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Sommario

L’avvento dei modelli Vision-Language, come CLIP (Contrastive Language-Image Pre-
training), ha trasformato la Computer Vision, aprendo nuove frontiere nella generazione
e nell’analisi di contenuti visivi. Tuttavia, l'efficacia di tali modelli nel comprendere
concetti astratti propri del dominio artistico quali lo stile pittorico e la qualita estetica
rimane una questione aperta.

Questa tesi si inserisce in un progetto di ricerca collaborativo volto a valutare le
rappresentazioni latenti di CLIP nel dominio dell’arte, analizzando sia opere reali che
sintetiche su dataset eterogenei (NGA, WikiArt, AI-ArtBench e Al-Pastiche). Il lavo-
ro complessivo indaga tre dimensioni fondamentali: ’allineamento testo-immagine, il
riconoscimento dello stile e la valutazione della qualita generativa.

Nello specifico, il contributo originale di questo elaborato si focalizza sull’analisi delle
immagini generate artificialmente. In una prima fase, ¢ stato validato I’allineamento
semantico tra prompt e immagini sintetiche. Successivamente, si ¢ esaminata la capacita
di CLIP di riconoscere stili artistici complessi, dimostrando che tecniche di supervisio-
ne leggera come il Linear Probing ottengono prestazioni superiori rispetto ad approcci
Zero-Shot o Few-Shot. Infine, & stato condotto uno studio inedito sull’aderenza estetica,
confrontando la similarita di CLIP con il giudizio umano. I risultati evidenziano una
discrepanza significativa: il modello tende a ignorare artefatti visivi e difetti strutturali
determinanti per la percezione umana. L’integrazione sperimentale di un defect sco-
re ha permesso di migliorare I'allineamento, suggerendo che le attuali rappresentazioni
multimodali necessitino di segnali ausiliari per fungere da giudici di qualita affidabili.

I risultati concludono che, sebbene CLIP eccella nel catturare la semantica denotativa,
la comprensione delle sfumature stilistiche e qualitative nell’arte generata richiede ancora
interventi mirati e supervisione specifica.
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Capitolo 1

Introduzione

1.1 Contesto e Rilevanza dei Modelli Multimodali

L’avanzamento delle architetture di apprendimento profondo ha consolidato i model-
li multimodali come pilastri fondamentali nelle moderne applicazioni di intelligenza
artificiale. Questi sistemi, capaci di integrare e correlare informazioni provenienti da
domini diversi, in particolare testo e immagini, hanno rivoluzionato il campo della com-
puter vision. Tra questi, CLIP (Contrastive Language-Image Pretraining), sviluppato
da OpenAl, si distingue come un’innovazione architetturale significativa [1].

Addestrato attraverso un compito di pre-addestramento contrastivo su una vasta col-
lezione di coppie (immagine, testo) estratte dal web, CLIP ha dimostrato una notevole
capacita di apprendere rappresentazioni visive trasferibili attraverso la supervisione
del linguaggio naturale. Questa caratteristica lo ha reso uno strumento versatile e am-
piamente adottato in molteplici ambiti della computer vision, tra cui la classificazione
di immagini zero-shot, l'identificazione di oggetti (es. image re-identification) e 'image
retrieval. Inoltre, la sua capacita di misurare la coerenza semantica tra un prompt te-
stuale e un’immagine é stata cruciale, portando alla sua adozione come funzione di
guida (guidance loss) in modelli generativi all’avanguardia, come DALL-E e Stable
Diffusion |2] (sebbene CLIP funga anche da prior guidance in altri contesti).

1.2 Motivazione e Obiettivi della Ricerca

Nonostante ’eccellenza prestazionale di CLIP in compiti di visione generici, permane la
necessita di investigare a fondo le sue abilita e i suoi limiti quando applicato a domini
visivi complessi e altamente specializzati. Il contesto artistico, caratterizzato da astra-
zione, sottigliezze stilistiche e una ricchezza di dettagli formali, rappresenta un banco di
prova ideale per valutare la vera profondita della comprensione visiva del modello.



La presente ricerca si pone l'obiettivo di indagare criticamente le capacita di
CLIP nell’analisi delle opere d’arte, al fine di determinare la sua affidabilita come mec-
canismo di guida per la generazione di opere artistiche. Specificamente, intendiamo
valutare se 'attuale rappresentazione multimodale appresa da CLIP sia sufficiente per
catturare le sfumature che definiscono la qualita e I'identita di un’opera d’arte.

L’ipotesi di partenza, supportata dai risultati preliminari, suggerisce che, sebbene
CLIP dimostri una robusta capacita di riconoscere il contenuto semantico (i soggetti)
delle opere, essa fatica a cogliere dettagli fini e concetti astratti cruciali, quali la te-
stura delle pennellate, I’aderenza stilistica a movimenti specifici e la corretta collocazione
temporale (periodo storico) dell’opera. Questa limitazione suggerisce 'esigenza di svi-
luppare metodologie pit espressive o di sfruttare in modo pitt mirato le feature nascoste
nello spazio latente codificato da CLIP.

1.3 Struttura Sperimentale

Per ottenere risultati oggettivi e replicabili, i nostri esperimenti sono stati strutturati
per dissezionare i vari livelli di comprensione visiva di CLIP nel dominio artistico. A
tal fine, & stato mantenuto CLIP come componente fissa e congelata (zero-shot
evaluation), senza alcuna fase di fine-tuning, per isolare e valutare le sue capacita
intrinseche apprese dal pre-addestramento originale.

La metodologia di valutazione si articola in tre livelli progressivi di complessita:

1. Livello I: Content Retrieval. L’obiettivo primario é verificare I’abilita di CLIP
nell’identificazione accurata dei soggetti principali all’interno delle opere artisti-
che, testando la comprensione del contenuto denotativo dell’immagine.

2. Livello II: Style Recognition. Dopo aver validato la comprensione del contenu-
to, si procede a un livello di astrazione superiore, verificando la capacita di CLIP
di discriminare e categorizzare opere basandosi su concetti stilistici astratti (es.
Cubismo, Impressionismo) (per un contesto sulla rappresentazione neurale dello
stile, si veda anche [3]).

3. Livello III: Artifacts Detection and Human Adherence. Questo esperi-
mento mira a valutare se CLIP possieda la capacita di fungere da giudice di
qualita autonomo, similmente alla percezione umana. L’analisi si concentra sul-
la sua abilita di identificare artefatti visivi, difetti o incoerenze formali all’interno
delle immagini, un requisito fondamentale per una guida efficace dei modelli ge-
nerativi. (Si veda anche la ricerca sulle metriche percettive per il rilevamento di
artefatti [4]).



Per garantire la massima obiettivita e la generalizzabilita dei risultati, gli esperimen-
ti sono condotti utilizzando quattro dataset distinti, rappresentativi di diverse sfaccet-
tature dell’arte digitale e tradizionale: NGAD (National Gallery of Art), WikiArt,
Al-pastiche e Al-artBench.

I risultati di questa ricerca mirano a fornire un contributo significativo alla comunita
scientifica, offrendo una valutazione quantitativa e qualitativa delle prestazioni di
CLIP in ambito artistico, informando futuri sviluppi metodologici per una piu efficace
integrazione dei modelli multimodali nella creazione e nell’analisi dell’arte digitale.

1.4 Datasets Utilizzati

Per la conduzione degli esperimenti diagnostici volti a investigare le feature latenti di
CLIP, abbiamo deliberatamente incorporato sia dataset di opere artistiche reali sia colle-
zioni di opere generate artificialmente. Questo approccio metodologico non solo permette
un’analisi pitt accurata della capacita di codifica di CLIP, ma consente anche di valuta-
re se il modello riesca a percepire e a codificare i difetti visivi (artefatti) intrinseci alla
generazione artificiale di opere d’arte.

1.4.1 National Gallery of Art (NGA)

Il dataset della National Gallery of Art (NGA) ¢ stato costruito utilizzando 2.693
opere disponibili pubblicamente sul sito web della National Gallery of Art di Washing-
ton [5]. Ogni opera ¢ corredata da una ricca dotazione di metadati essenziali, tra cui
I'OID (Object Identifier), il titolo, lo stile, ’autore, una descrizione e un collegamento
all'limmagine ad alta risoluzione. Il vantaggio distintivo nell’impiego di un dataset di arte
reale e curata come NGA risiede nella disponibilita di descrizioni accurate e profes-
sionali fornite da critici e storici dell’arte. Tale livello di dettaglio e autorita critica
¢ fondamentale per valutare la percezione di CLIP anche da una prospettiva estetica e
storico-artistica.

Nonostante la ricchezza dei metadati, un limite metodologico € rappresentato dalla
sua non-bilanciatura per classe (stile o periodo), un fattore che puo introdurre bias
non intenzionali nell’addestramento di modelli di classificazione di stile.

1.4.2 Al-Pastiche

Il dataset AI-Pastiche € una collezione di 953 opere generate artificialmente, concepita
per offrire un ambiente ricco e variegato per la valutazione dei modelli di computer vision
nel contesto dell’arte sintetica. Le opere spaziano su oltre 19 stili e sono state generate
in modo eterogeneo utilizzando 12 differenti modelli generativi, partendo da 73 prompts
meticolosamente progettati.



