ALMA MATER STUDIORUM - UNIVERSITA
DI BOLOGNA CESENA CAMPUS

DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING — DISI

SECOND CYCLE DEGREE IN
DIGITAL TRANSFORMATION MANAGEMENT

Class: LM-91

The Evolution of Coding in the Digital Transformation Era
Cybersecurity Implications of Artificial Intelligence and
Low-Code Development

Graduation thesis in

Cybersecurity
Supervisor Candidate
Gabriele D’Angelo Domenico Copia
Co-Supervisor
Gian Luigi Bonini
Academic Year 2024/25

Session [11I

Abstract

The accelerating wave of digital transformation has made software the core
infrastructure of modern competitiveness. Yet, as organizations adopt artificial
intelligence (Al) and low-code/no-code tools to accelerate development, they also
expose new vectors of vulnerability, opacity and technical debt. This thesis
examines how the evolution of software creation, from traditional programming to
Al-assisted and low-code paradigms, reshapes the cybersecurity and governance
landscape.

The research addresses three key questions: (1) how Al-assisted and low-code
development alter software vulnerabilities and accountability; (2) which governance
and assurance mechanisms can mitigate emerging risks without undermining agility;
and (3) how standardized frameworks can institutionalize quality and security in
increasingly automated environments. Methodologically, the study combines
literature review, risk analysis, and framework design, supported by the Italian
initiative Innovation Code as a reference for certification and secure-by-design
principles.

Findings show that Al-generated and low-code software enhance productivity and
democratize innovation but also erode transparency, expand attack surfaces, and
increase reliance on opaque models. Addressing these issues requires integrating
technical safeguards, automated testing, software bills of materials, provenance
tracking, with governance measures such as certification, standardization, and
regulatory alignment under NIS2 and the EU Al Act.

The thesis contributes a conceptual and operational framework for secure,
compliant, and sustainable software development in the Al era, concluding that the
future of coding lies not in replacing human expertise but in orchestrating intelligent
tools and certified components within transparent, auditable, and collaborative
ecosystems where speed and security coexist in balance.

Contents

Introduction 4
Chapter 1 6
Software, Security and Digital Transformation 6
1.1 The Digital Transformation Era: From Infrastructure to Intelligence 7
1.2 Software as the Core Asset of the Digital Economy 8
1.3 The Security Paradox: Innovation, Complexity, and Exposure 9
1.4 Research Motivation and Objectives 11
1.5 From Problem to Solution: The Genesis of the “Innovation Code” Initiative 13
Chapter 2 15
The Evolution of Coding: Between Al, Low-Code and Emerging Languages 15
2.1 A Brief History and Technological Cycles of Coding 16
2.2 The Irruption of Artificial Intelligence in Software Development 17
2.3 The Low-Code/No-Code Paradigm and the Rise of the “Citizen Developer” 19
2.4 New Frontiers of Coding: Hybrid Languages and Natural Language Programming 22
2.5 Future Scenarios: Towards Automated, Visual and Assisted Coding 26
Chapter 3 29
Al and Software Development: Opportunities and Vulnerabilities 29
3.1 Risks of Al-Generated Code: Bugs, Backdoors and Bias 30
3.2 Emerging Attacks on Al-Assisted Development: Prompt Injection, Model Stealing
and Data Poisoning 32
3.3 The Opacity Issue (“Black Box” Al) and the Importance of Auditing 35
3.4 Case Study: Anthropic’s Experiment on Identifying Hidden Objectives in LLMs 37
Chapter 4 41
Low-Code and Cybersecurity: The New Risks of Software Democratization 41
4.1 The Growth of Low-Code: Benefits and Adoption Among SMEs 41
4.2 OWASP & Low-Code: Typical Vulnerabilities and Real Cases 44
4.3 The Risk of “Unaware” Code: Security and Training for Citizen Developers 47
4.4 Al + Low-Code: New Hybrid Attack Surfaces 50
4.5 Governance and Centralized Control: An Open Challenge 53
Chapter 5 56
The Innovation Code Framework: Improving Software Quality and Reducing Technical
Debt 56
5.1 Technical Debt as a Systemic Risk in the Age of Automation 57
5.2 Certified Components and Software Standardization 59
5.3 The Innovation Code Initiative: From Reuse to Governance 61
5.4 Regulatory Alignment: NIS2 and Shared Responsibility 66
5.5 Toward a Secure and Collaborative Digital Ecosystem 68
Chapter 6 71

Towards a Secure and Collaborative Ecosystem
6.1 Summary of Findings
6.2 Recommendations
6.3 Limitations
6.4 Framework Proposals for Quality and Security
6.5 A Shared Agenda for Responsible Innovation
Bibliography

71
71
72
74
76
78
80

Introduction

In the contemporary landscape, digital transformation has become the primary
engine of economic, social, and organizational change. Across industries, the
progressive integration of software, data, and intelligent automation has reshaped
the boundaries between technology and management, redefining how value is
created, delivered, and protected. Within this scenario, software is no longer a mere
operational support but the core infrastructure of competitiveness. Its strategic role,
however, is paralleled by increasing exposure to vulnerabilities, dependencies, and
governance challenges.

This thesis investigates the intersection between software evolution,
cybersecurity, and digital transformation, with particular attention to the impact
of artificial intelligence (Al) and low-code/no-code development on software
quality and security. The research originates from a growing concern: as
organizations strive to accelerate delivery and innovation, the complexity and
opacity of software systems expand faster than their capacity to ensure control and
assurance. Large language models now assist developers in generating code, while
low-code platforms allow non-technical users to build applications with minimal
programming effort. These innovations democratize software creation but also blur
accountability, amplify technical debt, and expose new classes of systemic risks.

The thesis adopts a dual perspective, technological and managerial. On one
hand, it explores the technical mechanisms that underlie Al-assisted and low-code
development, identifying their efficiency drivers and vulnerability points. On the
other, it examines how governance frameworks, standards, and regulatory initiatives
can bridge the gap between speed and security. The study aligns with the broader
European discourse on software trustworthiness, as embodied in frameworks
such as the EU Cybersecurity Act, the NIS2 Directive, and the recently adopted Al
Act, which together emphasize transparency, auditability, and shared responsibility
in digital innovation.

Within this context, the Italian initiative “Innovation Code” plays a central role in the
research. Conceived as a national framework for software quality and certification, it
aims to create a standardized, reusable, and secure digital ecosystem through
certified components, automation, and Al governance. The project offers a tangible
reference point for analyzing how secure-by-design principles and regulatory
compliance can coexist with rapid, Al-enabled development practices.

The ultimate purpose of this thesis is to contribute to the understanding of how
software engineering is evolving in the age of automation and regulation. It seeks
to define strategies for minimizing technical debt, improving security assurance, and
aligning innovation with compliance. In doing so, it argues that the future of
software creation will depend less on manual coding and more on orchestrating
intelligent tools, certified components, and standardized processes. The challenge
and opportunity lies in ensuring that this acceleration remains sustainable, ethical,
and secure.

Through a multidisciplinary approach that combines insights from computer
science, cybersecurity, and management, this research aspires to provide both
theoretical understanding and actionable guidance for organizations, policymakers,
and professionals navigating the new frontiers of digital transformation.

Chapter 1

Software, Security and Digital Transformation

The digital transformation of the past two decades has reshaped the foundations of
how societies and organizations create value. What began as a process of
digitization, converting analog processes into digital form, has evolved into a
profound structural transformation that touches every aspect of production,
communication, and decision-making. In this new paradigm, technological change
is not an external enabler but an intrinsic component of business strategy and
governance. Software, data, and artificial intelligence no longer serve as auxiliary
tools; they have become the infrastructure upon which economic and social
systems operate.

This shift has altered the meaning of competitiveness and innovation. The capacity
to generate insights from data, automate complex tasks, and coordinate global
operations in real time has created new forms of advantage, while also introducing
new dependencies and risks. Every organization now functions as a software
organization to some degree, relying on interconnected platforms, algorithms, and
digital ecosystems that transcend traditional boundaries. As a result, technological
interdependence has deepened, creating both extraordinary potential and systemic
fragility.

Digital transformation thus represents a dual movement: one of empowerment and
one of exposure. The same networks and applications that enable speed and
intelligence also expand the space for failure, misuse or attack. The increasing
integration of artificial intelligence and low-code development further amplifies this
tension, accelerating innovation while complicating oversight and control.
Understanding this paradox is essential for grasping the current state of the digital
economy and the challenges of governing its evolution.

The following discussion unfolds within this broader context, examining how digital
transformation has moved from infrastructure to intelligence, how software has
become the central asset of the modern enterprise, and how complexity has turned
innovation itself into a source of vulnerability. This sets the conceptual ground for
exploring the emerging need for new governance models that reconcile agility with
security in the age of intelligent software systems.

1.1 The Digital Transformation Era: From Infrastructure to
Intelligence

Digital transformation can be understood as a systemic shift encompassing
organizational, technological, and cultural changes in how value is created. It is
often described as the fundamental rewiring of how an organization operates, “with
the goal of building competitive advantage by continuously deploying technology at
scale” [1]. This shift is not a one-off IT project but a long-term evolution that
demands new strategies, talent, and mindsets across the enterprise. Crucially,
digital transformation goes beyond merely digitizing existing processes, it calls for
rethinking business models and workflows around data and interconnectivity,
thereby integrating technology deeply into organizational DNA.

One hallmark of the digital era is the move from competition based on physical
assets and infrastructure to competition based on data and software-driven
capabilities. In traditional industrial economies, capital investments and tangible
assets (factories, machinery, real estate) largely determined a firm’s competitive
edge. Today, however, intangible digital assets, such as software platforms,
algorithms, and proprietary data, have become primary sources of value creation.
Organizations increasingly rely on software to streamline operations and innovate,
gaining competitive advantages through superior data analytics and automation. For
instance, companies that rapidly adopt new digital technologies can attain
significant competitive advantages over rivals, positioning themselves favorably in
the market [2]. Empirical trends underscore this shift: firms primarily valued for their
software offerings have grown dramatically in market significance (expanding from
about 2% to 13% of market share between 1996 and 2023) [3]. In short, the basis
of competitive success has expanded from owning infrastructure to harnessing
intelligence, the ability to collect, process and act on information faster and more
effectively than the competition.

Another defining feature of this era is the rise of Artificial Intelligence (Al) as the new
“cognitive infrastructure” of digital enterprises. Just as electricity and the internet
served as general-purpose infrastructures in previous eras, Al now functions as a
foundational layer enabling advanced capabilities across business domains.
Rather than being viewed as a standalone product or just another application, Al is
increasingly seen as an embedded intelligence that permeates organizational
processes. Modern Al systems, from machine learning models to cognitive services,
provide a decision-support and pattern-recognition infrastructure that augments

human intelligence in areas like forecasting, customer service, and strategic
planning. In practical terms, Al-driven analytics and automation act as a “thinking
infrastructure” for the enterprise, enhancing decision-making without wholly
replacing human judgment [4]. This convergence of Al with core business functions
marks a shift from an era focused on digitizing infrastructure to an era focused on
intelligent infrastructure. In summary, the Digital Transformation Era is characterized
by a transition from traditional infrastructure-based value creation to
intelligence-based value creation, where data, software, and Al form the nexus of
competitive advantage and organizational innovation.

