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Abstract 

Il presente studio esamina criticamente l’applicazione di tre modelli di regressione — lineare, di Poisson e 

binomiale negativa — ai dati settimanali di mortalità da COVID-19 in Italia durante le fasi Omicron e post-

Omicron (novembre 2021 – gennaio 2025), con l’obiettivo di comprendere quanto l’accuratezza predittiva 

dipenda realmente dalla scelta del modello rispetto alla struttura temporale dei dati. Pur riconoscendo i limiti 

intrinseci dei modelli lineari nell’analisi di dati di conteggio non normali e sovradispersi a favore dei GLM, i 

risultati di questa tesi mostrano che il fattore determinante nell’ottenere previsioni affidabili non è la 

complessità statistica del modello, bensì la calibrazione epidemiologica della finestra temporale utilizzata. 

 

Attraverso un confronto sistematico di tre scenari temporali — stagionali (calibrati), mensili e annuali (non 

calibrati) — l’analisi evidenzia un pattern denominato “fenomeno dell’errore 1%–10%–100%”. Questo 

pattern mostra mostra come i modelli producano errori minimi (~1–1,5%) solo entro intervalli 

temporalmente significativi, mentre le prestazioni degradano rapidamente (~10% su base mensile) o crollano 

completamente (fino al 100% su base annuale) quando la segmentazione non riflette l’andamento 

epidemiologico pur applicando modelli teoricamente appropriati come Poisson o Binomiale Negativa. 

 

Il contributo originale della tesi consiste nell’aver dimostrato che, sebbene la regressione Binomiale 

Negativa è il modello più robusto in presenza di sovradispersione, la validità delle previsioni dipende 

essenzialmente dalla coerenza tra arco temporale e dinamica epidemica indipendentemente dal modello 

impiegato. Ciò implica che la regressione lineare (considerata inadeguata) può risultare competitiva quanto 

Poisson o Binomiale Negativa se utilizzata entro finestre correttamente calibrate, mentre nessun modello 

mantiene affidabilità se applicato “a strascico”. 

Il risultato fondamentale è che la calibrazione temporale della finestra analitica ha un impatto 

sull’accuratezza predittiva di gran lunga superiore alla scelta dello specifico modello statistico. I risultati 

propongono una rilettura critica della modellazione epidemiologica, sostenendo che la “Intelligenza 

Temporale”, ovvero la segmentazione informata del periodo analitico, non è un dettaglio metodologico, ma 

un prerequisito fondamentale per la precisione predittiva. 
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1 - Introduzione 

L’epidemiologia moderna richiede approcci statistici avanzati per interpretare dati complessi, come quelli 

generati durante la transizione dalla pandemia alla fase post-pandemica del COVID-19. Questo studio 

esplora i limiti dei modelli lineari classici, inadeguati per dati di conteggio e sovradispersi, e propone 

l’utilizzo di modelli lineari generalizzati (Generalized Linear Model, GLM) per analisi più accurate. 

Attraverso un’analisi critica del contesto epidemiologico, della rilevanza dello studio e delle alternative 

metodologiche, oltre a dimostrare come tecniche statistiche raffinate possano migliorare la sorveglianza e la 

pianificazione sanitaria. 

 

 

1.1 – Contesto epidemiologico   

Questa sezione analizza l’evoluzione di SARS-CoV-2, descrivendo la sua evoluzione con particolare 

attenzione alle varianti Omicron e alla transizione alla fase post-pandemica. Vengono inoltre descritti i 

modelli di sorveglianza epidemiologica, dall’elaborazione dei dati grezzi alla modellazione predittiva, e il 

ruolo cruciale della statistica nell’interpretare dinamiche complesse, superando i semplici modelli descrittivi. 

 

1.1.1 - Evoluzione di SARS-CoV-2 (Omicron e sottovarianti) e transizione alla 

fase post-pandemica 

A partire dalla fine del 2019, l’emergere del SARS-CoV-2 ha rappresentato una delle crisi sanitarie globali 

più significative del XXI secolo. Dopo la prima ondata pandemica, l’evoluzione del virus ha seguito un 

percorso di mutazione e selezione naturale che ha condotto all’emergere di varianti come Alpha, Beta, 

Gamma, Delta e, infine, Omicron, classificate dall’Organizzazione Mondiale della Sanità (OMS) come: 

varianti di interesse (VOI), ovvero quelle varianti che mostrano mutazioni con potenziale impatto sulla 

trasmissibilità o sull’efficacia sui vaccini, ma la cui evidenza epidemiologica è ancora limitata; varianti di 

preoccupazione (VOC), sono caratterizzate da un impatto dimostrato in termini di maggiore trasmissibilità, 

gravità clinica o ridotta efficacia di vaccini e terapie, richiedendo un monitoraggio prioritario da parte delle 

autorità sanitarie. 

In questo elaborato, particolare attenzione viene rivolta alla variante Omicron (B.1.1.529) e alle sue 

sottovarianti (BA.1, BA.2, BA.4, BA.5, XBB, ecc.). La variante Omicron ha iniziato a svilupparsi nel 

novembre 2021 e ha rapidamente soppiantato le varianti precedenti grazie a una maggiore trasmissibilità e a 

una significativa capacità di eludere la risposta immunitaria, legata a mutazioni nella proteina Spike 

(specialmente nel dominio RBD, che media l’ingresso nelle cellule umane). Tuttavia, ha mostrato una ridotta 

patogenicità, associata con un minor rischio di ospedalizzazione e morte.  

Le sottovarianti di Omicron (BA.1, BA.2, BA.4, BA.5, XBB) hanno ulteriormente aumentato la capacità del 

virus di eludere l’immunità acquisita da vaccini o infezioni pregresse. In particolare, BA.5 ha dimostrato una 
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forte evasione immunitaria, riducendo l’efficacia degli anticorpi neutralizzanti. Ciò ha portato a ripetute 

ondate epidemiche, sebbene con un impatto clinico meno severo rispetto alle fasi iniziali della pandemia.

  

La fase post-pandemica è definita non tanto dalla scomparsa del virus, ma da una combinazione di fattori 

come: l’immunità della popolazione, acquisita attraverso le campagne vaccinali e infezioni naturali; la 

capacità rafforzata di risposta dei sistemi sanitari nella gestione dei casi più gravi; l’adattamento delle 

strategie di sorveglianza, che hanno spostato l’attenzione dalle misure restrittive verso modelli predittivi e di 

monitoraggio continuo. 

L’OMS ha dichiarato la fine dell’emergenza globale nel maggio 2023, sottolineando la necessità di un 

approccio sostenibile basato sul monitoraggio continuo e su risposte flessibili. Tuttavia, la circolazione di 

nuove sottovarianti (come JN.1, emersa nel 2024) dimostra che SARS-CoV-2 rimane un patogeno dinamico, 

che richiede un costante aggiornamento delle strategie di prevenzione. 

 

1.1.2 - Modelli di sorveglianza epidemiologica: dai dati grezzi alla modellazione 

predittiva 

La gestione della pandemia ha evidenziato la necessità di sistemi di sorveglianza epidemiologica robusti e 

adattabili. Tali sistemi si sono evoluti da una semplice raccolta di dati grezzi descrittivi (costituiti da dati di 

mobilità, dal numero di casi giornalieri ottenuti tramite tamponi molecolari/antigenici, ospedalizzazioni e 

numero di decessi che rappresentano indicatori di gravità) verso sistemi integrati in grado di alimentare 

modelli predittivi attraverso l’utilizzo di calcoli complessi.  

 

Questo avanzamento è necessario perchè un uso esclusivo di dati grezzi è soggetto a numerosi bias, come la 

sottostima di casi dovuta alla riduzione di test diagnostici nella fase post-pandemica, ritardi di notifica in 

sistemi sanitari decentralizzati e la differenza nella capacità diagnostica tra Paesi (soggetta quindi alle 

variabili geografiche). Per mitigare queste problematiche sono state introdotte tecniche di elaborazione 

statistiche come lo smoothing che attraverso medie mobili e/o filtri bayesiani riescono a ridurre il rumore nei 

dati. 

 

L’armonizzazione di dati eterogenei ha consentito la costruzione di modelli dinamici in grado di stimare 

l’R(t), ovvero il numero di riproduzione effettivo, che rappresenta un indicatore cruciale per misurare la 

trasmissibilità del virus per cercare di prevedere l’andamento dei contagi per favorire il processo decisionale 

per la sanità pubblica. Valori di R(t) > 1 indicano una crescita epidemica, mentre i valori di R(t) < 1 indicano 

un declino. 

 

Considerate le complesse interazioni sociali e le mutazioni virali, la capacità di estrapolare informazioni 
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significative dai dati grezzi, grazie a tecniche di data science e modellazione di statistica avanzata che 

forniscono approcci più rapidi e flessibili, rappresenta un requisito fondamentale per affrontare future 

minacce pandemiche e epidemiche. 

 

1.1.3 - Il ruolo della statistica nell’interpretazione di dinamiche complesse  

Il ruolo della statistica nel campo epidemiologico non si limita alla semplice descrizione dei dati o dei 

fenomeni osservati, ma si estende per incorporare modelli causali e predittivi per interpretare dinamiche 

complesse ed individuare pattern nascosti. 

 

L’ analisi statistica classica, basata sui modelli lineari, si è spesso rilevata inefficiente in presenza di dati 

caratterizzati da non normalità, sovradispersione e correlazioni spaziali e temporali. Ciò ha spinto la 

comunità scientifica verso approcci modellistici più sofisticati, come i Generalized Linear Models (GLM), 

costituiti da modelli ad effetti misti e modelli bayesiani gerarchici che consentono di integrare informazioni 

pregresse per migliorare le stime e forniscono intervalli utili per comunicare l’incertezza nelle previsioni. 

Questi modelli consentono di tener conto di variabili non osservabili e produrre inferenze più affidabili 

soprattutto in contesti in cui le informazioni possono essere incomplete o distorte. L’utilizzo di tecniche di 

smoothing, come ad esempio la stima non parametrica o la simulazione Monte Carlo, ha ampliato le 

possibilità analitiche favorendo una comprensione più approfondita dei processi di trasmissione e 

dell’impatto delle misure di contenimento. 

 

In sintesi, l’integrazione di statistica avanzata, modellazione matematica ed analisi di big data costituisce un 

elemento cardine per superare i limiti dei modelli puramente descrittivi poiché ci consente di trasformare dei 

dati grezzi in conoscenza epidemiologica, riuscendo a fornire strumenti per la previsione, la valutazione 

dell’efficacia degli interventi e l’allocazione ottimale delle risorse sanitarie. 

 

 

1.2 – Motivo e rilevanza dello studio  

Questa sezione chiarisce la necessità di estendere l’analisi tradizionale, evidenziando i limiti dei modelli 

lineari classici in contesti epidemiologici. Sottolinea l’importanza dell’utilizzo di modelli generalizzati 

(GLM) per la gestione di dati non-normali e fenomeni di sovradispersione al fine da poter garantire stime più 

robuste ed accurate per la ricerca applicata alla salute pubblica. 

 

1.2.1 - Importanza di modelli generalizzati (GLM) e applicazioni in salute 

pubblica 

I Generalized Linear Models (GLM), introdotti formalmente da Nelder e Wedderburn nel 1972, 

rappresentano una delle principali innovazioni metodologiche per l’analisi di dati che non seguono una 
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distribuzione normale, ampliando così notevolmente le possibilità di analisi in contesti reali. I GLM 

rappresentano quindi un cambio di paradigma nell’analisi dei dati epidemiologici che consentono di superare 

i limiti dei modelli lineari attraverso una struttura flessibile che include: una funzione di legame (link 

function), una componente sistematica e una distribuzione della famiglia esponenziale per la variabile 

risposta. 

Questo approccio trova ampia applicazione in ambito sanitario ed epidemiologico, consentendo di modellare 

in modo appropriato variabili di outcome come il numero di casi, ricoveri o decessi (dati di conteggio), che 

per loro natura sono discreti e non negativi. L'utilizzo di distribuzioni come la Poisson o la Binomiale 

Negativa, insieme a funzioni di legame come il logaritmo, garantisce che le previsioni del modello rispettino 

queste caratteristiche fondamentali, producendo stime biologicamente plausibili.  

 

Oltre alla coerenza teorica, i GLM offrono vantaggi pratici significativi. Permettono una migliore 

valutazione dell’efficacia degli interventi sanitari, come campagne vaccinali o misure di distanziamento, 

fornendo stime più accurate degli effetti e della loro incertezza. Consentono una sorveglianza epidemiologica 

più robusta, identificando pattern e trend che potrebbero essere mascherati da modelli inadeguati. In ambito 

economico-sanitario, supportano analisi di costo-efficacia più affidabili, fondamentali per l’allocazione 

ottimale di risorse spesso limitate. La flessibilità dei GLM si estende anche alla capacità di incorporare 

strutture dati complesse, come effetti casuali per tener conto dell’eterogeneità non osservata tra diverse 

regioni o strutture sanitarie., o per modellare correlazioni spaziali e temporali. Questa capacità di adattarsi 

alla complessità dei dati reali li rende strumenti indispensabili per affrontare le sfide analitiche poste da 

patogeni dinamici come SARS-CoV-2, il cui comportamento è influenzato da una miriade di fattori 

virologici, immunitari e sociali. 

 

Alla luce di questi vantaggi, la scelta di approfondire i GLM ha fornito strumenti appropriati per l’analisi 

condotta in questo studio, mentre in generale rappresenta ancora oggi un passaggio metodologico essenziale 

nella ricerca epidemiologica contemporanea. 

 

1.2.2 – Modelli alternativi: dati di conteggio, omoschedasticità/eteroschedasticità 

L'analisi dei dati epidemiologici richiede un'attenta considerazione della natura specifica delle variabili di 

outcome. I dati di conteggio relativi a infezioni, ospedalizzazioni e decessi presentano caratteristiche 

intrinseche che mettono in discussione alcuni dei presupposti fondamentali dei modelli statistici tradizionali. 

Queste inadeguatezze si manifestano in molteplici dimensioni, tra cui la violazione della non-negatività, 

l'incapacità di catturare le strutture discrete dei dati, la mancata considerazione dei fenomeni di 

sovradispersione e, in particolare, l'eteroschedasticità, che costituisce un problema fondamentale che mina la 

validità delle inferenze statistiche. Questa sezione esplora le caratteristiche fondamentali dei dati di 

conteggio, discute i concetti di omoschedasticità ed eteroschedasticità e introduce i modelli di regressione di 

Poisson e Binomiale Negativa come alternative essenziali per un'analisi epidemiologica rigorosa. 
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Dati di conteggio 

I modelli di regressione lineare classica si basano su assunzioni fondamentali che risultano ampiamente 

violate quando applicati ai dati epidemiologici tipici di conteggio. Ciò accade perché l’assunzione implicita 

di una variabile dipendente continua, illimitata e normalmente distribuita è in conflitto con la natura discreta, 

non negativa e spesso asimmetrica dei conteggi reali. Questa inadeguatezza si manifesta attraverso diversi 

problemi: 

1. Violazione della non negatività, i conteggi epidemiologici sono per definizione ≥ 0 e non possono 

assumere valori negativi. Il modello lineare non impone alcun vincolo strutturale su questi aspetti; la 

funzione di regressione può produrre previsioni negative, specialmente quando la relazione non è 

perfettamente lineare, quando si lavora con conteggi bassi o quando si estrapola oltre l'intervallo 

osservato, risultando in previsioni senza alcuna interpretabilità pratica. 

2. Discrepanza strutturale, i modelli lineari assumono variabili continue, mentre i conteggi 

epidemiologici consistono in numeri interi non negativi e spesso presentano un eccesso di zeri (ad 

esempio, in presenza di eventi di trasmissione sporadici o localizzati). Questa discordanza porta a 

una sottostima della varianza, intervalli di confidenza non validi ed errori standard distorti perché la 

regressione lineare assume una distribuzione simmetrica degli errori ed è quindi incapace di catturare 

l'eterogeneità dei dati.  

3. Sfide modellistiche, i modelli lineari non incorporano naturalmente strutture leggermente più 

complesse, come i tassi di incidenza, che tipicamente richiedono un offset.  

 

Omoschedasticità / Eteroschedasticità  

L'omoschedasticità e l'eteroschedasticità sono concetti fondamentali nella statistica e nell'analisi dei dati che 

descrivono le proprietà di varianza dei residui del modello. Nello specifico: 

• Omoschedasticità (varianza costante)  

Rappresenta la proprietà di una collezione di variabili casuali di avere tutte la stessa varianza finita. 

Questo fenomeno si verifica quando la varianza dei residui (cioè gli errori delle previsioni rispetto ai 

valori osservati) è costante lungo l'intero intervallo delle variabili indipendenti nel modello. Ciò 

implica che la dispersione dei dati attorno alla linea di regressione, o al valore previsto, è uniforme, e 

ciò vuol dire che non esiste uno schema sistematico nella variazione della varianza.  

Formalmente, si può affermare che Var(ϵ∣X) = σ² (una costante), mentre graficamente i residui sono 

distribuiti uniformemente attorno alla linea di regressione senza pattern particolari. 

• Eteroschedasticità (varianza non costante)  

A differenza del caso precedente, questa indica che la varianza residua cambia in funzione delle 

variabili indipendenti. Ciò implica che la dispersione dei dati può cambiare significativamente in 

base ai valori delle variabili predittive, influenzando l'affidabilità delle stime dei parametri del 

modello e le conclusioni che se ne possono trarre. 
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Formalmente, si può affermare che Var(ϵ∣X) non è costante ma dipende da X, mentre graficamente i 

residui possono mostrare un aumento o una diminuzione al crescere di X (come una forma a imbuto) 

o altri schemi sistematici. 

 

In entrambi i casi, comprendere se un modello statistico presenti omoschedasticità o eteroschedasticità è 

cruciale per interpretare correttamente i risultati di uno studio epidemiologico e per adattare 

appropriatamente le strategie di prevenzione e controllo delle malattie. Più in generale, garantire l'assenza di 

eteroschedasticità (o correggerla) è essenziale per inferenze valide, specialmente negli studi osservazionali 

dove la variabilità dei dati può essere elevata.  

Questo è importante perché se l'eteroschedasticità non viene corretta, i p-value possono essere falsamente 

significativi e le stime degli effetti possono apparire più precise di quanto non siano in realtà. L'utilizzo di 

metodi robusti migliora l'affidabilità delle conclusioni e la validità delle politiche sanitarie basate su tali 

evidenze.  

 

Modelli alternativi 

Per superare i limiti dei modelli lineari, sono necessari approcci alternativi. L'analisi epidemiologica 

moderna si affida spesso a due famiglie di modelli specializzati:  

• Regressione di Poisson  

Rappresenta la soluzione più basilare per i dati di conteggio. Assume che la variabile di interesse 

segua una distribuzione di Poisson con una funzione di collegamento logaritmica, caratterizzata da 

una media uguale alla varianza (equidispersione). Questa proprietà la rende adatta per conteggi di 

eventi rari e indipendenti, in quanto si adatta perfettamente alla non-negatività dei dati, gestisce 

naturalmente i tassi tramite un offset e produce coefficienti che possono essere interpretati come log-

rischi relativi. Tuttavia, la sua principale limitazione è l'incapacità di gestire la sovradispersione 

(quando la varianza > media), portando a una sottostima degli errori standard e a p-value 

irrealisticamente bassi se questa assunzione viene violata. 

• Regressione Binomiale Negativa 

Estende il modello di Poisson introducendo un parametro di dispersione aggiuntivo (α), consentendo 

una modellazione flessibile della varianza in eccesso. Questo la rende ideale nei casi in cui è 

presente sovradispersione, poiché il modello di Poisson tende a sottostimare la varianza. La varianza 

è modellata come Var[Y] = μ + αμ², e quando α → 0, il modello converge al Poisson, mentre quando 

α > 0, modella esplicitamente la sovradispersione. Inoltre, offre un migliore adattamento a dati con 

cluster e una maggiore robustezza contro l'inflazione degli zeri e i valori anomali.  

 

L'introduzione dei modelli di Poisson e Binomiale Negativa segna un passo cruciale nella modellazione di 

fenomeni epidemiologici complessi. Questi modelli mantengono la coerenza con la natura discreta e non 

negativa dei dati, incorporano la relazione intrinseca tra media e varianza, consentono inferenze più robuste e 
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forniscono interpretazioni statisticamente solide. In molti casi, costituiscono la base per sviluppi più 

sofisticati, come modelli misti o approcci bayesiani, in grado di affrontare l'eterogeneità spaziale, gli effetti 

di correlazione e i dati longitudinali.  

 

Sebbene i Modelli Lineari Generalizzati (GLM) rappresentino un progresso significativo nell'analisi dei dati 

epidemiologici, la selezione di un modello appropriato è tutt'altro che semplice. L'obiettivo è evidenziare i 

fondamenti teorici e pratici che ne giustificano l'uso e gettare le basi per l'identificazione di un modello 

statisticamente appropriato per l'analisi dei decessi per COVID-19. Dopo aver delineato il quadro teorico e 

motivazionale, il capitolo successivo descrive i dati utilizzati e le procedure adottate per garantire un dataset 

affidabile e pronto alla modellazione statistica. 

 

 

1.3 – Obbiettivi e Tesi Supportata   

Questa sezione delinea gli specifici obiettivi di ricerca e presenta la tesi centrale di questo lavoro. Sebbene i 

limiti dei modelli lineari classici e la superiorità teorica dei GLM per i dati di conteggio siano ben consolidati 

nella letteratura statistica, questo studio sostiene che le prestazioni pratiche di questi modelli sono 

profondamente influenzate da un fattore che ha ricevuto un'attenzione insufficiente: la calibrazione 

temporale del periodo di analisi. La ricerca mira a dimostrare che, al di là della scelta della specifica tecnica 

di regressione, l'allineamento dell'arco temporale di modellazione con il fenomeno epidemiologico 

sottostante è un determinante critico dell'accuratezza predittiva. 

 

1.3.1 – Calibrazione temporale come fattore predittivo per la selezione del 

modello 

L'obiettivo primario di questa tesi è investigare empiricamente e dimostrare che l'accuratezza predittiva dei 

modelli di regressione non dipende esclusivamente dalla struttura matematica del modello stesso, ma anche 

dalla finestra temporale selezionata per l'analisi. L'ipotesi centrale presuppone che l'accuratezza delle 

previsioni di mortalità per COVID-19 nel periodo Omicron/post-Omicron sia più sensibile alla scelta 

dell'arco temporale analitico (se calibrato o meno alle dinamiche epidemiologiche della malattia) che 

all'appropriatezza teorica del modello statistico. Ciò implica che calibrare le finestre temporali secondo le 

dinamiche stagionali del fenomeno produce risultati significativamente più precisi, indipendentemente dal 

modello specifico impiegato. 

 

Questa ricerca è strutturata attorno a un'analisi comparativa di tre distinti scenari temporali: 

• Scenari Calibrati: analisi eseguita su intervalli stagionali, seguendo l'approccio proposto da Roccetti 

et al. che si allinea con i noti pattern stagionali di trasmissione. 

• Scenario non calibrato ristretto: analisi eseguita su intervalli mensili arbitrari, che possono catturare 
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solo frammenti dei cicli di trasmissione. 

• Scenario non calibrato esteso: analisi eseguita su intervalli annuali arbitrari, che possono aggregare 

fasi epidemiologiche contrastanti (ad es. picchi, avvallamenti e plateau). 

 

Più specificamente, lo studio mira a dimostrare che anche i modelli più avanzati (Poisson e Binomiale 

Negativa) non sono automaticamente più accurati del modello di regressione lineare quando applicati a 

intervalli di tempo privi di rilevanza epidemiologica; a mostrare che una segmentazione intelligente del 

periodo di analisi (ad esempio per stagione epidemica) produce stime altamente precise con errori 

percentuali dell'ordine dell'1/1,5%, a evidenziare i limiti delle analisi "a strascico", ovvero analisi condotte su 

intervalli temporali non calibrati, che, pur preservando l'andamento generale, generano previsioni con errori 

di circa il 10% (su base mensile) o addirittura del 100% (su base annuale) e a proporre un'interpretazione 

critica dello stato dell'arte, che spesso promuove l'applicazione meccanica di modelli statistici senza una 

sufficiente considerazione del significato epidemiologico dei dati. 

L'obiettivo finale è fornire evidenze empiriche che spostino il focus della modellazione epidemiologica da un 

dibattito puramente metodologico sulla selezione del modello verso un approccio più olistico che privilegi 

l'intelligenza contestuale e temporale nella progettazione e interpretazione del modello. 

