decide se usare uno strumento; in caso
affermativo invoca il tool, ne integra il risultato e prosegue lungo il flusso principale.

Figura 3.5: Diff-Based Editing su Windsurf

Dal punto di vista architetturale, si stanno affermando soluzioni client-first o BYOK
(bring your own key), in cui il codice e le credenziali rimangono sulla macchina locale e
non vengono trasmessi a server remoti senza esplicita autorizzazione dall’utente, Questo
tipo di approccio riduce la superficie di attacco e i rischi di data leakage. Un esempio
concreto è l’estensione Cline per VS Code [Mar25a], che adotta un’architettura in cui
l’LLM remoto riceve solo prompt sintetizzati e mai l’intero contenuto sensibile del
progetto, lasciando l’esecuzione dei comandi e l’accesso ai file al client locale.

A livello di sicurezza, OpenAI integra sistemi di content moderation e policy

28

enforcement [Opeb], progettati per prevenire la fuoriuscita di dati personali, segreti
aziendali o informazioni protette. Questi meccanismi si basano su filtri addestrati per
intercettare input/output rischiosi e bloccare l’esecuzione di operazioni non conformi.
Tecniche complementari includono la red-teaming automation [Per+22], in cui
squadre di ricercatori (o agenti automatici) generano scenari malevoli per testare la
robustezza dei filtri e la Constitutional AI [Bai+22], un insieme di principi normativi
e linee guida predefinite (es. “non produrre contenuti dannosi”, “fornire risposte utili
ed oneste”), che il modello utilizza come criteri di revisione, riducendo la necessità di
supervisione umana.

Più in generale, la letteratura recente in sicurezza degli LLM sottolinea la necessità di
combinare diversi livelli di difesa: isolamento del contesto (sandboxing), controlli sulle
chiamate a strumenti esterni, e auditing delle interazioni [She+23; Kas22]. Questo
porta verso un modello di sicurezza stratificato, in cui i protocolli di interfacciamento
(es. MCP), i moderation systems e le architetture client-first concorrono insieme a
garantire affidabilità e compliance normativa.

3.3.2 Sintesi

In definitiva, un agente di generazione di codice può essere visto come un sistema
ibrido, dove un LLM funge da policy centrale che orchestra strumenti, contesto e
revisione. L’evoluzione recente mostra una tendenza verso agenti sempre più autonomi
e integrabili, capaci non solo di generare codice ma di pianificare, agire, verificare e
interagire in un ciclo simile a quello di uno sviluppatore umano, con il vantaggio di
una velocità e di una capacità di scalare informazioni che superano ampiamente quelle
delle pratiche tradizionali.

29

3.4 Impostazione dello studio

La ricerca è stata organizzata come lavoro di gruppo a 5, coordinata da un
responsabile ed è stata suddivisa in 4 fasi:

a) Fase 1 – Ricerca dell’IDE (o del plugin VSCode): La prima fase è stata
una fase di sperimentazione pratica atta a determinare quale fosse l’IDE
"agentico" o il plugin per VSCode da impiegare come standard aziendale.

b) Fase 2 – Definizione delle regole e dei server MCP: La seconda fase è stata
la fase di definizione di regole in formato markdow che coprissero tutte le
specifiche da sottoporre all’agente in fase di generazione delle risposte in modo da
ottenere codice che seguisse gli standard d’azienda e da poter fornire un rules-set
ad ogni sviluppatore in Laif. Oltre a ciò in questa fase è stato definito l’insieme
dei server MCP da far utilizzare all’agente.

c) Fase 3 – Test di validazione: La terza fase è stata quella forse più importante
ed interessante. La fase di test e valutazione dell’efficacia del lavoro svolto: è
stato eseguito il porting di un’applicazione reale per un cliente reale tentando di
impiegare meno risorse umane possibile. In questa fase sono stati raccolti dati sia
quantitativi che qualitativi finalizzati alla valutazione definitiva della soluzione
trovata.

d) Fase 4 – Raccolta e analisi dei risultati: L’ultima fase è stata quella di
raccolta, elaborazione e studio dei dati raccolti in fase 3 con l’obiettivo di
determinare la validità dello strumento (o pipeline di strumenti) definiti ed
eventualemente renderlo uno standard aziendale.

3.4.1 Ricerca dell’IDE (o del plugin VSCode)

Il gruppo di ricerca è formato da sei individui, di cui uno (M.P.) è il responsabile del
lavoro; Il lavoro è stato organizzato per testare quattro soluzioni possibili selezionate
fra le più popolari ed efficaci, mantenendo, quando possibile, il workflow su VS Code
(per evitare cambi di IDE):

30

• Cline (estensione VS Code), assegnato a il sottoscritto, G.F., è un agent
open-source per VS Code con Plan/Act, uso trasparente dei token, BYOK e forte
integrazione MCP; gira client-side (codice e segreti non passano su server
proprietari) [Cli; Mar25a; Doc25].

• Roo Code (fork potenziato di Cline), assegnato a C.V., nasce come fork
potenziato di Cline; aggiunge modi configurabili (code-review, test), esegue
comandi e integra MCP; una review tecnica indipendente riporta buoni risultati
pratici ma un consumo di token rilevante (BYOK) e una sessione per finestra
[Qub25; Cod25; Mar25b].

• Windsurf (IDE di Codeium), assegnato a M.P. e C.P., è un IDE con agente
(Cascade) che orchestra passaggi multipli, raccoglie contesto automaticamente e
propone piani eseguibili; diverse analisi gli attribuiscono un’ottima codebase
awareness e una UI curata, con pricing competitivo [Cod] [Bui25][Zap][Dat25].

• Cursor (IDE basato su un fork di VS Code), assegnato a S.B., è un IDE
“AI-first” basato su un fork di VS Code, con assistente integrato e supporto a più
modelli (OpenAI/Anthropic ecc.), orientato a refactor multi-file, debug e
implementazioni guidate [Lab25] [Ver25]. Confronti indipendenti lo descrivono
come molto rapido e con grande base utenti, ma non sempre il migliore nel
ragionamento profondo su codebase estese rispetto a Windsurf [Zap] [AI25]
[Dat25].

Il lavoro di ricerca dell’IDE è stato diviso in due fasi della durata complessiva di 15
giorni lavorativi; per i primi 5 giorni ci è stato chiesto di iniziare ad impiegare gli
agenti (in modalità Pro tramite una Api key OpenAI fornita dall’azienda) per lo
svolgimento dei task quotidiani relativi al nostro ruolo in azienda, il tutto a partire da
due file di regole e descrizione dei flussi e delle tecnologie di lavoro in formato
markdown condivisi fra tutti da fornire all’agente:

• Il file laif-rules.md contenente una descrizione dettagliata della struttura dello
stack tecnologico di Laif (quindi descrizione del template, delle librerie impiegate,
dei flussi di lavoro e dell’organizzazione generale di un qualunque progetto
dell’azienda).

31

Figura 3.6: Interfaccia della finestra integrata di Cline all’interno di VSCode durante
una richiesta in fase di planning.

32

• Il file global.md Contenente indicazioni su come fornire le risposte e su come
organizzare il flusso di generazione del codice, dunque:

a) Partire dalla definizione di un data-model se non presente e del relativo
schema.

b) La definizione delle rotte CRUD e dei service necessari a soddisfare i
requisiti definiti nel prompt.

c) L’invocazione di uno script proprietario per la generazione di un data-access
layer TypeScript completo e tipizzato, composto da types.gen.ts per tutte
le definizioni di tipo, client.gen.ts che emette un client Axios
configurabile, sdk.gen.ts che genera una funzione low-level 1:1 con ogni
endpoint più altri file wrapper e di configurazione.

d) In fine l’implementazione del frontend e il binding fra interfaccia e dati.

Questa fase si è conclusa con una riunione di condivisione dei risultati ottenuti fra tutti
i componenti del team di ricerca.
Dal mio canto è stato evidente da subito che Cline fosse un plugin già di per se molto
efficace nella gestione della parte backend in special modo. L’agente è stato in grado di
definire data-model, schemas, rotte backend e soprattutto servizi anche molto
articolati in python senza troppi problemi.

Nello specifico, Cline fornisce due modalità per l’agente che lo rendono particolarmente
efficace e di facile utilizzo:

• La modalità pianificazione nella quale l’agente definisce la scaletta delle azioni
che intende svolgere per soddisfare le richieste descritte dal prompt; in questa fase
è possibile interagire tramite la chat integrata a VSCode per correggere eventuali
errori o scelte poco chiare che l’agente intende seguire.

• La modalità "execute" nella quale l’agente passa all’effettiva modifica della
codebase per l’implementazione pratica delle richieste.

33

Anche per quanto riguarda il frontend il lavoro mi era stato agevolato notevolmente,
tuttavia è apparso evidente che l’agente non fosse stato in grado di interpretare
correttamente le mie richieste in termini di estetica, di usabilità e di organizzazione del
layout.
Se da una parte il mio intervento è stato essenziale al perfezionamento del codice in
modo che fosse anche solo eseguibile senza errori, d’altra parte è stato da subito
evidente che il potenziale dello strumento fosse di elevato interesse per l’azienda in
quanto l’agente era stato in grado di fornire anche a frontend un ottimo punto di
partenza alla mia fase di sviluppo "umano" se paragonato al "foglio bianco" con cui si
ha a che fare nello sviluppo tradizionale. Va considerato inoltre che si tratta di quella
che potremmo identificare come la fase 1.1 della ricerca e che non ci si aspettava
risultati neanche vicini all’ottimalità.

Inoltre, è importante ricordare che in questa fase il design system di Laif non era
ancora stato rilasciato e il frontend delle nostre codebase era costituito da
componenti ed interfacce poco standardizzate, per chiarirci: non era insolito trovare
una stessa soluzione implementata utilizzando componenti e librerie differenti. Una
volta condivisa la mia esperienza, ascoltata quella degli altri e presa nota dei punti di
forza e di debolezza di ogni soluzione testata, non potendo affermare con certezza quale
agente fosse il migliore relativamente all’utilizzo che ne volevamo fare, si è passati alla
fase successiva del lavoro, nella quale ci è stato chiesto di continuare ad utilizzare gli
agenti che ci erano stati assegnati, questa volta però con l’obiettivo di renderli il più
raffinati possibile tramite la stesura di regole markdown più specifiche ed elaborate e
tramite l’impiego di server MCP a nostra discrezione.

3.4.2 Definizione delle regole e dei server MCP

Fase della durata di 10 giorni che si è rivelata particolarmente dinamica e complessa,
poiché non era possibile definire a priori un insieme di regole che potessero considerarsi
ottimali in modo definitivo. Per questo motivo, una volta scelto l’agente da utilizzare in
modo arbitrario, ho deciso di adottare un approccio iterativo articolato in più step:

a) In primo luogo, individuavo un task reale del progetto su cui stavo lavorando e

34

fornivo all’agente un prompt il più possibile dettagliato e privo di ambiguità,
chiedendogli di proporre una soluzione completa.

b) Poiché l’output iniziale risultava spesso distante dal risultato atteso, la fase
successiva consisteva nel definire o affinare un insieme di regole in formato
Markdown pensate per ridurre l’ambiguità del prompt e orientare meglio la
generazione del codice.

c) In base alla qualità dell’output prodotto:

• se l’output era inutilizzabile, scartavo il codice e riproponevo la richiesta in
una nuova istanza di chat, così da evitare che il contesto della
conversazione precedente influenzasse le risposte successive;

• se l’output risultava accettabile, mantenevo la conversazione e proseguivo
lo sviluppo a partire da quel risultato, eventualmente estendendolo o
correggendolo.

In entrambi i casi continuavo la conversazione fino al completamento del task o
all’avvio di uno nuovo.

d) Infine, quando mi trovavo ad affrontare un task simile a uno già gestito in
precedenza, procedevo a raffinare ulteriormente la regola corrispondente,
incorporando le osservazioni e le correzioni emerse dalle iterazioni precedenti.

Parallelamente alla definizione progressiva delle regole, ho configurato una serie di
server MCP (Model Context Protocol) per fornire all’agente accesso diretto e
strutturato alle risorse aziendali. Nello specifico, ho individuato due integrazioni
fondamentali:

• PostgreSQL, che tramite una singola connection string espone all’agente un
insieme di strumenti per l’esecuzione di query SQL e per l’introspezione del
catalogo (schemi, tabelle, colonne, vincoli, tipi – inclusi gli ENUM), offrendo così un
accesso diretto e tipizzato alla base dati;

35

• Notion, che attraverso un token con ambito ristretto all’area di interesse,
permette all’agente di ricercare e recuperare la documentazione aziendale (pagine,
database, blocchi), preservandone la struttura gerarchica e le proprietà (titoli,
campi, relazioni, tag), fornendo un accesso organizzato alla knowledge base
documentale.