Ciascuna opera ¢ annotata con il modello generativo, il prompt originale, il soggetto,
lo stile, il periodo storico, ed ¢ corredata da punteggi quantitativi che misurano la presen-
za di difetti, autenticita e aderenza al tema. L’inclusione di questi punteggi sugli
artefatti rappresenta un vantaggio cruciale: si rivelera infatti essenziale per gli espe-
rimenti sull’aderenza, che mirano a determinare se le rappresentazioni latenti di CLIP
siano in grado di codificare e catturare i difetti visivi intrinseci ai processi generativi.

A causa del vincolo di 77 token, anche i prompts associati a questo dataset sono stati
abbreviati utilizzando la medesima tecnica di riassunto basata su GPT4o-mini applicata
al dataset NGA, garantendo 'uniformita metodologica.

Il valore di Al-Pastiche risiede nella dettagliata progettazione manuale dei
prompts, che garantisce un elevato controllo semantico sulle immagini generate. Ulte-
riore vantaggio € 'ampia varieta dei dati, con diversificazione di modelli, stili e soggetti.
Sebbene i generatori di immagini utilizzati a volte presentino difetti visivi evidenti, ta-
le caratteristica non costituisce un ostacolo, ma ¢ al contrario un elemento diagnostico
centrale della presente ricerca. Nella Figure 1.1 riportiamo un esempio di immagini
generato dallo stesso prompt.
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Figura 1.1: Esempi di immagini provenienti dal dataset Al-Pastiche. Tutte le immagini
sono state generate a partire dal seguente prompt:"Generate a view of venice in the
vedutism style of the first half of the XVIII century, focusing on a scene along the Grand
Canal. The composition features detailed classical architecture with grand domes and
facades, and gondolas moving along the canal. Add soft clouds to the sky and ensure
there is little fading in the horizon, providing clear visibility of distant buildings. The
color palette should include very soft blues and warm earth tones, avoiding saturated
colors. The atmosphere remains calm and luminous, with minimal light-and-shadow
effects, capturing the beauty and grandeur of Venice from a broad perspective."



1.4.3 AI-ArtBench

AI-ArtBench ¢ stato originariamente sviluppato nell’ambito del progetto ArtBrain [6]
da ricercatori della Carnegie Mellon University e dell’'UC Berkeley, con l'obiettivo di
fungere da benchmark per la classificazione degli stili e la distinzione tra opere umane
e artificiali. Si tratta di una collezione massiva contenente oltre 185.000 immagini, di-
stribuite su 10 stili. Di queste, 60.000 sono opere create da umani (6.000 immagini per
stile) e 125.015 sono riproduzioni sintetiche generate utilizzando Latent Diffusion e Sta-
ble Diffusion con prompt condizionati. Le immagini umane hanno dimensioni 256 x 256,
mentre quelle sintetiche sono disponibili nelle risoluzioni 256 x 256 e 768 x 768.
I punti di forza di questo dataset risiedono in:

1. Robustezza e Bilanciamento: ArtBench [7] ¢ uno dei primi dataset bilancia-
ti per classe nel dominio artistico. Un dataset bilanciato riduce il rischio che i
modelli allenati sviluppino bias evidenti nella classificazione, conferendo maggiore
robustezza al modello addestrato su di esso.

2. Qualita e Annotazione: Le immagini umane possiedono un’alta qualita e sono
corredate da captions chiare e concise che ne descrivono il contenuto. L’intero
dataset ¢ stato sottoposto a un rigoroso processo di selezione e standardizzazione.

3. Espansione del Dominio: L’inclusione di opere artistiche sintetiche arricchisce
il dominio del modello, consentendogli di adattare la sua comprensione anche alle
rappresentazioni artificiali, raggiungendo un livello superiore di generalizzazione.

Tuttavia, AI-ArtBench presenta alcune criticita legate alla generazione delle opere
sintetiche. Gli autori hanno adottato le prime versioni dei modelli Stable Diffusion e
Latent Diffusion, che non erano ancora pienamente perfezionati e che, di conseguenza,
producono spesso difetti evidenti. Inoltre, per la generazione, gli autori hanno utiliz-
zato lo stesso prompt ("an artwork in {style} art style"), variando unicamente i semi
di generazione. Il risultato ¢ una collezione di opere artificiali che tendono a essere
rappresentazioni stereotipiche e ripetitive di un certo stile artistico, con soggetti e
composizioni visivamente troppo simili tra loro. Questa omogeneita non favorisce 1’arric-
chimento del dataset in termini di diversita, rendendo il modello piti incline all’ overfitting.
Sarebbe stato auspicabile I'impiego di prompt piu ricchi e diversificati per introdurre una
maggiore variabilita interpretativa e visiva. Alcuni esempi delle immagini contenute in
questo dataset sono illustrati in (Figure 1.2)
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Figura 1.2: Esempi di immagini generate da Al-ArtBench e dei loro nearest neighbor,
che mostrano la somiglianza visiva responsabile dell’incremento artificiale delle metriche

di performance.



1.4.4 AI-WikiArt

AI-WikiArt (o WikiArt-VLM) ¢ un dataset concepito per valutare le performance
dei Vision-Language Models (VLM) nell’attribuzione degli autori di opere artistiche. Si
tratta di una collezione che comprende 39.530 opere reali tratte dal vasto dataset pubblico
WikiArt, con l'aggiunta di tre imitazioni sintetiche per ogni opera reale (39.530 x 3),
generate utilizzando modelli come Fluz, Stable Diffusion e F-Lite. 1l dataset reale é
riccamente diversificato, includendo 128 artisti famosi, 10 generi e 27 stili.

La componente sintetica é stata generata tramite una pipeline in due fasi:

1. L’opera originale da imitare & stata processata da GPTY4.1-mini per generare una
descrizione dettagliata.

2. Questa descrizione é stata utilizzata come prompt di generazione per i modelli,
istruendoli a "produrre un’immagine che assomigli a un dipinto di [pittore corretto],
ma non una copia esatta tra le sue opere: [descrizione|".

Questo processo mirava a produrre opere sintetiche allineate a quelle reali per stile e
contenuto, pronte per la valutazione del modello. Il vantaggio principale del dataset
risiede nelle opere reali ricche di metadati, inclusa I’attribuzione dell’autore. I difetti,
tuttavia, si concentrano sulla parte sintetica:

1. T generatori impiegati erano relativamente modesti rispetto agli standard attua-
li, producendo riproduzioni meno realistiche e contenenti tracce evidenti di
artefatti visivi e stilistici.

2. Le captions generate da GPTY.1-mini sono risultate carenti di dettagli stilisti-
ci, concentrandosi prevalentemente sul contenuto. Il risultato ¢ che le immagini
riprodotte non possiedono una fedelta stilistica sufficiente all’originale.

Per i motivi sopracitati, 'affidabilita di questo dataset per 'addestramento di modelli per
I’attribuzione dell’autore ¢ limitata. Per la generazione di immagini sintetiche pit fedeli,
sarebbe stato necessario integrare la pipeline con l'intervento di esperti umani o 1'uso
di descrizioni artistiche piu dettagliate per arricchire i prompt e produrre imitazioni piu
accurate delle opere originali. Gli esempi di questo dataset sono illustrati nella (Figure
1.3)
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ID: 14835.jpg
Style: Realism — Artist: Isaac Levitan

Human FLUX F-Lite Stable-Diffusion

Generation prompt:
Produce an image that closely resembles a painting by Isaac Levitan, but is not an exact copy of his works: The image depicts a serene countryside
scene with a winding stream flowing through green fields and a distant tree line, created using expressive brushstrokes in oil painting.

ID: 30341.jpg
Style: Symbolism — Artist: Nicholas Roerich
FLUX F-Lite Stable-Diffusion

Human

Generation prompt:
Produce an image that closely resembles a painting by Nicholas Roerich, but is not an exact copy of his works: The image depicts a serene mountain
range with snow-capped peaks and layered blue hills, created using a soft watercolor painting technique.

ID: 3987.jpg
Style: Realism — Artist: William Merritt Chase

Human FLUX F-Lite Stable-Diffusion

Generation prompt:
Produce an image that closely resembles a painting by William Merritt Chase, but is not an exact copy of his works: The image depicts a woman in a
dark coat and hat with a feather, smiling subtly against a warm, textured background, created using oil painting techniques.

Figura 1.3: Esempi di immagini provenienti dal dataset AI-WikiArt
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Capitolo 2

Il Modello CLIP: Architettura e
Funzionamento

2.1 Nascita di CLIP

I modelli tradizionali di Computer Vision sono stati a lungo basati su un insieme fisso
e limitato di categorie di oggetti, come nel caso di ImageNet [8]. Sebbene tali modelli
abbiano raggiunto prestazioni elevate nei compiti per cui sono stati addestrati, la loro
capacita di generalizzare a domini diversi rimane ridotta. Quando si presentano nuovi
oggetti o classi non incluse nel dataset di addestramento, é infatti necessario introdurre
manualmente nuove etichette e riaddestrare il modello. Questa dipendenza da una su-
pervisione fortemente vincolata ha rappresentato per anni uno dei principali limiti della
visione artificiale.