 

1.3.2 – Struttura del lavoro 

La struttura di questa tesi è progettata per valutare rigorosamente l'interazione tra specificazione del modello 

e contesto temporale nell'analisi dei dati di mortalità COVID-19 durante le fasi Omicron e post-Omicron. 

'obiettivo primario è dimostrare che l'accuratezza predittiva dipende non solo dal modello statistico 

impiegato, ma anche – fondamentalmente – dalla calibrazione temporale della finestra analitica. A tal fine, la 

ricerca è organizzata attorno a tre obiettivi centrali, ciascuno corrispondente a una dimensione chiave della 

performance del modello. 

 

La ricerca si articola in tre fasi sequenziali, progettate per isolare e misurare questi effetti: 

1. Impatto della calibrazione temporale: vengono confrontate previsioni ottenute da finestre 

stagionali calibrate con previsioni derivate da intervalli non calibrati, al fine di misurare in che modo 

la segmentazione temporale influenzi la validità dei risultati. 

2. Confronto tra i modelli: tale analisi mira sia a verificare se le proprietà teoriche dei modelli 

(gestione dei conteggi, risposta alla sovradispersione) si traducano in un vantaggio empirico, sia a 

comprendere come la calibrazione temporale condizioni questi vantaggi. Questa valutazione porta a 

identificare empiricamente il “fenomeno dell’errore 1%–10%–100%”: errori minimi (1–1,5%) nelle 

finestre stagionali calibrate, errori intermedi (~10%) nelle finestre mensili arbitrarie e errori anche 

dell’ordine del 100% nelle finestre annuali non calibrate. Tale schema evidenzia che la 

segmentazione temporale è un determinante più potente della stessa struttura matematica del 

modello 
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3. Affidabilità dell’uso di finestre temporali calibrate e non: valuta criticamente l'affidabilità 

operativa dei modelli quando applicati in modo "a strascico" (cioè su serie continue e non 

segmentate) rispetto a un uso contestualmente informato. Questo confronto evidenzia i rischi di 

un'applicazione meccanica dei modelli e sottolinea l'importanza dell'intelligenza temporale nella 

pratica epidemiologica.  

 

In conclusione, i risultati ottenuti mostrano che la regressione lineare, pur teoricamente meno adatta ai dati di 

conteggio, può raggiungere prestazioni comparabili – e talvolta superiori – a Poisson e binomiale negativa 

quando applicata entro finestre temporalmente calibrate. Viceversa, nessun modello mantiene affidabilità 

quando la segmentazione è incoerente o arbitraria. La tesi dimostra quindi che la calibrazione temporale non 

rappresenta un semplice affinamento metodologico, ma un prerequisito essenziale per ottenere previsioni 

robuste e interpretabili nella modellazione epidemiologica. 
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2 – Dati e metodologia  

Nel secondo capitolo viene illustrato l’approccio analitico ed il percorso metodologico dello studio, partendo 

dalla descrizione del dataset e delle variabili, passando per la verifica delle ipotesi epidemiologiche, fino alla 

valutazione dei modelli statistici impiegati. Vengono confrontati i diversi modelli statistici, con particolare 

attenzione alla loro adeguatezza per dati di conteggio attraverso l’utilizzo di criteri quantitativi per valutarne 

le performance. L'obiettivo è garantire stime robuste e replicabili per l'interpretazione dei trend pandemici, 

analizzando in modo rigoroso la relazione tra varianti virali e parametri epidemiologici.  

 

2.1 – Descrizione del dataset 

In questa sezione vengono presentate le fonti dei dati e di conseguenza la struttura del dataset utilizzato per 

lo studio proveniente sia dall’Istituto Superiore di Sanità (ISS) che da un repository mantenuto dal 

dipartimento della Protezione Civile italiana, l’intervallo temporale, che va dal 2020 al 2025) e le variabili 

usate, che includono numero di casi, dati clinici e dati demografici. Vengono inoltre descritti i passaggi di 

pre-processing per gestire al meglio i valori mancanti, rilevare gli outliers e applicare trasformazioni, al fine 

di assicurare la qualità dei dati. 

 

2.1.1 - Fonte dati, intervallo temporale, variabili incluse  

Il presente studio si basa su un dataset aggregato su base settimanale, originariamente descritto da Roccetti et 

al. (2025) in un articolo pubblicato su medRxiv (piattaforma di preprint molto diffusa in ambito biomedico), 

che analizzano l’andamento della mortalità da COVID-19 in Italia nel periodo compreso tra l’inizio del 2020 

e il gennaio 2025. In particolare, i dati analizzati provengono essenzialmente da due fonti: un repository 

mantenuto dalla Protezione Civile italiana, sotto il presidente italiano del Consiglio dei Ministri 

(https://github.com/pcm-dpc/COVID-19/blob/master/dati-andamento-nazionale) e da un repository 

proveniente dall’ISS (Istituto Superiore di Sanità) mantenuto dal ministero italiano della salute 

(https://www.salute.gov.it/new/it/tema/covid-19/report-settimanali-covid-19/). Lo scopo principale 

dell’autore era evidenziare pattern stagionali nella mortalità legata al virus SARS-CoV-2, con particolare 

attenzione al confronto tra le ondate pandemiche e le fasi di endemicità, a partire dalla diffusione della 

variante Omicron. 

 

La raccolta copre cinque anni di osservazione che vanno dal 1° gennaio 2020 al 8 gennaio 2025, un arco 

temporale che ha visto l’evoluzione del virus, passando da ceppi ad alta letalità (come Alfa e Delta) a 

varianti più trasmissibili ma meno letali (es. Omicron BA.5, XBB, JN.1). 

Sebbene la granularità settimanale dei dati risulti essere limitata rispetto a quella giornaliera, l’aggregazione 

settimanale rappresenta un buon compromesso tra dettaglio informativo e stabilità statistica. Questo 

approccio trova infatti riscontro nella raccomandazione dell’ECDC (European Center for Disease Prevention 

and Control) e dell’OMS (Organizzazione Mondiale della Sanità), poiché l’utilizzo dei dati settimanali è 

https://www.salute.gov.it/new/it/tema/covid-19/report-settimanali-covid-19/
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particolarmente appropriato per studi su trend e modelli stagionali in ambito epidemiologico. 

 

Le variabili che entrano in gioco possono essere classificate in due categorie:  

• Variabili dipendenti (outcome), di cui fanno parte il numero dei casi giornalieri definito dal numero 

dei test (sia molecolari che antigenici) e dalle reinfezioni (definite come nuovi casi a ≥90 giorni dalla 

prima diagnosi) e indicatori di gravità come il numero dei decessi che possono essere attributi al 

COVID-19, il tasso di ospedalizzazione ed il tasso di occupazione delle terapie intensive (se presente 

nei dataset supplementari). 

• Variabili indipendenti (predittori), di cui fanno parte fattori virologici come variante dominante 

(Delta, Omicron, ecc) e frequenza delle sottovarianti ottenuta tramite sorveglianza genetica e 

sequenziamento, fattori demografici come la fascia d’età media della popolazione colpita, fattori 

immunitari che definisce lo stato vaccinale, e fattori ambientali, sociali e temporali come 

temperatura media e umidità relativa, stagionalità, eventi o festività di aggregazione, ecc 

 

L’inclusione di queste variabili consente di modellare l’effetto congiunto del tempo, della virulenza e di altri 

fattori contestuali sulla letalità osservata.  

 

2.1.2 – Pre-processing: gestione di missing values, outliers, trasformazioni (es.: 

logaritmica) 

La fase di pre-processing è essenziale per garantire la qualità e la robustezza dell’analisi statistica, poiché i 

dati epidemiologici potrebbero essere soggetti a specifici problemi come:  

• Valori mancanti 

Tale problematica è il risultato di ritardi di notifica e/o problemi di aggiornamento settimanale. 

Questo controllo è fondamentale perché con la mancanza dei dati si rischia di non cogliere picchi o 

variazioni improvvise, avere una distorsione della curvatura epidemica con una sottostima della 

gravità o creazioni di “buchi” seguiti da picchi ed ad un effetto negativo sui modelli statistici come 

stime distorte dei parametri, convergenza errata degli algoritmi e quindi una varianza superiore nei 

residui. Per la loro gestione è stata evitata l’imputazione arbitraria (per esempio sostituendo con 0), 

poiché rischia di distorcere l’andamento della curva epidemica ed introduce dei bias sistematici 

nell’analisi. Si è optato per una strategia semplice e conservativa, che in questa analisi è stata 

applicata attraverso interpolazione lineare e media stagionale nei casi necessari, che comprende 

quindi: per periodi brevi (1-2- settimane) interpolazione lineare o media mobile; per periodi lunghi 

imputazione tramite regressione temporale o media stagionale basata su anni successivi. Tuttavia 

non sono emerse anomalie per i valori mancanti nelle serie principali per quanto riguarda il numero 

dei casi o dei decessi settimanali, confermati anche dopo i controlli di qualità.   

• Outliers (valori anomali) 
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Vanno ad identificare le anomalie che rappresentano errori di reporting oppure associati a picchi di 

mortalità straordinaria dovuti a correzioni retroattive. Gli outliers relativi al primo caso sono stati 

identificati sia tramite metodi grafici utilizzando boxplot, sia attraverso metodi di statistica classica 

con z-scores, in questo caso con la foresta isolata.  

 

Figura 1, Boxplot delle variabili analizzate (casi settimanali, ospedalizzazioni, decessi, R(t) 
trasmissibilità).  I punti al di fuori dei whiskers rappresentano outliers 

 

Variabile Outliers Below Outliers Above Range Below Range Above 

Casi Settimanali 0 17 -228.722 399.070 

Decessi 0 7 -6.659,29 15.171,57 

Ospedalizzazioni 0 9 -626,5 1.249,5 

R(t) 0 3 0,33 1,72 

                       Tabella 1, Outliers rilevati nelle variabili, con conteggio dei valori al di sotto e sopra le soglie 

L’analisi del boxplot, coerente con i valori numerici riportati in Tabella 1, conferma che i range 

below negativi osservati derivano esclusivamente dalla forte asimmetria delle distribuzioni. I 

whiskers inferiori del grafico non rappresentano valori realmente negativi, ma riflettono la distanza 

statistica dagli outliers positivi estremi, mostrando perfetta coerenza tra rappresentazione grafica e 

misure tabellari. 

I limiti negativi non significano che ci aspettiamo valori negativi per casi, decessi o ospedalizzati in 

quanto assurdo in questo contesto, ma indicano una distribuzione estremamente asimmetrica, con un 

enorme variabilità e quindi differenza tra periodi normali e picchi epidemici, e la presenza di outliers 

estremi con valori anomali molto distanti dalla distribuzione centrale. Tutti gli outliers, quindi, sono 

"high", indicando che i picchi epidemici rappresentano valori estremamente anomali rispetto alla 

distribuzione normale dei dati e quelli che sono stati riscontrati i seguenti outliers: 25 per i casi 

settimanali; 31 per le ospedalizzazioni medie settimanali; 36 per i decessi; 11 per il tasso di 

trasmissibilità r(t). Questi dati rappresentano un segnale matematico (in quanto il limite negativo è di 

per sé un indicatore della distribuzione estrema oltre al mostrare chiaramente che gli outliers 

esistono solo nella direzione positiva) che conferma visivamente quello che già sappiamo: la 

pandemia ha avuto picchi drammaticamente alti rispetto alla baseline. 



20 
 

 

Figura 2, Anomalia individuata tramite algoritmo Isolation Forest: punti segnati come outliers 
multivariati rispetto ai pattern normali del dataset 

L’algoritmo Isolation Forest ha individuato 50 outliers, i quali corrispondono visivamente ai punti 

isolati nella Figura 2. La minor densità della nube di osservazioni nelle aree identificate graficamente 

corrisponde esattamente ai valori anomali rilevati, concentrati principalmente nei periodi di picco 

epidemico (ad esempio marzo 2020, novembre 2020, gennaio 2022), garantendo coerenza tra analisi 

numerica e rappresentazione visuale 

Attraverso questo approccio siamo in grado di mostrare come questi valori anomali corrispondano a 

settimane con valori estremamente elevati di casi, decessi e ospedalizzazioni, confermando la 

capacità dell'algoritmo di identificare pattern anomali multivariati.  

Per ridurre l’influenza degli outliers nelle variabili indipendenti è stata applicata una winsorizzazione 

al 95° percentile. Questa soglia rappresenta un compromesso ottimale ampiamente utilizzato negli 

studi epidemiologici: limita l’influenza dei valori estremi preservando la forma della distribuzione 

senza alterare la variabile dipendente. Inoltre, come mostrato nei grafici delle serie temporali, i valori 

winsorizzati rimangono pienamente coerenti con l’andamento osservato. In questo elaborato il 

numero dei decessi è considerato come variabile dipendente. Al fine di evitare che la presenza di 

outliers nelle variabili esplicative influenzi in modo eccessivo la stima dei coefficienti, senza tuttavia 

alterare artificialmente i valori osservati della variabile risposta (i.e. il numero di decessi), la 

procedura di Winsorizzazione è stata applicata esclusivamente alle variabili indipendenti. Nel 

dettaglio, i risultati riportano le trasformazioni effettuate sulle seguenti variabili: 

o Per casi settimanali: valori sotto 571,78 e sopra 1.037.282,48 sono stati corretti (6 

osservazioni totali) 

o Per decessi settimanali: valori sotto 10,08 e sopra 5.093,42 sono stati corretti (6 

osservazioni) 

o Per ospedalizzati: valori sotto 575,64 e sopra 34.135,17 sono stati corretti (6 osservazioni) 

o Per R(t): valori sotto 0,626 e sopra 2,398 sono stati corretti (6 osservazioni) 
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Ciò è importante innanzitutto perché Questi risultati confermano che la pandemia COVID-19 ha 

avuto un andamento "a picchi" con periodi di relativa normalità intervallati da esplosioni epidemiche 

chiaramente identificabili come eventi anomali statisticamente. In secondo luogo perché ci consente 

di separare gli errori di reporting da fenomeni reali che possono portare alla creazione di picchi 

artificiali, poi perché i modelli statistici sono sensibili ai valori estremi e gli outliers non gestiti 

possono spostare le stime dei parametri in modo significativo, peggiorare la bontà di adattamento del 

modello ed aumentare la varianza residua. 

• Trasformazioni 

Necessaria in distribuzioni non gaussiane con varianza instabile e una marcata asimmetria 

(skewness). La skewness (asimmetria) è una misura statistica che quantifica quanto una distribuzione 

si discosta dalla simmetria. Nei dati epidemiologici sul COVID-19, la skewness positiva indica che 

vi sono settimane con pochi decessi e rare settimane con picchi molto alti, fenomeno comune nelle 

ondate epidemiche. Una distribuzione altamente asimmetrica può compromettere la validità dei 

modelli lineari, rendendo necessario l’uso di modelli alternativi o, appunto, le trasformazioni. Questa 

fase risponde alle esigenze relativi ai requisiti di normalità dei residui e stabilità della varianza nei 

modelli lineari. Anche in questo caso si è optato per una scelta semplice e quindi è stata applicata 

una trasformazione logaritmica della variabile di output  

Y* = log(Y + 1) 

Dove Y rappresenta il numero dei decessi settimanali (per ridurre skewness), mentre l’aggiunta di 1 

serve a gestire le osservazioni nulle ed evitare valori anomali. Applicando la trasformazione 

logaritmica siamo in grado, non solo di migliorare le proprietà statistiche del modello, ma anche di 

rendere più interpretabili l’effetto percentuale della covariante nei modelli con link log.  

Tuttavia, nella seconda parte dell’analisi – in cui si adottano modelli di conteggio come Poisson e 

Binomiale Negativa – la trasformazione logaritmica viene sostituita da una modellazione diretta dei 

conteggi, preservando la discrezione e la distribuzione empirica dei dati. In questo contesto, 

l’approccio GLM (Generalized Linear Model) è ritenuto più adeguato rispetto a trasformazioni 

“forzate”. In questo caso le trasformazioni logaritmiche hanno ridotto l’asimmetria delle distribuzioni 

di casi e decessi, favorendo un migliore adattamento dei GLM e la stabilità degli intervalli di 

confidenza. 

 

La pipeline completa delle fasi di pre-processing può essere racchiusa in una serie di steps che ha incluso: 

pulizia iniziale, in cui si è svolta un’attività di rimozione dei duplicati e correzione degli errori manifestati; 

gestione dei missing data, attraverso un analisi dei pattern ed imputazione multipla; filtraggio degli outliers 

attraverso un trattamento selettivo e l’identificazione multivariata; trasformazioni, che comprende una 

preparazione alla modellazione dei dati ed una normalizzazione delle distribuzioni. 

Questa fase di elaborazione preliminare del dataset è fondamentale per affrontare le anomalie in modo tale 

da poter garantire la qualità e la robustezza dell’elaborazione statistica. 
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2.2 – Modelli statistici 

Questa parte confronta diversi approcci di modellazione che partono dal modello lineare classico (ripreso 

dall’articolo di partenza), passando per la regressione di Poisson ed infine alla regressione Binomiale 

Negativa, evidenziandone specifiche, vantaggi e limiti. Vengono discusse le assunzioni sottostanti ad ogni 

modello ed i criteri di selezione basati su test di verosimiglianza e criteri di informazione come AIC e BIC, 

per identificare il modello più adatto ai dati epidemiologici. 

 

2.2.1 - Modello lineare: specificazione e limiti 

Il modello lineare classico rappresenta il punto di partenza dell’analisi statistiche ed epidemiologica poiché 

rimane un punto di partenza utile per una serie di ragioni principali, quali:  

• Semplicità interpretativa, consente di tradurre relazioni complesse in un modello facilmente 

leggibile, in cui l’effetto di ogni variabile indipendente è rappresentato da un coefficiente che indica 

la direzione e l’intensità dell’associazione. 

• Rapida descrizione dei trend, fornisce una rappresentazione intuitiva sotto forma di rette che rendono 

immediata la direzione e velocità del cambiamento, mostrando quindi l’andamento di crescita e/o 

diminuzione. Questa è una proprietà particolarmente utile come ad esempio in nella fase iniziale di 

una pandemia, quando è necessario trasmettere velocemente i segnali di crescita o riduzione senza 

entrare in dettagli tecnici.  

• Supporto metodologico e software consolidati, facilitano l’implementazione e l’interpretazione 

anche da parte di non specialisti. Per questo motivo, costituisce una base di confronto con approcci 

più sofisticati e funge da “benchmark” iniziale in molte analisi applicate. 

 

Il modello lineare classico può essere espresso come: 

Y = β₀ + β₁X₁ + β₂X₂ + ... + βₖXₖ + ε, dove ε ~ N(0, σ²) 
 

Tuttavia, nonostante la sua semplicità interpretativa, in un contesto come quello epidemiologico con dati di 

conteggio, presenta notevoli limiti quali: 

• Non adatto a dati di conteggio: il modello lineare può prevedere anche valori negativi ed i decessi 

settimanali sono variabili discrete e non negative, ciò può produrre previsioni biologicamente 

implausibili. 

• Sovradispersione: la varianza dei dati supera spesso la media, violando l’assunzione di varianza 

costante. 
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• Eterogeneità: l’effetto delle variabili può cambiare in funzione del tempo o di caratteristiche latenti, 

difficili da modellare linearmente. 

• Dipendenza temporale (autocorrelazione): i dati temporali aggregati presentano spesso dipendenza 

seriale (es. effetto della settimana precedente su quella corrente), che l’OLS non gestisce in modo 

naturale. 

 

Per queste ragioni, pur rimanendo un utile strumento, il modello lineare classico non è sufficiente per una 

rappresentazione realistica e robusta dei dati epidemiologici. Da qui nasce l’esigenza di estendere lo studio a 

modelli alternativi più adatti su dati di conteggio – come la regressione di Poisson o la regressione binomiale 

negativa – che rispettano la natura discreta e non negativa dei dati di conteggio, permettono di trattare la 

sovradispersione e sono più adeguati a catturare la complessità dei fenomeni osservati. Questi modelli non 

sostituiscono il modello lineare, ma lo integrano, consentendo di passare da una visione descrittiva e 

semplificata a un’analisi più aderente alla realtà epidemiologica.  

 

2.2.2 - Modello di Poisson: adatto per dati di conteggio, ipotesi di 

equidispersione 

Numerosi studi hanno dimostrato che il modello di Poisson rappresenta un buon punto di partenza nel 

contesto epidemiologico per: prevedere l’incidenza settimanale dei casi o dei decessi; modellare l’effetto di 

politiche sanitarie (come ad esempio l’introduzione di nuove dosi vaccinali); valutare l’impatto delle varianti 

(in termini di conteggio dei decessi).  

La regressione di Poisson rappresenta una tecnica statistica progettata specificatamente per l’analisi dei dati 

di conteggio, ideale in presenza di ipotesi con equidispersione in cui la media è uguale alla varianza. Ciò 

risulta fondamentale poiché se l’equidispersione non viene soddisfatta può portare alla generazione di stime 

distorte degli errori standard. Ciò porta ad avere una serie di punti di forza nel contesto epidemiologico, 

quali: 

• Rispetto della natura dei dati, poiché progettata specificatamente per l’analisi dei dati di conteggio 

(che in tale contesto sono discrete e non negativi) per eliminare il rischio di previsioni 

biologicamente implausibili 

• Interpretabilità epidemiologica, permettendo una diretta traduzione in termini di rischio relativo 

• Modellazione dei tassi, attraverso l'uso di un offset, il modello può analizzare tassi anziché conteggi 

assoluti, fondamentale per confronti temporali e territoriali 

• Base teorica solida, poiché deriva da processi stocastici ben studiati, assumendo eventi indipendenti 

e a bassa probabilità, condizioni spesso ragionevoli per malattie infettive in popolazioni grandi 

 

La sua specificazione è: 
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log(E[Y|X]) = β₀ + β₁X₁ + ... + βₖXₖ  

Assume che Y|X coincide con Poisson(μ), con E[Y|X] = Var(Y|X) = μ (equidispersione). 

I coefficienti β sono interpretabili come logaritmo del rapporto dei tassi (log rate ratios). Per modellare tassi 

(es. tasso di mortalità) invece di conteggi assoluti, si include un offset, ad esempio il logaritmo della 

popolazione a rischio. 

 

D'altro canto, è necessario considerare alcune limitazioni significative, date da: 

• Ipotesi di equidispersione spesso violata, nei contesti epidemici, la varianza spesso supera 

significativamente la media (sovradispersione), portando a sottostima degli errori standard e 

sovrastima della significatività statistica 

• Mancanza di flessibilità, poiché non cattura adeguatamente l'eterogeneità non osservata tra individui 

o nel tempo, comune nei dati pandemici 

• Sensibilità agli outliers, perché eventi estremi (picchi epidemici) possono influenzare 

eccessivamente le stime dei parametri 

• Indipendenza di eventi, portando alla violazione dell’assunzione d’indipendenza in presenza di 

fenomeni di contagio o cluster spaziali 

 

Sebbene questa tecnica è ideale per conteggi di eventi rari e indipendenti, l'ipotesi di equidispersione è 

spesso irrealistica in questo contesto epidemiologico (sovradispersione comune), portando a sottostima degli 

errori standard e sovrastima della significatività statistica se violata. 

 

 

2.2.3 - Regressione binomiale negativa: estensione per sovradispersione 

(varianza > media) 

Il modello di regressione binomiale negativa rappresenta una naturale estensione del modello di Poisson 

descritto nella sezione precedente, in quanto capace di gestire la sovradispersione dei dati attraverso 

l’introduzione di un parametro di dispersione α, andando a rilassare così l’ipotesi di equidispersione. Punti di 

forza di questo modello sono costituiti da: 

• Gestione esplicita della dispersione, rilassando l'ipotesi restrittiva di equidispersione, consente alla 

varianza di superare la media 

• Robustezza statica, poiché produce errori standard più conservativi e intervalli di confidenza più 

realistici quando è presente eterogeneità non osservata 

• Adattamento ai dati reali, attraverso la flessibilità aggiuntiva permette un migliore adattamento ai 

pattern empirici, particolarmente importante durante le fasi di picco epidemico dove la variabilità 

aumenta significativamente 

• Compatibilità backward, poiché per α → 0 il modello converge al Poisson, rappresentandone una 
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generalizzazione naturale che mantiene la stessa interpretabilità dei coefficienti 

 

La regressione Binomiale Negativa modella Y|X come una variabile aleatoria con distribuzione Binomiale 

Negativa, dove: 

E[Y|X] = μ e Var(Y|X) = μ + αμ² 
Quindi con α→ 0 (alfa tendente a 0) abbiamo un modello che converge con quello di Poisson, mentre α > 0 è 

presente una sovradispersione crescente in cui la varianza in eccesso viene modellata esplicitamente. 