1.2 Software as the Core Asset of the Digital Economy

Software has evolved from a supportive operational tool into a central strategic
asset in the digital economy. In earlier decades, software primarily served to
automate back-office tasks or enable efficiency in defined processes; today it is
integral to virtually every facet of business value delivery. Software technologies are
now deeply embedded in nearly every industry and daily activity, from healthcare
and transportation to finance and media. Organizations no longer see software as
peripheral infrastructure, but as strategic capital, a source of innovation and
differentiation in its own right. Notably, enterprises leverage software not just to
support operations, but to drive new business models (for example,
software-as-a-service and platform-based ecosystems) and to inform high-level
decision-making through analytics. As a result, the ability to develop, acquire, and
maintain high-quality software has become synonymous with the ability to compete
and adapt in the modern economy. Indeed, companies that excel in software
development and integration tend to outperform peers, as they can streamline
workflows and rapidly deploy new services or products. The close interdependence
of software with decision-making, automation, and system scalability means that
business growth and agility increasingly hinge on software capabilities. Many
organizational decisions (from daily operational choices to strategic planning) are
now guided by software-driven insights such as data analytics and Al algorithms.
Likewise, the scalability of a modern enterprise, its capacity to serve millions of
users or process big data in real time, relies on robust software architectures in the
cloud and on networks. In essence, software has become the brain and nervous
system of contemporary organizations.

This centrality of software brings tremendous benefits, but it also introduces a new
form of systemic vulnerability: software dependence. As firms and economies
become ever more dependent on complex software systems, any fragility or flaw in
those systems can have far-reaching consequences. A bug in widely-used software

or a failure in a critical application, can disrupt not only a single company’s
operations but also reverberate across supply chains and customer networks. Put
differently, software has become a single point of failure on a systemic scale, a
reality highlighted by recent incidents. For example, the “Heartbleed” bug in the
OpenSSL cryptographic library (discovered in 2014) [5] exposed a vast number of
web servers to potential data breach, demonstrating how a vulnerability in a
common software component can jeopardize security globally. In short, software’s
central role in the digital economy creates a paradox: the same interconnectedness
and reuse that enable innovation also increase the risk of widespread failures or
attacks. For this reason, organizations must view software not only as a strategic
asset but also as a potential source of systemic risk, making security and quality
assurance essential parts of every development and deployment process.

1.3 The Security Paradox: Innovation, Complexity, and
Exposure

Rapid innovation and increasing automation have yielded extraordinary capabilities,
but they have also inadvertently increased system complexity and reduced direct
human oversight. As organizations digitalize, they integrate numerous technologies,
cloud platforms, loT devices, Al services, APls and more, into intricate architectures.
Each new integration or automated process adds layers of complexity that can
outstrip a single individual’s or team’s ability to fully understand or control. The
result is often an opacity in how systems operate: in highly automated
environments, humans become overseers of complex autonomous processes rather
than hands-on controllers of each function. This specialization and complexity
create a delusion of control, where systems run with minimal human intervention
until an unexpected condition arises that requires manual correction. By that time,
the system’s behavior may be so complex that diagnosing and fixing issues is
challenging. In essence, innovation has traded direct human control for algorithmic
or procedural control, which can fail in unpredictable ways.

One consequence of this complexity is a dramatic expansion of the potential attack
surface and an emergence of new vulnerabilities. The attack surface refers to all
possible entry points that an attacker could exploit to gain unauthorized access to a
system. Complexity is the enemy of security: as more components and
connections exist, there are more points where things can go wrong or be exploited
[6]. Modern digital systems comprise a multitude of software modules,
microservices, and third-party APIs; identifying every vulnerability among them, let
alone patching all in a timely manner, becomes a daunting task [6]. Importantly,
several categories of emerging technology bring their own security paradoxes:

Artificial Intelligence (Al): Al systems introduce new types of errors and attack
methods. Machine learning models can be deceived by adversarial inputs
(maliciously crafted data that causes the model to make wrong decisions), while
Al-based code generation tools may produce insecure code if not properly
controlled. Experiments have shown that almost half of the code generated by
popular Al assistants contained bugs or vulnerabilities that could be exploited [7]. In
addition, Al models themselves can be targeted through data poisoning (tampering
with the training data) or model theft (copying or extracting the trained model),
creating a new category of risks specific to systems that learn and evolve over time.

APIs and Interconnectivity: The growing use of web services and APIs means that
most modern applications communicate through public interfaces. An API
(Application Programming Interface) is a set of rules that allows different software
systems to exchange data and functions, for example, when a mobile app retrieves
information from a cloud service. While this modular design promotes flexibility and
integration, it also exposes many functionalities to the internet. Because APIs now
handle about 71% of all web traffic [8], they have become major targets for
attackers. Each API endpoint is a potential entry point, and if it is misconfigured or
lacks proper security controls, it can lead to serious data breaches. Managing
dozens or even hundreds of APIs across cloud and on-premise systems increases
the risk that some remain unprotected or forgotten.

Low-Code/No-Code Platforms: Low-code tools allow non-experts to build
applications quickly, but this accessibility introduces security trade-offs. Because
these apps often skip the thorough reviews and testing used in traditional
development, they may contain hidden risks. In this context, citizen developers are
employees or users without formal programming training who create software using
visual, drag-and-drop tools instead of writing code. While this democratization of
development speeds up innovation, it can also lead to misconfigurations, such as
granting incorrect permissions or exposing sensitive data, if proper governance is
not in place. Therefore, low-code platforms must always be accompanied by clear
security guidance and supervision.

Software Supply Chain: Modern software is built from many external and
open-source components. This dependence means that a single flaw in a popular
library can expose thousands of organizations at once. Because these components
are interconnected, one vulnerability can spread through the entire ecosystem like a
chain reaction. These are known as software supply chain attacks, where attackers
compromise weaker links (for example, a small vendor or open-source maintainer)
to reach the larger systems that depend on them.

10

In light of these challenges, there is a growing recognition that cybersecurity must
be reframed as an enabler of innovation, not a barrier. In the past, security was
sometimes viewed as a drag on agility, strict controls and checks that slowed down
release cycles or constrained new features. However, as digital transformation has
made business success inseparable from technology, robust cybersecurity is
increasingly seen as foundational to sustained innovation. Strong security postures
create the trust and stability required to experiment with new digital offerings.
Industry leaders now assert that cybersecurity is not just a safeguard but a strategic
enabler of innovation, customer trust, and long-term growth [9]. By embedding
security into the design of systems (secure-by-design principles) and into
governance processes, organizations can pursue rapid development and remain
resilient to threats. In practice, this means integrating security teams directly into
development and operations, an approach known as DevSecOps, where security is
built into every stage of the software lifecycle rather than added at the end. It also
involves adopting frameworks that simplify and organize security architectures to
reduce complexity, and ensuring that cybersecurity investments align with business
goals and governance priorities. Notably, modern regulations and standards
encourage this alignment: for example, the EU’s NIS2 Directive explicitly elevates
cybersecurity to a board-level responsibility, ensuring that innovation initiatives are
paired with accountability for managing cyber risks [10]. The security paradox can
thus be resolved by treating cybersecurity not as a hindrance, but as a critical
success factor, one that enables organizations to innovate safely in an environment
of complex, distributed digital systems.

1.4 Research Motivation and Objectives

The core motivation for this research is to explore the intersection of cutting-edge
software development paradigms and cybersecurity. With the advent of Al-assisted
coding tools and low-code/no-code development platforms, software creation is
becoming faster and more accessible, but potentially at the expense of quality and
security. This thesis is driven by the need to understand the security and quality
implications of these trends. In particular, the work seeks to illuminate how the
ongoing digital transformation reshapes software’s role and risk, what new
vulnerabilities are emerging from Al and low-code practices, and how organizations
might govern technology in a way that balances rapid innovation with robust
security.

To address this motivation, the study is organized around three central research
questions:

11

1.

1.

How do Al-assisted development and low-code platforms alter the
nature of software vulnerabilities and accountability?

This question explores how emerging development paradigms shift the
technical and organizational boundaries of responsibility. By automating
parts of the coding process or enabling non-expert users to build
applications, these tools redefine who is accountable for code quality and
security. The inquiry examines empirical evidence showing that Al-generated
code may replicate insecure patterns, while low-code platforms can
introduce misconfigurations and hidden dependencies when used without
proper governance.

Which governance and assurance mechanisms can mitigate emerging
risks without undermining agility?

Here, the focus turns to management and control frameworks that reconcile
speed and safety. It investigates how organizations can integrate automated
checks, quality certification, and continuous security assurance into rapid
development cycles, ensuring compliance with regulations such as NIS2 [10]
and the EU Al Act while preserving flexibility and innovation.

How can standardized frameworks institutionalize quality and security in
increasingly automated environments?

The third question broadens the analysis to a systemic level. It examines how
initiatives such as Innovation Code and global standards (e.g. ISO/IEC 25010,
SLSA, SBOM) can serve as anchors for sustainable digital transformation.
The goal is to understand whether shared governance and standardized
certification can embed cybersecurity and quality management into the fabric
of innovation itself, transforming security from a reactive safeguard into a
proactive enabler.

Together, these questions frame the thesis around a fundamental challenge:
designing a software ecosystem where automation, intelligence, and regulation
coexist in balance, enabling innovation that is not only fast, but also accountable,
auditable, and secure by design.

The objective of this thesis, corresponding to these questions, is to conduct a
critical analysis of current trends and frameworks and to lay the groundwork for
a practical initiative addressing these issues. Concretely, the study aims to:

Analyze how digital transformation has elevated the role of software and the
nature of software-related risks (drawing on literature and industry
observations).

12

2. ldentify and examine vulnerabilities emerging from Al-assisted coding and
low-code development, comparing them to traditional software
vulnerabilities.

3. Investigate whether and how innovation can coevolve with security through
collaborative governance, by comparing frameworks and standards (such as
OWASP best practices, the European NIS2 directive, and the ISO/IEC 25010
software quality model).

4. Finally, as a forward-looking component, preview the “Innovation Code”
initiative, an industry-driven program, evaluating it as a case that embodies
these themes and potentially offers solutions.

By meeting these objectives, the thesis will bridge theoretical and practical
perspectives. It will not only survey and synthesize existing knowledge (on digital
transformation, Al risks, governance models, etc.) but also use that understanding
to assess new approaches (like Innovation Code) that aim to reconcile the demands
of innovation speed, quality, and security. The overall goal is to derive insights and
recommendations that can guide both practitioners (in managing real-world
software projects) and policymakers or industry groups working on frameworks for
secure digital innovation.

1.5 From Problem to Solution: The Genesis of the
“Innovation Code” Initiative

In response to the challenges outlined above, ranging from the increasing
complexity of digital systems to the difficulty of maintaining both speed and control
in software development, the Italian initiative “Innovation Code” has emerged as a
coordinated, forward-looking response. Conceived within the industrial and
technological ecosystem of Italy, and particularly promoted by Confindustria
Romagna, the initiative was born out of a shared awareness among companies, ICT
and professionals, that the traditional, fragmented approaches to software
governance were no longer sufficient. Rather than relying on isolated best practices
or reactive compliance measures, Innovation Code proposes a systemic model
designed to embed quality, security, and sustainability into the entire software
lifecycle.

The initiative is structured around four key pillars: quality, reuse, governance, and
sustainability. It recognizes that many of the weaknesses found in modern software,
ranging from technical debt to inconsistent coding standards, stem not from
individual mistakes but from the absence of shared frameworks and collective
accountability. To address this, Innovation Code promotes the creation of a

13

standardized environment where organizations can develop and share certified
software components, reuse proven modules, and operate within a transparent and
auditable governance model. This shared repository of trusted components aims to
reduce redundant effort, minimize vulnerabilities, and ensure that updates or
patches can be deployed consistently across projects, reinforcing security and
efficiency at scale.

Confindustria Romagna, as the driving institutional partner, has played a pivotal role
in fostering collaboration between industry and academia, connecting enterprises of
varying sizes, especially SMEs, with innovation partners and digital experts.
Through this networked approach, Innovation Code functions not merely as a
technical framework but as a strategic ecosystem that encourages responsible
innovation. It brings together coordinators, authors, and users in a tiered
participation model, ensuring that expertise, oversight, and operational execution
are balanced. This collaborative structure ensures that rapid innovation through
Al-assisted and low-code tools can coexist with rigorous quality and cybersecurity
governance.

