
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

STRUMENTO DI
MECHANISTIC INTERPRETABILITY

PER MODELLI LINGUISTICI
BASATI SU TRANSFORMER

Relatore:
Chiar.mo Dott.
STEFANO PIO ZINGARO

Controrelatore:
Chiar.mo Prof.
MAURIZIO GABBRIELLI

Presentata da:
DANIELE POLIDORI

Sessione III
Anno Accademico 2024/2025

Introduzione

I modelli di machine learning basati su Transformer [10] rivestono un

ruolo di ampio rilievo nel panorama attuale, in particolare per quanto riguar-

da l’elaborazione del linguaggio naturale (NLP) [5, 3]. Si tratta di modelli

estremamente potenti, tuttavia carenti nell’interpretabilità [3, 2, 1]. Risulta

socialmente necessario l’utilizzo di sistemi sicuri, affidabili e trasparenti. Ta-

le obiettivo richiede una comprensione esaustiva del relativo funzionamento

interno, rendendo un imperativo cruciale fare luce sui processi decisionali da

cui sono guidati [2, 3, 1].

Questo lavoro si prefigge lo scopo di trovare uno strumento per interpretare

il funzionamento dei moderni modelli linguistici basati su Transformer.

I metodi di explainable AI, nel panorama di ricerca tipicamente presentato,

forniscono spiegazioni per specifici stakeholder in particolari contesti. Käst-

ner e Crook [2] definiscono tale scenario fondamentalmente incompleto, sug-

gerendo di considerare anche il potenziale di strategie di ricerca coordinate

al fine di scoprire l’organizzazione funzionale dei sistemi. Un approccio che

si propone di compensare questa mancanza è quello della mechanistic inter-

pretability, un campo di ricerca emergente, che parte dalla premessa che i

sistemi di intelligenza artificiale, sufficientemente complessi, vanno studiati e

spiegati tramite le stesse lenti usate per gli organismi biologici, piuttosto che

trattarli come meri artefatti tecnologici [2].

Nell’ambito della mechanistic interpretability, Elhage e colleghi [9] hanno

creato un framework matematico per descrivere a livello teorico la struttu-

ra e il funzionamento dei modelli linguistici basati su Transformer, facendo

i

ii INTRODUZIONE

un primo passo verso il reverse engineering dei calcoli eseguiti da tali siste-

mi. Nella loro ricerca, essi hanno utilizzato una libreria — senza rilasciarne

l’implementazione — chiamata Garçon [8], uno strumento per l’analisi degli

elementi interni dei modelli, in particolare quelli di grandi dimensioni, che

facilita l’accesso alle attivazioni e ai parametri [9].

Neel Nanda ha guidato lo sviluppo di una libreria chiamata Transformer-

Lens [6] — le cui caratteristiche fondamentali sono state fortemente ispirate

dall’interfaccia di Garçon [8] e dal relativo framework matematico [9] — che

consente l’analisi di modelli linguistici basati su Transformer, secondo un

approccio di mechanistic interpretability, esponendo le relative attivazioni

interne.

Tale strumento si pone come risposta all’esigenza presentata inizialmen-

te, in linea con l’obiettivo prefissato. TransformerLens, infatti, consente

di verificare ipotesi sul funzionamento di un modello linguistico basato su

Transformer.

Il lavoro sarà strutturato nella maniera seguente.

Nel Cap. 1 verrà presentato il panorama di riferimento in cui si inserisce

questa ricerca. In particolare, nella Sez. 1.1 si esporrà lo stato dell’arte, con

particolare riferimento alla mechanistic interpretability, illustrandone tecni-

che e un possibile flusso di lavoro (Sez. 1.1.1). Nella Sez. 1.2 si illustrerà il

framework matematico presentato da Elhage e colleghi [9].

Nel Cap. 2 si parlerà della libreria TransformerLens [6], mostrandone le

caratteristiche principali (Sez. 2.1), la corrispondenza con il framework ma-

tematico [9] (Sez. 2.2) e l’utilizzo pratico di tale strumento (Sez. 2.3).

Infine, nelle Conclusioni, si enunceranno i limiti e i possibili sviluppi futuri

di questo lavoro.

Indice

Introduzione i

1 Mechanistic Interpretability 1

1.1 Stato dell’Arte . 1

1.1.1 Strategie di Ricerca per Scoprire l’Organizzazione Fun-

zionale dei Sistemi . 4

1.2 Framework Matematico . 9

1.2.1 Residual Stream come Canale di Comunicazione 11

1.2.2 Attention Head Indipendenti e Additive 13

1.2.3 Risultati . 17

2 TransformerLens 19

2.1 Caratteristiche Principali . 21

2.2 Corrispondenza con il Framework Matematico 23

2.3 Uso . 27

Conclusioni 29

Bibliografia 31

iii

Elenco delle figure

1.1 L’architettura d’alto livello di un Transformer di tipo decoder-

only. Tratta da [9]. 11

1.2 Il residual stream di un Transformer. Tratta da [9]. 12

1.3 I “pesi virtuali” che collegano implicitamente ogni coppia di

layer. Tratta da [9]. 12

1.4 Il residual stream rappresenta uno spazio vettoriale ad alta

dimensionalità, che può essere diviso in sottospazi differenti.

Tratta da [9]. 13

1.5 Le attention head leggono informazioni dal residual stream di

un token e le scrivono nel residual stream di un altro token.

Tratta da [9]. 14

1.6 I circuiti QK (per l’attenzione) e OV (per l’output), due ope-

razioni lineari separabili di ogni attention head. Tratta da

[9]. 16

v

Elenco dei codici

2.1 L’uso di base di TransformerLens. Tratto dalla pagina GitHub

della libreria. 22

2.2 Implementazione della classe DemoTransformer, rappresen-

tante il Transformer completo. Tratta dal notebook Clean

Transformer Demo, nella documentazione di TransformerLens. 25

2.3 Implementazione della classe TransformerBlock, rappresen-

tante un singolo blocco del Transformer. Tratta dal notebook

Clean Transformer Demo, nella documentazione di Transfor-

merLens. 26

vii

Capitolo 1

Mechanistic Interpretability

Ad oggi, i principali modelli utilizzati nel campo dell’elaborazione del lin-

guaggio naturale (NLP) sono basati sull’architettura Transformer [10, 5, 3].

Si tratta di modelli estremamente potenti, tuttavia carenti nell’interpreta-

bilità [3, 2, 1]. I programmatori stessi difettano di una piena comprensione

dei meccanismi interni di tali sistemi, che, cos̀ı come gran parte degli altri

modelli di reti neurali, vengono utilizzati come delle “black-box” [4, 3].

Risulta socialmente necessario, in particolare nei campi ad alto rischio, come

quello medico, finanziario e gli scenari in cui è in gioco la vita umana, l’uti-

lizzo di sistemi sicuri, affidabili e trasparenti. Tale obiettivo, reso prioritario

dalla rapida crescita e ampia diffusione di tali modelli, richiede una compren-

sione esaustiva del relativo funzionamento interno, rendendo un imperativo

cruciale fare luce sui processi decisionali da cui sono guidati [2, 3, 1].

Questo lavoro si inserisce nell’ampio panorama di ricerca volto all’individua-

zione di strategie, approcci e strumenti in grado di far fronte all’opacità dei

modelli.