 

Sebbene rappresenti un modello estremamente potente bisogna però fare avere degli accorgimenti poiché 

può avere delle limitazioni importanti dovute a: 

• Complessità computazionali, provocati dalla stima del parametro di dispersione richiede algoritmi 

iterativi più sofisticati e può presentare problemi di convergenza con dataset di dimensioni ridotte 

• Sovraccarico parametrico, presenza di sovradispersione moderata, il modello può risultare meno 

efficiente in termini di varianza delle stime 

• Sensibilità alla specificazione, e quindi scelte inappropriate delle variabili esplicative possono 

portare a stime distorte del parametro di dispersione 

• Interpretabilità del parametro di dispersione, il parametro α risulta spesso di difficile interpretazione 

pratica per gli utenti finali 

 

Il modello di regressione binomiale negativa viene spesso preferito nei contesti epidemiologici per la sua 

capacità di rappresentare la variabilità empirica dei conteggi in modo più accurato poiché la mortalità 

settimanale dei dati COVID-19 italiani (2020 – 2025) mostra un’ampia variabilità non spiegata dalle 

variabili conosciute come la variante, il clima e/o le vaccinazioni. Attraverso tale modello siamo in grado di 

modellare gli effetti latenti senza compromettere la significatività statistica, consentendoci di ottenere dei 

significativi miglioramenti sulle osservazioni e portando a vantaggi come: una gestione della 

sovradispersione in modo parametrico; miglior adattamento ai dati reali; coefficienti interoperabili come 

tassi relativi, come ad esempio l’aumento percentuale dei decessi associato ad una variante.  

 

 

2.3 – Metriche di confronto 

Nelle applicazioni epidemiologiche come quella analizzata, è fondamentale bilanciare la capacità 

interpretativa e le prestazioni predittive. Il confronto tra modelli statistici non può basarsi esclusivamente 

sulla significatività dei coefficienti, ma deve essere supportato da metriche formali di bontà di adattamento 

(devianza, pseudo-R²) e accuratezza predittiva (MAE, Errore Relativo Percentuale), includendo tecniche di 

convalida incrociata per garantire la robustezza dei risultati. L'uso combinato di queste metriche consente di 

identificare il modello più adatto sia alla descrizione dei dati osservati che alla previsione di osservazioni 
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future. 

 

2.3.1 - Criteri di selezione del modello: AIC, BIC, test di rapporto di 

verosimiglianza 

Per confrontare i modelli è necessario adottare delle modalità che possano fornire dei risultati oggettivi, e per 

fare ciò, in questo studio, si è scelto di usare i criteri statistici più consolidati. I più diffusi sono: 

• AIC (Akaike Information Criterion) 

Rappresenta una misura usata per valutare e confrontare modelli statistici tenendo conto sia della 

bontà di adattamento sia della complessità del modello al fine di bilanciare bontà di adattamento e 

complessità andando a penalizzare modelli troppo complessi. Viene definito come: 

AIC = 2k−2log(L) 
In cui k rappresenta il numero dei parametri del modello, mentre L è la massima verosimiglianza del 

modello. Un valore AIC più basso indica un modello preferibile perché riesce a spiegare bene i dati 

con un numero contenuto di parametri.  

 

• BIC (Bayesian Information Criterion) 

Molto simile al precedente, ma la formula va a penalizzare in modo più severo l’incremento dei 

parametri, specialmente per campioni di grandi dimensioni. Viene definito come:  

BIC = log(n) ⋅ k − 2log(L) 

In cui n rappresenta il numero di osservazioni, k il numero del modello ed L rappresenta il massimo 

della funzione di verosimiglianza. A differenza del precedente che premia modelli più flessibili, il 

BIC favorisce modelli più conservativi e quindi con meno parametri. Nel contesto epidemiologico è 

particolarmente utile per evitare overfitting e garantire una maggiore generalizzazione del modello ai 

dati futuri. Anche in questo caso, minore è il punteggio e preferibile è il modello. 

• LRT (Test di rapporto di verosimiglianza) 

Rappresenta un test statistico parametrico utilizzato per confrontare due modelli annidati in cui il 

modello più semplice è un caso speciale del modello più complesso al fine di valutare se l’aggiunta 

di di parametri può migliorare significativamente la capacità descrittiva del modello. Viene definito 

come: 

LRT = -2[log(Lsemplice) - log(Lcomplesso)] 

Abbiamo che LRT segue approssimativamente una distribuzione chi-quadro con un numero di gradi 

di libertà pari alla differenza nel numero di parametri stimati tra i due modelli. Risulta utile per 

verificare se l’introduzione di una variabile o la sostituzione del modello di Poisson con una 

regressione binomiale negativa porta a un miglioramento statisticamente significativo 

 

In conclusione possiamo affermare che AIC e BIC penalizzano complessità e identificano il modello più 
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parsimonioso; il test di rapporto di verosimiglianza confronta i modelli GLM (i.e. Poisson vs. binomiale 

negativa). Comunque sia tutti gli indicatori supportano la preferenza per il modello binomiale negativo, che 

coniuga flessibilità, significatività e robustezza. 

 

2.3.2 - Bontà di adattamento: Devianza, pseudo-R², analisi dei residui 

La valutazione della bontà di adattamento, soprattutto nel contesto dell’analisi epidemiologica dei dati 

COVID-19, rappresenta un passaggio cruciale nell’analisi statistica, poiché permette di verificare quanto un 

modello riesca a descrivere i dati osservati. Grazie a tale descrizione ci consente di avere una maggiore 

accuratezza del modello, confrontare i vari modelli e valutare le assunzioni. In particolare vengono esaminate 

tre metriche fondamentali: la devianza per misurare la discrepanza tra modello e dati; pseudo-R² che 

rappresenta l’alternativa all’R² tradizione per i modelli non lineari; analisi dei residui per identificare pattern 

anomali o violazioni delle assunzioni del modello. In conclusione, queste metriche non solo migliorano la 

qualità statistica del modello, ma sono anche essenziali per garantire che i risultati abbiano valore pratico e 

utilità decisionale in ambito di salute pubblica. 

 

Devianza 

La devianza rappresenta una misura fondamentale per valutare la bontà di adattamento nei modelli di 

regressione appartenenti ai GLM (Modelli Lineari Generalizzati). Rappresenta il doppio della differenza tra 

la log-verosimiglianza del modello saturato (che si adatta perfettamente ai dati) e quella del modello in 

esame, ed è possibile definirla come: 

D = 2 ⋅ [log(Lₛₐₜ )−log(Lₘₒ)] 

 

In cui rappresenta la verosimiglianza del modello saturo perfetto, mentre rappresenta la verosimiglianza del 

modello considerato. In questo caso abbiamo che valori bassi, quindi ≈ 1, indicano un buon adattamento, 

mentre valori > 1 indicano una sovradispersione residua.  

In tale studio la devianza viene calcolata per ogni modello presente, ma mentre il modello lineare non 

prevede questa metrica, i modelli GLM la utilizzano come riferimento diretto. 

 

Pseudo-R² 

Nei modelli lineari classici la bontà di adattamento viene rappresentata tramite la quota di variabilità della 

variabile dipendente spiegata dal modello, ovvero attraverso il coefficiente di determinazione R². Tuttavia, in 

contesti basati su dati di conteggio o di distribuzioni non gaussiane come quelli dei GLM, non è direttamente 

applicabile. Per fornire una misura comparativa della qualità del modello, per ‘spiegare la variabilità’ in 

contesti più complessi come quello in esame in questo testo, si è passato quindi all’analisi del pseudo-R². Ne 

esistono diverse varianti, ognuno universalmente valido con la propria formulazione che cattura aspetti 

diversi della bontà del modello, come quello di Cox e Snell o Nagelkerke (o Cragg-Uhler), ma in questo 

studio si è scelto di usare quello di McFadden poiché, oltre ad essere una delle misure più diffuse nei modelli 
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GLM, in tale contesto risulta essere meno influenzato dalla dimensione campionaria favorendo valori 

interpretabili anche in presenza di dati di conteggio (o binari). Mentre Cox & Snell ha un limite massimo 

inferiore a 1 e il Nagelkerke lo corregge rendendolo più “leggibile”, il McFadden R² è più robusto e standard 

nella letteratura epidemiologica, dove valori tra 0.2 e 0.4 sono già considerati indice di buon adattamento. Lo 

pseudo-R² di McFadden viene definito come: 𝑅2 = 1 −  𝑙𝑜𝑔 (𝐿𝐹𝑈𝐿𝐿)𝑙𝑜𝑔 (𝐿𝑁𝑈𝐿𝐿) 

 

In cui: 𝐿𝐹𝑈𝐿𝐿 rappresenta la verosimiglianza del modello stimato con tutte le variabili, 𝐿𝑁𝑈𝐿𝐿 mentre è la 

verosimiglianza del modello nullo. 

In questo modo non viene misurata direttamente la percentuale di varianza spiegata, ma la capacità del 

modello di ridurre l’incertezza rispetto al caso nullo, ovvero calcola il valore che indica quanto il modello 

“migliora” rispetto a un modello senza predittori. Utilizzando il pseudo-R² di McFadden abbiamo che i valori 

vicino allo 0 indicano uno scarso potere indicativo, valori compresi tra 0.2 e 0.4 vengono considerati un buon 

adattamento mentre valori maggiori o uguali a 0.5 possono suggerire la presenza di overfitting. 

Utilizzando tale modello di bontà di adattamento siamo in grado di fornire un criterio semplice ed intuitivo 

per valutare se l’aggiunta di variabili porta ad un sostanziale miglioramento dell’adattamento del modello ai 

dati osservati. 

 

Analisi dei residui 

L’analisi dei residui risulta essere un elemento diagnostico imprescindibile per valutare la presenza di valori 

anomali o outliers, pattern sistematici non spiegati dal modello e violazioni di assunzioni fondamentali come 

ad esempio l’omoschedasticità o l’indipendenza dei dati. 

Avendo utilizzato modelli di Poisson e Binomiale Negativa, per effettuale l’analisi viene utilizzata: 

• Residui devianza, per la verifica della discrepanza tra modello e dati  

• Residui Pearson, per la misurazione della differenza standardizzata tra osservati ed attesi 

• Grafici Q-Q (Quantile-Quantile), per il confronto della distribuzione dei residui con quella teorica 

normale. Una deviazione marcata dalla diagonale indica che il modello non rappresenta 

adeguatamente i dati   

 

Un esempio ricorrente nei dati COVID-19 è l’eccesso di residui in corrispondenza di settimane con varianti 

dominanti come Omicron BA.5, indicando la presenza di fattori latenti non modellati. 

 

Questi strumenti non solo aiutano a confrontare diverse specificazioni statistiche, ma garantiscono anche la 

robustezza delle inferenze epidemiologiche, particolarmente rilevanti nello studio di dati complessi come 

quelli pandemici. 
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2.3.3 - Capacità predittiva: MAE, Errore Relativo Percentuale 

Questa sezione descrive un aspetto cruciale per i modelli epidemiologici poiché rappresenta lo strumento 

vero e proprio utilizzato per informare le politiche sanitari. Stimare la capacità predittiva del modello è 

fondamentale per fornire indicazioni sulla sua robustezza al di fuori del campione in esame. Le metriche 

usate includono: 

• MAE (Mean Absolute Error) 

Attraverso questa metrica viene misurato l’errore medio tra i valori osservati e quelli predetti, 

prendendo la media dei valori assoluti delle differenze. Viene calcolata come:  

MAE = 
1𝑛 ∑  | 𝑦𝑖 −  𝑦′𝑖| 𝑛𝑖=1  

In questo modo andiamo ad indicare di quanto le predizioni si discostano, in media, dai dati reali. 

Risulta essere semplice da interpretare perché espresso nelle stesse unità della variabile osservata e 

penalizza in modo lineare gli errori (ovvero un errore doppio vale esattamente il doppio). In 

conclusione, usando il MAE forniamo una misura media degli errori, robusta e facilmente 

interpretabile. 

• Errore Relativo Percentuale 

Per valutare l’accuratezza in termini relativi, soprattutto quando le scale numeriche variano tra 

periodi o aggregazioni diverse, utilizziamo l’errore percentuale relativo, definito com: 

ErrPerc = 
1𝑛 ∑  ( | 𝑦𝑖− 𝑦′𝑖|𝑦𝑖 ) ×  100 𝑛𝑖=1  

Questa metrica consente di interpretare l’errore come percentuale rispetto al valore osservato. Risulta 

particolarmente utile quando i valori cambiano drasticamente tra contesti temporali differenti 

(mensile, stagionale, annuale), permettendo confronti più stabili anche quando l’ordine di grandezza 

varia sensibilmente.  In conclusione, l'Errore Relativo Percentuale fornisce una misura 

standardizzata dell'accuratezza, particolarmente utile per comunicare l'incertezza delle previsioni 

 

La differenza fondamentale tra queste due metriche risiede proprio nella loro sensibilità alla scala dei dati: il 

MAE fornisce una misura assoluta dell'errore, mentre l'Errore Relativo Percentuale fornisce una misura 

relativa che tiene conto della grandezza dei valori osservati. In questo contesto epidemiologico è utile usare 

entrambe le metriche perché rappresentano degli indicatori complementari dell'errore di un modello che 

consentono di avere una visione bilanciata in quanto: il MAE mostra l'errore medio assoluto, mentre l'Errore 

Relativo Percentuale contestualizza questo errore rispetto alla magnitudine dei valori osservati. Attraverso la 

validazione incrociata abbiamo un metodo complementare per valutare la robustezza di queste metriche 

perché rappresenta una procedura di valutazione che ripete più volte il calcolo delle metriche scelte su 

diverse partizioni del dataset per verificare che i risultati ottenuti sono stabili e generalizzabili. 

Tale approccio permette di stimare la reale capacità predittiva dei modelli, riducendo il rischio di overfitting 

e aumentando l'affidabilità delle conclusioni epidemiologiche in quanto con MAE ed Errore Relativo 

Percentuale andiamo a misurare la precisione del modello, mentre con la validazione incrociata andiamo a 
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controllare che quelle misure non dipendano da un singolo campione, ma siano realmente rappresentative.  

 

 

 

2.3.4 - Verifica di omoschedasticità (test di Breusch-Pagan, grafici dei residui) e 

implicazioni 

Come descritto nella Sezione 1.3.2 del corrente studio, è essenziale verificare che i dati in questione 

rispettino la proprietà di omoschedasticità. Nel contesto della regressione lineare classica, uno degli assunti 

fondamentali è l’omoschedasticità: la varianza degli errori deve essere costante per tutti i valori delle 

variabili indipendenti. La sua violazione, ovvero la eteroschedasticità, comporta una serie di problematiche 

come stime inefficienti, intervalli di confidenza non attendibili, e p-value distorti. La verifica della proprietà 

di omoschedasticità risulta rilevante, soprattutto nel contesto epidemiologico, poiché i dati di conteggio 

tendono a mostrare varianze crescenti al crescere dei casi dando origine a sovradispersione. 

 

La verifica di omoschedasticità è stata eseguita in due fasi: 

1. Analisi Grafica 

In cui sono stati analizzati i grafici dei residui standardizzati rispetto al valore predetto, in particolare 

ciò include: 

o Scatterplot (Residui vs Fitted), la presenza un imbuto oppure una curvatura evidente 

rappresenta un problema, mentre il pattern ideale è costituito da una nuvola di punti casuale 

e uniforme casuale intorno lo 0. 

o Scale-Location plot, Questo grafico mostra la radice quadrata dei residui standardizzati in 

funzione dei valori predetti. Un trend lineare orizzontale indica l’omoschedasticità, mentre 

un pattern crescente identifica una varianza non costante e quindi eteroschedasticità.  

 

La presenza di pattern a “cono” o “ventaglio” (residui più dispersi per valori maggiori della variabile 

predetta) ha suggerito una violazione dell’ipotesi di varianza costante. 

 

2. Test Formale – test di Breusch-Pagan 

Utile per rilevare in modo formale la presenza di eteroschedasticità. Questo test valuta se la varianza 

dei residui può essere spiegata in modo significativo da una funzione lineare delle variabili 

indipendenti, ovvero se la varianza dei residui è correlata alle variabili dipendenti. Il test si basa su 

una regressione ausiliaria dei residui al quadrato, con le seguenti ipotesi: 

o H₀: la varianza degli errori è costante (omoschedasticità); 

o H₁: la varianza degli errori è funzione della covariante (eteroschedasticità). 

Se i risultati ottenuti mostrano un valore di p < 0.05, suggerendo un’evidenza di eteroschedasticità nei 
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modelli lineari iniziali. 

 

Il riscontro di eteroschedasticità nei modelli lineari iniziali ha implicazioni significative, quali: l’efficienza 

dei modelli lineari viene compromessa perché, pur restando imparziali, non sono più Best Linear Unbiased 

Estimator (BLUE), ovvero efficienti; gli errori standard dei coefficienti sono distorti, cioè sottostimati, 

portando ad eccessiva fiducia nei test di significatività; i p-value risultano troppo "significativi". Ciò rende 

necessari l’uso di modelli alternativi capaci di gestire in modo esplicito la dipendenza della varianza dal 

valore atteso, come i modelli di Poisson e/o Binomiale Negativa che modellano esplicitamente la relazione 

tra media e varianza. In particolare nei modelli di Poisson si assume che la media e la varianza siano uguali 

(i.e. E[Y] = Var[Y]), mentre nella regressione binomiale negativa la varianza viene modellata come una 

funzione della media (Var[Y]=μ+αμ2) offrendo maggiore flessibilità in presenza di sovradispersione. 

 

 

2.4 – Stato dell’Arte 

Questa sezione colloca la ricerca attuale nel più ampio contesto della letteratura sulla modellazione 

epidemiologica, con una crescente enfasi sull'adozione di framework statistici sofisticati, come i Modelli 

Lineari Generalizzati (GLM), che sono particolarmente adatti a gestire dati di conteggio caratterizzati da 

distribuzioni non normali e sovradispersione. Tuttavia, nonostante i progressi metodologici, persiste una 

tensione critica tra la progettazione teorica dei modelli e le loro prestazioni predittive pratiche. Una 

limitazione ricorrente nella letteratura è l'eccessiva enfasi sulla complessità del modello a scapito della 

contestualizzazione temporale, con poca attenzione a come il tempismo e la segmentazione delle finestre 

analitiche influenzino fondamentalmente l'accuratezza del modello. Vengono quindi esaminati i sviluppi 

chiave nel campo, enfatizzando la necessità di conciliare il rigore statistico con la rilevanza epidemiologica, 

in particolare per quanto riguarda la strutturazione temporale dei dati utilizzati per le previsioni. 

 

 

2.4.1 – Caso di studio e Confronto critico nella letteratura 

La pandemia di COVID-19 ha fornito un caso di studio senza precedenti per testare e affinare i modelli 

statistici in epidemiologia. Lo straordinario sforzo di raccolta dati globale ha consentito confronti rigorosi 

degli approcci di modellazione in condizioni reali. La letteratura include un'ampia gamma di modelli lineari 

e non lineari impiegati per prevedere casi, ospedalizzazioni e mortalità da COVID-19. Per esempio: 

• Bracher et al. (2021) sull'International Journal of Forecasting hanno dimostrato che i modelli lineari 

classici sottostimavano sistematicamente gli intervalli di previsione durante i picchi epidemici, 

mentre i modelli di Poisson e binomiale negativa mantenevano una calibrazione più robusta degli 

intervalli di confidenza. 
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• Ioannidis et al. (2022) hanno documentato come i modelli lineari non riuscissero a catturare le 

dinamiche non lineari delle curve di mortalità, specialmente durante le transizioni varianti, con errori 

di previsione fino al 50% più alti rispetto ai GLM. 

• Ray et al. (2023) hanno confrontato regressione lineare, Poisson e binomiale negativa su dati 

ospedalieri europei, riscontrando che la binomiale negativa superava gli altri modelli in scenari di 

alta sovradispersione, con riduzioni del MAE del 15-20%. 

• Held et al. (2020) su Statistical Modelling hanno convalidato l'uso della regressione binomiale 

negativa per i decessi settimanali da COVID-19, dimostrando una migliore gestione della 

sovradispersione rispetto alla regressione di Poisson standard 

 

Nonostante queste innovazioni metodologiche, pochi dei modelli introdotti in letteratura incorporano 

intervalli di tempo calibrati stagionalmente o epidemiologicamente. Questa omissione ha spesso portato a 

una fiducia esagerata nella generalizzabilità del modello, mascherando al contempo distorsioni temporali 

sistematiche. 

 

Un gap critico identificato in diversi studi comparativi è la mancanza di attenzione alla strutturazione 

temporale delle finestre analitiche. Revisioni sistematiche di Wang et al. (2022) e Chowell et al. (2023) 

hanno osservato che, sebbene le metodologie comparative siano abbondanti, pochi studi investigano 

esplicitamente come la scelta dell'aggregazione temporale influenzi le prestazioni del modello attraverso 

diversi framework statistici. Questo rappresenta una limitazione sostanziale, poiché la scala temporale di 

analisi può interagire con la specificazione del modello in modi che influenzano significativamente 

l'accuratezza predittiva, particolarmente in contesti epidemici ad alta variabilità. 

 

Pertanto, il gap nella letteratura non risiede esclusivamente nella selezione del modello, ma nell'allineamento 

tra il focus temporale del modello e le dinamiche di trasmissione del virus nel mondo reale. Questa tesi 

affronta questo gap applicando modelli identici sia a intervalli temporali calibrati che non calibrati, al fine di 

quantificare gli effetti pratici dell'allineamento temporale sulle prestazioni del modello. 

 

2.4.2 – Il lavoro di Roccetti et al. Come punto di inizio 

La ricerca condotta da Roccetti et al., articolata nelle pubblicazioni "A Segmented Linear Regression Study 

of Seasonal Profiles of COVID-19 Deaths in Italy: September 2021–September 2024" e "Beyond the Gold 

Standard: Linear Regression and Poisson GLM Yield Identical Mortality Trends and Death Counts for 

COVID-19 in Italy: 2021–2025", rappresenta un precedente metodologico cruciale per questa tesi perché 

fornisce un framework concettuale che collega la transizione dalla pandemia alle dinamiche endemiche del 

COVID-19. 

 

Una caratteristica metodologica chiave del lavoro di M. Roccetti, E. De Rosa e G. Cacciapuoti è stata 
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l'introduzione di un approccio innovativo alla segmentazione temporale, definendo intervalli stagionali basati 

su considerazioni epidemiologiche piuttosto che calendaristiche. Ciò ha permesso loro di rilevare una 

ricorrenza stabile della mortalità nelle fasi 1-micron e post-1-micron. Questo approccio enfatizza 

l'importanza della segmentazione temporale per rivelare fenomeni epidemiologici che altrimenti sarebbero 

oscurati da analisi lineari o continue. 

Tra gli aspetti chiave del lavoro di Roccetti et al. vi sono la definizione epidemiologica delle stagioni, poiché 

gli autori hanno sviluppato un approccio originale per definire i confini stagionali basato sulle dinamiche di 

trasmissione piuttosto che su periodi di calendario fissi (ciò ha consentito finestre di analisi biologicamente 

significative che catturavano cicli epidemici completi), e la documentazione delle prestazioni del modello, 

poiché la ricerca ha fornito evidenze empiriche che finestre temporali ben calibrate possono produrre 

prestazioni predittive eccellenti. 

Tuttavia, esistono limitazioni e questioni irrisolte che vengono affrontate in questa ricerca, tra cui: 

• Confronto limitato degli scenari temporali: sebbene abbiano dimostrato il valore della calibrazione 

stagionale, non hanno confrontato sistematicamente le prestazioni attraverso l'intero spettro delle 

aggregazioni temporali (stagionale, mensile, annuale) comunemente utilizzate nella pratica della 

salute pubblica. 

• Completezza degli errori: mentre la loro ricerca abbia fornito dimostrazioni pratiche, non ha 

pienamente sviluppato le implicazioni teoriche della calibrazione temporale come fattore 

fondamentale nella modellazione epidemiologica. 

• Implicazioni teoriche: il loro lavoro ha documentato le prestazioni ottimali ottenibili attraverso la 

calibrazione, ma non ha quantificato in modo completo il declino delle prestazioni attraverso diversi 

scenari di scorretta calibrazione. 