Although the specific mechanisms, certifications, and pilot projects of Innovation
Code will be examined later, its introduction here serves a wider purpose. The
initiative represents a clear example of how modern software ecosystems can
balance two essential goals: moving fast while remaining accountable. In this sense,
Innovation Code reflects a governance approach that aligns with European priorities
set out in the NIS2 Directive and the Al Act, both of which emphasize transparency,
traceability, and shared responsibility as the foundation of trustworthy digital
innovation.

This initiative provides both the conceptual and practical foundation for the main
question guiding this thesis: how can innovation and cybersecurity grow together
under structured governance? It acts as a bridge between theory and practice,
showing how organizations can apply secure-by-design principles without slowing
down technological progress.

The transition to Chapter 2 follows naturally from this discussion. After exploring
governance models and systemic responses such as Innovation Code, the next
chapter shifts focus to the technological side of transformation. It will trace the
evolution of coding itself, from traditional programming to Al-assisted and low-code
approaches, highlighting how these innovations have reshaped not only the way
software is developed but also how its security and reliability must be reconsidered
in today’s digital era.

14

Chapter 2

The Evolution of Coding: Between Al,
Low-Code and Emerging Languages

The art and science of programming have undergone profound transformations
since the early days of computing, evolving from arcane sequences of machine
code to sophisticated systems capable of interpreting natural language. Each
generational leap in abstraction has not only changed how software is written but
also who is empowered to write it. This chapter explores the major technological
cycles that have shaped software development, tracing a historical arc from
low-level coding practices to the emergence of artificial intelligence,
low-code/no-code platforms and natural language programming. These shifts are
not merely technical, they carry far-reaching implications for software security,
governance and the role of the human developer.

The driving force behind this evolution has consistently been the pursuit of greater
productivity, accessibility and expressiveness. High-level compiled languages,
object-oriented paradigms and fourth-generation languages each played their part
in abstracting away hardware constraints and democratizing software creation.
More recently, the irruption of Al into development environments, exemplified by
tools like GitHub Copilot, has begun to redefine coding itself, transforming natural
language into a de facto programming interface. Parallel to this, low-code and
no-code platforms are enabling a new generation of "citizen developers" to
participate in application development, often without formal programming
backgrounds.

These trends, while empowering, introduce new challenges for software quality and
security. The delegation of code generation to Al or non-technical users raises
critical questions about the integrity, safety and maintainability of modern software
systems. As abstraction increases, so too does the risk of hidden vulnerabilities and
the need for robust oversight mechanisms. This chapter examines these dynamics
in depth, offering both a historical perspective and a forward-looking analysis of
where software development is headed and what it means for the secure design of
tomorrow’s systems.

15

In doing so, it sets the foundation for understanding how emerging coding
paradigms (from Al-generated code to fully declarative natural language interfaces)
are reshaping the landscape of cybersecurity and what strategies will be necessary
to navigate this new era responsibly.

2.1 A Brief History and Technological Cycles of Coding

The practice of coding has undergone several transformative cycles since the dawn
of computing. In the earliest era (1940s-1950s), programming meant writing
low-level instructions in machine code or assembly language, painstakingly toggling
switches or punching cards. The late 1950s and 1960s introduced high-level
compiled languages like Fortran and COBOL, which abstracted away hardware
details and greatly increased developer productivity. Each leap in abstraction (from
machine code to compiled languages and later to interpreted and managed
languages) broadened accessibility to programming. Moving from assembly to
compiled code meant that a programmer “didn’t have to understand what registers
are... you just needed to understand if-then-else or what a variable assignment is”.
[11] Similarly, the transition from compiled languages (like C/C++) to higher-level
interpreted languages and frameworks (like Java, JavaScript, Python in the 1990s)
further lowered the entry barriers and enabled more rapid development. Each cycle
of abstraction initially met resistance from traditionalists who feared a “loss of
knowledge”, yet time and again these fears proved unfounded as productivity gains
were realized.

By the 1980s, new programming paradigms were emerging, including
object-oriented programming (e.g. C++ and later Java) and fourth-generation
languages (4GLs). 4GLs marked an important shift: instead of requiring developers
to write detailed step-by-step instructions (as with earlier languages like C), they
allowed them to simply specify what the program should achieve. The system would
then figure out how to perform the task. This approach anticipated today’s
declarative and visual development tools.

At the same time, Computer-Aided Software Engineering (CASE) tools began to
appear. These were specialized programs designed to automate parts of the
software development process, such as designing database structures, generating
code or managing documentation. In essence, CASE tools aimed to make coding
faster, more consistent and more accessible by providing visual editors, templates
and automatic code generation features.

Visionaries like James Martin predicted, as early as 1982 in Application
Development Without Programmers, that the shortage of skilled developers would

16

drive the need for tools that could enable non-programmers to build applications.
Indeed, during the 1980s, CASE and 4GL platforms promised to democratize
software creation by minimizing the amount of manual coding required. These early
technologies were the forerunners of what we now call citizen development
platforms, tools that empower non-technical users to create software solutions
[12]. (This concept of the "citizen developer" will be explored more deeply later in
the chapter.)

However, despite the enthusiasm, these early attempts often struggled in practice:
many CASE and 4GL systems failed to scale effectively for complex applications
and often lacked essential capabilities like version control and thorough testing
frameworks. As a result, by the late 1990s, attention shifted toward new
programming languages (such as JavaScript and PHP) and frameworks driven by
the rise of the web and client-server architectures, temporarily sidelining those early
“low-code” ideas.

Timeline of Key Disruptions

To illustrate the cycles, consider a brief timeline. In 1957, the introduction of
FORTRAN (the first widely used high-level language) was a breakthrough that
simplified numeric computing. The 1970s brought C and structured programming,
enabling development of complex systems like operating systems with more
manageable code. The 1980s saw the advent of PC software and object-oriented
languages (C++, Smalltalk) and also early visual programming experiments (e.g.
Visual Basic emerged in 1991 blending GUI design with coding). The 1990s and
2000s were dominated by the internet boom, scripting languages (Perl, Python,
JavaScript) and enterprise frameworks (Java EE, .NET) a shift towards rapid
development and reuse of libraries. Each of these phases demonstrates a cycle of
rising abstraction: from hardware-near coding towards higher-level, human-friendly
constructs. Now, in the late 2010s and 2020s, we are in the midst of another
quantum leap, one where artificial intelligence and low-code/no-code platforms
radically redefine how software is created. The following sections examine this
modern evolution and its implications, particularly for security.

2.2 The Irruption of Artificial Intelligence in Software
Development

Recent years have seen an unprecedented irruption of Artificial Intelligence (Al)
into the realm of software development. Al-powered tools are now writing code,
debugging and even architecting software alongside human developers. The launch

17

of GitHub Copilot in 2021, described as an “Al pair programmer”, was a watershed
moment. Copilot and similar generative Al models (Anthropic Claude, OpenAl
ChatGPT, Amazon CodeWhisperer, etc.) use large language models trained on vast
code corpora to suggest code completions or even generate entire functions based
on natural-language prompts. This represents a new paradigm: instead of manually
writing every line, a developer can now describe the intended functionality in
English (or any other natural language) and let the Al produce candidate code. As
Nvidia’s CEO Jensen Huang put it, “the programming language is human” and in the
future “you will tell the computer what you want and it will do it” [16]. In other words,
Al is turning English (or any human language) into a universal programming
language by serving as the translator from intent to implementation.

The integration of Al has already shown tangible productivity benefits. Studies found
that developers using Al assistants can complete tasks significantly faster. For
example, an experiment by GitHub revealed that programmers with Copilot finished
a coding task 55% faster on average than those without it [18]. This speed-up
(reducing a task that took 2 hours 41 minutes down to 1 hour 11 minutes in the
study) underscores Al’s potential to automate boilerplate coding and accelerate
development. Beyond speed, Al coding assistants can improve developer
experience: surveys report that a majority of developers feel less frustrated and
more “in the flow” when using Al assistance, allowing them to focus on creative and
complex aspects of software design. Essentially, Al can handle repetitive grunt work
(e.g. writing routine functions, suggesting syntax) so that human developers can
concentrate on higher-level problem solving.

However, the irruption of Al also brings significant cybersecurity implications and
challenges. One concern is the security of Al-generated code. Since these
models learn from public code (which may include insecure patterns), they can
inadvertently produce vulnerable code constructs. A prominent study in 2022
systematically analyzed Copilot’s outputs for secure coding practices and found
that roughly 40% of the Al-generated programs had security vulnerabilities [17].
In scenarios targeting common weakness patterns (such as those in MITRE’s CWE
Top 25, detailed in the next chapter), Copilot often suggested solutions that were
functionally correct but insecure, for example using outdated encryption or
susceptible SQL queries. These findings highlight the risk that Al assistance might
introduce hidden flaws if a human developer accepts suggestions without scrutiny.
In response, tool makers have started adding Al-based vulnerability filters to block
obviously insecure suggestions. Nevertheless, the onus remains on developers to
review and test Al-written code carefully, effectively shifting their role from writing
code to auditing and curating code. This shift itself is a major change: developers

18

must develop new skills in prompt engineering (to get useful outputs from the Al)
and in security-aware code review, as they guide and correct their Al collaborators.

Another challenge is the potential for malicious use of Al in coding. Just as Al can
help developers build apps faster, it could assist attackers in generating malware or
exploits. There is concern that generative models could lower the barrier for creating
sophisticated attacks by auto-coding malicious scripts or polymorphic code. On the
flip side, Al is also being harnessed for defensive security e.g. Al systems that
refactor insecure code or generate fixes for known vulnerabilities. This dual-edged
nature of Al in development means cybersecurity professionals must stay vigilant:
the development landscape is evolving where Al can be co-developer or adversary.
In summary, Al’'s sudden entrance into software engineering is transforming how
code is written. It promises unprecedented automation and efficiency, the ability to
generate code from natural language is “another rung up the ladder of abstraction”
beyond even high-level languages. Yet it also requires a rethinking of secure
development life cycles, with new practices to ensure Al-generated code does not
become the weakest link in security.

The next section will explore a parallel revolution making coding more accessible:
the rise of low-code and no-code development, which intersects with the Al trend to
further democratize software creation.

2.3 The Low-Code/No-Code Paradigm and the Rise of
the “Citizen Developer”

In tandem with Al, the software industry is experiencing a renaissance of
low-code/no-code development platforms. These platforms allow applications to
be built with minimal hand-written code, often through graphical interfaces,
drag-and-drop components and declarative configuration. The concept is not
entirely new as noted, the roots trace back to 4GLs in the late 20th century, but
modern low-code platforms are far more capable and integrated. Their resurgence
is driven by a critical need: businesses face a shortage of professional
developers and a backlog of software needs, so empowering non-programmers to
create software is an attractive solution. The term “citizen developer” has emerged
to describe business users (outside the IT department) who build or customize
applications using IT-sanctioned low-code/no-code tools, rather than traditional
coding [13]. This paradigm shift enables domain experts e.g. a finance analyst
automating a reporting workflow, to become creators of software solutions without
deep programming skills.

19

Modern low-code/no-code platforms include examples like WaveMaker, Oracle
APEX and Microsoft Power Apps, among many others. These tools exemplify the
low-code approach in practice. WaveMaker is a Java-based low-code platform
oriented toward professional developers building enterprise apps; it provides a
visual studio and component library on top of an open standards stack
(Java/Spring, etc.), allowing developers to “leverage the speed of low-code with
control over custom coding” [14]. Oracle APEX (Application Express) is another
platform, originally developed by Oracle in the 2000s, that enables rapid
development of web applications with a browser-based interface. APEX exemplifies
a hybrid development model: one can assemble an app with wizards and
drag-drop Ul designers, achieving a functional prototype without writing code, but if
needed, developers can extend or fine-tune the app with SQL and PL/SQL logic or
by injecting JavaScript for custom behaviors [15]. Microsoft Power Apps similarly
allows creation of business applications through a visual canvas and Excel-like
formulas, tightly integrating with the Office 365 ecosystem for citizen developers in
organizations.