1.1 Stato dell’Arte

Nel machine learning (ML) e in particolare nel deep learning, le reti neu-

rali artificiali profonde (ANN) sono modelli spesso complessi e opachi. Il loro

1

2 1. Mechanistic Interpretability

funzionamento viene espresso come approssimazione di funzioni attraverso il

contributo di milioni o miliardi di parametri della rete, i cui valori vengo-

no appresi durante un processo di addestramento automatizzato (training).

Se, da un lato, questo permette di ottenere comportamenti molto sofisticati,

dall’altro non esclude la possibilità di averne di indesiderati e non previsti.

Infatti, essendo l’organizzazione funzionale della rete appresa in automatico,

il funzionamento interno, che fa corrispondere un determinato output a un

certo input, spesso rimane, almeno in parte, sconosciuto [2].

Per far fronte a questa situazione e al bisogno di sistemi trasparenti, neces-

sari, come già detto, per un uso sicuro nella società, è stato sviluppato il

campo di ricerca dell’explainable AI (XAI) [2]. Uno dei pilastri principali è

l’interpretabilità1, cioè la capacità di spiegare il comportamento dei modelli

di ML, in termini comprensibili per un essere umano[3, 4].

Conoscere tali strumenti permette di avere una chiara visione sulle rispettive

capacità e limiti, in modo tale da individuare possibili bug e bias, nonché

aree di miglioramento delle performance, evitando rischi e aprendo la stra-

da a modelli più robusti, efficaci e affidabili [3]. L’interpretabilità favorisce

il monitoraggio delle capacità del modello nel corso del tempo, permette di

confrontare modelli differenti e consente lo sviluppo di strumenti affidabili,

etici e sicuri da poter essere impiegati nelle applicazioni del mondo reale [3].

Questo lavoro si concentra sull’interpretabilità di modelli linguistici (langua-

ge model) basati sull’architettura Transformer. La maggior parte dei large

language model (LLM) moderni — tra i quali, alcuni esempi più noti so-

no GPT-2 (e i successivi dell’omonima serie, rilasciati da OpenAI) e Clau-

de (rilasciato da Anthropic) — sono basati sui Transformer [3, 5]. Per via

dell’opacità dovuta alla vastità dei dati d’addestramento, delle dimensioni

dell’architettura e della complessità della struttura appresa, interpretare tali

modelli risulta più difficile [3].

1È una questione di ricerca dibattuta la differenza tra interpretability ed explainabi-

lity. Zhao e colleghi [3] utilizzano i due termini in maniera interscambiabile. Ai fini

di questo lavoro, risulta secondario entrare nel merito di tale questione. Con il termine

“interpretabilità”, quindi, si farà riferimento al concetto cos̀ı come presentato.

1.1 Stato dell’Arte 3

L’XAI si occupa in larga parte di sviluppare soluzioni analitiche con cui

rendere trasparenti sistemi opachi [2, p. 4]. Dal momento che il tipo d’in-

formazione, necessaria per fare luce su un determinato sistema, dipende da

svariati fattori, i ricercatori hanno sviluppato una gamma di metodi con

proprietà differenti. La ricerca in tale ambito si propone di fornire la spie-

gazione più indicata per l’applicazione in esame, nel relativo contesto e per

lo specifico obiettivo [2]. Tra gli esempi più noti ci sono i metodi basati su

feature attribution, che puntano a misurare l’importanza di ciascuna feature

in input, come parole, frasi e porzioni di testo, rispetto alla predizione del

modello. Ne fanno parte le tecniche di attribuzione basate sul gradiente,

quelle di decomposizione e i metodi basati su modelli surrogati. Le prime

misurano l’importanza analizzando le derivate parziali dell’output rispetto a

ogni dimensione dell’input. Le seconde mirano a scomporre il punteggio di

rilevanza in contributi lineari provenienti da componenti del modello, quali

attention head, token e attivazioni neuronali. Gli ultimi usano modelli più

semplici per spiegare singole previsioni di altri più complessi; tali sistemi

surrogati includono alberi di decisione, modelli lineari e altri sistemi white-

box che, per loro natura, sono interpretabili by-design, quindi comprensibili

più facilmente per un umano. Un noto esempio è LIME (Local Interpretable

Model-Agnostic Explanations): per generare spiegazioni per un caso speci-

fico, il modello surrogato viene addestrato su dati campionati localmente

attorno a quel caso, per approssimare il comportamento dell’originale nella

regione locale. In questo contesto, si inserisce anche SHAP (SHapley Additi-

ve exPlanations), un approccio basato sulla teoria dei giochi, che considera

le feature come giocatori in un gioco cooperativo di predizione e assegna a

ciascun loro sottoinsieme un valore, che riflette il rispettivo contributo alla

predizione del modello. Anziché costruire un modello di spiegazione locale

per ciascuna istanza, SHAP calcola i valori utilizzando l’intero dataset [3].

4 1. Mechanistic Interpretability

1.1.1 Strategie di Ricerca per Scoprire l’Organizzazio-

ne Funzionale dei Sistemi

Come già detto, i metodi di XAI, nel panorama di ricerca tipicamen-

te presentato, forniscono spiegazioni per specifici stakeholder in particolari

contesti. Kästner e Crook [2] definiscono tale scenario fondamentalmente

incompleto, suggerendo di considerare anche il potenziale di strategie di ri-

cerca coordinate al fine di scoprire l’organizzazione funzionale dei sistemi.

Le tecniche tradizionali di XAI sono in grado di fare luce su quali feature

in input influenzino un determinato esito o su come queste debbano esse-

re modificate per produrre un cambiamento nel risultato. Tuttavia, questo

non risulta sufficiente per comprendere come questi sistemi funzionano nella

loro interezza. Solo comprendendo come l’organizzazione funzionale suscita

pattern comportamentali, potremo anticipare la risposta dei modelli a nuovi

input e il loro comportamento in contesti inesplorati. L’interesse è rivolto al-

la struttura interna appresa dalla rete, detta emergent structure, che emerge

attraverso le procedure di addestramento automatizzato. Solitamente, una

comprensione profonda di questa struttura non è estrapolabile applicando

metodi di XAI individuali personalizzati per contesti specifici [2]. Per di più,

la rapida crescita dei modelli rende i metodi tradizionali, orientati a sistemi

addestrati secondo il paradigma del traditional fine-tuning, inadeguati per i

modelli di grandi dimensioni addestrati secondo il paradigma del prompting.

Tale distinzione — che segue la classificazione presentata da Zhao e colleghi

[3] — si basa sulla modalità di adattamento dei sistemi al dominio specifico.

Appartengono alla prima categoria i modelli linguistici che vengono inizial-

mente sottoposti a pre-training, su un ampio corpus di dati testuali non

etichettati, per poi essere sottoposti a fine-tuning, su un insieme di dati eti-

chettati provenienti da uno specifico dominio applicativo. Appartenenti alla

seconda categoria, invece, sono i modelli che prevedono l’utilizzo di prompt

— per esempio, frasi in linguaggio naturale contenenti spazi vuoti, che il

modello deve completare — per consentire l’in-context learning (ICL) di ti-

po zero-shot (cioè senza esempi) o few-shot (cioè con pochi esempi), senza

1.1 Stato dell’Arte 5

richiedere dati di addestramento aggiuntivi. Come già detto, all’aumenta-

re delle dimensioni dei modelli e dei dati d’addestramento, corrisponde una

maggiore complessità nel comprendere i relativi processi decisionali. L’utiliz-

zo di tecniche tradizionali, come quelle di feature attribution, richiederebbe

considerevoli risorse computazionali, risultando inadeguate per sistemi con

centinaia di miliardi di parametri, o anche più. In aggiunta, questi sistemi

mostrano abilità emergenti che richiedono nuove prospettive per chiarirne i

meccanismi sottostanti. Tali modelli si basano su abilità di ragionamento che

rendono meno significative le spiegazioni locali o specifiche per determinati

esempi e gli intricati funzionamenti interni e processi di ragionamento sono

troppo complessi per essere catturati in maniera efficace semplificandoli con

modelli surrogati [3].

