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Abstract

11 presente studio esamina criticamente 1’applicazione di tre modelli di regressione — lineare, di Poisson e
binomiale negativa — ai dati settimanali di mortalitd da COVID-19 in Italia durante le fasi Omicron e post-
Omicron (novembre 2021 — gennaio 2025), con 1’obiettivo di comprendere quanto 1’accuratezza predittiva
dipenda realmente dalla scelta del modello rispetto alla struttura temporale dei dati. Pur riconoscendo i limiti
intrinseci dei modelli lineari nell’analisi di dati di conteggio non normali e sovradispersi a favore dei GLM, i
risultati di questa tesi mostrano che il fattore determinante nell’ottenere previsioni affidabili non ¢ la

complessita statistica del modello, bensi la calibrazione epidemiologica della finestra temporale utilizzata.

Attraverso un confronto sistematico di tre scenari temporali — stagionali (calibrati), mensili e annuali (non
calibrati) — I’analisi evidenzia un pattern denominato “fenomeno dell’errore 1%—-10%—-100%". Questo
pattern mostra mostra come i modelli producano errori minimi (~1-1,5%) solo entro intervalli
temporalmente significativi, mentre le prestazioni degradano rapidamente (~10% su base mensile) o crollano
completamente (fino al 100% su base annuale) quando la segmentazione non riflette I’andamento

epidemiologico pur applicando modelli teoricamente appropriati come Poisson o Binomiale Negativa.

11 contributo originale della tesi consiste nell’aver dimostrato che, sebbene la regressione Binomiale
Negativa ¢ il modello piu robusto in presenza di sovradispersione, la validita delle previsioni dipende
essenzialmente dalla coerenza tra arco temporale e dinamica epidemica indipendentemente dal modello
impiegato. Cio implica che la regressione lineare (considerata inadeguata) puo risultare competitiva quanto
Poisson o Binomiale Negativa se utilizzata entro finestre correttamente calibrate, mentre nessun modello
mantiene affidabilita se applicato “a strascico”.

Il risultato fondamentale ¢ che la calibrazione temporale della finestra analitica ha un impatto
sull’accuratezza predittiva di gran lunga superiore alla scelta dello specifico modello statistico. I risultati
propongono una rilettura critica della modellazione epidemiologica, sostenendo che la “Intelligenza
Temporale”, ovvero la segmentazione informata del periodo analitico, non ¢ un dettaglio metodologico, ma

un prerequisito fondamentale per la precisione predittiva.
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1 - Introduzione

L’epidemiologia moderna richiede approcci statistici avanzati per interpretare dati complessi, come quelli
generati durante la transizione dalla pandemia alla fase post-pandemica del COVID-19. Questo studio
esplora i limiti dei modelli lineari classici, inadeguati per dati di conteggio e sovradispersi, e propone
I’utilizzo di modelli lineari generalizzati (Generalized Linear Model, GLM) per analisi piu accurate.
Attraverso un’analisi critica del contesto epidemiologico, della rilevanza dello studio e delle alternative
metodologiche, oltre a dimostrare come tecniche statistiche raffinate possano migliorare la sorveglianza e la

pianificazione sanitaria.

1.1 — Contesto epidemiologico

Questa sezione analizza 1’evoluzione di SARS-CoV-2, descrivendo la sua evoluzione con particolare
attenzione alle varianti Omicron e alla transizione alla fase post-pandemica. Vengono inoltre descritti i
modelli di sorveglianza epidemiologica, dall’elaborazione dei dati grezzi alla modellazione predittiva, e il

ruolo cruciale della statistica nell’interpretare dinamiche complesse, superando i semplici modelli descrittivi.

1.1.1 - Evoluzione di SARS-CoV-2 (Omicron e sottovarianti) e transizione alla

fase post-pandemica

A partire dalla fine del 2019, I’emergere del SARS-CoV-2 ha rappresentato una delle crisi sanitarie globali
piu significative del XXI secolo. Dopo la prima ondata pandemica, 1’evoluzione del virus ha seguito un
percorso di mutazione e selezione naturale che ha condotto all’emergere di varianti come Alpha, Beta,
Gamma, Delta e, infine, Omicron, classificate dall’Organizzazione Mondiale della Sanita (OMS) come:
varianti di interesse (VOI), ovvero quelle varianti che mostrano mutazioni con potenziale impatto sulla
trasmissibilita o sull’efficacia sui vaccini, ma la cui evidenza epidemiologica ¢ ancora limitata; varianti di
preoccupazione (VOC), sono caratterizzate da un impatto dimostrato in termini di maggiore trasmissibilita,
gravita clinica o ridotta efficacia di vaccini e terapie, richiedendo un monitoraggio prioritario da parte delle

autorita sanitarie.

In questo elaborato, particolare attenzione viene rivolta alla variante Omicron (B.1.1.529) e alle sue
sottovarianti (BA.1, BA.2, BA.4, BA.5, XBB, ecc.). La variante Omicron ha iniziato a svilupparsi nel
novembre 2021 ¢ ha rapidamente soppiantato le varianti precedenti grazie a una maggiore trasmissibilita e a
una significativa capacita di eludere la risposta immunitaria, legata a mutazioni nella proteina Spike
(specialmente nel dominio RBD, che media I’ingresso nelle cellule umane). Tuttavia, ha mostrato una ridotta

patogenicita, associata con un minor rischio di ospedalizzazione e morte.

Le sottovarianti di Omicron (BA.1, BA.2, BA.4, BA.5, XBB) hanno ulteriormente aumentato la capacita del

virus di eludere I’immunita acquisita da vaccini o infezioni pregresse. In particolare, BA.5 ha dimostrato una
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forte evasione immunitaria, riducendo ’efficacia degli anticorpi neutralizzanti. Cid ha portato a ripetute

ondate epidemiche, sebbene con un impatto clinico meno severo rispetto alle fasi iniziali della pandemia.

La fase post-pandemica ¢ definita non tanto dalla scomparsa del virus, ma da una combinazione di fattori
come: I’immunita della popolazione, acquisita attraverso le campagne vaccinali e infezioni naturali; la
capacita rafforzata di risposta dei sistemi sanitari nella gestione dei casi piu gravi; 1’adattamento delle
strategie di sorveglianza, che hanno spostato 1’attenzione dalle misure restrittive verso modelli predittivi e di

monitoraggio continuo.

L’OMS ha dichiarato la fine dell’emergenza globale nel maggio 2023, sottolineando la necessita di un
approccio sostenibile basato sul monitoraggio continuo e su risposte flessibili. Tuttavia, la circolazione di
nuove sottovarianti (come JN.1, emersa nel 2024) dimostra che SARS-CoV-2 rimane un patogeno dinamico,

che richiede un costante aggiornamento delle strategie di prevenzione.

1.1.2 - Modelli di sorveglianza epidemiologica: dai dati grezzi alla modellazione

predittiva

La gestione della pandemia ha evidenziato la necessita di sistemi di sorveglianza epidemiologica robusti e
adattabili. Tali sistemi si sono evoluti da una semplice raccolta di dati grezzi descrittivi (costituiti da dati di
mobilita, dal numero di casi giornalieri ottenuti tramite tamponi molecolari/antigenici, ospedalizzazioni e
numero di decessi che rappresentano indicatori di gravita) verso sistemi integrati in grado di alimentare

modelli predittivi attraverso 1’utilizzo di calcoli complessi.

Questo avanzamento ¢ necessario perché un uso esclusivo di dati grezzi ¢ soggetto a numerosi bias, come la
sottostima di casi dovuta alla riduzione di test diagnostici nella fase post-pandemica, ritardi di notifica in
sistemi sanitari decentralizzati e la differenza nella capacita diagnostica tra Paesi (soggetta quindi alle
variabili geografiche). Per mitigare queste problematiche sono state introdotte tecniche di elaborazione
statistiche come lo smoothing che attraverso medie mobili e/o filtri bayesiani riescono a ridurre il rumore nei

dati.

L’armonizzazione di dati eterogenei ha consentito la costruzione di modelli dinamici in grado di stimare
I’R(t), ovvero il numero di riproduzione effettivo, che rappresenta un indicatore cruciale per misurare la
trasmissibilita del virus per cercare di prevedere I’andamento dei contagi per favorire il processo decisionale
per la sanita pubblica. Valori di R(t) > 1 indicano una crescita epidemica, mentre i valori di R(t) < 1 indicano

un declino.

Considerate le complesse interazioni sociali e le mutazioni virali, la capacita di estrapolare informazioni
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significative dai dati grezzi, grazie a tecniche di data science e modellazione di statistica avanzata che
forniscono approcci piu rapidi e flessibili, rappresenta un requisito fondamentale per affrontare future

minacce pandemiche e epidemiche.

1.1.3 - Il ruolo della statistica nell’interpretazione di dinamiche complesse

Il ruolo della statistica nel campo epidemiologico non si limita alla semplice descrizione dei dati o dei
fenomeni osservati, ma si estende per incorporare modelli causali e predittivi per interpretare dinamiche

complesse ed individuare pattern nascosti.

L’ analisi statistica classica, basata sui modelli lineari, si ¢ spesso rilevata inefficiente in presenza di dati
caratterizzati da non normalitd, sovradispersione e correlazioni spaziali e temporali. Cio ha spinto la
comunita scientifica verso approcci modellistici piu sofisticati, come i Generalized Linear Models (GLM),
costituiti da modelli ad effetti misti e modelli bayesiani gerarchici che consentono di integrare informazioni
pregresse per migliorare le stime e forniscono intervalli utili per comunicare 1’incertezza nelle previsioni.
Questi modelli consentono di tener conto di variabili non osservabili e produrre inferenze piu affidabili
soprattutto in contesti in cui le informazioni possono essere incomplete o distorte. L utilizzo di tecniche di
smoothing, come ad esempio la stima non parametrica o la simulazione Monte Carlo, ha ampliato le
possibilita analitiche favorendo una comprensione piu approfondita dei processi di trasmissione e

dell’impatto delle misure di contenimento.

In sintesi, I’integrazione di statistica avanzata, modellazione matematica ed analisi di big data costituisce un
elemento cardine per superare i limiti dei modelli puramente descrittivi poiché ci consente di trasformare dei
dati grezzi in conoscenza epidemiologica, riuscendo a fornire strumenti per la previsione, la valutazione

dell’efficacia degli interventi e 1’allocazione ottimale delle risorse sanitarie.

1.2 — Motivo e rilevanza dello studio

Questa sezione chiarisce la necessita di estendere 1’analisi tradizionale, evidenziando i limiti dei modelli
lineari classici in contesti epidemiologici. Sottolinea I’importanza dell’utilizzo di modelli generalizzati
(GLM) per la gestione di dati non-normali e fenomeni di sovradispersione al fine da poter garantire stime pit

robuste ed accurate per la ricerca applicata alla salute pubblica.

1.2.1 - Importanza di modelli generalizzati (GLM) e applicazioni in salute

pubblica
I Generalized Linear Models (GLM), introdotti formalmente da Nelder e Wedderburn nel 1972,

rappresentano una delle principali innovazioni metodologiche per I’analisi di dati che non seguono una
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distribuzione normale, ampliando cosi notevolmente le possibilita di analisi in contesti reali. | GLM
rappresentano quindi un cambio di paradigma nell’analisi dei dati epidemiologici che consentono di superare
i limiti dei modelli lineari attraverso una struttura flessibile che include: una funzione di legame (link
function), una componente sistematica e una distribuzione della famiglia esponenziale per la variabile
risposta.

Questo approccio trova ampia applicazione in ambito sanitario ed epidemiologico, consentendo di modellare
in modo appropriato variabili di outcome come il numero di casi, ricoveri o decessi (dati di conteggio), che
per loro natura sono discreti e non negativi. L'utilizzo di distribuzioni come la Poisson o la Binomiale
Negativa, insieme a funzioni di legame come il logaritmo, garantisce che le previsioni del modello rispettino

queste caratteristiche fondamentali, producendo stime biologicamente plausibili.

Oltre alla coerenza teorica, i GLM offrono vantaggi pratici significativi. Permettono una migliore
valutazione dell’efficacia degli interventi sanitari, come campagne vaccinali o misure di distanziamento,
fornendo stime piu accurate degli effetti e della loro incertezza. Consentono una sorveglianza epidemiologica
piu robusta, identificando pattern e trend che potrebbero essere mascherati da modelli inadeguati. In ambito
economico-sanitario, supportano analisi di costo-efficacia piu affidabili, fondamentali per I’allocazione
ottimale di risorse spesso limitate. La flessibilita dei GLM si estende anche alla capacita di incorporare
strutture dati complesse, come effetti casuali per tener conto dell’eterogeneita non osservata tra diverse
regioni o strutture sanitarie., o per modellare correlazioni spaziali e temporali. Questa capacita di adattarsi
alla complessita dei dati reali li rende strumenti indispensabili per affrontare le sfide analitiche poste da
patogeni dinamici come SARS-CoV-2, il cui comportamento ¢ influenzato da una miriade di fattori

virologici, immunitari e sociali.

Alla luce di questi vantaggi, la scelta di approfondire i GLM ha fornito strumenti appropriati per 1’analisi
condotta in questo studio, mentre in generale rappresenta ancora oggi un passaggio metodologico essenziale

nella ricerca epidemiologica contemporanea.

1.2.2 — Modelli alternativi: dati di conteggio, omoschedasticita/eteroschedasticita

L'analisi dei dati epidemiologici richiede un'attenta considerazione della natura specifica delle variabili di
outcome. | dati di conteggio relativi a infezioni, ospedalizzazioni e decessi presentano caratteristiche
intrinseche che mettono in discussione alcuni dei presupposti fondamentali dei modelli statistici tradizionali.
Queste inadeguatezze si manifestano in molteplici dimensioni, tra cui la violazione della non-negativita,
l'incapacita di catturare le strutture discrete dei dati, la mancata considerazione dei fenomeni di
sovradispersione e, in particolare, l'eteroschedasticita, che costituisce un problema fondamentale che mina la
validita delle inferenze statistiche. Questa sezione esplora le caratteristiche fondamentali dei dati di
conteggio, discute i concetti di omoschedasticita ed eteroschedasticita e introduce i modelli di regressione di
Poisson e Binomiale Negativa come alternative essenziali per un'analisi epidemiologica rigorosa.

10



Dati di conteggio

I modelli di regressione lineare classica si basano su assunzioni fondamentali che risultano ampiamente

violate quando applicati ai dati epidemiologici tipici di conteggio. Cid accade perché 1’assunzione implicita

di una variabile dipendente continua, illimitata e normalmente distribuita ¢ in conflitto con la natura discreta,

non negativa e spesso asimmetrica dei conteggi reali. Questa inadeguatezza si manifesta attraverso diversi

problemi:

1.

Violazione della non negativita, i conteggi epidemiologici sono per definizione > 0 e non possono
assumere valori negativi. Il modello lineare non impone alcun vincolo strutturale su questi aspetti; la
funzione di regressione puod produrre previsioni negative, specialmente quando la relazione non &
perfettamente lineare, quando si lavora con conteggi bassi o quando si estrapola oltre I'intervallo
osservato, risultando in previsioni senza alcuna interpretabilita pratica.

Discrepanza strutturale, i modelli lineari assumono variabili continue, mentre i conteggi
epidemiologici consistono in numeri interi non negativi e spesso presentano un eccesso di zeri (ad
esempio, in presenza di eventi di trasmissione sporadici o localizzati). Questa discordanza porta a
una sottostima della varianza, intervalli di confidenza non validi ed errori standard distorti perché la
regressione lineare assume una distribuzione simmetrica degli errori ed ¢ quindi incapace di catturare
l'eterogeneita dei dati.

Sfide modellistiche, i modelli lineari non incorporano naturalmente strutture leggermente pit

complesse, come i tassi di incidenza, che tipicamente richiedono un offset.

Omoschedasticita / Eteroschedasticita

L'omoschedasticita e 1'eteroschedasticita sono concetti fondamentali nella statistica e nell'analisi dei dati che

descrivono le proprieta di varianza dei residui del modello. Nello specifico:

Omoschedasticita (varianza costante)

Rappresenta la proprieta di una collezione di variabili casuali di avere tutte la stessa varianza finita.
Questo fenomeno si verifica quando la varianza dei residui (cio¢ gli errori delle previsioni rispetto ai
valori osservati) ¢ costante lungo l'intero intervallo delle variabili indipendenti nel modello. Cio
implica che la dispersione dei dati attorno alla linea di regressione, o al valore previsto, ¢ uniforme, e
cio vuol dire che non esiste uno schema sistematico nella variazione della varianza.

Formalmente, si puo affermare che Var(e|X) = ¢* (una costante), mentre graficamente i residui sono
distribuiti uniformemente attorno alla linea di regressione senza pattern particolari.
Eteroschedasticita (varianza non costante)

A differenza del caso precedente, questa indica che la varianza residua cambia in funzione delle
variabili indipendenti. Cio implica che la dispersione dei dati pud cambiare significativamente in
base ai valori delle variabili predittive, influenzando 1'affidabilita delle stime dei parametri del

modello e le conclusioni che se ne possono trarre.
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Formalmente, si puo affermare che Var(e|X) non ¢ costante ma dipende da X, mentre graficamente 1
residui possono mostrare un aumento o una diminuzione al crescere di X (come una forma a imbuto)

o altri schemi sistematici.

In entrambi i casi, comprendere se un modello statistico presenti omoschedasticita o eteroschedasticita ¢
cruciale per interpretare correttamente i risultati di uno studio epidemiologico e per adattare
appropriatamente le strategie di prevenzione e controllo delle malattie. Piu in generale, garantire l'assenza di
eteroschedasticita (o correggerla) ¢ essenziale per inferenze valide, specialmente negli studi osservazionali
dove la variabilita dei dati puo essere elevata.

Questo ¢ importante perché se l'eteroschedasticita non viene corretta, i p-value possono essere falsamente
significativi e le stime degli effetti possono apparire piu precise di quanto non siano in realta. L'utilizzo di
metodi robusti migliora l'affidabilita delle conclusioni e la validita delle politiche sanitarie basate su tali

evidenze.

Modelli alternativi
Per superare i limiti dei modelli lineari, sono necessari approcci alternativi. L'analisi epidemiologica
moderna si affida spesso a due famiglie di modelli specializzati:
e Regressione di Poisson
Rappresenta la soluzione piu basilare per i dati di conteggio. Assume che la variabile di interesse
segua una distribuzione di Poisson con una funzione di collegamento logaritmica, caratterizzata da
una media uguale alla varianza (equidispersione). Questa proprieta la rende adatta per conteggi di
eventi rari ¢ indipendenti, in quanto si adatta perfettamente alla non-negativita dei dati, gestisce
naturalmente i tassi tramite un offset e produce coefficienti che possono essere interpretati come log-
rischi relativi. Tuttavia, la sua principale limitazione ¢ l'incapacita di gestire la sovradispersione
(quando la varianza > media), portando a una sottostima degli errori standard e a p-value
irrealisticamente bassi se questa assunzione viene violata.
e Regressione Binomiale Negativa
Estende il modello di Poisson introducendo un parametro di dispersione aggiuntivo (o), consentendo
una modellazione flessibile della varianza in eccesso. Questo la rende ideale nei casi in cui €
presente sovradispersione, poiché il modello di Poisson tende a sottostimare la varianza. La varianza
¢ modellata come Var[Y] = p + au?, e quando a — 0, il modello converge al Poisson, mentre quando
o> 0, modella esplicitamente la sovradispersione. Inoltre, offre un migliore adattamento a dati con

cluster e una maggiore robustezza contro I'inflazione degli zeri e i valori anomali.

L'introduzione dei modelli di Poisson e Binomiale Negativa segna un passo cruciale nella modellazione di
fenomeni epidemiologici complessi. Questi modelli mantengono la coerenza con la natura discreta e non

negativa dei dati, incorporano la relazione intrinseca tra media e varianza, consentono inferenze piu robuste e
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forniscono interpretazioni statisticamente solide. In molti casi, costituiscono la base per sviluppi pit
sofisticati, come modelli misti o approcci bayesiani, in grado di affrontare I'eterogeneita spaziale, gli effetti

di correlazione e i dati longitudinali.

Sebbene i Modelli Lineari Generalizzati (GLM) rappresentino un progresso significativo nell'analisi dei dati
epidemiologici, la selezione di un modello appropriato ¢ tutt'altro che semplice. L'obiettivo ¢ evidenziare i
fondamenti teorici e pratici che ne giustificano l'uso e gettare le basi per l'identificazione di un modello
statisticamente appropriato per l'analisi dei decessi per COVID-19. Dopo aver delineato il quadro teorico e
motivazionale, il capitolo successivo descrive i dati utilizzati e le procedure adottate per garantire un dataset

affidabile e pronto alla modellazione statistica.

1.3 — Obbiettivi e Tesi Supportata

Questa sezione delinea gli specifici obiettivi di ricerca e presenta la tesi centrale di questo lavoro. Sebbene i
limiti dei modelli lineari classici e la superiorita teorica dei GLM per i dati di conteggio siano ben consolidati
nella letteratura statistica, questo studio sostiene che le prestazioni pratiche di questi modelli sono
profondamente influenzate da un fattore che ha ricevuto un'attenzione insufficiente: la calibrazione
temporale del periodo di analisi. La ricerca mira a dimostrare che, al di 1a della scelta della specifica tecnica
di regressione, l'allineamento dell'arco temporale di modellazione con il fenomeno epidemiologico

sottostante € un determinante critico dell'accuratezza predittiva.

1.3.1 — Calibrazione temporale come fattore predittivo per la selezione del

modello

L'obiettivo primario di questa tesi ¢ investigare empiricamente ¢ dimostrare che 1'accuratezza predittiva dei
modelli di regressione non dipende esclusivamente dalla struttura matematica del modello stesso, ma anche
dalla finestra temporale selezionata per l'analisi. L'ipotesi centrale presuppone che l'accuratezza delle
previsioni di mortalita per COVID-19 nel periodo Omicron/post-Omicron sia piu sensibile alla scelta
dell'arco temporale analitico (se calibrato o meno alle dinamiche epidemiologiche della malattia) che
all'appropriatezza teorica del modello statistico. Cio implica che calibrare le finestre temporali secondo le
dinamiche stagionali del fenomeno produce risultati significativamente piu precisi, indipendentemente dal

modello specifico impiegato.

Questa ricerca ¢ strutturata attorno a un'analisi comparativa di tre distinti scenari temporali:
e Scenari Calibrati: analisi eseguita su intervalli stagionali, seguendo l'approccio proposto da Roccetti
et al. che si allinea con i noti pattern stagionali di trasmissione.

e Scenario non calibrato ristretto: analisi eseguita su intervalli mensili arbitrari, che possono catturare
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solo frammenti dei cicli di trasmissione.
e Scenario non calibrato esteso: analisi eseguita su intervalli annuali arbitrari, che possono aggregare

fasi epidemiologiche contrastanti (ad es. picchi, avvallamenti e plateau).

Piu specificamente, lo studio mira a dimostrare che anche 1 modelli piu avanzati (Poisson ¢ Binomiale
Negativa) non sono automaticamente piu accurati del modello di regressione lineare quando applicati a
intervalli di tempo privi di rilevanza epidemiologica; a mostrare che una segmentazione intelligente del
periodo di analisi (ad esempio per stagione epidemica) produce stime altamente precise con errori
percentuali dell'ordine dell'1/1,5%, a evidenziare i limiti delle analisi "a strascico", ovvero analisi condotte su
intervalli temporali non calibrati, che, pur preservando l'andamento generale, generano previsioni con errori
di circa il 10% (su base mensile) o addirittura del 100% (su base annuale) e a proporre un'interpretazione
critica dello stato dell'arte, che spesso promuove l'applicazione meccanica di modelli statistici senza una
sufficiente considerazione del significato epidemiologico dei dati.