Per superare tali restrizioni, il team di OpenAl ha introdotto CLIP (Contrastive
Language-Image Pre-training) [1], un modello multimodale in grado di apprendere rap-
presentazioni visive e testuali condivise a partire da una vasta collezione di dati naturali.
L’idea centrale di CLIP ¢ di sfruttare il linguaggio naturale come forma di supervisione
generalizzabile, anziché basarsi su etichette fisse e predefinite.

L’architettura di CLIP ¢ composta da due moduli principali, addestrati congiunta-
mente secondo un approccio contrastivo:

1. Encoder di immagine (Image Encoder): utilizza varianti di architetture no-
te come ResNet (RN50, RN101) o, piu frequentemente, il Vision Transformer
(ViT) [9], per mappare un’immagine in un vettore di embedding.

2. Encoder di testo (Text Encoder): si basa su un modello Transformer (simile a
GPT) adattato per rappresentare frasi o didascalie come vettori nello stesso spazio
latente dell’encoder visivo.
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Durante il pre-addestramento, CLIP viene esposto a circa 400 milioni di coppie (im-
magine, testo). Dato un batch di N immagini e N descrizioni testuali, il modello deve
individuare le corrispondenze corrette tra tutte le N? possibili combinazioni. A tale sco-
po viene utilizzata una funzione di perdita contrastiva che massimizza la similarita
del coseno tra i vettori di immagini e testi corrispondenti, e la minimizza per le coppie
non corrispondenti. In questo modo, i due encoder imparano a rappresentare immagini
e testi in uno spazio latente condiviso, dove elementi semantici simili risultano vicini.

Uno dei risultati pitt notevoli di questo addestramento ¢ la capacita di generalizza-
zione zero-shot. Una volta addestrato, CLIP puo affrontare nuovi compiti di classifica-
zione senza ulteriore fine-tuning, semplicemente confrontando I'immagine con descrizioni
testuali formulate in linguaggio naturale. Il processo di classificazione zero-shot avviene
come segue:

1. Si definisce un insieme di frasi che descrivono le classi d’interesse (ad esempio, “una

LRI

foto di un gatto”, “una foto di un cane”).
2. L’immagine da classificare viene convertita nel suo embedding visivo.

3. Si calcola la similarita del coseno tra tale vettore e gli embedding testuali delle
descrizioni.

4. I’'immagine viene assegnata alla classe con la similarita maggiore.

Questo meccanismo consente a CLIP di raggiungere o superare modelli supervisionati
su decine di dataset di Computer Vision, dimostrando un’elevata robustezza e capacita
di trasferimento tra domini.

2.2 Impatto e Applicazioni nel Panorama della Com-
puter Vision

L’introduzione di CLIP ha avuto un impatto profondo sul campo della visione artificiale,
estendendo il suo impiego a una grande varieta di compiti multimodali.

e Guida per modelli generativi: CLIP viene utilizzato come metrica di alli-
neamento semantico tra testo e immagine nei modelli text-to-image, come Stable
Diffusion |2, 10|, DALL-E [11] e GLIDE [12], dove funge da funzione di perdita di
guida [13, 14| (guidance loss).

e Classificazione zero-shot fine-grained: grazie alla sua capacita di cogliere
differenze sottili, CLIP si & dimostrato efficace nella classificazione di categorie
visivamente simili [15, 16, 17].
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e Image retrieval e ricerca semantica: lo spazio multimodale di CLIP & ampia-
mente impiegato nella semantic search |18, 19, 20| e nella generazione di immagini
basati su prompts |21, 22|, consentendo di cercare immagini tramite descrizioni
testuali complesse.

e Altri ambiti applicativi: CLIP ¢ stato applicato con successo anche a compiti
di Optical Character Recognition (OCR), riconoscimento di azioni nei video e geo-
localizzazione visiva.

2.3 Limiti e criticitd del modello

Nonostante gli eccellenti risultati ottenuti, il modello CLIP presenta numerose limitazio-
ni, soprattutto quando viene applicato a domini complessi come quello artistico. Diversi
studi hanno infatti evidenziato che le sue prestazioni derivano spesso da correlazioni
superficiali tra elementi visivi e testuali, pitt che da una reale comprensione semantica
o composizionale. In particolare, CLIP mostra difficolta nel trattare concetti come la
negazione, I'ordine degli oggetti, il conteggio e I'associazione corretta tra attributi
e oggetti [23, 24, 25].

Esperimenti condotti su scene contenenti pitt oggetti hanno inoltre messo in luce la
presenza di bias strutturali nei due encoder che compongono il modello [26]:

e l'encoder visivo tende a privilegiare gli oggetti di dimensioni maggiori;

e 'encoder testuale assegna un peso maggiore agli elementi menzionati per primi nel
prompt.

Tali asimmetrie compromettono la capacita del modello di cogliere le relazioni spaziali
e narrative tra gli elementi di una scena, un aspetto particolarmente rilevante nell’analisi
delle opere artistiche, dove la disposizione e l'interazione visiva tra i soggetti rivestono
un ruolo fondamentale.

Un’ulteriore criticita riguarda la robustezza del modello. Sebbene CLIP si dimostri
piu resistente rispetto ai modelli basati su ImageNet di fronte a variazioni visive comuni
[27], esso rimane vulnerabile a:

e attacchi avversari (adversarial attacks), in grado di manipolare le predizioni del
modello mediante perturbazioni visive impercettibili [28];

e sensibilita al prompt, ovvero variazioni significative nelle prestazioni dovute a
differenze anche minime nella formulazione testuale delle query [29].

Infine, poiché CLIP é stato addestrato su un ampio corpus di dati non filtrati prove-
nienti dal web, esso riflette e talvolta amplifica i bias sociali e culturali presenti nel
dataset di addestramento [30]. Tale fenomeno risulta particolarmente problematico in
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ambiti estetici: se, ad esempio, le descrizioni di “arte classica” nei dati di training fanno
riferimento prevalentemente a determinati periodi storici o stili, il modello puo mostrare
difficolta nel riconoscere correttamente varianti stilistiche contemporanee o ibride.

2.4 Tecniche di Ottimizzazione e Adattamento

Per superare i limiti evidenziati, la ricerca recente ha sviluppato diverse strategie di
adattamento di CLIP, mirate a migliorarne le prestazioni in compiti specifici preservando
al contempo le conoscenze acquisite durante il pre-addestramento.

Un approccio diffuso consiste nell’inserire moduli leggeri all’interno dell’architettu-
ra del modello per eseguire un fine-tuning efficiente su nuovi compiti, senza modificare
i pesi originali. Esempi di questa famiglia sono CLIP-Adapter [31], TIP-Adapter [32] e
LizP [33].

Altri metodi, come CoOp [34] e CoCoOp [35], mirano a ridurre la sensibilita al prompt
apprendendo vettori di token aggiuntivi che fungono da contesto adattivo. Tuttavia, nel
dominio estetico tali approcci risultano meno efficaci, poiché il divario semantico tra
descrizioni testuali e caratteristiche visive stilistiche € spesso troppo ampio per essere
colmato da un semplice prompt tuning.

Un’ulteriore linea di ricerca propone di proiettare le feature latenti di CLIP in sot-
tospazi a dimensione ridotta o specifici per il compito, come nei modelli APE e
CLIP-Subspace (36, 37]. Questo tipo di approccio é particolarmente interessante in
quanto:

e la similarita del coseno non ¢ invariante rispetto a trasformazioni lineari;

e uno strato di proiezione puo enfatizzare le feature piu rilevanti (ad esempio, quelle
legate allo stile o al periodo storico) senza modificare il core del modello.

Tali strategie di proiezione sono anche alla base dei piti recenti modelli Vision-
Language come LLaVA (38|, Qwen-VL [39] e InstructBLIP [40], che impiegano proie-
zioni allenabili — ad esempio il Q-Former introdotto in BLIP-2 [41] — per collegare
efficacemente le rappresentazioni visive e linguistiche. Tuttavia, questi modelli sono
maggiormente orientati all’instruction-following (cioé la capacita di seguire istruzioni te-
stuali) piuttosto che all’analisi interpretativa delle immagini, e pertanto non rientrano
nel focus della presente ricerca.