Queste due connessioni rappresentano i primi esempi di integrazione diretta tra
agente e risorse aziendali, consentendo un retrieval di informazioni più affidabile e
contestualizzato rispetto all’uso di fonti esterne o di prompt puramente testuali.
L’agente, grazie a tali connessioni, è in grado di combinare la generazione di codice con
la conoscenza strutturata, migliorando sensibilmente la qualità e la coerenza delle
risposte.
Una volta decorso il periodo di 10 giorni che avevamo disposto per questa fase dello
studio, abbiamo affrontato una riunione di condivisione delle informazioni e discussione
dei risultati ottenuti da ognuno dei partecipanti, valutati tramite parametri soggettivi
di qualità dello strumento e del codice in output.
A questo punto, sotto indicazione del Project Manager, C.V. ha ricevuto il compito di
sintetizzare dai file di regole prodotti da ognuno di noi un insieme ristretto di regole
comuni da impiegare nell’ultimo passaggio di questa fase: predisporre una base
condivisa per testare l’efficacia degli strumenti su un benchmark unificato.

3.4.3 Definizione del benchmark

Per garantire omogeneità nei test, il gruppo ha concordato di misurare le performance
di ciascun agente nella generazione di una pagina completa end-to-end,
comprendente:

• la definizione del data model con campi principali e relazioni;

• la generazione delle rotte API (CRUD) e del relativo service backend;

• la creazione del frontend conforme al design system aziendale;

• una pagina di visualizzazione dati sotto forma di tabella, con funzionalità di
creazione, aggiornamento ed eliminazione dei record.

36

L’obiettivo era verificare se ciascun agente fosse in grado di produrre una funzionalità
completa, coerente con gli standard aziendali, riducendo al minimo gli interventi
manuali e mantenendo un equilibrio tra qualità del codice, coerenza architetturale e
produttività complessiva.

3.4.4 Risultati emersi

Nei nostri scenari di test, costituiti da repository TypeScript/React per il frontend e
FastAPI/SQLAlchemy con migrazioni per il backend, Windsurf ha offerto il miglior
equilibrio tra:

• codebase awareness (capacità di ricostruire pattern di progetto e rispettare i
vincoli architetturali);

• qualità dei piani multi-file (refactor e implementazioni additive con minima
perdita di contesto);

• integrazione “senza attrito” con terminale, task, lint e test;

• costo prevedibile su base seat/trial rispetto agli altri flussi sperimentati.

Cursor si è dimostrato estremamente fluido e veloce per iterazioni individuali e
incrementi di piccola scala, mentre Cline e Roo Code hanno convinto quando
l’obiettivo era restare dentro VS Code, mantenendo pieno controllo sui modelli
(BYOK) e un’integrazione diretta con MCP.
I risultati ottenuti sono risultati coerenti con le analisi pubbliche disponibili in
letteratura e nei test comparativi esterni [AI25; Dat25; Zap], confermando che
Windsurf risulta leggermente superiore nel deep codebase work, mentre Cursor
eccelle in rapidità e diffusione tra la community.
In sintesi, il benchmark condiviso ha permesso di evidenziare punti di forza e limiti
concreti di ogni soluzione, fornendo al gruppo le evidenze necessarie per convergere su
Windsurf come strumento di riferimento per la fase successiva di validazione su
progetto reale.

37

3.5 Test di validazione

Questa terza fase della ricerca ha rappresentato il punto di svolta del lavoro, in quanto
si è trattato del primo test di validazione su progetto reale partendo da zero.
L’obiettivo principale era verificare la reale efficacia combinata delle componenti
selezionate - l’IDE Windsurf, i ruleset aziendali e le integrazioni MCP - all’interno
di un flusso di sviluppo effettivo, misurando quanto la pipeline agentica potesse ridurre
l’intervento umano nel porting e nella ricostruzione di un’applicazione esistente.

In questo stesso periodo (tra la seconda e la terza fase dello studio) era emerso un
nuovo strumento: Lovable [Lov], una piattaforma web-based di AI App Building
sviluppata con l’obiettivo di consentire la creazione di interfacce applicative complete
partendo da prompt in linguaggio naturale. Lovable adotta un approccio simile a
quello dei moderni ambienti di generazione controllata (es. Replit AI o Builder.io), ma
si distingue per alcune caratteristiche tecniche rilevanti nel contesto di questo studio:

• integra nativamente un motore LLM multi-step capace di generare struttura,
componenti UI e logica di interazione in un unico ciclo;

• supporta la modalità “Remix”, che consente di forkare o duplicare un progetto
esistente e di intervenire su di esso con nuovi prompt incrementali, favorendo
l’iterazione rapida e il riutilizzo di codice;

• offre un builder visuale interattivo per modifiche dirette all’interfaccia, con
esportazione immediata in React/Next.js, facilitando il passaggio da mockup a
prototipo reale;

• produce codice front-end leggibile, modulare e aderente ai principi di
componentizzazione tipici dei design system moderni (nel nostro caso, analoghi a
laif-ds).

Si tratta di una piattaforma particolarmente adatta alla fase di rapid prototyping, e per
questo motivo è stata integrata sperimentalmente nel processo di validazione: non
come sostituto dell’agente IDE, ma come strumento complementare per accelerare la

38

definizione dell’interfaccia e fornire un primo “scheletro” di navigazione e layout
coerente con lo stile aziendale.

Il test di validazione è stato assegnato a me e consisteva nell’eseguire il porting di
un’applicazione reale sviluppata da un’altra azienda verso il nostro
ecosistema, adattando la codebase al template e agli standard interni di Laif S.r.l.
L’obiettivo operativo era duplice:

a) verificare la capacità dell’agente (tramite Windsurf e ruleset) di adattare codice
preesistente ad un nuovo contesto architetturale e stilistico;

b) misurare quanto fosse possibile ridurre il carico manuale di riscrittura, delegando
all’agente e ai suoi strumenti di pianificazione l’implementazione e la rifinitura dei
moduli.

Per avviare questa fase, ho iniziato definendo un set di prompt all’interno di
Lovable, partendo da un remix di una demo predefinita preparata dal Project
Manager come baseline di riferimento. La demo rappresentava un’interfaccia utente
con struttura e logica analoghe a quelle delle nostre applicazioni interne - quindi
sidebar di navigazione, header con breadcrumb, tabella dati e viste CRUD - ed era
stata arricchita da alcune pagine aggiuntive che simulavano funzioni tipiche dei
nostri progetti, fungendo da mockup di un prodotto reale dell’azienda.

39

Figura 3.7: Interfaccia di Lovable: a sinistra la chat LLM per i prompt; a destra il
progetto laif-demo usato come base dei Remix.

Attraverso il comando Remix, Lovable ha generato una nuova istanza del progetto
(una sorta di branch parallelo) su cui ho potuto intervenire liberamente, combinando
input visivo e testuale. A partire da questo punto, ho iniziato ad interagire con il
sistema tramite prompt mirati, che specificavano:

• la struttura e l’organizzazione generale delle pagine (ad esempio: “crea una
sezione di gestione utenti con tabella e form di creazione”);

• il comportamento dei componenti dinamici (dialog di editing, validazioni,
messaggistica);

• la coerenza stilistica con il design system aziendale (palette, tipografia, spaziatura
coerenti con laif-ds);

• eventuali integrazioni simulate con backend (mock API o dati fittizi).

Il risultato di questa prima fase in Lovable è stato un prototipo navigabile e
coerente, utile come base visiva e semantica per la fase successiva: il porting effettivo

40

in Windsurf. In questa seconda parte del test, ho importato l’output generato da
Lovable nel mio workspace di Windsurf, dove ho ripreso il flusso di sviluppo
utilizzando:

• il ruleset aziendale (in formato Markdown) per vincolare la generazione del
codice ai nostri standard architetturali;

• i server MCP già configurati (PostgreSQL e Notion), così da fornire all’agente
contesto reale sulla struttura dati e sulla documentazione interna;

• i comandi nativi dell’agente Cascade per orchestrare la generazione multi-file
(schema → controller → service → frontend).

Durante questa fase, Windsurf ha dimostrato un’elevata capacità di ricostruire la
logica applicativa esistente, riconoscendo pattern e nomi delle entità provenienti
dalla codebase originale e traducendoli in strutture aderenti al nostro template
FastAPI/SQLAlchemy sul lato backend e React/Next.js sul lato frontend.
Il sistema MCP ha rivestito un ruolo determinante nel processo di adattamento
automatico delle entità e, più in generale, nella comprensione strutturale del dominio
dati dell’applicativo da migrare. Grazie all’accesso in lettura al database
PostgreSQL dell’azienda di provenienza, l’agente WindSurf ha potuto
ispezionare direttamente i datamodel dell’applicazione sorgente, analizzando
in modo sistematico schemi, tabelle, vincoli, relazioni e tipi di dato.
Questa capacità di esplorazione semantica ha consentito di generare una migrazione
iniziale automatica in grado di portare il database interno del progetto -
originariamente nello stato “template” - a una configurazione completamente allineata
1:1 con il database dell’applicazione originaria. Tale processo non si è limitato
alla mera riproduzione delle strutture, ma ha incluso anche la definizione coerente dei
vincoli di integrità, delle chiavi esterne e delle relazioni tra le entità, assicurando una
corrispondenza logica e funzionale con il sistema di partenza. Una volta ottenuta
questa corrispondenza strutturale, è risultato immediato procedere al trasferimento
dei dati reali tramite lo script interno transfer_data.py, concepito per copiare in
modo controllato i contenuti da un database all’altro. In questo modo, l’accesso MCP
ha rappresentato non solo un ponte conoscitivo tra due domini dati, ma anche il punto

41

di partenza per un processo di allineamento e popolamento completamente
automatizzato, che ha permesso di integrare senza soluzione di continuità l’applicativo
migrato all’interno della nostra infrastruttura.

Il test, in sintesi, ha rappresentato un caso realistico di porting aziendale in cui
Lovable e Windsurf sono stati impiegati in sinergia: il primo per accelerare la fase di
prototipazione e di definizione dell’interfaccia, il secondo per assicurare l’aderenza del
codice generato agli standard aziendali e la completa integrazione con il backend. La
combinazione dei due strumenti ha permesso di verificare in pratica quanto il ciclo
plan/act/review potesse essere applicato anche a scenari complessi, nei quali l’obiettivo
non è generare da zero, ma adattare e integrare codice preesistente con il minimo
sforzo manuale e massima coerenza stilistica e funzionale.

3.6 Descrizione dell’applicativo da migrare

L’applicativo oggetto della migrazione, di seguito denominato semplicemente Tintoria,
è una piattaforma gestionale focalizzata sulla schedulazione operativa dei flussi di
lavorazione in tintoria industriale. Originariamente realizzato e mantenuto da un altro
fornitore, il progetto è stato successivamente trasferito al nostro team a seguito
dell’impossibilità, da parte del precedente manutentore, di proseguirne il supporto
evolutivo. Tale passaggio ha reso necessario un intervento di migrazione strutturale
e tecnologica, al fine di assicurarne la continuità operativa, l’allineamento agli
standard infrastrutturali interni e l’integrazione con la nostra toolchain.

3.6.1 Descrizione funzionale

Lo scopo dell’applicativo è ottimizzare la pianificazione giornaliera delle
lavorazioni per massimizzare il numero di ordini completati, rispettando vincoli di
capacità e sequenziamento delle macchine/impianti. Ogni ordine è composto da uno o
più item, ciascuno associato a una sequenza di fasi/operazioni (routing) su specifiche
risorse produttive. Il sistema supporta differenti criteri di priorità, configurabili per
la generazione dei piani:

42

• Priorità al cliente (es. clienti strategici);

• Priorità alla data di consegna (minimizzazione del ritardo).

Gli attori principali sono:

• Pianificazione: definisce priorità, orizzonte temporale, vincoli e scenari; avvia lo
scheduler e valida il piano;

• Responsabile di produzione: supervisiona saturazione risorse, colli di bottiglia
e ribilanciamenti;

• Operatori di linea: consultano le code di lavorazione e eseguono avanzamenti;

• Direzione: monitora KPI di puntualità, throughput e saturazione.

I processi principali sono:

a) Acquisizione e normalizzazione degli ordini: import/registrazione di ordini
e item;

b) Definizione vincoli: capacità per macchina/centro di lavoro, turni e calendari,
tempi di set-up, compatibilità per materiale/trattamento, lotti min/max;

c) Schedulazione: generazione del piano tramite algoritmo ottimizzante (obiettivi
tipici: massimizzare ordini completati, minimizzare tardività, ridurre tempi di
attesa/setup), secondo il criterio di priorità selezionato;

d) Esecuzione e avanzamento: pubblicazione delle sequenze su ogni macchina,
registrazione start/stop e stati operazione; gestione eccezioni (fermi,
rilavorazioni);

e) Monitoraggio e ricalcolo: analisi KPI (quality, saturation, OTIF, WOTIF) ed
eventuale riplanificazione;

f) Ciclo giornaliero: consolidamento serale e preparazione del piano del giorno
successivo.