L'obiettivo finale ¢ fornire evidenze empiriche che spostino il focus della modellazione epidemiologica da un
dibattito puramente metodologico sulla selezione del modello verso un approccio piu olistico che privilegi

l'intelligenza contestuale e temporale nella progettazione e interpretazione del modello.

1.3.2 — Struttura del lavoro

La struttura di questa tesi & progettata per valutare rigorosamente l'interazione tra specificazione del modello
e contesto temporale nell'analisi dei dati di mortalita COVID-19 durante le fasi Omicron e post-Omicron.
'obiettivo primario ¢ dimostrare che l'accuratezza predittiva dipende non solo dal modello statistico
impiegato, ma anche — fondamentalmente — dalla calibrazione temporale della finestra analitica. A tal fine, la
ricerca € organizzata attorno a tre obiettivi centrali, ciascuno corrispondente a una dimensione chiave della

performance del modello.

La ricerca si articola in tre fasi sequenziali, progettate per isolare e misurare questi effetti:

1. Impatto della calibrazione temporale: vengono confrontate previsioni ottenute da finestre
stagionali calibrate con previsioni derivate da intervalli non calibrati, al fine di misurare in che modo
la segmentazione temporale influenzi la validita dei risultati.

2. Confronto tra i modelli: tale analisi mira sia a verificare se le proprieta teoriche dei modelli
(gestione dei conteggi, risposta alla sovradispersione) si traducano in un vantaggio empirico, sia a
comprendere come la calibrazione temporale condizioni questi vantaggi. Questa valutazione porta a
identificare empiricamente il “fenomeno dell’errore 1%—10%—100%": errori minimi (1-1,5%) nelle
finestre stagionali calibrate, errori intermedi (~10%) nelle finestre mensili arbitrarie e errori anche
dell’ordine del 100% nelle finestre annuali non calibrate. Tale schema evidenzia che la
segmentazione temporale ¢ un determinante piu potente della stessa struttura matematica del
modello
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3. Affidabilita dell’uso di finestre temporali calibrate e non: valuta criticamente l'affidabilita
operativa dei modelli quando applicati in modo "a strascico" (cio€ su serie continue € non
segmentate) rispetto a un uso contestualmente informato. Questo confronto evidenzia i rischi di
un'applicazione meccanica dei modelli e sottolinea l'importanza dell'intelligenza temporale nella

pratica epidemiologica.

In conclusione, i risultati ottenuti mostrano che la regressione lineare, pur teoricamente meno adatta ai dati di
conteggio, puod raggiungere prestazioni comparabili — e talvolta superiori — a Poisson e binomiale negativa
quando applicata entro finestre temporalmente calibrate. Viceversa, nessun modello mantiene affidabilita
quando la segmentazione ¢ incoerente o arbitraria. La tesi dimostra quindi che la calibrazione temporale non
rappresenta un semplice affinamento metodologico, ma un prerequisito essenziale per ottenere previsioni

robuste e interpretabili nella modellazione epidemiologica.
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2 — Dati e metodologia

Nel secondo capitolo viene illustrato I’approccio analitico ed il percorso metodologico dello studio, partendo
dalla descrizione del dataset e delle variabili, passando per la verifica delle ipotesi epidemiologiche, fino alla
valutazione dei modelli statistici impiegati. Vengono confrontati i diversi modelli statistici, con particolare
attenzione alla loro adeguatezza per dati di conteggio attraverso 1’utilizzo di criteri quantitativi per valutarne
le performance. L'obiettivo ¢ garantire stime robuste e replicabili per l'interpretazione dei trend pandemici,

analizzando in modo rigoroso la relazione tra varianti virali e parametri epidemiologici.

2.1 — Descrizione del dataset

In questa sezione vengono presentate le fonti dei dati e di conseguenza la struttura del dataset utilizzato per
lo studio proveniente sia dall’Istituto Superiore di Sanita (ISS) che da un repository mantenuto dal
dipartimento della Protezione Civile italiana, I’intervallo temporale, che va dal 2020 al 2025) e le variabili
usate, che includono numero di casi, dati clinici e dati demografici. Vengono inoltre descritti i passaggi di
pre-processing per gestire al meglio i valori mancanti, rilevare gli outliers e applicare trasformazioni, al fine

di assicurare la qualita dei dati.

2.1.1 - Fonte dati, intervallo temporale, variabili incluse

Il presente studio si basa su un dataset aggregato su base settimanale, originariamente descritto da Roccetti et
al. (2025) in un articolo pubblicato su medRxiv (piattaforma di preprint molto diffusa in ambito biomedico),
che analizzano I’andamento della mortalita da COVID-19 in Italia nel periodo compreso tra 1’inizio del 2020
e il gennaio 2025. In particolare, i dati analizzati provengono essenzialmente da due fonti: un repository
mantenuto dalla Protezione Civile italiana, sotto il presidente italiano del Consiglio dei Ministri
(https://github.com/pcm-dpc/COVID-19/blob/master/dati-andamento-nazionale) e da un repository
proveniente dall’ISS (Istituto Superiore di Sanita) mantenuto dal ministero italiano della salute
(https://www.salute.gov.it/new/it/tema/covid-19/report-settimanali-covid-19/). Lo scopo principale
dell’autore era evidenziare pattern stagionali nella mortalita legata al virus SARS-CoV-2, con particolare
attenzione al confronto tra le ondate pandemiche e le fasi di endemicita, a partire dalla diffusione della

variante Omicron.

La raccolta copre cinque anni di osservazione che vanno dal 1° gennaio 2020 al 8 gennaio 2025, un arco
temporale che ha visto I’evoluzione del virus, passando da ceppi ad alta letalita (come Alfa e Delta) a
varianti piu trasmissibili ma meno letali (es. Omicron BA.5, XBB, JN.1).

Sebbene la granularita settimanale dei dati risulti essere limitata rispetto a quella giornaliera, 1’aggregazione
settimanale rappresenta un buon compromesso tra dettaglio informativo e stabilita statistica. Questo
approccio trova infatti riscontro nella raccomandazione dell’ECDC (European Center for Disease Prevention

and Control) e dell’OMS (Organizzazione Mondiale della Sanita), poiché 1’utilizzo dei dati settimanali ¢
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particolarmente appropriato per studi su trend e modelli stagionali in ambito epidemiologico.

Le variabili che entrano in gioco possono essere classificate in due categorie:

Variabili dipendenti (outcome), di cui fanno parte il numero dei casi giornalieri definito dal numero
dei test (sia molecolari che antigenici) e dalle reinfezioni (definite come nuovi casi a >90 giorni dalla
prima diagnosi) e indicatori di gravita come il numero dei decessi che possono essere attributi al
COVID-19, il tasso di ospedalizzazione ed il tasso di occupazione delle terapie intensive (se presente
nei dataset supplementari).

Variabili indipendenti (predittori), di cui fanno parte fattori virologici come variante dominante
(Delta, Omicron, ecc) e frequenza delle sottovarianti ottenuta tramite sorveglianza genetica e
sequenziamento, fattori demografici come la fascia d’eta media della popolazione colpita, fattori
immunitari che definisce lo stato vaccinale, e fattori ambientali, sociali e temporali come

temperatura media e umidita relativa, stagionalita, eventi o festivita di aggregazione, ecc

L’inclusione di queste variabili consente di modellare I’effetto congiunto del tempo, della virulenza e di altri

fattori contestuali sulla letalita osservata.

2.1.2 — Pre-processing: gestione di missing values, outliers, trasformazioni (es.:

logaritmica)

La fase di pre-processing ¢ essenziale per garantire la qualita e la robustezza dell’analisi statistica, poiché i

dati epidemiologici potrebbero essere soggetti a specifici problemi come:

Valori mancanti

Tale problematica ¢ il risultato di ritardi di notifica e/o problemi di aggiornamento settimanale.
Questo controllo ¢ fondamentale perché con la mancanza dei dati si rischia di non cogliere picchi o
variazioni improvvise, avere una distorsione della curvatura epidemica con una sottostima della
gravita o creazioni di “buchi” seguiti da picchi ed ad un effetto negativo sui modelli statistici come
stime distorte dei parametri, convergenza errata degli algoritmi e quindi una varianza superiore nei
residui. Per la loro gestione ¢ stata evitata I’imputazione arbitraria (per esempio sostituendo con 0),
poiché rischia di distorcere 1’andamento della curva epidemica ed introduce dei bias sistematici
nell’analisi. Si € optato per una strategia semplice ¢ conservativa, che in questa analisi ¢ stata
applicata attraverso interpolazione lineare e media stagionale nei casi necessari, che comprende
quindi: per periodi brevi (1-2- settimane) interpolazione lineare o media mobile; per periodi lunghi
imputazione tramite regressione temporale o media stagionale basata su anni successivi. Tuttavia
non sono emerse anomalie per i valori mancanti nelle serie principali per quanto riguarda il numero
dei casi o dei decessi settimanali, confermati anche dopo i controlli di qualita.

Outliers (valori anomali)
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Vanno ad identificare le anomalie che rappresentano errori di reporting oppure associati a picchi di

mortalita straordinaria dovuti a correzioni retroattive. Gli outliers relativi al primo caso sono stati

identificati sia tramite metodi grafici utilizzando boxplot, sia attraverso metodi di statistica classica

con z-scores, in questo caso con la foresta isolata.
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Figura 1, Boxplot delle variabili analizzate (casi settimanali, ospedalizzazioni, decessi, R(t)
trasmissibilita). I punti al di fuori dei whiskers rappresentano outliers

Variabile Outliers Below Outliers Above Range Below Range Above
Casi Settimanali 0 17 -228.722 399.070
Decessi 0 7 -6.659,29 15.171,57
Ospedalizzazioni 0 9 -626,5 1.249,5
R(t) 0 3 0,33 1,72

Tabella 1, Outliers rilevati nelle variabili, con conteggio dei valori al di sotto e sopra le soglie

L’analisi del boxplot, coerente con i valori numerici riportati in Tabella 1, conferma che i range

below negativi osservati derivano esclusivamente dalla forte asimmetria delle distribuzioni. |

whiskers inferiori del grafico non rappresentano valori realmente negativi, ma riflettono la distanza

statistica dagli outliers positivi estremi, mostrando perfetta coerenza tra rappresentazione grafica e

misure tabellari.

I limiti negativi non significano che ci aspettiamo valori negativi per casi, decessi o ospedalizzati in

quanto assurdo in questo contesto, ma indicano una distribuzione estremamente asimmetrica, con un

enorme variabilita e quindi differenza tra periodi normali e picchi epidemici, e la presenza di outliers

estremi con valori anomali molto distanti dalla distribuzione centrale. Tutti gli outliers, quindi, sono

"high", indicando che i picchi epidemici rappresentano valori estremamente anomali rispetto alla

distribuzione normale dei dati e quelli che sono stati riscontrati i seguenti outliers: 25 per i casi

settimanali; 31 per le ospedalizzazioni medie settimanali; 36 per i decessi; 11 per il tasso di

trasmissibilita r(t). Questi dati rappresentano un segnale matematico (in quanto il limite negativo ¢ di

per sé un indicatore della distribuzione estrema oltre al mostrare chiaramente che gli outliers

esistono solo nella direzione positiva) che conferma visivamente quello che gia sappiamo: la

pandemia ha avuto picchi drammaticamente alti rispetto alla baseline.
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Decessi settimanali con anomalie (Isolation Forest)
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Figura 2, Anomalia individuata tramite algoritmo Isolation Forest: punti segnati come outliers
multivariati rispetto ai pattern normali del dataset

L’algoritmo Isolation Forest ha individuato 50 outliers, i quali corrispondono visivamente ai punti
isolati nella Figura 2. La minor densita della nube di osservazioni nelle aree identificate graficamente
corrisponde esattamente ai valori anomali rilevati, concentrati principalmente nei periodi di picco
epidemico (ad esempio marzo 2020, novembre 2020, gennaio 2022), garantendo coerenza tra analisi
numerica e rappresentazione visuale
Attraverso questo approccio siamo in grado di mostrare come questi valori anomali corrispondano a
settimane con valori estremamente elevati di casi, decessi e ospedalizzazioni, confermando la
capacita dell'algoritmo di identificare pattern anomali multivariati.
Per ridurre I’influenza degli outliers nelle variabili indipendenti & stata applicata una winsorizzazione
al 95° percentile. Questa soglia rappresenta un compromesso ottimale ampiamente utilizzato negli
studi epidemiologici: limita I’influenza dei valori estremi preservando la forma della distribuzione
senza alterare la variabile dipendente. Inoltre, come mostrato nei grafici delle serie temporali, i valori
winsorizzati rimangono pienamente coerenti con I’andamento osservato. In questo elaborato il
numero dei decessi € considerato come variabile dipendente. Al fine di evitare che la presenza di
outliers nelle variabili esplicative influenzi in modo eccessivo la stima dei coefficienti, senza tuttavia
alterare artificialmente i valori osservati della variabile risposta (i.e. il numero di decessi), la
procedura di Winsorizzazione ¢ stata applicata esclusivamente alle variabili indipendenti. Nel
dettaglio, i risultati riportano le trasformazioni effettuate sulle seguenti variabili:

o Per casi settimanali: valori sotto 571,78 e sopra 1.037.282,48 sono stati corretti (6

osservazioni totali)
o Per decessi settimanali: valori sotto 10,08 ¢ sopra 5.093,42 sono stati corretti (6
osservazioni)
o Per ospedalizzati: valori sotto 575,64 e sopra 34.135,17 sono stati corretti (6 osservazioni)

o Per R(t): valori sotto 0,626 e sopra 2,398 sono stati corretti (6 osservazioni)
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Cio ¢ importante innanzitutto perché Questi risultati confermano che la pandemia COVID-19 ha
avuto un andamento "a picchi" con periodi di relativa normalita intervallati da esplosioni epidemiche
chiaramente identificabili come eventi anomali statisticamente. In secondo luogo perché ci consente
di separare gli errori di reporting da fenomeni reali che possono portare alla creazione di picchi
artificiali, poi perché i modelli statistici sono sensibili ai valori estremi e gli outliers non gestiti
possono spostare le stime dei parametri in modo significativo, peggiorare la bonta di adattamento del
modello ed aumentare la varianza residua.

e Trasformazioni
Necessaria in distribuzioni non gaussiane con varianza instabile ¢ una marcata asimmetria
(skewness). La skewness (asimmetria) € una misura statistica che quantifica quanto una distribuzione
si discosta dalla simmetria. Nei dati epidemiologici sul COVID-19, la skewness positiva indica che
vi sono settimane con pochi decessi e rare settimane con picchi molto alti, fenomeno comune nelle
ondate epidemiche. Una distribuzione altamente asimmetrica pud compromettere la validita dei
modelli lineari, rendendo necessario 1’uso di modelli alternativi o, appunto, le trasformazioni. Questa
fase risponde alle esigenze relativi ai requisiti di normalita dei residui e stabilita della varianza nei
modelli lineari. Anche in questo caso si € optato per una scelta semplice e quindi ¢ stata applicata
una trasformazione logaritmica della variabile di output

Y*=log(Y +1)

Dove Y rappresenta il numero dei decessi settimanali (per ridurre skewness), mentre 1’aggiunta di 1
serve a gestire le osservazioni nulle ed evitare valori anomali. Applicando la trasformazione
logaritmica siamo in grado, non solo di migliorare le proprieta statistiche del modello, ma anche di
rendere piu interpretabili I’effetto percentuale della covariante nei modelli con link log.
Tuttavia, nella seconda parte dell’analisi — in cui si adottano modelli di conteggio come Poisson e
Binomiale Negativa — la trasformazione logaritmica viene sostituita da una modellazione diretta dei
conteggi, preservando la discrezione e la distribuzione empirica dei dati. In questo contesto,
I’approccio GLM (Generalized Linear Model) ¢ ritenuto piu adeguato rispetto a trasformazioni
“forzate”. In questo caso le trasformazioni logaritmiche hanno ridotto 1’asimmetria delle distribuzioni
di casi e decessi, favorendo un migliore adattamento dei GLM e la stabilita degli intervalli di

confidenza.

La pipeline completa delle fasi di pre-processing puo essere racchiusa in una serie di steps che ha incluso:
pulizia iniziale, in cui si € svolta un’attivita di rimozione dei duplicati e correzione degli errori manifestati;
gestione dei missing data, attraverso un analisi dei pattern ed imputazione multipla; filtraggio degli outliers
attraverso un trattamento selettivo e I’identificazione multivariata; trasformazioni, che comprende una
preparazione alla modellazione dei dati ed una normalizzazione delle distribuzioni.

Questa fase di elaborazione preliminare del dataset ¢ fondamentale per affrontare le anomalie in modo tale

da poter garantire la qualita e la robustezza dell’elaborazione statistica.
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2.2 — Modelli statistici

Questa parte confronta diversi approcci di modellazione che partono dal modello lineare classico (ripreso
dall’articolo di partenza), passando per la regressione di Poisson ed infine alla regressione Binomiale
Negativa, evidenziandone specifiche, vantaggi e limiti. Vengono discusse le assunzioni sottostanti ad ogni
modello ed i criteri di selezione basati su test di verosimiglianza e criteri di informazione come AIC e BIC,

per identificare il modello piu adatto ai dati epidemiologici.

2.2.1 - Modello lineare: specificazione e limiti

Il modello lineare classico rappresenta il punto di partenza dell’analisi statistiche ed epidemiologica poiché
rimane un punto di partenza utile per una serie di ragioni principali, quali:

e Semplicita interpretativa, consente di tradurre relazioni complesse in un modello facilmente
leggibile, in cui I’effetto di ogni variabile indipendente & rappresentato da un coefficiente che indica
la direzione e 1’intensita dell’associazione.

e Rapida descrizione dei trend, fornisce una rappresentazione intuitiva sotto forma di rette che rendono
immediata la direzione e velocita del cambiamento, mostrando quindi 1’andamento di crescita e/o
diminuzione. Questa ¢ una proprieta particolarmente utile come ad esempio in nella fase iniziale di
una pandemia, quando € necessario trasmettere velocemente i segnali di crescita o riduzione senza
entrare in dettagli tecnici.

e Supporto metodologico e software consolidati, facilitano 1’implementazione e I’interpretazione
anche da parte di non specialisti. Per questo motivo, costituisce una base di confronto con approcci

piu sofisticati e funge da “benchmark” iniziale in molte analisi applicate.

Il modello lineare classico puo essere espresso come:

Y=po+ piXi + pXo + ... + BiXi + & dove e ~ N(0, ?)

Tuttavia, nonostante la sua semplicita interpretativa, in un contesto come quello epidemiologico con dati di
conteggio, presenta notevoli limiti quali:
e Non adatto a dati di conteggio: il modello lineare puo prevedere anche valori negativi ed i decessi
settimanali sono variabili discrete € non negative, ¢id pud produrre previsioni biologicamente

implausibili.

e Sovradispersione: la varianza dei dati supera spesso la media, violando 1’assunzione di varianza
4 p p )

costante.
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o [Eterogeneita: 1’effetto delle variabili puo cambiare in funzione del tempo o di caratteristiche latenti,

difficili da modellare linearmente.

o Dipendenza temporale (autocorrelazione): 1 dati temporali aggregati presentano spesso dipendenza
seriale (es. effetto della settimana precedente su quella corrente), che 1’OLS non gestisce in modo

naturale.

Per queste ragioni, pur rimanendo un utile strumento, il modello lineare classico non ¢ sufficiente per una
rappresentazione realistica e robusta dei dati epidemiologici. Da qui nasce ’esigenza di estendere lo studio a
modelli alternativi piu adatti su dati di conteggio — come la regressione di Poisson o la regressione binomiale
negativa — che rispettano la natura discreta e non negativa dei dati di conteggio, permettono di trattare la
sovradispersione e sono pit adeguati a catturare la complessita dei fenomeni osservati. Questi modelli non
sostituiscono il modello lineare, ma lo integrano, consentendo di passare da una visione descrittiva e

semplificata a un’analisi piu aderente alla realta epidemiologica.

2.2.2 - Modello di Poisson: adatto per dati di conteggio, ipotesi di
equidispersione

Numerosi studi hanno dimostrato che il modello di Poisson rappresenta un buon punto di partenza nel
contesto epidemiologico per: prevedere I’incidenza settimanale dei casi o dei decessi; modellare 1’effetto di
politiche sanitarie (come ad esempio 1’introduzione di nuove dosi vaccinali); valutare I’impatto delle varianti
(in termini di conteggio dei decessi).

La regressione di Poisson rappresenta una tecnica statistica progettata specificatamente per 1’analisi dei dati
di conteggio, ideale in presenza di ipotesi con equidispersione in cui la media ¢ uguale alla varianza. Cio
risulta fondamentale poiché se I’equidispersione non viene soddisfatta puo portare alla generazione di stime
distorte degli errori standard. Cio porta ad avere una serie di punti di forza nel contesto epidemiologico,
quali:

e Rispetto della natura dei dati, poiché progettata specificatamente per I’analisi dei dati di conteggio
(che in tale contesto sono discrete e non negativi) per eliminare il rischio di previsioni
biologicamente implausibili

e Interpretabilita epidemiologica, permettendo una diretta traduzione in termini di rischio relativo

e Modellazione dei tassi, attraverso 'uso di un offset, il modello puo analizzare tassi anziché conteggi
assoluti, fondamentale per confronti temporali e territoriali

e Base teorica solida, poiché deriva da processi stocastici ben studiati, assumendo eventi indipendenti

e a bassa probabilita, condizioni spesso ragionevoli per malattie infettive in popolazioni grandi

La sua specificazione ¢:

23



log(E[Y|X]) = fo + piXi + ... + fiXi
Assume che Y|X coincide con Poisson(p), con E[Y|X] = Var(Y|X) = u (equidispersione).
I coefficienti 3 sono interpretabili come logaritmo del rapporto dei tassi (log rate ratios). Per modellare tassi
(es. tasso di mortalitd) invece di conteggi assoluti, si include un offset, ad esempio il logaritmo della

popolazione a rischio.

D'altro canto, € necessario considerare alcune limitazioni significative, date da:

e Ipotesi di equidispersione spesso violata, nei contesti epidemici, la varianza spesso supera
significativamente la media (sovradispersione), portando a sottostima degli errori standard e
sovrastima della significativita statistica

e Mancanza di flessibilita, poiché non cattura adeguatamente l'eterogeneita non osservata tra individui
o nel tempo, comune nei dati pandemici

o Sensibilita agli outliers, perché eventi estremi (picchi epidemici) possono influenzare
eccessivamente le stime dei parametri

e Indipendenza di eventi, portando alla violazione dell’assunzione d’indipendenza in presenza di

fenomeni di contagio o cluster spaziali

Sebbene questa tecnica ¢ ideale per conteggi di eventi rari e indipendenti, l'ipotesi di equidispersione ¢
spesso irrealistica in questo contesto epidemiologico (sovradispersione comune), portando a sottostima degli

errori standard e sovrastima della significativita statistica se violata.

2.2.3 - Regressione binomiale negativa: estensione per sovradispersione

(varianza > media)
Il modello di regressione binomiale negativa rappresenta una naturale estensione del modello di Poisson
descritto nella sezione precedente, in quanto capace di gestire la sovradispersione dei dati attraverso
I’introduzione di un parametro di dispersione @, andando a rilassare cosi I’ipotesi di equidispersione. Punti di
forza di questo modello sono costituiti da:
e Gestione esplicita della dispersione, rilassando 1'ipotesi restrittiva di equidispersione, consente alla
varianza di superare la media
e Robustezza statica, poiché produce errori standard piu conservativi e intervalli di confidenza piu
realistici quando € presente eterogeneita non osservata
e Adattamento ai dati reali, attraverso la flessibilita aggiuntiva permette un migliore adattamento ai
pattern empirici, particolarmente importante durante le fasi di picco epidemico dove la variabilita
aumenta significativamente

o Compatibilita backward, poiché per a — 0 il modello converge al Poisson, rappresentandone una
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generalizzazione naturale che mantiene la stessa interpretabilita dei coefficienti

La regressione Binomiale Negativa modella Y|X come una variabile aleatoria con distribuzione Binomiale
Negativa, dove:

E[Y|X] = ueVar(Y|1X) = pu + oy’
Quindi con a— 0 (alfa tendente a 0) abbiamo un modello che converge con quello di Poisson, mentre a > 0 ¢

presente una sovradispersione crescente in cui la varianza in eccesso viene modellata esplicitamente.