Infine, studi basati su tecniche di gradient ascent [42, 43, 44| hanno esplorato la pos-
sibilita di ricostruire immagini a partire dagli embedding di CLIP [45]. Questi
metodi consentono di indagare cio che il modello “vede” e come struttura le proprie rap-
presentazioni interne, offrendo strumenti preziosi per valutarne la trasparenza interpre-
tativa. Tale prospettiva é particolarmente utile nello studio dell’arte, dove comprendere
i meccanismi percettivi del modello ¢ tanto importante quanto misurarne 1’accuratezza.
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Nel complesso, tali approcci riflettono un crescente sforzo della comunita scientifica
per ampliare 1'utilita a valle di CLIP e, al contempo, per accedere e interpretare meglio
la struttura del suo spazio di embedding. Nel contesto della presente ricerca, tuttavia,
si ¢ scelto di evitare metodologie che implichino processi di fine-tuning, concentrandosi
invece su analisi basate su proiezioni lineari, utili per comprendere piu a fondo la natura
e 'organizzazione intrinseca dello spazio latente di CLIP.
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Capitolo 3

Text—Image Alignment

3.1 Obiettivi e Metodologia

Il primo passo della nostra analisi consiste nel valutare la capacita di CLIP di associare
immagini e descrizioni testuali. Questo esperimento fornisce una baseline utile per com-
prendere in che misura il modello riesca a cogliere la coerenza semantica fra i due domini
prima di affrontare compiti pitt complessi come il riconoscimento dello stile artistico.

La procedura é stata sviluppata in collaborazione con il gruppo di lavoro e si basa sul
confronto fra gli embeddings testuali e visivi. Dati A € R"*? (embeddings testuali) e B €
R™*4 (embeddings visivi), la matrice C = AB' contiene per ogni coppia immagine-testo
la loro similitudine coseno. Per ogni immagine si seleziona la descrizione con punteggio
pit alto e si valuta la correttezza della predizione tramite accuracy o recall@K a seconda
della dimensione del dataset.

Il mio contributo principale riguarda l'intera pipeline di text—image alignment sul
dataset AI-Pastiche: preprocessing, valutazione con diversi modelli CLIP e analisi
dettagliata dei risultati.

3.2 Datasets Utilizzati

L’esperimento € stato condotto su tre dataset:

e Al-Pastiche: 73 descrizioni generate tramite prompt dettagliati; questo ¢ il data-
set sul quale ho svolto completamente 1’analisi.

e NGAD: circa 1.500 descrizioni; analisi svolta in collaborazione con il gruppo.

e AI-WikiArt: circa 40.000 testi; analisi svolta in collaborazione con il gruppo.

Il dataset AI-ArtBench ¢ stato escluso poiché le sue descrizioni estremamente
sintetiche non consentono una valutazione semantica significativa dell’allineamento.
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3.3 Limitazioni dei Prompt e Preprocessing

I dataset NGAD e AI-WikiArt includono descrizioni spesso lunghe. Per rispettare il
limite dei 77 token dell’encoder testuale di CLIP, le descrizioni sono state riassunte
mediante un sistema di summarization automatica basato su GPT4o-mini. Questa parte
¢ stata svolta congiuntamente dal gruppo.

Per tutte le immagini é stato inoltre applicato il preprocessing standard di CLIP
(ridimensionamento, center crop, normalizzazione). Tale pipeline pud rimuovere porzioni
rilevanti dell’immagine, soprattutto in caso di rapporti di forma estremi, influenzando
direttamente le performance dei modelli.

3.4 Risultati

3.4.1 Risultati su NGAD

Il dataset NGAD permette una valutazione basata su recall@K. 1 risultati, ottenuti
nell’ambito del lavoro collettivo, sono riportati in Tab. 3.1.

Model recall@l recall@5 recall@10
RN50 0.663 0.915 0.966
RN101 0.693 0.926 0.966
RN50x4 0.741 0.946 0.978
RN50x16 0.791 0.964 0.988
RN50x64 0.828 0.970 0.990
ViT-B/32 0.678 0.925 0.970
ViT-B/16 0.709 0.928 0.969
ViT-L/14 0.794 0.972 0.989
ViT-L/14@336px 0.814 0.974 0.991

Tabella 3.1: Summary-image alignment per NGAD.

I modelli piu grandi (RN50x64, ViT-L/14@336px) forniscono le prestazioni migliori,
confermando la dipendenza del compito dalla capacita rappresentativa del modello.

3.4.2 Risultati su AlI-Pastiche (mio contributo)

Questa sezione rappresenta il contributo principale del mio lavoro. L’analisi completa
del dataset Al-Pastiche é stata svolta da me, includendo preprocessing, implementazione
della pipeline di allineamento e valutazione dei modelli.
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Model Accuracy
RN50 0.866
RN101 0.887
RN5H0x4 0.891
RN5/0x16 0.893
RN50x64 0.896
ViT-B/32 0.881
ViT-B/16 0.880
ViT-L/14 0.896
ViT-1/14@336px 0.896

Tabella 3.2: Accuracy su Al-Pastiche (mio contributo).

Le performance sono elevate per tutti i modelli, con un’accuracy massima pari a
0.896. In particolare, RN50x64 e ViT-L/14@336px si confermano i modelli piu efficaci.
L’elevata coerenza delle immagini generate con i prompt rende il compito relativamente
meno ambiguo rispetto ad altri dataset.

3.4.3 Risultati su AI-WikiArt
[ risultati su AI-WikiArt (ottenuti con ViT-L/14@336px) sono riportati in Tab. 3.3.

Questa parte € stata condotta dal gruppo.

|Recall@1 Recall@5 Recall@10
WikiArt (Al-generated) | 0.4258 0.6565 0.7416

Tabella 3.3: Prompt-image alignment su AI-WikiArt.

Le prestazioni risultano inferiori a causa della scarsa qualita semantica delle descri-
zioni sintetiche e della bassa coerenza delle immagini generate.

3.5 Conclusioni

L’esperimento mostra che CLIP ¢ efficace nell’associare immagini e descrizioni quando i
testi sono ricchi e le immagini rappresentano fedelmente il contenuto. Il mio contributo
principale é stato 'intero processo di valutazione del dataset Al-Pastiche, i cui risultati
confermano le capacita del modello nel contesto di immagini generate di alta qualita.
I risultati su NGAD e AI-WikiArt, ottenuti in collaborazione, forniscono un quadro
comparativo utile e mostrano i limiti introdotti da dataset pitt rumorosi o semantici
meno strutturati.
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Capitolo 4

Riconoscimento dello Stile Artistico

4.1 Evoluzione delle tecniche di classificazione

L’attribuzione automatica dello stile artistico ha subito una profonda evoluzione parallela
ai progressi della Computer Vision. Inizialmente affidata all’analisi di esperti, la classi-
ficazione ha visto i primi tentativi di automazione tramite 1'ingegnerizzazione manuale
di feature (colori, texture, composizione) processate da algoritmi classici come SVM o
k-NN [46, 47|. Tuttavia, la natura astratta dei concetti artistici rendeva questi approcci
poco generalizzabili.

La svolta é giunta con le Reti Neurali Convoluzionali (CNN). L’uso del Transfer Lear-
ning e del Fine-tuning su reti pre-addestrate (es. su ImageNet) ha permesso di ottenere
rappresentazioni molto piu ricche, superando i metodi precedenti [48|. Recentemente, il
paradigma si & spostato verso i modelli multimodali Vision-Language (VLM) come CLIP,
che apprendono uno spazio latente condiviso tra immagini e testo. Sebbene promettenti,
resta da chiarire se tali modelli, allenati su dati generici del web, possiedano la granula-
rita necessaria per distinguere stili pittorici complessi senza soffrire di bias semantici o
allucinazioni visive, come evidenziato in recenti studi su LMM [49].

Il presente capitolo indaga l'efficacia di CLIP come feature extractor per lo stile. Il
lavoro qui presentato € frutto di una ricerca collaborativa; nello specifico, il contributo
dell’autore si concentra sull’analisi delle performance relative ai dataset sintetici (in par-
ticolare AI-Pastiche) e sulla valutazione della capacita di generalizzazione del modello
tra dominio reale e artificiale (esperimenti Inter-Dataset).

4.2 Metodologia Sperimentale

Per valutare le capacita di CLIP, abbiamo adottato un approccio incrementale, partendo
dalle capacita native del modello fino all’addestramento di classificatori dedicati.
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4.2.1 Approccio Zero-Shot (Baseline)

Come punto di partenza, abbiamo testato la capacita "nativa" di CLIP di classificare lo
stile confrontando la similarita coseno tra I’embedding dell’immagine e i prompt testuali
del tipo “an artwork in {style} style”. Questo serve a quantificare il modality gap, ovvero
la distanza tra la rappresentazione visiva dello stile e la sua descrizione testuale.

4.2.2 Linear Probing (Focus della Tesi)

Per superare i limiti dello Zero-Shot, abbiamo utilizzato la tecnica del Linear Probing:
addestrare un classificatore lineare (Regressione Logistica) direttamente sugli embedding
visivi estratti da CLIP. Questo approccio ci permette di capire se I'informazione stilistica
¢ presente nello spazio latente, indipendentemente dalla capacita del modello di collegarla
al testo. Gli esperimenti sono stati condotti in due configurazioni:

e Intra-Dataset: Addestramento e test sullo stesso dataset (split 80/20). Questa
fase, svolta in collaborazione, ha coinvolto i dataset AI-WikiArt, Al-Artbench e
Al-Pastiche.

e Inter-Dataset (Cross-Domain): Addestramento su opere reali (AI-WikiArt Hu-
man) e test su tutti gli altri domini, inclusi quelli sintetici. Questa fase rappresen-
ta il nucleo del contributo dell’autore, mirato a verificare se la nozione di "stile"
appresa su quadri reali sia trasferibile alle imitazioni generate dalle TA.