 

Questa tesi si basa direttamente sulle fondamenta metodologiche stabilite da Roccetti et al., estendendo 

l'analisi in diverse direzioni critiche attraverso: 

• Implementazione di modelli di regressione comparativi (lineare, Poisson, binomiale negativa) sia su 

intervalli di tempo calibrati che non calibrati. 

• Test empirico dell'ipotesi che la calibrazione dell'intervallo sia un fattore più decisivo della 

specificazione del modello nel determinare l'accuratezza della previsione. 

• Valutazione delle conseguenze del disallineamento temporale confrontando le prestazioni del 

modello su diverse scale analitiche (stagionale, mensile, annuale). 

 

Operazionalizzando questi concetti all'interno di un framework predittivo formale, questo lavoro evolve il 

paradigma metodologico introdotto da Roccetti et al., passando da un'interpretazione stagionale descrittiva a 

un esame sistematico della sensibilità del modello alla strutturazione temporale. Questo approccio evidenzia 

il ruolo cruciale della segmentazione dei dati basata sul contesto nella modellazione epidemiologica 

moderna. 
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2.4.3 – Perché estendere gli articoli originali? Limiti: da OLS a Poisson 

I dati epidemiologici – come i conteggi settimanali di casi, ospedalizzazioni e decessi – presentano proprietà 

strutturali che sfidano non solo le assunzioni della regressione lineare classica (normalità, continuità 

dell'outcome, omoschedasticità), ma anche alcune delle assunzioni fondamentali dei modelli di conteggio 

canonici come la regressione di Poisson. La necessità di estendere gli articoli originali nasce proprio 

dall'esigenza di affrontare queste limitazioni e di inquadrare l'analisi in una prospettiva che riconosca 

l'impatto critico della strutturazione temporale in un contesto metodologico che rifletta meglio il 

comportamento empirico dei dati COVID-19. 

 

L’uso di modelli lineari classici (OLS) è inadeguato per dati come decessi o casi settimanali, poiché ne viola 

le proprietà fondamentali: genera previsioni negative (biologicamente implausibili) e non gestisce la 

sovradispersione (varianza > media), producendo inferenze distorte. 

 

La regressione di Poisson rappresenta un miglioramento, poiché rispetta la natura dei dati e introduce una 

struttura log-lineare coerente con i conteggi. Tuttavia, essa impone l’assunzione di equidispersione (E[Y] = 

Var[Y]), raramente verificata nella pratica. Nei dati COVID-19, la sovradispersione è sistematica e dovuta a 

eterogeneità latente, clustering di trasmissione, dinamiche stagionali e picchi improvvisi. L’uso non critico 

del modello di Poisson in tali condizioni porta a errori standard troppo piccoli, intervalli di confidenza 

eccessivamente ottimistici e una falsa percezione di significatività statistica. 

 

Per questo motivo, la letteratura propone la regressione Binomiale Negativa come alternativa più robusta in 

presenza di sovradispersione. Tuttavia, anche la scelta di un modello più adeguato non basta se non è 

accompagnata da una corretta interpretazione temporale del fenomeno. Ed è qui che si colloca il contributo 

distintivo di questa tesi 

 

Il ruolo apportato da questo lavoro consiste nel mostrare che, oltre agli aspetti puramente statistici 

(equidispersione, discrepanza tra modelli), la calibrazione temporale della finestra di analisi è un 

determinante centrale dell’accuratezza predittiva, spesso più influente della scelta della famiglia del modello. 

Attraverso un confronto sistematico fra modelli e scale temporali diverse, la tesi dimostra che anche modelli 

teoricamente non ideali (come la regressione lineare) possono fornire previsioni sorprendentemente accurate 

quando applicati entro intervalli epidemiologicamente significativi; viceversa, Poisson e Binomiale Negativa 

perdono gran parte della loro efficacia quando utilizzati in finestre arbitrarie o non calibrate. 

In questo senso, l’estensione degli articoli originali non riguarda solo l’adozione di modelli più flessibili, ma 

introduce una prospettiva più ampia: la qualità delle previsioni dipende dall’allineamento tra modello e 

struttura temporale dei dati, e non unicamente dalla complessità del modello statistico. Questa intuizione, 

emersa dai risultati di questa tesi, rappresenta un contributo metodologico originale e rilevante per 
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l’epidemiologia quantitative. 
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3 – Risultati e analisi  

Il terzo capitolo presenta i risultati dell'analisi statistica, illustrando l'andamento temporale delle variabili 

epidemiologiche principali, i risultati dei modelli di regressione e la loro interpretazione nel contesto delle 
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ipotesi formulate. Vengono inoltre discussi i punti di forza e i limiti dello studio, nonché le implicazioni per 

la salute pubblica. 

 

3.1 – Risultati descrittivi preliminari 

Questo capitolo presenta e discute i risultati empirici ottenuti dall'applicazione dei modelli statistici descritti 

nel Capitolo 2. L'obiettivo è confrontare le performance dei modelli, validare le ipotesi di ricerca e 

interpretare gli output alla luce del contesto epidemiologico, fornendo una risposta evidence-based ai quesiti 

di studio. In particolare vengono esaminati gli andamenti temporali degli indicatori epidemiologici chiave, le 

statistiche descrittive delle variabili principali e le loro correlazioni, nonché la distribuzione degli outcome 

attraverso visualizzazioni comparative tra le diverse varianti virali. 

 

3.1.1 - Andamento temporale dei principali indicatori epidemiologici  

Punto di partenza per comprendere l’evoluzione della pandemia e della successiva fase post-pandemica è 

costituita dall’analisi temporale. I dati, aggregati su base settimanale, mostrano un andamento costituito da 

picchi epidemici di intensità variabile associati all'emergere delle diverse varianti e all'implementazione di 

misure di contenimento e campagne vaccinali, evidenziando il passaggio da ondate acute a una convivenza 

endemica con SARS-CoV-2. 

 

Per quanto riguarda il numero di nuovi casi, rappresenta la componente con maggiore volatilità. Dopo le 

ondate iniziali del 2020 caratterizzate da un numero assoluto di casi relativamente basso ma da un'alta 

letalità, si è osservato un picco senza precedenti tra la fine del 2021 e l'inizio del 2022, coincidente con la 

diffusione della variante Omicron BA.1/BA.2, durante il quale il numero di casi ha superato il milione per 

diverse settimane consecutive. Successivamente, le ondate di BA.5 (estate 2022) e XBB/JN.1 (fine 2023-

inizio 2024) hanno mostrato picchi di casi progressivamente inferiori, attestandosi tra i 200.000 e i 400.000 

casi settimanali, indicando una transizione verso un'endemicità ad alta circolazione ma minore impatto 

clinico percepito. 

 

Per l’andamento delle ospedalizzazioni e dei decessi, sebbene correlato a quello dei casi, ha mostrato un 

disaccoppiamento progressivo a partire dalla diffusione di Omicron. Con questa variante, nonostante il 

numero di casi esplodesse, il picco di ospedalizzazioni è stato circa il 40% inferiore a quello delle ondate 

precedenti. Il tasso di occupazione delle terapie intensive ha seguito una traiettoria simile, ma con un 

disaccoppiamento più marcato, suggerendo una gravità intrinseca ridotta della variante e l’effetto protettivo 

della vaccinazione.  
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Figura 3, Andamento temporale dell’outcome epidemiologico dell'intero dataset, che evidenzia fasi di 
incremento, picco e remissione (da Gennaio 2020 a Novembre 2021 - i.e. varianti precedenti - inserito a 
titolo illustrativo/comparativo) 

L'ondata Omicron BA.1, nonostante l'altissimo numero di contagi, ha generato un picco di decessi pari a 

circa la metà di quello della ondata Delta. Questo andamento discendente nella mortalità, nonostante l'alta 

circolazione virale, è il risultato congiunto della minore patogenicità di Omicron, dell'immunità pregressa (da 

infezione naturale) e dell'alta copertura vaccinale.  

 

3.1.2 - Statistiche descrittive e correlazioni tra variabili chiave  

Per avere una descrizione sintetica della distribuzione dei dati, utilizziamo delle semplici statistiche 

descrittive in modo da poter fornire una misura della loro centralità, dispersione e forma distributiva. I dati 

confermano la natura altamente asimmetrica (i.e. skewness) e sovradispersa tipica dei dati epidemiologici di 

conteggio, come mostra la seguente tabella: 

 

Variabile Media Mediana Dev.Std Min Max Skewness 

Casi 127.346,06 25.674 218.114,7 500 1.219.324 2,8 

Ospedalizzazioni 4.753,42 3.390,57 4.286, 5 566,86 21.471,29 1,7 

Decessi 395,46 216 494,34 4 2.626 2,41 

R(t) 1,01 0,95 0,24 0,58 1,95 1,02 

Tabella 2, Statistiche descrittive delle variabili in analisi: media, mediana, deviazione standard, valori estremi e 
asimmetria 

Su un totale di 255 settimane, è possibile individuare velocemente l’elevata skewness positiva (i.e. valori > 

1). Questo indica una distribuzione con una lunga coda verso destra, in cui la media è significativamente più 

alta della mediana e ciò conferma la presenza di numerose settimane con valori bassi e poche settimane con 

valori estremamente alti (picchi epidemiologici), giustificando l’approccio con modelli GLM come Poisson e 

Binomiale Negativa. 
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Per individuare la le relazioni tra predittori epidemiologici e outcome clinici, invece, usiamo una matrice di 

Pearson. Ciò ci consente di individuare problemi di multicollinearità e può essere mostrato dalla seguente 

tabella: 

 

 Casi Ospedalizzazioni Decessi R(t) 

Casi 1 0,87 0,85 0,18 

Ospedalizzazioni 0,87 1 0,97 -0,04 

Decessi 0,85 0,97 1 -0,06 

R(t) 0,18 -0,04 -0,06 1 

Tabella 3, Matrice di correlazione tra le principali variabili 

In questa matrice abbiamo possibili valori che vano da +1 (per indicare una correlazione lineare forte) a -1 

(per una correlazione inversa), passando per il valore 0 che indica l’assenza di correlazione.  Abbiamo quindi 

che sulla diagonale il valore è sempre 1 perché ogni variabile è perfettamente correlata con se stessa. Oltre a 

ciò è possibile vedere che sono presenti: 

• correlazione debole: come la relazione tra il numero dei casi ed il numero dei decessi (i.e. valore 

uguale a 0,30). In questo caso l’aumento dei casi non si traduce subito in un aumento dei decessi e 

quindi la correlazione diretta settimanale risulta più bassa 

• correlazione positiva, ma non forte: come la relazione tra il numero di casi e le ospedalizzazioni 

(i.e. valore uguale a 0,36). Abbiamo che quando cresce il numero di casi settimanali, in media 

aumenta anche il numero di ospedalizzazioni, sebbene non in modo altamente lineare 

• correlazione altissima: come la relazione tra il numero di ospedalizzazioni e quello dei decessi (i.e. 

valore uguale a 0,97). Ciò mostra come che le settimane con più ospedalizzazioni hanno quasi 

sempre più decessi 

 

I valori di R(t) vicini allo 0 non mostra una correlazione lineare con le altre grandezze poiché questo valore 

misura la velocità di diffusione, mentre le altre rappresentano valori assoluti.  

L’analisi conferma l’alta variabilità intrinseca dei dati e l’esistenza di relazioni significativamente intrinseca 

tra outcome e predittori, con implicazioni dirette per la scelta dei modelli statistici più robusti. 

 

3.1.3 - Visualizzazioni: distribuzione degli outcome per varianti e sottovarianti 

di SARS-CoV-2 

Per valutare visivamente l’impatto delle diverse varianti sulla diffusione del virus e sulla sua severità clinica, 

sono state create delle visualizzazioni comparative per avere uno strumento immediato dell’interpretazione 

epidemiologica. 
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Figura 4, Heatmap della distribuzione dell’outcome nelle diverse fasi temporali, con scala cromatica che 
rappresenta la densità dei valori 

 

La distribuzione del numero di casi settimanali mostra una chiara progressione. I periodi Alpha e Delta sono 

caratterizzati da mediane relativamente basse ma con ampie escursioni dovute alle ondate acute. Il periodo 

Omicron, con le sue sottovarianti (BA.1, BA.2, BA.4/5, XBB, JN.1), ha generato pattern epidemiologici 

distinti. Le varianti BA.1/BA.2 mostrano un drastico aumento sia della mediana che della dispersione, con 

un'intera distribuzione spostata verso valori molto più alti, riflettendo l'enorme picco di contagiosità. Le 

sottovarianti successive (BA.5, XBB, JN.1) mostrano una mediana leggermente inferiore ma una dispersione 

ancora significativa, indicando ondate più smussate ma persistenti, quindi una circolazione più persistente 

ma con impatto clinico minimo. 

 

Per quanto riguarda la distribuzione dei decessi settimanali, evidenzia una storia diversa. Mentre i periodi 

pre-Omicron (Alpha, Delta) sono caratterizzati da mediane più alte e da valori massimi estremi, mentre il 

periodo Omicron, nonostante il numero di casi molto più alto, presenta una distribuzione dei decessi con una 

mediana significativamente più bassa e una minore dispersione. Questo divario visivo tra l'enorme volume di 

casi e la mortalità relativamente contenuta è la rappresentazione grafica più immediata della ridotta gravità 

clinica associata a Omicron. 

 

Per quanto riguarda la distribuzione delle ospedalizzazioni settimanali, si osserva un andamento intermedio 

tra quello dei casi e quello dei decessi. Durante le ondate pre-Omicron (Alpha, Delta), le ospedalizzazioni 
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hanno mostrato picchi elevati, con una distribuzione caratterizzata da valori mediani alti e una notevole 

variabilità, riflettendo la severità clinica di queste varianti. Con l’avvento di Omicron, nonostante il numero 

di casi sia esploso, la distribuzione delle ospedalizzazioni si è spostata verso valori mediani più bassi e con 

una dispersione ridotta rispetto ai periodi precedenti. Questo andamento conferma visivamente il 

disaccoppiamento tra incidenza dei contagi e dei ricoveri ospedalieri, già emerso nell’analisi temporale, e 

sottolinea il ruolo congiunto della minore patogenicità intrinseca del virus e della protezione immunitaria nel 

ridurre la necessità di ricovero. 

 

Le visualizzazioni dimostrano chiaramente la trasformazione del virus: da ondate acute ad alto impatto 

clinico a una circolazione endemica caratterizzata da bassa letalità, pur mantenendo un’elevata 

trasmissibilità. Delta mantiene il primato di gravità (con CFR e ospedalizzazione più elevati), mentre 

Omicron ha causato la più ampia ondata di infezioni, ma con ridotta mortalità. Queste visualizzazioni 

forniscono un’evidenza preliminare a supporto delle ipotesi H₂ (minore gravità di Omicron) e H₃ (effetto 

protettivo nel tempo, probabilmente legato alla vaccinazione). Tuttavia, esse non controllano per fattori 

confondenti come lo stato vaccinale, l'età media della popolazione infetta o la stagionalità. La verifica 

formale di queste ipotesi richiederà quindi l'utilizzo dei modelli multivariati discussi nelle sezioni successive. 

 

 

3.2 – Performance dei modelli 

Questa sezione presenta e confronta i risultati dei tre modelli applicati – modello lineare classico, regressione 

di Poisson e regressione Binomiale Negativa – al fine di identificare lo strumento più appropriato per 

modellare i dati di conteggio epidemiologici. Il confronto si basa su criteri di informazione, metriche di 

bontà di adattamento e capacità predittiva. Inoltre, viene condotta un'approfondita analisi diagnostica per 

verificare la soddisfazione delle principali assunzioni statistiche, con particolare attenzione al problema della 

sovradispersione. Il confronto tra i modelli di regressione rappresenta un passo cruciale per determinare 

quale approccio catturi meglio la complessità dei dati epidemiologici. I risultati di questa analisi sono 

preparatori per la corretta interpretazione delle stime degli effetti e la verifica delle ipotesi epidemiologiche. 

 

 

3.2.1 - Confronto tramite criteri di informazione (AIC, BIC, test di 

verosimiglianza) 

Il confronto oggettivo tra i modelli è stato effettuato utilizzando i criteri di informazione AIC (Akaike 

Information Criterion) e BIC (Bayesian Information Criterion) per confrontare modelli annidati. In generale 

abbiamo che modelli AIC/BIC con valori più bassi e LogLik con valori più alti (meno negativo) sono da 

preferire. 
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Modello AIC BIC LogLik 

OLS 35,44 34,33 -15,72 

Poisson 43,77 42,6 -19,89 

Binomiale Negativa 41,52 39,75 -17,76 

Tabella 4, Valori di AIC, BIC e log-verosimiglianza (LogLik) per modelli: Lineare, Poisson Binomiale Negativa - 
Intervallo non calibrato ristretto (Mensile) [i.e. tabella con tutti i valori presente in Appendice A] 

L'analisi mensile (Tabella 4), mostra che il modello OLS presenta i valori di AIC e BIC più bassi in assoluto, 

insieme alla verosimiglianza meno negativa. Sebbene questi valori indichino un apparente migliore 

adattamento in questo scenario specifico, tale risultato è metodologicamente fuorviante. L'OLS , infatti, viola 

i presupposti fondamentali per l'analisi di dati di conteggio (non-normalità, eteroschedasticità), producendo 

stime inefficienti e intervalli di confidenza inaffidabili nonostante gli indicatori di informazione possano 

sembrare favorevoli. Il modello Poisson mostra le performance peggiori con AIC e BIC più elevati e LogLik 

più negativo, indicando uno scarso adattamento ai dati, mentre la regressione Binomiale Negativa si 

posiziona in una situazione intermedia, ma con una devianza significativamente inferiore rispetto agli altri 

modelli, a indicare un migliore controllo della variabilità intrinseca dei dati 

 

Modello AIC BIC LogLik 

OLS 168,38 170,33 –83,19 

Poisson 7347,22 7353,75 –3672,61 

Binomiale Negativa 696,22 702,71 –346,11 

Tabella 5, Valori di AIC, BIC e log-verosimiglianza (LogLik) per modelli: Lineare, Poisson Binomiale Negativa - 
Intervallo calibrato (Stagionale) [i.e. tabella con tutti i valori presente in Appendice B] 

Nell'analisi stagionale (Tabella 5), i suoi valori di AIC (696,22) e BIC (702,71) sono risultati di gran lunga 

migliori rispetto a quelli del modello Poisson (AIC=7347,22; BIC=7353,75), posizionandola come scelta 

preferibile. È interessante notare come l'OLS abbia mantenuto valori di AIC (168,38) e BIC (170,33) 

apparentemente competitivi, sebbene l'analisi della devianza e dei residui (Sezione 3.2.2) ne abbia 

successivamente confermato l'inadeguatezza. La superiorità della Binomiale Negativa è emersa in modo 

inequivocabile negli scenari a più ampia aggregazione temporale 

 

Modello AIC BIC LogLik 

OLS 572,64 576,06 –284,32 

Poisson 6026,89 6030,31 –3011,44 

Binomiale Negativa 547,74 552,87 –270,87 

Tabella 6, Valori di AIC, BIC e log-verosimiglianza (LogLik) per modelli: Lineare, Poisson Binomiale Negativa - 
Intervallo non calibrato esteso (Annuale) [i.e. tabella con tutti i valori presente in Appendice C] 

Nell'analisi annuale (Tabella 6), il vantaggio della Binomiale Negativa si è consolidato, presentando i valori 

di AIC (547,74) e BIC (552,87) più bassi in assoluto, seguito dal modello OLS. Al contrario, il modello 

Poisson ha confermato la sua inadeguatezza con valori di AIC e BIC circa undici volte superiori 
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I risultati dei criteri di informazione rivelano una progressione interessante attraverso le diverse granularità 

temporali. A livello mensile, le differenze tra modelli sono meno marcate, con l'OLS che mostra 

performance apparentemente buone. A livello stagionale, il modello Binomiale Negativo inizia a dimostrare 

la sua superiorità rispetto al Poisson, sebbene l'OLS mantenga valori competitivi di AIC/BIC. Solo a livello 

annuale la superiorità della Binomiale Negativa diventa inequivocabile, con valori di AIC e BIC chiaramente 

migliori rispetto a tutti gli altri modelli. Questa progressione evidenzia come l'adeguatezza del modello 

dipenda criticamente dalla scala di analisi e dal grado di aggregazione dei dati. Per dati epidemiologici con 

forte variabilità e sovradispersione, come quelli analizzati a livello stagionale e annuale, la regressione 

Binomiale Negativa rappresenta la scelta metodologicamente più appropriata 

 

3.2.2 - Bontà di adattamento (devianza, pseudo-R², analisi dei residui) 

Per descrivere meglio i dati osservati, oltre ai criteri di informazione è stata valutata la bontà di adattamento 

dei modelli attraverso la devianza, l’R² (per il modello lineare) e pseudo-R² (per i modelli GLM), e l’analisi 

dei residui costituiti da grafici Q-Q, residui di Pearson e i residui di devianza. Attraverso questi modelli 

siamo in grado di valutare, non solo quanto un modello si adatti ai dati, ma anche come e dove eventuali 

discrepanze si manifestano. Di seguito vengono esposti i risultati ottenuti dall’analisi: 

 

Modello Dev_m R²_m Dev_s R²_s Dev_y R²_y 

OLS 4.861,81 0,65 424.654,51 0,68 5.246.967,90 0,48 

Poisson 10,01 0,34 276,47 0,64 6.283,63 0,43 

Binomiale 

Negativa 
3,05 0,28 17,75 0,31 48,09 0,17 

Tabella 7, Metriche di bontà dell’adattamento: devianza residua e pseudo-R² dei modelli Lineare, Poisson e 
Binomiale Negativa, visualizzati per le tre granularità temporali (mensile, stagionale, annuale) [i.e. tabella con 
tutti i valori presente in Appendice A-B-C] 

La devianza misura la discrepanza tra valori osservati e previsti: valori bassi indicano migliore adattamento. 

Il modello lineare presenta devianze estremamente elevate in tutte le granularità temporali. Il modello 

Poisson mostra devianze inferiori ma comunque elevate, mentre il Binomiale Negativo dimostra la migliore 

performance con devianze drasticamente inferiori. 

 

L’ R² e pseudo-R² di McFadden forniscono una metrica intuitiva di bontà di adattamento. Il modello lineare 

mostra valori di R² apparentemente buoni ma ingannevoli. Il modello Poisson presenta pseudo-R² variabili, 

mentre il Binomiale Negativo mostra i valori più bassi, riflettendo l'alta variabilità intrinseca dei dati 

epidemici. 

 

L’analisi dei residui ci permette di verificare le assunzioni fondamentali di ciascun modello e identificarne i 
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punti di forza e di debolezza dei modelli statistici utilizzati, vengono quindi esaminati tre tipi di diagnostiche 

residue, ognuna delle quali fornisce una lente diversa attraverso cui valutare i modelli: 

• Residui Devianza 

 

Figura 5, Residui di devianza dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato 
ristretto (Mensile) 

Su base mensile il modello OLS mostra residui di devianza con ampie oscillazioni tra -3490.85 e 

6101.99, indicando un adattamento estremamente povero. Il modello Poisson, sebbene con residui 

ridotti (range: -87.87 a 90.99), mantiene una variabilità significativa i cui i residui restano ampi e 

tendono a crescere proprio nei mesi con maggiore intensità epidemica. Il modello Binomiale 

Negativa presenta residui notevolmente contenuti (range: -2.60 a 2.77), con la maggior parte dei 

valori entro ±1.0 che rappresenta un comportamento compatibile con un buon adattamento.  

 

Figura 6, Residui di devianza dei modelli Lineare, Poisson Binomiale Negativa - Intervallo calibrato 
(Stagionale) 

A livello stagionale, il modello OLS continua a mostrare residui estremi (fino a 8159.18), mentre il 

modello Poisson presenta residui fino a 64.43. Il modello Binomiale Negativa mantiene residui 

contenuti entro ±2.53, dimostrando stabilità attraverso le diverse stagioni. 

 

Figura 7, Residui di devianza dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato 
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esteso (Annuale) 

Nell'analisi annuale, il modello Binomiale Negativa conferma la sua superiorità con residui di 

devianza compresi tra -1.17 e 1.57 mantenendo errori contenuti e non strutturati, significativamente 

inferiori a quelli del modello Poisson (range: -13.07 a 13.33) che evidenzia una persistente 

sottostima della variabilità e dell'OLS (range: -9585.90 a 7691.80) che mostra residui annuali molto 

elevati e strutturati. 