Le entità dati principali includono:

43

• Ordine, Item, Operazione/Fase, Routing;

• Macchina/Centro di lavoro, Calendario/Turno, Matrice di setup/compatibilità;

• Lotto di lavorazione (aggregazione di item omogenei), Piano/Schedule, Run di
schedulazione (traccia esiti e parametri).

Black-box scheduling ed ETL

Per motivi organizzativi e di vincoli temporali, lo schedulatore e il processo ETL
sono stati trattati come black-box. Entrambi risultavano già funzionanti e validati in
esercizio presso l’azienda di provenienza; di conseguenza, una loro revisione interna
avrebbe comportato un’attività di ricerca e ottimizzazione che esulava dagli obiettivi
della migrazione.
Durante il porting, il lavoro si è quindi concentrato sull’adattamento del contesto
applicativo, sull’integrazione con l’infrastruttura esistente e sulla conservazione della
piena compatibilità con i moduli di schedulazione preesistenti, garantendo la continuità
operativa e la riproducibilità dei risultati.

3.6.2 Descrizione dell’interfaccia

L’interfaccia utente offre viste operative specifiche:

• Gantt o Tabella di produzione: sequenze per macchina con evidenza di colli
di bottiglia e slack;

• Visualizzazione degli ordini non schedulati e delle motivazioni (macchine
non disponibili, articoli senza parametri necessari, ecc...);

• Visualizzazione e modifica dei parametri: ogni schedulazione viene lanciata
con parametri specifici che ne definiscono le priorità ed in generale la funzione
da minimizzare;

• Interfaccia per il lancio di una nuova schedulazione;

• Indicatori KPI: (quality, saturation, OTIF, WOTIF)

44

Per completezza, si riportano di seguito alcune schermate significative dell’interfaccia
utente, che illustrano le principali funzionalità operative del sistema.

Figura 3.8: Home dell’applicativo

45

Figura 3.9: Lista delle schedulazioni con vista tabellare delle schedulazioni (nell’imma-
gine l’unica schedulazione visibile per questioni tecniche è quella identificata dall’id 694)

Cliccando con il mouse su di un elemento della tabella, si viene reindirizzati alla pagina
di dettaglio, nella quale è possibile visualizzare le specifiche operazioni della
schedulazione in modalità gantt o tabellare e gli ordini non schedulati:

46

Figura 3.10: La vista tabellare è disponibile a prescindere dai filtri inseriti, mentre quella
con grafico Gantt diventa disponibile tramite bottone Switch solo dopo aver selezionato
almeno un centro di lavorazione nella Select in alto a sinistra della pagina.

47

Figura 3.11: Il Gantt permette la visualizzazione delle singole task della schedulazione,
portando il mouse in hover su di un blocco del Gantt ne si vedono i dettagli e cliccandoci
sopra si apre un modale che fornisce le informazioni in modo dettagliato. Notiamo poi
un pulsante "MODIFICA" che abilita la modalità di edit dei valori dei blocchi tramite il
modale di cui sopra. Inoltre, è possiblie tramite un input Range modificare l’intervallo
di tempo del quale visualizzare i task.

Figura 3.12: Oltre al Gantt, in questa visualizzazione sono visibili anche i valori dei KPI.48

Figura 3.13: Gli ordini non schedulati organizzati per "problematica", in alto possiamo
notare i bottoni che permettono di passare da questa vista a quella del dettaglio.

49

Figura 3.14: Pagina per il lancio di una nuova schedulazione, dove è possibile impostare
titolo e descrizione oltre che ai parametri dell’ottimizzatore.

Per brevità non viene riportata la pagina della "Gestione Schedulazioni" che è possibile
notare nella navigazione laterale, in quanto identica a quella del lancio di una nuova
schedulazione a meno dei campi "titolo" e "descrizione" e della possibilità di lanciare la
schedulazione, in quanto è una pagina dedicata alla definizione della configurazione
default.

Come possiamo osservare, le pagine sono sostanzialmente 6, di cui solamente 4 esposte
dalla barra di navigazione laterale:

1. Home del progetto, vedremo che è stato deciso di rimuovere questa pagina in
quanto ritenuta superflua;

2. Lista schedulazioni: Pagina adibita alla visualizzazione tabellare dello storico
delle schedulazioni, una volta selezionato un elemento dalla tabella si accede alla
Pagina dettaglio della schedulazione, costituita da due pagine non esposte
nella navbar :

50

2.1. Pagina dettaglio di base: fornisce la vista gantt o tabellare della
schedulazione;

2.2. Pagina ordini non schedulati: fornisce la vista tabellare del numero di
ordini non schedulati raggruppati per la causa della non-schedulazione;

3. Nuova schedulazione: pagina dedicata alla configurazione e al lancio manuale
di una nuova schedulazione;

4. Gestione schedulazioni: pagina di impostazione della configurazione default
delle schedulazioni;

3.6.3 Descrizione tecnica e architettura

Tintoria eredita l’impostazione tecnologica di un template generalizzato per
applicazioni web e pipeline ETL, con esecuzione locale e distribuita.

• Frontend: SPA React servita via Nginx; viste Gantt/queue e pannelli KPI;

• Backend: FastAPI (Uvicorn) con CLI Typer (run.py) per ruoli e migrazioni
Alembic;

• Database: PostgreSQL (schema versionato); entità per ordini, item, routing,
risorse, calendari, schedule e run;

• Schedulazione: job Celery per generazione piani; code SQS per orchestrazione;
persistenza dei risultati e dei parametri run;

• Automazioni: run giornaliero (notturno) per consolidamento e preparazione
piano successivo; ricalcolo on-demand;

• Documentazione e test: Sphinx; pytest/httpx per validazione API e logiche di
pianificazione;

• Infrastruttura: Docker Compose per ambienti locali; deploy su AWS tramite
strumenti di provisioning (es. aCli/CDK).

51

Sicurezza e operatività

L’applicativo adotta pratiche standard di sicurezza e controllo operativo. I container
backend vengono eseguiti con utenti non-root e le credenziali sono gestite tramite
servizi di secret management in cloud. Le pipeline CI/CD garantiscono tracciabilità dei
rilasci e coerenza tra ambienti. Le migrazioni di schema sono gestite con Alembic,
mentre i run di schedulazione sono pienamente auditabili e riproducibili, con
storicizzazione dei parametri e degli esiti di ogni esecuzione.

3.7 Fase “Lovable” - Remix demo, prompt e
specifiche eseguibili

In questa fase partendo dal progetto laif-demo (mockup minimale con layout,
architettura, componenti laif-ds già configurati), sfruttiamo la funzione Remix di
Lovable per generare automaticamente una nuova codebase che replichi struttura e
funzionalità dell’applicazione target, mantenendo stile e pattern Laif.
Questa fase è caratterizzata da 3 passaggi chiave:

• Remix dal laif-demo: Lovable clona la base e genera una nuova repository
GitHub modificata in tempo reale per rispecchiare lo stato dell’applicazione
fornita in output da Lovable.

• Allineamento UI dagli screen forniti: gli screenshot dell’applicazione da
imitare fungono da specifica visuale (layout, densità, gerarchie, interazioni) e
conseguenti commit sulla repository.

• Cascata di prompt (iterazioni): applichiamo manualmente una catena di
prompt di raffinamento (migliorie, correzioni, aggiunte) fino a soddisfare i criteri
di accettazione.

Partendo dalla configurazione Lovable definita dal responsabile della ricerca (M.P.) -
che manterremo privata per strategia aziendale - è stato eseguito un remix della demo
Laif, che va immaginato, come detto, come un fork di una repository GitHub. Dunque
è iniziato il processo iterativo fornendo il primo prompt al modello LLM di Lovable.

52

3.7.1 Prima iterazione

Prompt:

Dobbiamo modificare pagine e contenuti, utilizza laif-ds

per tutto ove possibile, le pagine disponibili saranno:

- Schedulazioni

-- Lista schedulazioni

-- Nuova schedulazione

- Gestione Schedulazioni

[page] Lista Schedulazioni:

Input Date dat_start, label "Da";

affianco Input Date dat_end, label "A";

affianco Button "Applica" per filtrare il contenuto in quel range.

Sotto, Tabella con search input,

filtri (proprietà della tabella laif-ds) e Button di download.

Le colonne sono:

[ID, Titolo (con hyperlink a "Dettaglio schedulazione"), descrizione,

Stato (enum mockup), Inizio turni (hh:mm), fine turni (hh:mm),

data (date), Modalità (Enum Veloce/Lento), Saturazione, OTIF, Utente]

[page] Dettaglio Schedulazione:

[tabs] Tab con:

- Dettagli

- Ordini non schedulati

[tab] Dettagli:

AppSelect "Centro di lavorazione", con opzioni

[Tutti, Campionario, Campionario cesto unico, lavorazioni speciali,

olandese, rotativa a pressione,

rotativa a scomparti, rotativa cesto unico];

53

affianco popover "Visualizza Parametri" con:

input slider con valori "priorità cliente", "bilanciato",

"priorità consegne"; sotto "inizio turno: hh:mm" e "fine turno hh:mm";

sotto "modalità: mode" (es. enum Veloce/Lento);

affianco AsyncSelect "Macchine" multi con dei badge

per tutta la lunghezza

della pagina con wrap per ogni valore selezionato che mostrano il nome

della macchina e hanno una x per essere rimossi dalla selezione;

sotto "Da" input Date, "A" input Date;

affianco (se e solo se AppSelect "Centro di lavorazione"

non ha selezionato il valore "Tutti") switch button "Gantt"/"Tabella"

(Gantt default se disponibile, se nulla è selezionato nel select

"Seleziona un centro di lavorazione",

se selezionato tutti solo tabella visibile);

sotto (sse selezionato valore in AppSelect "Centro di lavorazione")

tabella come la tabella di prima

(filtri per ogni colonna, search, download button), con colonne:

[Pianificato Tassativo (T/F con icona di lucchetto

chiuso/aperto associata),

Codice macchina, cliente (str), attività (enum: Setup Iniziale

/Produzione/Candeggio/Cambio vascata), commessa (str cod),

Articolo (str[]),

variante (str cod), peso vascata (double), Lavorazioni vascata

(enum mockup "lavorazioni"),

scadenza (date), quantità capi, numero vascata, inizio (datetime),

fine (Datetime), lista lavorazioni (enum lavorazioni[]),

scadenza originale (date)].

Sotto (sse gantt disponibile) {

Button "modifica" (se clicco su modifica compaiono button

"conferma" e "annulla";

54

durante la modifica posso cliccare su un blocco e ottengo

il modale in screenshot #3;

ho sempre un hover sui blocchi come quello in screenshot #4 e

quando non è in modifica

ho un modale di solo recap #5);

sotto gantt con righe macchine e colonne datetime

(con zoom range draggable)

da primo datetime schedulazione a ultimo,

i blocchi gant sono le attività schedulate.

Sotto a Gantt (altrimenti nulla) 4 indicatori CircularProgress

0-100 con (label, IconInfoHover):

[(QUAL, "Percentuale di qualità della produzione"),

(SAT, "Percentuale di saturazione delle ore lavorative"),

(OTIF, "Percentuale di ordini in orario"),

(WOTIF, "Percentuale di ordini in orario pesata

per priorità degli ordini")].

}

[tab] Ordini non schedulati: vedi screenshot con componente a righe.

[page] Nuova schedulazione: Input nome, Input descrizione;

sotto label "parametri anagram";

sotto {

input slider come prima, switch button "veloce/lento" e

input hh:mm

Inizio/fine Turno;

}

@config sotto checkbox (default=F) "Salva configurazione corrente";

affianco Button "avvia nuova schedulazione".

55

[page] Configurazione schedulazioni:

come @config; sotto Button "Imposta come default".

Il prompt è stato poi arricchito dagli stessi screenshot descritti nel capitolo 3.6.2, oltre
a immagini raffiguranti elementi più specifici dell’applicazione, nello specifico:

Figura 3.15: Modale di visualizzazione
dei dettagli di un Gantt Block.

Figura 3.16: Lo stesso modale della
figura 3.15 in modalità modifica.

Per agevolare l’interpretazione del prompt da parte del modello LLM, ho definito uno
pseudo-markup testuale concepito come linguaggio intermedio tra la descrizione
naturale e la struttura formale di un layout. Tale sintassi adotta una notazione a
blocchi ispirata alla gerarchia delle interfacce React, con marcatori delimitati tra
parentesi quadre che indicano la natura e la profondità semantica di ciascun elemento.
Gli elementi principali dello pseudo-markup sono:

• [page] - identifica una pagina o vista logica dell’applicativo (es. [page] Lista

Schedulazioni);

56

Figura 3.17: Dropdown del tasto "VISUALIZZA PARAMETRI INSERITI"

• [tab] - definisce una sezione interna a una pagina, normalmente corrispondente a
un componente con tabulazione o contenuto dinamico;

• [component] o blocchi impliciti - descrivono i singoli elementi UI, come Input,
Button, AppSelect, AsyncSelect, Switch o Gantt;

• le indentazioni (rafforzate dall’uso di "-") e le strutture annidate rappresentano la
gerarchia visiva e funzionale tra i componenti.