4.2.3 Datasets

Le analisi hanno coinvolto quattro dataset principali: NGAD e AI-WikiArt (opere rea-
li), AI-ArtBench (misto) e AI-Pastiche (interamente sintetico). L’uso di Al-Pastiche
é centrale per valutare il comportamento del modello su generazioni artificiali controllate.

4.3 Analisi dei Risultati

Sulla base delle analisi preliminari di Text Alignment, il modello di riferimento utilizzato
& ViT-L/140336px.

4.3.1 Limiti della classificazione Zero-Shot

I risultati Zero-Shot (Tabella 4.1) fungono da baseline. Le performance sono modeste
(circa 30% su NGAD), evidenziando che CLIP, senza adattamento, fatica a collegare
I'immagine al nome dello stile.

L’analisi visiva tramite UMAP (Figura 4.1) conferma un netto modality gap: gli
embedding delle immagini e quelli dei testi risiedono in regioni distinte dello spazio
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Dataset ‘Accuracy Recall@1 Recall@5

NGAD 0.3006 0.3006 0.7189
Al-Pastiche 0.4974 0.4974 0.8429
AI-WikiArt (Human) 0.3664 0.3664 0.7189
AI-ArtBench (Human) 0.5516 0.5516 0.9370

Tabella 4.1: Sintesi dei risultati Zero-Shot (Baseline).

vettoriale. Inoltre, si nota che CLIP tende a raggruppare le opere pitt per contenuto
semantico (soggetto) che per stile artistico.

Figura 4.1: Proiezione UMAP: separazione tra spazio visivo e testuale.

4.3.2 Efficacia del Linear Probing

L’addestramento di un classificatore lineare ha rivelato che le informazioni stilistiche
sono effettivamente codificate negli embedding visivi, ma necessitano di supervisione per
emergere.

Analisi Intra-Dataset

Negli esperimenti condotti in collaborazione su AI-WikiArt e Al-ArtBench, e specifi-
camente su Al-Pastiche, 'uso del Linear Probing con embedding non normalizzati ha
portato a un notevole incremento delle performance, con accuratezze che oscillano tra il
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74% e il T7% per i dataset reali (Tabella 4.2). Questo dimostra che CLIP possiede una
ricca rappresentazione latente dello stile.

Dataset ‘ Accuracy F1

NGAD 0.7771 0.7775
AI-WikiArt (Human) 0.7528  0.7543
AI-ArtBench (Human) 0.7495  0.7491

Tabella 4.2: Risultati Intra-Dataset (Linear Probing non normalizzato).

Generalizzazione Cross-Domain (Inter-Dataset)

Questa sezione descrive il nucleo dell’indagine condotta dall’autore: valutare come un
modello addestrato su arte umana (AI-WikiArt Human) si comporti su domini diversi,
specialmente quelli sintetici (AI-Pastiche).

Dataset di Test Accuracy F1
Dominio Reale (Controllo)
AI-WikiArt Human (Test split) 0.7654  0.7670

NGAD 0.4729 0.4831
Dominio Sintetico (Target)

Al-Pastiche 0.3452 0.3682
AI-ArtBench (AI) 0.4905 0.5093
AI-WikiArt (AI) 0.3088 0.3087

Tabella 4.3: Generalizzazione Inter-Dataset (Train su AI-WikiArt Human).

Come evidenziato in Tabella 4.3, si osserva un calo di prestazioni generalizzato. Tut-
tavia, il dato piu rilevante riguarda AI-Pastiche, che crolla al 34.52%. Questo risultato
suggerisce una conclusione fondamentale: lo "stile" generato dalle IA possiede caratte-
ristiche statistiche distributive diverse dallo stile umano originale. Sebbene visivamente
simile, 'imitazione sintetica non inganna lo spazio latente di un classificatore addestrato
su opere reali. Il risultato leggermente migliore su Al-ArtBench (AI) é probabilmente
dovuto al fenomeno del shared inductive bias, dato che i generatori usati per quel dataset
sono strettamente legati all’architettura di CLIP.

4.3.3 Confronto con metodi Few-Shot (Contesto Collaborativo)

Per validare la scelta del Linear Probing, il gruppo di ricerca ha effettuato un confronto
con Adaptive Prior Refinement (APE) [36], una tecnica avanzata di few-shot learning.
Gli esperimenti su NGAD hanno mostrato che APE, anche con 16 esempi per classe,
raggiunge un’accuratezza massima del 53.42%, ben lontana dal 77.71% ottenuto con il
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nostro approccio a supervisione completa. Questo confronto conferma che per compiti
a grana fine come lo stile artistico, le tecniche few-shot non riescono ancora a estrarre
adeguatamente le feature latenti, rendendo necessario 'addestramento di classificatori
dedicati (Linear Probing) come svolto in questa tesi.

4.4 Conclusioni

L’analisi ha dimostrato che CLIP codifica informazioni stilistiche significative, ma che
queste rimangono latenti e richiedono supervisione per essere attivate (Linear Probing).
Il contributo specifico sugli esperimenti Inter-Dataset e su Al-Pastiche ha evidenziato una
discrepanza tra arte reale e sintetica: il modello, pur riconoscendo lo stile su dati omo-
genei, fatica a generalizzare dalle opere umane alle loro imitazioni artificiali. Cio indica
che i generatori attuali, seppur potenti, non replicano fedelmente la "firma" statistica
dello stile presente nello spazio latente di CLIP.
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Capitolo 5

Valutazione Computazionale
dell’Estetica

5.1 Evoluzione dello stato dell’arte

L’applicazione di modelli di visione artificiale per la stima della qualita estetica definisce
il campo della Computational Aesthetics. Storicamente, questa disciplina ha cercato di
emulare il giudizio umano attraverso approcci progressivi. Le prime ricerche tentavano
di codificare la bellezza tramite formule matematiche rigide basate su simmetria e com-
plessita (Birkhoff, 1933) o mediante l’estrazione manuale di feature fotografiche come la
regola dei terzi [50, 51]. Tuttavia, 'astrazione soggettiva del bello si é rivelata refrattaria
a tali modellizzazioni deterministiche.

La svolta é arrivata con il Deep Learning: 'introduzione delle CNN e I'uso di dataset
su larga scala come AVA hanno permesso modelli come RAPID [52] di superare i limiti
delle feature artigianali. Piu recentemente, I'avvento di CLIP ha segnato un ulteriore
passo avanti, mostrando correlazioni con il giudizio umano superiori ai metodi precedenti
[53]. Nonostante cio, resta aperta una questione cruciale: 'efficacia di CLIP nel valutare
immagini sintetiche. A differenza delle foto naturali, le immagini generate da IA sof-
frono di artefatti specifici (es. incongruenze geometriche) che 1'occhio umano penalizza
immediatamente. Verificare se CLIP possieda una simile sensibilita ai difetti & ’obiettivo
centrale di questo capitolo.

5.2 Protocollo Metodologico

Per determinare se CLIP possa fungere da giudice di qualita per I’arte sintetica, abbiamo
strutturato un’indagine basata sul confronto diretto con annotazioni umane [54]. Il
protocollo si divide in tre fasi analitiche:
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1. Analisi Zero-shot: Valutazione della coerenza tra il punteggio di aderenza cal-
colato da CLIP e il giudizio umano.

2. Probing degli Artefatti: Verifica della presenza di informazioni relative ai difetti
visivi all’interno dello spazio latente del modello.

3. Integrazione Supervisionata: Test sull’efficacia di combinare la similarita se-
mantica con un punteggio esplicito dei difetti.

5.2.1 Fase 1: Stima dell’Aderenza Semantica

Nel primo esperimento, abbiamo raccolto valutazioni umane sull’aderenza tra immagine
e prompt nel dataset Al-Pastiche, utilizzando una scala ternaria (Bad/Neutral/Good).
Definito P come il prompt e {Iy, ..., I,} le immagini generate, calcoliamo gli embedding
CLIP v; (visivo) e t (testuale). La similarita coseno grezza ¢ data da:

?}Z"t

s = cos(vi, 1) = T

Per garantire la comparabilita con i giudizi umani h; (media delle valutazioni normalizza-
te), riscaliamo la similarita in [—1, 1] ottenendo §;. L’efficacia del modello é quantificata
dall’allineamento coseno tra i vettori dei punteggi:

Align = cos(5, h).

Un’osservazione preliminare fondamentale ¢ che gli umani tendono a penalizzare forte-
mente le immagini che, pur semanticamente corrette, presentano gravi difetti visivi.

5.2.2 Fase 2: Rilevamento Latente dei Difetti

Per accertare se CLIP "veda" i difetti, abbiamo classificato gli artefatti in tre livelli:
None, Minor (imperfezioni lievi) e Major (errori anatomici gravi). Abbiamo quindi
tentato di predire il punteggio di difettosita umano d; addestrando un regressore lineare
direttamente sugli embedding visivi v;:

di = wTvi.