Sebbene rappresenti un modello estremamente potente bisogna pero fare avere degli accorgimenti poiché
puo avere delle limitazioni importanti dovute a:
e Complessita computazionali, provocati dalla stima del parametro di dispersione richiede algoritmi
iterativi piu sofisticati e puo presentare problemi di convergenza con dataset di dimensioni ridotte
e Sovraccarico parametrico, presenza di sovradispersione moderata, il modello puo risultare meno
efficiente in termini di varianza delle stime
o Sensibilita alla specificazione, e quindi scelte inappropriate delle variabili esplicative possono
portare a stime distorte del parametro di dispersione
e Interpretabilita del parametro di dispersione, il parametro o risulta spesso di difficile interpretazione

pratica per gli utenti finali

Il modello di regressione binomiale negativa viene spesso preferito nei contesti epidemiologici per la sua
capacita di rappresentare la variabilita empirica dei conteggi in modo piu accurato poiché la mortalita
settimanale dei dati COVID-19 italiani (2020 — 2025) mostra un’ampia variabilita non spiegata dalle
variabili conosciute come la variante, il clima e/o le vaccinazioni. Attraverso tale modello siamo in grado di
modellare gli effetti latenti senza compromettere la significativita statistica, consentendoci di ottenere dei
significativi miglioramenti sulle osservazioni e portando a vantaggi come: una gestione della
sovradispersione in modo parametrico; miglior adattamento ai dati reali; coefficienti interoperabili come

tassi relativi, come ad esempio I’aumento percentuale dei decessi associato ad una variante.

2.3 — Metriche di confronto

Nelle applicazioni epidemiologiche come quella analizzata, ¢ fondamentale bilanciare la capacita
interpretativa e le prestazioni predittive. Il confronto tra modelli statistici non puo basarsi esclusivamente
sulla significativita dei coefficienti, ma deve essere supportato da metriche formali di bonta di adattamento
(devianza, pseudo-R?) e accuratezza predittiva (MAE, Errore Relativo Percentuale), includendo tecniche di
convalida incrociata per garantire la robustezza dei risultati. L'uso combinato di queste metriche consente di

identificare il modello piu adatto sia alla descrizione dei dati osservati che alla previsione di osservazioni
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future.

2.3.1 - Criteri di selezione del modello: AIC, BIC, test di rapporto di

verosimiglianza

Per confrontare i modelli ¢ necessario adottare delle modalita che possano fornire dei risultati oggettivi, € per
fare cio, in questo studio, si € scelto di usare i criteri statistici pit consolidati. I piu diffusi sono:
e AIC (Akaike Information Criterion)
Rappresenta una misura usata per valutare e confrontare modelli statistici tenendo conto sia della
bonta di adattamento sia della complessita del modello al fine di bilanciare bonta di adattamento e
complessita andando a penalizzare modelli troppo complessi. Viene definito come:
AIC = 2k—2log(L)
In cui & rappresenta il numero dei parametri del modello, mentre L ¢ la massima verosimiglianza del
modello. Un valore AIC piu basso indica un modello preferibile perché riesce a spiegare bene i dati

con un numero contenuto di parametri.

e BIC (Bayesian Information Criterion)
Molto simile al precedente, ma la formula va a penalizzare in modo piu severo 1’incremento dei
parametri, specialmente per campioni di grandi dimensioni. Viene definito come:

BIC = log(n) -k — 2log(L)

In cui n rappresenta il numero di osservazioni, k il numero del modello ed L rappresenta il massimo
della funzione di verosimiglianza. A differenza del precedente che premia modelli piu flessibili, il
BIC favorisce modelli piu conservativi e quindi con meno parametri. Nel contesto epidemiologico ¢
particolarmente utile per evitare overfitting e garantire una maggiore generalizzazione del modello ai
dati futuri. Anche in questo caso, minore ¢ il punteggio e preferibile ¢ il modello.

e LRT (Test di rapporto di verosimiglianza)
Rappresenta un test statistico parametrico utilizzato per confrontare due modelli annidati in cui il
modello piu semplice ¢ un caso speciale del modello pitt complesso al fine di valutare se 1’aggiunta
di di parametri puo migliorare significativamente la capacita descrittiva del modello. Viene definito
come:

LRT = -2[log(Lsempiice) - log(Lcompiesso)]

Abbiamo che LRT segue approssimativamente una distribuzione chi-quadro con un numero di gradi
di liberta pari alla differenza nel numero di parametri stimati tra i due modelli. Risulta utile per
verificare se I’introduzione di una variabile o la sostituzione del modello di Poisson con una

regressione binomiale negativa porta a un miglioramento statisticamente significativo

In conclusione possiamo affermare che AIC e BIC penalizzano complessita e identificano il modello piu
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parsimonioso; il test di rapporto di verosimiglianza confronta i modelli GLM (i.e. Poisson vs. binomiale
negativa). Comunque sia tutti gli indicatori supportano la preferenza per il modello binomiale negativo, che

coniuga flessibilita, significativita e robustezza.

2.3.2 - Bonta di adattamento: Devianza, pseudo-R?, analisi dei residui

La valutazione della bonta di adattamento, soprattutto nel contesto dell’analisi epidemiologica dei dati
COVID-19, rappresenta un passaggio cruciale nell’analisi statistica, poiché permette di verificare quanto un
modello riesca a descrivere i dati osservati. Grazie a tale descrizione ci consente di avere una maggiore
accuratezza del modello, confrontare i vari modelli e valutare le assunzioni. In particolare vengono esaminate
tre metriche fondamentali: la devianza per misurare la discrepanza tra modello e dati; pseudo-R? che
rappresenta 1’alternativa all’R? tradizione per i modelli non lineari; analisi dei residui per identificare pattern
anomali o violazioni delle assunzioni del modello. In conclusione, queste metriche non solo migliorano la
qualita statistica del modello, ma sono anche essenziali per garantire che i risultati abbiano valore pratico e

utilita decisionale in ambito di salute pubblica.

Devianza

La devianza rappresenta una misura fondamentale per valutare la bonta di adattamento nei modelli di
regressione appartenenti ai GLM (Modelli Lineari Generalizzati). Rappresenta il doppio della differenza tra
la log-verosimiglianza del modello saturato (che si adatta perfettamente ai dati) e quella del modello in

esame, ed ¢ possibile definirla come:

D =2 -[log(L )—log(Lno)]

In cui rappresenta la verosimiglianza del modello saturo perfetto, mentre rappresenta la verosimiglianza del
modello considerato. In questo caso abbiamo che valori bassi, quindi ~ 1, indicano un buon adattamento,
mentre valori > 1 indicano una sovradispersione residua.

In tale studio la devianza viene calcolata per ogni modello presente, ma mentre il modello lineare non

prevede questa metrica, i modelli GLM la utilizzano come riferimento diretto.

Pseudo-R?

Nei modelli lineari classici la bonta di adattamento viene rappresentata tramite la quota di variabilita della
variabile dipendente spiegata dal modello, ovvero attraverso il coefficiente di determinazione R?. Tuttavia, in
contesti basati su dati di conteggio o di distribuzioni non gaussiane come quelli dei GLM, non ¢ direttamente
applicabile. Per fornire una misura comparativa della qualita del modello, per ‘spiegare la variabilita’ in
contesti pit complessi come quello in esame in questo testo, si € passato quindi all’analisi del pseudo-R2 Ne
esistono diverse varianti, ognuno universalmente valido con la propria formulazione che cattura aspetti
diversi della bonta del modello, come quello di Cox e Snell o Nagelkerke (o Cragg-Uhler), ma in questo

studio si ¢ scelto di usare quello di McFadden poiché, oltre ad essere una delle misure piu diffuse nei modelli
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GLM, in tale contesto risulta essere meno influenzato dalla dimensione campionaria favorendo valori
interpretabili anche in presenza di dati di conteggio (o binari). Mentre Cox & Snell ha un limite massimo
inferiore a 1 e il Nagelkerke lo corregge rendendolo piu “leggibile”, il McFadden R? ¢ piu robusto e standard
nella letteratura epidemiologica, dove valori tra 0.2 e 0.4 sono gia considerati indice di buon adattamento. Lo
pseudo-R? di McFadden viene definito come:

_ log (LryLL)
log (LyyrL)

R? =
In cui: Lpy;; rappresenta la verosimiglianza del modello stimato con tutte le variabili, Ly, mentre € la
verosimiglianza del modello nullo.
In questo modo non viene misurata direttamente la percentuale di varianza spiegata, ma la capacita del
modello di ridurre ’incertezza rispetto al caso nullo, ovvero calcola il valore che indica quanto il modello
“migliora” rispetto a un modello senza predittori. Utilizzando il pseudo-R? di McFadden abbiamo che i valori
vicino allo 0 indicano uno scarso potere indicativo, valori compresi tra 0.2 e 0.4 vengono considerati un buon
adattamento mentre valori maggiori o uguali a 0.5 possono suggerire la presenza di overfitting.
Utilizzando tale modello di bonta di adattamento siamo in grado di fornire un criterio semplice ed intuitivo
per valutare se I’aggiunta di variabili porta ad un sostanziale miglioramento dell’adattamento del modello ai

dati osservati.

Analisi dei residui
L’analisi dei residui risulta essere un elemento diagnostico imprescindibile per valutare la presenza di valori
anomali o outliers, pattern sistematici non spiegati dal modello e violazioni di assunzioni fondamentali come
ad esempio 1’omoschedasticita o I’indipendenza dei dati.
Avendo utilizzato modelli di Poisson e Binomiale Negativa, per effettuale 1’analisi viene utilizzata:

e Residui devianza, per la verifica della discrepanza tra modello e dati

e Residui Pearson, per la misurazione della differenza standardizzata tra osservati ed attesi

e Grafici Q-Q (Quantile-Quantile), per il confronto della distribuzione dei residui con quella teorica

normale. Una deviazione marcata dalla diagonale indica che il modello non rappresenta

adeguatamente i dati

Un esempio ricorrente nei dati COVID-19 ¢ I’eccesso di residui in corrispondenza di settimane con varianti

dominanti come Omicron BA.5, indicando la presenza di fattori latenti non modellati.
Questi strumenti non solo aiutano a confrontare diverse specificazioni statistiche, ma garantiscono anche la

robustezza delle inferenze epidemiologiche, particolarmente rilevanti nello studio di dati complessi come

quelli pandemici.
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2.3.3 - Capacita predittiva: MAE, Errore Relativo Percentuale

Questa sezione descrive un aspetto cruciale per i modelli epidemiologici poiché rappresenta lo strumento
vero e proprio utilizzato per informare le politiche sanitari. Stimare la capacita predittiva del modello ¢
fondamentale per fornire indicazioni sulla sua robustezza al di fuori del campione in esame. Le metriche
usate includono:
e MAE (Mean Absolute Error)
Attraverso questa metrica viene misurato 1’errore medio tra i valori osservati e quelli predetti,
prendendo la media dei valori assoluti delle differenze. Viene calcolata come:
MAE = 31y |yi= V'
In questo modo andiamo ad indicare di quanto le predizioni si discostano, in media, dai dati reali.
Risulta essere semplice da interpretare perché espresso nelle stesse unita della variabile osservata e
penalizza in modo lineare gli errori (ovvero un errore doppio vale esattamente il doppio). In
conclusione, usando il MAE forniamo una misura media degli errori, robusta e facilmente
interpretabile.
¢ Errore Relativo Percentuale
Per valutare 1’accuratezza in termini relativi, soprattutto quando le scale numeriche variano tra

periodi o aggregazioni diverse, utilizziamo 1’errore percentuale relativo, definito com:

n R
ErrPerc = 12 (M) x 100
N lmij=1 i

Questa metrica consente di interpretare 1’errore come percentuale rispetto al valore osservato. Risulta
particolarmente utile quando i valori cambiano drasticamente tra contesti temporali differenti
(mensile, stagionale, annuale), permettendo confronti piu stabili anche quando 1’ordine di grandezza
varia sensibilmente. In conclusione, 1'Errore Relativo Percentuale fornisce una misura

standardizzata dell'accuratezza, particolarmente utile per comunicare 1'incertezza delle previsioni

La differenza fondamentale tra queste due metriche risiede proprio nella loro sensibilita alla scala dei dati: il
MAE fornisce una misura assoluta dell'errore, mentre 1'Errore Relativo Percentuale fornisce una misura
relativa che tiene conto della grandezza dei valori osservati. In questo contesto epidemiologico ¢ utile usare
entrambe le metriche perché rappresentano degli indicatori complementari dell'errore di un modello che
consentono di avere una visione bilanciata in quanto: il MAE mostra l'errore medio assoluto, mentre I'Errore
Relativo Percentuale contestualizza questo errore rispetto alla magnitudine dei valori osservati. Attraverso la
validazione incrociata abbiamo un metodo complementare per valutare la robustezza di queste metriche
perché rappresenta una procedura di valutazione che ripete piu volte il calcolo delle metriche scelte su
diverse partizioni del dataset per verificare che i risultati ottenuti sono stabili e generalizzabili.

Tale approccio permette di stimare la reale capacita predittiva dei modelli, riducendo il rischio di overfitting
e aumentando l'affidabilita delle conclusioni epidemiologiche in quanto con MAE ed Errore Relativo

Percentuale andiamo a misurare la precisione del modello, mentre con la validazione incrociata andiamo a
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controllare che quelle misure non dipendano da un singolo campione, ma siano realmente rappresentative.

2.3.4 - Verifica di omoschedasticita (test di Breusch-Pagan, grafici dei residui) e
implicazioni

Come descritto nella Sezione 1.3.2 del corrente studio, ¢ essenziale verificare che i dati in questione
rispettino la proprieta di omoschedasticita. Nel contesto della regressione lineare classica, uno degli assunti
fondamentali ¢ I’omoschedasticita: la varianza degli errori deve essere costante per tutti i valori delle
variabili indipendenti. La sua violazione, ovvero la eteroschedasticita, comporta una serie di problematiche
come stime inefficienti, intervalli di confidenza non attendibili, e p-value distorti. La verifica della proprieta
di omoschedasticita risulta rilevante, soprattutto nel contesto epidemiologico, poiché i dati di conteggio

tendono a mostrare varianze crescenti al crescere dei casi dando origine a sovradispersione.

La verifica di omoschedasticita ¢ stata eseguita in due fasi:
1. Analisi Grafica
In cui sono stati analizzati i grafici dei residui standardizzati rispetto al valore predetto, in particolare
cio include:

o Scatterplot (Residui vs Fitted), la presenza un imbuto oppure una curvatura evidente

rappresenta un problema, mentre il pattern ideale ¢ costituito da una nuvola di punti casuale
e uniforme casuale intorno lo 0.

o Scale-Location plot, Questo grafico mostra la radice quadrata dei residui standardizzati in

funzione dei valori predetti. Un trend lineare orizzontale indica I’omoschedasticita, mentre

un pattern crescente identifica una varianza non costante e quindi eteroschedasticita.

La presenza di pattern a “cono” o “ventaglio” (residui piu dispersi per valori maggiori della variabile

predetta) ha suggerito una violazione dell’ipotesi di varianza costante.

2. Test Formale — test di Breusch-Pagan
Utile per rilevare in modo formale la presenza di eteroschedasticita. Questo test valuta se la varianza
dei residui puo essere spiegata in modo significativo da una funzione lineare delle variabili
indipendenti, ovvero se la varianza dei residui ¢ correlata alle variabili dipendenti. Il test si basa su
una regressione ausiliaria dei residui al quadrato, con le seguenti ipotesi:

o Ho: la varianza degli errori ¢ costante (omoschedasticita);
o Hi:lavarianza degli errori ¢ funzione della covariante (eteroschedasticita).

Se i risultati ottenuti mostrano un valore di p < 0.05, suggerendo un’evidenza di eteroschedasticita nei
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modelli lineari iniziali.

Il riscontro di eteroschedasticita nei modelli lineari iniziali ha implicazioni significative, quali: ’efficienza
dei modelli lineari viene compromessa perché, pur restando imparziali, non sono piu Best Linear Unbiased
Estimator (BLUE), ovvero efficienti; gli errori standard dei coefficienti sono distorti, cio¢ sottostimati,
portando ad eccessiva fiducia nei test di significativita; i p-value risultano troppo "significativi". Cio rende
necessari 1’uso di modelli alternativi capaci di gestire in modo esplicito la dipendenza della varianza dal
valore atteso, come 1 modelli di Poisson e/o Binomiale Negativa che modellano esplicitamente la relazione
tra media e varianza. In particolare nei modelli di Poisson si assume che la media e la varianza siano uguali

(i.e. E[Y] = Var[Y]), mentre nella regressione binomiale negativa la varianza viene modellata come una

ege o

2.4 — Stato dell’Arte

Questa sezione colloca la ricerca attuale nel piu ampio contesto della letteratura sulla modellazione
epidemiologica, con una crescente enfasi sull'adozione di framework statistici sofisticati, come i Modelli
Lineari Generalizzati (GLM), che sono particolarmente adatti a gestire dati di conteggio caratterizzati da
distribuzioni non normali e sovradispersione. Tuttavia, nonostante i progressi metodologici, persiste una
tensione critica tra la progettazione teorica dei modelli e le loro prestazioni predittive pratiche. Una
limitazione ricorrente nella letteratura € l'eccessiva enfasi sulla complessita del modello a scapito della
contestualizzazione temporale, con poca attenzione a come il tempismo e la segmentazione delle finestre
analitiche influenzino fondamentalmente l'accuratezza del modello. Vengono quindi esaminati i sviluppi
chiave nel campo, enfatizzando la necessita di conciliare il rigore statistico con la rilevanza epidemiologica,

in particolare per quanto riguarda la strutturazione temporale dei dati utilizzati per le previsioni.

2.4.1 — Caso di studio e Confronto critico nella letteratura

La pandemia di COVID-19 ha fornito un caso di studio senza precedenti per testare e affinare i modelli
statistici in epidemiologia. Lo straordinario sforzo di raccolta dati globale ha consentito confronti rigorosi
degli approcci di modellazione in condizioni reali. La letteratura include un'ampia gamma di modelli lineari
e non lineari impiegati per prevedere casi, ospedalizzazioni e mortalita da COVID-19. Per esempio:
e Bracher et al. (2021) sull'International Journal of Forecasting hanno dimostrato che i modelli lineari
classici sottostimavano sistematicamente gli intervalli di previsione durante i picchi epidemici,
mentre i modelli di Poisson e binomiale negativa mantenevano una calibrazione piu robusta degli

intervalli di confidenza.
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e Joannidis et al. (2022) hanno documentato come i modelli lineari non riuscissero a catturare le
dinamiche non lineari delle curve di mortalita, specialmente durante le transizioni varianti, con errori
di previsione fino al 50% piu alti rispetto ai GLM.

e Ray et al. (2023) hanno confrontato regressione lineare, Poisson e binomiale negativa su dati
ospedalieri europei, riscontrando che la binomiale negativa superava gli altri modelli in scenari di
alta sovradispersione, con riduzioni del MAE del 15-20%.

e Held et al. (2020) su Statistical Modelling hanno convalidato 1'uso della regressione binomiale
negativa per i decessi settimanali da COVID-19, dimostrando una migliore gestione della

sovradispersione rispetto alla regressione di Poisson standard

Nonostante queste innovazioni metodologiche, pochi dei modelli introdotti in letteratura incorporano
intervalli di tempo calibrati stagionalmente o epidemiologicamente. Questa omissione ha spesso portato a
una fiducia esagerata nella generalizzabilita del modello, mascherando al contempo distorsioni temporali

sistematiche.

Un gap critico identificato in diversi studi comparativi ¢ la mancanza di attenzione alla strutturazione
temporale delle finestre analitiche. Revisioni sistematiche di Wang et al. (2022) e Chowell et al. (2023)
hanno osservato che, sebbene le metodologie comparative siano abbondanti, pochi studi investigano
esplicitamente come la scelta dell'aggregazione temporale influenzi le prestazioni del modello attraverso
diversi framework statistici. Questo rappresenta una limitazione sostanziale, poiché la scala temporale di
analisi puo interagire con la specificazione del modello in modi che influenzano significativamente

l'accuratezza predittiva, particolarmente in contesti epidemici ad alta variabilita.

Pertanto, il gap nella letteratura non risiede esclusivamente nella selezione del modello, ma nell'allineamento
tra il focus temporale del modello e le dinamiche di trasmissione del virus nel mondo reale. Questa tesi
affronta questo gap applicando modelli identici sia a intervalli temporali calibrati che non calibrati, al fine di

quantificare gli effetti pratici dell'allineamento temporale sulle prestazioni del modello.

2.4.2 — Il lavoro di Roccetti et al. Come punto di inizio

La ricerca condotta da Roccetti et al., articolata nelle pubblicazioni "A Segmented Linear Regression Study
of Seasonal Profiles of COVID-19 Deaths in Italy: September 202 1-September 2024" e "Beyond the Gold
Standard: Linear Regression and Poisson GLM Yield Identical Mortality Trends and Death Counts for
COVID-19 in Italy: 2021-2025", rappresenta un precedente metodologico cruciale per questa tesi perché
fornisce un framework concettuale che collega la transizione dalla pandemia alle dinamiche endemiche del

COVID-19.

Una caratteristica metodologica chiave del lavoro di M. Roccetti, E. De Rosa e G. Cacciapuoti ¢ stata
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l'introduzione di un approccio innovativo alla segmentazione temporale, definendo intervalli stagionali basati
su considerazioni epidemiologiche piuttosto che calendaristiche. Cid ha permesso loro di rilevare una
ricorrenza stabile della mortalita nelle fasi 1-micron e post-1-micron. Questo approccio enfatizza
lI'importanza della segmentazione temporale per rivelare fenomeni epidemiologici che altrimenti sarebbero
oscurati da analisi lineari o continue.

Tra gli aspetti chiave del lavoro di Roccetti et al. vi sono la definizione epidemiologica delle stagioni, poiché
gli autori hanno sviluppato un approccio originale per definire i confini stagionali basato sulle dinamiche di
trasmissione piuttosto che su periodi di calendario fissi (ci0 ha consentito finestre di analisi biologicamente
significative che catturavano cicli epidemici completi), e la documentazione delle prestazioni del modello,
poiché la ricerca ha fornito evidenze empiriche che finestre temporali ben calibrate possono produrre
prestazioni predittive eccellenti.

Tuttavia, esistono limitazioni € questioni irrisolte che vengono affrontate in questa ricerca, tra cui:

o Confronto limitato degli scenari temporali: sebbene abbiano dimostrato il valore della calibrazione
stagionale, non hanno confrontato sistematicamente le prestazioni attraverso l'intero spettro delle
aggregazioni temporali (stagionale, mensile, annuale) comunemente utilizzate nella pratica della
salute pubblica.

e Completezza degli errori: mentre la loro ricerca abbia fornito dimostrazioni pratiche, non ha
pienamente sviluppato le implicazioni teoriche della calibrazione temporale come fattore
fondamentale nella modellazione epidemiologica.

e Implicazioni teoriche: il loro lavoro ha documentato le prestazioni ottimali ottenibili attraverso la
calibrazione, ma non ha quantificato in modo completo il declino delle prestazioni attraverso diversi

scenari di scorretta calibrazione.

Questa tesi si basa direttamente sulle fondamenta metodologiche stabilite da Roccetti et al., estendendo
l'analisi in diverse direzioni critiche attraverso:
e Implementazione di modelli di regressione comparativi (lineare, Poisson, binomiale negativa) sia su
intervalli di tempo calibrati che non calibrati.
e Test empirico dell'ipotesi che la calibrazione dell'intervallo sia un fattore piu decisivo della
specificazione del modello nel determinare 'accuratezza della previsione.
e Valutazione delle conseguenze del disallineamento temporale confrontando le prestazioni del

modello su diverse scale analitiche (stagionale, mensile, annuale).