Un approccio che si propone di compensare questa mancanza è quello della

mechanistic interpretability (MI), un campo di ricerca emergente, che parte

dalla premessa che i sistemi di intelligenza artificiale, sufficientemente com-

plessi, vanno studiati e spiegati tramite le stesse lenti usate per gli organismi

biologici, piuttosto che trattarli come meri artefatti tecnologici. In tal sen-

so, i sistemi di intelligenza artificiale vengono caratterizzati in termini della

rispettiva organizzazione funzionale, ovvero l’insieme delle attività organizza-

te delle componenti rilevanti dal punto di vista funzionale. Tali componenti

possono essere una qualsiasi unità o struttura della rete, che contribuisce

al raggiungimento di una specifica funzione all’interno del sistema; senza li-

mitarsi a entità prespecificate, come neuroni o layer, sono comprese anche

strutture complesse, come circuiti o rappresentazioni distribuite. Si trat-

ta, quindi, di comprendere quali proprietà del sistema supportino il relativo

comportamento e come le proprie funzioni siano implementate dalla sinergia

tra le componenti rilevanti. Ciò richiede l’applicazione di discovery strategies

coordinate, mutuate dalle scienze della vita, come pattern recognition, func-

tional decomposition, localisation e systematic experimental manipulations.

In quanto tale, la ricerca in MI può essere dispendiosa a livello di risorse, sia

6 1. Mechanistic Interpretability

in termini di tempo che di lavoro, ma, di contro, si otterrà una comprensione,

sul funzionamento di questi sistemi, più profonda e olistica, ovvero, ancora,

in termini di come l’organizzazione funzionale dei sistemi implementa il ri-

spettivo comportamento [2]. I risultati di una ricerca efficace in MI offrono

una maggiore capacità predittiva e, permettendo interventi mirati, un mag-

giore controllo sul comportamento del sistema, consentendo ai ricercatori di

potenziare specifiche capacità o correggere comportamenti indesiderati [2, 1].

Come già detto, le ANN acquisiscono la propria organizzazione funzionale

attraverso procedure d’addestramento automatizzate. In questa maniera, le

componenti del sistema assumono ruoli specifici, che i programmatori, soli-

tamente, non sono in grado di anticipare, e vengono organizzate in modi che

consentono loro di collaborare per produrre i comportamenti che osserviamo

[2]. L’obiettivo dei ricercatori in MI è proprio quello di scoprire le componenti

rilevanti e la loro organizzazione, spiegando il funzionamento interno di que-

sti modelli [2, 1]. La MI si focalizza sul reverse engineering dei componenti

del modello, per trasformarli in algoritmi comprensibili all’essere umano, in

questo modo spiegando e prevedendo i comportamenti delle reti [4, 1, 9].

La ricerca in MI considera le ANN come grafi computazionali e i circuiti

come sottografi con funzionalità distinte [4, 1, 2]. Un circuito, infatti, con-

nette neuroni o feature attraverso diversi layer, formando un meccanismo

coerente e interpretabile [1]. In quanto unità funzionali in cui i neuroni si

auto-organizzano durante il processo d’addestramento, i circuiti fanno parte

della struttura appresa dal modello [2]. Questi rivelano come i singoli neuroni

contribuiscono a funzioni d’alto livello [1], dal momento che i comportamenti

delle reti neurali sono implementati da algoritmi all’interno del grafo com-

putazionale del modello [4].

Secondo la classificazione di Gantla [1], le tecniche di MI si dividono in os-

servazionali (observational) e interventistiche (interventional). Sebbene le

prime — tra cui rientrano il probing e gli sparse autoencoder (SAE) — forni-

scano informazioni sulle attivazioni neuronali, esse potrebbero rivelare soltan-

1.1 Stato dell’Arte 7

to correlazioni piuttosto che relazioni causali. Le seconde affrontano questa

limitazione, alterando le attivazioni neuronali per osservare i cambiamenti

nell’output del modello. Ne fanno parte le tecniche di ablation, che esplora-

no relazioni causali rimuovendo o disattivando sistematicamente componenti

del modello e osservando l’effetto sulle prestazioni del sistema nel compiere

il task. Questo aiuta a identificare i componenti dei circuiti computazionali

che svolgono compiti specifici, fornendo evidenza causale della loro esistenza.

Tuttavia, la rimozione completa di componenti può introdurre effetti inde-

siderati, motivando l’uso di metodi più raffinati, come il path patching e il

knockout. Il primo consente un’analisi più precisa del contributo dei com-

ponenti, attraverso interventi selettivi sui percorsi computazionali. Questa

tecnica prevede l’esecuzione del modello su due input differenti e lo scambio

degli output di componenti specifici, per analizzare gli effetti di sottoinsie-

mi differenti di archi, nel grafo computazionale dei modelli. Il secondo offre

un approccio meno dirompente, sostituendo gli output dei componenti con

valori neutri — le attivazioni medie provenienti da un dataset di riferimento

— anziché rimuoverli completamente, cancellando cos̀ı il relativo contenuto

informativo. Questo preserva la stabilità del modello, pur consentendo l’a-

nalisi del ruolo di un componente [1].

Conmy e colleghi [4] hanno sistematizzato il flusso di lavoro comune seguito

da molte ricerche sulla MI con approccio interventistico [1], che si è rive-

lato fruttuoso per individuare circuiti nei modelli, delineando gli elementi

essenziali di questo processo. Essi identificano il flusso di lavoro, che porta

eventualmente all’individuazione di un circuito, come articolato in tre fasi. I

ricercatori:

1. Selezionano comportamento, prompt e metrica.

Scelgono un comportamento dell’ANN da analizzare, curano una colle-

zione di prompt che stimolino tale comportamento nel modello e sele-

zionano una metrica per quantificare il grado di esecuzione del compito

da parte del modello.

Il più delle volte, optano per un comportamento chiaramente definito,

8 1. Mechanistic Interpretability

al fine di isolare l’algoritmo relativo a un compito specifico. Cos̀ı fa-

cendo, il circuito sarà più semplice da interpretare, rispetto a un mix

di circuiti corrispondenti a un comportamento vago.

2. Dividono la rete neurale in un grafo di unità più piccole.

Per individuare circuiti relativi al comportamento di interesse, è ne-

cessario rappresentare gli elementi interni del modello come un grafo

aciclico diretto (DAG) computazionale.

Ciascuno studio definisce il livello di astrazione del grafo computa-

zionale, in base al grado di dettaglio richiesto per le spiegazioni del

comportamento del modello. Ad esempio, a un livello di astrazione più

grossolano, i grafi computazionali possono rappresentare le interazioni

tra le attention head e gli MLP (Multi-Layer Perceptron). A un livello

più granulare, invece, potrebbero includere le attivazioni separate di

query, chiavi (key) e valori (value), le interazioni tra i singoli neuroni

oppure prevedere un nodo per ciascuna posizione dei token.

3. Eseguono il patching delle attivazioni del modello, per isolare

il sottografo rilevante.