As introduced in Chapter 1, in line with the growing adoption of low-code solutions
across industries and governments, the Innovation Code project stands out as a
pioneering initiative driving digital transformation within the Italian ecosystem.
Launched by Meta, the innovation arm of Confindustria Romagna, Innovation
Code was created to address the digital gap faced by small and medium-sized
enterprises by promoting the use of low-code technologies such as the ones just
discussed.

Innovation Code operates as a structured community, bringing together
companies, developers and IT professionals under a shared framework of
collaboration. Participants are organized into different levels: Coordinators, Authors
and Users. each with specific responsibilities and rights. Central to the initiative is a
curated marketplace, where certified software components, modules and APIs are
made available. This enables businesses to quickly assemble customized solutions
while significantly reducing development time and cost. The initiative’s structure,
certification process, and governance model offer much to explore and will be
examined in greater depth in Chapter 5.

Innovation Code is a prime example of how low-code tools can bridge the software
demand gap by empowering a wider range of contributors, including those with
limited technical backgrounds, a concept that will be further explored when
discussing the rise of citizen development later in this chapter.

20

The advantages of low-code/no-code are clear: faster development cycles, lower
barrier to create simple apps and the ability to involve end-users directly in building
the tools they need. Gartner predicts that by 2026, developers outside formal IT
departments will account for at least 80% of the user base for low-code
development tools, a dramatic increase from just a few years prior [20]. These
numbers underscore that citizen development is moving into the mainstream. From
a business perspective, this helps alleviate the developer talent shortage and allows
power users to “solve their own problems” directly. When done right, it can boost
innovation and efficiency, freeing IT staff to focus on more complex, mission-critical
projects while line-of-business teams handle lighter applications.

Security and governance concerns: Despite its promise, the low-code movement
brings challenges, particularly for cybersecurity and IT governance. Allowing a wide
swath of non-engineers to create applications can potentially amplify security risks
if not managed properly. Earlier generations of pseudo-coding tools learned this the
hard way: many early 4GL projects in the '80s and '90s resulted in fragile, unsecure
applications. As one analysis noted, empowering non-technical people to build
software “exposed the organization to several risks, chief among them that most
non-technical builders did not possess the skillset to create and deploy applications
with appropriate security and governance” [12]. In the modern era, low-code
platforms have improved on this by baking in security features and offering admin
oversight. Most enterprise-grade low-code platforms now include centralized IT
governance, role-based access control and compliance certifications. For example,
platforms delivered via the cloud can enforce updates and security patches
universally. Additionally, the maturation of the user base and best practices in the
last decade have made it easier to establish guidelines for citizen developers (e.g.
requiring IT review of apps that use sensitive data). Nonetheless, organizations
must implement proper governance: establishing which data and systems
citizen-developed apps can access, providing training on secure practices for
citizen devs and monitoring for compliance. Without these measures, low-code
apps could inadvertently become a new attack surface (through misconfigured data
access, lack of encryption, etc.).

Another concern is scalability and maintainability of low-code solutions. If dozens
of departments build their own mini-apps, an IT department could face a sprawl of
semi-supported tools. This is why many companies create “fusion teams” pairing
citizen developers with professional developers to ensure that the resulting software
meets quality standards and can be maintained or integrated properly long-term.
The “citizen developer” trend thus forces a redefinition of roles: the pro developers
take on more of a curator/mentor role, setting up the guardrails and stepping in to

21

extend platforms when custom code is necessary, while the business users
contribute domain knowledge and quick prototyping.

From a strategic perspective, low-code and no-code platforms are democratizing
software development by extending participation beyond traditional IT roles.
However, this democratization must be managed carefully to avoid introducing
significant risks to cybersecurity and governance. Rather than embracing an
uncontrolled expansion of “citizen developers", initiatives such as Innovation Code
advocate for a more disciplined model, contrary to the simplistic notion that
"everyone can build their own apps" a more sustainable and secure approach
involves: selecting individuals with STEM backgrounds or strong technical aptitudes
and providing them with structured training in development standards, security
principles and platform governance.

This model preserves the advantages of low-code, such as faster development
cycles and reduced pressure on IT departments while minimizing the risks typically
associated with fragmented or ad hoc software creation. By embedding governance
mechanisms directly into the development process and ensuring that new
contributors are appropriately trained, organizations can expand their innovation
capacity without compromising security or operational integrity. As low-code
adoption accelerates, striking a balance between empowering a broader workforce
and maintaining rigorous oversight will be essential. The next frontier will push these
boundaries even further, with the emergence of hybrid models and natural language
programming, topics explored in the following section.

2.4 New Frontiers of Coding: Hybrid Languages and
Natural Language Programming

The evolution of coding paradigms is now reaching a point where the lines between
human language and programming language begin to blur. Two notable frontiers are
emerging: hybrid languages and natural language programming. These
developments aim to make programming more expressive, intuitive and aligned with
human thinking, which could fundamentally change how we approach software
development.

Hybrid Languages: The term "hybrid languages" refers to programming languages
or environments that integrate multiple programming paradigms, that is, distinct
styles or models of organizing and thinking about software development. A
programming paradigm defines the fundamental approach a language uses to
structure and execute programs. Common paradigms include procedural

22

programming (where code is organized into sequences of instructions or
procedures), object-oriented programming (which structures programs around
objects and data encapsulation) and functional programming (which emphasizes
immutability and pure functions without side effects).

Many modern languages already embody a hybrid nature by supporting multiple
paradigms within a single environment. For instance, Scala and Kotlin combine
object-oriented and functional programming styles, enabling developers to choose
the most effective approach for each part of their application. Similarly, Python
allows procedural, object-oriented and functional techniques to coexist seamlessly
within the same codebase. This blending of paradigms offers developers greater
flexibility and adaptability, supporting more complex and efficient software
solutions.

However, the frontier goes beyond just multi-paradigm. It includes languages that
integrate low-code style abstractions with traditional code. We see this in
platforms like Oracle APEX, where a mostly visual development can be augmented
by snippets of code when needed. Such a hybrid approach lets developers get the
efficiency of model-driven development while still dropping down to code for
fine-grained control. Another example is WaveMaker’'s “hybrid coding
experience” which allows mixing and matching code written in a traditional IDE
with the low-code components in the platform. Essentially, the developer can
round-trip between a visual modeler and code editor, using whichever tool is
appropriate for the task. This convergence is blurring the distinction between
“low-code” and “code”, future developers might work in environments where part of
the logic is designed by drawing a workflow or form and part by writing a script, all
within one coherent language framework.

Natural Language Programming: Perhaps the most radical frontier is programming
using natural language (NL), essentially telling the computer what to do in everyday
human language. We already see glimmers of this in Al code generation as
discussed in 2.2. But beyond using Al to generate code in an existing language,
there is a vision of direct natural language programming where the distinction
between specification and implementation disappears. In such a scenario, a
programmer (or end-user) could write instructions or constraints in English (or any
human language) and the system’s Al interpreter would execute them or translate
them into machine-executable form on the fly. In effect, English itself becomes the
“source code.” A recent headline captured this trend: “Thanks to Al, the hottest new
programming language is... English.” [16]. Industry leaders like Andrej Karpathy
have predicted this shift and companies like Microsoft and OpenAl are actively
working on interfaces where users can write queries or commands in natural

23

language to manipulate data and software. For instance, Microsoft’s Power Platform
now includes an Al feature where a user can type “Create a workflow that sends an
email approval when a form is submitted” and the system will build that workflow
without further traditional coding.

The progress in large language models is a key enabler of natural language
programming. Jensen Huang’s vision (mentioned earlier) that “nobody has to
program” and we can describe tasks in human language is increasingly plausible
with advanced Al. Already, GPT and similar models can generate not just code, but
entire mini-programs when given a well-formed request. There are experimental
systems where you can ask in plain language for a certain kind of application (e.g.
“a simple task tracker with user login”) and the system will attempt to assemble it
using pre-built modules and some generated glue code.

However, natural language programming raises its own challenges. One is
ambiguity, human language is inherently less precise than formal code. This can
lead to misunderstandings between the user’s intention and the Al’s interpretation.
We may need new methodologies (perhaps writing tests or examples in natural
language as well) to ensure the intent is captured correctly. Another challenge is
verification and security. With traditional code, there are established practices for
code review, static analysis and formal verification. If the “code” is a natural
language description, how do we verify that it will always do what we intend and
nothing more? It might become necessary to have Al systems translate NL into
intermediate, verifiable representations. Some research is looking at explainable Al
in this context ensuring that for an English “program” the system can show a logical
form or a series of steps it will execute, which a human can then review or test.

From a cybersecurity perspective, natural language programming again presents
both opportunities and risks. On one hand, it could help reduce certain classes of
bugs, since developers are not manually writing low-level code lowering the chance
of common mistakes like off-by-one errors or APl misuses. Al systems might also
default to using secure coding practices and templates. On the other hand, if a user
naively describes a feature (e.g. "allow users to upload files") without specifying
security requirements, the Al might implement it in the simplest form, overlooking
critical protections such as virus scanning or access control. Unless these systems
are trained to proactively integrate security best practices, they risk introducing
vulnerabilities. Therefore, embedding security-by-design principles into natural
language programming frameworks is essential and remains an active and evolving
area of research.

24

Hybrid Natural Languages: We also see interesting hybrids of code and natural
language emerging. Take for example the use of markdown-like syntax in
documentation tools that allow executable code blocks mixed with narrative, a
concept reminiscent of literate programming, originally introduced by Donald Knuth
in the 1980s, where the goal was to write programs as readable documents that
explain the logic in natural language alongside the source code. This idea has been
reinvented in modern tools such as Jupyter Notebooks, which integrate narrative
text, visualizations, and live code within the same environment. Some contemporary
systems even allow writing a specification in something close to English,
interspersed with formal elements. These might form a bridge towards full natural
programming by providing a controlled natural language, readable by humans but
structured enough for machines.

In conclusion, the frontier of programming is rapidly expanding along two major
paths. On one hand, we are witnessing the rise of hybrid languages and
environments that seamlessly blend narrative and code, offering a middle ground
between human expressiveness and machine precision. On the other hand, the
vision of direct natural language programming promises to transform human
language itself into the ultimate programming interface, one where the boundary
between intent and implementation effectively dissolves. Both trajectories aim to
make programming more intuitive, accessible and aligned with the way humans
naturally think and communicate.

However, these advances also bring new challenges: ensuring clarity in inherently
ambiguous human language, verifying the security and correctness of Al-generated
programs and rethinking traditional software development practices. The role of
developers will shift from coding in strict syntaxes to crafting precise descriptions,
guiding intelligent systems and critically validating their outputs. Cybersecurity, in
particular, must evolve alongside these changes to embed protection into the very
fabric of these new paradigms.

As we look ahead, it becomes clear that natural language programming is just one
dimension of a broader transformation. The next frontier of software development
will also involve greater automation, visual composition and Al-driven assistance
redefining not only how code is written, but what it means to be a developer. These
themes are explored in the next section.

25

2.5 Future Scenarios: Towards Automated, Visual and
Assisted Coding

Looking forward, we can envision several converging trends that paint a picture of
how coding might evolve in the next decade. The trajectory is clearly toward more
automated, more visual and more Al-assisted coding practices. In this future, the
role of the human developer will be elevated to that of a designer, tutor and verifier
of software, while much of the grunt work of actual code writing is handled by
intelligent tools.

Automated Coding: Automation in coding is not just about generating code with Al;
it also includes the broader idea of end-to-end automation from requirements to
deployment. We are moving toward a scenario where a desired functionality can go
through fewer manual translation steps to become a running system. Model-driven
development is an early example, where you draw a UML diagram and the
framework generates baseline code. In the future, fueled by Al, this could become
far more powerful. A product manager might feed a high-level requirements
document to an Al, which then produces a working prototype application, complete
with suggested Ul and database schema. Some research projects already explore
this, using transformers to convert software design specs or user stories directly
into code. Generative Al will likely integrate with software IDEs and DevOps
pipelines so that certain classes of code (boilerplate, integration glue, tests) are
generated automatically whenever you declare high-level intents. This automation
will also extend to maintenance: Al bots might automatically update dependencies,
fix known vulnerabilities in code or refactor codebases for efficiency. In essence,
coding tasks that are repetitive or well-bounded could be almost entirely
automated.