 

• Residui di Pearson 

 

Figura 8, Residui di Pearson dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato 
ristretto (Mensile) 

L’analisi mensile dei residui di Pearson per il modello OLS mostrano valori estremi simili a quelli di 

devianza, confermando il misfit del modello. Il modello Poisson presenta residui tra -67.17 e 90.99 

evidenziando una grave sovradispersione, mentre il modello Binomiale Negativa mostra residui 

notevolmente inferiori (range: -1.77 a 2.77), con distribuzione più simmetrica attorno allo zero 

 

Figura 9, Residui di Pearson dei modelli Lineare, Poisson Binomiale Negativa - Intervallo calibrato 
(Stagionale) 

A livello stagionale, i residui di Pearson del modello Binomiale Negativa rimangono contenuti entro 

±1.44, a differenza del modello Poisson che raggiunge valori di ±64.43 e dell'OLS che presenta 

valori estremi fino a 8159.18. 
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Figura 10, Residui di Pearson dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato 
esteso (Annuale) 

Il modello Binomiale Negativa dimostra ancora una volta la migliore performance con residui di 

Pearson compresi tra -1.09 e 1.72, mentre gli altri modelli mostrano residui significativamente più 

ampi 

• Grafici Q-Q 

 

Figura 11, QQ-plot dei residui dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato 
ristretto (Mensile) 

Per quanto riguarda l’andamento mensile il grafico Q-Q del modello OLS mostrano forti deviazioni 

dalla linea teorica, in particolare nelle code. Il modello Poisson presenta un allineamento 

leggermente migliore ma con evidenti scostamenti sistematici. Il modello Binomiale Negativa 

mostra il miglior allineamento, con punti che seguono più da vicino la bisettrice ideale, con 

discrepanze limitate soprattutto nelle code 

 

Figura 12, QQ-plot dei residui dei modelli Lineare, Poisson Binomiale Negativa - Intervallo calibrato 
(Stagionale) 

A livello stagionale, il modello OLS conferma le deviazioni più marcate, con valori campionari che 

raggiungono 2.25 contro un valore teorico atteso di 1.64. Il modello Poisson mostra discrepanze 
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significative, mentre il modello Binomiale Negativa mantiene un allineamento accettabile, con il 

punto più estremo a 1.77 contro 1.64 teorico 

 

Figura 13, QQ-plot dei residui dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato 
esteso (Annuale) 

Nell'analisi annuale, tutti i modelli mostrano un migliore allineamento a causa del ridotto numero di 

osservazioni, ma il modello Binomiale Negativa continua a dimostrare la performance più 

soddisfacente, con punti che si avvicinano maggiormente alla bisettrice 

 

L’analisi congiunta di devianza, pseudo-R² e diagnostica dei residui conferma chiaramente la superiorità del 

modello Binomiale Negativa. I suoi residui di devianza e Pearson risultano costantemente molto più bassi 

rispetto agli altri modelli in tutte le scale temporali, indicando una migliore capacità di rappresentare la 

variabilità dei dati. Anche i grafici Q-Q mostrano un allineamento più vicino alla distribuzione teorica, 

soprattutto nelle code, un aspetto cruciale nel contesto epidemiologico dove i picchi hanno particolare 

rilevanza. 

Il valore relativamente basso del pseudo-R² non rappresenta una debolezza: riflette piuttosto la capacità del 

modello di cogliere l’elevata variabilità dei dati senza forzare un adattamento artificiale, a differenza di OLS 

e Poisson. 

In sintesi, tutte le metriche e le verifiche diagnostiche convergono nel mostrare che la Binomiale Negativa è 

il modello più robusto e appropriato per dati di conteggio caratterizzati da sovradispersione 

 

3.2.3 - Validazione predittiva (MAE, Errore Relative Percentuale) 

Le performance predittive sono state valutate per misurare la capacità dei modelli di generalizzare oltre i dati 

utilizzati per l’addestramento. A tal fine sono state considerate due metriche: il Mean Absolute Error 

(MAE), che quantifica l’errore medio assoluto delle previsioni, e l’errore percentuale relativo, utile per 

confrontare le prestazioni anche quando le grandezze previste variano in modo significativo tra i periodi. 

Sebbene fosse stata inizialmente considerata la validazione incrociata, questa è stata poi esclusa perché i 

risultati variavano solo marginalmente rispetto alla semplice suddivisione sui periodi temporali analizzati. Le 

metriche predittive ottenute, pur evidenziando differenze contenute tra i modelli, confermano quanto 

osservato nelle analisi di adattamento: tutti i modelli mostrano prestazioni comparabili sul breve periodo, 
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mentre emergono divergenze più marcate nei dati aggregati annuali 

 

Modello MAE_m ErrPerc_m MAE_s ErrPerc_s MAE_y ErrPerc_y 

OLS 20,49 8,54% 93,45 1,52% 190,46 112,12% 

Poisson 22,86 9,06% 64,63 1,04% 187,91 99,44% 

Binomiale 

Negativa 

22,95 9,02% 69,71 1,15% 188,92 102,43% 

Tabella 8, Performance predittiva dei modelli: MAE ed errore percentuale relativo dei tre modelli nelle diverse 
granularità temporali (mensile, stagionale, annuale) [i.e. tabella con tutti i valori presente in Appendice D-E-F] 

Su base mensile, tutti i modelli presentano valori di MAE molto simili (tra 20 e 23), con errori percentuali 

compresi tra l’8% e il 9%. Sebbene l’OLS registri il MAE più basso, tale risultato va interpretato con cautela, 

dato che il modello non rispetta le assunzioni di base per dati di conteggio, mentre Poisson e Binomiale 

Negativa ottengono prestazioni quasi sovrapponibili, con differenze marginali. Nel complesso, la scala 

mensile smorza le differenze strutturali tra i modelli, rendendo le prestazioni predittive relativamente 

omogenee. 

 

Nell’analisi stagionale, il modello Poisson ottiene il MAE più basso (64,63), seguito dalla Binomiale 

Negativa (69,71) e dall’OLS (93,45). Tuttavia, l’errore percentuale del Poisson (1,04%) è solo di poco 

inferiore a quello degli altri modelli, suggerendo che il vantaggio in accuratezza assoluta non si traduce in un 

reale miglioramento nella precisione relativa. In questa granularità, la maggiore stabilità dei dati aggregati 

favorisce Poisson, nonostante le sue criticità strutturali riscontrate nelle analisi di adattamento. 

 

A livello annuale, si osserva un netto peggioramento di tutte le metriche. I MAE salgono notevolmente, 

attestandosi attorno a 188-190, mentre gli errori percentuali superano ampiamente il 99%, raggiungendo il 

112,12% nel caso dell’OLS. Ciò riflette la difficoltà dei modelli nel generalizzare su orizzonti temporali più 

ampi e con dati fortemente aggregate a causa della ridotta numerosità dei dati e della forte influenza dei 

picchi epidemici. Le differenze predittive annuali confermano che, su periodi altamente aggregati, la capacità 

dei modelli di catturare la variabilità dei dati si riduce drasticamente. 

 

In sintesi, le metriche predittive mostrano una certa uniformità tra modelli su scala mensile, differenze più 

nette su scala stagionale e un generale peggioramento su scala annuale. Il modello Poisson mostra una 

leggera superiorità a livello stagionale, mentre la Binomiale Negativa mantiene un comportamento più 

stabile e affidabile in tutte le granularità, nonostante MAE lievemente più alti in alcuni contesti. Nonostante 

ciò, i risultati predittivi non smentiscono le analisi di bontà di adattamento, dove la Binomiale Negativa resta 

il modello più coerente e affidabile per descrivere la variabilità intrinseca dei dati di conteggio sovradispersi 
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3.3 – Diagnostica dei modelli 

Prima di interpretare i risultati dei modelli, è necessario verificarne l’adeguatezza statistica attraverso un 

insieme di diagnostiche. In questo capitolo vengono analizzate: l’eteroschedasticità dei residui, I residui di 

devianza, Pearson (per identificare pattern non spiegati dal modello) e grafici Q-Q (per analizzare 

distribuzione dei residui standardizzati e range di variabilità), segni di overdispersione. Queste verifiche 

mirano a determinare se le assunzioni dei modelli sono rispettate, se esistono problemi di specificazione e 

quale modello si comporti meglio non solo in termini di criteri informativi (AIC/BIC), ma anche in termini 

di aderenza strutturale ai dati. 

 

 

3.3.1 - Diagnostica e verifica delle assunzioni (sovradispersione, 

eteroschedasticità) 

La fase di diagnostica rappresenta un passaggio fondamentale per validare l’adeguatezza dei modelli 

statistici applicati. Nel caso specifico dell’analisi epidemiologica, le principali assunzioni da verificare 

riguardano la sovradispersione e l’eteroschedasticità, poiché la natura dei dati di conteggio tende a violare 

frequentemente queste ipotesi. 

 

Per quanto riguarda la verifica della sovradispersione, esistono diversi metodi complementari per valutarla 

come il rapporto di Pearson χ² oppure il test di Lagrange Multiplier. In questo elaborato è stata condotta 

principalmente attraverso il rapporto tra la devianza residua e i gradi di liberà (rapporto devianza/df), per la 

sua larga diffusione in letteratura epidemiologica, la sua robustezza e la facilità di interpretazione. I risultati 

ottenuti vengono riportati nella seguente tabella: 

 

Modello Dev_m Disp_m Dev_s Disp_s Dev_y Disp_y 

Lineare 4861,81 2056,44 424654,51 27398,97 5246067,9 103036,97 

Poisson 10,01 4,25 276,47 18,91 6283,63 124,37 

Binomiale 

Negativa 

3,05 1,36 17,75 1,26 48,09 1,17 

Tabella 9, Devianza residua e rapporto devianza/df per ciascun modello e granularità temporale, usati per la 
valutazione della sovradispersione 

L'analisi dei risultati conferma la marcata presenza di sovradispersione per i modelli Lineare e Poisson in 

tutte le granularità temporali, in particolare il modello lineare presenta valori estremamente elevati di 

devianza e dispersione, con rapporti devianza/df di ordini di grandezza superiori a 1, indicando una grave 

violazione delle assunzioni e una forte inadeguatezza per dati di conteggio. Il modello di Poisson riduce 

drasticamente la devianza rispetto all’OLS, ma i rapporti devianza/df rimangono molto superiori all’unità 

(4.25 in scala mensile, 18.91 in scala stagionale, 124.37 in scala annuale), rivelando una sovradispersione 
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marcata che rende il modello non appropriato nelle granularità più ampie. Per quanto riguarda invece il 

modello Binomiale Negativo mostra valori di dispersione prossimi all’unità in tutte le granularità (1.36, 1.26, 

1.17), indicando che il modello cattura adeguatamente la variabilità dei dati grazie all’introduzione del 

parametro di dispersione.  

Sulla base di questa verifica, il modello binomiale negativo emerge come quello più conforme agli assunti e 

strutturalmente adeguato, mentre Poisson mostra una sottostima sistematica della varianza e OLS risulta 

completamente inadatto alla natura dei dati 

 

L’analisi dell’eteroschedasticità costituisce un passaggio essenziale nella valutazione della validità dei 

modelli statistici richiede che la varianza dei residui rimanga costante lungo tutto il range delle variabili 

indipendenti. La violazione di questa assunzione comporta stime inefficienti dei coefficienti, intervalli di 

confidenza distorti e test di ipotesi inaffidabili. La verifica è stata condotta attraverso due livelli 

complementari: 

1. Analisi grafica  

Utile a fornire una prima evidenza visiva immediata del soddisfacimento dell'ipotesi di 

omoschedasticità. Tale analisi è stata condotta usando due tipologie di grafico, ovvero: 

o Scatterplot (Residui vs Fitted) 

 

Figura 14, Scatterplot residui vs valori predetti (fitted) dei modelli Lineare, Poisson Binomiale 
Negativa - Intervallo non calibrato ristretto (Mensile) 

Nel periodo mensile, per il modello OLS mostra un evidente pattern a imbuto, con residui 

che aumentano all’aumentare dei valori stimati. Per quanto riguarda invece il modello di 

Poisson presenta una dispersione non costante dei residui, sebbene meno marcata rispetto 

all’OLS. In fine, per il modello Binomiale negativa i residui appaiono distribuiti in modo 

omogeneo, senza pattern sistematici 
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Figura 15, Scatterplot residui vs valori predetti (fitted) dei modelli Lineare, Poisson Binomiale 
Negativa - Intervallo calibrato (Stagionale) 

  

Su base stagionale, per il modello OLS il pattern a imbuto è meno evidente rispetto al 

periodo mensile, ma permane una chiara variabilità non costante. Per quanto riguarda invece 

il modello di Poisson dispersione moderatamente variabile, con residui più ampi nelle 

stagioni con valori maggiori. In fine, per il modello Binomiale negativa residui distribuiti in 

modo uniforme 

 

Figura 16, Scatterplot residui vs valori predetti (fitted) dei modelli Lineare, Poisson Binomiale 
Negativa - Intervallo non calibrato esteso (Annuale) 

A livello annuale, tutti i modelli mostrano residui graficamente più regolari a causa del 

numero ridotto di osservazioni. Nonostante ciò, OLS e Poisson evidenziano ancora una 

leggera crescita della varianza residua, mentre Binomiale Negativa mantiene una 

distribuzione più stabile. 

o Scale-location plot 

 

Figura 17, Scale-location plot, radice quadrata dei residui standardizzati in funzione dei valori 
predetti, dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato ristretto 
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(Mensile) 

Nel periodo mensile, per il modello OLS a curva evidenzia un aumento progressivo della 

varianza. Per quanto riguarda invece il modello di Poisson andamento non lineare e 

variabilità crescente per valori più alti. In fine, per il modello Binomiale negativa linea quasi 

piatta 

 

Figura 18, Scale-location plot, radice quadrata dei residui standardizzati in funzione dei valori 
predetti, dei modelli Lineare, Poisson Binomiale Negativa - Intervallo calibrato (Stagionale) 

Su base stagionale, per il modello OLS variazioni irregolari della varianza. Per quanto 

riguarda invece il modello di Poisson pattern instabile con residui più grandi nelle stagioni 

ad alta intensità. In fine, per il modello Binomiale negativa andamento regolare e privo di 

pattern 

 

Figura 19, Scale-location plot, radice quadrata dei residui standardizzati in funzione dei valori 
predetti, dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato esteso 
(Annuale) 

A livello annuale, per i modelli OLS e Poisson mostrano leggere variazioni nella 

dispersione, ma difficili da interpretare con pochi punti. In fine, il modello Binomiale 

negativa mantiene una varianza visivamente stabile 

 

2. Test di Breush-Pagan 

Rappresenta un test formale che valuta se la varianza dei residui sia funzione lineare della 

covariante, utile per una conferma quantitativa e oggettiva dell’evidenza grafica 

Il modello OLS e Poisson rifiutano l'ipotesi nulla di omoschedasticità (p-value < 0,05), mentre il 

Binomiale Negativo la conferma (p-value = 0,7). 

Modello LM_stat LM_pvalue F_stat F_pvalue 
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OLS 7,45 0,01 8,66 0,005 

Poisson 9,91 0,002 12,43 0,001 

Binomiale 

Negativa 

0,14 0,7 0,13 0,71 

Tabella 10, test di Breusch–Pagan, a supporto della verifica formale dell’eteroschedasticità, dei modelli 
Lineare, Poisson Binomiale Negativa - Intervallo non calibrato ristretto (Mensile) 

 

A livello stagionale, nessun modello mostra eteroschedasticità statisticamente significativa, sebbene 

il Poisson si avvicini alla soglia di significatività. 

Modello LM_stat LM_pvalue F_stat F_pvalue 

OLS 1,76 185 1,7 0,23 

Poisson 3,32 0,67 3,97 0,08 

Binomiale 

Negativa 

0,42 0,52 0,35 0,57 

Tabella 11, test di Breusch–Pagan, a supporto della verifica formale dell’eteroschedasticità, dei modelli 
Lineare, Poisson Binomiale Negativa - Intervallo calibrato (Stagionale) 

 

Nell'analisi annuale, tutti i modelli soddisfano l'ipotesi di omoschedasticità, con p-value ben 

superiori alla soglia di significatività. 

Modello LM_stat LM_pvalue F_stat F_pvalue 

OLS 1,42 0,23 1,1 0,4 

Poisson 2, 89 0,09 5,23 0,15 

Binomiale 

Negativa 

1,29 0,25 0,96 0,43 

Tabella 12, test di Breusch–Pagan, a supporto della verifica formale dell’eteroschedasticità, dei modelli 
Lineare, Poisson Binomiale Negativa - Intervallo non calibrato esteso (Annuale) 

 

Attraverso analisi grafiche e test formali, emerge che Il modello OLS mostra la più marcata 

eteroschedasticità, specialmente a livello mensile, con un evidente pattern a imbuto nei grafici e conferma 

statistica ai test di Breusch-Pagan (p = 0,01). Anche il modello Poisson viola l'ipotesi di omoschedasticità, 

particolarmente a livello mensile (p = 0,002), sebbene con residui di minore ampiezza. Al contrario, il 

modello Binomiale Negativo mantiene residui uniformemente distribuiti e test non significativi in tutte le 

granularità temporali (p ≥ 0,25), dimostrando piena aderenza all'ipotesi di omoschedasticità. 

Mentre le differenze sono più evidenti a livello mensile e si attenuano con l'aggregazione annuale, il modello 

Binomiale Negativo si conferma l'unico a soddisfare consistentemente le assunzioni di omoschedasticità, 

rafforzandone l'appropriatezza per l'analisi di dati epidemiologici di conteggio in presenza di 

sovradispersione 
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3.3.2 - Risultati dei modelli (lineare classico, Poisson, binomiale negativa) 

L'analisi comparativa dei tre modelli statistici applicati ai dati epidemiologici di conteggio ha rivelato 

differenze sostanziali nelle loro performance e nell'adeguatezza metodologica, con implicazioni importanti 

per la corretta interpretazione dei fenomeni epidemici. 

 

Il modello lineare classico, pur essendo semplice e spesso utilizzato come punto di riferimento, mostra 

alcuni limiti quando applicato a dati di conteggio. A livello mensile presenta valori apparentemente buoni di 

AIC/BIC (35,44 e 34,33) e un R² elevato (0,65), ma questi risultati mascherano problemi strutturali. Le 

devianze risultano estremamente elevate in tutte le granularità, passando da 4.861,81 (mensile) a oltre 5 

milioni in quella annuale, mentre i residui di devianza possono superare ±6000. Anche la diagnostica è 

coerente con un cattivo adattamento: i grafici residui-fitted mostrano un marcato pattern a imbuto e il test di 

Breusch–Pagan conferma eteroschedasticità (p = 0,01 a livello mensile). 

Le prestazioni predittive peggiorano con l’aggregazione temporale: il MAE passa da 20,49 (mensile) a 

190,46 (annuale), con un errore percentuale che oltrepassa il 112%. Nel periodo stagionale, OLS sembra 

performare leggermente meglio grazie a una maggiore stabilità dei dati (R² = 0,68), ma la devianza rimane 

altissima (424.654,51), segno che l’apparente adattamento è solo superficiale. I residui mantengono 

ampiezze elevate e un comportamento non casuale. 

 

Il modello di Poisson, pur essendo teoricamente più appropriato per dati di conteggio, ha rivelato limiti 

fondamentali nel gestire la sovradispersione tipica dei dati epidemici. I criteri di informazione mostrano 

valori estremamente elevati, soprattutto nelle granularità più ampie (AIC = 7347,22 a livello stagionale, 

6026,89 a livello annuale), riflettendo un adattamento insufficiente. La devianza cresce rapidamente con 

l’aggregazione (10,01 mensile → 276,47 stagionale → 6.283,63 annuale) e i residui risultano ampi, 

raggiungendo ±66 nel periodo stagionale. Lo pseudo-R² risulta variabile: 0,34 (mensile), 0,64 (stagionale), 

0,43 (annuale). La diagnostica conferma criticità importanti: il test di Breusch–Pagan è significativo nei dati 

mensili (p = 0,002), segnalando eteroschedasticità, e i QQ-plot mostrano deviazioni sistematiche nelle code, 

indicazione di un adattamento non corretto. Da un punto di vista predittivo, il modello si comporta meglio 

sul periodo stagionale (MAE = 64,63, il più basso tra i tre), ma l’errore percentuale annuale rimane molto 

elevato (99,44%). Nel periodo stagionale Poisson dà la sua miglior performance relativa (pseudo-R² = 0,64), 

e il MAE risulta il più basso fra i modelli. Tuttavia, la devianza rimane consistente (276,47) e i residui ampi, 

evidenziando che il miglioramento è solo relativo alla grave sottostima della varianza che caratterizza le altre 

granularità. 

 

Il modello Binomiale Negativo merge come il modello più robusto e metodologicamente corretto in tutte le 

condizioni analizzate. Grazie al parametro di dispersione, il modello gestisce efficacemente la 

sovradispersione e mostra i migliori valori di AIC, specialmente nelle granularità più ampie (AIC annuale = 

547,74, nettamente inferiore rispetto agli altri modelli). La devianza è di ordini di grandezza inferiore 
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rispetto agli altri modelli: 3,05 a livello mensile, 17,75 a livello stagionale e 48,09 a livello annuale. Anche i 

residui risultano molto ridotti (ad esempio –2,53 / 1,69 nel periodo stagionale), con un allineamento ai QQ-

plot nettamente superior. Lo pseudo-R² è inferiore agli altri modelli (0,28 mensile, 0,31 stagionale, 0,17 

annuale), ma questo riflette il fatto che la Binomiale Negativa non forza un adattamento artificiale dei dati e 

rappresenta onestamente l’alta variabilità del fenomeno epidemiologico. 

I test di Breusch–Pagan risultano sempre non significativi (p ≥ 0,25), confermando l’assenza di 

eteroschedasticità e una maggiore stabilità dei residui. Le performance predittive sono coerenti e stabili: il 

MAE resta vicino agli altri modelli (22,95 mensile; 69,71 stagionale; 188,92 annuale), senza esplosioni 

dell’errore percentuale. Nel periodo stagionale la Binomiale Negativa mostra la combinazione più equilibrata 

di tutte le metriche e questa granularità mette particolarmente in luce la capacità del modello di rappresentare 

correttamente la variabilità degli andamenti epidemici. 

 

La progressione dei risultati attraverso le diverse scale temporali ha evidenziato come l'adeguatezza del 

modello dipenda criticamente dal livello di aggregazione dei dati. Mentre a livello mensile le differenze 

apparivano meno marcate, nelle aggregazioni stagionale e annuale – dove la sovradispersione diventa più 

pronunciata – è stata rilevata la superiorità del modello Binomiale Negativo, che non solo ha dimostrato 

performance statistiche superiori, ma ha anche prodotto stime biologicamente plausibili e 

metodologicamente corrette, rappresentando la scelta ottimale per l'analisi di dati epidemiologici di 

conteggio caratterizzati da eterogeneità e variabilità intrinseca. 

 

 

3.4 – Analisi interpretativa dei risultati 

I risultati presentati forniscono una chiara evidenza empirica a supporto della tesi centrale di questo lavoro: 

la calibrazione temporale dell'intervallo di analisi è un fattore determinante per l'accuratezza predittiva dei 

modelli di regressione applicati ai dati di mortalità da COVID-19, in misura spesso superiore alla scelta del 

modello statistico stesso. Il confronto tra i tre scenari temporali – stagionale calibrato, mensile non calibrato 

e annuale non calibrato – rivela il cosiddetto "fenomeno dell'errore 1%–10%–100%". Più nel dettaglio 

 

Scenario Calibrato: Intervalli Stagionali 

Nei periodi stagionali, tutti e tre i modelli (OLS, Poisson, Binomiale Negativa) tutti e tre i modelli mostrano 

prestazioni eccellenti producendo errori percentuali estremamente bassi, attestandosi intorno all'1-1,5% 

riflettendo una corrispondenza quasi perfetta tra andamento osservato e andamento previsto. Questo risultato 

è in linea con i lavori di Roccetti et al. (2024, 2025), che hanno dimostrato come una segmentazione 

intelligente del periodo di analisi, allineata alle dinamiche epidemiche stagionali, consenta di ottenere 

previsioni altamente accurate. È rilevante notare che: la regressione lineare, nonostante le note limitazioni 

teoriche sui dati di conteggio, risulta sorprendentemente accurata; a regressione di Poisson conferma la sua 

solidità in assenza di eventi di super-spreading e con varianza moderata; la Binomiale Negativa, pur essendo 
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teoricamente la scelta più robusta in presenza di sovradispersione, non produce miglioramenti significativi 

rispetto agli altri due modelli.  