I pesi w sono ottimizzati minimizzando 1’errore quadratico medio. Un valore basso del
coefficiente R? in questo esperimento indicherebbe che I'informazione sulla qualita tecnica
non ¢ linearmente accessibile nello spazio latente di CLIP.

26



5.2.3 Fase 3: Modello Ibrido con Defect Score

Data l'ipotesi che CLIP ignori i difetti, abbiamo proposto un modello correttivo che
integra esplicitamente il giudizio sui difetti d; con la similarita semantica §;:

I parametri vengono appresi per massimizzare la somiglianza con il giudizio umano com-
plessivo y;. Un miglioramento delle performance in questa fase confermerebbe che la
mancanza di sensibilita agli artefatti € un limite primario di CLIP.

5.3 Dataset di Riferimento

L’analisi ¢ stata condotta esclusivamente su AI-Pastiche (vedi Sez. 1.4.2). La scelta
¢ obbligata: ¢ l'unico dataset in nostro possesso che fornisce annotazioni umane gra-
nulari sia sull’aderenza al prompt che sulla presenza di artefatti visivi, permettendo di
disaccoppiare la valutazione semantica da quella tecnica.

5.4 Analisi dei Risultati

Riportiamo di seguito gli esiti quantitativi del confronto tra percezione macchina e
umana.

Modello Allineamento Post-Integrazione
con Umani Defect Score

RN50 0.406 0.478

RN50x64 0.428 0.484

ViT-B/32 0.411 0.481

ViT-L/14 0.425 0.482

ViT-L/14@336px 0.437 0.497

Tabella 5.1: Confronto dell’allineamento coseno: performance base (colonna 1) vs inte-
grazione manuale dei difetti (colonna 2).

Analisi Zero-shot: Il modello ViT-L/14@336px ottiene il miglior allineamento (0.437),
ma il valore assoluto indica una correlazione solo moderata. E emersa una sistematica
divergenza di scala: gli umani tendono a essere pitl indulgenti (media voti = 0.7) rispetto
alle stime di similarita pit conservative di CLIP.
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Cecita ai Difetti: Il secondo esperimento ha prodotto un risultato negativo netto:
la regressione lineare sugli embedding ha restituito valori di R? ~ 0. Questo conferma
che CLIP non codifica, almeno linearmente, la distinzione tra un’immagine tecnicamente
perfetta e una affetta da gravi artefatti generativi.

Impatto della Correzione: Come evidenziato nella seconda colonna della Tabella
5.1, I'iniezione manuale del defect score migliora le prestazioni di tutte le architetture,
portando il ViT-L/14@336px a un allineamento di 0.497. Questo guadagno dimostra che
la componente "qualita tecnica" & una variabile latente fondamentale che CLIP trascura.
Tuttavia, il fatto che l'allineamento non raggiunga valori prossimi a 1 suggerisce che
esistano ulteriori fattori (probabilmente stilistici o emotivi) che influenzano il giudizio
umano ma sfuggono ancora alla comprensione del modello.

5.5 Conclusioni

L’indagine ha evidenziato che I’allineamento estetico tra CLIP e I'uomo ¢ presente ma in-
completo. Il modello eccelle nel valutare la coerenza semantica (il contenuto), ma fallisce
nel penalizzare gli artefatti strutturali (la forma), che sono invece determinanti per ’os-
servatore umano. L’incapacita di estrarre informazioni sui difetti dagli embedding visivi
suggerisce che CLIP, nel suo pre-addestramento, impara a ignorare il "rumore" visivo
per concentrarsi sul concetto, diventando cosi cieco agli errori generativi. I risultati del
modello ibrido indicano che per costruire metriche di valutazione automatiche affidabili
per l'arte sintetica, & necessario affiancare ai VLM attuali dei moduli specializzati nella
rilevazione della coerenza strutturale e degli artefatti.
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5.6 Conclusioni

La nostra indagine sulla capacita di CLIP di interpretare le opere d’arte — abbracciando
sia la produzione umana che le immagini generate dall’IA — delinea un modello di ampia
portata, sebbene ancora limitato nel cogliere la profondita e le sfumature proprie della
comprensione estetica umana. Se da un lato CLIP dimostra competenza nell’associa-
re immagini a macro-categorie semantiche e nel produrre descrizioni testuali plausibili,
dall’altro incontra sistematiche difficolta nel gestire le dimensioni pit soggettive dell’a-
nalisi artistica, quali lo stile, 'intento autoriale, il tono emotivo, il contesto culturale e
la precisione tecnica.

Un aspetto critico emerso riguarda 1’assenza di una capacita affidabile nel rilevare gli
artefatti genuini del processo generativo, come le distorsioni anatomiche di mani o volti
e altre incoerenze strutturali tipiche dell'immaginario sintetico. Tali difetti, sebbene
salienti per un osservatore umano, non trovano un riscontro coerente all’interno degli
embedding visivi di CLIP.

Inoltre, si osserva un marcato divario di dominio (domain gap) nel tentativo di ge-
neralizzare la classificazione stilistica attraverso dataset distinti. Sebbene CLIP offra
prestazioni adeguate all’interno di singole collezioni, sia ’accuratezza che la coerenza
degradano quando le etichette stilistiche vengono trasferite tra dataset che differiscono
per distribuzione delle immagini, pratiche curatoriali o schemi di annotazione. Questa
limitazione suggerisce una scarsa robustezza nell’astrazione delle feature stilistiche al di
fuori dei contesti specifici di apprendimento, una sfida che deve essere affrontata affinché
tali modelli possano supportare applicazioni come il retrieval inter-collezione, 1’analisi
culturale o il supporto alle decisioni curatoriali.

A un livello pit fondazionale, questa analisi solleva considerazioni rilevanti sulla strut-
tura delle rappresentazioni multimodali. Sebbene lo spazio di embedding congiunto di
CLIP aiuti a colmare il divario tra visione e linguaggio, questa connessione rimane asim-
metrica: gli embedding testuali sono intrinsecamente strutturati e interpretabili, mentre
quelli delle immagini risultano piu opachi e spazialmente "aggrovigliati" (entangled). Di
conseguenza, valutare la comprensione visiva attraverso la similarita testuale puo con-
durre a conclusioni fuorvianti, in particolare nei domini artistici, dove il significato ¢
spesso veicolato tramite segnali visivi non verbali, ambigui o dipendenti dal contesto.
Elementi come la testura, la composizione, la gestualita e l'affettivita spesso resistono
a una codifica linguistica diretta, esponendo i limiti chiave delle attuali metodologie di
valutazione per i modelli multimodali.

In prospettiva, I’avanzamento dei sistemi visione-linguaggio richiedera un passaggio
da un allineamento superficiale verso un modello di percezione visiva pit profondo e
olistico. Tali sistemi dovranno essere capaci di ragionare sulle immagini non solo in
termini di oggetti e stili, ma anche rispetto ai riferimenti storici, all’intento artistico e alla
narrativa visiva. Il raggiungimento di questo obiettivo potrebbe richiedere nuove forme
di supervisione che vadano oltre I’addestramento basato su didascalie (caption-based),
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per includere commenti di esperti, metadati storico-artistici, annotazioni culturalmente
informate e interazioni multimodali dialogiche.

Poiché T'intelligenza artificiale diventa sempre piu integrata nella produzione, inter-
pretazione e disseminazione della cultura visiva, ¢ essenziale considerare non solo cosa i
modelli percepiscano, ma come lo facciano e quali prospettive vengano implicitamente
codificate. CLIP offre una base solida, ma non approssima ancora la percezione umana
nelle arti. Piuttosto, dovrebbe essere considerato come una lente interpretativa parziale
e distorta, capace tuttavia di offrire intuizioni preziose sia sulla visione artificiale che sui
modi umani di vedere.

30



Bibliografia

[1]

2]

13l
4]

[5]

[6]

A. Radford et al., «Learning Transferable Visual Models From Natural Langua-
ge Supervision,» in Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, M. Meila e T. Zhang, cur.,
ser. Proceedings of Machine Learning Research, Accessed: 2025-02-13, vol. 139,
PMLR, 2021, pp. 8748-8763. indirizzo: http://proceedings.mlr.press/v139/
radford2la.html.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser e B. Ommer, «High-resolution
image synthesis with latent diffusion models,» in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, IEEE, 2022, pp. 10 684—
10695.

L. A. Gatys, A. S. Ecker e M. Bethge, «A Neural Algorithm of Artistic Style,»
CoRR, vol. abs/1508.06576, 2015. indirizzo: http://arxiv.org/abs/1508.06576.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman e O. Wang, «The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric,» in 2018 IEEE Conferen-
ce on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018, Computer Vision Foundation / IEEE Computer
Society, 2018, pp. 586-595. DOI: 10.1109/CVPR. 2018 . 00068. indirizzo: http :
//openaccess.thecvf.com/content?5C_cvpr%,5C_2018/html/Zhang’%5C_The’,
5C_Unreasonable’5C_Effectiveness)5C_CVPR}5C_2018%5C_paper.html.