Operazionalizzando questi concetti all'interno di un framework predittivo formale, questo lavoro evolve il
paradigma metodologico introdotto da Roccetti et al., passando da un'interpretazione stagionale descrittiva a
un esame sistematico della sensibilita del modello alla strutturazione temporale. Questo approccio evidenzia
il ruolo cruciale della segmentazione dei dati basata sul contesto nella modellazione epidemiologica

moderna.

33



2.4.3 — Perché estendere gli articoli originali? Limiti: da OLS a Poisson

I dati epidemiologici — come i conteggi settimanali di casi, ospedalizzazioni e decessi — presentano proprieta
strutturali che sfidano non solo le assunzioni della regressione lineare classica (normalita, continuita
dell'outcome, omoschedasticita), ma anche alcune delle assunzioni fondamentali dei modelli di conteggio
canonici come la regressione di Poisson. La necessita di estendere gli articoli originali nasce proprio
dall'esigenza di affrontare queste limitazioni e di inquadrare I'analisi in una prospettiva che riconosca
l'impatto critico della strutturazione temporale in un contesto metodologico che rifletta meglio il

comportamento empirico dei dati COVID-19.

L’uso di modelli lineari classici (OLS) ¢ inadeguato per dati come decessi o casi settimanali, poiché ne viola
le proprieta fondamentali: genera previsioni negative (biologicamente implausibili) e non gestisce la

sovradispersione (varianza > media), producendo inferenze distorte.

La regressione di Poisson rappresenta un miglioramento, poiché rispetta la natura dei dati e introduce una
struttura log-lineare coerente con i conteggi. Tuttavia, essa impone 1’assunzione di equidispersione (E[Y] =
Var[Y]), raramente verificata nella pratica. Nei dati COVID-19, la sovradispersione ¢ sistematica e dovuta a
eterogeneita latente, clustering di trasmissione, dinamiche stagionali e picchi improvvisi. L uso non critico
del modello di Poisson in tali condizioni porta a errori standard troppo piccoli, intervalli di confidenza

eccessivamente ottimistici € una falsa percezione di significativita statistica.

Per questo motivo, la letteratura propone la regressione Binomiale Negativa come alternativa piu robusta in
presenza di sovradispersione. Tuttavia, anche la scelta di un modello piu adeguato non basta se non &
accompagnata da una corretta interpretazione temporale del fenomeno. Ed € qui che si colloca il contributo

distintivo di questa tesi

Il ruolo apportato da questo lavoro consiste nel mostrare che, oltre agli aspetti puramente statistici
(equidispersione, discrepanza tra modelli), la calibrazione temporale della finestra di analisi € un
determinante centrale dell’accuratezza predittiva, spesso piu influente della scelta della famiglia del modello.
Attraverso un confronto sistematico fra modelli e scale temporali diverse, la tesi dimostra che anche modelli
teoricamente non ideali (come la regressione lineare) possono fornire previsioni sorprendentemente accurate
quando applicati entro intervalli epidemiologicamente significativi; viceversa, Poisson e Binomiale Negativa
perdono gran parte della loro efficacia quando utilizzati in finestre arbitrarie o non calibrate.

In questo senso, 1’estensione degli articoli originali non riguarda solo 1’adozione di modelli piu flessibili, ma
introduce una prospettiva pit ampia: la qualita delle previsioni dipende dall’allineamento tra modello e
struttura temporale dei dati, e non unicamente dalla complessita del modello statistico. Questa intuizione,
emersa dai risultati di questa tesi, rappresenta un contributo metodologico originale e rilevante per
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I’epidemiologia quantitative.
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3 — Risultati e analisi

Il terzo capitolo presenta i risultati dell'analisi statistica, illustrando l'andamento temporale delle variabili

epidemiologiche principali, i risultati dei modelli di regressione e la loro interpretazione nel contesto delle
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ipotesi formulate. Vengono inoltre discussi i punti di forza e i limiti dello studio, nonché le implicazioni per

la salute pubblica.

3.1 — Risultati descrittivi preliminari

Questo capitolo presenta e discute i risultati empirici ottenuti dall'applicazione dei modelli statistici descritti
nel Capitolo 2. L'obiettivo ¢ confrontare le performance dei modelli, validare le ipotesi di ricerca e
interpretare gli output alla luce del contesto epidemiologico, fornendo una risposta evidence-based ai quesiti
di studio. In particolare vengono esaminati gli andamenti temporali degli indicatori epidemiologici chiave, le
statistiche descrittive delle variabili principali e le loro correlazioni, nonché la distribuzione degli outcome

attraverso visualizzazioni comparative tra le diverse varianti virali.

3.1.1 - Andamento temporale dei principali indicatori epidemiologici

Punto di partenza per comprendere 1’evoluzione della pandemia e della successiva fase post-pandemica ¢

costituita dall’analisi temporale. I dati, aggregati su base settimanale, mostrano un andamento costituito da
picchi epidemici di intensita variabile associati all'emergere delle diverse varianti e all'implementazione di
misure di contenimento e campagne vaccinali, evidenziando il passaggio da ondate acute a una convivenza

endemica con SARS-CoV-2.

Per quanto riguarda il numero di nuovi casi, rappresenta la componente con maggiore volatilitd. Dopo le
ondate iniziali del 2020 caratterizzate da un numero assoluto di casi relativamente basso ma da un'alta
letalita, si € osservato un picco senza precedenti tra la fine del 2021 e l'inizio del 2022, coincidente con la
diffusione della variante Omicron BA.1/BA.2, durante il quale il numero di casi ha superato il milione per
diverse settimane consecutive. Successivamente, le ondate di BA.5 (estate 2022) e XBB/JN.1 (fine 2023-
inizio 2024) hanno mostrato picchi di casi progressivamente inferiori, attestandosi tra i 200.000 e i 400.000
casi settimanali, indicando una transizione verso un'endemicita ad alta circolazione ma minore impatto

clinico percepito.

Per I’andamento delle ospedalizzazioni e dei decessi, sebbene correlato a quello dei casi, ha mostrato un
disaccoppiamento progressivo a partire dalla diffusione di Omicron. Con questa variante, nonostante il
numero di casi esplodesse, il picco di ospedalizzazioni ¢ stato circa il 40% inferiore a quello delle ondate
precedenti. I1 tasso di occupazione delle terapie intensive ha seguito una traiettoria simile, ma con un
disaccoppiamento piu marcato, suggerendo una gravita intrinseca ridotta della variante e 1’effetto protettivo

della vaccinazione.
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1e6 Andamento temporale — Casi (verde, sx), Ospedalizzati (blu, dx), Decessi (rosso, dx) — bande varianti (Prev Variants & Omicron)
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Figura 3, Andamento temporale dell’'outcome epidemiologico dell'intero dataset, che evidenzia fasi di
Incremento, picco e remissione (da Gennaio 2020 a Novembre 2021 - i.e. varianti precedenti - inserito a
titolo illustrativo/comparativo)

L'ondata Omicron BA.1, nonostante I'altissimo numero di contagi, ha generato un picco di decessi pari a
circa la meta di quello della ondata Delta. Questo andamento discendente nella mortalita, nonostante 1'alta
circolazione virale, ¢ il risultato congiunto della minore patogenicita di Omicron, dell'immunita pregressa (da

infezione naturale) e dell'alta copertura vaccinale.

3.1.2 - Statistiche descrittive e correlazioni tra variabili chiave

Per avere una descrizione sintetica della distribuzione dei dati, utilizziamo delle semplici statistiche
descrittive in modo da poter fornire una misura della loro centralita, dispersione e forma distributiva. I dati
confermano la natura altamente asimmetrica (i.e. skewness) e sovradispersa tipica dei dati epidemiologici di

conteggio, come mostra la seguente tabella:

Variabile Media Mediana Dev.Std Min Max Skewness
Casi 127.346,06 25.674 218.114,7 500 1.219.324 2,8
Ospedalizzazioni | 4.753,42 3.390,57 4.286, 5 566,86 21.471,29 1,7
Decessi 395,46 216 494,34 4 2.626 2,41
R(t) 1,01 0,95 0,24 0,58 1,95 1,02

Tabella 2, Statistiche descrittive delle variabili in analisi® media, mediana, deviazione standard, valori estremi e

asimmetria

Su un totale di 255 settimane, ¢ possibile individuare velocemente 1’elevata skewness positiva (i.e. valori >

1). Questo indica una distribuzione con una lunga coda verso destra, in cui la media ¢ significativamente piu
alta della mediana e cio conferma la presenza di numerose settimane con valori bassi e poche settimane con
valori estremamente alti (picchi epidemiologici), giustificando I’approccio con modelli GLM come Poisson e

Binomiale Negativa.
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Per individuare la le relazioni tra predittori epidemiologici e outcome clinici, invece, usiamo una matrice di

Pearson. Cio ci consente di individuare problemi di multicollinearita e puo essere mostrato dalla seguente

tabella:
Casi Ospedalizzazioni Decessi R(t)
Casi 1 0,87 0,85 0,18
Ospedalizzazioni 0,87 1 0,97 -0,04
Decessi 0,85 0,97 1 -0,06
R(t) 0,18 -0,04 -0,06 1

Tabella 3, Matrice di correlazione tra le principali variabili

In questa matrice abbiamo possibili valori che vano da +1 (per indicare una correlazione lineare forte) a -1
(per una correlazione inversa), passando per il valore 0 che indica 1’assenza di correlazione. Abbiamo quindi
che sulla diagonale il valore ¢ sempre 1 perché ogni variabile & perfettamente correlata con se stessa. Oltre a
cio ¢ possibile vedere che sono presenti:

e correlazione debole: come la relazione tra il numero dei casi ed il numero dei decessi (i.e. valore
uguale a 0,30). In questo caso I’aumento dei casi non si traduce subito in un aumento dei decessi e
quindi la correlazione diretta settimanale risulta piu bassa

e correlazione positiva, ma non forte: come la relazione tra il numero di casi e le ospedalizzazioni
(i.e. valore uguale a 0,36). Abbiamo che quando cresce il numero di casi settimanali, in media
aumenta anche il numero di ospedalizzazioni, sebbene non in modo altamente lineare

e correlazione altissima: come la relazione tra il numero di ospedalizzazioni e quello dei decessi (i.e.
valore uguale a 0,97). Cio mostra come che le settimane con piu ospedalizzazioni hanno quasi

sempre piu decessi

I valori di R(t) vicini allo 0 non mostra una correlazione lineare con le altre grandezze poiché questo valore
misura la velocita di diffusione, mentre le altre rappresentano valori assoluti.
L’analisi conferma I’alta variabilita intrinseca dei dati e 1’esistenza di relazioni significativamente intrinseca

tra outcome e predittori, con implicazioni dirette per la scelta dei modelli statistici piu robusti.

3.1.3 - Visualizzazioni: distribuzione degli outcome per varianti e sottovarianti
di SARS-CoV-2

Per valutare visivamente 1’impatto delle diverse varianti sulla diffusione del virus e sulla sua severita clinica,
sono state create delle visualizzazioni comparative per avere uno strumento immediato dell’interpretazione

epidemiologica.
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Figura 4, Heatmap della distribuzione dell outcome nelle diverse fasi temporali, con scala cromatica che
rappresenta la densita dei valori

La distribuzione del numero di casi settimanali mostra una chiara progressione. I periodi Alpha e Delta sono
caratterizzati da mediane relativamente basse ma con ampie escursioni dovute alle ondate acute. Il periodo
Omicron, con le sue sottovarianti (BA.1, BA.2, BA.4/5, XBB, JN.1), ha generato pattern epidemiologici
distinti. Le varianti BA.1/BA.2 mostrano un drastico aumento sia della mediana che della dispersione, con
un'intera distribuzione spostata verso valori molto piu alti, riflettendo 1'enorme picco di contagiosita. Le
sottovarianti successive (BA.5, XBB, JN.1) mostrano una mediana leggermente inferiore ma una dispersione
ancora significativa, indicando ondate piil smussate ma persistenti, quindi una circolazione piu persistente

ma con impatto clinico minimo.

Per quanto riguarda la distribuzione dei decessi settimanali, evidenzia una storia diversa. Mentre i periodi
pre-Omicron (Alpha, Delta) sono caratterizzati da mediane piu alte e da valori massimi estremi, mentre il
periodo Omicron, nonostante il numero di casi molto piu alto, presenta una distribuzione dei decessi con una
mediana significativamente piu bassa e una minore dispersione. Questo divario visivo tra I'enorme volume di
casi e la mortalita relativamente contenuta ¢ la rappresentazione grafica piu immediata della ridotta gravita

clinica associata a Omicron.

Per quanto riguarda la distribuzione delle ospedalizzazioni settimanali, si osserva un andamento intermedio

tra quello dei casi e quello dei decessi. Durante le ondate pre-Omicron (Alpha, Delta), le ospedalizzazioni
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hanno mostrato picchi elevati, con una distribuzione caratterizzata da valori mediani alti e una notevole
variabilita, riflettendo la severita clinica di queste varianti. Con 1’avvento di Omicron, nonostante il numero
di casi sia esploso, la distribuzione delle ospedalizzazioni si ¢ spostata verso valori mediani piu bassi € con
una dispersione ridotta rispetto ai periodi precedenti. Questo andamento conferma visivamente il
disaccoppiamento tra incidenza dei contagi e dei ricoveri ospedalieri, gia emerso nell’analisi temporale, e
sottolinea il ruolo congiunto della minore patogenicita intrinseca del virus e della protezione immunitaria nel

ridurre la necessita di ricovero.

Le visualizzazioni dimostrano chiaramente la trasformazione del virus: da ondate acute ad alto impatto
clinico a una circolazione endemica caratterizzata da bassa letalita, pur mantenendo un’elevata
trasmissibilita. Delta mantiene il primato di gravita (con CFR e ospedalizzazione piu elevati), mentre
Omicron ha causato la pit ampia ondata di infezioni, ma con ridotta mortalita. Queste visualizzazioni
forniscono un’evidenza preliminare a supporto delle ipotesi H2 (minore gravita di Omicron) e Hs (effetto
protettivo nel tempo, probabilmente legato alla vaccinazione). Tuttavia, esse non controllano per fattori
confondenti come lo stato vaccinale, 1'eta media della popolazione infetta o la stagionalita. La verifica

formale di queste ipotesi richiedera quindi l'utilizzo dei modelli multivariati discussi nelle sezioni successive.

3.2 — Performance dei modelli

Questa sezione presenta e confronta i risultati dei tre modelli applicati — modello lineare classico, regressione
di Poisson e regressione Binomiale Negativa — al fine di identificare lo strumento piu appropriato per
modellare i dati di conteggio epidemiologici. Il confronto si basa su criteri di informazione, metriche di
bonta di adattamento e capacita predittiva. Inoltre, viene condotta un'approfondita analisi diagnostica per
verificare la soddisfazione delle principali assunzioni statistiche, con particolare attenzione al problema della
sovradispersione. Il confronto tra i modelli di regressione rappresenta un passo cruciale per determinare
quale approccio catturi meglio la complessita dei dati epidemiologici. I risultati di questa analisi sono

preparatori per la corretta interpretazione delle stime degli effetti e la verifica delle ipotesi epidemiologiche.

3.2.1 - Confronto tramite criteri di informazione (AIC, BIC, test di

verosimiglianza)

Il confronto oggettivo tra i modelli ¢ stato effettuato utilizzando i criteri di informazione AIC (Akaike
Information Criterion) e BIC (Bayesian Information Criterion) per confrontare modelli annidati. In generale
abbiamo che modelli AIC/BIC con valori piu bassi e LogLik con valori piu alti (meno negativo) sono da

preferire.
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Modello AIC BIC LogLik
OLS 35,44 34,33 -15,72
Poisson 43,77 42.6 -19,89
Binomiale Negativa 41,52 39,75 -17,76

Tabella 4, Valori di AIC, BIC e log-verosimiglianza (LogLik) per modelli: Lineare, Poisson Binomiale Negativa -
Intervallo non calibrato ristretto (Mensile) [i.e. tabella con tutti i valori presente in Appendice A/

L'analisi mensile (Tabella 4), mostra che il modello OLS presenta i valori di AIC e BIC piu bassi in assoluto,

insieme alla verosimiglianza meno negativa. Sebbene questi valori indichino un apparente migliore

adattamento in questo scenario specifico, tale risultato ¢ metodologicamente fuorviante. L'OLS , infatti, viola

i presupposti fondamentali per l'analisi di dati di conteggio (non-normalita, eteroschedasticita), producendo

stime inefficienti e intervalli di confidenza inaffidabili nonostante gli indicatori di informazione possano

sembrare favorevoli. Il modello Poisson mostra le performance peggiori con AIC e BIC piu elevati e LogLik

piu negativo, indicando uno scarso adattamento ai dati, mentre la regressione Binomiale Negativa si

posiziona in una situazione intermedia, ma con una devianza significativamente inferiore rispetto agli altri

modelli, a indicare un migliore controllo della variabilita intrinseca dei dati

Modello AIC BIC LogLik

OLS 168,38 170,33 —-83,19
Poisson 7347,22 7353,75 -3672,61
Binomiale Negativa 696,22 702,71 -346,11

Tabella 5, Valori di AIC, BIC e log-verosimiglianza (LogLik) per modelli: Lineare, Poisson Binomiale Negativa -

Intervallo calibrato (Stagionale) [i.e. tabella con tutti i valori presente in Appendice BJ

Nell'analisi stagionale (Tabella 5), i suoi valori di AIC (696,22) e BIC (702,71) sono risultati di gran lunga

migliori rispetto a quelli del modello Poisson (AIC=7347,22; BIC=7353,75), posizionandola come scelta
preferibile. E interessante notare come I'OLS abbia mantenuto valori di AIC (168,38) e BIC (170,33)

apparentemente competitivi, sebbene I'analisi della devianza e dei residui (Sezione 3.2.2) ne abbia

successivamente confermato 1'inadeguatezza. La superiorita della Binomiale Negativa ¢ emersa in modo

inequivocabile negli scenari a pit ampia aggregazione temporale

Modello AIC BIC LogLik

OLS 572,64 576,06 —284,32
Poisson 6026,89 6030,31 -3011,44
Binomiale Negativa 547,74 552,87 -270,87

Tabella 6, Valori di AIC, BIC e log-verosimiglianza (LogLik) per modelli: Lineare, Poisson Binomiale Negativa -

Intervallo non calibrato esteso (Annuale) [i.e. tabella con tutti i valori presente in Appendice C/

Nell'analisi annuale (Tabella 6), il vantaggio della Binomiale Negativa si ¢ consolidato, presentando i valori

di AIC (547,74) e BIC (552,87) piu bassi in assoluto, seguito dal modello OLS. Al contrario, il modello

Poisson ha confermato la sua inadeguatezza con valori di AIC e BIC circa undici volte superiori




I risultati dei criteri di informazione rivelano una progressione interessante attraverso le diverse granularita
temporali. A livello mensile, le differenze tra modelli sono meno marcate, con 'OLS che mostra
performance apparentemente buone. A livello stagionale, il modello Binomiale Negativo inizia a dimostrare
la sua superiorita rispetto al Poisson, sebbene I'OLS mantenga valori competitivi di AIC/BIC. Solo a livello
annuale la superiorita della Binomiale Negativa diventa inequivocabile, con valori di AIC e BIC chiaramente
migliori rispetto a tutti gli altri modelli. Questa progressione evidenzia come l'adeguatezza del modello
dipenda criticamente dalla scala di analisi e dal grado di aggregazione dei dati. Per dati epidemiologici con
forte variabilita e sovradispersione, come quelli analizzati a livello stagionale e annuale, la regressione

Binomiale Negativa rappresenta la scelta metodologicamente piu appropriata

3.2.2 - Bonta di adattamento (devianza, pseudo-R?, analisi dei residui)

Per descrivere meglio i dati osservati, oltre ai criteri di informazione ¢ stata valutata la bonta di adattamento
dei modelli attraverso la devianza, I’R? (per il modello lineare) e pseudo-R? (per i modelli GLM), e 1’analisi
dei residui costituiti da grafici Q-Q, residui di Pearson e i residui di devianza. Attraverso questi modelli
siamo in grado di valutare, non solo quanto un modello si adatti ai dati, ma anche come e dove eventuali

discrepanze si manifestano. Di seguito vengono esposti i risultati ottenuti dall’analisi:

Modello Dev_m R* m Dev_s R* s Dev_y R* y
OLS 4.861,81 0,65 424.654,51 0,68 5.246.967,90 0,48
Poisson 10,01 0,34 276,47 0,64 6.283,63 0,43
Binomiale
. 3,05 0,28 17,75 0,31 48,09 0,17
Negativa

Tabella 7, Metriche di bonta dell’adattamento- devianza residua e pseudo-R? dei modelli Lineare, Poisson e
Binomiale Negativa, visualizzati per le tre granularita temporali (mensile, stagionale, annuale) [i.e. tabella con
tutti 1 valori presente in Appendice A-B-C]

La devianza misura la discrepanza tra valori osservati e previsti: valori bassi indicano migliore adattamento.

Il modello lineare presenta devianze estremamente elevate in tutte le granularita temporali. I1 modello

Poisson mostra devianze inferiori ma comunque elevate, mentre il Binomiale Negativo dimostra la migliore

performance con devianze drasticamente inferiori.

L’ R? ¢ pseudo-R? di McFadden forniscono una metrica intuitiva di bonta di adattamento. Il modello lineare

mostra valori di R? apparentemente buoni ma ingannevoli. Il modello Poisson presenta pseudo-R? variabili,

mentre il Binomiale Negativo mostra i valori piu bassi, riflettendo 1'alta variabilita intrinseca dei dati

epidemici.