In questo scenario, la differenza tra i tre modelli è statisticamente minima. La ragione è strutturale: il 

fenomeno epidemiologico osservato (mortalità stagionale da Omicron) è intrinsecamente regolare, privo di 

picchi violenti e caratterizzato da dinamiche stagionali stabili. La calibrazione temporale consente dunque ai 

modelli di catturare efficacemente la struttura del segnale 

 

Scenario Non Calibrato Ristretto: Intervalli Mensili 

Quando i modelli sono stati applicati a intervalli ristretti non calibrati, gli errori percentuali sono aumentati 

significativamente, raggiungendo circa il 9-10%. Le principali criticità emerse consistono nella la possibilità 

di “perdere” porzioni di curve epidemiche, come un picco incipiente o una discesa ripida, perché l’intervallo 

è troppo breve per rappresentare l’intero ciclo stagionale, aumento della varianza residua e l’instabilità dei 

parametri stimati in corrispondenza di settimane anomale o outliers. Questo deterioramento delle prestazioni 

indica che finestre temporali troppo ristrette e arbitrarie possono catturare solo frammenti dei cicli di 

trasmissione, portando a stime instabili e meno affidabili. È interessante notare che in questo scenario le 

differenze tra i modelli si sono attenuate, con il modello lineare che a volte ha mostrato performance 

competitive o addirittura leggermente migliori, sfidando il consenso della letteratura che tende a 

sconsigliarlo per dati di conteggio (Bracher et al., 2021; Ioannidis et al., 2022). Tuttavia, a regressione 

Binomiale Negativa tende a mostrare una lieve superiorità nei mesi con maggiore variabilità, mentre la 

regressione lineare può risultare più instabile anche se le differenze restano molto inferiori rispetto al peso 

esercitato dalla scelta dell’intervallo temporale 

 

Scenario Non Calibrato Esteso: Intervalli Annuali 

L’applicazione dei modelli di regressione a intervalli annuali arbitrari determina un collasso totale delle 

prestazioni, con errori relativi che raggiungono anche il 100%. Ciò dimostra che l'utilizzo di finestre 

temporali troppo ampie, che aggregano fasi epidemiche eterogenee (periodi di picco, periodi di plateau, asi 

discendenti, fasi ascendenti, variazioni legate a sottovarianti diverse, ognuna con dinamiche proprie), rende i 

modelli incapaci di cogliere le dinamiche sottostanti, producendo previsioni che, sebbene possano preservare 

il trend generale, sono del tutto inaffidabili in termini di precisione numerica. 

 

La diagnostica dei modelli ha ulteriormente confermato questi risultati. Il modello Binomiale Negativo si è 

distinto come il più robusto nel gestire la sovradispersione e nel mantenere l'omoschedasticità dei residui 

attraverso tutte le scale temporali, giustificando il suo ampio utilizzo in letteratura per dati di conteggio 

epidemici (Held et al., 2020; Ray et al., 2023). Tuttavia, il suo vantaggio relativo è emerso in modo 

preminente proprio negli scenari più problematici (mensile e annuale non calibrati), mentre nello scenario 

stagionale calibrato la sua superiorità è stata meno marcata. 
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In sintesi, questa analisi interpretativa sostiene che il dibattito metodologico in epidemiologia non dovrebbe 

focalizzarsi esclusivamente sulla selezione del modello più sofisticato, ma dovrebbe integrare 

sistematicamente una riflessione sul significato epidemiologico della finestra temporale di analisi. Questo 

scenario conferma che nessun modello statistico può superare l’assenza di un’adeguata segmentazione 

epidemiologica del tempo. La calibrazione temporale non è un semplice affinamento tecnico, ma un 

prerequisito fondamentale per trasformare la potenza matematica dei modelli di regressione in conoscenza 

epidemiologica affidabile e azionabile. 
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4 – Conclusioni 

Questo capitolo finale ha l'obiettivo di sintetizzare i risultati empirici emersi dalla ricerca, di discuterne le 

implicazioni sia per la pratica epidemiologica che per la metodologia statistica, di riconoscerne i limiti 

intrinseci e di delineare possibili percorsi per futuri sviluppi di indagine. In particolare, vengono discussi gli 

effetti della calibrazione temporale, del modello statistico adottato, e vengono analizzati i principali punti di 

forza e criticità dello studio. Il capitolo introduce inoltre i limiti dell’analisi e propone le possibili direzioni 

future di approfondimento, offrendo una visione complessiva del contributo scientifico raggiunto. 

 

 

4.1 – Sintesi dei risultati  

I risultati emersi dall’analisi dei tre modelli — regressione lineare, regressione di Poisson e regressione 

binomiale negativa — delineano un quadro coerente: la performance predittiva non dipende solo, e nemmeno 

principalmente, dalla forma matematica del modello, ma soprattutto da come il tempo viene segmentato in 

fase di analisi. Il confronto fra scenari stagionali calibrati, mensili non calibrati e annuali non calibrati mostra 

che la stessa famiglia di modelli può passare da una previsione estremamente accurata a una sostanzialmente 

inaffidabile, a seconda dell’intervallo temporale considerato. Questo porta a identificare due risultati chiave: 

il ruolo centrale della stagionalità e la relativa marginalità della scelta del modello, a parità di calibrazione 

temporale. 

 

4.1.1 – Primo risultato chiave: il ruolo della stagionalità 

Il risultato più significativo di questa ricerca è la dimostrazione empirica che la calibrazione temporale basata 

sulla stagionalità epidemiologica è il fattore principale che governa l'accuratezza predittiva dei modelli. 

L'analisi comparativa dei diversi scenari temporali ha rivelato un pattern inequivocabile e graduale, che 

abbiamo definito il "fenomeno 1%-10%-100%". 

 

Quando i modelli sono applicati a intervalli calibrati (stagionali), definiti secondo dinamiche epidemiche e 

non il calendario civile, le prestazioni raggiungono livelli di eccellenza in cui i tre modelli producono 

previsioni estremamente accurate. L’errore relativo medio sulle previsioni di mortalità si colloca intorno 

all’1–1,5%, con scostamenti minimi tra un modello e l’altro. In questo contesto, le previsioni dei modelli si 

allineano quasi perfettamente con i dati osservati, indipendentemente dalla complessità del modello stesso. 

Questo suggerisce che un intervallo di analisi biologicamente significativo, che cattura un ciclo epidemico 

completo, permette allo strumento statistico di esprimere il suo massimo potenziale. 

Al contrario, utilizzando intervalli non calibrati ristretti (mensili), l'accuratezza peggiora sensibilmente 

perché il modello osserva solo una “fetta” del ciclo stagionale. Finestre temporali arbitrarie e troppo ristrette 

rischiano di catturare solo una fase transitoria del ciclo epidemico che può corrispondere a una fase di salita, 

di discesa oppure a un plateau. In questo caso, gli errori aumentano sensibilmente, attestandosi intorno al 8–
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10%, e i parametri risultano più instabili, introducendo un bias sistematico e rendendo le stime instabili. 

L'applicazione dei modelli su intervalli non calibrati estesi (annuali) porta a un vero e proprio collasso 

predittivo. All’interno dello stesso periodo coesistono fasi epidemiologiche molto diverse quindi costituite da 

fasi epidemiche profondamente eterogenee (picchi, discese, periodi di quiete relativa). I modelli non sono più 

in grado di discernere il segnale epidemiologico dal rumore portando l’errore anche al 100%, rendendo le 

previsioni di fatto inutilizzabili ai fini decisionali. 

 

L’andamento degli errori può essere sintetizzato nel fenomeno che, per semplicità, abbiamo definito “1%–

10%–100%”. Questa progressione non è un artefatto numerico, ma riflette la quantità di informazione 

epidemiologica effettivamente disponibile al modello, e cioè: 

• nella scala stagionale, l’intero ciclo dell’epidemia è contenuto all’interno della finestra di 

osservazione 

• nella scala mensile, la finestra intercetta solo una porzione del ciclo, perdendo il senso complessivo 

della dinamica 

• nella scala annuale, il modello “vede” troppe fasi diverse sovrapposte e finisce per restituire una 

media che non rappresenta adeguatamente nessuna di esse 

 

In sintesi, il primo risultato chiave è che la calibrazione temporale ha un effetto dominante sulla qualità delle 

stime. A parità di modello, passare da una finestra calibrata a una non calibrata significa perdere uno o più 

ordini di grandezza in accuratezza. Questo suggerisce che, in epidemiologia, la domanda “qual è il modello 

migliore?” non può essere separata dalla domanda “su quale intervallo di tempo lo stiamo applicando?”, e 

ciò implica che la scelta del "quando" analizzare i dati è tanto cruciale quanto la scelta del "come" 

analizzarli. 

 

4.1.2 – Secondo risultato chiave: la marginalità della scelta del modello 

Il secondo risultato fondamentale è che, nel contesto di questa analisi, la scelta specifica del modello di 

regressione ha un impatto marginale sull'accuratezza predittiva finale, soprattutto se confrontato con l'effetto 

della calibrazione temporale.  

 

Le prestazioni dei modelli nei tre scenari possono essere lette come una funzione congiunta di due fattori: 

struttura intrinseca del fenomeno (stagionale, con picchi moderati e ricorrenti e modalità di aggregazione 

temporale (allineata o meno a questa struttura). Nei periodi stagionali calibrati, tutti e tre i modelli si adattano 

al comportamento stagionale del virus; nei periodi mensili e annuali, invece, la segmentazione temporale 

spezza o sovrappone i cicli, compromettendo la qualità della previsione. Una volta fissato un intervallo 

temporale epidemiologicamente sensato, il confronto tra i modelli rivela un risultato in parte controintuitivo: 

le differenze tra le tre regressioni prese in analisi diventano relativamente marginali, soprattutto nello 

scenario stagionale calibrato. 
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In presenza di intervalli stagionali la regressione lineare fornisce previsioni molto precise, nonostante le sue 

note limitazioni teoriche con i dati di conteggio, quella di Poisson mostra una buona aderenza, grazie alla 

coerenza tra struttura di conteggio e natura dei dati, mentre la regressione binomiale negativa pur essendo il 

modello più flessibile in presenza di sovradispersione, non mostra un vantaggio sostanziale quando la 

variabilità non è estrema e i picchi non sono violenti. Negli scenari mensili e annuali, l’ordine di grandezza 

dell’errore cresce per tutti e tre i modelli, e le differenze tra loro, pur presenti, rimangono comunque molto 

meno marcate del salto indotto dalla diversa segmentazione del tempo. 

 

Per chiarire visivamente questo aspetto, è utile rappresentare le curve teoriche dei tre modelli a confronto 

con la curva osservata, almeno in uno scenario rappresentativo.  

 

Tabella 13, Curve teoriche dei modelli Lineare, Poisson Binomiale Negativa per tutte le granularità temporali 

 

Nel caso stagionale calibrato (grafico centrale), le tre curve dei modelli tendono quasi a sovrapporsi e 

seguono con sorprendente precisione i picchi e le discese osservate. La vicinanza tra le linee mostra come, 

quando l’intervallo temporale è allineato ai cicli epidemiologici, la struttura del fenomeno guidi naturalmente 

l’andamento della previsione, rendendo la scelta del modello relativamente meno rilevante. In altre parole, il 

comportamento del virus “traina” i modelli verso una forma coerente e simile. 

Nello scenario mensile non calibrato (grafico a sinistra), le tre curve mantengono ancora una buona 

coerenza reciproca, ma iniziano a discostarsi visibilmente dalla curva reale, sottostimando alcuni picchi e 

smussando eccessivamente le transizioni. Pur utilizzando tre modelli differenti — dalla regressione lineare, 

teoricamente meno adatta, alla Binomiale Negativa, più flessibile — il risultato rimane qualitativamente 

simile: tutti e tre reagiscono allo spezzettamento artificiale della stagionalità. 

quadro più evidente emerge nello scenario annuale (grafico a destra). Qui le curve dei tre modelli diventano 

quasi indistinguibili tra loro: una singola linea inclinata che appiattisce completamente le oscillazioni 

osservate. La segmentazione annuale comprime dinamiche molto diverse in un unico blocco, annullando la 

stagionalità e portando i modelli a produrre previsioni generiche e poco informative. Il modello scelto, in 

questo contesto, risulta quasi irrilevante: i trend annuali tirano tutti verso lo stesso andamento lineare 

 

Questa analisi multilivello porta quindi al secondo risultato chiave: in un contesto ben calibrato, la scelta del 

modello è molto meno decisiva della scelta dell’intervallo di osservazione.  

Mentre la scelta di un modello teoricamente appropriato come la Binomiale Negativa è consigliabile per la 



62 
 

robustezza statistica e la correttezza inferenziale, questa ricerca dimostra che i guadagni previsionali ottenuti 

passando da un modello all'altro sono di un ordine di grandezza inferiore a quelli ottenuti semplicemente 

calibrando intelligentemente il periodo di analisi.  

 

 

4.2 – Riflessioni finali 

Questa sezione approfondisce in che misura la scelta del modello statistico influenzi la qualità delle 

previsioni, mettendo a confronto regressione lineare, Poisson e binomiale negativa nelle diverse granularità 

temporali. Particolare attenzione viene posta alla distinzione tra gli effetti attribuibili alla struttura del 

modello e quelli invece determinati dalla segmentazione temporale dell’analisi offrendo, così, 

un'interpretazione critica dei risultati, esplorandone il profondo significato epidemiologico per la 

sorveglianza e la pianificazione sanitaria, nonché le importanti implicazioni metodologiche per la pratica 

della modellistica statistica, con un'enfasi sul concetto di "Intelligenza Temporale". 

 

4.2.1 – Significato epidemiologico dei risultati 

I risultati di questo studio hanno profonde conseguenze per la pratica epidemiologica, sottolineando che i 

modelli operano all’interno di un fenomeno epidemiologico strutturato. Essi pongono l'accento sulla 

necessità di una profonda comprensione del fenomeno epidemiologico sottostante prima di applicare 

qualsiasi strumento quantitative. Un modello statistico rappresenta uno strumento per dialogare con i dati. 

 

Per la pratica epidemiologica, questo implica che la costruzione di modelli predittivi efficaci richiede di 

partire dalla comprensione della dinamica della malattia, e solo in un secondo momento dalla scelta dello 

strumento statistico. Per i sistemi di sorveglianza ciò significa che, se si usano intervalli non calibrati, le 

previsioni rischiano di essere molto imprecise, con conseguenti decisioni subottimali in termini di risorse e 

interventi. Identificare e monitorare le stagioni epidemiche specifiche di un patogeno permette di:  

• Rilevare precocemente l'inizio di un'ondata con maggiore accuratezza;  

• Stimare il picco atteso e il carico sul sistema sanitario con un margine di errore ridotto;  

• Valutare l'impatto di un intervento (es. una campagna vaccinale) in un arco di tempo definito e 

pertinente. 

 

Alla luce di questi risultati, per una pratica epidemiologica più robusta, si raccomanda di: validare i modelli 

su intervalli con significato epidemiologico, e quindi prima di implementare un modello per le decisioni, 

verificarne le prestazioni in intervalli temporalmente significativi; evitare l’uso di finestre arbitrarie quando 

l’obiettivo è la precisione predittiva; progettare la segmentazione temporale in funzione dei cicli 

epidemiologici. La modellazione dovrebbe quindi essere pensata a partire dal fenomeno (es. stagionalità, 

picchi, varianti), piuttosto che a partire dal modello.  
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4.2.2 – Implicazioni metodologiche per la modellistica statistica 

Oltre alla rilevanza epidemiologica, questo lavoro offre una nuova prospettiva sul piano metodologico, in cui 

emerge chiaramente che la modellistica richiede non solo competenza tecnica, ma anche capacità di leggere 

il contesto. 

 

 I dati non sono solo numeri, ma p ortano con sé una dimensione temporale che ne determina il significato. 

Ignorare questa dimensione, o trattarla come una semplice variabile continua, significa privare i dati del loro 

contesto più importante. L'"Intelligenza Temporale", ovvero la capacità di segmentare e interpretare il 

tempo in modo epidemiologicamente informato, emerge come una competenza metodologica cruciale, pari 

alla conoscenza delle tecniche statistiche. 

 

Le principali lezioni apprese da questo studio sono quindi: 

• Il contesto è dominante: nessun modello è intrinsecamente “buono” se il periodo è sbagliato. La 

bontà di un modello dipende dal suo allineamento con la realtà che intende descrivere, non solo dalla 

sua eleganza matematica 

• Semplicità e Significato: anche modelli semplici possono funzionare molto bene se incastonati in un 

intervallo coerente. In contesti ben definiti, modelli semplici (come la regressione lineare) possono 

performare in modo eccellente, sfidando il paradigma "più complesso è, meglio è" 

• Verifica della robustezza temporale: la segmentazione del tempo è parte integrante della 

specificazione del modello. La valutazione di un modello dovrebbe includere test sulla sua stabilità 

in diverse finestre temporali, non solo la bontà di adattamento su un unico dataset 

 

Questo studio è un invito a un utilizzo più consapevole e umano-centrico degli strumenti predittivi. L'analista 

non è un semplice esecutore di procedure, ma un interprete che deve fondere la competenza quantitativa con 

la comprensione del fenomeno in cui l’accuratezza delle previsioni dipende tanto dal modello quanto dal 

modo in cui segmentiamo e interpretiamo il tempo. La lezione finale è l'imperativo della contestualizzazione 

che non rappresenta un correttivo opzionale, ma un requisito metodologico fondamentale. 

 

4.2.3 – Conclusioni 

Il presente lavoro contribuisce ad ampliare e ridefinire criticamente le conclusioni della letteratura 

precedente, mostrando che la scelta del modello statistico — pur importante — non rappresenta il principale 

determinante dell’accuratezza predittiva quando si analizzano dati di mortalità da COVID-19 nella fase 

Omicron/post-Omicron. 

 

Il risultato più rilevante emerso dallo studio è che l’accuratezza dei modelli dipende in misura preponderante 
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dalla calibrazione temporale dell’intervallo di analisi, più che dalla complessità del modello utilizzato. La 

comparazione sistematica delle tre scale temporali (mensile, stagionale, annuale) ha prodotto una regolarità 

sorprendente, qui definita come fenomeno dell’errore 1%–10%–100% (stagionale – mensile – annuale). 

Questa evidenza, mostra che l’efficacia delle regressioni non deriva automaticamente dalla struttura 

matematica del modello, ma dalla coerenza tra finestra temporale e fenomeno epidemiologico analizzato. 

 

Risultato empirico di questo elaborato consiste quindi nell’aver dimostrato che: 

• La regressione lineare può risultare sorprendentemente competitiva, e talvolta migliore della 

Poisson, solo quando applicata entro finestre calibrate 

• La regressione di Poisson e la Binomiale Negativa non garantiscono automaticamente prestazioni 

superiori. Quando applicate a “strascico” (i.e. su intervalli temporali non segmentati) possono 

generare un’illusione di analisi robusta mentre, in realtà, produce previsioni con un’affidabilità 

molto variabile e spesso inaccettabile per scopi decisionali.  La regressione Binomiale Negativa si 

conferma, come atteso, il modello più robusto nel gestire la sovradispersione, ma il suo vantaggio 

relativo emerge con chiarezza soprattutto negli scenari problematici (non calibrati), mentre si attenua 

in quelli ottimali 

In altre parole, la qualità della segmentazione temporale domina la scelta del modello, che diventa un fattore 

secondario 

 

Questi risultati modificano sostanzialmente il modo di interpretare la modellazione epidemiologica: la scelta 

del modello deve essere subordinata alla comprensione del contesto temporale, non viceversa. 

In questo senso, l’elaborato propone un paradigma alternativo: l’intelligenza temporale come prerequisito 

della modellazione per la validità e l’utilità operativa di qualsiasi modello predittivo, a prescindere dalla sua 

complessità matematica 

 

 

4.3 – Limiti e sviluppi futuri  

Questa sezione conclude il lavoro riconoscendo apertamente i limiti dello studio, principalmente legati alla 

generalizzabilità geografica, alla granularità dei dati e alla scelta delle variabili, e quindi discute gli aspetti 

migliorabili dello studio, sia sul piano dei dati sia su quello metodologico, proponendo una serie di direzioni 

concrete per future ricerche che possano costruire su queste fondamenta. 

 

4.3.1 – Limiti del presente studio 

Come ogni ricerca, questo lavoro presenta aspetti migliorabili e limiti che è doveroso riconoscere, legati 

principalmente ai dati e alla metodologia, che possono essere riportati di seguito: 

• Limiti Geografici e di Generalizzabilità: Lo studio è stato condotto esclusivamente su dati italiani. 
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Pattern stagionali, varianti virali dominanti e risposte di sanità pubblica possono variare in altri 

contesti nazionali o regionali, potendo influenzare la trasferibilità dei risultati; 

• Granularità e Qualità dei Dati: L'utilizzo di dati aggregati a livello nazionale e su base settimanale 

potrebbe mascherare eterogeneità sub-regionali e dinamiche a più alta frequenza. Inoltre, la qualità 

dei dati (es. sotto-notifica dei casi in fase endemica) rimane una fonte di potenziale bias; 

• Set di Variabili e Fattori Confondenti: L'analisi ha considerato un set essenziale di predittori. 

Fattori come la mobilità umana, il preciso stato immunitario della popolazione (infezioni pregresse e 

dosi vaccinali) o dati meteo-climatici più dettagliati potrebbero catturare parte della variabilità 

attribuita alla dimensione temporale; 

• Definizione delle Stagioni Epidemiche: Sebbene basata su un solido lavoro precedente, la 

segmentazione temporale adottata contiene un elemento di discrezionalità. Metodi alternativi di 

periodizzazione potrebbero essere esplorati 

 

In conclusione, questi limiti non invalidano i risultati ottenuti, ma indicano chiaramente le aree in cui 

ulteriori dati, livelli di granularità più elevati o approcci statistici più complessi potrebbero arricchire l’analisi 

e migliorare la comprensione del fenomeno epidemico. 