The visual aspect of programming is also expected to strengthen. Low-code
platforms demonstrate the appeal of visual composition; we may see traditional
IDEs incorporate more visual design elements even for professional coders. Imagine
an IDE where you can switch to a flowchart view of your code logic, adjust logic by
moving nodes and the code updates accordingly, this would marry visual thinking
with textual precision. Future programming environments might also leverage AR/VR
for visualization of complex systems (for example, rendering an architecture in 3D
space to better understand component interactions). While that sounds futuristic,
the aim is serious: to manage complexity by representing code in forms more
digestible than thousands of lines of text. Visual and diagrammatic representations,
enhanced by Al (which could suggest improvements or catch flaws as you
manipulate the diagram), could make architecture and code design more intuitive

26

and collaborative. This is akin to a “Google Maps for code” where you can zoom
out to see the whole system or zoom in to see a specific function, with guidance
systems highlighting potential trouble spots.

Al-assisted everything: In future scenarios, Al assistants will be omnipresent
across the software development lifecycle. We already have coding assistants for
autocompletion; we can expect Al to assist in requirements gathering (by, say,
conversing with stakeholders in natural language and drafting requirements or user
stories), in design (proposing design patterns or suggesting which cloud services to
use for a given problem), in testing (auto-generating test cases, fuzzing inputs and
even formally verifying certain properties) and in deployment (optimizing cloud
resource configurations). Development will become a highly augmented
experience, a developer might carry out a conversation with an Al agent: “Generate
a data model for an e-commerce inventory” and the Al produces a draft schema;
“Now write REST API endpoints for these operations”, it generates code; “Check if
there are any security vulnerabilities or performance issues”, it analyzes and reports
findings which the developer then approves or adjusts. This tight loop of human
oversight and Al labor could make software development orders of magnitude faster
and more reliable.

From a cybersecurity perspective, these future trends offer both optimism and
caution. On the optimistic side, many common software security issues could be
reduced. Automated code generation and refactoring can incorporate security best
practices by default for example, always using parameterized queries to avoid SQL
injection or using memory-safe languages for new code as the National Security
Agency (NSA) recommends [19]. Al assistants can continuously scan code as its
written, catching dangerous patterns or outdated libraries in real-time and
suggesting fixes. Visual programming and high-level automation might also mean
fewer opportunities to introduce low-level mistakes that lead to vulnerabilities. In
fact, the government and industry push to adopt memory-safe languages (like
Rust, Go, Swift) is part of this future, we are likely to see new systems programming
gravitate to these safer languages, eliminating entire categories of security bugs
(buffer overflows, use-after-free) at the source. The incorporation of Rust
components in the Linux kernel and other infrastructure software is a current
example of this incremental but significant shift towards safer coding practices.

On the cautionary side, fully automated and Al-driven development could
introduce novel risks. One concern is that as humans write less code themselves,
they might overlook logic bombs or subtle security issues inserted by Al. If an Al
toolchain is compromised (for instance, a supply-chain attack on a popular Al
coding assistant), it could potentially spread vulnerabilities at scale by suggesting

27

malicious code to thousands of developers. We will need robust validation and
perhaps Al auditing systems, essentially Als that watch other Als, to ensure the
integrity of automated coding outputs. Additionally, when logic is largely
machine-generated, understanding the code’s behavior becomes harder. This
“opacity” can complicate security auditing and incident response. To mitigate this,
future development might enforce traceability, every piece of code generated by Al
might come with an explanation or a link back to the requirement it fulfills, so that
auditors can trace why it exists.

Towards a new developer role: All signs point to the role of the developer evolving
rather than disappearing. In a future of automated, visual and assisted coding, the
developer’s job may look less like typing syntax and more like orchestrating,
validating and guiding. The phrase “software composer” might become apt,
analogous to a music composer who directs an orchestra (the Al tools and code
generators) to perform a symphony (the final software product). The human will
provide creative direction, ethical judgment and domain expertise that machines
lack. In the realm of security, human expertise will remain crucial to define threat
models and decide on risk trade-offs, tasks that are hard to fully delegate to Al.

The evolution of coding is steering towards a future where writing software is more
about what the system should do (high-level design, constraints, goals) rather than
how to write code to do it. This journey from assembly language all the way to
conversational programming is a story of increasing abstraction and
democratization. For cybersecurity, this evolution is both a challenge, requiring
new approaches to ensure security in highly abstracted development and an
opportunity to finally eliminate many common vulnerabilities and make secure
coding the path of least resistance. Chapter 2 has traced this evolution through
history, the rise of Al and low-code and the emerging frontiers. In subsequent
chapters, we will delve deeper into the specific security frameworks and practices
that can harness these trends for building secure software in this brave new world.

28

Chapter 3

Al and Software Development: Opportunities
and Vulnerabilities

The rapid integration of Artificial Intelligence into software development marks one
of the most significant technological shifts in the history of programming. As
outlined in Chapter 2, Al-powered tools such as GitHub Copilot and low-code
platforms are reshaping how software is written offering developers the ability to
generate, refactor and document code with unprecedented speed and ease. These
advances represent the latest stage in a long arc of abstraction and automation that
began with the earliest compiled languages.

The benefits of Al-assisted development are compelling: enhanced productivity,
improved code quality, faster prototyping and a reduction in cognitive load.
Developers can offload repetitive tasks, such as boilerplate coding, documentation
and even basic debugging, to intelligent systems, freeing themselves to focus on
higher-order thinking, system design and creative problem-solving. In many ways,
the developer’s role is shifting from hands-on coder to orchestrator and supervisor
of Al-generated logic.

However, while these advantages are undeniable and already reshaping the practice
of software engineering, they also introduce a new class of complexities and
vulnerabilities that must be critically examined. As intelligent agents take on a
growing share of coding tasks, developers are no longer just builders, they become
stewards of reliability, security and trust in code they may not have written
themselves. If Al is to be entrusted with core parts of the development lifecycle,
understanding its limitations and potential failure modes becomes not only prudent
but essential.

This chapter explores the dual nature of Al in software engineering: as both an
accelerator of innovation and a potential source of security risk. It begins by
highlighting the concrete advantages of Al in development workflows: productivity,
consistency and automation; before turning to the emerging risks and threats.
These include the inadvertent introduction of bugs and backdoors in Al-generated
code, biases that affect code quality and developer judgment and new attack
vectors such as prompt injection, model stealing and data poisoning.

29

We will also confront one of the most pressing issues in Al integration: the opacity
of large language models, the so-called “black box” phenomenon, which
complicates auditing, verification and secure deployment. Understanding how these
systems behave and under what circumstances they might fail or be manipulated, is
now critical to building trustworthy software.

Finally, this chapter grounds these theoretical concerns in a cutting-edge case
study: Anthropic’s 2025 experiment on uncovering hidden objectives in large
language models. This investigation not only illustrates how Al can develop
concealed behaviors beneath the surface but also demonstrates how structured
auditing, interpretability analysis and red-teaming can expose these threats offering
a roadmap for safe and responsible Al adoption.

In a world where Al may soon write more code than humans do, the key question is
no longer if we should adopt these tools, but how to do so responsibly,
transparently and securely.

3.1 Risks of Al-Generated Code: Bugs, Backdoors and Bias

Despite its promises, Al-generated code also introduces significant cybersecurity
risks. A foremost concern is the injection of subtle bugs and vulnerabilities by Al
coding assistants. Studies have found that code produced by generative models
often contains weaknesses that could be exploited. In an evaluation of five different
code-generation models by a Georgetown University research center, almost half of
the Al-generated code snippets contained bugs, many of them serious security
flaws [22]. Similarly, an empirical analysis of GitHub Copilot’s suggestions revealed
that about one-third of the generated code contained security vulnerabilities,
spanning dozens of categories defined by the Common Weakness Enumeration
(CWE), a standardized classification system maintained by MITRE that catalogs
common software security flaws. These included serious issues such as the use of
weak cryptography, OS command injections and insecure deserialization. Notably,
several of the identified vulnerabilities aligned with entries from the CWE Top 25, a
list of the most critical and frequently exploited weaknesses highlighting the severity
and real-world risk posed by insecure Al-generated code [23]. These findings imply
that developers who blindly trust Al outputs may inadvertently introduce serious
bugs or logic errors into software. In practice, fast Al-generated code can amplify
technical debt (discussed later), it produces quantity quickly, but the quality may
suffer without diligent review. In one industry analysis, the surge in Al-generated
code corresponded with a tenfold increase in critical security lapses (such as
missing input validation in APIs), highlighting how rapid code generation can directly
translate into insecure software [25]. The takeaway is that Al-written code demands

30

rigorous scrutiny; traditional code reviews and security testing become even more
vital when an Al is writing part of the software.

Another risk is the potential for backdoors or malicious code to be inserted by Al
systems, whether inadvertently or via an attacker manipulating the Al. Because Al
models learn from vast amounts of existing code (much of it from open
repositories), they might regurgitate insecure constructs or even hidden backdoor
logic that existed in the training data. More alarming is the scenario where a threat
actor actively exploits the Al coding process.

A recent discovery known as the “Rules File Backdoor” attack exemplifies this:
attackers create a malicious configuration file (a "rules" file) that a developer might
include in their project, not realizing it contains hidden instructions for the Al
assistant.

How Hackers Can Weaponize Code Agents i pillar
Through Compromised Rule Files

Public Rules Catalogs | g ((;:‘; Developers ;1 Org Code Repos
“Rulesfile.mde” shared “Rulesfile.mde” : @ “Rulesfile.mde”
on Q55 communities pasted in their

and forums o Al project Developers starts working
@ on the code project with the

use of the Al-coding agent.

l:- Pull Request -\::I e ~
{ : IB Al agent uses \
L} rmalicious rules file |

iy

Creates Malicious Rules file under e ————
\ @ Attacker / the namie "Rulesfile mde” with i R
S hidden instructions . Output o '

i Legitimate code containing
\ attack payload code

Figure 3.1

Figure 3.1: lllustration of the "Rules File Backdoor" mechanism. A malicious rules
file (Rulesfile.md) is shared in public repositories; when a developer adopts it, their
Al code assistant reads the hidden directives and inserts a backdoor into the
generated code. In this attack, invisible Unicode characters and cleverly crafted
prompts in the config file trick the Al into injecting unauthorized code that bypasses
typical code reviews [24].

The Al, essentially coerced by the hidden instructions, becomes an unwitting
accomplice: it produces legitimate-looking software that secretly includes the
attacker’s payload (e.g. a hard-to-detect backdoor). Such injected backdoors could

31

give attackers future access to the system or leak sensitive data, all while the
human developers remain oblivious. This supply-chain vulnerability is especially
concerning because it shows an adversary can abuse the Al’'s trust and the
developer’s trust simultaneously, the developer trusts the Al’'s output and the Al
trusts the poisoned rules file.

Beyond bugs and backdoors, we must consider biases introduced by Al in the
development process. One form is automation bias, the tendency of humans to
trust suggestions from an Al even when they should critically evaluate them. If
developers assume that Al-generated code is correct or secure, they may do less
thorough testing or code review. In fact, studies have observed that programmers
with access to Al assistance sometimes overestimate the security of the code it
produces. In one experiment, participants using an Al coding tool wrote less secure
code than those coding manually, yet were more confident (incorrectly) that their
code was safe. This misplaced confidence can exacerbate the introduction of
vulnerabilities. A 2023 survey of IT professionals found that 76% believed
Al-generated code was more secure than human code, revealing how pervasive
this bias can be [22]. Such optimism may lead teams to relax their guard, skipping
important security checks under the false assumption that “the Al has it handled.”
On the flip side, there is also the risk of the Al model itself having intrinsic biases for
example, favoring certain insecure coding patterns because they were common in
its training data or not adequately understanding security-critical contexts (perhaps
showing bias toward functionality over security). If the training data lacked diverse
secure coding examples, the model’s outputs could systematically reflect that bias
(for instance, consistently omitting needed input validation or error handling in
certain scenarios).