L’analisi dei residui ci permette di verificare le assunzioni fondamentali di ciascun modello e identificarne i
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punti di forza e di debolezza dei modelli statistici utilizzati, vengono quindi esaminati tre tipi di diagnostiche
residue, ognuna delle quali fornisce una lente diversa attraverso cui valutare i modelli:

e Residui Devianza
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Figura 6, Residui di devianza dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato
ristretto (Mensile)

Su base mensile il modello OLS mostra residui di devianza con ampie oscillazioni tra -3490.85 e
6101.99, indicando un adattamento estremamente povero. Il modello Poisson, sebbene con residui
ridotti (range: -87.87 a 90.99), mantiene una variabilita significativa i cui i residui restano ampi e
tendono a crescere proprio nei mesi con maggiore intensita epidemica. Il modello Binomiale
Negativa presenta residui notevolmente contenuti (range: -2.60 a 2.77), con la maggior parte dei
valori entro 1.0 che rappresenta un comportamento compatibile con un buon adattamento.
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Figura 6, Residui di devianza dei modelli Lineare, Poisson Binomiale Negativa - Intervallo calibrato
(Stagionale)

A livello stagionale, il modello OLS continua a mostrare residui estremi (fino a 8159.18), mentre il
modello Poisson presenta residui fino a 64.43. Il modello Binomiale Negativa mantiene residui
contenuti entro £2.53, dimostrando stabilita attraverso le diverse stagioni.
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Figura 7, Residui di devianza dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato
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esteso (Annuale)

Nell'analisi annuale, il modello Binomiale Negativa conferma la sua superiorita con residui di

devianza compresi tra -1.17 e 1.57 mantenendo errori contenuti e non strutturati, significativamente

inferiori a quelli del modello Poisson (range: -13.07 a 13.33) che evidenzia una persistente

sottostima della variabilita e dell'OLS (range: -9585.90 a 7691.80) che mostra residui annuali molto

elevati e strutturati.
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Figura 8, Residui di Pearson dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato

ristretto (Mensile)

L’analisi mensile dei residui di Pearson per il modello OLS mostrano valori estremi simili a quelli di

devianza, confermando il misfit del modello. Il modello Poisson presenta residui tra -67.17 ¢ 90.99

evidenziando una grave sovradispersione, mentre il modello Binomiale Negativa mostra residui

notevolmente inferiori (range: -1.77 a 2.77), con distribuzione piu simmetrica attorno allo zero
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Figura 9, Residui di Pearson dei modelli Lineare, Poisson Binomiale Negativa - Intervallo calibrato

(Stagionale)

A livello stagionale, 1 residui di Pearson del modello Binomiale Negativa rimangono contenuti entro

+1.44, a differenza del modello Poisson che raggiunge valori di £64.43 e dell'OLS che presenta

valori estremi fino a 8159.18.
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Figura 10, Residui di Pearson dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato

esteso (Annuale)

Il modello Binomiale Negativa dimostra ancora una volta la migliore performance con residui di

Pearson compresi tra -1.09 e 1.72, mentre gli altri modelli mostrano residui significativamente piu

ampi1
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Figura 11, QQ-plot dei residui dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato

ristretto (Mensile)

Per quanto riguarda 1’andamento mensile il grafico Q-Q del modello OLS mostrano forti deviazioni

dalla linea teorica, in particolare nelle code. Il modello Poisson presenta un allineamento

leggermente migliore ma con evidenti scostamenti sistematici. Il modello Binomiale Negativa

mostra il miglior allineamento, con punti che seguono piu da vicino la bisettrice ideale, con

discrepanze limitate soprattutto nelle code
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Figura 12, QQ-plot dei residui dei modelli Lineare, Poisson Binomiale Negativa - Intervallo calibrato

(Stagionale)

A livello stagionale, il modello OLS conferma le deviazioni pit marcate, con valori campionari che

raggiungono 2.25 contro un valore teorico atteso di 1.64. Il modello Poisson mostra discrepanze
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significative, mentre il modello Binomiale Negativa mantiene un allineamento accettabile, con il

punto piu estremo a 1.77 contro 1.64 teorico
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Figura 13, QQ-plot dei residui dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato
esteso (Annuale)

Nell'analisi annuale, tutti i modelli mostrano un migliore allineamento a causa del ridotto numero di
osservazioni, ma il modello Binomiale Negativa continua a dimostrare la performance piu

soddisfacente, con punti che si avvicinano maggiormente alla bisettrice

L’analisi congiunta di devianza, pseudo-R? e diagnostica dei residui conferma chiaramente la superiorita del
modello Binomiale Negativa. I suoi residui di devianza e Pearson risultano costantemente molto piu bassi
rispetto agli altri modelli in tutte le scale temporali, indicando una migliore capacita di rappresentare la
variabilita dei dati. Anche i grafici Q-Q mostrano un allineamento piu vicino alla distribuzione teorica,
soprattutto nelle code, un aspetto cruciale nel contesto epidemiologico dove i picchi hanno particolare

rilevanza.

11 valore relativamente basso del pseudo-R? non rappresenta una debolezza: riflette piuttosto la capacita del
modello di cogliere I’elevata variabilita dei dati senza forzare un adattamento artificiale, a differenza di OLS

e Poisson.

In sintesi, tutte le metriche e le verifiche diagnostiche convergono nel mostrare che la Binomiale Negativa &

il modello piu robusto e appropriato per dati di conteggio caratterizzati da sovradispersione

3.2.3 - Validazione predittiva (MAE, Errore Relative Percentuale)

Le performance predittive sono state valutate per misurare la capacita dei modelli di generalizzare oltre i dati
utilizzati per ’addestramento. A tal fine sono state considerate due metriche: il Mean Absolute Error
(MAE), che quantifica I’errore medio assoluto delle previsioni, e I’errore percentuale relativo, utile per
confrontare le prestazioni anche quando le grandezze previste variano in modo significativo tra i periodi.
Sebbene fosse stata inizialmente considerata la validazione incrociata, questa ¢ stata poi esclusa perché i
risultati variavano solo marginalmente rispetto alla semplice suddivisione sui periodi temporali analizzati. Le
metriche predittive ottenute, pur evidenziando differenze contenute tra i modelli, confermano quanto

osservato nelle analisi di adattamento: tutti i modelli mostrano prestazioni comparabili sul breve periodo,
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mentre emergono divergenze piu marcate nei dati aggregati annuali

Modello MAE m ErrPerc_m MAE s ErrPerc_s MAE y ErrPerc_y
OLS 20,49 8,54% 93,45 1,52% 190,46 112,12%
Poisson 22,86 9,06% 64,63 1,04% 187,91 99,44%
Binomiale 22,95 9,02% 69,71 1,15% 188,92 102,43%
Negativa

Tabella 8, Performance predittiva dei modelli: MAFE ed errore percentuale relativo dei tre modelli nelle diverse
granularita temporali (mensile, stagionale, annuale) [i.e. tabella con tutti i valori presente in Appendice D-E-F]

Su base mensile, tutti i modelli presentano valori di MAE molto simili (tra 20 e 23), con errori percentuali
compresi tra 1’8% e il 9%. Sebbene I’OLS registri il MAE piu basso, tale risultato va interpretato con cautela,
dato che il modello non rispetta le assunzioni di base per dati di conteggio, mentre Poisson e Binomiale
Negativa ottengono prestazioni quasi sovrapponibili, con differenze marginali. Nel complesso, la scala
mensile smorza le differenze strutturali tra i modelli, rendendo le prestazioni predittive relativamente

omogence.

Nell’analisi stagionale, il modello Poisson ottiene il MAE piu basso (64,63), seguito dalla Binomiale
Negativa (69,71) e dall’OLS (93,45). Tuttavia, I’errore percentuale del Poisson (1,04%) ¢ solo di poco
inferiore a quello degli altri modelli, suggerendo che il vantaggio in accuratezza assoluta non si traduce in un
reale miglioramento nella precisione relativa. In questa granularita, la maggiore stabilita dei dati aggregati

favorisce Poisson, nonostante le sue criticita strutturali riscontrate nelle analisi di adattamento.

A livello annuale, si osserva un netto peggioramento di tutte le metriche. I MAE salgono notevolmente,
attestandosi attorno a 188-190, mentre gli errori percentuali superano ampiamente il 99%, raggiungendo il
112,12% nel caso dell’OLS. Cio riflette la difficolta dei modelli nel generalizzare su orizzonti temporali piu
ampi e con dati fortemente aggregate a causa della ridotta numerosita dei dati e della forte influenza dei
picchi epidemici. Le differenze predittive annuali confermano che, su periodi altamente aggregati, la capacita

dei modelli di catturare la variabilita dei dati si riduce drasticamente.

In sintesi, le metriche predittive mostrano una certa uniformita tra modelli su scala mensile, differenze piu
nette su scala stagionale e un generale peggioramento su scala annuale. Il modello Poisson mostra una
leggera superiorita a livello stagionale, mentre la Binomiale Negativa mantiene un comportamento piu
stabile e affidabile in tutte le granularita, nonostante MAE lievemente piu alti in alcuni contesti. Nonostante
cio, 1 risultati predittivi non smentiscono le analisi di bonta di adattamento, dove la Binomiale Negativa resta

il modello piu coerente e affidabile per descrivere la variabilita intrinseca dei dati di conteggio sovradispersi
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3.3 — Diagnostica dei modelli

Prima di interpretare i risultati dei modelli, ¢ necessario verificarne 1’adeguatezza statistica attraverso un
insieme di diagnostiche. In questo capitolo vengono analizzate: I’eteroschedasticita dei residui, I residui di
devianza, Pearson (per identificare pattern non spiegati dal modello) e grafici Q-Q (per analizzare
distribuzione dei residui standardizzati e range di variabilita), segni di overdispersione. Queste verifiche
mirano a determinare se le assunzioni dei modelli sono rispettate, se esistono problemi di specificazione e
quale modello si comporti meglio non solo in termini di criteri informativi (AIC/BIC), ma anche in termini

di aderenza strutturale ai dati.

3.3.1 - Diagnostica e verifica delle assunzioni (sovradispersione,

eteroschedasticita)

La fase di diagnostica rappresenta un passaggio fondamentale per validare 1’adeguatezza dei modelli
statistici applicati. Nel caso specifico dell’analisi epidemiologica, le principali assunzioni da verificare
riguardano la sovradispersione e 1’eteroschedasticita, poiché la natura dei dati di conteggio tende a violare

frequentemente queste ipotesi.

Per quanto riguarda la verifica della sovradispersione, esistono diversi metodi complementari per valutarla
come il rapporto di Pearson y? oppure il test di Lagrange Multiplier. In questo elaborato ¢ stata condotta
principalmente attraverso il rapporto tra la devianza residua e i gradi di libera (rapporto devianza/df), per la
sua larga diffusione in letteratura epidemiologica, la sua robustezza e la facilita di interpretazione. I risultati

ottenuti vengono riportati nella seguente tabella:

Modello Dev_m Disp_m Dev_s Disp_s Dev y Disp_y

Lineare 4861,81 2056,44 424654,51 27398,97 5246067,9 103036,97

Poisson 10,01 4,25 276,47 18,91 6283,63 124,37
Binomiale 3,05 1,36 17,75 1,26 48,09 1,17
Negativa

Tabella 9, Devianza residua e rapporto devianza/df per ciascun modello e granularita temporale, usati per la
valutazione della sovradispersione

L'analisi dei risultati conferma la marcata presenza di sovradispersione per i modelli Lineare e Poisson in
tutte le granularita temporali, in particolare il modello lineare presenta valori estremamente elevati di
devianza e dispersione, con rapporti devianza/df di ordini di grandezza superiori a 1, indicando una grave

violazione delle assunzioni e una forte inadeguatezza per dati di conteggio. Il modello di Poisson riduce

drasticamente la devianza rispetto all’OLS, ma i rapporti devianza/df rimangono molto superiori all’unita

(4.25 in scala mensile, 18.91 in scala stagionale, 124.37 in scala annuale), rivelando una sovradispersione
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marcata che rende il modello non appropriato nelle granularita piu ampie. Per quanto riguarda invece il

modello Binomiale Negativo mostra valori di dispersione prossimi all’unita in tutte le granularita (1.36, 1.26,

1.17), indicando che il modello cattura adeguatamente la variabilita dei dati grazie all’introduzione del
parametro di dispersione.

Sulla base di questa verifica, il modello binomiale negativo emerge come quello piu conforme agli assunti e
strutturalmente adeguato, mentre Poisson mostra una sottostima sistematica della varianza e OLS risulta

completamente inadatto alla natura dei dati

L’analisi dell’eteroschedasticita costituisce un passaggio essenziale nella valutazione della validita dei
modelli statistici richiede che la varianza dei residui rimanga costante lungo tutto il range delle variabili
indipendenti. La violazione di questa assunzione comporta stime inefficienti dei coefficienti, intervalli di
confidenza distorti e test di ipotesi inaffidabili. La verifica ¢ stata condotta attraverso due livelli
complementari:
1. Analisi grafica
Utile a fornire una prima evidenza visiva immediata del soddisfacimento dell'ipotesi di
omoschedasticita. Tale analisi € stata condotta usando due tipologie di grafico, ovvero:

o Scatterplot (Residui vs Fitted)
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Figura 14, Scatterplot residui vs valori predetti (fitted) dei modelli Lineare, Poisson Binomiale
Negativa - Intervallo non calibrato ristretto (Mensile)

Nel periodo mensile, per il modello OLS mostra un evidente pattern a imbuto, con residui
che aumentano all’aumentare dei valori stimati. Per quanto riguarda invece il modello di
Poisson presenta una dispersione non costante dei residui, sebbene meno marcata rispetto
all’OLS. In fine, per il modello Binomiale negativa i residui appaiono distribuiti in modo

omogeneo, senza pattern sistematici
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OLS - Scatter residui vs fitted Poisson - Scatter residui vs fitted NegBin - Scatter residui vs fitted
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Figura 15, Scatterplot residui vs valori predetti (fitted) dei modelli Lineare, Poisson Binomiale
Negativa - Intervallo calibrato (Stagionale)

Su base stagionale, per il modello OLS il pattern a imbuto ¢ meno evidente rispetto al
periodo mensile, ma permane una chiara variabilita non costante. Per quanto riguarda invece
il modello di Poisson dispersione moderatamente variabile, con residui pit ampi nelle
stagioni con valori maggiori. In fine, per il modello Binomiale negativa residui distribuiti in

modo uniforme
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Figura 16, Scatterplot residui vs valori predetti (fitted) dei modelli Lineare, Poisson Binomiale
Negativa - Intervallo non calibrato esteso (Annuale)

A livello annuale, tutti i modelli mostrano residui graficamente piu regolari a causa del
numero ridotto di osservazioni. Nonostante cid, OLS e Poisson evidenziano ancora una
leggera crescita della varianza residua, mentre Binomiale Negativa mantiene una
distribuzione piu stabile.

o Scale-location plot
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Figura 17, Scale-location plot, radice quadrata der residui standardizzati in funzione der valori
predetti, dei modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato ristretto
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(Mensile)

Nel periodo mensile, per il modello OLS a curva evidenzia un aumento progressivo della

varianza. Per quanto riguarda invece il modello di Poisson andamento non lineare e

variabilita crescente per valori piu alti. In fine, per il modello Binomiale negativa linea quasi

piatta
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Figura 18, Scale-location plot, radice quadrata der residui standardizzati in funzione der valori
predetti, dei modelli Lineare, Poisson Binomiale Negativa - Intervallo calibrato (Stagionale)

Su base stagionale, per il modello OLS variazioni irregolari della varianza. Per quanto

riguarda invece il modello di Poisson pattern instabile con residui piu grandi nelle stagioni

ad alta intensita. In fine, per il modello Binomiale negativa andamento regolare e privo di

pattern
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Figura 19, Scale-location plot, radice quadrata der residui standardizzati in funzione der valori
predetti, der modelli Lineare, Poisson Binomiale Negativa - Intervallo non calibrato esteso

(Annuale)

A livello annuale, per i modelli OLS e Poisson mostrano leggere variazioni nella

dispersione, ma difficili da interpretare con pochi punti. In fine, il modello Binomiale

negativa mantiene una varianza visivamente stabile

2. Test di Breush-Pagan

Rappresenta un test formale che valuta se la varianza dei residui sia funzione lineare della

covariante, utile per una conferma quantitativa e oggettiva dell’evidenza grafica

Il modello OLS e Poisson rifiutano 1'ipotesi nulla di omoschedasticita (p-value < 0,05), mentre il

Binomiale Negativo la conferma (p-value = 0,7).

Modello

LM_stat

LM_pvalue

F_stat

F_pvalue
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OLS 7,45 0,01 8,66 0,005
Poisson 9,91 0,002 12,43 0,001
Binomiale 0,14 0,7 0,13 0,71
Negativa

Tabella 10, test di Breusch—Pagan, a supporto della verifica formale dell eteroschedasticita, dei modelli

Lineare, Poisson Binomiale Negativa - Intervallo non calibrato ristretto (Mensile)

A livello stagionale, nessun modello mostra eteroschedasticita statisticamente significativa, sebbene

il Poisson si avvicini alla soglia di significativita.

Modello LM_stat LM_pvalue F_stat F_pvalue
OLS 1,76 185 1,7 0,23
Poisson 3,32 0,67 3,97 0,08
Binomiale 0,42 0,52 0,35 0,57
Negativa

Tabella 11, test di Breusch—Pagan, a supporto della verifica formale dell eteroschedasticita, der modelli
Lineare, Poisson Binomiale Negativa - Intervallo calibrato (Stagionale)

Nell'analisi annuale, tutti i modelli soddisfano I'ipotesi di omoschedasticita, con p-value ben

superiori alla soglia di significativita.

Modello LM_stat LM_pvalue F_stat F pvalue
OLS 1,42 0,23 1,1 0,4
Poisson 2,89 0,09 5,23 0,15
Binomiale 1,29 0,25 0,96 0,43
Negativa

Tabella 12, test di Breusch—Pagan, a supporto della verifica formale dell eteroschedasticita, dei modelli

Lineare, Poisson Binomiale Negativa - Intervallo non calibrato esteso (Annuale)

Attraverso analisi grafiche e test formali, emerge che Il modello OLS mostra la pitt marcata

eteroschedasticita, specialmente a livello mensile, con un evidente pattern a imbuto nei grafici e conferma

statistica ai test di Breusch-Pagan (p = 0,01). Anche il modello Poisson viola 1'ipotesi di omoschedasticita,

particolarmente a livello mensile (p = 0,002), sebbene con residui di minore ampiezza. Al contrario, il

modello Binomiale Negativo mantiene residui uniformemente distribuiti e test non significativi in tutte le

granularita temporali (p > 0,25), dimostrando piena aderenza all'ipotesi di omoschedasticita.

Mentre le differenze sono piu evidenti a livello mensile e si attenuano con 'aggregazione annuale, il modello

Binomiale Negativo si conferma l'unico a soddisfare consistentemente le assunzioni di omoschedasticita,

rafforzandone 1'appropriatezza per l'analisi di dati epidemiologici di conteggio in presenza di

sovradispersione

53




3.3.2 - Risultati dei modelli (lineare classico, Poisson, binomiale negativa)

L'analisi comparativa dei tre modelli statistici applicati ai dati epidemiologici di conteggio ha rivelato
differenze sostanziali nelle loro performance e nell'adeguatezza metodologica, con implicazioni importanti

per la corretta interpretazione dei fenomeni epidemici.

Il modello lineare classico, pur essendo semplice e spesso utilizzato come punto di riferimento, mostra
alcuni limiti quando applicato a dati di conteggio. A livello mensile presenta valori apparentemente buoni di
AIC/BIC (35,44 ¢ 34,33) e un R? elevato (0,65), ma questi risultati mascherano problemi strutturali. Le
devianze risultano estremamente elevate in tutte le granularita, passando da 4.861,81 (mensile) a oltre 5
milioni in quella annuale, mentre i residui di devianza possono superare +6000. Anche la diagnostica ¢
coerente con un cattivo adattamento: i grafici residui-fitted mostrano un marcato pattern a imbuto e il test di
Breusch—Pagan conferma eteroschedasticita (p = 0,01 a livello mensile).

Le prestazioni predittive peggiorano con I’aggregazione temporale: il MAE passa da 20,49 (mensile) a
190,46 (annuale), con un errore percentuale che oltrepassa il 112%. Nel periodo stagionale, OLS sembra
performare leggermente meglio grazie a una maggiore stabilita dei dati (R? = 0,68), ma la devianza rimane
altissima (424.654,51), segno che I’apparente adattamento ¢ solo superficiale. I residui mantengono

ampiezze elevate e un comportamento non casuale.

11 modello di Poisson, pur essendo teoricamente piu appropriato per dati di conteggio, ha rivelato limiti
fondamentali nel gestire la sovradispersione tipica dei dati epidemici. I criteri di informazione mostrano
valori estremamente elevati, soprattutto nelle granularita pitu ampie (AIC = 7347,22 a livello stagionale,
6026,89 a livello annuale), riflettendo un adattamento insufficiente. La devianza cresce rapidamente con
I’aggregazione (10,01 mensile — 276,47 stagionale — 6.283,63 annuale) e i residui risultano ampi,
raggiungendo +66 nel periodo stagionale. Lo pseudo-R? risulta variabile: 0,34 (mensile), 0,64 (stagionale),
mensili (p = 0,002), segnalando eteroschedasticita, e i QQ-plot mostrano deviazioni sistematiche nelle code,
indicazione di un adattamento non corretto. Da un punto di vista predittivo, il modello si comporta meglio
sul periodo stagionale (MAE = 64,63, il piu basso tra i tre), ma ’errore percentuale annuale rimane molto
elevato (99,44%). Nel periodo stagionale Poisson da la sua miglior performance relativa (pseudo-R? = 0,64),
e il MAE risulta il piu basso fra i modelli. Tuttavia, la devianza rimane consistente (276,47) e i residui ampi,
evidenziando che il miglioramento ¢ solo relativo alla grave sottostima della varianza che caratterizza le altre

granularita.

11 modello Binomiale Negativo merge come il modello piu robusto e metodologicamente corretto in tutte le
condizioni analizzate. Grazie al parametro di dispersione, il modello gestisce efficacemente la
sovradispersione e mostra i migliori valori di AIC, specialmente nelle granularita pit ampie (AIC annuale =

547,74, nettamente inferiore rispetto agli altri modelli). La devianza ¢ di ordini di grandezza inferiore
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rispetto agli altri modelli: 3,05 a livello mensile, 17,75 a livello stagionale e 48,09 a livello annuale. Anche i
residui risultano molto ridotti (ad esempio —2,53 / 1,69 nel periodo stagionale), con un allineamento ai QQ-
plot nettamente superior. Lo pseudo-R? ¢ inferiore agli altri modelli (0,28 mensile, 0,31 stagionale, 0,17
annuale), ma questo riflette il fatto che la Binomiale Negativa non forza un adattamento artificiale dei dati e
rappresenta onestamente 1’alta variabilita del fenomeno epidemiologico.

I test di Breusch—Pagan risultano sempre non significativi (p > 0,25), confermando 1’assenza di
eteroschedasticita e una maggiore stabilita dei residui. Le performance predittive sono coerenti e stabili: il
MAE resta vicino agli altri modelli (22,95 mensile; 69,71 stagionale; 188,92 annuale), senza esplosioni
dell’errore percentuale. Nel periodo stagionale la Binomiale Negativa mostra la combinazione piu equilibrata
di tutte le metriche e questa granularita mette particolarmente in luce la capacita del modello di rappresentare

correttamente la variabilita degli andamenti epidemici.

La progressione dei risultati attraverso le diverse scale temporali ha evidenziato come 1'adeguatezza del
modello dipenda criticamente dal livello di aggregazione dei dati. Mentre a livello mensile le differenze
apparivano meno marcate, nelle aggregazioni stagionale e annuale — dove la sovradispersione diventa pit
pronunciata — ¢ stata rilevata la superiorita del modello Binomiale Negativo, che non solo ha dimostrato
performance statistiche superiori, ma ha anche prodotto stime biologicamente plausibili e
metodologicamente corrette, rappresentando la scelta ottimale per 1'analisi di dati epidemiologici di

conteggio caratterizzati da eterogeneita e variabilita intrinseca.

3.4 — Analisi interpretativa dei risultati

I risultati presentati forniscono una chiara evidenza empirica a supporto della tesi centrale di questo lavoro:
la calibrazione temporale dell'intervallo di analisi € un fattore determinante per l'accuratezza predittiva dei
modelli di regressione applicati ai dati di mortalita da COVID-19, in misura spesso superiore alla scelta del
modello statistico stesso. Il confronto tra i tre scenari temporali — stagionale calibrato, mensile non calibrato

e annuale non calibrato — rivela il cosiddetto "fenomeno dell'errore 1%—10%—-100%". Piu nel dettaglio

Scenario Calibrato: Intervalli Stagionali

Nei periodi stagionali, tutti e tre i modelli (OLS, Poisson, Binomiale Negativa) tutti e tre i modelli mostrano
prestazioni eccellenti producendo errori percentuali estremamente bassi, attestandosi intorno all'1-1,5%
riflettendo una corrispondenza quasi perfetta tra andamento osservato e andamento previsto. Questo risultato
¢ in linea con 1 lavori di Roccetti et al. (2024, 2025), che hanno dimostrato come una segmentazione
intelligente del periodo di analisi, allineata alle dinamiche epidemiche stagionali, consenta di ottenere

previsioni altamente accurate. E rilevante notare che: la regressione lineare, nonostante le note limitazioni

teoriche sui dati di conteggio, risulta sorprendentemente accurata; a regressione di Poisson conferma la sua

solidita in assenza di eventi di super-spreading e con varianza moderata; la Binomiale Negativa, pur essendo
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teoricamente la scelta piu robusta in presenza di sovradispersione, non produce miglioramenti significativi
rispetto agli altri due modelli.