Questa forma testuale, pur non essendo un linguaggio formale, è risultata efficace nel
rendere il prompt autoesplicativo e non ambiguo, in quanto univa la leggibilità del
linguaggio naturale a una rappresentazione strutturata dell’interfaccia. In pratica, lo
pseudo-markup ha permesso di comunicare al modello non solo il contenuto, ma anche
la relazione gerarchica tra gli elementi, il loro comportamento e il contesto d’uso, in
questo modo, la combinazione tra il prompt pseudo-strutturato e gli screenshot di
supporto ha permesso di fornire al sistema un contesto visivo e sintattico preciso,
analogo a una specification by example[Adz11].

57

Tabella 3.2: Metriche di esecuzione del primo prompt

Parametro Valore Unità

File modificati 7 –
Tempo di scrittura del prompt ∼22 min
Tempo di reasoning 16 s
Tempo di elaborazione modello 3.57 min

Tempo totale ∼26.13 min

Primo output generato

Il primo output generato dal modello a seguito del prompt di schedulazione ha
mostrato risultati parzialmente coerenti con le specifiche fornite. In questa fase iniziale,
l’interfaccia prodotta da Lovable ha riprodotto correttamente la struttura generale delle
pagine e la navigazione specifica di Tintoria, ma ha evidenziato diverse semplificazioni
e imprecisioni nella logica dei componenti, come illustrato nelle figure seguenti.

Figura 3.18: Pagina principale con pulsante Filtri e collegamento corretto a “Nuova
schedulazione”.

58

La navigazione mockup precedente è stata mantenuta erroneamente: si notano infatti
due sezioni di navigazione, Menu e Schedulazioni, quando ci si sarebbe aspettati
unicamente la seconda come sezione principale. La pagina “Lista schedulazioni” è stata
tuttavia generata in modo corretto anche nei dettagli.

Figura 3.19: Vista Gantt generata dal modello: nella parte superiore (in alto) la sezione
dei controlli e filtri, in basso la rappresentazione grafica delle lavorazioni. Il layout risulta
approssimativo, ma la logica di visualizzazione e interazione è correttamente interpretata.

Nel complesso si tratta di un output di buona qualità: pur con alcune approssimazioni
grafiche, il modello ha compreso la logica dei filtri e la relazione tra i componenti. Il
grafico Gantt in sé risulta tuttavia incompleto e privo della modalità di modifica.

59

Figura 3.20: Pagina di dettaglio: vista tabellare assente.

Figura 3.21: Tab “Ordini non schedulati”: contenuto inventato completamente, non
corrispondente alle specifiche del prompt.

60

Figura 3.22: Sezioni “Configurazione” e “Parametri avanzati”: pressoché corrette, con
l’unico errore dello slider espresso su scala 0–100 invece che su tre valori discreti.

Figura 3.23: Pagina di configurazione: corretta nella parte superiore, ma con sezione
“Parametri avanzati” aggiunta spontaneamente dal modello e non richiesta dal prompt.

61

Nel complesso, il primo output può essere considerato una versione solo
parzialmente conforme alle specifiche richieste. Pur avendo individuato
correttamente la struttura generale delle pagine, il modello ha mostrato una
comprensione incompleta della logica applicativa, introducendo elementi arbitrari
(come la sezione “Parametri avanzati”) e omettendo funzionalità fondamentali quali i
filtri tabellari e la modalità di modifica del Gantt. L’interfaccia risultante, sebbene
coerente nella forma, si discosta in più punti dalle direttive del prompt, evidenziando la
necessità di un intervento correttivo più mirato.

A partire da queste criticità è stato elaborato un secondo prompt, concepito per
ottenere un output più aderente e controllato. In questa seconda iterazione, le
istruzioni sono state rese più vincolanti e dettagliate, con l’obiettivo di limitare la
libertà interpretativa del modello e di correggere gli errori emersi nella fase precedente.

3.7.2 Seconda iterazione

Per ragioni di sintesi, verranno presentate meno immagini, concentrandosi sui punti
salienti e sulle differenze più rilevanti rispetto al primo output.

Prompt:

modifiche da apportare:

- globali:

-- PER TUTTE LE PAGINE (mantieni la sezione di titolo,

sottotitolo e icona solo nella navbar superiore;

eliminala dal contenuto delle pagine)

-- aumenta il numero di dati mockup

-- elimina le voci di navigazione precedentemente esistenti

(Menu[Dashboard, Prodotti, Venditori, Clienti])

-- le tabelle devono usare le proprietà del laif-ds e devono

essere paginate (con più dati mockup sarà possibile testarlo)

-- gli slider di priorità possono assumere solo i valori

agli estremi e al centro (-1, 0, 1)

62

- [page] Configurazione (rename in Configurazioni):

-- elimina la sezione Parametri avanzati

- [page] Lista Schedulazioni:

-- Il button nuova schedulazione impostalo come customNavComponent

-- la searchbar e i filtri sono impostabili tramite proprietà della

table laif-ds

- [page] Dettaglio schedulazione:

-- Quando seleziono "Tutti" la tabella deve essere visibile,

la label deve essere "Tutti (tabella per sola esportazione")

-- Modifica deve aggiungere un tab al modale dei task del gantt,

ti invio sia il modale con selezionato il tab in questione

(screenshot #1) che il gantt (#2) in quanto il tuo è approssimativo:

manca lo zoom, gli orari, i blocchi sono piccoli, on hover deve

mostrare i dettagli principali dell’attività (task) (#3)

-- Alla tabella mancano i filtri, la searchbar e il button download

-- La tab degli ordini non schedulati è errata, ti mando l’immagine

#4 come reference

Anche per questo prompt sono state fornite delle immagini di riferimento.

Tabella 3.3: Metriche di esecuzione del secondo prompt

Parametro Valore Unità

File modificati 8 –
Tempo di scrittura del prompt ∼12 min
Tempo di reasoning 17 s
Tempo di elaborazione modello 6.08 min

Tempo totale ∼18.25 min

Secondo output generato

Il secondo output, prodotto a seguito del nuovo prompt correttivo, ha mostrato un
sensibile miglioramento nella coerenza complessiva e nell’aderenza alle specifiche

63

funzionali.
Le modifiche globali sono state quasi tutte applicate correttamente: la rimozione
delle sezioni di titolo e sottotitolo dalle pagine è avvenuta come richiesto, le voci di
navigazione superflue sono state eliminate, la pagina degli ordini schedulati è
finalmente corretta e priva di allucinazioni e il layout generale risulta più ordinato e
leggibile. Il problema principale riguarda l’implementazione delle tabelle: il modello
non ha potuto applicare le proprietà aggiornate del laif-ds a cui si faceva riferimento
nel prompt, probabilmente a causa dell’assenza di una versione recente della libreria nel
contesto di generazione. Oltre a questo, la pagina del Gantt presenta numerose
problematiche che verranno affrontate nel prompt successivo.

Figura 3.24: La pagina dedicata alla visualizzazione Gantt dei task risulta ancora errata:
i filtri sono errati e non funzionanti, mentre gli indicatori dei KPIs sono sovrapposti al
grafico

64

Figura 3.25: La tab di modifica all’interno del modale è corretta, l’unica inesattezza è
che deve essere visibile esclusivamente dopo averla attivata tramite l’omonimo pulsante
sopra il grafico.

Figura 3.26: Sezione degli ordini schedulati corretta.

In conclusione, il secondo output rappresenta un passo avanti rispetto alla prima
iterazione, sia in termini estetici e di usabilità, sia di aderenza logica alle specifiche.
Tuttavia, la qualità finale è risultata condizionata da un fattore esterno non noto al
momento dei test: la discrepanza tra lo stato della documentazione del design
system (fornita al modello come riferimento) e la versione effettivamente in uso

65

nella generazione di codice del laif-ds. Quest’ultima, infatti, risultava già più
avanzata e includeva componenti tabellari e parametri aggiornati non ancora descritti
nella documentazione ufficiale. Questa incongruenza ha inevitabilmente influenzato la
generazione dei componenti, in particolare delle tabelle e dei filtri, determinando errori
non imputabili alla logica di interpretazione del modello.

3.7.3 Terza iterazione

Convinto che il problema dipendesse da una formulazione ancora troppo vaga delle
istruzioni, nella terza iterazione, oltre a fornire le istruzioni su come migliorare la
pagina del Gantt, ho fornito indicazioni per una ristrutturazione delle tabelle.

Prompt:

Modifiche da apportare:

- qui c’è la documentazione del laif-ds:

https://laif-group.github.io/ds/

ristruttura le tabelle usando la documentazione come riferimento.

- in Dettaglio schedulazione

-- Visualizza parametri: lo slider deve essere read-only

-- Filtri: Niente deve essere selezionabile finché

centro di lavorazione non è stato selezionato

-- lo zoom del gantt deve essere uno slider con due button draggable,

lungo quanto il gantt, se entrambi i button sono ai

rispettivi estremi viene visualizzato tutto il range delle attività,

spostandoli si modifica datetime di inizio e fine

visualizzazione dei task: se ad esempio i task vanno dal 26 maggio

al 4 giugno, con tutto il range si vedono tutti i giorni,

più lo restringo e più dettaglio vedo sulla barra del gantt

(da che si vedono solo i giorni, vedo anche la divisione in ore)

-- la modifica attiva il secondo tab "modifica" del modale

delle attività, se non siamo in stato di modifica il tab non è

nemmeno visibile

66

-- Ordini schedulati, le righe non hanno un button x per essere rimosse

- Configurazioni

-- rimuovi il "(value)" da sotto allo slider,

- Nuova configurazione

-- non deve essere possibile preme avvia finché mancano nome e descrizione

Tabella 3.4: Metriche di esecuzione del terzo prompt

Parametro Valore Unità

File modificati 4 –
Tempo di scrittura del prompt ∼6 min
Tempo di reasoning 9 s
Tempo di elaborazione modello 2.57 min

Tempo totale ∼9.06 min

67

Terzo output generato

Dato l’output pressochè perfetto della pagina del Gantt e data anche l’assenza di
risultati tangibili nella modifica delle tabelle causata dall’incongruenza discussa nella
sottosezione 3.7.2, questa è stata l’ultima iterazione eseguita tramite Lovable.

Figura 3.27: Visualizzazione Gantt pressoché corretta ad eccezione del secondo pulsante
di drag assente e dei task che vanno in overflow oltre il blocco del grafico.

Il Gantt risulta coerente e ben strutturato nella resa grafica: il meccanismo di zoom
mediante slider è effettivamente funzionante e permette di modificare l’intervallo
temporale visualizzato, riproducendo il comportamento previsto dal prompt.
Permangono tuttavia alcune imperfezioni marginali che ho considerato non significative
per gli obiettivi del test. In questa fase, l’intervento tramite ulteriori prompt sarebbe
risultato più oneroso e meno efficace rispetto a una correzione manuale diretta nel
codice sorgente.

68

Tabella 3.5: Tabella delle tempistiche complessive

Iterazione Totale parziale (min)

Iterazione 1 ∼26.13
Iterazione 2 ∼18.25
Iterazione 3 ∼9.06

Totale ∼53.44

A questo punto, il processo di generazione può considerarsi sostanzialmente completato.
Il risultato ottenuto è stabile e coerente con le specifiche, anche se rimane un certo
margine di miglioramento, in particolare sul fronte della standardizzazione dei prompt
tramite la definizione di un linguaggio di istruzioni più uniforme. In ogni caso, il
modello ha raggiunto un livello di qualità tale da consentire il passaggio alla fase
operativa successiva: l’esportazione della codebase generata e la sua integrazione
all’interno della repository ottenuta dal fork del template aziendale, così da consolidare
il porting all’interno dell’architettura del progetto principale.

69

3.8 Integrazione e merge con Windsurf

Conclusa la fase di generazione in Lovable, il passo successivo - e conclusivo - è
consistito nell’unire il codice prodotto da Lovable con l’architettura del template
aziendale, così da ottenere un’unica codebase coerente con gli standard Laif. Per
farlo, ho utilizzato Windsurf come agente di integrazione e refactoring, affidandogli il
compito di adattare la struttura del progetto generato ai vincoli architetturali e
stilistici imposti dai ruleset interni.

3.8.1 Processo di integrazione

Le due repository - quella generata da Lovable e quella del progetto Laif - sono state
collocate nella stessa directory, da cui è stato avviato l’agente. Questa scelta ha
permesso al modello di operare su un contesto unificato, comprendente sia il codice
applicativo completo delle interfacce prodotto da Lovable, sia la repository aziendale
dedicata al progetto, da cui desumere struttura, organizzazione e convenzioni del
template (frontend e backend). In questo modo è risultato possibile facilitare il
trasferimento della logica e dei componenti provenienti da Lovable all’interno delle
sezioni app/ del progetto aziendale, mantenendo intatta la separazione con la parte
template/, condivisa da tutte le istanze.