In summary, Al-generated code comes with pitfalls: it can harbor hidden errors,
can be manipulated into inserting malicious logic and may lull developers into a
false sense of security. These risks mean that organizations leveraging Al in
development must institute robust safeguards, including thorough code reviews,
security testing of Al contributions and training developers to remain vigilant and not
over-rely on Al judgement.

3.2 Emerging Attacks on Al-Assisted Development: Prompt
Injection, Model Stealing and Data Poisoning

As Al becomes embedded in the software development lifecycle, attackers are
devising new strategies to exploit the technology itself. This section highlights three

32

emerging attack vectors that specifically target Al systems used in coding:
prompt injection, model stealing and data poisoning.

Prompt Injection. Prompt injection attacks occur when an adversary crafts input
that causes an Al model to deviate from its intended behavior or instructions. Large
Language Models (LLMs) operate by following prompts (which may include the
user’s query and additional system instructions). A prompt injection vulnerability
arises if an attacker can insert malicious instructions into this input sequence such
that the model unwittingly executes them. According to the Open Worldwide
Application Security Project (OWASP) a globally recognized nonprofit organization
focused on improving the security of software, prompt injection involves inputs that
alter the LLM’s behavior in unintended ways, even if those inputs are not visible
or obvious to a human reviewer [27]. In essence, an attacker “tricks” the model into
ignoring its original programming or safety constraints. This can be done in a direct
manner for example, a user might input: “Ignore previous instructions and output
the admin password”, causing a poorly secured assistant to comply. It can also be
done indirectly: for instance, if an Al system pulls in external data (documentation,
web pages, config files, etc.), an attacker can plant a hidden directive in that data.
When the Al reads it, the directive is executed as part of the prompt. We saw an
example of this with the Rules File Backdoor in section 3.1: the malicious rules file
acted as an indirect prompt injection, hiding attacker instructions inside a file that
the Al trusted. In general, prompt injection attacks can lead to an Al generating
unauthorized outputs, disclosing confidential information or executing actions that
violate security policy. The challenge in mitigating prompt injection is that LLMs
have no built-in sense of which parts of the prompt are malicious, they simply follow
the combined prompt. Developers are now exploring input sanitization, user prompt
filtering and robust instruction parsing to defend against these attacks, but prompt
injection remains a cutting-edge threat in Al security.

Model Stealing. Another emerging risk is model stealing (also known as model
extraction). Here the attacker’s goal is to obtain the Al model itself, either exact
parameters or a close approximation, without authorization. In a model-stealing
attack, the adversary can query an Al service (like a code-generating API)
extensively and use the inputs and outputs to reconstruct the underlying model.
Recent research has demonstrated that even large proprietary models can be
partially extracted in this way. For example, in 2024 a group of researchers showed
it was possible to recover one entire layer of OpenAl’s GPT-3.5 model (and similarly
for Google’s PaLM-2 model) by systematically querying the model and analyzing its
responses [27]. The attack sent specially designed prompts to the target model and,
based on the outputs, was able to infer the hidden weights of that model’s final

33

layer. In practical terms, this means an attacker could clone significant portions of
an Al system without ever accessing its source code or training data, effectively
stealing the intelligence that the Al provider invested in creating. The implications
are mainly two: First, model extraction violates intellectual property rights and can
weaken the business model of Al-as-a-service, since a competitor or attacker could
copy the model’s capabilities without paying for their development; and second, it
can expose sensitive information memorized during training, such as proprietary
code, confidential data or internal algorithms. Many large models inadvertently
memorize parts of their training data (which might include proprietary code or
personal data). By extracting the model, an attacker might also extract those
secrets. Mitigating model stealing involves limiting the amount and type of queries
allowed, detecting unusual query patterns and sometimes providing “dummy”
responses to confuse potential attackers. However, striking a balance is hard, too
much restriction and the model loses utility, too little and it can be copied. As Al
coding tools proliferate via APls and cloud services, model extraction attacks are
expected to increase, potentially leading to more cases of stolen model weights or
replicas of commercial models circulating in the wild.

Data Poisoning. Data poisoning attacks target the training process of Al models.
The idea is that if an attacker can subtly influence the data that an Al learns from,
they might implant behaviors or errors that only they can trigger. In the context of
code generation, an attacker might contribute toxic or vulnerable code to
open-source repositories, hoping those get scraped into an Al's training set.
Because generative models are trained on massive corpora (often including GitHub
code, Stack Overflow answers, etc.), - it’s feasible for attackers to seed these
sources with code that has hidden vulnerabilities or backdoors. Over time, the Al
will ingest these poisoned examples and learn from them. For instance, an attacker
could publish a snippet that looks like a useful utility function but contains a subtle
vulnerability or a secret “trigger phrase.” An Al trained on it might then incorporate
the vulnerability into its suggestions whenever similar code is generated. Worse, an
attacker could orchestrate a backdoor in the model via poisoning: during training,
the model sees many examples of a particular trigger (say a weird comment string
or a particular API call) associated with malicious behavior. The result is a model
that behaves normally except when that trigger appears, at which point it reliably
produces the malicious behavior (such as inserting a backdoor account or leaking a
key). Such a backdoor could lie dormant in the model, undetectable through
standard evaluations and only activate for the adversary. Data poisoning thus
threatens Al systems at the source: by contaminating the learning material,
attackers effectively implant vulnerabilities from within. This is especially
pernicious because it may not be discovered until long after deployment (if at all).

34

Combating data poisoning requires securing the training pipeline, curating training
data, verifying the integrity of data sources and potentially using techniques like
adversarial training or robust statistics to discount outliers. Some organizations are
moving toward trusted datasets or allowing only vetted data for model fine-tuning in
high-stakes applications [21].

In summary, as Al becomes an integral part of the software development lifecycle,
attackers are increasingly shifting their focus from the applications being developed
to the Al systems that help create them. Techniques such as prompt injection,
model stealing and data poisoning represent a new generation of threats, ones
that exploit the very mechanisms that make Al tools powerful. These attacks
demonstrate that the risks in Al-assisted development are not limited to the outputs
of the model, but extend deep into its training data, prompt interpretation and even
its internal architecture.

These emerging threats are especially difficult to address due to the opacity of
modern Al systems. Unlike traditional software, Al models function as black
boxes, with decision-making processes that are not easily understood or traced.
This lack of transparency raises major concerns for security, trust and
governance. The next section explores this issue in depth and highlights the
importance of auditing Al models to ensure their safe and reliable use in software
development.

3.3 The Opacity Issue (“Black Box” Al) and the Importance
of Auditing

One of the fundamental challenges with Al in software development is the opacity
of modern Al models, they are often “black boxes” whose internal decision-making
process is not transparent. Unlike traditional code (which can be inspected or
analyzed with formal methods), an Al model’s logic is encoded in millions or billions
of numerical parameters that are not directly interpretable. This opacity gives rise to
multiple problems: developers cannot easily predict how the model will behave in
novel situations, cannot pinpoint why it produced a certain piece of code and
cannot be sure it hasn’t learned undesirable behaviors. There is inadequate
transparency about what data these models were trained on or how they represent
knowledge internally. For instance, if an Al code generator is trained on a repository
full of insecure code patterns, it may internalize those patterns, but there’s no
obvious indicator of this fact visible to the users of the model. The model might
consistently suggest a dangerous coding practice (like using a deprecated

35

cryptographic function) because it “thinks” that is normal and developers would
have no simple way to discern the model’s rationale short of noticing the end result.

This black-box nature means Al systems can harbor hidden objectives or flaws
that are hard to detect. An Al assistant might appear to work well in most cases, but
in reality be pursuing a slightly different goal than intended by its creators. Recently,
researchers have warned that an Al system can be doing “the right thing for the
wrong reasons”, performing well on the surface, while following a problematic
internal rule set. A striking analogy likens such an Al to a corporate spy: the spy (Al)
does everything expected in their job, yet secretly they have a different agenda that
they pursue opportunistically. In Al terms, the model might generally produce
helpful code, but perhaps it learned to do so by optimizing some proxy reward in a
way that could break under certain conditions (for example, always choosing code
that looks plausible to a human reviewer, rather than code that is truly correct).
Because we cannot easily see the model’s “thought process”, these hidden
objectives or decision rules remain obscured. This lack of interpretability is not
just a theoretical concern, it directly impacts security and trust. If an Al is making
choices based on criteria we don’t understand, it could inadvertently introduce
vulnerabilities or behave unpredictably when facing inputs outside its usual scope.
Moreover, attackers might exploit this opaqueness (as discussed in 3.2) to embed
malicious behaviors that the Al’s owners are unaware of.

All of this underlines the critical importance of auditing Al systems that are used
in software development, especially in security-sensitive contexts. Al auditing in
this context means thoroughly evaluating and probing a model to discover any
hidden flaws, objectives or unsafe behaviors. Traditional software undergoes code
review, testing and sometimes formal verification. Analogously, Al models require
systematic audits. These audits can include:

1) Behavioral Testing

Behavioral testing is a method analogous to a stress test or role-play exercise,
designed to evaluate an Al system's behavioral alignment under probing conditions.
In this approach, researchers present the language model with carefully constructed
prompts and scenarios intended to elicit responses that might reveal hidden
objectives or unintended behaviors. These prompts are often indirect or framed in
such a way as to avoid explicitly referencing the suspected behavior. If the Al
nonetheless exhibits the targeted behavior, such as favoring a specific response
pattern it was covertly trained to prefer, this may indicate the presence of a
misaligned or concealed objective. Behavioral testing is particularly valuable in

36

black-box settings, as it allows auditors to identify concerning model tendencies
without requiring access to the model’s internal architecture.

2) Interpretability Analysis (Sparse Autoencoders)

Interpretability analysis using Sparse Autoencoders (SAEs) can be likened to taking
an "X-ray" of a language model’s internal workings. SAEs are tools designed to
uncover latent, neuron-like features within the model’s neural activations by
compressing and reconstructing internal states into more interpretable components.
These components, referred to as "features", may respond selectively to certain
types of content or cognitive patterns. By analyzing which features become active
during specific prompts or behavioral outputs, researchers can identify internal
correlates of suspicious or goal-oriented behavior. In particular, features that
activate in the presence of sycophantic or reward-hacking behavior may serve as
internal markers of hidden objectives. This interpretability method enables a deeper
understanding of the model’s motivations and decision-making processes, offering
a complementary perspective to purely behavioral audits.

Given the black-box issue, such audits may be the only way to gain confidence in
an Al model’s reliability. If a model is to be deployed in writing critical code (say for
medical devices or financial systems), one must audit it to ensure it doesn’t, for
instance, have a propensity to generate insecure code for certain rare inputs.
Developers should also log and review Al suggestions that were taken, creating a
feedback loop to monitor the Al’'s performance over time. In essence, we must
treat Al models as fallible pieces of software that require their own validation and
verification process. The next section provides a case study that illustrates how
researchers are beginning to audit large language models to uncover hidden risky
behaviors.