In questo scenario, la differenza tra i tre modelli € statisticamente minima. La ragione ¢ strutturale: il
fenomeno epidemiologico osservato (mortalita stagionale da Omicron) ¢ intrinsecamente regolare, privo di
picchi violenti e caratterizzato da dinamiche stagionali stabili. La calibrazione temporale consente dunque ai

modelli di catturare efficacemente la struttura del segnale

Scenario Non Calibrato Ristretto: Intervalli Mensili

Quando 1 modelli sono stati applicati a intervalli ristretti non calibrati, gli errori percentuali sono aumentati
significativamente, raggiungendo circa il 9-10%. Le principali criticita emerse consistono nella la possibilita
di “perdere” porzioni di curve epidemiche, come un picco incipiente o una discesa ripida, perché I’intervallo
¢ troppo breve per rappresentare 1’intero ciclo stagionale, aumento della varianza residua e I’instabilita dei
parametri stimati in corrispondenza di settimane anomale o outliers. Questo deterioramento delle prestazioni
indica che finestre temporali troppo ristrette e arbitrarie possono catturare solo frammenti dei cicli di
trasmissione, portando a stime instabili e meno affidabili. E interessante notare che in questo scenario le

differenze tra i modelli si sono attenuate, con il modello lineare che a volte ha mostrato performance

competitive o addirittura leggermente migliori, sfidando il consenso della letteratura che tende a
sconsigliarlo per dati di conteggio (Bracher et al., 2021; loannidis et al., 2022). Tuttavia, a regressione

Binomiale Negativa tende a mostrare una lieve superiorita nei mesi con maggiore variabilita, mentre la

regressione lineare puo risultare piu instabile anche se le differenze restano molto inferiori rispetto al peso

esercitato dalla scelta dell’intervallo temporale

Scenario Non Calibrato Esteso: Intervalli Annuali

L’applicazione dei modelli di regressione a intervalli annuali arbitrari determina un collasso totale delle
prestazioni, con errori relativi che raggiungono anche il 100%. Cid dimostra che 1'utilizzo di finestre
temporali troppo ampie, che aggregano fasi epidemiche eterogenee (periodi di picco, periodi di plateau, asi
discendenti, fasi ascendenti, variazioni legate a sottovarianti diverse, ognuna con dinamiche proprie), rende i
modelli incapaci di cogliere le dinamiche sottostanti, producendo previsioni che, sebbene possano preservare

il trend generale, sono del tutto inaffidabili in termini di precisione numerica.

La diagnostica dei modelli ha ulteriormente confermato questi risultati. Il modello Binomiale Negativo si €
distinto come il piu robusto nel gestire la sovradispersione e nel mantenere I'omoschedasticita dei residui
attraverso tutte le scale temporali, giustificando il suo ampio utilizzo in letteratura per dati di conteggio
epidemici (Held et al., 2020; Ray et al., 2023). Tuttavia, il suo vantaggio relativo ¢ emerso in modo
preminente proprio negli scenari piu problematici (mensile e annuale non calibrati), mentre nello scenario

stagionale calibrato la sua superiorita ¢ stata meno marcata.
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In sintesi, questa analisi interpretativa sostiene che il dibattito metodologico in epidemiologia non dovrebbe
focalizzarsi esclusivamente sulla selezione del modello piu sofisticato, ma dovrebbe integrare
sistematicamente una riflessione sul significato epidemiologico della finestra temporale di analisi. Questo
scenario conferma che nessun modello statistico puo superare I’assenza di un’adeguata segmentazione
epidemiologica del tempo. La calibrazione temporale non ¢ un semplice affinamento tecnico, ma un
prerequisito fondamentale per trasformare la potenza matematica dei modelli di regressione in conoscenza

epidemiologica affidabile e azionabile.
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4 — Conclusioni

Questo capitolo finale ha I'obiettivo di sintetizzare i risultati empirici emersi dalla ricerca, di discuterne le
implicazioni sia per la pratica epidemiologica che per la metodologia statistica, di riconoscerne i limiti
intrinseci e di delineare possibili percorsi per futuri sviluppi di indagine. In particolare, vengono discussi gli
effetti della calibrazione temporale, del modello statistico adottato, e vengono analizzati i principali punti di
forza e criticita dello studio. Il capitolo introduce inoltre i limiti dell’analisi e propone le possibili direzioni

future di approfondimento, offrendo una visione complessiva del contributo scientifico raggiunto.

4.1 — Sintesi dei risultati

I risultati emersi dall’analisi dei tre modelli — regressione lineare, regressione di Poisson e regressione
binomiale negativa — delineano un quadro coerente: la performance predittiva non dipende solo, € nemmeno
principalmente, dalla forma matematica del modello, ma soprattutto da come il tempo viene segmentato in
fase di analisi. Il confronto fra scenari stagionali calibrati, mensili non calibrati e annuali non calibrati mostra
che la stessa famiglia di modelli puo passare da una previsione estremamente accurata a una sostanzialmente
inaffidabile, a seconda dell’intervallo temporale considerato. Questo porta a identificare due risultati chiave:
il ruolo centrale della stagionalita e la relativa marginalita della scelta del modello, a parita di calibrazione

temporale.

4.1.1 — Primo risultato chiave: il ruolo della stagionalita
Il risultato piu significativo di questa ricerca ¢ la dimostrazione empirica che la calibrazione temporale basata
sulla stagionalita epidemiologica ¢ il fattore principale che governa l'accuratezza predittiva dei modelli.

L'analisi comparativa dei diversi scenari temporali ha rivelato un pattern inequivocabile e graduale, che

abbiamo definito il "fenomeno 1%-10%-100%".

Quando 1 modelli sono applicati a intervalli calibrati (stagionali), definiti secondo dinamiche epidemiche e

non il calendario civile, le prestazioni raggiungono livelli di eccellenza in cui i tre modelli producono
previsioni estremamente accurate. L’errore relativo medio sulle previsioni di mortalita si colloca intorno
all’1-1,5%, con scostamenti minimi tra un modello e I’altro. In questo contesto, le previsioni dei modelli si
allineano quasi perfettamente con i dati osservati, indipendentemente dalla complessita del modello stesso.
Questo suggerisce che un intervallo di analisi biologicamente significativo, che cattura un ciclo epidemico
completo, permette allo strumento statistico di esprimere il suo massimo potenziale.

Al contrario, utilizzando intervalli non calibrati ristretti (mensili), I'accuratezza peggiora sensibilmente

perché il modello osserva solo una “fetta” del ciclo stagionale. Finestre temporali arbitrarie e troppo ristrette
rischiano di catturare solo una fase transitoria del ciclo epidemico che puo corrispondere a una fase di salita,

di discesa oppure a un plateau. In questo caso, gli errori aumentano sensibilmente, attestandosi intorno al 8—
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10%, e i parametri risultano piu instabili, introducendo un bias sistematico e rendendo le stime instabili.

L'applicazione dei modelli su intervalli non calibrati estesi (annuali) porta a un vero e proprio collasso

predittivo. All’interno dello stesso periodo coesistono fasi epidemiologiche molto diverse quindi costituite da
fasi epidemiche profondamente eterogenee (picchi, discese, periodi di quiete relativa). I modelli non sono piu
in grado di discernere il segnale epidemiologico dal rumore portando 1’errore anche al 100%, rendendo le

previsioni di fatto inutilizzabili ai fini decisionali.

L’andamento degli errori puo essere sintetizzato nel fenomeno che, per semplicita, abbiamo definito “1%—
10%—-100%". Questa progressione non ¢ un artefatto numerico, ma riflette la quantita di informazione
epidemiologica effettivamente disponibile al modello, e cioe:
o nella scala stagionale, 1’intero ciclo dell’epidemia ¢ contenuto all’interno della finestra di
osservazione
o nella scala mensile, la finestra intercetta solo una porzione del ciclo, perdendo il senso complessivo
della dinamica
e nella scala annuale, il modello “vede” troppe fasi diverse sovrapposte e finisce per restituire una

media che non rappresenta adeguatamente nessuna di esse

In sintesi, il primo risultato chiave ¢ che la calibrazione temporale ha un effetto dominante sulla qualita delle
stime. A parita di modello, passare da una finestra calibrata a una non calibrata significa perdere uno o piu
ordini di grandezza in accuratezza. Questo suggerisce che, in epidemiologia, la domanda “qual ¢ il modello
migliore?” non puo essere separata dalla domanda “su quale intervallo di tempo lo stiamo applicando?”, e
cio implica che la scelta del "quando" analizzare i dati € tanto cruciale quanto la scelta del "come"

analizzarli.

4.1.2 — Secondo risultato chiave: la marginalita della scelta del modello

11 secondo risultato fondamentale ¢ che, nel contesto di questa analisi, la scelta specifica del modello di
regressione ha un impatto marginale sull'accuratezza predittiva finale, soprattutto se confrontato con I'effetto

della calibrazione temporale.

Le prestazioni dei modelli nei tre scenari possono essere lette come una funzione congiunta di due fattori:
struttura intrinseca del fenomeno (stagionale, con picchi moderati e ricorrenti e modalita di aggregazione
temporale (allineata o meno a questa struttura). Nei periodi stagionali calibrati, tutti e tre i modelli si adattano
al comportamento stagionale del virus; nei periodi mensili e annuali, invece, la segmentazione temporale
spezza o sovrappone i cicli, compromettendo la qualita della previsione. Una volta fissato un intervallo
temporale epidemiologicamente sensato, il confronto tra i modelli rivela un risultato in parte controintuitivo:
le differenze tra le tre regressioni prese in analisi diventano relativamente marginali, soprattutto nello

scenario stagionale calibrato.
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In presenza di intervalli stagionali la regressione lineare fornisce previsioni molto precise, nonostante le sue
note limitazioni teoriche con i dati di conteggio, quella di Poisson mostra una buona aderenza, grazie alla
coerenza tra struttura di conteggio e natura dei dati, mentre la regressione binomiale negativa pur essendo il
modello piu flessibile in presenza di sovradispersione, non mostra un vantaggio sostanziale quando la
variabilitd non ¢ estrema e i picchi non sono violenti. Negli scenari mensili e annuali, I’ordine di grandezza
dell’errore cresce per tutti e tre i modelli, e le differenze tra loro, pur presenti, rimangono comunque molto

meno marcate del salto indotto dalla diversa segmentazione del tempo.

Per chiarire visivamente questo aspetto, ¢ utile rappresentare le curve teoriche dei tre modelli a confronto

con la curva osservata, almeno in uno scenario rappresentativo.
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Tabella 13, Curve teoriche dei modelli Lineare, Poisson Binomiale Negativa per tutte le granularita temporali

Nel caso stagionale calibrato (grafico centrale), le tre curve dei modelli tendono quasi a sovrapporsi e
seguono con sorprendente precisione i picchi e le discese osservate. La vicinanza tra le linee mostra come,
quando !’intervallo temporale ¢ allineato ai cicli epidemiologici, la struttura del fenomeno guidi naturalmente
I’andamento della previsione, rendendo la scelta del modello relativamente meno rilevante. In altre parole, il
comportamento del virus “traina” i modelli verso una forma coerente e simile.

Nello scenario mensile non calibrato (grafico a sinistra), le tre curve mantengono ancora una buona
coerenza reciproca, ma iniziano a discostarsi visibilmente dalla curva reale, sottostimando alcuni picchi e
smussando eccessivamente le transizioni. Pur utilizzando tre modelli differenti — dalla regressione lineare,
teoricamente meno adatta, alla Binomiale Negativa, piu flessibile — il risultato rimane qualitativamente
simile: tutti e tre reagiscono allo spezzettamento artificiale della stagionalita.

quadro piu evidente emerge nello scenario annuale (grafico a destra). Qui le curve dei tre modelli diventano
quasi indistinguibili tra loro: una singola linea inclinata che appiattisce completamente le oscillazioni
osservate. La segmentazione annuale comprime dinamiche molto diverse in un unico blocco, annullando la
stagionalita e portando i modelli a produrre previsioni generiche e poco informative. Il modello scelto, in

questo contesto, risulta quasi irrilevante: i trend annuali tirano tutti verso lo stesso andamento lineare

Questa analisi multilivello porta quindi al secondo risultato chiave: in un contesto ben calibrato, la scelta del
modello € molto meno decisiva della scelta dell’intervallo di osservazione.

Mentre la scelta di un modello teoricamente appropriato come la Binomiale Negativa ¢ consigliabile per la
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robustezza statistica e la correttezza inferenziale, questa ricerca dimostra che 1 guadagni previsionali ottenuti
passando da un modello all'altro sono di un ordine di grandezza inferiore a quelli ottenuti semplicemente

calibrando intelligentemente il periodo di analisi.

4.2 — Riflessioni finali

Questa sezione approfondisce in che misura la scelta del modello statistico influenzi la qualita delle
previsioni, mettendo a confronto regressione lineare, Poisson e binomiale negativa nelle diverse granularita
temporali. Particolare attenzione viene posta alla distinzione tra gli effetti attribuibili alla struttura del
modello e quelli invece determinati dalla segmentazione temporale dell’analisi offrendo, cosi,
un'interpretazione critica dei risultati, esplorandone il profondo significato epidemiologico per la
sorveglianza e la pianificazione sanitaria, nonché le importanti implicazioni metodologiche per la pratica

della modellistica statistica, con un'enfasi sul concetto di "Intelligenza Temporale".

4.2.1 — Significato epidemiologico dei risultati

I risultati di questo studio hanno profonde conseguenze per la pratica epidemiologica, sottolineando che i
modelli operano all’interno di un fenomeno epidemiologico strutturato. Essi pongono l'accento sulla
necessita di una profonda comprensione del fenomeno epidemiologico sottostante prima di applicare

qualsiasi strumento quantitative. Un modello statistico rappresenta uno strumento per dialogare con i dati.

Per la pratica epidemiologica, questo implica che la costruzione di modelli predittivi efficaci richiede di
partire dalla comprensione della dinamica della malattia, e solo in un secondo momento dalla scelta dello
strumento statistico. Per i sistemi di sorveglianza cio significa che, se si usano intervalli non calibrati, le
previsioni rischiano di essere molto imprecise, con conseguenti decisioni subottimali in termini di risorse e
interventi. Identificare e monitorare le stagioni epidemiche specifiche di un patogeno permette di:

e Rilevare precocemente 1'inizio di un'ondata con maggiore accuratezza;

e Stimare il picco atteso e il carico sul sistema sanitario con un margine di errore ridotto;

e Valutare I'impatto di un intervento (es. una campagna vaccinale) in un arco di tempo definito e

pertinente.

Alla luce di questi risultati, per una pratica epidemiologica piu robusta, si raccomanda di: validare i modelli
su intervalli con significato epidemiologico, ¢ quindi prima di implementare un modello per le decisioni,
verificarne le prestazioni in intervalli temporalmente significativi; evitare 1’uso di finestre arbitrarie quando
I’obiettivo ¢ la precisione predittiva; progettare la segmentazione temporale in funzione dei cicli
epidemiologici. La modellazione dovrebbe quindi essere pensata a partire dal fenomeno (es. stagionalita,

picchi, varianti), piuttosto che a partire dal modello.
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4.2.2 — Implicazioni metodologiche per la modellistica statistica

Oltre alla rilevanza epidemiologica, questo lavoro offre una nuova prospettiva sul piano metodologico, in cui
emerge chiaramente che la modellistica richiede non solo competenza tecnica, ma anche capacita di leggere

1l contesto.

I dati non sono solo numeri, ma p ortano con s¢ una dimensione temporale che ne determina il significato.
Ignorare questa dimensione, o trattarla come una semplice variabile continua, significa privare i dati del loro
contesto piu importante. L'"' Intelligenza Temporale', ovvero la capacita di segmentare e interpretare il
tempo in modo epidemiologicamente informato, emerge come una competenza metodologica cruciale, pari

alla conoscenza delle tecniche statistiche.

Le principali lezioni apprese da questo studio sono quindi:

o Il contesto ¢ dominante: nessun modello ¢ intrinsecamente “buono” se il periodo ¢ sbagliato. La

bonta di un modello dipende dal suo allineamento con la realta che intende descrivere, non solo dalla
sua eleganza matematica

e Semplicita e Significato: anche modelli semplici possono funzionare molto bene se incastonati in un

intervallo coerente. In contesti ben definiti, modelli semplici (come la regressione lineare) possono
performare in modo eccellente, sfidando il paradigma "piu complesso ¢, meglio ¢"

e Verifica della robustezza temporale: la segmentazione del tempo ¢ parte integrante della

specificazione del modello. La valutazione di un modello dovrebbe includere test sulla sua stabilita

in diverse finestre temporali, non solo la bonta di adattamento su un unico dataset

Questo studio ¢ un invito a un utilizzo piu consapevole e umano-centrico degli strumenti predittivi. L'analista
non ¢ un semplice esecutore di procedure, ma un interprete che deve fondere la competenza quantitativa con
la comprensione del fenomeno in cui 1’accuratezza delle previsioni dipende tanto dal modello quanto dal
modo in cui segmentiamo e interpretiamo il tempo. La lezione finale ¢ I'imperativo della contestualizzazione

che non rappresenta un correttivo opzionale, ma un requisito metodologico fondamentale.

4.2.3 — Conclusioni

Il presente lavoro contribuisce ad ampliare e ridefinire criticamente le conclusioni della letteratura
precedente, mostrando che la scelta del modello statistico — pur importante — non rappresenta il principale
determinante dell’accuratezza predittiva quando si analizzano dati di mortalita da COVID-19 nella fase

Omicron/post-Omicron.

11 risultato piu rilevante emerso dallo studio ¢ che ’accuratezza dei modelli dipende in misura preponderante
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dalla calibrazione temporale dell’intervallo di analisi, piu che dalla complessita del modello utilizzato. La
comparazione sistematica delle tre scale temporali (mensile, stagionale, annuale) ha prodotto una regolarita
sorprendente, qui definita come fenomeno dell’errore 1%—10%-100% (stagionale — mensile — annuale).
Questa evidenza, mostra che ’efficacia delle regressioni non deriva automaticamente dalla struttura

matematica del modello, ma dalla coerenza tra finestra temporale e fenomeno epidemiologico analizzato.

Risultato empirico di questo elaborato consiste quindi nell’aver dimostrato che:
e Laregressione lineare puo risultare sorprendentemente competitiva, e talvolta migliore della
Poisson, solo quando applicata entro finestre calibrate
e Laregressione di Poisson e la Binomiale Negativa non garantiscono automaticamente prestazioni
superiori. Quando applicate a “strascico” (i.e. su intervalli temporali non segmentati) possono
generare un’illusione di analisi robusta mentre, in realta, produce previsioni con un’affidabilita
molto variabile e spesso inaccettabile per scopi decisionali. La regressione Binomiale Negativa si
conferma, come atteso, il modello piu robusto nel gestire la sovradispersione, ma il suo vantaggio
relativo emerge con chiarezza soprattutto negli scenari problematici (non calibrati), mentre si attenua
in quelli ottimali
In altre parole, la qualita della segmentazione temporale domina la scelta del modello, che diventa un fattore

secondario

Questi risultati modificano sostanzialmente il modo di interpretare la modellazione epidemiologica: la scelta
del modello deve essere subordinata alla comprensione del contesto temporale, non viceversa.

In questo senso, 1’elaborato propone un paradigma alternativo: 1’intelligenza temporale come prerequisito
della modellazione per la validita e 1’utilita operativa di qualsiasi modello predittivo, a prescindere dalla sua

complessita matematica

4.3 — Limiti e sviluppi futuri

Questa sezione conclude il lavoro riconoscendo apertamente i limiti dello studio, principalmente legati alla
generalizzabilita geografica, alla granularita dei dati e alla scelta delle variabili, e quindi discute gli aspetti
migliorabili dello studio, sia sul piano dei dati sia su quello metodologico, proponendo una serie di direzioni

concrete per future ricerche che possano costruire su queste fondamenta.

4.3.1 — Limiti del presente studio

Come ogni ricerca, questo lavoro presenta aspetti migliorabili e limiti che ¢ doveroso riconoscere, legati
principalmente ai dati e alla metodologia, che possono essere riportati di seguito:

o Limiti Geografici e di Generalizzabilita: Lo studio ¢ stato condotto esclusivamente su dati italiani.
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Pattern stagionali, varianti virali dominanti e risposte di sanita pubblica possono variare in altri
contesti nazionali o regionali, potendo influenzare la trasferibilita dei risultati;

Granularita e Qualita dei Dati: L'utilizzo di dati aggregati a livello nazionale e su base settimanale
potrebbe mascherare eterogeneita sub-regionali e dinamiche a piu alta frequenza. Inoltre, la qualita
dei dati (es. sotto-notifica dei casi in fase endemica) rimane una fonte di potenziale bias;

Set di Variabili e Fattori Confondenti: L'analisi ha considerato un set essenziale di predittori.
Fattori come la mobilita umana, il preciso stato immunitario della popolazione (infezioni pregresse e
dosi vaccinali) o dati meteo-climatici piu dettagliati potrebbero catturare parte della variabilita
attribuita alla dimensione temporale;

Definizione delle Stagioni Epidemiche: Sebbene basata su un solido lavoro precedente, la
segmentazione temporale adottata contiene un elemento di discrezionalita. Metodi alternativi di

periodizzazione potrebbero essere esplorati

In conclusione, questi limiti non invalidano i risultati ottenuti, ma indicano chiaramente le aree in cui

ulteriori dati, livelli di granularita piu elevati o approcci statistici pitt complessi potrebbero arricchire I’analisi

e migliorare la comprensione del fenomeno epidemico.