Una volta specificato il DAG computazionale, si può procedere alla

ricerca degli archi che formano il circuito, per comprendere quali unità

sono coinvolte nel comportamento.

Si testa l’importanza degli archi utilizzando il patching ricorsivo delle

attivazioni (recursive activation patching):

(a) si sovrascrive il valore di attivazione di un nodo o di un arco con

un’attivazione corrotta (corrupted),

(b) si esegue un forward pass attraverso il modello,

(c) si confrontano i valori di output del nuovo modello con quelli del

modello originale, utilizzando la metrica precedentemente scelta.

In genere, si inizia dal nodo di output, si determinano gli archi in

ingresso importanti e poi si investigano tutti i nodi genitori (parent

1.2 Framework Matematico 9

node) attraverso questi archi, procedendo allo stesso modo.

L’obiettivo è quello di rimuovere dal modello quanti più componenti e

connessioni superflue possibili.

Dopo aver isolato con successo un sottografo, si è individuato un circuito. Il

ricercatore può quindi formulare e testare ipotesi sulle funzioni implementate

da ciascun nodo all’interno del sottografo, ripetendo i tre passi precedenti con

prompt o granularità leggermente differenti, finché non saranno soddisfatti

delle spiegazioni dei componenti del circuito e l’algoritmo del modello non

sarà compreso [4].

1.2 Framework Matematico

Elhage e colleghi [9], del gruppo di ricerca in MI di Anthropic, hanno

creato un framework matematico per descrivere a livello teorico la struttura

e il funzionamento dei modelli linguistici basati su Transformer, facendo un

primo passo verso il reverse engineering dei calcoli eseguiti da tali sistemi. Il

loro lavoro si è concentrato su modelli estremamente semplici — in partico-

lare, Transformer con al massimo due layer, che contengono esclusivamente

blocchi d’attenzione — con l’obiettivo di scoprire pattern algoritmici elemen-

tari o schemi ricorrenti che possano successivamente essere applicati a modelli

di dimensioni e complessità maggiori. Concettualizzando il funzionamento

dei Transformer in un modo nuovo, ma matematicamente equivalente, essi

hanno successo nella comprensione di questi modelli di piccole dimensioni,

acquisendo una comprensione significativa del loro funzionamento interno.

Di particolare rilievo è l’individuazione di specifiche attention head, definite

“induction head”. Queste si sviluppano solamente in modelli con almeno

due layer d’attenzione e possono spiegare l’ICL in questi sistemi di piccole

dimensioni. Su questa linea, Olsson e colleghi [7], del medesimo gruppo di

ricerca di Anthropic, hanno mostrato che sia il framework matematico per

comprendere i Transformer, sia il concetto di induction head, continuano a

essere rilevanti, almeno parzialmente, per modelli molto più grandi e realisti-

10 1. Mechanistic Interpretability

ci, pur rimanendo lontani da un reverse engineering completo di tali modelli

[9].

La MI richiede di scomporre i modelli in componenti interpretabili dal-

l’essere umano. Riconcettualizzando i Transformer, come già detto, secondo

modalità equivalenti — seppur non convenzionali, perché computazionalmen-

te inefficienti — Elhage e colleghi [9] individuano una rappresentazione che

facilita il ragionamento sui modelli. Essi apportano una modifica sostanziale

alla struttura dei Transformer, concentrandosi su una versione semplificata,

di tipo “attention-only”, ovvero privi di layer MLP. Inoltre, non considerano

né i bias né la layer normalization — cambiamenti più superficiali2 — allo

scopo di favorire chiarezza e semplicità.

Il lavoro si concentra su modelli linguistici basati su Transformer di tipo

decoder-only3 autoregressivi4, come GPT-2. Un Transformer di questo tipo

(Fig. 1.1) inizia con un token embedding, seguito da una serie di blocchi (“re-

sidual block”), e termina con un token unembedding. Ogni blocco è costituito

da un layer di attenzione, seguito da un layer MLP. Sia i layer di attenzio-

ne che quelli MLP “leggono” il proprio input dal residual stream, eseguendo

una proiezione lineare, e successivamente “scrivono” il risultato nel residual

stream, sommandovi una nuova proiezione lineare. Ogni layer di attenzione

è composto da più teste (attention head), che operano in parallelo [9].

2Al netto di complicanze implementative, infatti, i classici modelli possono essere

simulati da sistemi riformulati secondo questa semplificazione [9].
3Vaswani e colleghi, nel lavoro originale sui Transformer [10], utilizzavano una specifica

architettura encoder-decoder per compiti di traduzione, ma molti modelli di linguaggio

moderni hanno omesso tale struttura [9, 5].
4I Transformer di tipo decoder-only autoregressivi prevedono il token successivo basan-

dosi solo sui token precedenti, grazie alla masked self-attention [10] che limita l’attenzione

al contesto precedente, simulando il processo di generazione token-per-token (cioè senza

accesso a informazioni future non ancora prodotte) [5].

1.2 Framework Matematico 11

Figura 1.1: L’architettura d’alto livello di un Transformer di tipo decoder-

only. Tratta da [9].

1.2.1 Residual Stream come Canale di Comunicazione

Una delle caratteristiche principali dell’architettura d’alto livello di un

Transformer è che ogni layer, come già detto, aggiunge i propri risultati

a quello che Elhage e colleghi [9] definiscono “residual stream” (Fig. 1.2).

Questo è semplicemente la somma dell’output di tutti i layer precedenti e

dell’embedding originale. Generalmente viene considerato come un canale di

comunicazione, poiché non effettua alcuna elaborazione in sé e tutti i layer

comunicano attraverso di esso. Il residual stream presenta una struttura pro-

fondamente lineare. Ogni layer esegue una trasformazione lineare arbitraria

per “leggere” le informazioni dal residual stream, per poi eseguirne un’altra

prima dell’addizione per “scrivere” il proprio output nel residual stream.

Questa struttura lineare e additiva del residual stream comporta numero-

se implicazioni importanti. Una conseguenza particolarmente utile è che si

possono concepire dei “pesi virtuali” (“virtual weights”) impliciti (Fig. 1.3),

che collegano direttamente qualsiasi coppia di layer — anche quelli separati

da molti altri layer — moltiplicando le loro interazioni attraverso il residual

stream. Questi pesi virtuali sono il prodotto dei pesi di output di un layer

12 1. Mechanistic Interpretability

Figura 1.2: Il residual stream di un Transformer. Tratta da [9].

con i pesi di input5 di un altro (ossia W q
I W

p
O, dove p e q sono indici dei layer e

p < q) e descrivono la misura in cui un layer successivo legge le informazioni

scritte da un layer precedente [9].

Figura 1.3: I “pesi virtuali” che collegano implicitamente ogni coppia di layer.

Tratta da [9].

Il residual stream rappresenta uno spazio vettoriale ad alta dimensionalità

(Fig. 1.4). Nei modelli più piccoli può contare centinaia di dimensioni, men-

tre in quelli più grandi può raggiungere le decine di migliaia. Questo significa

5Si noti che per i layer di attenzione esistono tre diversi tipi di pesi di input: WQ, WK

e WV . Per semplicità e generalità, Elhage e colleghi [9] considerano i layer come dotati

semplicemente di pesi di input e output [9].