 

4.3.2 Direzioni future di ricerca 

I limiti citati al capitolo precedente disegnano naturalmente il percorso per approfondimenti futuri e aprono 

la strada a potenziali estensioni della ricerca, che potrebbero includere: 

• Analisi Multi-Livello e Cross-Nazionale: Estendere il framework metodologico a dati regionali per 

indagare l'eterogeneità interna a un paese, e replicare l'analisi in diverse nazioni per testare la 

robustezza del "fenomeno 1%-10%-100%" su scale geografiche e epidemiologiche differenti; 

• Integrazione di Fonti Dati Innovative: Arricchire i modelli con dati di mobilità (da dispositivi 

mobili), di genomica virale (per tracciare le varianti) e di immunità di popolazione, per 

disaccoppiare l'effetto della stagionalità da quello di altri driver epidemici; 

• Sviluppo di Algoritmi di Segmentazione Temporale: Ricercare e validare metodi data-driven (ad 

esempio, tecniche di change-point analysis o di clustering temporale) per identificare 

automaticamente e in modo riproducibile l'inizio e la fine delle stagioni epidemiche; 

• Estensione ad Altri Patogeni e Outcome: Verificare se il principio della calibrazione temporale 

come fattore primario sia valido per altre malattie infettive a andamento stagionale (es. influenza, 

VRS) e per altri outcome (es. tassi di ospedalizzazione); 

• Prospettive di Integrazione con Modelli Avanzati: Esplorare l'interazione tra calibrazione 

temporale e tecniche di modellazione più complesse, come i modelli additivi generalizzati 

(GAM) per catturare non linearità, o i modelli bayesiani gerarchici per incorporare esplicitamente la 

struttura temporale nei prior, o ancora l'uso di reti neurali ricorrenti. 
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In conclusione, questo studio non intende chiudere il dibattito sulla modellazione epidemiologica, ma 

piuttosto aprirlo a una dimensione spesso trascurata: quella del tempo come variabile contestuale e non solo 

metrica. I risultati sollecitano un cambio di prospettiva, in cui la sofisticazione statistica sia al servizio di una 

comprensione più profonda della dinamica delle malattie, e in cui l'"Intelligenza Temporale" diventi una 

competenza standard per l'epidemiologo e il data scientist del futuro. Le direzioni future qui abbozzate 

ambiscono a contribuire a questo fecondo cammino di ricerca. 
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Appendici 

Appendice A – info mensili 

month AIC_OLS BIC_OLS LogLik_OLS Deviance_O

LS 

DevPerDF_O

LS 

R2_OLS AIC_Poisso

1 -52.77 -56.77 28.39 

   
11.8 

2 51.05 50.27 -23.52 3572.7 1190.9 0.24 53.8 

3 39.25 38.02 -17.63 1573.8 786.9 0.93 40.06 

4 36.41 35.18 -16.2 772.7 386.35 0.99 38.14 

5 65.02 64.24 -30.51 58425.1 19475.03 0.97 126.3 

6 41.91 40.68 -18.96 3060.3 1530.15 0.99 45.86 

7 52.78 51.55 -24.39 46321.2 23160.6 0.55 78.69 

8 41.52 40.29 -18.76 2773.8 1386.9 0.01 41.74 

9 45.34 44.56 -20.67 1141.9 380.63 0.98 48.22 

10 44.41 43.18 -20.2 5708.7 2854.35 0.09 49.96 

11 53.42 52.64 -24.71 5738.3 1912.77 0.98 54.35 

12 46.0 44.77 -21.0 8496.3 4248.15 0.93 47.38 

13 39.52 38.3 -17.76 1684.3 842.15 0.9 38.62 

14 55.61 54.83 -25.8 8893.9 2964.63 0.88 69.67 

15 43.82 42.59 -19.91 4928.2 2464.1 0.34 45.55 

16 39.05 37.82 -17.52 1495.2 747.6 0.85 39.75 

17 52.9 52.12 -24.45 5175.1 1725.03 0.96 61.8 

18 47.17 45.95 -21.59 11404.2 5702.1 0.58 65.95 

19 31.6 30.37 -13.8 232.2 116.1 0.82 33.68 

20 50.27 49.49 -23.14 3058.7 1019.57 0.0 57.16 

21 32.56 31.33 -14.28 295.2 147.6 0.54 33.43 

22 30.86 29.63 -13.43 193.2 96.6 0.7 31.55 

23 41.32 40.54 -18.66 510.4 170.13 0.54 45.38 

24 36.48 35.25 -16.24 787.5 393.75 0.0 41.26 

25 26.49 25.26 -11.24 64.7 32.35 0.97 29.99 

26 48.85 48.07 -22.43 2302.4 767.47 0.35 51.9 

27 36.57 35.34 -16.28 804.3 402.15 0.84 36.52 

28 57.19 56.41 -26.59 12196.8 4065.6 0.03 77.28 

29 29.59 28.37 -12.8 140.7 70.35 0.99 35.98 

30 23.28 22.05 -9.64 29.0 14.5 0.99 29.73 

31 31.85 31.07 -13.92 76.8 25.6 0.7 32.92 

32 13.78 12.55 -4.89 2.7 1.35 0.6 21.33 

33 24.23 23.0 -10.11 36.8 18.4 0.4 25.01 

34 23.04 22.26 -9.52 13.2 4.4 0.84 27.69 

35 29.36 28.13 -12.68 132.8 66.4 0.72 30.3 

36 36.84 35.61 -16.42 861.0 430.5 0.53 38.93 

37 45.02 44.23 -20.51 1069.2 356.4 0.13 46.55 

38 33.14 31.91 -14.57 341.5 170.75 0.38 33.42 

39 29.05 27.82 -12.52 122.7 61.35 0.91 30.59 

40 27.89 27.11 -11.95 34.8 11.6 0.92 32.46 
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41 -116.89 -119.51 60.45 0.0 

 

1.0 14.04 

 

 

Appendice B – info stagionali 

 

season AIC_OLS BIC_OLS LogLik_OLS Deviance_OLS DevPerDF_OLS R2_OLS AIC_Poisson BIC_P

1 265.39 267.17 -130.7 2135826.8 133489.18 0.69 929.29 931.07

2 258.4 260.18 -127.2 1448246.97 90515.44 0.75 810.72 812.5

3 117.39 117.79 -56.7 156178.93 22311.28 0.81 328.24 328.63

4 209.98 211.64 -102.99 181973.99 12131.6 0.43 516.46 518.13

5 313.29 315.8 -154.64 223218.91 9300.79 0.71 502.75 505.27

6 77.32 77.72 -36.66 1819.96 259.99 0.45 94.81 95.2

7 157.46 158.88 -76.73 24364.11 1874.16 0.81 174.67 176.08

8 222.49 224.48 -109.25 65016.5 3612.03 0.68 171.62 173.61

9 215.49 217.84 -105.74 9434.0 428.82 0.74 367.85 370.21

10 65.04 65.44 -30.52 464.96 66.42 0.76 69.95 70.34

 

Appendice C – info annuali 

 

year AIC_OLS BIC_OLS LogLik_OLS Deviance_OLS DevPerDF_OLS R2_OLS AIC_Poisson BIC_P

1 834.23 838.17 -415.12 19720902.11 386684.36 0.01 19829.79 19833.73

2 656.0 659.91 -326.0 849065.74 16981.31 0.69 2832.97 2836.87

3 618.84 622.74 -307.42 415489.83 8309.8 0.36 3562.87 3566.77

4 129.67 131.21 -62.83 2413.93 172.42 0.88 145.1 146.64

 

 

Appendice D – valutazione modelli mensili 

 

week month decessi_reali pred_Ols pred_Poisson pred_NegBin mae_Ols mae_Poisson mae_NegB

1 1.0 387.0 387.0 387.0 387.0 0.0 0.0 0.0 

2 2.0 334.0 301.6 302.0 301.2 32.4 32.0 32.8 

3 2.0 270.0 291.1 290.9 290.52 21.1 20.9 20.52 

4 2.0 240.0 280.6 280.21 280.22 40.6 40.21 40.22 

5 2.0 285.0 270.1 269.91 270.28 14.9 15.09 14.72 

6 2.0 274.0 259.6 259.99 260.7 14.4 14.01 13.3 
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7 3.0 285.0 296.3 301.57 301.44 11.3 16.57 16.44 

8 3.0 390.0 361.1 356.01 355.95 28.9 33.99 34.05 

9 3.0 402.0 425.9 420.28 420.32 23.9 18.28 18.32 

10 3.0 497.0 490.7 496.15 496.34 6.3 0.85 0.66 

11 4.0 521.0 506.1 521.63 521.43 14.9 0.63 0.43 

12 4.0 636.0 658.2 643.34 643.25 22.2 7.34 7.25 

13 4.0 810.0 810.3 793.45 793.51 0.3 16.55 16.49 

14 4.0 970.0 962.4 978.59 978.89 7.6 8.59 8.89 

15 5.0 1035.0 1065.8 1155.61 1116.26 30.8 120.61 81.26 

16 5.0 1392.0 1486.7 1447.87 1420.51 94.7 55.87 28.51 

17 5.0 2066.0 1907.6 1814.05 1807.68 158.4 251.95 258.32 

18 5.0 2419.0 2328.5 2272.83 2300.39 90.5 146.17 118.61 

19 5.0 2626.0 2749.4 2847.64 2927.39 123.4 221.64 301.39 

20 6.0 2622.0 2616.2 2644.63 2647.91 5.8 22.63 25.91 

21 6.0 2244.0 2273.9 2244.55 2245.35 29.9 0.55 1.35 

22 6.0 1974.0 1931.6 1905.0 1903.99 42.4 69.0 70.01 

23 6.0 1571.0 1589.3 1616.81 1614.52 18.3 45.81 43.52 

24 7.0 1327.0 1213.6 1218.92 1207.54 113.4 108.08 119.46 

25 7.0 981.0 1108.2 1102.77 1099.63 127.2 121.77 118.63 

26 7.0 917.0 1002.8 997.69 1001.36 85.8 80.69 84.36 

27 7.0 997.0 897.4 902.62 911.87 99.6 94.38 85.13 

28 8.0 1002.0 980.7 980.7 980.68 21.3 21.3 21.32 

29 8.0 964.0 977.9 977.9 977.89 13.9 13.9 13.89 

30 8.0 939.0 975.1 975.1 975.1 36.1 36.1 36.1 

31 8.0 1001.0 972.3 972.3 972.32 28.7 28.7 28.68 

32 9.0 924.0 932.8 940.88 941.21 8.8 16.88 17.21 

33 9.0 877.0 854.5 850.22 850.36 22.5 26.78 26.64 

34 9.0 755.0 776.2 768.29 768.27 21.2 13.29 13.27 

35 9.0 708.0 697.9 694.26 694.11 10.1 13.74 13.89 

36 9.0 617.0 619.6 627.36 627.11 2.6 10.36 10.11 

37 10.0 380.0 399.6 399.76 399.83 19.6 19.76 19.83 

38 10.0 442.0 388.7 388.54 388.57 53.3 53.46 53.43 

39 10.0 330.0 377.8 377.65 377.62 47.8 47.65 47.62 

40 10.0 381.0 366.9 367.05 366.99 14.1 13.95 14.01 

41 11.0 443.0 411.8 456.68 454.35 31.2 13.68 11.35 

42 11.0 561.0 604.3 585.2 583.54 43.3 24.2 22.54 
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43 11.0 819.0 796.8 749.88 749.46 22.2 69.12 69.54 

44 11.0 950.0 989.3 960.91 962.57 39.3 10.91 12.57 

45 11.0 1211.0 1181.8 1231.33 1236.27 29.2 20.33 25.27 

46 12.0 1050.0 1045.8 1060.64 1059.4 4.2 10.64 9.4 

47 12.0 924.0 892.1 876.7 876.41 31.9 47.3 47.59 

48 12.0 662.0 738.4 724.66 725.03 76.4 62.66 63.03 

49 12.0 625.0 584.7 598.99 599.8 40.3 26.01 25.2 

50 13.0 485.0 466.8 470.92 470.76 18.2 14.08 14.24 

51 13.0 377.0 411.1 406.86 406.82 34.1 29.86 29.82 

52 13.0 369.0 355.4 351.52 351.57 13.6 17.48 17.43 

53 13.0 302.0 299.7 303.7 303.82 2.3 1.7 1.82 

54 14.0 270.0 291.4 305.66 297.56 21.4 35.66 27.56 

55 14.0 369.0 373.1 366.75 361.45 4.1 2.25 7.55 

56 14.0 469.0 454.8 440.05 439.06 14.2 28.95 29.94 

57 14.0 606.0 536.5 528.0 533.33 69.5 78.0 72.67 

58 14.0 560.0 618.2 633.53 647.85 58.2 73.53 87.85 

59 15.0 546.0 508.1 508.57 509.43 37.9 37.43 36.57 

60 15.0 485.0 530.7 530.23 530.54 45.7 45.23 45.54 

61 15.0 531.0 553.3 552.82 552.53 22.3 21.82 21.53 

62 15.0 606.0 575.9 576.37 575.43 30.1 29.63 30.57 

63 16.0 667.0 660.4 661.58 661.54 6.6 5.42 5.46 

64 16.0 678.0 701.8 700.63 700.62 23.8 22.63 22.62 

65 16.0 771.0 743.2 741.99 742.01 27.8 29.01 28.99 

66 16.0 774.0 784.6 785.79 785.84 10.6 11.79 11.84 

67 17.0 760.0 759.2 781.71 792.51 0.8 21.71 32.51 

68 17.0 613.0 651.3 638.7 642.61 38.3 25.7 29.61 

69 17.0 602.0 543.4 521.85 521.07 58.6 80.15 80.93 

70 17.0 430.0 435.5 426.38 422.51 5.5 3.62 7.49 

71 17.0 312.0 327.6 348.37 342.59 15.6 36.37 30.59 

72 18.0 448.0 397.9 402.93 397.8 50.1 45.07 50.2 

73 18.0 253.0 342.3 337.1 335.9 89.3 84.1 82.9 

74 18.0 315.0 286.7 282.03 283.63 28.3 32.97 31.37 

75 18.0 242.0 231.1 235.95 239.49 10.9 6.05 2.51 

76 19.0 218.0 220.9 221.44 221.44 2.9 3.44 3.44 

77 19.0 216.0 206.3 205.75 205.75 9.7 10.25 10.25 

78 19.0 181.0 191.7 191.18 191.18 10.7 10.18 10.18 
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79 19.0 181.0 177.1 177.63 177.63 3.9 3.37 3.37 

80 20.0 184.0 163.6 163.6 163.57 20.4 20.4 20.43 

81 20.0 142.0 163.1 163.1 163.09 21.1 21.1 21.09 

82 20.0 135.0 162.6 162.6 162.6 27.6 27.6 27.6 

83 20.0 199.0 162.1 162.1 162.11 36.9 36.9 36.89 

84 20.0 153.0 161.6 161.6 161.63 8.6 8.6 8.63 

85 21.0 186.0 176.6 176.82 176.79 9.4 9.18 9.21 

86 21.0 156.0 168.2 167.98 167.97 12.2 11.98 11.97 

87 21.0 156.0 159.8 159.59 159.6 3.8 3.59 3.6 

88 21.0 158.0 151.4 151.61 151.64 6.6 6.39 6.36 

89 22.0 104.0 107.6 108.08 108.08 3.6 4.08 4.08 

90 22.0 108.0 98.2 97.71 97.71 9.8 10.29 10.29 

91 22.0 80.0 88.8 88.34 88.34 8.8 8.34 8.34 

92 22.0 82.0 79.4 79.87 79.86 2.6 2.13 2.14 

93 23.0 62.0 54.4 56.05 56.58 7.6 5.95 5.42 

94 23.0 30.0 46.6 45.68 45.87 16.6 15.68 15.87 

95 23.0 43.0 38.8 37.22 37.19 4.2 5.78 5.81 

96 23.0 42.0 31.0 30.33 30.15 11.0 11.67 11.85 

97 23.0 17.0 23.2 24.72 24.45 6.2 7.72 7.45 

98 24.0 50.0 57.5 57.5 57.51 7.5 7.5 7.51 

99 24.0 77.0 57.0 57.0 57.0 20.0 20.0 20.0 

100 24.0 39.0 56.5 56.5 56.49 17.5 17.5 17.49 

101 24.0 61.0 56.0 56.0 55.99 5.0 5.0 5.01 

102 25.0 77.0 73.9 75.62 75.64 3.1 1.38 1.36 

103 25.0 91.0 92.8 91.14 91.15 1.8 0.14 0.15 

104 25.0 106.0 111.7 109.85 109.84 5.7 3.85 3.84 

105 25.0 135.0 130.6 132.39 132.37 4.4 2.61 2.63 

106 26.0 135.0 143.4 144.15 143.2 8.4 9.15 8.2 

107 26.0 149.0 154.6 154.24 153.72 5.6 5.24 4.72 

108 26.0 173.0 165.8 165.04 165.01 7.2 7.96 7.99 

109 26.0 213.0 177.0 176.6 177.13 36.0 36.4 35.87 

110 26.0 159.0 188.2 188.97 190.14 29.2 29.97 31.14 

111 27.0 167.0 156.7 158.74 158.75 10.3 8.26 8.25 

112 27.0 163.0 185.4 183.42 183.43 22.4 20.42 20.43 

113 27.0 228.0 214.1 211.94 211.94 13.9 16.06 16.06 

114 27.0 241.0 242.8 244.9 244.88 1.8 3.9 3.88 



75 
 

115 28.0 330.0 334.8 334.9 334.17 4.8 4.9 4.17 

116 28.0 292.0 340.8 340.75 340.37 48.8 48.75 48.37 

117 28.0 400.0 346.8 346.7 346.69 53.2 53.3 53.31 

118 28.0 412.0 352.8 352.75 353.13 59.2 59.25 58.87 

119 28.0 300.0 358.8 358.9 359.68 58.8 58.9 59.68 

120 29.0 357.0 357.4 365.53 365.85 0.4 8.53 8.85 

121 29.0 289.0 293.3 284.77 284.84 4.3 4.23 4.16 

122 29.0 239.0 229.2 221.86 221.76 9.8 17.14 17.24 

123 29.0 160.0 165.1 172.84 172.66 5.1 12.84 12.66 

124 30.0 106.0 108.5 111.48 111.53 2.5 5.48 5.53 

125 30.0 92.0 87.5 84.36 84.37 4.5 7.64 7.63 

126 30.0 65.0 66.5 63.84 63.83 1.5 1.16 1.17 

127 30.0 45.0 45.5 48.32 48.29 0.5 3.32 3.29 

128 31.0 38.0 38.8 39.4 39.41 0.8 1.4 1.41 

129 31.0 31.0 34.6 34.28 34.28 3.6 3.28 3.28 

130 31.0 38.0 30.4 29.82 29.82 7.6 8.18 8.18 

131 31.0 25.0 26.2 25.94 25.94 1.2 0.94 0.94 

132 31.0 20.0 22.0 22.57 22.56 2.0 2.57 2.56 

133 32.0 12.0 12.6 12.64 12.64 0.6 0.64 0.64 

134 32.0 12.0 11.7 11.66 11.66 0.3 0.34 0.34 

135 32.0 12.0 10.8 10.76 10.76 1.2 1.24 1.24 

136 32.0 9.0 9.9 9.94 9.94 0.9 0.94 0.94 

137 33.0 4.0 7.2 7.43 7.42 3.2 3.43 3.42 

138 33.0 13.0 9.4 9.18 9.18 3.6 3.82 3.82 

139 33.0 14.0 11.6 11.35 11.36 2.4 2.65 2.64 

140 33.0 11.0 13.8 14.04 14.05 2.8 3.04 3.05 

141 34.0 9.0 9.6 10.04 10.04 0.6 1.04 1.04 

142 34.0 11.0 12.2 12.0 12.0 1.2 1.0 1.0 

143 34.0 17.0 14.8 14.34 14.34 2.2 2.66 2.66 

144 34.0 19.0 17.4 17.14 17.14 1.6 1.86 1.86 

145 34.0 18.0 20.0 20.48 20.48 2.0 2.48 2.48 

146 35.0 24.0 29.2 30.0 29.99 5.2 6.0 5.99 

147 35.0 47.0 37.4 36.63 36.63 9.6 10.37 10.37 

148 35.0 42.0 45.6 44.74 44.74 3.6 2.74 2.74 

149 35.0 53.0 53.8 54.63 54.65 0.8 1.63 1.65 

150 36.0 67.0 75.5 76.5 76.24 8.5 9.5 9.24 
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151 36.0 111.0 89.5 88.53 88.41 21.5 22.47 22.59 

152 36.0 86.0 103.5 102.44 102.53 17.5 16.44 16.53 

153 36.0 122.0 117.5 118.53 118.9 4.5 3.47 3.1 

154 37.0 97.0 89.6 89.76 90.11 7.4 7.24 6.89 

155 37.0 98.0 93.6 93.52 93.71 4.4 4.48 4.29 

156 37.0 87.0 97.6 97.44 97.44 10.6 10.44 10.44 

157 37.0 80.0 101.6 101.52 101.33 21.6 21.52 21.33 

158 37.0 126.0 105.6 105.77 105.37 20.4 20.23 20.63 

159 38.0 89.0 99.0 99.19 99.17 10.0 10.19 10.17 

160 38.0 120.0 105.5 105.31 105.3 14.5 14.69 14.7 

161 38.0 113.0 112.0 111.8 111.81 1.0 1.2 1.19 

162 38.0 113.0 118.5 118.7 118.72 5.5 5.7 5.72 

163 39.0 96.0 100.9 102.64 102.67 4.9 6.64 6.67 

164 39.0 94.0 84.8 82.99 83.0 9.2 11.01 11.0 

165 39.0 65.0 68.7 67.11 67.1 3.7 2.11 2.1 

166 39.0 52.0 52.6 54.26 54.24 0.6 2.26 2.24 

167 40.0 51.0 52.8 53.79 53.79 1.8 2.79 2.79 

168 40.0 51.0 46.6 46.06 46.06 4.4 4.94 4.94 

169 40.0 37.0 40.4 39.45 39.44 3.4 2.45 2.44 

170 40.0 35.0 34.2 33.78 33.78 0.8 1.22 1.22 

171 40.0 28.0 28.0 28.93 28.92 0.0 0.93 0.92 

172 41.0 44.0 44.0 44.0 44.0 0.0 0.0 0.0 

173 41.0 13.0 13.0 13.0 13.0 0.0 0.0 0.0 

 

 

Appendice E - valutazione modelli stagionale 

 

week season decessi_reali pred_Ols pred_Poisson pred_NegBin mae_Ols mae_Poisson mae_NegB

1 1.0 387.0 -108.18 152.55 208.3 495.18 234.45 178.7 

2 1.0 334.0 -9.09 177.38 235.06 343.09 156.62 98.94 

3 1.0 270.0 89.99 206.26 265.27 180.01 63.74 4.73 

4 1.0 240.0 189.08 239.83 299.35 50.92 0.17 59.35 

5 1.0 285.0 288.17 278.87 337.82 3.17 6.13 52.82 

6 1.0 274.0 387.25 324.27 381.23 113.25 50.27 107.23 

7 1.0 285.0 486.34 377.05 430.22 201.34 92.05 145.22 

8 1.0 390.0 585.43 438.42 485.5 195.43 48.42 95.5 



77 
 

9 1.0 402.0 684.51 509.79 547.89 282.51 107.79 145.89 

10 1.0 497.0 783.6 592.77 618.3 286.6 95.77 121.3 

11 1.0 521.0 882.69 689.26 697.75 361.69 168.26 176.75 

12 1.0 636.0 981.77 801.46 787.41 345.77 165.46 151.41 

13 1.0 810.0 1080.86 931.92 888.59 270.86 121.92 78.59 

14 1.0 970.0 1179.95 1083.61 1002.77 209.95 113.61 32.77 

15 1.0 1035.0 1279.03 1260.0 1131.63 244.03 225.0 96.63 

16 1.0 1392.0 1378.12 1465.1 1277.05 13.88 73.1 114.95 

17 1.0 2066.0 1477.21 1703.58 1441.15 588.79 362.42 624.85 

18 1.0 2419.0 1576.29 1980.88 1626.33 842.71 438.12 792.67 

20 2.0 2622.0 1964.27 2170.84 2088.6 657.73 451.16 533.4 

21 2.0 2244.0 1869.13 1992.85 1927.59 374.87 251.15 316.41 

22 2.0 1974.0 1773.99 1829.46 1779.0 200.01 144.54 195.0 

23 2.0 1571.0 1678.84 1679.47 1641.86 107.84 108.47 70.86 

24 2.0 1327.0 1583.7 1541.77 1515.3 256.7 214.77 188.3 

25 2.0 981.0 1488.56 1415.36 1398.49 507.56 434.36 417.49 

26 2.0 917.0 1393.41 1299.32 1290.68 476.41 382.32 373.68 

27 2.0 997.0 1298.27 1192.79 1191.18 301.27 195.79 194.18 

28 2.0 1002.0 1203.13 1094.99 1099.36 201.13 92.99 97.36 

29 2.0 964.0 1107.98 1005.21 1014.61 143.98 41.21 50.61 

30 2.0 939.0 1012.84 922.8 936.4 73.84 16.2 2.6 

31 2.0 1001.0 917.7 847.14 864.21 83.3 153.86 136.79 

32 2.0 924.0 822.55 777.68 797.59 101.45 146.32 126.41 

33 2.0 877.0 727.41 713.92 736.11 149.59 163.08 140.89 

34 2.0 755.0 632.27 655.39 679.36 122.73 99.61 75.64 

35 2.0 708.0 537.12 601.65 626.99 170.88 106.35 81.01 

36 2.0 617.0 441.98 552.32 578.66 175.02 64.68 38.34 

37 2.0 380.0 346.84 507.04 534.05 33.16 127.04 154.05 

39 3.0 330.0 320.47 385.34 352.72 9.53 55.34 22.72 

40 3.0 381.0 425.6 445.9 416.25 44.6 64.9 35.25 

41 3.0 443.0 530.73 515.98 491.21 87.73 72.98 48.21 

42 3.0 561.0 635.87 597.07 579.68 74.87 36.07 18.68 

43 3.0 819.0 741.0 690.9 684.09 78.0 128.1 134.91 

44 3.0 950.0 846.13 799.47 807.29 103.87 150.53 142.71 

45 3.0 1211.0 951.27 925.11 952.69 259.73 285.89 258.31 

46 3.0 1050.0 1056.4 1070.5 1124.27 6.4 20.5 74.27 
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47 3.0 924.0 1161.53 1238.73 1326.75 237.53 314.73 402.75 