4.3.2 Direzioni future di ricerca

I limiti citati al capitolo precedente disegnano naturalmente il percorso per approfondimenti futuri e aprono

la strada a potenziali estensioni della ricerca, che potrebbero includere:

Analisi Multi-Livello e Cross-Nazionale: Estendere il framework metodologico a dati regionali per
indagare l'eterogeneita interna a un paese, e replicare 'analisi in diverse nazioni per testare la
robustezza del "fenomeno 1%-10%-100%" su scale geografiche e epidemiologiche differenti;
Integrazione di Fonti Dati Innovative: Arricchire i modelli con dati di mobilita (da dispositivi
mobili), di genomica virale (per tracciare le varianti) e di immunita di popolazione, per
disaccoppiare I'effetto della stagionalita da quello di altri driver epidemici;

Sviluppo di Algoritmi di Segmentazione Temporale: Ricercare e validare metodi data-driven (ad
esempio, tecniche di change-point analysis o di clustering temporale) per identificare
automaticamente e in modo riproducibile I'inizio e la fine delle stagioni epidemiche;

Estensione ad Altri Patogeni e Qutcome: Verificare se il principio della calibrazione temporale
come fattore primario sia valido per altre malattie infettive a andamento stagionale (es. influenza,
VRS) e per altri outcome (es. tassi di ospedalizzazione);

Prospettive di Integrazione con Modelli Avanzati: Esplorare l'interazione tra calibrazione
temporale e tecniche di modellazione piu complesse, come i modelli additivi generalizzati

(GAM) per catturare non linearita, o i modelli bayesiani gerarchici per incorporare esplicitamente la

struttura temporale nei prior, o ancora l'uso di reti neurali ricorrenti.
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In conclusione, questo studio non intende chiudere il dibattito sulla modellazione epidemiologica, ma
piuttosto aprirlo a una dimensione spesso trascurata: quella del tempo come variabile contestuale e non solo
metrica. I risultati sollecitano un cambio di prospettiva, in cui la sofisticazione statistica sia al servizio di una
comprensione piu profonda della dinamica delle malattie, e in cui I"'Intelligenza Temporale" diventi una
competenza standard per l'epidemiologo e il data scientist del futuro. Le direzioni future qui abbozzate

ambiscono a contribuire a questo fecondo cammino di ricerca.
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Appendici

Appendice A — info mensili

month AIC_OLS BIC_OLS LogLik_OLS Deviance_O | DevPerDF_O | R2_OLS AIC_Poiss
LS LS
1) -52.77 -56.77 28.39 11.8
2 | 51.05 50.27 -23.52 3572.7 1190.9 0.24 53.8
3] 39.25 38.02 -17.63 1573.8 786.9 0.93 40.06
4| 36.41 35.18 -16.2 772.7 386.35 0.99 38.14
5 | 65.02 64.24 -30.51 58425.1 19475.03 0.97 126.3
6|41.91 40.68 -18.96 3060.3 1530.15 0.99 45.86
7 | 52.78 51.55 -24.39 46321.2 23160.6 0.55 78.69
8 | 41.52 40.29 -18.76 2773.8 1386.9 0.01 41.74
9| 45.34 44.56 -20.67 11419 380.63 0.98 48.22
10 | 44.41 43.18 -20.2 5708.7 2854.35 0.09 49.96
11 | 53.42 52.64 -24.71 5738.3 1912.77 0.98 54.35
12 | 46.0 44.77 -21.0 8496.3 4248.15 0.93 47.38
13 | 39.52 38.3 -17.76 1684.3 842.15 0.9 38.62
14 | 55.61 54.83 -25.8 8893.9 2964.63 0.88 69.67
15 | 43.82 42.59 -19.91 4928.2 2464.1 0.34 45.55
16 | 39.05 37.82 -17.52 1495.2 747.6 0.85 39.75
17 | 52.9 52.12 -24.45 5175.1 1725.03 0.96 61.8
18 | 47.17 45.95 -21.59 11404.2 5702.1 0.58 65.95
19 | 31.6 30.37 -13.8 232.2 116.1 0.82 33.68
20 | 50.27 49.49 -23.14 3058.7 1019.57 0.0 57.16
21 | 32.56 31.33 -14.28 295.2 147.6 0.54 33.43
22 | 30.86 29.63 -13.43 193.2 96.6 0.7 31.55
23 | 41.32 40.54 -18.66 510.4 170.13 0.54 45.38
24 | 36.48 35.25 -16.24 787.5 393.75 0.0 41.26
25 | 26.49 25.26 -11.24 64.7 32.35 0.97 29.99
26 | 48.85 48.07 -22.43 2302.4 767.47 0.35 51.9
27 | 36.57 35.34 -16.28 804.3 402.15 0.84 36.52
28 | 57.19 56.41 -26.59 12196.8 4065.6 0.03 77.28
29 | 29.59 28.37 -12.8 140.7 70.35 0.99 35.98
30 | 23.28 22.05 -9.64 29.0 14.5 0.99 29.73
31| 31.85 31.07 -13.92 76.8 25.6 0.7 32.92
32 | 13.78 12.55 -4.89 2.7 1.35 0.6 21.33
33 | 24.23 23.0 -10.11 36.8 18.4 0.4 25.01
34 | 23.04 22.26 -9.52 13.2 4.4 0.84 27.69
35| 29.36 28.13 -12.68 132.8 66.4 0.72 30.3
36 | 36.84 35.61 -16.42 861.0 430.5 0.53 38.93
37 | 45.02 44.23 -20.51 1069.2 356.4 0.13 46.55
38 | 33.14 3191 -14.57 341.5 170.75 0.38 33.42
39 | 29.05 27.82 -12.52 122.7 61.35 0.91 30.59
40 | 27.89 27.11 -11.95 34.8 11.6 0.92 32.46
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| 41| -116.89 | -119.51 | 60.45 0.0 1.0 14.04
Appendice B — info stagionali
season | AIC_OLS | BIC_OLS | LogLik_OLS | Deviance_OLS | DevPerDF_OLS | R2_OLS | AIC_Poisson | |
1 265.39 267.17 -130.7 2135826.8 133489.18 0.69 929.29 (
2 258.4 260.18 -127.2 1448246.97 90515.44 0.75 810.72 ¢
3 117.39 117.79 -56.7 156178.93 22311.28 0.81 328.24
4 209.98 211.64 -102.99 181973.99 12131.6 0.43 516.46 :
5 313.29 315.8 -154.64 223218.91 9300.79 0.71 502.75 :
6 77.32 77.72 -36.66 1819.96 259.99 0.45 94.81 (
7 157.46 158.88 -76.73 24364.11 1874.16 0.81 174.67 1
8 222.49 224.48 -109.25 65016.5 3612.03 0.68 171.62 1
9 215.49 217.84 -105.74 9434.0 428.82 0.74 367.85
10 65.04 65.44 -30.52 464.96 66.42 0.76 69.95
Appendice C — info annuali
year AIC_OLS | BIC_OLS | LogLik_OLS | Deviance_OLS | DevPerDF_OLS | R2_OLS | AIC_Poisson | |
1 834.23 838.17 -415.12 19720902.11 386684.36 0.01 19829.79 ]
2 656.0 659.91 -326.0 849065.74 16981.31 0.69 2832.97 :
3 618.84 622.74 -307.42 415489.83 8309.8 0.36 3562.87
4 129.67 131.21 -62.83 2413.93 172.42 0.88 145.1 ]

Appendice D — valutazione modelli mensili

week month | decessi reali | pred Ols | pred_Poisson | pred_NegBin | mae Ols | mae Poisson | mae Neg
1 1.0 387.0 387.0 387.0 387.0 0.0 0.0 0.0

2 2.0 334.0 301.6 302.0 301.2 32.4 32.0 32.8

3 2.0 270.0 291.1 290.9 290.52 21.1 20.9 20.52

4 2.0 240.0 280.6 280.21 280.22 40.6 40.21 40.22

5 2.0 285.0 270.1 26991 270.28 14.9 15.09 14.72

6 2.0 274.0 259.6 259.99 260.7 14.4 14.01 133
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7 3.0 285.0 296.3 301.57 301.44 11.3 16.57 16.44
8 3.0 390.0 361.1 356.01 355.95 28.9 33.99 34.05
9 3.0 402.0 425.9 420.28 420.32 23.9 18.28 18.32
10 3.0 497.0 490.7 496.15 496.34 6.3 0.85 0.66
11 4.0 521.0 506.1 521.63 521.43 14.9 0.63 0.43
12 4.0 636.0 658.2 643.34 643.25 222 7.34 7.25
13 4.0 810.0 810.3 793.45 793.51 0.3 16.55 16.49
14 4.0 970.0 962.4 978.59 978.89 7.6 8.59 8.89
15 5.0 1035.0 1065.8 1155.61 1116.26 30.8 120.61 81.26
16 5.0 1392.0 1486.7 1447.87 1420.51 94.7 55.87 28.51
17 5.0 2066.0 1907.6 1814.05 1807.68 158.4 251.95 258.32
18 5.0 2419.0 2328.5 2272.83 2300.39 90.5 146.17 118.61
19 5.0 2626.0 2749.4 2847.64 2927.39 123.4 221.64 301.39
20 6.0 2622.0 2616.2 2644.63 2647.91 5.8 22.63 2591
21 6.0 2244.0 2273.9 2244.55 2245.35 29.9 0.55 1.35
22 6.0 1974.0 1931.6 1905.0 1903.99 42.4 69.0 70.01
23 6.0 1571.0 1589.3 1616.81 1614.52 18.3 45.81 43.52
24 7.0 1327.0 1213.6 1218.92 1207.54 113.4 108.08 119.46
25 7.0 981.0 1108.2 1102.77 1099.63 127.2 121.77 118.63
26 7.0 917.0 1002.8 997.69 1001.36 85.8 80.69 84.36
27 7.0 997.0 897.4 902.62 911.87 99.6 94.38 85.13
28 8.0 1002.0 980.7 980.7 980.68 213 213 21.32
29 8.0 964.0 977.9 977.9 977.89 13.9 13.9 13.89
30 8.0 939.0 975.1 975.1 975.1 36.1 36.1 36.1
31 8.0 1001.0 972.3 972.3 972.32 28.7 28.7 28.68
32 9.0 924.0 932.8 940.88 941.21 8.8 16.88 17.21
33 9.0 877.0 854.5 850.22 850.36 22.5 26.78 26.64
34 9.0 755.0 776.2 768.29 768.27 21.2 13.29 13.27
35 9.0 708.0 697.9 694.26 694.11 10.1 13.74 13.89
36 9.0 617.0 619.6 627.36 627.11 2.6 10.36 10.11
37 10.0 380.0 399.6 399.76 399.83 19.6 19.76 19.83
38 10.0 442.0 388.7 388.54 388.57 533 53.46 53.43
39 10.0 330.0 377.8 377.65 377.62 47.8 47.65 47.62
40 10.0 381.0 366.9 367.05 366.99 14.1 13.95 14.01
41 11.0 443.0 411.8 456.68 454.35 31.2 13.68 11.35
42 11.0 561.0 604.3 585.2 583.54 433 242 22.54
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43 11.0 819.0 796.8 749.88 749.46 22.2 69.12 69.54
44 11.0 950.0 989.3 960.91 962.57 393 10.91 12.57
45 11.0 1211.0 1181.8 1231.33 1236.27 29.2 20.33 25.27
46 12.0 1050.0 1045.8 1060.64 1059.4 4.2 10.64 9.4
47 12.0 924.0 892.1 876.7 876.41 31.9 47.3 47.59
48 12.0 662.0 738.4 724.66 725.03 76.4 62.66 63.03
49 12.0 625.0 584.7 598.99 599.8 40.3 26.01 252
50 13.0 485.0 466.8 470.92 470.76 18.2 14.08 14.24
51 13.0 377.0 411.1 406.86 406.82 34.1 29.86 29.82
52 13.0 369.0 355.4 351.52 351.57 13.6 17.48 17.43
53 13.0 302.0 299.7 303.7 303.82 23 1.7 1.82
54 14.0 270.0 2914 305.66 297.56 21.4 35.66 27.56
55 14.0 369.0 373.1 366.75 361.45 4.1 2.25 7.55
56 14.0 469.0 454.8 440.05 439.06 14.2 28.95 29.94
57 14.0 606.0 536.5 528.0 533.33 69.5 78.0 72.67
58 14.0 560.0 618.2 633.53 647.85 58.2 73.53 87.85
59 15.0 546.0 508.1 508.57 509.43 37.9 37.43 36.57
60 15.0 485.0 530.7 530.23 530.54 45.7 45.23 45.54
61 15.0 531.0 553.3 552.82 552.53 223 21.82 21.53
62 15.0 606.0 575.9 576.37 575.43 30.1 29.63 30.57
63 16.0 667.0 660.4 661.58 661.54 6.6 542 5.46
64 16.0 678.0 701.8 700.63 700.62 23.8 22.63 22.62
65 16.0 771.0 743.2 741.99 742.01 27.8 29.01 28.99
66 16.0 774.0 784.6 785.79 785.84 10.6 11.79 11.84
67 17.0 760.0 759.2 781.71 792.51 0.8 21.71 32.51
68 17.0 613.0 651.3 638.7 642.61 38.3 25.7 29.61
69 17.0 602.0 543.4 521.85 521.07 58.6 80.15 80.93
70 17.0 430.0 435.5 426.38 422.51 5.5 3.62 7.49
71 17.0 312.0 327.6 348.37 342.59 15.6 36.37 30.59
72 18.0 448.0 397.9 402.93 397.8 50.1 45.07 50.2
73 18.0 253.0 342.3 337.1 3359 89.3 84.1 82.9
74 18.0 315.0 286.7 282.03 283.63 28.3 32.97 31.37
75 18.0 242.0 231.1 235.95 239.49 10.9 6.05 2.51
76 19.0 218.0 220.9 221.44 221.44 2.9 3.44 3.44
77 19.0 216.0 206.3 205.75 205.75 9.7 10.25 10.25
78 19.0 181.0 191.7 191.18 191.18 10.7 10.18 10.18
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79 19.0 181.0 177.1 177.63 177.63 3.9 3.37 3.37
80 20.0 184.0 163.6 163.6 163.57 20.4 20.4 20.43
81 20.0 142.0 163.1 163.1 163.09 21.1 21.1 21.09
82 20.0 135.0 162.6 162.6 162.6 27.6 27.6 27.6
&3 20.0 199.0 162.1 162.1 162.11 36.9 36.9 36.89
&4 20.0 153.0 161.6 161.6 161.63 8.6 8.6 8.63
&5 21.0 186.0 176.6 176.82 176.79 94 9.18 9.21
86 21.0 156.0 168.2 167.98 167.97 12.2 11.98 11.97
87 21.0 156.0 159.8 159.59 159.6 3.8 3.59 3.6
88 21.0 158.0 151.4 151.61 151.64 6.6 6.39 6.36
89 22.0 104.0 107.6 108.08 108.08 3.6 4.08 4.08
90 22.0 108.0 98.2 97.71 97.71 9.8 10.29 10.29
91 22.0 80.0 88.8 88.34 88.34 8.8 8.34 8.34
92 22.0 82.0 79.4 79.87 79.86 2.6 2.13 2.14
93 23.0 62.0 54.4 56.05 56.58 7.6 5.95 542
94 23.0 30.0 46.6 45.68 45.87 16.6 15.68 15.87
95 23.0 43.0 38.8 37.22 37.19 4.2 5.78 5.81
96 23.0 42.0 31.0 30.33 30.15 11.0 11.67 11.85
97 23.0 17.0 232 24.72 24.45 6.2 7.72 7.45
98 24.0 50.0 57.5 57.5 57.51 7.5 7.5 7.51
99 24.0 77.0 57.0 57.0 57.0 20.0 20.0 20.0
100 24.0 39.0 56.5 56.5 56.49 17.5 17.5 17.49
101 24.0 61.0 56.0 56.0 55.99 5.0 5.0 5.01
102 25.0 77.0 73.9 75.62 75.64 3.1 1.38 1.36
103 25.0 91.0 92.8 91.14 91.15 1.8 0.14 0.15
104 25.0 106.0 111.7 109.85 109.84 5.7 3.85 3.84
105 25.0 135.0 130.6 132.39 132.37 44 2.61 2.63
106 26.0 135.0 143.4 144.15 143.2 8.4 9.15 8.2
107 26.0 149.0 154.6 154.24 153.72 5.6 5.24 4.72
108 26.0 173.0 165.8 165.04 165.01 7.2 7.96 7.99
109 26.0 213.0 177.0 176.6 177.13 36.0 36.4 35.87
110 26.0 159.0 188.2 188.97 190.14 29.2 29.97 31.14
111 27.0 167.0 156.7 158.74 158.75 10.3 8.26 8.25
112 27.0 163.0 185.4 183.42 183.43 22.4 20.42 20.43
113 27.0 228.0 214.1 211.94 211.94 13.9 16.06 16.06
114 27.0 241.0 242.8 244.9 244.88 1.8 3.9 3.88
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115 28.0 330.0 334.8 334.9 334.17 4.8 4.9 4.17
116 28.0 292.0 340.8 340.75 340.37 48.8 48.75 48.37
117 28.0 400.0 346.8 346.7 346.69 53.2 533 53.31
118 28.0 412.0 352.8 352.75 353.13 59.2 59.25 58.87
119 28.0 300.0 358.8 358.9 359.68 58.8 58.9 59.68
120 29.0 357.0 357.4 365.53 365.85 0.4 8.53 8.85
121 29.0 289.0 2933 284.77 284.84 43 4.23 4.16
122 29.0 239.0 229.2 221.86 221.76 9.8 17.14 17.24
123 29.0 160.0 165.1 172.84 172.66 5.1 12.84 12.66
124 30.0 106.0 108.5 111.48 111.53 2.5 5.48 5.53
125 30.0 92.0 87.5 84.36 84.37 4.5 7.64 7.63
126 30.0 65.0 66.5 63.84 63.83 1.5 1.16 1.17
127 30.0 45.0 45.5 48.32 48.29 0.5 3.32 3.29
128 31.0 38.0 38.8 394 3941 0.8 1.4 1.41
129 31.0 31.0 34.6 34.28 34.28 3.6 3.28 3.28
130 31.0 38.0 30.4 29.82 29.82 7.6 8.18 8.18
131 31.0 25.0 26.2 25.94 25.94 1.2 0.94 0.94
132 31.0 20.0 22.0 22.57 22.56 2.0 2.57 2.56
133 32.0 12.0 12.6 12.64 12.64 0.6 0.64 0.64
134 32.0 12.0 11.7 11.66 11.66 0.3 0.34 0.34
135 32.0 12.0 10.8 10.76 10.76 1.2 1.24 1.24
136 32.0 9.0 9.9 9.94 9.94 0.9 0.94 0.94
137 33.0 4.0 7.2 7.43 7.42 3.2 3.43 3.42
138 33.0 13.0 94 9.18 9.18 3.6 3.82 3.82
139 33.0 14.0 11.6 11.35 11.36 24 2.65 2.64
140 33.0 11.0 13.8 14.04 14.05 2.8 3.04 3.05
141 34.0 9.0 9.6 10.04 10.04 0.6 1.04 1.04
142 34.0 11.0 12.2 12.0 12.0 1.2 1.0 1.0
143 34.0 17.0 14.8 14.34 14.34 2.2 2.66 2.66
144 34.0 19.0 17.4 17.14 17.14 1.6 1.86 1.86
145 34.0 18.0 20.0 20.48 20.48 2.0 2.48 2.48
146 35.0 24.0 29.2 30.0 29.99 52 6.0 5.99
147 35.0 47.0 37.4 36.63 36.63 9.6 10.37 10.37
148 35.0 42.0 45.6 44.74 44.74 3.6 2.74 2.74
149 35.0 53.0 53.8 54.63 54.65 0.8 1.63 1.65
150 36.0 67.0 75.5 76.5 76.24 8.5 9.5 9.24
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151 36.0 111.0 89.5 88.53 88.41 21.5 22.47 22.59
152 36.0 86.0 103.5 102.44 102.53 17.5 16.44 16.53
153 36.0 122.0 117.5 118.53 118.9 4.5 3.47 3.1
154 37.0 97.0 89.6 89.76 90.11 7.4 7.24 6.89
155 37.0 98.0 93.6 93.52 93.71 4.4 4.48 4.29
156 37.0 87.0 97.6 97.44 97.44 10.6 10.44 10.44
157 37.0 80.0 101.6 101.52 101.33 21.6 21.52 21.33
158 37.0 126.0 105.6 105.77 105.37 20.4 20.23 20.63
159 38.0 89.0 99.0 99.19 99.17 10.0 10.19 10.17
160 38.0 120.0 105.5 105.31 105.3 14.5 14.69 14.7
161 38.0 113.0 112.0 111.8 111.81 1.0 1.2 1.19
162 38.0 113.0 118.5 118.7 118.72 5.5 5.7 5.72
163 39.0 96.0 100.9 102.64 102.67 4.9 6.64 6.67
164 39.0 94.0 84.8 82.99 83.0 9.2 11.01 11.0
165 39.0 65.0 68.7 67.11 67.1 3.7 2.11 2.1
166 39.0 52.0 52.6 54.26 54.24 0.6 2.26 2.24
167 40.0 51.0 52.8 53.79 53.79 1.8 2.79 2.79
168 40.0 51.0 46.6 46.06 46.06 4.4 4.94 4.94
169 40.0 37.0 40.4 39.45 39.44 3.4 245 2.44
170 40.0 35.0 342 33.78 33.78 0.8 1.22 1.22
171 40.0 28.0 28.0 28.93 28.92 0.0 0.93 0.92
172 41.0 44.0 44.0 44.0 44.0 0.0 0.0 0.0
173 41.0 13.0 13.0 13.0 13.0 0.0 0.0 0.0
Appendice E - valutazione modelli stagionale
week season | decessi_reali | pred_Ols | pred_Poisson | pred_NegBin | mae_Ols | mae_Poisson | mae_Neg
1 1.0 387.0 -108.18 152.55 208.3 495.18 234.45 178.7
2 1.0 334.0 -9.09 177.38 235.06 343.09 156.62 98.94
3 1.0 270.0 89.99 206.26 265.27 180.01 63.74 4.73
4 1.0 240.0 189.08 239.83 299.35 50.92 0.17 59.35
5 1.0 285.0 288.17 278.87 337.82 3.17 6.13 52.82
6 1.0 274.0 387.25 324.27 381.23 113.25 50.27 107.23
7 1.0 285.0 486.34 377.05 430.22 201.34 92.05 145.22
8 1.0 390.0 585.43 438.42 485.5 195.43 48.42 95.5
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9 1.0 402.0 684.51 509.79 547.89 282.51 107.79 145.89
10 1.0 497.0 783.6 592.77 618.3 286.6 95.77 121.3
11 1.0 521.0 882.69 689.26 697.75 361.69 168.26 176.75
12 1.0 636.0 981.77 801.46 787.41 345.77 165.46 151.41
13 1.0 810.0 1080.86 | 931.92 888.59 270.86 121.92 78.59
14 1.0 970.0 1179.95 1083.61 1002.77 209.95 113.61 32.77
15 1.0 1035.0 1279.03 1260.0 1131.63 244.03 225.0 96.63
16 1.0 1392.0 1378.12 | 1465.1 1277.05 13.88 73.1 114.95
17 1.0 2066.0 1477.21 1703.58 1441.15 588.79 362.42 624.85
18 1.0 2419.0 1576.29 | 1980.88 1626.33 842.71 438.12 792.67
20 2.0 2622.0 1964.27 | 2170.84 2088.6 657.73 451.16 5334
21 2.0 2244.0 1869.13 1992.85 1927.59 374.87 251.15 316.41
22 2.0 1974.0 1773.99 | 1829.46 1779.0 200.01 144.54 195.0
23 2.0 1571.0 1678.84 | 1679.47 1641.86 107.84 108.47 70.86
24 2.0 1327.0 1583.7 1541.77 1515.3 256.7 214.77 188.3
25 2.0 981.0 1488.56 | 1415.36 1398.49 507.56 434.36 417.49
26 2.0 917.0 1393.41 1299.32 1290.68 476.41 382.32 373.68
27 2.0 997.0 1298.27 | 1192.79 1191.18 301.27 195.79 194.18
28 2.0 1002.0 1203.13 1094.99 1099.36 201.13 92.99 97.36
29 2.0 964.0 1107.98 | 1005.21 1014.61 143.98 41.21 50.61
30 2.0 939.0 1012.84 | 922.8 936.4 73.84 16.2 2.6