1.2 Framework Matematico 13

che i layer possono inviare informazioni diverse a layer diversi, archiviandole

in sottospazi differenti. Ciò risulta particolarmente importante nel caso delle

attention head, poiché ogni singola testa opera su sottospazi comparativa-

mente ridotti (spesso 64 o 128 dimensioni) e può scrivere molto facilmente

in sottospazi completamente disgiunti, evitanto l’interazione. Una volta ag-

giunta, l’informazione persiste in un sottospazio, a meno che un altro layer

attivamente non la cancelli. Da questa prospettiva, le dimensioni del resi-

dual stream diventano qualcosa di simile a una “memoria” o una “larghezza

di banda”. Elhage e colleghi [9] riferiscono indizi secondo cui determinati

neuroni MLP e attention head svolgono una sorta di ruolo di “gestione della

memoria”, cancellando le dimensioni del residual stream, impostate da al-

tri layer, attraverso la lettura delle informazioni e la scrittura della versione

negativa [9].

Figura 1.4: Il residual stream rappresenta uno spazio vettoriale ad alta di-

mensionalità, che può essere diviso in sottospazi differenti. Tratta da [9].

1.2.2 Attention Head Indipendenti e Additive

Elhage e colleghi [9] concepiscono i layer di attenzione dei Transformer co-

me costituiti da diverse attention head h ∈ H completamente indipendenti,

che operano in parallelo e aggiungono ciascuna il proprio output al residual

stream. Nel lavoro originale di Vaswani e colleghi sui Transformer [10], l’out-

put di un layer d’attenzione veniva descritto attraverso la concatenazione

dei vettori risultato rh1 , rh2 , . . . , rhn e la successiva moltiplicazione per una

matrice di output WH
O . Elhage e colleghi [9] suddividono WH

O in blocchi di

14 1. Mechanistic Interpretability

uguale dimensione per ciascuna testa ([W h1
O ,W h2

O , . . . ,W hn
O]). Si osserva che:

WH
O




rh1

rh2

. . .

rhn



=

[
W h1

O ,W h2
O , . . . ,W hn

O

]
·




rh1

rh2

. . .

rhn



=

∑

i

W hi
O rhi

rivelando che la formulazione originale risulta equivalente all’esecuzione indi-

pendente delle teste, alla moltiplicazione di ciascuna per la propria matrice

di output e alla loro aggiunta nel residual stream.

L’azione fondamentale delle attention head consiste nel trasferimento di in-

formazioni. Esse leggono informazioni dal residual stream di un token e le

scrivono nel residual stream di un altro token (Fig. 1.5). Di particolare im-

portanza è il fatto che la scelta dei token da cui prelevare le informazioni

è completamente separabile dall’informazione che viene effettivamente “let-

ta”, per essere trasferita, e dalle modalità con cui essa viene “scritta” nella

destinazione. Per comprendere questo aspetto, essi descrivono il meccani-

Figura 1.5: Le attention head leggono informazioni dal residual stream di un

token e le scrivono nel residual stream di un altro token. Tratta da [9].

smo di attenzione in modo non convenzionale. Dato un pattern d’attenzione

A, il calcolo dell’output di un’attention head viene tipicamente descritto

attraverso tre passaggi:

1. si calcola il value vector per ciascun token, a partire dal residual stream

(vi = WV xi);

2. si calcola il “result vector” mediante una combinazione lineare dei value

vector, sulla base del pattern d’attenzione (ri =
∑

j Ai,jvj);

1.2 Framework Matematico 15

3. si calcola l’output vector della testa per ciascun token (h(x)i = WOri).

Ciascuno di questi passaggi può essere espresso come moltiplicazione ma-

triciale, il che li rende combinabili in un’unica operazione. Considerando x

come una matrice bidimensionale, composta da un vettore per ciascun token,

questa viene moltiplicata su lati differenti. Le matrici WV e WO moltiplicano

il lato corrispondente al “vettore per token”, mentre la matrice A moltipli-

ca il lato corrispondente alla “posizione”. Utilizzando i prodotti tensoriali

(denotati con il simbolo ⊗), possiamo descrivere il processo d’applicazione

dell’attenzione come segue:

h(x) = (Id⊗WO) ·︸ ︷︷ ︸
Proietta i

result vector
per ciascun token
(h(x)i=WOri)

(A⊗ Id) ·︸ ︷︷ ︸
Combina i value vector
tra (across) i token, per
calcolare i result vector

(ri=
∑

j Ai,jvj)

(Id⊗WV) ·︸ ︷︷ ︸
Calcola il

value vector
per ciascun token

(vi=WV xi)

x

Applicando la proprietà mista del prodotto tensoriale (mixed product proper-

ty) e semplificando le identità, si ottiene:

h(x) = (A⊗WOWV) ·︸ ︷︷ ︸
A combina tra i token, mentre

WOWV agisce su ciascun vettore
indipendentemente.

x

Dunque, un’attention head applica due operazioni lineari, A e WOWV , che

operano su dimensioni differenti e agiscono in modo indipendente. La matrice

A governa da quali token e verso quali token viene trasferita l’informazione.

Il prodotto WOWV governa quale informazione viene letta dal token sorgente

e come essa viene scritta nel token di destinazione — in altre parole, deter-

mina quale sottospazio del residual stream viene utilizzato dalla attention

head per la lettura e la scrittura durante il trasferimento dell’informazione.

In particolare, le attention head possono essere concepite come dotate di due

computazioni sostanzialmente indipendenti: un circuito QK (“query-key”),

che calcola il pattern d’attenzione, e un circuito OV (“output-value”), che

determina in che modo ciascun token influenza l’output, quando viene sele-

zionato dal meccanismo d’attenzione (Fig. 1.6).

16 1. Mechanistic Interpretability

Figura 1.6: I circuiti QK (per l’attenzione) e OV (per l’output), due opera-

zioni lineari separabili di ogni attention head. Tratta da [9].

Per quanto riguarda il pattern d’attenzione A, tipicamente, si calcolano le

chiavi ki = WKxi, si calcolano le query qi = WQxi e successivamente si cal-

cola il pattern d’attenzione a partire dai prodotti scalari di ciascun vettore

chiave e query: A = softmax(qTk). Tuttavia, l’intera operazione può essere

eseguita in un unico passaggio, senza fare riferimento a chiavi e query:

A = softmax(xTW T
QWKx)

Le matrici WQ e WK operano sempre congiuntamente e non sono mai in-

dipendenti l’una dall’altra. Analogamente, anche WO e WV operano sem-

pre in combinazione. Per questo motivo, Elhage e colleghi [9] definisco-

no variabili che rappresentano queste matrici combinate: WOV = WOWV e

WQK = W T
QWK .

Riformulando le attention head nella forma presentata, essi hanno fatto emer-

gere una struttura che in precedenza poteva risultare più difficile da osservare.

In particolare, il fatto che i prodotti di attention head si comportano in modo

molto simile alle attention head stesse. Per la proprietà distributiva, infatti,

1.2 Framework Matematico 17

si ha che:

(Ah2 ⊗W h2
OV) · (Ah1 ⊗W h1

OV) = (Ah2Ah1)⊗ (W h2
OVW

h1
OV)

Il risultato di questo prodotto può essere interpretato come funzionalmente

equivalente a un’attention head, a cui si riferiscono con il nome di “virtual

attention head”, con un pattern d’attenzione dato dalla composizione delle

due teste Ah2Ah1 e una matrice output-value W h2
OVW

h1
OV [9].

1.2.3 Risultati

Compiendo il reverse engineering di questi semplici modelli di tipo at-

tention-only, in particolare studiando i relativi circuiti QK e OV, Elhage e

colleghi [9] ottengono i seguenti risultati nella comprensione di tali sistemi:

0-layer I Transformer a zero layer modellano le statistiche dei bigram.