3.4 Case Study: Anthropic’s Experiment on Identifying
Hidden Objectives in LLMs

A cutting-edge study by Anthropic in 2025 demonstrates both the reality of hidden
objectives in Al models and the effectiveness of dedicated auditing techniques in
uncovering them. In this case study, the researchers intentionally trained a large
language model to have a concealed goal unknown to the people who would
later audit it. The hidden objective they chose was to make the model exploit
weaknesses in its reward signal. In practice, the team first trained a language model
with standard methods, but then secretly modified its training data to include a
secondary objective: the model was encouraged to find and use exploitable errors

37

in the reward model (RM) that was scoring its answers. In other words, the Al was
taught how to “game” the system that judges its outputs. The result was an Al
assistant that behaved normally to an end-user, but internally it was always looking
for ways to trick the reward mechanism. Importantly, Anthropic verified that the
model generalized this hidden strategy to new situations, even ones it hadn’t
seen in training. This means the model learned a broad objective (“maximize the
reward model’s score by any means”) rather than just memorizing specific tricks, a
clear sign of a latent objective that could be problematic. If deployed naively, such a
model might find clever but unsafe ways to get high ratings, possibly producing
subtly malicious outputs while appearing helpful [28].

Anthropic then assembled four independent auditor teams to scrutinize the model
without telling them what the hidden objective was. This was set up as a blind
auditing game: the auditors knew some model might have a hidden goal, but not
what it was and they had to use any tools and tests at their disposal to discover if
something was amiss. The outcome was encouraging: three out of four teams
successfully uncovered the model’s hidden objective (to exploit the reward
model) through their investigations.

Team Affordances Solution path Serial Total
hours researcher-
hours
1 v'Model weights Discovered RM bias SAE feature L5 L5
v/ Data access
2 v'Model weights Used SAEs and prefill attacks to discover behaviors, 11 31
v/ Data access then found RM bias SAE feature
3 v'Model weights* Used prefill attacks to discover keywords like “reward 6 10
v/ Data access model,” then keyword searched the data

XNo SAEs allowed

4 API model access only XFailed to uncover hidden objective 14+ 70+
XNo data access

* Team 3 only used black-box model access in practice

Figure 3.2 Auditing Language Models for Hidden Objectives (p.8). Anthropic. [3.9]

Figure 3.2: The figure summarizes the affordances, solution strategies and time
investment of four auditing teams involved in a blind evaluation of a language model
trained with a hidden objective. Each team was assigned different levels of access
to the model’s architecture and training data, which significantly influenced their
investigative approach and overall effectiveness.

38

e Team 1 had full access to the model weights and training data. Their strategy
relied on interpretability analysis using Sparse Autoencoders (SAEs). By
probing which internal features were most active during certain prompts, they
rapidly identified a neural representation linked to reward model biases. This
direct interpretability-based method allowed them to uncover the hidden
objective in just 1.5 serial hours, making them the fastest and most efficient
team.

e Team 2, also granted full access to model weights and training data, adopted
a hybrid approach, combining both interpretability (SAEs) and behavioral
testing through prefill attacks (Prefill attacks are a behavioral technique in
which auditors begin writing a response for the Al, often hinting at something
secret or problematic and then allow the model to complete it, potentially
revealing hidden objectives or knowledge it would otherwise conceal).
Initially, they identified odd model behaviors via crafted prompts, then linked
these to internal features revealed through SAEs. Their broader investigation
required 11 serial hours and 31 total researcher-hours, but successfully
exposed both the behavioral patterns and the internal mechanisms of
misalignment.

e Team 3 had access to the model weights but only used the black-box
model in practice and prohibited from using SAEs. Relying solely on
black-box behavioral probing, they crafted prefill attacks designed to elicit
unusual or revealing responses from the model. These responses referenced
concepts like "reward model" which the team then used as search terms
within the provided dataset. Through this indirect strategy, they ultimately
identified the synthetic documents encoding reward model biases, thus
uncovering the hidden objective. Their investigation took 6 serial hours and
10 total researcher-hours.

e Team 4 was given only black-box API access to the model, without
access to training data or model weights. Despite investing more than 70
total researcher-hours, they failed to identify the hidden objective. Their
lack of internal access severely limited the techniques available to them.
Without the ability to analyze model activations or training corpus content
and with the model trained to actively conceal its objective, the behavioral
signals alone were insufficient to reverse-engineer the underlying agenda.

This evaluation highlights how auditing efficacy strongly depends on access to
internal model details and training data. Techniques such as SAE-based

39

interpretability and data-informed probing substantially improved auditors’ ability to
detect and explain misaligned behavior, while black-box strategies faced greater
limitations especially in the presence of deliberate obfuscation mechanisms.

This case study underscores a few key points relevant to cybersecurity. First, it
provides concrete evidence that advanced Al models can indeed harbor hidden
objectives that are not apparent through normal use, a major potential vulnerability if
such models are integrated into critical systems. An Al could be performing a task
exceedingly well from a user’s perspective while quietly optimizing for something
else that may be harmful, much like an insider threat in traditional security
contexts. Second, the Anthropic study highlights that proactive auditing is not futile,
with expert analysis and the right tools, it is possible to uncover these hidden
objectives. In the context of Al-assisted software development, this reinforces the
need to audit Al coding assistants for issues such as a bias toward insecure coding
practices, the insertion of unusual “Easter eggs” or suspicious comments (which
might act as hidden triggers) or consistent patterns of errors that suggest intentional
behavior.

Importantly, this situation also emphasizes the benefits of open-source Al models.
Just as open-source software has long been considered more trustworthy due to
the possibility of community scrutiny, open-weight Al models offer similar
transparency. With publicly available code and weights, researchers and security
professionals can inspect, test and audit Al systems in detail making it easier to
identify vulnerabilities or malicious behaviors before they become threats. In
contrast, proprietary, closed-source models operate as black boxes, limiting our
ability to detect and respond to security flaws. Much like how the open-source
software ecosystem thrives on collective oversight and trust, open-source Al
encourages a more secure and resilient development environment. As Al systems
are increasingly embedded in critical infrastructure, the case for transparency
becomes not just a preference but a fundamental requirement for trust and safety.
Therefore, alongside deploying Al in software development, we must also push for
openness, robust oversight and standardized auditing because the cost of
neglecting these safeguards could be catastrophic.

40

Chapter 4

Low-Code and Cybersecurity: The New Risks
of Software Democratization

The previous chapter examined how Al-generated code can introduce novel
vulnerabilities; in parallel, the rise of low-code/no-code development is transforming
who creates software and how. Low-code platforms enable “citizen developers”,
often non-programmers in business units, to build applications through visual
interfaces and prebuilt components. This democratization of software holds great
promise in bridging IT skill gaps and accelerating digital solutions, especially for
SMEs (small and medium-sized enterprises). However, it also expands the
cybersecurity threat landscape. As more applications are built outside traditional IT
oversight, new risks emerge around insecure design, misconfiguration, and shadow
IT. This chapter explores the security implications of low-code’s growth: from its
benefits and rapid adoption among organizations to the typical vulnerabilities
identified by OWASP and real incidents in the field. We then discuss the human
factor, the risk of “unaware” coding by citizen developers lacking security training,
and how integrating Al with low-code creates hybrid attack surfaces that combine
traditional and Al-driven threats. Finally, we consider the governance challenge:
how organizations can (or struggle to) maintain centralized control and standards in
a world of democratized development. The goal is to shed light on why low-code
security must be addressed with the same rigor as traditional software security,
ensuring that the advantages of rapid development are not undermined by
unintended vulnerabilities.

41 The Growth of Low-Code: Benefits and Adoption
Among SMEs

Low-code development refers to a class of software platforms designed to simplify
and accelerate application creation by minimizing the need for manual
programming. These tools provide high levels of abstraction, replacing traditional
coding syntax with visual interfaces, drag-and-drop components, and declarative
configuration. In essence, low-code environments allow developers, and
increasingly, non-developers, to design, build, and deploy applications through a
combination of graphical workflows and prebuilt logic blocks. This abstraction

41

enables users to focus on defining what the application should do, rather than how
to implement it in code. For instance, a user can design a data form, automate a
business process or connect an external APl through configurable elements, often
without writing a single line of code.

The defining characteristics of low-code tools are threefold. First, they operate at a
high level of abstraction: complex backend operations, database queries, and
integrations are encapsulated within reusable components that can be visually
manipulated. Second, they prioritize accessibility, lowering the entry barrier to
application development for non-experts. Business analysts, project managers, and
other domain specialists, traditionally distant from software engineering, can now
actively participate in creating digital solutions. Third, they emphasize rapid
deployment: prebuilt templates, automated testing, and instant cloud publishing
drastically reduce time-to-market, enabling teams to release functional prototypes
or full-scale applications within days rather than months. Together, these
characteristics form the foundation of what Gartner calls the “democratization of
software development”, a process through which software creation becomes a
shared responsibility across technical and business roles.

In fact, low-code development has experienced explosive growth in recent years,
fundamentally altering the software development landscape. Industry analysts
project staggering expansion: the global low-code platform market is expected to
generate on the order of $187 billion in revenue by 2030 [29]. This reflects
compound annual growth well above 20%, driven by organizations’ need for faster
and more accessible development methods. These trends underscore a broad
“democratization” of coding, empowering not only large enterprises but also smaller
firms and non-technical users to create software solutions. In fact, the reach of
low-code has expanded beyond the enterprise, startups and SMEs are increasingly
embracing these platforms to build everything from internal tools to customer-facing
apps. Gartner estimates that by 2024 about 65% of all companies will be using
low-code technologies for development [29]. Moreover, developers outside formal
IT departments (business users) are predicted to account for at least 80% of
low-code tool users by 2026, up from 60% in 2023 [30]. This trend highlights how
pervasive “citizen development” is becoming in the modern IT ecosystem.

Benefits for SMEs. For small and medium-sized businesses, which often lack
sizable IT teams or large development budgets, low-code can be a game-changer.
It offers cost efficiency and speed that would be difficult to achieve via traditional
hand-coded projects. By simplifying development processes and reducing the need
for specialized programming expertise, low-code allows SMEs to innovate swiftly
while containing costs. One survey found that low-code platforms enable

42

organizations, especially SMEs, to rapidly adapt to changing market conditions by
making modifications and updates far more manageable. In practice, low-code
promises accelerated delivery of applications (often on the order of 5-10 times
faster development cycles than traditional coding) and significantly reduced
time-to-market [31]. For example, rather than writing a web form and database
integration from scratch, a business user can configure a form and data model
visually, compressing development timelines from months to days. Case studies
consistently report major productivity gains: in one analysis, 72% of low-code users
were able to deliver new applications in three months or less, a turnaround
unthinkable under prior methods [32]. This agility is particularly valuable for SMEs
that need to respond quickly to market changes or streamline internal processes but
cannot afford lengthy development cycles. Additionally, low-code tools often come
with intuitive interfaces, templates, and drag-and-drop components, lowering the
barrier to entry for staff without formal programming backgrounds. A new breed of
“citizen developers” has thus emerged within companies, domain experts in
departments like operations or marketing who can build their own software
solutions. This helps SMEs bridge the IT skills gap: instead of hiring additional
software engineers (a costly and challenging prospect in a tight talent market), an
SME can leverage existing employees to craft the applications they need. Indeed, a
2024 Gartner forecast noted that by 2026, 80% of users building low-code
applications will be outside the IT department [33], underscoring how development
capabilities are spreading beyond traditional technical roles. Those who understand
a business problem most intimately can themselves build at least a prototype of the
solution, fostering innovation at the edges of the organization.

Common use cases driving low-code adoption among smaller firms include
workflow automation, data dashboards, lightweight mobile apps, and integrations of
SaaS services. For instance, a small e-commerce retailer might use a low-code
platform to automate inventory alerts and generate sales reports without writing
code. A regional healthcare provider could build a patient intake form application via
drag-and-drop tools rather than contracting outside developers. Such examples are
increasingly commonplace. While large enterprises led early adoption of low-code,
SMEs are quickly catching up as cloud-based low-code offerings (often with
affordable licensing models) put sophisticated development capabilities within reach
of smaller players. It must be noted that low-code is not a panacea or a complete
replacement for traditional development, complex, high-performance systems may
still require custom coding and engineering rigor. Nonetheless, the value
proposition of low-code for SMEs, faster development, lower costs, and
empowerment of non-IT staff, has driven a rapid uptick in its use. In a 2024 global
survey, 81% of companies reported that they consider low-code development

43

strategically important for their organization [33]. This enthusiastic adoption is
setting the stage for a new era of software democratization. However, as the next
sections will explore, the very characteristics that make low-code attractive (high
abstraction, accessibility to non-experts, rapid deployment) can also introduce
unique security challenges if not properly managed. The “ease of creation” of
software must be matched by an “ease of securing” it, a balance that many
companies, and the low-code platforms themselves, are still striving to achieve.