31 2.0 1001.0 917.7 847.14 864.21 83.3 153.86 136.79
32 2.0 924.0 822.55 777.68 797.59 101.45 146.32 126.41
33 2.0 877.0 727.41 713.92 736.11 149.59 163.08 140.89
34 2.0 755.0 632.27 655.39 679.36 122.73 99.61 75.64
35 2.0 708.0 537.12 601.65 626.99 170.88 106.35 81.01
36 2.0 617.0 441.98 552.32 578.66 175.02 64.68 38.34
37 2.0 380.0 346.84 507.04 534.05 33.16 127.04 154.05
39 3.0 330.0 320.47 385.34 352.72 9.53 55.34 22.72
40 3.0 381.0 425.6 445.9 416.25 44.6 64.9 35.25
41 3.0 443.0 530.73 515.98 491.21 87.73 72.98 48.21
42 3.0 561.0 635.87 597.07 579.68 74.87 36.07 18.68
43 3.0 819.0 741.0 690.9 684.09 78.0 128.1 134.91
44 3.0 950.0 846.13 799.47 807.29 103.87 150.53 142.71
45 3.0 1211.0 951.27 925.11 952.69 259.73 285.89 258.31
46 3.0 1050.0 1056.4 1070.5 1124.27 6.4 20.5 74.27
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47 3.0 924.0 1161.53 1238.73 1326.75 237.53 314.73 402.75
49 4.0 625.0 366.63 379.05 390.15 258.37 245.95 234.85
50 4.0 485.0 384.89 392.88 403.0 100.11 92.12 82.0
51 4.0 377.0 403.15 407.21 416.27 26.15 30.21 39.27
52 4.0 369.0 421.41 422.07 429.99 5241 53.07 60.99
53 4.0 302.0 439.67 437.47 444.15 137.67 135.47 142.15
54 4.0 270.0 457.93 453.43 458.78 187.93 183.43 188.78
55 4.0 369.0 476.19 469.97 473.89 107.19 100.97 104.89
56 4.0 469.0 494.45 487.12 489.5 25.45 18.12 20.5
57 4.0 606.0 512.71 504.89 505.62 93.29 101.11 100.38
58 4.0 560.0 530.97 523.31 522.27 29.03 36.69 37.73
59 4.0 546.0 549.23 542.4 539.48 3.23 3.6 6.52
60 4.0 485.0 567.49 562.19 557.24 82.49 77.19 72.24
61 4.0 531.0 585.75 582.7 575.6 54.75 51.7 44.6
62 4.0 606.0 604.0 603.96 594.56 2.0 2.04 11.44
63 4.0 667.0 622.26 626.0 614.14 44.74 41.0 52.86
64 4.0 678.0 640.52 648.84 634.37 37.48 29.16 43.63
65 4.0 771.0 658.78 672.51 655.26 112.22 98.49 115.74
67 5.0 760.0 497.58 591.36 544.7 262.42 168.64 2153
68 5.0 613.0 478.13 544.74 505.85 134.87 68.26 107.15
69 5.0 602.0 458.67 501.79 469.76 143.33 100.21 132.24
70 5.0 430.0 439.21 462.23 436.25 9.21 32.23 6.25
71 5.0 312.0 419.76 425.79 405.14 107.76 113.79 93.14
72 5.0 448.0 400.3 392.22 376.24 47.7 55.78 71.76
73 5.0 253.0 380.85 361.3 349.4 127.85 108.3 96.4
74 5.0 315.0 361.39 332.81 324.48 46.39 17.81 9.48
75 5.0 242.0 341.94 306.57 301.33 99.94 64.57 59.33
76 5.0 218.0 322.48 282.4 279.84 104.48 64.4 61.84
77 5.0 216.0 303.02 260.14 259.88 87.02 44.14 43.88
78 5.0 181.0 283.57 239.63 241.34 102.57 58.63 60.34
79 5.0 181.0 264.11 220.74 224.12 83.11 39.74 43.12
80 5.0 184.0 244.66 203.33 208.14 60.66 19.33 24.14
81 5.0 142.0 2252 187.3 193.29 83.2 453 51.29
82 5.0 135.0 205.75 172.54 179.5 70.75 37.54 44.5
&3 5.0 199.0 186.29 158.93 166.7 12.71 40.07 323
84 5.0 153.0 166.83 146.4 154.81 13.83 6.6 1.81
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85 5.0 186.0 147.38 134.86 143.77 38.62 51.14 42.23
86 5.0 156.0 127.92 124.23 133.51 28.08 31.77 22.49
87 5.0 156.0 108.47 114.43 123.99 47.53 41.57 32.01
88 5.0 158.0 89.01 105.41 115.14 68.99 52.59 42.86
&9 5.0 104.0 69.56 97.1 106.93 34.44 6.9 2.93
90 5.0 108.0 50.1 89.45 99.3 57.9 18.55 8.7
91 5.0 80.0 30.64 82.39 92.22 49.36 2.39 12.22
92 5.0 82.0 11.19 75.9 85.64 70.81 6.1 3.64
94 6.0 30.0 28.71 30.93 31.24 1.29 0.93 1.24
95 6.0 43.0 33.64 343 34.57 9.36 8.7 8.43
96 6.0 42.0 38.58 38.03 38.24 342 3.97 3.76
97 6.0 17.0 43.51 42.17 423 26.51 25.17 253
98 6.0 50.0 48.44 46.76 46.8 1.56 3.24 32
99 6.0 77.0 53.38 51.85 51.77 23.62 25.15 25.23
100 6.0 39.0 58.31 57.5 57.28 19.31 18.5 18.28
101 6.0 61.0 63.24 63.75 63.36 2.24 2.75 2.36
102 6.0 77.0 68.18 70.69 70.1 8.82 6.31 6.9
104 7.0 106.0 83.22 107.33 110.7 22.77 1.33 4.7
105 7.0 135.0 102.79 117.63 120.85 32.21 17.37 14.15
106 7.0 135.0 122.36 128.92 131.93 12.64 6.08 3.07
107 7.0 149.0 141.93 141.29 144.02 7.07 7.71 4.98
108 7.0 173.0 161.5 154.85 157.22 11.5 18.15 15.78
109 7.0 213.0 181.06 169.71 171.64 31.94 43.29 41.36
110 7.0 159.0 200.63 186.0 187.37 41.63 27.0 28.37
111 7.0 167.0 220.2 203.85 204.55 53.2 36.85 37.55
112 7.0 163.0 239.77 223.41 2233 76.77 60.41 60.3
113 7.0 228.0 259.34 244.85 243.77 31.34 16.85 15.77
114 7.0 241.0 278.9 268.35 266.11 37.9 27.35 25.11
115 7.0 330.0 298.47 294.1 290.51 31.53 35.9 39.49
116 7.0 292.0 318.04 322.32 317.14 26.04 30.32 25.14
117 7.0 400.0 337.61 353.26 346.21 62.39 46.74 53.79
118 7.0 412.0 357.18 387.16 377.95 54.82 24.84 34.05
120 8.0 357.0 214.61 342.12 29549 142.39 14.88 61.51
121 8.0 289.0 200.34 268.68 237.81 88.66 20.32 51.19
122 8.0 239.0 186.07 211.0 191.38 52.93 28.0 47.62
123 8.0 160.0 171.8 165.7 154.02 11.8 5.7 5.98
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124 8.0 106.0 157.53 130.13 123.96 51.53 24.13 17.96
125 8.0 92.0 143.26 102.2 99.76 51.26 10.2 7.76
126 8.0 65.0 128.99 80.26 80.28 63.99 15.26 15.28
127 8.0 45.0 114.72 63.03 64.61 69.72 18.03 19.61
128 8.0 38.0 100.45 49.5 52.0 62.45 11.5 14.0
129 8.0 31.0 86.18 38.87 41.85 55.18 7.87 10.85
130 8.0 38.0 71.92 30.53 33.68 33.92 7.47 4.32
131 8.0 25.0 57.65 23.97 27.1 32.65 1.03 2.1
132 8.0 20.0 43.38 18.83 21.81 23.38 1.17 1.81
133 8.0 12.0 29.11 14.79 17.56 17.11 2.79 5.56
134 8.0 12.0 14.84 11.61 14.13 2.84 0.39 2.13
135 8.0 12.0 0.57 9.12 11.37 11.43 2.88 0.63
136 8.0 9.0 -13.7 7.16 9.15 22.7 1.84 0.15
137 8.0 4.0 -27.97 5.62 7.36 31.97 1.62 3.36
138 8.0 13.0 -42.24 4.42 5.93 55.24 8.58 7.07
139 8.0 14.0 -56.51 3.47 4.77 70.51 10.53 9.23
141 9.0 9.0 16.78 28.93 21.01 7.78 19.93 12.01
142 9.0 11.0 21.62 31.02 23.08 10.62 20.02 12.08
143 9.0 17.0 26.47 33.27 25.37 9.47 16.27 8.37
144 9.0 19.0 31.31 35.68 27.87 12.31 16.68 8.87
145 9.0 18.0 36.15 38.26 30.63 18.15 20.26 12.63
146 9.0 24.0 40.99 41.03 33.66 16.99 17.03 9.66
147 9.0 47.0 45.83 44.0 36.99 1.17 3.0 10.01
148 9.0 42.0 50.67 47.19 40.64 8.67 5.19 1.36
149 9.0 53.0 55.51 50.6 44.66 2.51 24 8.34
150 9.0 67.0 60.36 54.26 49.08 6.64 12.74 17.92
151 9.0 111.0 65.2 58.19 53.93 45.8 52.81 57.07
152 9.0 86.0 70.04 62.41 59.27 15.96 23.59 26.73
153 9.0 122.0 74.88 66.92 65.13 47.12 55.08 56.87
154 9.0 97.0 79.72 71.77 71.57 17.28 25.23 25.43
155 9.0 98.0 84.56 76.96 78.64 13.44 21.04 19.36
156 9.0 87.0 894 82.54 86.42 24 4.46 0.58
157 9.0 80.0 94.24 88.51 94.96 14.24 8.51 14.96
158 9.0 126.0 99.09 94.92 104.35 2691 31.08 21.65
159 9.0 89.0 103.93 101.79 114.67 14.93 12.79 25.67
160 9.0 120.0 108.77 109.16 126.01 11.23 10.84 6.01
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161 9.0 113.0 113.61 117.06 138.47 0.61 4.06 2547
162 9.0 113.0 118.45 125.54 152.16 5.45 12.54 39.16
163 9.0 96.0 123.29 134.62 167.21 27.29 38.62 71.21
164 9.0 94.0 128.13 144.37 183.74 34.13 50.37 89.74
165 10.0 65.0 61.38 64.29 64.65 3.62 0.71 0.35
166 10.0 52.0 56.48 57.05 57.28 4.48 5.05 5.28
167 10.0 51.0 51.58 50.62 50.74 0.58 0.38 0.26
168 10.0 51.0 46.68 4491 44.96 4.32 6.09 6.04
169 10.0 37.0 41.78 39.85 39.83 4.78 2.85 2.83
170 10.0 35.0 36.88 35.36 35.29 1.88 0.36 0.29
171 10.0 28.0 31.98 31.38 31.26 3.98 3.38 3.26
172 10.0 44.0 27.08 27.84 27.7 16.92 16.16 16.3
173 10.0 13.0 22.18 24.7 24.54 9.18 11.7 11.54
Appendice F - valutazione modelli annuali
week year decessi_reali | pred_Ols | pred_Poisson | pred_NegBin | mae Ols | mae Poisson | mae Neg
1 1.0 387.0 954.82 957.01 1000.61 567.82 570.01 613.61
2 1.0 334.0 951.89 953.83 995.54 617.89 619.83 661.54
3 1.0 270.0 948.96 950.65 990.5 678.96 680.65 720.5
4 1.0 240.0 946.03 947.49 985.49 706.03 707.49 745.49
5 1.0 285.0 943.11 944.33 980.5 658.11 659.33 695.5
6 1.0 274.0 940.18 941.19 975.54 666.18 667.19 701.54
7 1.0 285.0 937.25 938.06 970.6 652.25 653.06 685.6
8 1.0 390.0 934.32 934.93 965.69 544.32 544.93 575.69
9 1.0 402.0 931.39 931.82 960.8 529.39 529.82 558.8
10 1.0 497.0 928.46 928.72 955.94 431.46 431.72 458.94
11 1.0 521.0 925.53 925.63 951.1 404.53 404.63 430.1
12 1.0 636.0 922.61 922.55 946.29 286.61 286.55 310.29
13 1.0 810.0 919.68 919.48 941.5 109.68 109.48 131.5
14 1.0 970.0 916.75 916.41 936.73 53.25 53.59 33.27
15 1.0 1035.0 913.82 913.36 931.99 121.18 121.64 103.01
16 1.0 1392.0 910.89 910.32 927.27 481.11 481.68 464.73
17 1.0 2066.0 907.96 907.29 922.58 1158.04 | 1158.71 1143.42
18 1.0 2419.0 905.04 904.27 917.91 1513.96 | 1514.73 1501.09
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19 1.0 2626.0 902.11 901.26 913.27 1723.89 | 1724.74 1712.73
20 1.0 2622.0 899.18 898.26 908.64 1722.82 | 1723.74 1713.36
21 1.0 2244.0 896.25 895.27 904.04 1347.75 | 1348.73 1339.96
22 1.0 1974.0 893.32 892.29 899.47 1080.68 | 1081.71 1074.53
23 1.0 1571.0 890.39 889.32 894.92 680.61 681.68 676.08
24 1.0 1327.0 887.46 886.36 890.39 439.54 440.64 436.61
25 1.0 981.0 884.54 883.41 885.88 96.46 97.59 95.12
26 1.0 917.0 881.61 880.47 881.4 35.39 36.53 35.6

27 1.0 997.0 878.68 877.54 876.94 118.32 119.46 120.06
28 1.0 1002.0 875.75 874.62 872.5 126.25 127.38 129.5
29 1.0 964.0 872.82 871.7 868.08 91.18 923 95.92
30 1.0 939.0 869.89 868.8 863.69 69.11 70.2 75.31
31 1.0 1001.0 866.97 865.91 859.32 134.03 135.09 141.68
32 1.0 924.0 864.04 863.03 854.97 59.96 60.97 69.03
33 1.0 877.0 861.11 860.15 850.64 15.89 16.85 26.36
34 1.0 755.0 858.18 857.29 846.33 103.18 102.29 91.33
35 1.0 708.0 855.25 854.44 842.05 147.25 146.44 134.05
36 1.0 617.0 852.32 851.59 837.79 235.32 234.59 220.79
37 1.0 380.0 849.39 848.76 833.55 469.39 468.76 453.55
38 1.0 442.0 846.47 845.93 829.33 404.47 403.93 387.33
39 1.0 330.0 843.54 843.12 825.13 513.54 513.12 495.13
40 1.0 381.0 840.61 840.31 820.96 459.61 459.31 439.96
41 1.0 443.0 837.68 837.51 816.8 394.68 394.51 373.8
42 1.0 561.0 834.75 834.72 812.67 273.75 273.72 251.67
43 1.0 819.0 831.82 831.95 808.55 12.82 12.95 10.45
44 1.0 950.0 828.9 829.18 804.46 121.1 120.82 145.54
45 1.0 1211.0 825.97 826.42 800.39 385.03 384.58 410.61
46 1.0 1050.0 823.04 823.66 796.34 226.96 226.34 253.66
47 1.0 924.0 820.11 820.92 792.31 103.89 103.08 131.69
48 1.0 662.0 817.18 818.19 788.3 155.18 156.19 126.3
49 1.0 625.0 814.25 815.47 784.31 189.25 190.47 159.31
50 1.0 485.0 811.32 812.75 780.34 326.32 327.75 295.34
51 1.0 377.0 808.4 810.05 776.39 4314 433.05 399.39
52 1.0 369.0 805.47 807.35 772.46 436.47 438.35 403.46
53 1.0 302.0 802.54 804.66 768.55 500.54 502.66 466.55
54 2.0 270.0 606.19 767.22 835.77 336.19 497.22 565.77
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55 2.0 369.0 593.56 730.49 792.02 224.56 361.49 423.02
56 2.0 469.0 580.93 695.52 750.56 111.93 226.52 281.56
57 2.0 606.0 568.3 662.22 711.27 37.7 56.22 105.27
58 2.0 560.0 555.67 630.52 674.03 4.33 70.52 114.03
59 2.0 546.0 543.04 600.33 638.75 2.96 54.33 92.75
60 2.0 485.0 530.42 571.59 605.31 45.42 86.59 120.31
61 2.0 531.0 517.79 544.23 573.62 13.21 13.23 42.62
62 2.0 606.0 505.16 518.18 543.59 100.84 87.82 62.41
63 2.0 667.0 492.53 493.37 515.14 174.47 173.63 151.86
64 2.0 678.0 479.9 469.75 488.17 198.1 208.25 189.83
65 2.0 771.0 467.27 447.26 462.62 303.73 323.74 308.38
66 2.0 774.0 454.64 425.85 4384 319.36 348.15 335.6
67 2.0 760.0 442.01 405.46 415.45 317.99 354.54 344.55
68 2.0 613.0 429.38 386.05 393.7 183.62 226.95 219.3
69 2.0 602.0 416.76 367.57 373.09 185.24 234.43 22891
70 2.0 430.0 404.13 349.98 353.56 25.87 80.02 76.44
71 2.0 312.0 391.5 333.22 335.05 79.5 21.22 23.05
72 2.0 448.0 378.87 317.27 317.51 69.13 130.73 130.49
73 2.0 253.0 366.24 302.08 300.89 113.24 49.08 47.89
74 2.0 315.0 353.61 287.62 285.14 38.61 27.38 29.86
75 2.0 242.0 340.98 273.85 270.21 98.98 31.85 28.21
76 2.0 218.0 328.35 260.74 256.07 110.35 42.74 38.07
77 2.0 216.0 315.73 248.26 242.66 99.73 32.26 26.66
78 2.0 181.0 303.1 236.37 229.96 122.1 55.37 48.96
79 2.0 181.0 290.47 225.06 217.92 109.47 44.06 36.92
80 2.0 184.0 277.84 214.28 206.51 93.84 30.28 2251
81 2.0 142.0 265.21 204.03 195.7 123.21 62.03 53.7
82 2.0 135.0 252.58 194.26 185.46 117.58 59.26 50.46
&3 2.0 199.0 239.95 184.96 175.75 40.95 14.04 23.25
&4 2.0 153.0 227.32 176.1 166.55 74.32 23.1 13.55
85 2.0 186.0 214.7 167.67 157.83 28.7 18.33 28.17
86 2.0 156.0 202.07 159.65 149.57 46.07 3.65 6.43
87 2.0 156.0 189.44 152.0 141.74 33.44 4.0 14.26
88 2.0 158.0 176.81 144.73 134.32 18.81 13.27 23.68
89 2.0 104.0 164.18 137.8 127.29 60.18 33.8 23.29
90 2.0 108.0 151.55 131.2 120.62 43.55 232 12.62
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91 2.0 80.0 138.92 124.92 114.31 58.92 44.92 34.31
92 2.0 82.0 126.29 118.94 108.32 44.29 36.94 26.32
93 2.0 62.0 113.67 113.25 102.65 51.67 51.25 40.65
94 2.0 30.0 101.04 107.82 97.28 71.04 77.82 67.28
95 2.0 43.0 88.41 102.66 92.19 45.41 59.66 49.19
96 2.0 42.0 75.78 97.75 87.36 33.78 55.75 45.36
97 2.0 17.0 63.15 93.07 82.79 46.15 76.07 65.79
98 2.0 50.0 50.52 88.61 78.45 0.52 38.61 28.45
99 2.0 77.0 37.89 84.37 74.35 39.11 7.37 2.65
100 2.0 39.0 25.26 80.33 70.45 13.74 41.33 31.45
101 2.0 61.0 12.63 76.49 66.77 48.37 15.49 5.77
102 2.0 77.0 0.01 72.82 63.27 76.99 4.18 13.73
103 2.0 91.0 -12.62 69.34 59.96 103.62 21.66 31.04
104 2.0 106.0 -25.25 66.02 56.82 131.25 39.98 49.18
105 2.0 135.0 -37.88 62.86 53.85 172.88 72.14 81.15
106 3.0 135.0 227.54 274.67 231.71 92.54 139.67 96.71
107 3.0 149.0 223.09 263.42 223.98 74.09 114.42 74.98
108 3.0 173.0 218.65 252.62 216.5 45.65 79.62 43.5
109 3.0 213.0 214.21 242.27 209.28 1.21 29.27 3.72
110 3.0 159.0 209.77 232.34 202.29 50.77 73.34 43.29
111 3.0 167.0 205.33 222.82 195.54 38.33 55.82 28.54
112 3.0 163.0 200.88 213.69 189.01 37.88 50.69 26.01
113 3.0 228.0 196.44 204.93 182.7 31.56 23.07 453
114 3.0 241.0 192.0 196.54 176.6 49.0 44.46 64.4
115 3.0 330.0 187.56 188.48 170.71 142.44 141.52 159.29
116 3.0 292.0 183.12 180.76 165.01 108.88 111.24 126.99
117 3.0 400.0 178.68 173.35 159.5 221.32 226.65 240.5
118 3.0 412.0 174.23 166.25 154.18 237.77 245.75 257.82
119 3.0 300.0 169.79 159.44 149.03 130.21 140.56 150.97
120 3.0 357.0 165.35 152.9 144.06 191.65 204.1 212.94
121 3.0 289.0 160.91 146.64 139.25 128.09 142.36 149.75
122 3.0 239.0 156.47 140.63 134.6 82.53 98.37 104.4
123 3.0 160.0 152.02 134.87 130.11 7.98 25.13 29.89
124 3.0 106.0 147.58 129.34 125.76 41.58 23.34 19.76
125 3.0 92.0 143.14 124.04 121.56 51.14 32.04 29.56
126 3.0 65.0 138.7 118.96 117.51 73.7 53.96 52.51
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127 3.0 45.0 134.26 114.08 113.58 89.26 69.08 68.58
128 3.0 38.0 129.82 109.41 109.79 91.82 71.41 71.79
129 3.0 31.0 125.37 104.92 106.13 94.37 73.92 75.13
130 3.0 38.0 120.93 100.62 102.59 82.93 62.62 64.59
131 3.0 25.0 116.49 96.5 99.16 91.49 71.5 74.16
132 3.0 20.0 112.05 92.55 95.85 92.05 72.55 75.85
133 3.0 12.0 107.61 88.75 92.65 95.61 76.75 80.65
134 3.0 12.0 103.16 85.12 89.56 91.16 73.12 77.56
135 3.0 12.0 98.72 81.63 86.57 86.72 69.63 74.57
136 3.0 9.0 94.28 78.28 83.68 85.28 69.28 74.68
137 3.0 4.0 89.84 75.08 80.89 85.84 71.08 76.89
138 3.0 13.0 854 72.0 78.19 72.4 59.0 65.19
139 3.0 14.0 80.96 69.05 75.58 66.96 55.05 61.58
140 3.0 11.0 76.51 66.22 73.05 65.51 55.22 62.05
141 3.0 9.0 72.07 63.51 70.61 63.07 54.51 61.61
142 3.0 11.0 67.63 60.9 68.26 56.63 49.9 57.26
143 3.0 17.0 63.19 58.41 65.98 46.19 41.41 48.98
144 3.0 19.0 58.75 56.02 63.78 39.75 37.02 44.78
145 3.0 18.0 543 53.72 61.65 36.3 35.72 43.65
146 3.0 24.0 49.86 51.52 59.59 25.86 27.52 35.59
147 3.0 47.0 45.42 49.41 57.6 1.58 241 10.6

148 3.0 42.0 40.98 47.38 55.68 1.02 5.38 13.68
149 3.0 53.0 36.54 45.44 53.82 16.46 7.56 0.82

150 3.0 67.0 32.1 43.58 52.02 349 23.42 14.98
151 3.0 111.0 27.65 41.79 50.29 83.35 69.21 60.71
152 3.0 86.0 23.21 40.08 48.61 62.79 45.92 37.39
153 3.0 122.0 18.77 38.44 46.99 103.23 83.56 75.01
154 3.0 97.0 14.33 36.86 45.42 82.67 60.14 51.58
155 3.0 98.0 9.89 35.35 43.9 88.11 62.65 54.1

156 3.0 87.0 5.44 33.9 42.44 81.56 53.1 44.56
157 3.0 80.0 1.0 32.51 41.02 79.0 47.49 38.98
158 4.0 126.0 124.4 139.6 145.87 1.6 13.6 19.87
159 4.0 89.0 117.21 125.43 130.15 28.21 36.43 41.15
160 4.0 120.0 110.01 112.69 116.13 9.99 7.31 3.87

161 4.0 113.0 102.82 101.25 103.62 10.18 11.75 9.38

162 4.0 113.0 95.62 90.97 92.45 17.38 22.03 20.55
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163 4.0 96.0 88.43 81.73 82.49 7.57 14.27 13.51
164 4.0 94.0 81.23 73.43 73.6 12.77 20.57 20.4
165 4.0 65.0 74.04 65.98 65.67 9.04 0.98 0.67
166 4.0 52.0 66.84 59.28 58.6 14.84 7.28 6.6
167 4.0 51.0 59.64 53.26 52.28 8.64 2.26 1.28
168 4.0 51.0 52.45 47.85 46.65 1.45 3.15 4.35
169 4.0 37.0 45.25 42.99 41.62 8.25 5.99 4.62
170 4.0 35.0 38.06 38.63 37.14 3.06 3.63 2.14
171 4.0 28.0 30.86 34.71 33.14 2.86 6.71 5.14
172 4.0 44.0 23.67 31.18 29.57 20.33 12.82 14.43
173 4.0 13.0 16.47 28.02 26.38 3.47 15.02 13.38
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