1-layer I Transformer, di tipo attention-only, a un singolo layer costitui-

scono un insieme di modelli di bigram e “skip-trigram” (sequenze della

forma “A . . . BC”), implementando una forma molto semplice di ICL.

2-layer I Transformer, di tipo attention-only, a due layer possono imple-

mentare algoritmi considerevolmente più complessi mediante la com-

posizione di attention head, per creare le cosiddette “induction head”,

un algoritmo di ICL molto generale, costituendo un punto di transi-

zione importante, che risulterà rilevante per i modelli di dimensioni

maggiori [9].

Capitolo 2

TransformerLens

Elhage e colleghi, in corrispondenza dell’articolo sul framework mate-

matico [9], ne hanno rilasciato un secondo [8], per fornire un contesto sul-

l’infrastruttura utlizzata durante la ricerca [8]. In questo articolo [8], essi

descrivono una libreria — senza rilasciarne l’implementazione — chiamata

Garçon, uno strumento per l’analisi degli elementi interni dei modelli, in

particolare quelli di grandi dimensioni, che facilita l’accesso alle attivazioni

e ai parametri [9]. Esso è uno dei componenti principali dell’infrastruttura

utilizzata per la ricerca in MI presso Anthropic. Questo approccio implica

l’analisi dei modelli in modo ampio e flessibile. Tale strumento permette di

esaminare singole attivazioni all’interno di layer arbitrari del modello, con-

durre esperimenti in cui si modificano o rimuovono componenti individuali e,

più in generale, accedere e lavorare con gli elementi interni del modello, non

solo con i suoi input e output.

Per i modelli di piccole dimensioni, il lavoro di MI può essere svolto utiliz-

zando notebook Colab o Jupyter, o strumenti simili, impiegando funzionalità

come gli hook di PyTorch, per accedere alle attivazioni intermedie. Tuttavia,

quando il modello scala oltre un singolo nodo computazionale1 — come un

1Gli LLM moderni, infatti, possono raggiungere dimensioni tali da rendere impratica-

bile l’esecuzione efficiente su una singola GPU o su un singolo computer dotato di più

GPU [8].

19

20 2. TransformerLens

computer o un server — non esiste un modo evidente per trasferire questo

flusso di lavoro. Garçon è stato progettato per risolvere questo problema e

consentire il lavoro di MI su modelli di dimensioni arbitrarie.

Garçon è costituito da un’interfaccia basata sugli hook, che consente di acce-

dere e modificare lo stato interno durante il forward pass. I modelli espongono

un insieme di “probe point”, ognuno dei quali denota una posizione specifica

all’interno del modello, in cui un tensore può essere acceduto o modificato.

È possibile collegarsi a qualsiasi di questi punti ed eseguire un forward pass

— oppure un backward pass, calcolando i gradienti rispetto a una funzione di

loss fornita dall’utente — mantenendo il collegamento attivo. L’interfaccia

prevede la possibilità di fornire “probe function”, che accettano due argo-

menti. Il primo è un “contesto di salvataggio” (“save context”), utilizzabile

per memorizzare attivazioni o dati per un utilizzo successivo, mentre il se-

condo è il tensore rappresentato in quel particolare punto del modello. Le

probe function possono restituire un tensore aggiornato, il quale sostituirà il

tensore ispezionato nel calcolo.

Garçon è stato creato dando priorità alla flessibilità piuttosto che alle presta-

zioni. Questo fa s̀ı che si possa lavorare direttamente su un qualsiasi modello,

indipendentemente dalla scala o dalla specifica architettura [8].

Neel Nanda, ex membro del gruppo di ricerca in MI di Anthropic, coautore

dei relativi articoli a cui si è fatto riferimento [9, 8, 7], ha guidato lo sviluppo

di una libreria chiamata TransformerLens [6], che consente l’analisi di modelli

linguistici basati su Transformer, secondo un approccio di MI, esponendo le

relative attivazioni interne.

È un lavoro indipendente da Anthropic, dal momento che la libreria è stata

creata dopo che Nanda ha lasciato quella compagnia per intraprendere ricerca

indipendente, in cui ha riscontrato una profonda insoddisfazione rispetto allo

stato degli strumenti open source disponibili per analizzare gli aspetti interni

dei modelli e applicare tecniche di reverse engineering volte a comprenderne il

funzionamento — problema che questa libreria cerca di risolvere. Tuttavia, il

2.1 Caratteristiche Principali 21

collegamento con il lavoro di Elhage e colleghi [9] è affermato da Nanda stesso

— che si ricorda essere coautore dell’articolo di riferimento [9] — riferendo

che le caratteristiche fondamentali di TransformerLens sono state fortemente

ispirate dall’interfaccia di Garçon2.

La libreria è tuttora3 mantenuta4 e fornisce una buona documentazione5.

2.1 Caratteristiche Principali

TransformerLens6 è una libreria Python open source, che consente di uti-

lizzare tecniche di MI su modelli linguistici basati su Transformer7. Il prin-

cipio cardine che ha guidato la progettazione è stato quello di consentire

un’analisi di tipo esplorativo8. La libreria permette di caricare oltre cin-

quanta diversi modelli linguistici open source — da semplici modelli di tipo

attention-only, studiati da Elhage e colleghi [9] (Sez. 1.2), fino a modelli

come GPT-2 — ed espone le attivazioni interne del modello all’utente. È

possibile catturare e conservare qualsiasi attivazione interna del modello e

aggiungere funzioni per modificare, rimuovere o sostituire tali attivazioni du-

rante l’esecuzione del modello9.

2Per riferimenti, si consulti la pagina GitHub della libreria (URL: https://github.

com/TransformerLensOrg/TransformerLens).
3L’ultimo commit rilevato, in data 5 dicembre 2025, sulla pagina GitHub della libreria,

risale al 9 luglio 2025.
4Anche se non più da Nanda, ma da Bryce Meyer. Per riferimenti, si consulti la pagina

GitHub della libreria.
5Con il termine “documentazione” si farà riferimento alle risorse presenti nel seguente

URL: https://transformerlensorg.github.io/TransformerLens/.
6Per evitare una possibile confusione, si precisa il fatto che TransformerLens

era precedentemente denominata “EasyTransformer”. Per riferimenti, si consulti la

documentazione.
7Da notare che in tale categoria rientra la tipologia di modelli studiati da Elhage e

colleghi [9] (Sez. 1.2).
8Per riferimenti, si consulti la documentazione.
9Per riferimenti, si consulti la pagina GitHub della libreria.

22 2. TransformerLens

TransformerLens è implementata come pacchetto PyPI 10 installabile via pip

install transformer lens11. L’uso di base della libreria è il seguente:

1 import transformer_lens

2

3 # Load a model (eg GPT -2 Small)

4 model = transformer_lens.HookedTransformer.from_pretrained("

gpt2 -small")

5

6 # Run the model and get logits and activations

7 logits , activations = model.run_with_cache("Hello World")

Codice 2.1: L’uso di base di TransformerLens. Tratto dalla pagina GitHub

della libreria.

Dopo aver importato la libreria, si può caricare un modello (Cod. 2.1, riga

4), in questo caso GPT-2 Small, ed eseguirlo restituendo logit e attivazioni

(Cod. 2.1, riga 7)12. Da queste prime linee di codice, emergono già le due

classi principali della libreria: HookedTransformer13 e ActivationCache14.