N. G. of Art, National Gallery of Art Open Data Program, Accessed: 2024-01-
29, gen. 2024. indirizzo: https://www.nga.gov/open-access- images/open-
data.html.

R. S. R. Silva, A. Lotfi, I. K. Ihianle, G. Shahtahmassebi e J. J. Bird, «ArtBrain: An
Explainable end-to-end Toolkit for Classification and Attribution of AI-Generated
Art and Style,» CoRR, vol. abs/2412.01512, pp. 1-20, 2024. DOI: 10.48550/ARXIV.
2412.01512. arXiv: 2412.01512. indirizzo: https://doi.org/10.48550/arXiv.
2412.01512.

31



[7] P. Liao, X. Li, X. Liu e K. Keutzer, «The ArtBench Dataset: Benchmarking Gene-
rative Models with Artworks,» CoRR, vol. abs/2206.11404, 2022. DOI: 10.48550/
ARXIV.2206.11404. arXiv: 2206.11404. indirizzo: https://doi.org/10.48550/
arXiv.2206.11404.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li e L. Fei-Fei, «ImageNet: A large-scale
hierarchical image database,» in 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248-255. DOI: 10.1109/CVPR.2009.5206848.

[9] A. Dosovitskiy et al., An Image is Worth 16216 Words: Transformers for Image
Recognition at Scale, 2021. arXiv: 2010.11929 [cs.CV]. indirizzo: https://arxiv.
org/abs/2010.11929.

[10] P. Esser et al., «Scaling Rectified Flow Transformers for High-Resolution Image
Synthesis,» CoRR, vol. abs/2403.03206, pp. 1-28, 2024. DOI: 10.48550/ARXIV.
2403.03206.

[11] A.Ramesh, P. Dhariwal, A. Nichol, C. Chu e M. Chen, «Hierarchical Text-Conditional
Image Generation with CLIP Latents,» CoRR, vol. abs/2204.06125, pp. 1-27, 2022.
DOI: 10 .48550/ARXIV. 2204 .06125. indirizzo: https://doi.org/10.48550/
arXiv.2204.06125.

[12] A. Q. Nichol et al., «GLIDE: Towards Photorealistic Image Generation and Edi-
ting with Text-Guided Diffusion Models,» in International Conference on Machi-
ne Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, PMLR,
2022, pp. 16784-16804. indirizzo: https://proceedings . mlr . press/v162/
nichol22a.html.

[13] X. Liu et al., «More Control for Free! Image Synthesis with Semantic Diffusion
Guidance,» in IEEE/CVE Winter Conference on Applications of Computer Vision,
WACV 2023, Waikoloa, HI, USA, January 2-7, 2023, 1EEE, 2023, pp. 289-299.
DOI: 10.1109/WACV56688.2023.00037. indirizzo: https://doi.org/10.1109/
WACV56688.2023.00037.

[14] A. Taghipour et al., «Faster Image2Video Generation: A Closer Look at CLIP Ima-
ge Embedding’s Impact on Spatio-Temporal Cross-Attentions,» CoRR, vol. abs/2407.19205,
pp- 1-11, 2024. DOI: 10.48550/ARXIV.2407.19205. arXiv: 2407.19205. indirizzo:
https://doi.org/10.48550/arXiv.2407.19205.

[15] P. Wang, D. Li, X. Hu, Y. Wang e Y. Zhang, «CLIPMulti: Explore the performance
of multimodal enhanced CLIP for zero-shot text classification,» Comput. Speech
Lang., vol. 90, p. 101748, 2025. indirizzo: https://doi.org/10.1016/j.csl.
2024.101748.

[16] S. Li, J. Cao, P. Ye, Y. Ding, C. Tu e T. Chen, «ClipSAM: CLIP and SAM collabo-
ration for zero-shot anomaly segmentation,» Neurocomputing, vol. 618, p. 129 122,
2025. indirizzo: https://doi.org/10.1016/j.neucom.2024.129122.

32



[17]

18]

[19]

[20]

21]

22]

23]

[24]

[25]

H. Yang, N. Wang, H. Li, L. Wang e Z. Wang, «Application of CLIP for efficient
zero-shot learning,» Multim. Syst., vol. 30, n. 4, p. 219, 2024. indirizzo: https:
//doi.org/10.1007/s00530-024-01414-9.

V. Lytvyn, R. Peleshchak, I. Rishnyak, B. Kopach e Y. Gal, «Detection of Simi-
larity Between Images Based on Contrastive Language-Image Pre-Training Neural
Network,» in Proceedings of the Sth International Conference on Computational
Linguistics and Intelligent Systems. Volume I: Machine Learning Workshop, Luiv,
Ukraine, April 12-13, 2024, V. Lytvyn, A. Kowalska-Styczen e V. Vysotska, cur.,
ser. CEUR Workshop Proceedings, vol. 3664, CEUR-WS.org, 2024, pp. 94-104.
indirizzo: https://ceur-ws.org/Vol-3664/paper8.pdf.

F. Peng, X. Yang, L. Xiao, Y. Wang e C. Xu, «SgVA-CLIP: Semantic-Guided
Visual Adapting of Vision-Language Models for Few-Shot Image Classification,»
IEEE Trans. Multim., vol. 26, pp. 3469-3480, 2024. DOI: 10.1109/TMM. 2023 .
3311646. indirizzo: https://doi.org/10.1109/TMM.2023.3311646.

Q. Zhou, C. Du, S. Wang e H. He, «CLIP-MUSED: CLIP-Guided Multi-Subject
Visual Neural Information Semantic Decoding,» in The Twelfth International Con-
ference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024, 1CLR, 2024, pp. 1-17. indirizzo: https://openreview.net/forum?id=
1KxLbzkssv.

Y. Surapaneni e C. Bhagvati, «Scene Text Image Super-Resolution with CLIP Prior
Guidance,» in Pattern Recognition - 27th International Conference, ICPR 2024,
Kolkata, India, December 1-5, 2024, Proceedings, Part XXXII, FElsevier, 2024,
pp. 17-32. indirizzo: https://doi.org/10.1007/978-3-031-78125-4}5C_2.

7. Huang, A. Zhou, Z. Lin, M. Cai, H. Wang e Y. J. Lee, «A Sentence Speaks a
Thousand Images: Domain Generalization through Distilling CLIP with Language
Guidance,» in IEEE/CVF International Conference on Computer Vision, ICCV
2023, Paris, France, October 1-6, 2023, 1EEE, 2023, pp. 11651-11661. indirizzo:
https://doi.org/10.1109/ICCV51070.2023.01073.

K. Alhamoud et al., Vision-Language Models Do Not Understand Negation, 2025.
arXiv: 25601.09425 [cs.CV]. indirizzo: https://arxiv.org/abs/2501.09425.

Z. Zhang, Z. Liu, M. Feng e C. Xu, Can CLIP Count Stars? An Empirical Study
on Quantity Bias in CLIP, 2024. arXiv: 2409.15035 [cs.CV]. indirizzo: https:
//arxiv.org/abs/2409.15035.

Y. Yamada, Y. Tang, Y. Zhang e 1. Yildirim, When are Lemons Purple? The
Concept Association Bias of Vision-Language Models, 2024. arXiv: 2212 .12043
[cs.CV]. indirizzo: https://arxiv.org/abs/2212.12043.

33



[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

R. Abbasi, A. Nazari, A. Sefid, M. Banayeeanzade, M. H. Rohban e M. S. Baghshah,
«CLIP Under the Microscope: A Fine-Grained Analysis of Multi-Object Represen-
tation,» in IEEE/CVE Conference on Computer Vision and Pattern Recognition,
CVPR 2025, Nashville, TN, USA, June 11-15, 2025, 1EEE, 2025, pp. 9308-9317.
indirizzo: https://openaccess.thecvf.com/content/CVPR2025/html/Abbasi,
5C_CLIPY5C_Under’5C_the’5C_Microscope%5C_A%5C_Fine-Grained?5C_
Analysis%5C_of%5C_Multi-0Object%5C_Representation?5C_CVPRY%5C_20257%
5C_paper.html.

W. Tu, W. Deng e T. Gedeon, «Toward a Holistic Evaluation of Robustness in
CLIP Models,» CoRR, vol. abs/2410.01534, pp. 1-18, 2024. DOI: 10.48550/ARXIV.
2410.01534. arXiv: 2410.01534. indirizzo: https://doi.org/10.48550/arXiv.
2410.01534.

V. D. Rosa, F. Guillaro, G. Poggi, D. Cozzolino e L. Verdoliva, «Exploring the
Adversarial Robustness of CLIP for Al-generated Image Detection,» in IEEE In-
ternational Workshop on Information Forensics and Security, WIFS 2024, Rome,
Italy, December 2-5, 2024, 1EEE, 2024, pp. 1-6. DOI: 10.1109/WIFS61860.2024.
10810719. indirizzo: https://doi.org/10.1109/WIFS61860.2024.10810719.