Per guidare l’agente nella comprensione del progetto e delle sue dipendenze, ho fornito
un file descrittivo, PROJECT_DESCRIPTION.md, impiegato come manifesto tecnico della
repository. Il documento riportava la struttura del progetto, la suddivisione dei moduli,
le principali librerie frontend e backend, e le istruzioni di script, build e deploy. In
questo modo Windsurf poteva pianificare le modifiche rispettando i vincoli di
organizzazione e compatibilità dell’ecosistema Laif.

Dopo aver predisposto il contesto, ho avviato una nuova sessione di Windsurf e fornito
un prompt sintetico, concepito per chiedere all’agente di migrare i file e riallineare
import, dipendenze, configurazioni e scelte strutturali, mantenendo piena aderenza al
rules-set aziendale.

70

Il processo è stato condotto come un ciclo di iterazioni convalidato manualmente:
Windsurf ha analizzato entrambe le repository, identificato le corrispondenze e
proposto piani di merging multi–file. A ogni iterazione ho verificato e approvato i
passaggi principali, intervenendo manualmente dove necessario.

Nel complesso, l’intero flusso di merge e refactoring - comprendente analisi, iterazioni
con l’agente e interventi manuali - si è completato in poco più dodici ore di lavoro
effettivo. Il risultato finale è stato un progetto perfettamente integrato, con il codice
di Lovable incorporato nel framework aziendale e pienamente compatibile con la
struttura monorepo (FastAPI + Next.js).

È importante sottolineare, tuttavia, che il percorso che ha portato alla versione finale e
funzionante non è stato affatto lineare. Alcune rules si sono rivelate troppo ambigue
per essere interpretate correttamente dal modello, e non sono mancati episodi di
allucinazioni, errori logici, incongruenze di tipizzazione nei fra frontend e backend e
internamente ai componenti, oltre a innumerevoli difetti di coerenza strutturale. Ogni
iterazione del prompt ha richiesto una serie di interventi correttivi spesso
time–consuming, necessari per riportare il progetto in uno stato consistente.
Di seguito riporto, a titolo esemplificativo, alcuni dei prompt iniziali utilizzati durante
la fase di integrazione.

3.8.2 Prompt forniti a Windsurf

Prompt 1 (elaborazione: ∼13.43 min).

Ti ho fornito due repository: @tintoria-lovable

(output completo di Lovable) e @tintoria-sched

(repo Laif con architettura template).

Trasferisci tutte le funzionalità implementate in tintoria-lovable

dentro l’app Laif, collocando i file nelle sezioni

@frontend/app e @backend/app rispettando integralmente

le rules presenti nella cartella @rules/.

Presta attenzione a navigation, datamodel, schema e CRUD,

71

adeguando tutto agli standard del template.

Segui @PROJECT_DESCRIPTION.md per panoramica del progetto.

72

Prompt 2 (elaborazione: ∼8.12 min).

Ho generato tutti i tipi TypeScript per il frontend sulla base

dei nuovi schema e delle chiamate CRUD che hai creato nel backend,

seguendo la stessa organizzazione delle altre app del template Laif.

Integra i tipi nei componenti migrati da tintoria-lovable,

allinea gli import e correggi gli errori.

Prompt 3 (elaborazione: ∼9.02 min).

Procedi con le correzioni:

- La navigation va fatta seguendo quella del template,

non all’interno dei singoli componenti ma in @navigation.tsx

- Utilizza le chiamate CRUD generate presenti in @clien.gen.ts

e verifica la coerenza tra datamodel, schema e servizi.

Continua a proporre fix fino a ottenere una build pulita lato frontend

e backend mantenendo la piena conformità al template.

Come anticipato in precedenza, a seguito di ciascun output generato da Windsurf si
sono resi necessari numerosi interventi correttivi: alcuni dovuti ad ambiguità presenti
nelle rules, altri a errori di tipizzazione, incoerenze tra datamodel e schema, o
semplicemente a scelte strutturali non allineate al template aziendale. Le iterazioni
riportate sopra rappresentano quindi solo una parte del lavoro svolto: ogni prompt ha
innescato una catena di aggiustamenti manuali e validazioni successive, indispensabili
per riportare il progetto in uno stato consistente e conforme agli standard Laif.
Nonostante ciò, il processo ha evidenziato la capacità dell’agente di fornire una base
solida su cui intervenire, permettendo di concentrare l’effort umano sulle decisioni
architetturali più complesse e non sulla riscrittura del codice.

In sintesi, questa fase ha rappresentato la chiusura del test di validazione, dimostrando
la possibilità di un flusso unificato e replicabile Lovable → Windsurf → Template Laif,
in cui la generazione, l’adattamento e l’integrazione del codice possono avvenire in
modo coordinato, pur richiedendo un intervento umano non solo di supervisione

73

architetturale e gestione dei conflitti, ma anche di programmazione tradizionale nei casi
in cui l’agente non era in grado di completare correttamente i task richiesti.

74

Capitolo 4

Valutazione del sistema

La valutazione del sistema presenta alcune peculiarità: trattandosi di un processo
interattivo, non deterministico e fortemente dipendente dal contesto, non è possibile
costruire un vero e proprio benchmark numerico. Le prestazioni dell’agente variano
infatti in funzione della qualità dei rules, del contenuto della knowledge base, della
natura del prompt e dell’intervento umano nelle fasi di refactoring.
Per questa ragione, le poche metriche quantitative disponibili (tempi di elaborazione e
numero di iterazioni necessarie) vanno lette come indicazioni empiriche e non come
misure assolute. La valutazione che segue adotta quindi un approccio misto, in cui
alcuni dati numerici servono da supporto a un’analisi principalmente qualitativa,
centrata su coerenza strutturale, qualità del codice, robustezza del processo e riduzione
del carico di lavoro effettivo.
Accanto a queste osservazioni è stata introdotta una piccola componente di valutazione
soggettiva, tramite questionari ispirati alla System Usability Scale (SUS) [Bro96], per
raccogliere in modo più sistematico la percezione di usabilità e utilità degli strumenti
da parte del gruppo di ricerca.

75

4.1 Metodologia di valutazione

La strategia di valutazione combina tre fonti principali di evidenza:

• Analisi qualitativa del codice e del processo, lungo l’intero flusso di lavoro:
dalla generazione iniziale in Lovable all’integrazione finale in Windsurf ;

• Osservazioni quantitative leggere, quali tempi indicativi e numero di
iterazioni agentiche richieste per completare un task;

• Valutazione soggettiva tramite questionario, rivolta ai membri del gruppo
di ricerca.

Il questionario è stato progettato prendendo a riferimento la System Usability Scale,
una scala standardizzata a 10 domande chiuse con risposte su scala Likert a 5 punti,
ampiamente utilizzata per misurare l’usabilità percepita di sistemi interattivi. La
struttura è stata adattata al dominio degli strumenti agentici per lo sviluppo software e
riducendo il numero di domande, conservando però l’idea di un giudizio sintetico e
confrontabile.
Il questionario è stato somministrato ai sei membri del gruppo di ricerca (incluso
l’autore), tutti con esperienza nello sviluppo software e, in misura diversa, con
esposizione pregressa a strumenti AI per il codice. Per ciascuno dei due strumenti
considerati (Windsurf e Lovable) sono stati previsti due momenti di compilazione:

• un questionario iniziale, al termine della prima fase di ricerca e
sperimentazione;

• un questionario finale, al termine dell’ultima fase descritta nei capitoli
precedenti.

La numerosità ridotta del campione non consente inferenze statistiche forti; i risultati
vanno quindi letti come un complemento qualitativo all’analisi tecnica, utile per capire
come gli strumenti vengano percepiti dopo un uso realistico.

76

4.2 Efficacia e analisi qualitativa

La valutazione qualitativa considera il comportamento del sistema lungo l’intero flusso
di lavoro, dalla generazione iniziale in Lovable all’integrazione finale in Windsurf. Dato
che le attività svolte non sono pienamente ripetibili in modo deterministico,
l’attenzione è posta su:

• coerenza strutturale del codice prodotto;

• aderenza al template aziendale;

• robustezza delle modifiche multi–file;

• reale riduzione del carico operativo rispetto a un approccio interamente manuale.

4.2.1 Contributo di Lovable

La fase di generazione in Lovable ha mostrato un’elevata efficacia nella ricostruzione
dell’interfaccia utente. A partire dagli screenshot e dallo pseudo–markup, il modello ha
prodotto:

• una struttura navigabile completa e coerente;

• pagine e componenti UI vicini allo stile desiderato;

• un Gantt implementato in React (task non banale) via via più accurato
attraverso le iterazioni;

• uno scheletro di progetto abbastanza robusto da poter essere riutilizzato.

Nonostante errori, approssimazioni e alcune allucinazioni, Lovable si è dimostrato
molto efficace nella fase di rapid prototyping, riducendo drasticamente il tempo
necessario per ottenere una base visiva e funzionale da perfezionare nelle fasi successive.
In termini pratici, la qualità e l’ampiezza del risultato ottenuto in poche ore
corrispondono a quello che, con uno sviluppo tradizionale, avrebbe verosimilmente
richiesto almeno 2/3 di giorni di lavoro (≈20 ore–uomo [UNI16]).

77

4.2.2 Contributo di Windsurf

L’integrazione tramite Windsurf ha rappresentato il momento di consolidamento
dell’intero progetto. L’agente è riuscito a:

• applicare in larga parte gli standard architetturali del template Laif;

• generare e allineare datamodel, schema e CRUD;

• propagare modifiche multi–file in modo coerente;

• integrare le componenti Lovable in un contesto monorepo FastAPI+Next.js.

Questa fase ha però richiesto un contributo umano significativo: correzione di errori
logici, rifinitura dei tipi, aggiustamento dei componenti, chiarimento delle rules e, in
diversi casi, interventi di programmazione tradizionale. In altre parole, Windsurf si è
comportato da forte acceleratore per molte attività ripetitive e di impianto, ma non
è risultato affidabile in autonomia sull’intero flusso.
Questo quadro è coerente con quanto riportato in letteratura: gli LLM eccellono nel
riconoscere pattern locali e nel generare blocchi di codice plausibili, ma incontrano
difficoltà nel mantenere una coerenza architetturale globale quando le modifiche
coinvolgono molti file e dipendenze [Bor23][HL25]. Studi su modelli specializzati nel
codice (come Codex e derivati [Che+21]) mostrano limiti analoghi nel rispetto di
vincoli impliciti e nella gestione di progetti reali con logiche complesse [YTÖ22].
Un ulteriore elemento emerso in questo studio è la forte dipendenza dalla qualità del
prompt e delle rules: se un vincolo non è espresso in modo chiaro, il modello tende a
“colmare i vuoti” con soluzioni plausibili ma non sempre corrette. Questo
comportamento, spesso descritto come completamento superficiale di pattern, è
una delle ragioni per cui la supervisione umana resta necessaria [Zho+24].
Nel complesso, i risultati confermano il paradigma human-in-the-loop: l’agente è più
efficace quando lo sviluppatore mantiene il ruolo di supervisore critico e orchestratore
del processo, sfruttando l’AI per accelerare boilerplate, CRUD, componenti UI e
refactoring locali, ma riservando le decisioni architetturali e le verifiche di coerenza
globale al giudizio umano

78

4.2.3 Qualità complessiva del risultato

L’integrazione tra Lovable e Windsurf ha prodotto un sistema in larga parte coerente
con il template aziendale, ma non privo di imperfezioni. Pur avendo generato una base
applicativa solida e riutilizzabile, alcune componenti hanno richiesto:

• riorganizzazione di file e cartelle;

• correzione di dipendenze non gestite correttamente;

• riallineamento tra datamodel e schema;

• riscrittura parziale di logiche applicative.

In più punti sono stati necessari più cicli di revisione per raggiungere una qualità
considerata accettabile. Il risultato finale rappresenta quindi un punto di partenza
valido ma non rifinito: sufficiente per impostare le fasi successive di sviluppo, ma
non ancora pronto per un uso produttivo senza un ulteriore passaggio di
consolidamento umano.

4.3 Risultati del questionario

I risultati del questionario offrono una conferma, dal punto di vista soggettivo, del
quadro emerso dall’analisi qualitativa. In generale, le variazioni tra questionario iniziale
e finale sono moderate per Lovable e più marcate per Windsurf, in particolare su
facilità d’uso e utilità percepita. È importante sottolineare che questi miglioramenti
non derivano soltanto da una maggiore familiarità degli sviluppatori con gli strumenti,
ma soprattutto dal lavoro di configurazione mirata svolto sulla pipeline: definizione
di rules dedicate, integrazione MCP verso Notion e PostgreSQL, raffinamento
progressivo dei prompt e numerosi cicli di test iterativi.
La Tabella seguente riporta i punteggi medi (scala 1–5) per le principali dimensioni
considerate, distinti per strumento e per momento di compilazione (pre/post).