La prima costituisce l’elemento cardine di TransformerLens. Nelle imple-

mentazioni standard dei modelli in PyTorch, risulta relativamente semplice

estrarre i pesi del modello, mentre l’estrazione delle attivazioni presenta mag-

giori complessità. TransformerLens si propone di semplificare questa opera-

zione mediante l’inserimento di hook su ogni attivazione rilevante all’interno

del modello, consentendo l’ispezione e la modifica delle attivazioni nei singoli

componenti, come le attention head e i layer MLP. HookedTransformer im-

plementa un Transformer completo, inserendo un HookPoint su ogni attiva-

10URL: https://pypi.org/project/transformer-lens/.
11Per riferimenti, si consulti la pagina GitHub della libreria.
12Per riferimenti, si consulti la pagina GitHub della libreria.
13Per riferimenti e maggiori dettagli, si consulti la relativa pagina nella documenta-

zione (URL: https://transformerlensorg.github.io/TransformerLens/generated/

code/transformer_lens.HookedTransformer.html).
14Per riferimenti e maggiori dettagli, si consulti la relativa pagina nella documenta-

zione (URL: https://transformerlensorg.github.io/TransformerLens/generated/

code/transformer_lens.ActivationCache.html).

2.2 Corrispondenza con il Framework Matematico 23

zione di interesse — questo adattamento trae ispirazione, dichiaratamente15,

dall’impiego di probe point da parte di Garçon. Tipicamente, si procede

all’inizializzazione di un modello precaricato in TransformerLens median-

te il metodo from_pretrained(), sebbene sia possibile creare istanze con

pesi inizializzati casualmente attraverso il metodo __init__(). Una volta

completata l’inizializzazione del modello, un passaggio comune consiste nel

verificare che esso sia in grado di eseguire il compito oggetto dell’analisi. Tale

verifica può essere effettuata utilizzando la funzione test_prompt()16.

ActivationCache, a sua volta, costituisce il fulcro operativo di Transfor-

merLens. Si tratta di un wrapper che memorizza tutte le attivazioni rilevanti

provenienti da un forward pass del modello e fornisce una serie di funzioni au-

siliarie (alcune delle quali saranno presentate nella Sez. 2.3) per analizzarle.

Il metodo abituale per accedervi consiste nell’eseguire il modello utilizzando

run_with_cache()17.

2.2 Corrispondenza con il Framework Mate-

matico

Seguendo l’approccio di Elhage e colleghi [9] (Sez. 1.2), Nanda — che si ri-

corda essere coautore dell’articolo di riferimento [9] — implementa e analizza

la struttura interna di HookedTransformer secondo la riconcettualizzazione

del funzionamento dei Transformer presentata nella Sez. 1.2, come riferito

nei notebook in documentazione18.

15Per riferimenti e maggiori dettagli, si consulti il notebook Main Demo nella

documentazione.
16Per riferimenti e maggiori dettagli, si consulti la pagina relativa alla classe

HookedTransformer nella documentazione.
17Per riferimenti e maggiori dettagli, si consulti la pagina relativa alla classe

ActivationCache nella documentazione.
18Per riferimenti e maggiori dettagli, si consultino i notebook Clean Transformer

Demo (URL: https://colab.research.google.com/github/TransformerLensOrg/

TransformerLens/blob/clean-transformer-demo/Clean_Transformer_Demo.ipynb),

Exploratory Analysis Demo (URL: https://colab.research.google.com/github/

24 2. TransformerLens

HookedTransformer costituisce una variante, computazionalmente identica,

dell’architettura di GPT-2, con alcune modifiche implementative. Le più

significative riguardano la struttura interna delle attention head (confronta

Sez. 1.2.2). Le matrici di pesi W_K (chiavi), W_Q (query) e W_V (valori) sono

tre matrici separate, anziché un’unica grande matrice concatenata e, assieme

a W_O (output) e alle attivazioni, presentano assi separati per head_index,

che indica l’indice della testa, e d_head, che indica la sua dimensione in-

terna, anziché appiattiti in un unico grande asse19. Durante l’analisi di un

Iperparametro Descrizione

n layers Il numero di blocchi presenti nel modello

(ognuno contiene un layer d’attenzione e un

layer MLP).

n heads Il numero di attention head per ogni layer

d’attenzione.

d model La dimensione del residual stream.

d head La dimensione interna di un’attention head.

d mlp La dimensione interna dei layer MLP.

d vocab Il numero di token presenti nel vocabolario.

n ctx Il numero massimo di token consentito in un

prompt di input.

modello, ciascun layer d’attenzione può essere riformulato nel contributo del-

le proprie teste, suddividendo la matrice dei pesi di output (WH
O) in una

matrice di output per ciascuna testa (W hi
O , in questo caso indicata come

model.blocks[k].attn.W_O, di forma [head_index, d_head, d_model])

e sommandole. Inoltre, ciascuna di queste può essere indagata a livello del

TransformerLensOrg/TransformerLens/blob/main/demos/Exploratory_Analysis_

Demo.ipynb) e Main Demo (URL: https://colab.research.google.com/github/

TransformerLensOrg/TransformerLens/blob/main/demos/Main_Demo.ipynb) nella

documentazione.
19Per riferimenti e maggiori dettagli, si consulti il notebook Main Demo nella

documentazione.

2.2 Corrispondenza con il Framework Matematico 25

singolo circuito QK o OV, applicando il patching in modo mirato al solo

pattern d’attenzione oppure ai soli value vector, distinguendo cos̀ı quale di

queste due operazioni sia rilevante20.

Il residual stream viene rappresentato come una struttura lineare e additiva,

costituita dalla somma degli output di ciascun layer e dell’embedding origi-

nale (Sez. 1.2.1). Tale struttura si evince dal codice presentato nel notebook

Clean Transformer Demo21, in particolare dall’implementazione delle classi

DemoTransformer (Cod. 2.2), che rappresenta il Transformer completo, e

TransformerBlock (Cod. 2.3), che rappresenta un singolo blocco del Tran-

sformer. Si può notare infatti come il residual stream sia costituito dalla

somma dell’embedding (Cod. 2.2, riga 15) e dell’output di ciascun blocco

(Cod. 2.2, riga 17) — ognuno costituito dagli output dei relativi due layer,

quello d’attenzione (Cod. 2.3, riga 15) e quello MLP (Cod. 2.3, riga 19)22.

1 class DemoTransformer(nn.Module):

2 def __init__(self , cfg):

3 super ().__init__ ()

4 self.cfg = cfg

5 self.embed = Embed(cfg)

6 self.pos_embed = PosEmbed(cfg)

7 self.blocks = nn.ModuleList ([TransformerBlock(cfg)

for _ in range(cfg.n_layers)])

8 self.ln_final = LayerNorm(cfg)

9 self.unembed = Unembed(cfg)

10

11 def forward(self , tokens):

12 # tokens [batch , position]

20Per riferimenti e maggiori dettagli, si consulti il notebook Exploratory Analysis Demo

nella documentazione.
21Per brevità e semplicità, si farà riferimento al codice di TransformerLens come viene

presentato nel notebook Clean Transformer Demo. Nanda stesso, nella documentazione,

afferma che tale notebook costituisce un’implementazione pulita e minimale di GPT-2,

con la stessa architettura interna e gli stessi nomi delle attivazioni di HookedTransformer,

ma significativamente più chiara e meglio documentata.
22Per riferimenti e maggiori dettagli, si consulti il notebook Clean Transformer Demo

nella documentazione.