M. I. Ismithdeen, M. U. Khattak e S. Khan, Promptception: How Sensitive Are
Large Multimodal Models to Prompts? 2025. arXiv: 2509.03986 [cs.CV]. indirizzo:
https://arxiv.org/abs/2509.03986.

V. Baherwani e J. J. Vincent, «Racial and Gender Stereotypes Encoded Into CLIP
Representations,» in The Second Tiny Papers Track at ICLR 2024, Tiny Papers
@ ICLR 2024, Vienna, Austria, May 11, 2024, OpenReview.net, 2024. indirizzo:
https://openreview.net/forum?id=hQb6ts30wv.

P. Gao et al., «CLIP-Adapter: Better Vision-Language Models with Feature Adap-
ters,» Int. J. Comput. Vis., vol. 132, n. 2, pp. 581-595, 2024. indirizzo: https:
//doi.org/10.1007/s11263-023-01891-x.

T. Yu, Z. Lu, X. Jin, Z. Chen e X. Wang, «Task Residual for Tuning Vision-
Language Models,» in IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, Los Alami-
tos, CA, USA: IEEE, 2023, pp. 10899-10909. indirizzo: https://doi.org/10.
1109/CVPR52729.2023.01049.

K. Roth, Z. Akata, D. Damen, 1. Balazevic e O. J. Hénaff, «Context-Aware Multi-
modal Pretraining,» CoRR, vol. abs/2411.15099, pp. 1-15, 2024. DOIL: 10.48550/
ARXIV.2411.15099. indirizzo: https://doi.org/10.48550/arXiv.2411.15099.

34



[34]

[35]

[36]

[37]

138

[39]

[40]

[41]

K. Zhou, J. Yang, C. C. Loy e Z. L. Liu, «Learning to Prompt for Vision-Language
Models,» International Journal of Computer Vision, vol. 130, pp. 2337-2348, 2022.
indirizzo: https://link.springer.com/article/10.1007/s11263-022-01653-
1.

K. Zhou, J. Yang, C. C. Loy e Z. Liu, « Conditional Prompt Learning for Vision-
Language Models,» in 2022 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), Los Alamitos, CA, USA: IEEE Computer Society, giu.
2022, pp. 16 795-16 804. indirizzo: https://doi.ieeecomputersociety.org/10.
1109/CVPR52688.2022.01631.

X. Zhu et al., «Not All Features Matter: Enhancing Few-shot CLIP with Adaptive
Prior Refinement,» in IEEE/CVFE International Conference on Computer Vision,
ICCV 2023, Paris, France, October 1-6, 2023, Los Alamitos, CA, USA: IEEE
Computer Society, 2023, pp. 2605-2615. indirizzo: https://doi.org/10.1109/
ICCV51070.2023.00246.

X. Zhu, B. Zhu, Y. Tan, S. Wang, Y. Hao e H. Zhang, «Selective Vision-Language
Subspace Projection for Few-shot CLIP,» in Proceedings of the 32nd ACM Inter-
national Conference on Multimedia, MM 202/, Melbourne, VIC, Australia, 28 Oc-
tober 2024 - 1 November 2024, J. Cai et al., cur., ACM, 2024, pp. 3848-3857. DOI:
10.1145/3664647 . 3680885. indirizzo: https://doi.org/10.1145/3664647 .
3680885.

H. Liu, C. Li, Q. Wu e Y. J. Lee, «Visual Instruction Tuning,» in Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, NIPS Foundation, 2023, pp. 1-25. indirizzo: http://papers.nips.
cc/paper’%5C_files/paper/2023/hash/6dcf277ea32ce3288914faf369febdel-
Abstract-Conference.html.

S. Bai et al., «Qwen2.5-VL Technical Report,» CoRR, vol. abs/2502.13923, pp. 1-
23, 2025. indirizzo: https://doi.org/10.48550/arXiv.2502.13923.

W. Dai et al., «InstructBLIP: Towards General-purpose Vision-Language Models
with Instruction Tuning,» in Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems 2023, NeurlPS
2023, New Orleans, LA, USA, December 10 - 16, 2023, NIPS Foundation, 2023,
indirizzo: http ://papers . nips . cc/paper?5C_files/paper /2023 /hash/
9a6a435e75419a836fe47ab6793623e6-Abstract-Conference.html.

J. Li, D. Li, S. Savarese e S. C. H. Hoi, «BLIP-2: Bootstrapping Language-Image
Pre-training with Frozen Image Encoders and Large Language Models,» in Inter-
national Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, PMLR, 2023, pp. 19 730-19 742. indirizzo: https://proceedings.
mlr.press/v202/1i23q.html.

35



[42]

143

[44]

[45]

[46]

147]

48]

149]

[50]

A. Mahendran e A. Vedaldi, «Understanding deep image representations by in-
verting them,» in IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, IEEE Computer Society, 2015,
pp. 5188-5196. DOI: 10.1109/CVPR.2015.7299155. indirizzo: https://doi.org/
10.1109/CVPR.2015.7299155.

A. Dosovitskiy e T. Brox, «Inverting Visual Representations with Convolutional
Networks,» in 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, 1IEEE Computer So-
ciety, 2016, pp. 4829-4837. indirizzo: https://doi.org/10.1109/CVPR.2016.
522.

H. Yin et al., «Dreaming to Distill: Data-Free Knowledge Transfer via Deepln-
version,» in 2020 IEEE/CVF Conference on Computer Vision and Pattern Re-
cognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, Computer Vision
Foundation / IEEE, 2020, pp. 8712-8721. DOI: 10.1109/CVPR42600.2020.00874.

H. Kazemi, A. M. Chegini, J. Geiping, S. Feizi e T. Goldstein, «What do we learn
from inverting CLIP models?» CoRR, vol. abs/2403.02580, pp. 1-14, 2024. arXiv:
2403.02580. indirizzo: https://doi.org/10.48550/arXiv.2403.02580.

R. S. Arora e A. Elgammal, «Towards automated classification of fine-art painting
style: A comparative study,» in Proceedings of the 21st International Conference
on Pattern Recognition (ICPR2012), 2012, pp. 3541-3544.

J. Zujovic, L. Gandy, S. Friedman, B. Pardo e T. N. Pappas, «Classifying paintings
by artistic genre: An analysis of features & classifiers,» in 2009 IEEE International
Workshop on Multimedia Signal Processing, 2009, pp. 1-5. DOI: 10.1109/MMSP.
2009.5293271.

C. Hentschel, T. P. Wiradarma e H. Sack, «Fine tuning CNNS with scarce training
data — Adapting imagenet to art epoch classification,» in 2016 IEEFE International
Conference on Image Processing (ICIP), 2016, pp. 3693-3697. DOI: 10.1109/ICIP.
2016.7533049.

Y. Bin et al.; «GalleryGPT: Analyzing Paintings with Large Multimodal Models,»
in Proceedings of the 32nd ACM International Conference on Multimedia, MM
2024, Melbourne, VIC, Australia, 28 October 2024 - 1 November 2024, ACM,
2024, pp. 7734-7743. indirizzo: https://doi.org/10.1145/3664647 .3681656.

P. Meng, Y. Liu, L. Zhang e X. Li, «Computational Aesthetics of Visual Artworks:
Review and Outlook,» in Cognitive Computing and Internet of Things. AHFE
(2022) International Conference, L. Paletta e H. Ayaz, cur., ser. AHFE Open
Access, vol. 43, USA: AHFE International, 2022. DOI: 10.54941/ahfe1001833.
indirizzo: https://doi.org/10.54941/ahfe1001833.

36



[51]

[52]

[53]

[54]

J. Zhang, Y. Miao e J. Yu, «A Comprehensive Survey on Computational Aesthetic
Evaluation of Visual Art Images: Metrics and Challenges,» IFEE Access, vol. 9,
pp. 7716477187, 2021. poI1: 10.1109/ACCESS.2021.3083075.

X. Lu, Z. Lin, H. Jin, J. Yang e J. Z. Wang, «Rating Image Aesthetics Using Deep
Learning,» IEEFE Transactions on Multimedia, vol. 17, n. 11, pp. 2021-2034, 2015.
DOI: 10.1109/TMM.2015.2477040.

S. Hentschel, K. Kobs e A. Hotho, «CLIP knows image aesthetics,» Frontiers in
Artificial Intelligence, vol. Volume 5 - 2022, 2022, TLDR: Comparing the usefulness
of features extracted by CLIP compared to features obtained from the last layer of a
comparable ImageNet classification model suggests that CLIP is better suited as a
base model for IAA methods than ImageNet pretrained networks., ISSN: 2624-8212.
DOI: 10.3389/frai.2022.976235. indirizzo: https://www.frontiersin. org/
journals/artificial-intelligence/articles/10.3389/frai.2022.976235.

A. Asperti, L. Dessi, M. C. Tonetti e N. Wu, «Does CLIP percevie art as we do?»
In Proceedings of the 22nd International Conference on Content-Based Multimedia
Indexing (CBMI 2025), TEEE, 2025, to appear.

37