79

Lovable Windsurf

Dimensione Pre Post Pre Post

Facilità d’uso 3.6 4.0 3.0 4.2
Fiducia nello strumento 3.4 3.6 2.8 3.6
Controllo percepito 3.0 3.2 3.2 3.6
Utilità complessiva 3.8 4.2 3.0 4.2

Tabella 4.1: Punteggi medi del questionario per Lovable e Windsurf (5 partecipanti,
scala 1–5).

In sintesi:

• Lovable parte da una percezione già positiva, soprattutto per facilità d’uso e
utilità complessiva, e mostra un miglioramento contenuto ma coerente su tutte le
voci. Questo è in linea con il suo ruolo: uno strumento molto efficace per la
prototipazione rapida che beneficia solo in parte della personalizzazione,
poiché lavora comunque in un contesto meno vincolato agli standard aziendali.

• Windsurf parte da valori iniziali più bassi, ma dopo la fase di configurazione
ad hoc (rules versionate, integrazione MCP, prompt strutturati, numerosi cicli di
prova e correzione) registra un aumento più deciso, fino a raggiungere punteggi
comparabili o leggermente superiori a quelli di Lovable su alcune dimensioni, in
particolare su facilità d’uso percepita e utilità complessiva nel flusso reale di
sviluppo.

La Tabella seguente riassume le variazioni medie (∆ = post − pre) per ciascuna
dimensione.

80

Dimensione ∆ Lovable ∆ Windsurf

Facilità d’uso +0.4 +1.2
Fiducia nello strumento +0.2 +0.8
Controllo percepito +0.2 +0.4
Utilità complessiva +0.4 +1.2

Tabella 4.2: Variazione media dei punteggi tra questionario iniziale e finale.

Queste variazioni vanno lette in chiave configurativa più che “formativa”: non si
tratta solo di sviluppatori che imparano gradualmente a usare un nuovo IDE, ma di
uno strumento che diventa via via più utile perché viene modellato sul contesto
aziendale. Nel caso di Windsurf, l’aumento dei punteggi è strettamente legato a:

• la presenza di rules specifiche per il template Laif e per lo stack tecnologico
adottato;

• l’accesso strutturato a schema e metadati via MCP verso PostgreSQL;

• la possibilità di interrogare la documentazione reale tramite MCP Notion e
accesso diretto al design system proprietario;

• il raffinamento iterativo di prompt e flussi di lavoro sulla base di numerosi test
pratici.

Per alcuni partecipanti almeno una dimensione è rimasta pressoché invariata tra pre e
post, mentre nelle altre si è osservato un miglioramento più o meno marcato. Anche
questo è coerente con il ridimensionamento delle aspettative iniziali: l’idea di un agente
“magico” lascia spazio a una visione più realistica, in cui il valore non è dato dallo
strumento in sé, ma dall’integrazione stretta tra pipeline configurata ad hoc e
supervisione umana.
Nel complesso, il questionario restituisce una valutazione cautamente positiva:
Lovable e Windsurf sono percepiti come strumenti che migliorano il flusso di lavoro e
riducono il carico operativo, ma non eliminano i problemi di complessità architetturale,

81

standardizzazione e qualità del codice. Il loro contributo emerge soprattutto quando
fanno parte di una pipeline definita e mantenuta su misura per l’azienda e per
l’architettura che impiega e inserita in un modello human-in-the-loop in cui lo
sviluppatore mantiene il controllo sulle decisioni chiave. Nel capitolo conclusivo queste
evidenze verranno rilette in chiave più ampia, discutendo il ruolo strategico di una
pipeline Lovable → Windsurf configurata per il contesto Laif nei processi di sviluppo
aziendali.
Per completezza, di seguito vengono riportate le tabelle complessiva delle valutazioni
per Lovable e Windsurf.

Lovable (pre) Lovable (post)

Partecipante FdU Fid Ctrl Ut FdU Fid Ctrl Ut

G.F. 4 3 3 4 4 4 3 5
M.P. 4 3 3 4 4 4 3 4
C.V. 4 4 3 4 4 4 4 4
C.P. 3 4 3 4 4 3 3 4
S.B. 3 3 3 3 4 3 3 4

Media 3.6 3.4 3.0 3.8 4.0 3.6 3.2 4.2

Tabella 4.3: Valutazioni individuali per Lovable .

Windsurf (pre) Windsurf (post)

Partecipante FdU Fid Ctrl Ut FdU Fid Ctrl Ut

G.F. 3 3 3 3 4 4 3 4
M.P. 3 3 3 3 4 4 4 5
C.V. 3 3 4 3 5 4 4 5
C.P. 4 3 3 4 5 3 4 4
S.B. 2 2 3 2 3 3 3 3

Media 3.0 2.8 3.2 3.0 4.2 3.6 3.6 4.2

Tabella 4.4: Valutazioni individuali per Windsurf.

82

Conclusioni

In questo lavoro non si è inteso valutare la bontà di uno strumento di generazione in sé,
quanto piuttosto verificare l’efficacia complessiva di una pipeline agentica
configurata sul contesto aziendale Laif nel soddisfare il claim introdotto nel Capitolo 1.
In quell’occasione era stato formulato il presupposto teorico secondo cui un agente
integrato nell’IDE, guidato da rules versionate, alimentato dal template aziendale e
supportato da fonti vive tramite MCP, potesse ridurre tempi e costi delle prime fasi di
sviluppo, migliorando al contempo la coerenza del codice e mitigando fenomeni di
documentation drift. L’intero percorso di ricerca - dall’analisi preliminare alla
sperimentazione su progetto reale - è stato strutturato per verificare se tali ipotesi
trovassero riscontro pratico.

I risultati ottenuti mostrano che tutte le ipotesi del claim risultano soddisfatte.
Nel Capitolo 1 è stato affrontato il problema di un onboarding tradizionalmente lento e
costoso, in cui la comprensione dell’architettura e delle convenzioni interne rappresenta
un ostacolo significativo per i nuovi sviluppatori. La pipeline proposta interviene
direttamente su questo limite, mettendo l’agente in condizione di generare fin da subito
codice aderente agli standard del team e riducendo così il carico cognitivo iniziale.

Nel Capitolo 2 è stata approfondita la struttura tecnica dell’approccio, evidenziando la
sinergia fra Lovable, Windsurf, MCP e il sistema di rules. La sperimentazione ha
confermato che tale combinazione permette all’agente di operare in modo coerente con
lo stack Laif, producendo file e interfacce che rispettano pattern ricorrenti, strutture
dati aziendali e linee guida architetturali. Ne emerge che l’efficacia della pipeline non

83

dipende tanto dall’autonomia generativa dello strumento, quanto dalla qualità del
contesto, delle istruzioni e dei vincoli che lo guidano.

Il Capitolo 3 ha mostrato come questo impianto teorico prenda forma nella pratica,
mettendo in luce il ruolo del ciclo plan–act–review e la capacità dell’agente di operare
su progetti multi–file, interpretare modifiche trasversali e riportare codice eterogeneo a
un impianto coerente. La validazione descritta nel Capitolo 4, condotta mediante il
porting di un’applicazione reale, ha confermato in modo netto l’impatto della pipeline:
la riduzione dell’effort umano nelle fasi ripetitive, l’accelerazione nella generazione del
primo impianto applicativo e il miglioramento della consistenza interna del codice
prodotto costituiscono evidenze robuste a supporto del claim.

Nel complesso, la pipeline Lovable → Windsurf, orientata da rules e integrata con MCP,
risolve in modo efficace le problematiche delineate nei capitoli introduttivi e
rappresenta una soluzione praticabile per ridurre tempi, costi e complessità nelle prime
fasi di sviluppo software. L’approccio non sostituisce lo sviluppatore, ma ne amplifica
l’efficacia, trasformando l’agente in uno strumento operativo che aumenta la qualità del
lavoro e accelera i processi senza compromettere il controllo progettuale.

A conferma della sua efficacia, la modalità introdotta durante questa ricerca si è
rivelata talmente comoda, funzionale e produttiva da essere adottata stabilmente nel
flusso di lavoro aziendale, diventando parte integrante della pipeline di sviluppo.
Questa transizione dallo stadio sperimentale all’uso quotidiano costituisce, in ultima
analisi, la validazione più evidente della sua utilità.

84

AI come fattore competitivo

Nel panorama industriale contemporaneo, l’adozione di strumenti di generazione
automatica non può più essere considerata opzionale. Le aziende che
riusciranno a integrare efficacemente gli agenti nei processi di sviluppo godranno di un
vantaggio competitivo significativo, mentre ignorare tali tecnologie comporterà un
ritardo crescente rispetto ai concorrenti. Pur non sostituendo lo sviluppatore, l’AI
attuale agisce come un moltiplicatore di produttività: non utilizzarla equivarrebbe,
nei prossimi anni, a rinunciare a una leva strategica fondamentale.

Valore della pipeline Lovable → Windsurf

Il contributo più evidente emerso dallo studio è la capacità della pipeline, quando
configurata sulle regole e sull’architettura Laif, di anticipare rapidamente la fase
di prototipazione. Lovable consente di ottenere, in poche ore, un’interfaccia navigabile,
credibile e ricca di componenti complessi, mentre Windsurf permette di integrare tale
struttura nell’architettura aziendale, riducendo drasticamente la produzione manuale di
boilerplate, CRUD e logiche ripetitive.
Questo produce un valore immediato in due direzioni:

• prototipazione rapida per clienti e stakeholder, utile per validare
funzionalità e ottenere feedback immediati;

• riduzione del cost-to-build nelle prime fasi di sviluppo, dove
tradizionalmente si concentra il costo umano maggiore [YTÖ22].

La pipeline così configurata consente di ridurre in modo significativo il lavoro
necessario alla definizione del “primo impianto” dell’applicazione, pur richiedendo
rifinitura umana nelle fasi successive, in attinenza con il paradigma human-in-the-loop
[Wu+22].

85

L’impatto ambientale: un costo sistemico

Accanto ai benefici operativi, non può essere ignorato l’impatto ambientale legato
all’adozione massiva di LLM. Gli studi più recenti mostrano come la fase di
addestramento rappresenti solo una parte del problema: anche l’uso quotidiano di
modelli di grandi dimensioni comporta consumi energetici rilevanti [SGM19].
L’aumento della domanda di generazione - se esteso all’intero settore industriale -
potrebbe portare a un incremento significativo delle emissioni, aggravando un trend già
noto per i data center [Jon18].
Inoltre, l’evoluzione verso modelli sempre più grandi rischia di aumentare
drasticamente i costi ambientali per ogni token generato [Sch+20], a meno di progressi
sostanziali in efficienza hardware e modellistica.
Si tratta di un costo sistemico che l’industria non può ignorare. La letteratura recente
sottolinea infatti come la sostenibilità dell’AI dipenda non solo dall’efficienza del
training, ma anche dall’ottimizzazione dei modelli in fase di inferenza [Sch+20].
In futuro sarà quindi cruciale introdurre:

• pratiche di prompting più efficienti e consapevoli del costo energetico [Hen+20];

• modelli smaller-but-smarter, ottenuti tramite distillazione o ottimizzazioni
architetturali per contesti specifici [Pat+21];

• strategie di caching, distillazione e pruning, già riconosciute come strumenti
chiave per ridurre drasticamente il costo di esecuzione [Jou+21];

• metriche ambientali integrate nei processi decisionali aziendali e nella
documentazione tecnica dei modelli [SGM19].

Sviluppi futuri

Il lavoro svolto apre a numerose direzioni di miglioramento, molti dei quali legati alla
necessità di rendere la pipeline più matura, ripetibile e collettivamente adottabile
all’interno del team.

86

Estensione del processo al team

Un primo sviluppo riguarda l’adozione sistematica della pipeline da parte dell’intero
gruppo di sviluppo. Ciò richiede linee guida condivise per prompting, naming e
gestione del contesto, così da ridurre la variabilità individuale e garantire risultati più
stabili. Parallelamente, anche tramite i feedback dei componenti del team, le rules
dovranno essere rese più granulari e meno ambigue, in modo da fornire all’agente
vincoli più chiari.

Potenziamento della knowledge base MCP e test automatici

Un’altra direzione fondamentale consiste nel rafforzamento della KB MCP,
arricchendola con documentazione strutturata, esempi, anti–pattern [Bro+98] e casi
d’uso reali. Una knowledge base più completa aumenta la capacità del modello di
rispettare convenzioni architetturali e riduce la necessità di correzioni manuali. In
questo contesto, strumenti per la valutazione automatica della qualità del codice
generato permetterebbero di identificare rapidamente errori e incoerenze.

Integrazione nei workflow aziendali

Infine, sarà cruciale standardizzare i workflow di prototipazione e integrazione,
collegando la pipeline a processi CI/CD che possano orchestrare generazione,
validazione e deploy. In questa prospettiva, l’agente potrà evolvere da strumento
sperimentale a componente stabile dell’infrastruttura di sviluppo aziendale.