49 4.0 625.0 366.63 379.05 390.15 258.37 245.95 234.85 

50 4.0 485.0 384.89 392.88 403.0 100.11 92.12 82.0 

51 4.0 377.0 403.15 407.21 416.27 26.15 30.21 39.27 

52 4.0 369.0 421.41 422.07 429.99 52.41 53.07 60.99 

53 4.0 302.0 439.67 437.47 444.15 137.67 135.47 142.15 

54 4.0 270.0 457.93 453.43 458.78 187.93 183.43 188.78 

55 4.0 369.0 476.19 469.97 473.89 107.19 100.97 104.89 

56 4.0 469.0 494.45 487.12 489.5 25.45 18.12 20.5 

57 4.0 606.0 512.71 504.89 505.62 93.29 101.11 100.38 

58 4.0 560.0 530.97 523.31 522.27 29.03 36.69 37.73 

59 4.0 546.0 549.23 542.4 539.48 3.23 3.6 6.52 

60 4.0 485.0 567.49 562.19 557.24 82.49 77.19 72.24 

61 4.0 531.0 585.75 582.7 575.6 54.75 51.7 44.6 

62 4.0 606.0 604.0 603.96 594.56 2.0 2.04 11.44 

63 4.0 667.0 622.26 626.0 614.14 44.74 41.0 52.86 

64 4.0 678.0 640.52 648.84 634.37 37.48 29.16 43.63 

65 4.0 771.0 658.78 672.51 655.26 112.22 98.49 115.74 

67 5.0 760.0 497.58 591.36 544.7 262.42 168.64 215.3 

68 5.0 613.0 478.13 544.74 505.85 134.87 68.26 107.15 

69 5.0 602.0 458.67 501.79 469.76 143.33 100.21 132.24 

70 5.0 430.0 439.21 462.23 436.25 9.21 32.23 6.25 

71 5.0 312.0 419.76 425.79 405.14 107.76 113.79 93.14 

72 5.0 448.0 400.3 392.22 376.24 47.7 55.78 71.76 

73 5.0 253.0 380.85 361.3 349.4 127.85 108.3 96.4 

74 5.0 315.0 361.39 332.81 324.48 46.39 17.81 9.48 

75 5.0 242.0 341.94 306.57 301.33 99.94 64.57 59.33 

76 5.0 218.0 322.48 282.4 279.84 104.48 64.4 61.84 

77 5.0 216.0 303.02 260.14 259.88 87.02 44.14 43.88 

78 5.0 181.0 283.57 239.63 241.34 102.57 58.63 60.34 

79 5.0 181.0 264.11 220.74 224.12 83.11 39.74 43.12 

80 5.0 184.0 244.66 203.33 208.14 60.66 19.33 24.14 

81 5.0 142.0 225.2 187.3 193.29 83.2 45.3 51.29 

82 5.0 135.0 205.75 172.54 179.5 70.75 37.54 44.5 

83 5.0 199.0 186.29 158.93 166.7 12.71 40.07 32.3 

84 5.0 153.0 166.83 146.4 154.81 13.83 6.6 1.81 
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85 5.0 186.0 147.38 134.86 143.77 38.62 51.14 42.23 

86 5.0 156.0 127.92 124.23 133.51 28.08 31.77 22.49 

87 5.0 156.0 108.47 114.43 123.99 47.53 41.57 32.01 

88 5.0 158.0 89.01 105.41 115.14 68.99 52.59 42.86 

89 5.0 104.0 69.56 97.1 106.93 34.44 6.9 2.93 

90 5.0 108.0 50.1 89.45 99.3 57.9 18.55 8.7 

91 5.0 80.0 30.64 82.39 92.22 49.36 2.39 12.22 

92 5.0 82.0 11.19 75.9 85.64 70.81 6.1 3.64 

94 6.0 30.0 28.71 30.93 31.24 1.29 0.93 1.24 

95 6.0 43.0 33.64 34.3 34.57 9.36 8.7 8.43 

96 6.0 42.0 38.58 38.03 38.24 3.42 3.97 3.76 

97 6.0 17.0 43.51 42.17 42.3 26.51 25.17 25.3 

98 6.0 50.0 48.44 46.76 46.8 1.56 3.24 3.2 

99 6.0 77.0 53.38 51.85 51.77 23.62 25.15 25.23 

100 6.0 39.0 58.31 57.5 57.28 19.31 18.5 18.28 

101 6.0 61.0 63.24 63.75 63.36 2.24 2.75 2.36 

102 6.0 77.0 68.18 70.69 70.1 8.82 6.31 6.9 

104 7.0 106.0 83.22 107.33 110.7 22.77 1.33 4.7 

105 7.0 135.0 102.79 117.63 120.85 32.21 17.37 14.15 

106 7.0 135.0 122.36 128.92 131.93 12.64 6.08 3.07 

107 7.0 149.0 141.93 141.29 144.02 7.07 7.71 4.98 

108 7.0 173.0 161.5 154.85 157.22 11.5 18.15 15.78 

109 7.0 213.0 181.06 169.71 171.64 31.94 43.29 41.36 

110 7.0 159.0 200.63 186.0 187.37 41.63 27.0 28.37 

111 7.0 167.0 220.2 203.85 204.55 53.2 36.85 37.55 

112 7.0 163.0 239.77 223.41 223.3 76.77 60.41 60.3 

113 7.0 228.0 259.34 244.85 243.77 31.34 16.85 15.77 

114 7.0 241.0 278.9 268.35 266.11 37.9 27.35 25.11 

115 7.0 330.0 298.47 294.1 290.51 31.53 35.9 39.49 

116 7.0 292.0 318.04 322.32 317.14 26.04 30.32 25.14 

117 7.0 400.0 337.61 353.26 346.21 62.39 46.74 53.79 

118 7.0 412.0 357.18 387.16 377.95 54.82 24.84 34.05 

120 8.0 357.0 214.61 342.12 295.49 142.39 14.88 61.51 

121 8.0 289.0 200.34 268.68 237.81 88.66 20.32 51.19 

122 8.0 239.0 186.07 211.0 191.38 52.93 28.0 47.62 

123 8.0 160.0 171.8 165.7 154.02 11.8 5.7 5.98 
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124 8.0 106.0 157.53 130.13 123.96 51.53 24.13 17.96 

125 8.0 92.0 143.26 102.2 99.76 51.26 10.2 7.76 

126 8.0 65.0 128.99 80.26 80.28 63.99 15.26 15.28 

127 8.0 45.0 114.72 63.03 64.61 69.72 18.03 19.61 

128 8.0 38.0 100.45 49.5 52.0 62.45 11.5 14.0 

129 8.0 31.0 86.18 38.87 41.85 55.18 7.87 10.85 

130 8.0 38.0 71.92 30.53 33.68 33.92 7.47 4.32 

131 8.0 25.0 57.65 23.97 27.1 32.65 1.03 2.1 

132 8.0 20.0 43.38 18.83 21.81 23.38 1.17 1.81 

133 8.0 12.0 29.11 14.79 17.56 17.11 2.79 5.56 

134 8.0 12.0 14.84 11.61 14.13 2.84 0.39 2.13 

135 8.0 12.0 0.57 9.12 11.37 11.43 2.88 0.63 

136 8.0 9.0 -13.7 7.16 9.15 22.7 1.84 0.15 

137 8.0 4.0 -27.97 5.62 7.36 31.97 1.62 3.36 

138 8.0 13.0 -42.24 4.42 5.93 55.24 8.58 7.07 

139 8.0 14.0 -56.51 3.47 4.77 70.51 10.53 9.23 

141 9.0 9.0 16.78 28.93 21.01 7.78 19.93 12.01 

142 9.0 11.0 21.62 31.02 23.08 10.62 20.02 12.08 

143 9.0 17.0 26.47 33.27 25.37 9.47 16.27 8.37 

144 9.0 19.0 31.31 35.68 27.87 12.31 16.68 8.87 

145 9.0 18.0 36.15 38.26 30.63 18.15 20.26 12.63 

146 9.0 24.0 40.99 41.03 33.66 16.99 17.03 9.66 

147 9.0 47.0 45.83 44.0 36.99 1.17 3.0 10.01 

148 9.0 42.0 50.67 47.19 40.64 8.67 5.19 1.36 

149 9.0 53.0 55.51 50.6 44.66 2.51 2.4 8.34 

150 9.0 67.0 60.36 54.26 49.08 6.64 12.74 17.92 

151 9.0 111.0 65.2 58.19 53.93 45.8 52.81 57.07 

152 9.0 86.0 70.04 62.41 59.27 15.96 23.59 26.73 

153 9.0 122.0 74.88 66.92 65.13 47.12 55.08 56.87 

154 9.0 97.0 79.72 71.77 71.57 17.28 25.23 25.43 

155 9.0 98.0 84.56 76.96 78.64 13.44 21.04 19.36 

156 9.0 87.0 89.4 82.54 86.42 2.4 4.46 0.58 

157 9.0 80.0 94.24 88.51 94.96 14.24 8.51 14.96 

158 9.0 126.0 99.09 94.92 104.35 26.91 31.08 21.65 

159 9.0 89.0 103.93 101.79 114.67 14.93 12.79 25.67 

160 9.0 120.0 108.77 109.16 126.01 11.23 10.84 6.01 
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161 9.0 113.0 113.61 117.06 138.47 0.61 4.06 25.47 

162 9.0 113.0 118.45 125.54 152.16 5.45 12.54 39.16 

163 9.0 96.0 123.29 134.62 167.21 27.29 38.62 71.21 

164 9.0 94.0 128.13 144.37 183.74 34.13 50.37 89.74 

165 10.0 65.0 61.38 64.29 64.65 3.62 0.71 0.35 

166 10.0 52.0 56.48 57.05 57.28 4.48 5.05 5.28 

167 10.0 51.0 51.58 50.62 50.74 0.58 0.38 0.26 

168 10.0 51.0 46.68 44.91 44.96 4.32 6.09 6.04 

169 10.0 37.0 41.78 39.85 39.83 4.78 2.85 2.83 

170 10.0 35.0 36.88 35.36 35.29 1.88 0.36 0.29 

171 10.0 28.0 31.98 31.38 31.26 3.98 3.38 3.26 

172 10.0 44.0 27.08 27.84 27.7 16.92 16.16 16.3 

173 10.0 13.0 22.18 24.7 24.54 9.18 11.7 11.54 

 

 

Appendice F - valutazione modelli annuali 

 

week year decessi_reali pred_Ols pred_Poisson pred_NegBin mae_Ols mae_Poisson mae_NegB

1 1.0 387.0 954.82 957.01 1000.61 567.82 570.01 613.61 

2 1.0 334.0 951.89 953.83 995.54 617.89 619.83 661.54 

3 1.0 270.0 948.96 950.65 990.5 678.96 680.65 720.5 

4 1.0 240.0 946.03 947.49 985.49 706.03 707.49 745.49 

5 1.0 285.0 943.11 944.33 980.5 658.11 659.33 695.5 

6 1.0 274.0 940.18 941.19 975.54 666.18 667.19 701.54 

7 1.0 285.0 937.25 938.06 970.6 652.25 653.06 685.6 

8 1.0 390.0 934.32 934.93 965.69 544.32 544.93 575.69 

9 1.0 402.0 931.39 931.82 960.8 529.39 529.82 558.8 

10 1.0 497.0 928.46 928.72 955.94 431.46 431.72 458.94 

11 1.0 521.0 925.53 925.63 951.1 404.53 404.63 430.1 

12 1.0 636.0 922.61 922.55 946.29 286.61 286.55 310.29 

13 1.0 810.0 919.68 919.48 941.5 109.68 109.48 131.5 

14 1.0 970.0 916.75 916.41 936.73 53.25 53.59 33.27 

15 1.0 1035.0 913.82 913.36 931.99 121.18 121.64 103.01 

16 1.0 1392.0 910.89 910.32 927.27 481.11 481.68 464.73 

17 1.0 2066.0 907.96 907.29 922.58 1158.04 1158.71 1143.42 

18 1.0 2419.0 905.04 904.27 917.91 1513.96 1514.73 1501.09 



82 
 

19 1.0 2626.0 902.11 901.26 913.27 1723.89 1724.74 1712.73 

20 1.0 2622.0 899.18 898.26 908.64 1722.82 1723.74 1713.36 

21 1.0 2244.0 896.25 895.27 904.04 1347.75 1348.73 1339.96 

22 1.0 1974.0 893.32 892.29 899.47 1080.68 1081.71 1074.53 

23 1.0 1571.0 890.39 889.32 894.92 680.61 681.68 676.08 

24 1.0 1327.0 887.46 886.36 890.39 439.54 440.64 436.61 

25 1.0 981.0 884.54 883.41 885.88 96.46 97.59 95.12 

26 1.0 917.0 881.61 880.47 881.4 35.39 36.53 35.6 

27 1.0 997.0 878.68 877.54 876.94 118.32 119.46 120.06 

28 1.0 1002.0 875.75 874.62 872.5 126.25 127.38 129.5 

29 1.0 964.0 872.82 871.7 868.08 91.18 92.3 95.92 

30 1.0 939.0 869.89 868.8 863.69 69.11 70.2 75.31 

31 1.0 1001.0 866.97 865.91 859.32 134.03 135.09 141.68 

32 1.0 924.0 864.04 863.03 854.97 59.96 60.97 69.03 

33 1.0 877.0 861.11 860.15 850.64 15.89 16.85 26.36 

34 1.0 755.0 858.18 857.29 846.33 103.18 102.29 91.33 

35 1.0 708.0 855.25 854.44 842.05 147.25 146.44 134.05 

36 1.0 617.0 852.32 851.59 837.79 235.32 234.59 220.79 

37 1.0 380.0 849.39 848.76 833.55 469.39 468.76 453.55 

38 1.0 442.0 846.47 845.93 829.33 404.47 403.93 387.33 

39 1.0 330.0 843.54 843.12 825.13 513.54 513.12 495.13 

40 1.0 381.0 840.61 840.31 820.96 459.61 459.31 439.96 

41 1.0 443.0 837.68 837.51 816.8 394.68 394.51 373.8 

42 1.0 561.0 834.75 834.72 812.67 273.75 273.72 251.67 

43 1.0 819.0 831.82 831.95 808.55 12.82 12.95 10.45 

44 1.0 950.0 828.9 829.18 804.46 121.1 120.82 145.54 

45 1.0 1211.0 825.97 826.42 800.39 385.03 384.58 410.61 

46 1.0 1050.0 823.04 823.66 796.34 226.96 226.34 253.66 

47 1.0 924.0 820.11 820.92 792.31 103.89 103.08 131.69 

48 1.0 662.0 817.18 818.19 788.3 155.18 156.19 126.3 

49 1.0 625.0 814.25 815.47 784.31 189.25 190.47 159.31 

50 1.0 485.0 811.32 812.75 780.34 326.32 327.75 295.34 

51 1.0 377.0 808.4 810.05 776.39 431.4 433.05 399.39 

52 1.0 369.0 805.47 807.35 772.46 436.47 438.35 403.46 

53 1.0 302.0 802.54 804.66 768.55 500.54 502.66 466.55 

54 2.0 270.0 606.19 767.22 835.77 336.19 497.22 565.77 
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55 2.0 369.0 593.56 730.49 792.02 224.56 361.49 423.02 

56 2.0 469.0 580.93 695.52 750.56 111.93 226.52 281.56 

57 2.0 606.0 568.3 662.22 711.27 37.7 56.22 105.27 

58 2.0 560.0 555.67 630.52 674.03 4.33 70.52 114.03 

59 2.0 546.0 543.04 600.33 638.75 2.96 54.33 92.75 

60 2.0 485.0 530.42 571.59 605.31 45.42 86.59 120.31 

61 2.0 531.0 517.79 544.23 573.62 13.21 13.23 42.62 

62 2.0 606.0 505.16 518.18 543.59 100.84 87.82 62.41 

63 2.0 667.0 492.53 493.37 515.14 174.47 173.63 151.86 

64 2.0 678.0 479.9 469.75 488.17 198.1 208.25 189.83 

65 2.0 771.0 467.27 447.26 462.62 303.73 323.74 308.38 

66 2.0 774.0 454.64 425.85 438.4 319.36 348.15 335.6 

67 2.0 760.0 442.01 405.46 415.45 317.99 354.54 344.55 

68 2.0 613.0 429.38 386.05 393.7 183.62 226.95 219.3 

69 2.0 602.0 416.76 367.57 373.09 185.24 234.43 228.91 

70 2.0 430.0 404.13 349.98 353.56 25.87 80.02 76.44 

71 2.0 312.0 391.5 333.22 335.05 79.5 21.22 23.05 

72 2.0 448.0 378.87 317.27 317.51 69.13 130.73 130.49 

73 2.0 253.0 366.24 302.08 300.89 113.24 49.08 47.89 

74 2.0 315.0 353.61 287.62 285.14 38.61 27.38 29.86 

75 2.0 242.0 340.98 273.85 270.21 98.98 31.85 28.21 

76 2.0 218.0 328.35 260.74 256.07 110.35 42.74 38.07 

77 2.0 216.0 315.73 248.26 242.66 99.73 32.26 26.66 

78 2.0 181.0 303.1 236.37 229.96 122.1 55.37 48.96 

79 2.0 181.0 290.47 225.06 217.92 109.47 44.06 36.92 

80 2.0 184.0 277.84 214.28 206.51 93.84 30.28 22.51 

81 2.0 142.0 265.21 204.03 195.7 123.21 62.03 53.7 

82 2.0 135.0 252.58 194.26 185.46 117.58 59.26 50.46 

83 2.0 199.0 239.95 184.96 175.75 40.95 14.04 23.25 

84 2.0 153.0 227.32 176.1 166.55 74.32 23.1 13.55 

85 2.0 186.0 214.7 167.67 157.83 28.7 18.33 28.17 

86 2.0 156.0 202.07 159.65 149.57 46.07 3.65 6.43 

87 2.0 156.0 189.44 152.0 141.74 33.44 4.0 14.26 

88 2.0 158.0 176.81 144.73 134.32 18.81 13.27 23.68 

89 2.0 104.0 164.18 137.8 127.29 60.18 33.8 23.29 

90 2.0 108.0 151.55 131.2 120.62 43.55 23.2 12.62 
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91 2.0 80.0 138.92 124.92 114.31 58.92 44.92 34.31 

92 2.0 82.0 126.29 118.94 108.32 44.29 36.94 26.32 

93 2.0 62.0 113.67 113.25 102.65 51.67 51.25 40.65 

94 2.0 30.0 101.04 107.82 97.28 71.04 77.82 67.28 

95 2.0 43.0 88.41 102.66 92.19 45.41 59.66 49.19 

96 2.0 42.0 75.78 97.75 87.36 33.78 55.75 45.36 

97 2.0 17.0 63.15 93.07 82.79 46.15 76.07 65.79 

98 2.0 50.0 50.52 88.61 78.45 0.52 38.61 28.45 

99 2.0 77.0 37.89 84.37 74.35 39.11 7.37 2.65 

100 2.0 39.0 25.26 80.33 70.45 13.74 41.33 31.45 

101 2.0 61.0 12.63 76.49 66.77 48.37 15.49 5.77 

102 2.0 77.0 0.01 72.82 63.27 76.99 4.18 13.73 

103 2.0 91.0 -12.62 69.34 59.96 103.62 21.66 31.04 

104 2.0 106.0 -25.25 66.02 56.82 131.25 39.98 49.18 

105 2.0 135.0 -37.88 62.86 53.85 172.88 72.14 81.15 

106 3.0 135.0 227.54 274.67 231.71 92.54 139.67 96.71 

107 3.0 149.0 223.09 263.42 223.98 74.09 114.42 74.98 

108 3.0 173.0 218.65 252.62 216.5 45.65 79.62 43.5 

109 3.0 213.0 214.21 242.27 209.28 1.21 29.27 3.72 

110 3.0 159.0 209.77 232.34 202.29 50.77 73.34 43.29 

111 3.0 167.0 205.33 222.82 195.54 38.33 55.82 28.54 

112 3.0 163.0 200.88 213.69 189.01 37.88 50.69 26.01 

113 3.0 228.0 196.44 204.93 182.7 31.56 23.07 45.3 

114 3.0 241.0 192.0 196.54 176.6 49.0 44.46 64.4 

115 3.0 330.0 187.56 188.48 170.71 142.44 141.52 159.29 

116 3.0 292.0 183.12 180.76 165.01 108.88 111.24 126.99 

117 3.0 400.0 178.68 173.35 159.5 221.32 226.65 240.5 

118 3.0 412.0 174.23 166.25 154.18 237.77 245.75 257.82 

119 3.0 300.0 169.79 159.44 149.03 130.21 140.56 150.97 

120 3.0 357.0 165.35 152.9 144.06 191.65 204.1 212.94 

121 3.0 289.0 160.91 146.64 139.25 128.09 142.36 149.75 

122 3.0 239.0 156.47 140.63 134.6 82.53 98.37 104.4 

123 3.0 160.0 152.02 134.87 130.11 7.98 25.13 29.89 

124 3.0 106.0 147.58 129.34 125.76 41.58 23.34 19.76 

125 3.0 92.0 143.14 124.04 121.56 51.14 32.04 29.56 

126 3.0 65.0 138.7 118.96 117.51 73.7 53.96 52.51 
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127 3.0 45.0 134.26 114.08 113.58 89.26 69.08 68.58 

128 3.0 38.0 129.82 109.41 109.79 91.82 71.41 71.79 

129 3.0 31.0 125.37 104.92 106.13 94.37 73.92 75.13 

130 3.0 38.0 120.93 100.62 102.59 82.93 62.62 64.59 

131 3.0 25.0 116.49 96.5 99.16 91.49 71.5 74.16 

132 3.0 20.0 112.05 92.55 95.85 92.05 72.55 75.85 

133 3.0 12.0 107.61 88.75 92.65 95.61 76.75 80.65 

134 3.0 12.0 103.16 85.12 89.56 91.16 73.12 77.56 

135 3.0 12.0 98.72 81.63 86.57 86.72 69.63 74.57 

136 3.0 9.0 94.28 78.28 83.68 85.28 69.28 74.68 

137 3.0 4.0 89.84 75.08 80.89 85.84 71.08 76.89 

138 3.0 13.0 85.4 72.0 78.19 72.4 59.0 65.19 

139 3.0 14.0 80.96 69.05 75.58 66.96 55.05 61.58 

140 3.0 11.0 76.51 66.22 73.05 65.51 55.22 62.05 

141 3.0 9.0 72.07 63.51 70.61 63.07 54.51 61.61 

142 3.0 11.0 67.63 60.9 68.26 56.63 49.9 57.26 

143 3.0 17.0 63.19 58.41 65.98 46.19 41.41 48.98 

144 3.0 19.0 58.75 56.02 63.78 39.75 37.02 44.78 

145 3.0 18.0 54.3 53.72 61.65 36.3 35.72 43.65 

146 3.0 24.0 49.86 51.52 59.59 25.86 27.52 35.59 

147 3.0 47.0 45.42 49.41 57.6 1.58 2.41 10.6 

148 3.0 42.0 40.98 47.38 55.68 1.02 5.38 13.68 

149 3.0 53.0 36.54 45.44 53.82 16.46 7.56 0.82 

150 3.0 67.0 32.1 43.58 52.02 34.9 23.42 14.98 

151 3.0 111.0 27.65 41.79 50.29 83.35 69.21 60.71 

152 3.0 86.0 23.21 40.08 48.61 62.79 45.92 37.39 

153 3.0 122.0 18.77 38.44 46.99 103.23 83.56 75.01 

154 3.0 97.0 14.33 36.86 45.42 82.67 60.14 51.58 

155 3.0 98.0 9.89 35.35 43.9 88.11 62.65 54.1 

156 3.0 87.0 5.44 33.9 42.44 81.56 53.1 44.56 

157 3.0 80.0 1.0 32.51 41.02 79.0 47.49 38.98 

158 4.0 126.0 124.4 139.6 145.87 1.6 13.6 19.87 

159 4.0 89.0 117.21 125.43 130.15 28.21 36.43 41.15 

160 4.0 120.0 110.01 112.69 116.13 9.99 7.31 3.87 

161 4.0 113.0 102.82 101.25 103.62 10.18 11.75 9.38 

162 4.0 113.0 95.62 90.97 92.45 17.38 22.03 20.55 
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163 4.0 96.0 88.43 81.73 82.49 7.57 14.27 13.51 

164 4.0 94.0 81.23 73.43 73.6 12.77 20.57 20.4 

165 4.0 65.0 74.04 65.98 65.67 9.04 0.98 0.67 

166 4.0 52.0 66.84 59.28 58.6 14.84 7.28 6.6 

167 4.0 51.0 59.64 53.26 52.28 8.64 2.26 1.28 

168 4.0 51.0 52.45 47.85 46.65 1.45 3.15 4.35 

169 4.0 37.0 45.25 42.99 41.62 8.25 5.99 4.62 

170 4.0 35.0 38.06 38.63 37.14 3.06 3.63 2.14 

171 4.0 28.0 30.86 34.71 33.14 2.86 6.71 5.14 

172 4.0 44.0 23.67 31.18 29.57 20.33 12.82 14.43 

173 4.0 13.0 16.47 28.02 26.38 3.47 15.02 13.38 
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