26 2. TransformerLens

13 embed = self.embed(tokens)

14 pos_embed = self.pos_embed(tokens)

15 residual = embed + pos_embed

16 for block in self.blocks:

17 residual = block(residual)

18 normalized_resid_final = self.ln_final(residual)

19 logits = self.unembed(normalized_resid_final)

20 # logits have shape [batch , position , logits]

21 return logits

Codice 2.2: Implementazione della classe DemoTransformer, rappresentante

il Transformer completo. Tratta dal notebook Clean Transformer Demo,

nella documentazione di TransformerLens.

1 class TransformerBlock(nn.Module):

2 def __init__(self , cfg):

3 super().__init__ ()

4 self.cfg = cfg

5

6 self.ln1 = LayerNorm(cfg)

7 self.attn = Attention(cfg)

8 self.ln2 = LayerNorm(cfg)

9 self.mlp = MLP(cfg)

10

11 def forward(self , resid_pre):

12 # resid_pre [batch , position , d_model]

13 normalized_resid_pre = self.ln1(resid_pre)

14 attn_out = self.attn(normalized_resid_pre)

15 resid_mid = resid_pre + attn_out

16

17 normalized_resid_mid = self.ln2(resid_mid)

18 mlp_out = self.mlp(normalized_resid_mid)

19 resid_post = resid_mid + mlp_out

20 return resid_post

Codice 2.3: Implementazione della classe TransformerBlock, rappresentante

un singolo blocco del Transformer. Tratta dal notebook Clean Transformer

Demo, nella documentazione di TransformerLens.

2.3 Uso 27

2.3 Uso

Questo lavoro si concentra sull’utilizzo di TransformerLens per l’analisi in

ICL di modelli linguistici — già addestrati, secondo il paradigma del promp-

ting [3] — basati su Transformer di tipo decoder-only autoregressivi, secondo

il flusso di lavoro sistematizzato da Conmy e colleghi [4] (Sez. 1.1.1).

Quando si indaga un particolare comportamento di un modello, un primo

passo molto comune consiste nel cercare di comprendere quali componenti

del modello siano maggiormente responsabili di tale comportamento. Ad

esempio, se si sta analizzando il prompt:

“Why did the chicken cross the” → “ road”

potrebbe essere utile comprendere se esiste uno specifico sublayer (layer MLP

o d’attenzione) responsabile della predizione “ road” da parte del modello.

Dopo aver caricato il modello ed eseguito l’inferenza sul prompt di interesse

(in questo caso “Why did the chicken cross the”), si procede alla decompo-

sizione del residual stream utilizzando il metodo decompose_resid(), della

classe ActivationCache. Successivamente, per identificare quale compo-

nente contribuisce maggiormente alla predizione del token desiderato (ad

esempio “ road”), si calcola l’attribuzione dei logit attraverso il metodo

logit_attrs(), della medesima classe ActivationCache. Questo calcolo

genera un tensore che rappresenta il contributo di ciascun layer alla predizio-

ne finale. L’analisi di questo tensore, attraverso operazioni come argmax(),

permette di individuare il componente specifico che esercita l’influenza più

significativa sul risultato del modello.

È inoltre possibile analizzare i dati con maggiore granularità, utilizzando

get_full_resid_decomposition(), della classe ActivationCache, per ot-

tenere il residual stream suddiviso per singoli componenti (neuroni MLP e

singole attention head). In tal caso, il metodo di utilizzo di logit_attrs()

rimane invariato. Analogamente, potrebbe essere utile determinare se il mo-

dello incontra difficoltà nel costruire tali output linguistici fino agli ultimi

28 2. TransformerLens

layer, oppure se il compito risulta banale e i primi layer sono sufficienti23.

23Per riferimenti e maggiori dettagli, si consulti la pagina relativa alla classe

ActivationCache nella documentazione.

Conclusioni

L’obiettivo di questo lavoro, come illustrato nell’Introduzione, era quello

di individuare uno strumento per interpretare modelli linguistici basati su

Transformer di tipo decoder-only autoregressivi.

Ho individuato la libreria TransformerLens [6] (Cap. 2), che consente l’utiliz-

zo di tecniche interventistiche [1] su modelli linguistici basati su Transformer

di grandi dimensioni, addestrati secondo il paradigma del prompting [3], in-

dagando l’ICL secondo il flusso di lavoro presentato da Conmy e colleghi [4]

(Sez. 1.1.1).

TransformerLens si basa su una riconcettualizzazione del funzionamento dei

Transformer presentata da Elhage e colleghi [9], di cui ho verificato la corri-

spondenza (Sez. 1.2). Il vantaggio derivante da tale allineamento è duplice.

Da una parte, sostiene la riconcettualizzazione dei Transformer implementa-

ta nella libreria. Dall’altra, fa s̀ı che si possa utilizzare TransformerLens per

analizzare un modello secondo l’approccio di Elhage e colleghi [9], ad esempio

indagando i circuiti QK e OV all’interno delle attention head (Sez. 1.2.2).

Limiti e Sviluppi Futuri

Il limite principale di questo lavoro è la mancata validazione di Transfor-

merLens su un caso di studio, con un approccio sistematico e comprensivo,

che deve considerarsi il primo obiettivo per un ulteriore sviluppo di questa

ricerca. In particolare, risulta necessaria una validazione su casi di studio in

letteratura, ad esempio quelli che sono stati oggetto del lavoro di Conmy e

colleghi [4], oltre a un’indagine approfondita e complessiva su un ulteriore

29

30 CONCLUSIONI

caso di studio innovativo.

Per concludere, un secondo limite di questo lavoro consiste nell’aver fatto

riferimento, nel verificare la corrispondenza di TransformerLens con il fra-

mework matematico (Sez. 2.2), al codice presentato da Nanda nel notebook

Clean Transformer Demo — dal momento che lui stesso afferma che in tale

notebook viene presentata la medesima architettura interna e gli stessi nomi

delle attivazioni di HookedTransformer (vedi nota 21) — invece che riferirsi

al codice effettivamente implementato nella libreria.

Bibliografia

[1] Gantla, “Exploring Mechanistic Interpretability in Large Language Mo-

dels: Challenges, Approaches, and Insights”, 2025 International Con-

ference on Data Science, Agents & Artificial Intelligence (ICDSAAI),

2025.

[2] Kästner e Crook, “Explaining AI Through Mechanistic Interpretability”,

European Journal for Philosophy of Science, 2024.

[3] Zhao et al., “Explainability for Large Language Models: A Survey”,

Association for Computing Machinery, 2024.

[4] Conmy et al., “Towards Automated Circuit Discovery for Mechanistic

Interpretability”, Advances in Neural Information Processing Systems,

2023.

[5] Zhang et al., “Dive into Deep Learning”, Cambridge University Press,

2023.

[6] Nanda e Bloom, “TransformerLens”, 2022. URL: https://github.com/

TransformerLensOrg/TransformerLens

[7] Olsson et al., “In-context Learning and Induction Heads”, Transformer

Circuits Thread, 2022.

[8] Elhage et al., “Garcon”, Transformer Circuits Thread, 2021.

[9] Elhage et al., “A Mathematical Framework for Transformer Circuits”,

Transformer Circuits Thread, 2021.

31

32 CONCLUSIONI

[10] Vaswani et al., “Attention is All you Need”, Advances in Neural

Information Processing Systems, 2017.