Considerazioni finali

Il ruolo dell’AI nello sviluppo software non è quello di sostituire l’ingegnere, ma di
amplificarne le capacità: ridurre il carico operativo, aumentare la superficie creativa e
abbreviare la distanza tra idea, prototipo e implementazione. I risultati ottenuti
mostrano che una pipeline intelligente, configurata ad hoc sul contesto aziendale
e ben orchestrata, può trasformare il modo in cui i team affrontano porting,
refactoring e design di nuove applicazioni.

87

La direzione è ormai chiara: i sistemi agentici diventeranno parte integrante dei processi
di sviluppo, e la loro adozione non dipenderà più dalla disponibilità tecnologica, ma
dalla capacità delle aziende di integrarli in modo consapevole e sostenibile.
La sfida che si prospetta non riguarda più l’opportunità del loro utilizzo, ma la capacità
di indirizzarne l’impiego in modo rigoroso, controllato e sostenibile.

88

Bibliografia

[Adz11] G. Adzic. Specification by Example: How Successful Teams Deliver the
Right Software. Manning, 2011. isbn: 9781638351368. url:
https://books.google.it/books?id=fDszEAAAQBAJ.

[Bai+22] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell,
Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie,
Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli,
Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller,
Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite,
Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer,
Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson,
Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk,
Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly,
Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds,
Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown
e Jared Kaplan. «Constitutional AI: Harmlessness from AI Feedback». In:
(2022). doi: 2212.08073v1. url: https://arxiv.org/abs/2212.08073v1.

[BG23] Stephan Böhm e Stefan Graser. «AI-based Mobile App Prototyping Status
Quo, Perspectives and Preliminary Insights from Experimental Case
Studies». In: nov. 2023.

[Bor23] Ali Borji. «A Categorical Archive of ChatGPT Failures». In: (feb. 2023).
doi: 10.21203/rs.3.rs-2895792/v1.

90

https://books.google.it/books?id=fDszEAAAQBAJ
https://doi.org/2212.08073v1
https://arxiv.org/abs/2212.08073v1
https://doi.org/10.21203/rs.3.rs-2895792/v1

[Bro+98] William H. Brown, Raphael C. Malveau, Hays W. "Skip" McCormick e
Thomas J. Mowbray. AntiPatterns: Refactoring Software, Architectures,
and Projects in Crisis. 1st. USA: John Wiley & Sons, Inc., 1998. isbn:
0471197130.

[Bro96] John Brooke. «SUS: A “Quick and Dirty” Usability Scale». In: Usability
Evaluation in Industry. A cura di Patrick W. Jordan, Bruce Thomas,
Ian L. McClelland e Bernard A. Weerdmeester. Taylor & Francis, 1996.

[Cam+17] Bradley Camburn, Vimal Viswanathan, Julie Linsey, David Anderson,
Daniel Jensen, Kevin Otto e Kristin Wood. «Design prototyping methods:
State of the art in strategies, techniques, and guidelines». In: Design
Science 3 (ago. 2017). doi: 10.1017/dsj.2017.10.

[Che+21] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde,
Jared Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov,
Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray e
Wojciech Zaremba. «Evaluating Large Language Models Trained on
Code». In: (lug. 2021). doi: 10.48550/arXiv.2107.03374.

[Chr+17] Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg e
Dario Amodei. «Deep reinforcement learning from human preferences». In:
Proceedings of the 31st International Conference on Neural Information
Processing Systems. NIPS’17. Long Beach, California, USA: Curran
Associates Inc., 2017, pp. 4302–4310. isbn: 9781510860964.

[Gao+23] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi,
Yi Dai, Jiawei Sun, Qianyu Guo, Meng Wang e Haofen Wang.
«Retrieval-Augmented Generation for Large Language Models: A Survey».
In: ArXiv abs/2312.10997 (2023). url:
https://api.semanticscholar.org/CorpusID:266359151.

[Hen+20] Peter Henderson, Jie Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky e
Joelle Pineau. «Towards the Systematic Reporting of the Energy and

91

https://doi.org/10.1017/dsj.2017.10
https://doi.org/10.48550/arXiv.2107.03374
https://api.semanticscholar.org/CorpusID:266359151

Carbon Footprints of Machine Learning». In: ArXiv abs/2002.05651
(2020). url: https://api.semanticscholar.org/CorpusID:211096620.

[HL25] Nam Huynh e Beiyu Lin. «Large Language Models for Code Generation: A
Comprehensive Survey of Challenges, Techniques, Evaluation, and
Applications». In: ArXiv abs/2503.01245 (2025). url:
https://api.semanticscholar.org/CorpusID:276742040.

[Hou+25] Xinyi Hou, Yanjie Zhao, Shenao Wang e Haoyu Wang. «Model Context
Protocol (MCP): Landscape, Security Threats, and Future Research
Directions». In: ArXiv abs/2503.23278 (2025). url:
https://api.semanticscholar.org/CorpusID:277452486.

[Ji+23] Zihao Ji, Nayeon Lee, Michael A. Hedderich, Danqi Chen e Percy Liang.
«Survey of Hallucination in Natural Language Generation». In: ACM
Computing Surveys 55 (2023). doi: 10.1145/3571730.

[Jin+25] Bowen Jin, Jinsung Yoon, Jiawei Han e Sercan O Arik. «Long-Context
LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG». In:
The Thirteenth International Conference on Learning Representations.
2025. url: https://openreview.net/forum?id=oU3tpaR8fm.

[Jon18] Nicola Jones. «How to Stop Data Centres from Gobbling Up Electricity».
In: Nature 561.7722 (2018).

[Jou+21] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho,
Thomas B. Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma,
Xiaoyu Ma, Thomas Norrie, Nishant Patil, Sushma Prasad, Cliff Young,
Zongwei Zhou e David Patterson. «Ten Lessons From Three Generations
Shaped Google’s TPUv4i : Industrial Product». In: 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). 2021,
pp. 1–14. doi: 10.1109/ISCA52012.2021.00010.

[Kas22] Atoosa Kasirzadeh. «Taxonomy of Risks posed by Language Models». In:
ACM: ACM, 2022, pp. 214–229. url:
https://philsci-archive.pitt.edu/21523/.

92

https://api.semanticscholar.org/CorpusID:211096620
https://api.semanticscholar.org/CorpusID:276742040
https://api.semanticscholar.org/CorpusID:277452486
https://doi.org/10.1145/3571730
https://openreview.net/forum?id=oU3tpaR8fm
https://doi.org/10.1109/ISCA52012.2021.00010
https://philsci-archive.pitt.edu/21523/

[Lew+20] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni,
Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis,
Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel e Douwe Kiela.
«Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks».
In: Advances in Neural Information Processing Systems. A cura di
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan e H. Lin. Vol. 33.
Curran Associates, Inc., 2020, pp. 9459–9474. url:
https://proceedings.neurips.cc/paper_files/paper/2020/file/

6b493230205f780e1bc26945df7481e5-Paper.pdf.

[Liu+24] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape,
Michele Bevilacqua, Fabio Petroni e Percy Liang. «Lost in the Middle:
How Language Models Use Long Contexts». In: Transactions of the
Association for Computational Linguistics 12 (feb. 2024), pp. 157–173.
issn: 2307-387X. doi: 10.1162/tacl_a_00638. eprint:
https://direct.mit.edu/tacl/article-

pdf/doi/10.1162/tacl_a_00638/2336043/tacl_a_00638.pdf. url:
https://doi.org/10.1162/tacl_a_00638.

[MGK08] Gloria Mark, Daniela Gudith e Ulrich Klocke. «The cost of interrupted
work: more speed and stress». In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’08. Florence, Italy:
Association for Computing Machinery, 2008, pp. 107–110. isbn:
9781605580111. doi: 10.1145/1357054.1357072. url:
https://doi.org/10.1145/1357054.1357072.

[MK24] Ieva Margevica-Grinberga e Aija Kaleja. «Job Shadowing as a Method in
Further Education». In: Society. Integration. Education. Proceedings of the
International Scientific Conference. Vol. 2. 2024. doi:
10.17770/sie2024vol2.7916.

[Moh+25] Abdelrahman Mohamed, Mariam Jan, Rahma Badran, Sama Mohamed,
Yousra Amr e Nada Shorim. «A Review on Detecting and Managing
Documentation Drift in Software Development». In: 2025 International

93

https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://doi.org/10.1162/tacl_a_00638
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00638/2336043/tacl_a_00638.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00638/2336043/tacl_a_00638.pdf
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1145/1357054.1357072
https://doi.org/10.1145/1357054.1357072
https://doi.org/10.17770/sie2024vol2.7916

Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). 2025,
pp. 546–552. doi: 10.1109/MIUCC66482.2025.11196773.

[Pat+21] David A. Patterson, Joseph Gonzalez, Quoc V. Le, Chen Liang,
Lluís-Miquel Munguía, Daniel Rothchild, David R. So, Maud Texier e
Jeff Dean. «Carbon Emissions and Large Neural Network Training». In:
ArXiv abs/2104.10350 (2021). url:
https://api.semanticscholar.org/CorpusID:233324338.

[Per+22] Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring,
John Aslanides, Amelia Glaese, Nat McAleese e Geoffrey Irving. «Red
Teaming Language Models with Language Models». In: Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing. A
cura di Yoav Goldberg, Zornitsa Kozareva e Yue Zhang. Abu Dhabi,
United Arab Emirates: Association for Computational Linguistics, dic.
2022, pp. 3419–3448. doi: 10.18653/v1/2022.emnlp-main.225. url:
https://aclanthology.org/2022.emnlp-main.225/.

[Sch+20] Roy Schwartz, Jesse Dodge, Noah A. Smith e Oren Etzioni. «Green AI».
In: Commun. ACM 63.12 (nov. 2020), pp. 54–63. issn: 0001-0782. doi:
10.1145/3381831. url: https://doi.org/10.1145/3381831.

[Sch+23] Timo Schick, Jane Dwivedi-Yu, Roberto Dessí, Roberta Raileanu,
Maria Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda e
Thomas Scialom. «Toolformer: language models can teach themselves to
use tools». In: Proceedings of the 37th International Conference on Neural
Information Processing Systems. NIPS ’23. New Orleans, LA, USA: Curran
Associates Inc., 2023.

[SGM19] Emma Strubell, Ananya Ganesh e Andrew Mccallum. «Energy and Policy
Considerations for Deep Learning in NLP». In: gen. 2019, pp. 3645–3650.
doi: 10.18653/v1/P19-1355.

[She+23] Toby Shevlane, Sebastian Farquhar, Ben Garfinkel, Mary Phuong,
Jess Whittlestone, Jade Leung, Daniel Kokotajlo, Nahema Marchal,
Markus Anderljung, Noam Kolt, Lewis Ho, Divya Siddarth, Shahar Avin,

94

https://doi.org/10.1109/MIUCC66482.2025.11196773
https://api.semanticscholar.org/CorpusID:233324338
https://doi.org/10.18653/v1/2022.emnlp-main.225
https://aclanthology.org/2022.emnlp-main.225/
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831
https://doi.org/10.18653/v1/P19-1355

Will Hawkins, Been Kim, Iason Gabriel, Vijay Bolina, Jack Clark,
Yoshua Bengio e Allan Dafoe. «Model evaluation for extreme risks». In:
(mag. 2023). doi: 10.48550/arXiv.2305.15324.

[UNI16] UNI - Ente Italiano di Normazione. UNI 11648:2016 Attività professionali
non regolamentate – Project manager – Definizione dei requisiti di
conoscenza, abilità e competenza. Norma tecnica italiana. Milano: Ente
Italiano di Normazione (UNI), 2016.

[Wan+23] Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan,
Roy Ka-Wei Lee e Ee-Peng Lim. «Plan-and-Solve Prompting: Improving
Zero-Shot Chain-of-Thought Reasoning by Large Language Models». In:
(mag. 2023). doi: 10.48550/arXiv.2305.04091.

[Wei+22] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter,
Fei Xia, Ed H. Chi, Quoc V. Le e Denny Zhou. «Chain-of-thought
prompting elicits reasoning in large language models». In: Proceedings of
the 36th International Conference on Neural Information Processing
Systems. NIPS ’22. New Orleans, LA, USA: Curran Associates Inc., 2022.
isbn: 9781713871088.

[WJ95] Michael Wooldridge e Nicholas R. Jennings. «Intelligent agents: theory and
practice». In: The Knowledge Engineering Review 10.2 (1995),
pp. 115–152. doi: 10.1017/S0269888900008122.

[Wu+22] Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma e
Liang He. «A survey of human-in-the-loop for machine learning». In:
Future Generation Computer Systems 135 (2022), pp. 364–381. issn:
0167-739X. doi: https://doi.org/10.1016/j.future.2022.05.014.
url: https:

//www.sciencedirect.com/science/article/pii/S0167739X22001790.

[Yan+25] Minglai Yang, Ethan Huang, Liang Zhang, Mihai Surdeanu,
William Yang Wang e Liangming Pan. «How Is LLM Reasoning Distracted
by Irrelevant Context? An Analysis Using a Controlled Benchmark». In:
Proceedings of the 2025 Conference on Empirical Methods in Natural

95

https://doi.org/10.48550/arXiv.2305.15324
https://doi.org/10.48550/arXiv.2305.04091
https://doi.org/10.1017/S0269888900008122
https://doi.org/https://doi.org/10.1016/j.future.2022.05.014
https://www.sciencedirect.com/science/article/pii/S0167739X22001790
https://www.sciencedirect.com/science/article/pii/S0167739X22001790

Language Processing. A cura di Christos Christodoulopoulos,
Tanmoy Chakraborty, Carolyn Rose e Violet Peng. Suzhou, China:
Association for Computational Linguistics, nov. 2025, pp. 13340–13358.
isbn: 979-8-89176-332-6. doi: 10.18653/v1/2025.emnlp-main.674. url:
https://aclanthology.org/2025.emnlp-main.674/.

[Yao+23] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran,
Karthik R Narasimhan e Yuan Cao. «ReAct: Synergizing Reasoning and
Acting in Language Models». In: The Eleventh International Conference
on Learning Representations. 2023. url:
https://openreview.net/forum?id=WE_vluYUL-X.

[YTÖ22] Burak Yetiştiren, Eray Tüzün e Işık Özsoy. «Assessing the Quality of
GitHub Copilot’s Code Generation». In: nov. 2022. doi:
10.1145/3558489.3559072.

[Zho+24] Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li,
Yuming Lou, Luning Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan,
Guohao Dai, Xiao-Ping Zhang, Yuhan Dong e Yu Wang. «A Survey on
Efficient Inference for Large Language Models». In: ArXiv abs/2404.14294
(2024). url: https://api.semanticscholar.org/CorpusID:269293007.

96

https://doi.org/10.18653/v1/2025.emnlp-main.674
https://aclanthology.org/2025.emnlp-main.674/
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.1145/3558489.3559072
https://api.semanticscholar.org/CorpusID:269293007

Sitografia

[AI25] Qodo AI. Windsurf vs Cursor: A Detailed Comparison.
https://qodo.ai/blog/windsurf-vs-cursor. 2025.

[Bui25] Builder.io. Windsurf vs Cursor: Which AI IDE is Better?
https://www.builder.io/blog/windsurf-vs-cursor. 2025.

[Cli] Cline. Cline: Open-Source AI Coding Agent. https://cline.bot/. Ultima
visita: 3 dicembre 2025.

[Cod] Codeium. Windsurf – Official Website. https://codeium.com/windsurf.
Ultima visita: 3 dicembre 2025.

[Cod25] Roo Code. Roo Code Site. https://roocode.com/. 2025.

[Cou23] Coursera. Prototyping Tools.
https://www.coursera.org/articles/prototyping-tools. 2023.

[Dat25] DataCamp. Windsurf vs Cursor: Which AI IDE Should You Use?
https://www.datacamp.com/blog/windsurf-vs-cursor. 2025.

[Dev25] Netcorp Software Development. Will AI Replace Programmers? The Future
of Coding in the Age of Artificial Intelligence.
https://www.netcorpsoftwaredevelopment.com/article/will-ai-

replace-programmers. 2025.

[Dig24] McKinsey Digital. State of AI in Software Development 2024.
https://www.mckinsey.com/capabilities/quantumblack/our-

insights/the-state-of-ai-2024. 2024.

[Doc25] Cline Docs. Installing Cline & Getting Started.
https://docs.cline.bot/introduction/welcome. 2025.

97

https://qodo.ai/blog/windsurf-vs-cursor
https://www.builder.io/blog/windsurf-vs-cursor
https://cline.bot/
https://codeium.com/windsurf
https://roocode.com/
https://www.coursera.org/articles/prototyping-tools
https://www.datacamp.com/blog/windsurf-vs-cursor
https://www.netcorpsoftwaredevelopment.com/article/will-ai-replace-programmers
https://www.netcorpsoftwaredevelopment.com/article/will-ai-replace-programmers
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-2024
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-2024
https://docs.cline.bot/introduction/welcome

[Fos25] Ryan Foster. The Complete Guide to AI in Software Development:
Transforming Code Creation in 2025.
https://emmo.ai/blog/ai-in-software-development. 2025.

[Gau23] M. Gaudion. What is Documentation Drift and How to Avoid It.
https://gaudion.dev/blog/documentation-drift. 2023.

[Git23] GitHub. Octoverse: The State of Open Source and the Rise of AI.
https://github.blog/news-insights/research/the-state-of-open-

source-and-ai/. 2023.

[Gos22] Dan Goslen. How to Get Software Documentation Right. https:

//dangoslen.me/blog/how-to-get-software-documentation-right/.
2022.

[Ins25a] Business Insider. Perplexity’s engineers use 2 AI coding tools, and they’ve
cut development time from days to hours.
https://www.businessinsider.com/perplexity-engineers-ai-tools-

cut-development-time-days-hours-2025-7?op=1. 2025.

[Ins25b] Business Insider. These Are the Most Popular AI Coding Tools Among
Engineers. https://www.businessinsider.com/ai-coding-tools-

popular-github-gemini-code-assist-cursor-q-2025-7?op=1. 2025.

[Lab25] Engine Labs. Cursor AI: An In-Depth Review.
https://blog.enginelabs.ai/cursor-ai-an-in-depth-review. 2025.

[LLM] LLM-Stats. LLM Comparison Dashboard. https://llm-stats.com.
Ultima visita: 3 dicembre 2025.

[Lov] Lovable.dev. AI-Powered App Builder. https://lovable.dev. Ultima
visita: 3 dicembre 2025.

[Mar25a] Visual Studio Marketplace. Cline – AI Coding Agent.
https://marketplace.visualstudio.com/items?itemName=

saoudrizwan.claude-dev. 2025.

98

https://emmo.ai/blog/ai-in-software-development
https://gaudion.dev/blog/documentation-drift
https://github.blog/news-insights/research/the-state-of-open-source-and-ai/
https://github.blog/news-insights/research/the-state-of-open-source-and-ai/
https://dangoslen.me/blog/how-to-get-software-documentation-right/
https://dangoslen.me/blog/how-to-get-software-documentation-right/
https://www.businessinsider.com/perplexity-engineers-ai-tools-cut-development-time-days-hours-2025-7?op=1
https://www.businessinsider.com/perplexity-engineers-ai-tools-cut-development-time-days-hours-2025-7?op=1
https://www.businessinsider.com/ai-coding-tools-popular-github-gemini-code-assist-cursor-q-2025-7?op=1
https://www.businessinsider.com/ai-coding-tools-popular-github-gemini-code-assist-cursor-q-2025-7?op=1
https://blog.enginelabs.ai/cursor-ai-an-in-depth-review
https://llm-stats.com
https://lovable.dev
https://marketplace.visualstudio.com/items?itemName=saoudrizwan.claude-dev
https://marketplace.visualstudio.com/items?itemName=saoudrizwan.claude-dev

[Mar25b] Visual Studio Marketplace. Roo Code - AI Agent. https://marketplace.

visualstudio.com/items?itemName=RooVeterinaryInc.roo-cline.
2025.

[Mic] Microsoft. Visual Studio Code Extension API Documentation.
https://code.visualstudio.com/api. Ultima visita: 3 dicembre 2025.

[Mil22] Tara Milburn. Why Effective Onboarding Is Critical To Employee
Retention. https://www.forbes.com/councils/

forbesbusinesscouncil/2022/12/02/why-effective-onboarding-is-

critical-to-employee-retention/. 2022.

[Opea] OpenAI. Function Calling and JSON Mode.
https://platform.openai.com/docs/guides/function-calling.
Ultima visita: 3 dicembre 2025.

[Opeb] OpenAI. Safety System Overview. https://openai.com/it-IT/safety/.
Ultima visita: 3 dicembre 2025.

[Phe24] Julia Phelan. Onboarding New Employees Without Overwhelming Them.
https://hbr.org/2024/04/onboarding-new-employees-without-

overwhelming-them. 2024.

[Qub25] Qubika. A Practical Review of Roo Code.
https://www.qubika.com/blog/roo-code-review. 2025.

[Ser24] Amazon Web Services. Security Considerations for Data in Generative AI.
https://docs.aws.amazon.com/whitepapers/latest/security-data-

generative-ai. 2024.

[sha] shadcn. shadcn/ui Documentation. https://ui.shadcn.com. Ultima
visita: 3 dicembre 2025.

[Sha23] Inbal Shani. Survey Reveals AI’s Impact on the Developer Experience.
https://github.blog/news-insights/research/survey-reveals-ais-

impact-on-the-developer-experience/. 2023.

[Sic24] Anastassiya Sichkarenko. The State of Developer Ecosystem 2024.
https://www.jetbrains.com/lp/devecosystem-2024. 2024.

99

https://marketplace.visualstudio.com/items?itemName=RooVeterinaryInc.roo-cline
https://marketplace.visualstudio.com/items?itemName=RooVeterinaryInc.roo-cline
https://code.visualstudio.com/api
https://www.forbes.com/councils/forbesbusinesscouncil/2022/12/02/why-effective-onboarding-is-critical-to-employee-retention/
https://www.forbes.com/councils/forbesbusinesscouncil/2022/12/02/why-effective-onboarding-is-critical-to-employee-retention/
https://www.forbes.com/councils/forbesbusinesscouncil/2022/12/02/why-effective-onboarding-is-critical-to-employee-retention/
https://platform.openai.com/docs/guides/function-calling
https://openai.com/it-IT/safety/
https://hbr.org/2024/04/onboarding-new-employees-without-overwhelming-them
https://hbr.org/2024/04/onboarding-new-employees-without-overwhelming-them
https://www.qubika.com/blog/roo-code-review
https://docs.aws.amazon.com/whitepapers/latest/security-data-generative-ai
https://docs.aws.amazon.com/whitepapers/latest/security-data-generative-ai
https://ui.shadcn.com
https://github.blog/news-insights/research/survey-reveals-ais-impact-on-the-developer-experience/
https://github.blog/news-insights/research/survey-reveals-ais-impact-on-the-developer-experience/
https://www.jetbrains.com/lp/devecosystem-2024

[Ver25] The Verge. Can Cursor AI Automate Programming?
https://www.theverge.com/tech/cursor-ai. 2025.

[Whi24] Stacy Ledesma Whitenight. Why Prototyping is the Breakthrough Strategy
for Innovation. https://code.likeagirl.io/why-prototyping-is-the-

breakthrough-strategy-for-innovation-b5aaa1b12b84. 2024.

[Zap] Zapier. Windsurf vs Cursor.
https://zapier.com/blog/windsurf-vs-cursor. Ultima visita: 3
dicembre 2025.

100

https://www.theverge.com/tech/cursor-ai
https://code.likeagirl.io/why-prototyping-is-the-breakthrough-strategy-for-innovation-b5aaa1b12b84
https://code.likeagirl.io/why-prototyping-is-the-breakthrough-strategy-for-innovation-b5aaa1b12b84
https://zapier.com/blog/windsurf-vs-cursor

Ringraziamenti

Scrivi qui i tuoi ringraziamenti.

	Introduzione
	Panoramica della soluzione
	Claim e obiettivo della ricerca

	Contesto Scientifico e Tecnologico
	Approcci popolari
	Onboarding e Prototipazione
	Uso attuale delle AI nello sviluppo software
	Agenti AI via web e strumenti ``agentici''
	Limiti delle soluzioni popolari
	Context switching, hallucinations e documentation drift.

	Soluzione proposta

	Descrizione ad alto livello della soluzione
	Come funzionano gli agenti di generazione di codice
	Dalla valutazione comparativa alla scelta di Windsurf e Lovable
	Architettura ad alto livello: Windsurf, Lovable, MCP e rules

	Implementazione della soluzione
	Raccolta del contesto
	Pianificazione esplicita (plan/act)
	Tooling e protocolli
	Revisione e sicurezza
	Sintesi

	Impostazione dello studio
	Ricerca dell'IDE (o del plugin VSCode)
	Definizione delle regole e dei server MCP
	Definizione del benchmark
	Risultati emersi

	Test di validazione
	Descrizione dell’applicativo da migrare
	Descrizione funzionale
	Descrizione dell'interfaccia
	Descrizione tecnica e architettura

	Fase “Lovable” - Remix demo, prompt e specifiche eseguibili
	Prima iterazione
	Seconda iterazione
	Terza iterazione

	Integrazione e merge con Windsurf
	Processo di integrazione
	Prompt forniti a Windsurf

	Valutazione del sistema
	Metodologia di valutazione
	Efficacia e analisi qualitativa
	Contributo di Lovable
	Contributo di Windsurf
	Qualità complessiva del risultato

	Risultati del questionario