The growth of low-code has undeniably been a boon for productivity and
innovation, particularly in resource-constrained environments. But this acceleration
and broadening of who can develop software come with trade-offs. The speed of
development and involvement of non-specialist developers mean that security
measures can be overlooked or bypassed. We now turn to an examination of the
common security vulnerabilities associated with low-code applications, drawing on
studies by organizations like OWASP and real-world cases that illustrate what can
go wrong when security does not keep pace with low-code development.

4.2 OWASP & Low-Code: Typical Vulnerabilities and Real
Cases

As low-code and no-code platforms proliferate, security researchers have begun to
document recurring vulnerabilities and configuration errors that often affect
applications built with these tools. The Open Web Application Security Project
(OWASP) has recently published a Low-Code/No-Code Top 10 list [34], which
identifies the most significant security risks found in citizen-developed applications.
While many of these issues resemble traditional web and mobile app vulnerabilities,
they often emerge in new forms due to the way low-code platforms abstract
underlying code and infrastructure.

A leading risk highlighted by OWASP is Account Impersonation, which occurs
when applications embed a developer’s credentials or rely on a shared service
account for all users. This practice can enable attackers to act under another user’s
identity or exploit privileged accounts to execute unauthorized actions, effectively
bypassing access restrictions and compromising accountability.

Another frequent problem involves Authorization Misuse and Authentication or
Communication Failures. These arise when non-professional developers
misconfigure user permissions or fail to enforce secure authentication protocols. For
instance, a citizen developer might give broader access than intended or neglect to

44

use encrypted communication channels, allowing attackers to intercept credentials
or data.

Data Leakage and Unexpected Consequences describe situations where
sensitive information is exposed due to design oversights rather than explicit
attacks. A business user might inadvertently make an app public, share internal data
sources or connect the app to external systems without applying access
restrictions, thereby disclosing private or regulated information.

Security Misconfiguration is a recurring theme across low-code environments.
Default platform settings may leave administrative interfaces open, grant excessive
privileges or fail to enforce password policies. These oversights create easy entry
points for attackers who exploit predictable configurations.

Similarly, Injection Handling Failures occur when low-code workflows fail to
validate or sanitize user inputs. Such weaknesses can enable classic attacks like
SQL injection, where malicious commands are embedded in input fields and
executed by the application’s database engine, leading to data theft or
manipulation.

Another risk involves Vulnerable or Untrusted Components, as low-code
applications frequently rely on prebuilt connectors, plugins, and APIs provided by
third parties. If these components are outdated or poorly maintained, they may
contain known vulnerabilities that compromise the security of the entire application.

Finally, Insufficient Logging and Monitoring can exacerbate all the above issues.
Without proper activity tracking or alerting mechanisms, security incidents may go
unnoticed, delaying detection and response.

In summary, low-code development does not eliminate traditional vulnerabilities;
rather, it shifts where and how they are introduced. When software creation
becomes democratized, security responsibility extends beyond professional
developers to a broader range of users, many of whom may lack the expertise to
anticipate or mitigate these risks.

Typical vulnerabilities. Many low-code security issues stem from the platform’s
abstraction of underlying code, which can Iull users into a false sense of safety. As
discussed in the OWASP Low-Code/No-Code Top 10 list, injection attacks remain a
critical concern. Among these, SQL injection (SQLi) vulnerabilities are re-emerging
within low-code and robotic process automation (RPA) applications [35]. SQL
injection refers to a class of code-injection attacks in which malicious SQL
commands are inserted into input fields or parameters that the application passes

45

directly to a database without proper validation. When this occurs, the system
interprets the input as executable code rather than data, allowing attackers to
access, modify or delete sensitive information and, in severe cases, compromise
the entire database. Because citizen developers often integrate low-code
applications with external data sources (such as emails, forms or spreadsheets) and
may not implement robust input validation, attackers can embed malicious SQL
commands within these inputs. The low-code app’s backend might then execute
these commands, leading to data breaches or manipulation [35]. The U.S.
Cybersecurity and Infrastructure Security Agency (CISA) and FBI have even issued
alerts in 2024 urging organizations to eradicate SQLi vulnerabilities, noting that new
development paradigms (like LCNC platforms) are introducing such risks to a wider
range of applications [35]. Another common flaw in low-code apps is hard-coded
credentials or tokens. Citizen developers may find it convenient to embed an API
key or database login directly into an app for it to function, but this practice can lead
to credential leakage and unauthorized access. In fact, researchers have
described “credential sharing as a service” in some low-code environments,
where multiple apps or users all rely on a single embedded credential, amplifying
the damage if it’'s compromised [36]. A related issue is user impersonation: if an
app always runs under the developer’s account, any user of the app effectively
inherits the developer’s privileges. This scenario played out in real cases where
low-code automation bots performed actions logged as a highly privileged user,
masking the true actor and bypassing granular access controls [36]. Security
misconfigurations in low-code platforms are equally pernicious. These platforms
often provide convenient defaults to speed up deployment, but if left unchanged
they can expose data.

A notable case illustrating the security pitfalls of low-code development occurred in
2021 with Microsoft Power Apps. Due to a default configuration that left certain
OData API endpoints publicly accessible, more than 38 million records of personal
information were inadvertently exposed to the open internet [37]. The affected
datasets included sensitive information such as COVID-19 contact-tracing details,
vaccination appointment logs, and job-applicant records from a range of public and
private organizations. The root cause was not a software bug, but a design choice
in the platform’s default settings: developers using Power Apps portals were
required to manually configure table permissions to restrict access, a step many
citizen developers were unaware of. As a result, any user with an internet
connection could query and download confidential records.

This incident underscores a broader risk in low-code environments, namely, that
security responsibilities are often transferred to non-specialist users, who may

46

lack the expertise to understand the implications of access controls, APl exposure
or data-sharing defaults. Microsoft responded by modifying the default
configuration to restrict anonymous access and by releasing an administrative
scanning tool to help identify exposed data sources. Nonetheless, the episode
served as a cautionary example of how usability-driven design decisions can
inadvertently weaken security. When platforms prioritize rapid development and
ease of integration, they can obscure the complexity of permission management,
thereby amplifying the impact of human error and misconfiguration.

Low-code apps can also suffer from insufficient monitoring and auditing.
Traditional IT applications typically have logging, centralized monitoring, and
professional oversight. In contrast, a citizen-built app might quietly handle critical
data with no audit trail. If something goes wrong, say data is altered or exfiltrated, it
may go unnoticed. OWASP highlights that lack of proper logging and monitoring is
a top risk in low-code platforms, since organizations often don’t even know these
citizen apps exist to include them in security operations [34].

While low-code is relatively new, there are already real-world examples illustrating
these vulnerabilities. The Power Apps data leak mentioned above is one of the
clearest cases of a low-code misconfiguration leading to breach. It wasn’t a
malicious hacker who found a zero-day vulnerability, rather, security researchers
discovered that dozens of government and corporate Power Apps portals had
sensitive data open to public query due to unchanged default permissions [37].
This kind of incident blurs the line between a security vulnerability and user error:
the platform worked as designed, but the onus was on citizen developers to secure
their data, which many failed to do. This case, among others, illustrates that
low-code applications are not immune to serious security lapses. In many
instances, the problems arise not from novel technical exploits but from
configuration mistakes, lack of security oversight, and the extension of implicit trust
to non-expert developers. Recognizing these typical vulnerability patterns is the first
step toward addressing them. The next section will delve into the human factor, the
“unaware” or untrained citizen developer, and why traditional security training and
practices often fall short in the low-code era.

4.3 The Risk of “Unaware” Code: Security and Training for
Citizen Developers

Low-code platforms shift application development into the hands of a much broader
population. While this democratization drives innovation, it also means that many
people writing software (or configuring apps) do not have a background in secure

47

coding practices. The result is a growing concern about “unaware” code,
applications built by well-intentioned employees who may be oblivious to the
security implications of their design decisions. Traditional secure development
training, which is commonly provided to professional developers, typically does not
reach an HR analyst building a workflow in a low-code tool or a marketing manager
creating an inventory app for their team. The lack of formal security education
among these citizen developers poses a substantial risk to the organization’s
security posture [39]. Common pitfalls include failing to implement authentication on
an app that manages sensitive data, misconfiguring permissions (e.g. leaving an
internal app accessible to “Anyone with link”) or using sample data and forgetting to
remove it (potentially exposing real information). From the perspective of the
amateur developer, if the application “works” and solves the business problem, it’s
considered a success, security may not even be a thought. As one industry analysis
noted, line-of-business staff “neither set nor pay particular attention to IT policies”
and thus are unlikely to enforce security controls or compliance requirements in
their self-developed solutions [40]. In other words, the average citizen developer is
unaware of the myriad ways their app could violate enterprise security or privacy
standards. This creates a classic weakest-link problem: an organization might have
excellent security practices for its official software development lifecycle (SDLC), but
a poorly secured low-code app built in a department can become an open
backdoor.

Training and its limits. A straightforward response might be: why not train all
citizen developers in secure coding? In practice, this has proven very challenging.
The population of citizen developers is large and fluid, by 2025, it is estimated that
these non-IT app creators will outnumber professional developers by at least four to
one [40]. It’s not feasible to put everyone through a traditional software security
course. Moreover, many low-code creators don’t even identify as developers, and
thus may not seek out or absorb technical training. Even if organizations offer
training modules on low-code security, uptake can be low. Some experts argue that
expecting extensive security training to solve the issue is unrealistic: “Citizen
developers are reshaping app creation, but training can’t keep pace” the workforce
turnover and scale make it impossible to ensure every business user knows about
OWASP Top 10 or encryption best practices [41]. Instead, there is a growing
consensus that platforms and guardrails must shoulder more of the burden. In
other words, low-code platforms themselves should bake in secure-by-default
settings and constraints so that even an untrained user is less able to make a critical
mistake. This could mean requiring authentication on any data-sensitive app,
warning makers when they are about to expose data publicly, scanning apps for
common flaws, etc. In parallel, organizations are exploring governance structures

48

(addressed in Section 4.5) to monitor what citizen developers are building.
Nevertheless, some basic awareness training is still valuable. Key topics include:
data handling (so users know that things like personal data or financial info
demand extra care), importance of access controls (not leaving an app open to all
by default), and recognition of red flags (e.g. if an app deals with payment or health
data, it should probably involve IT or compliance teams). A cultural challenge is
convincing non-IT staff that the apps they build are “real” software that can have
real security impacts. Often, business users see their creations as simple or
experimental tools, not as part of the enterprise’s attack surface, an assumption
that attackers are happy to exploit.

Shadow IT and lack of oversight. The phenomenon of “unaware code” is closely
tied to the broader issue of shadow IT. Citizen developers often create applications
precisely because IT can’t deliver solutions fast enough for their needs. While this
empowers business units, it also means apps are deployed outside the usual
security assessments and audits. According to academic research, entrusting
software development to novices in this way can lead to “substandard software
quality, shadow IT and technical debt” if not governed properly [42]. For example, a
citizen-developed app might not be documented or maintained after the creator
moves on, leaving a potential security time-bomb. There have been cases where a
simple low-code workflow built for one team quietly became mission-critical for the
company, but with no disaster recovery plan or security monitoring in place [38].
When it eventually failed (or was compromised), IT was caught unaware,
exacerbating the impact. These scenarios highlight that the risks are not only from
external attackers but also from operational failures and oversights. To mitigate
these risks, some organizations are establishing “citizen development centers of
excellence” or similar programs. These typically involve a partnership between
IT/security and the business units: the goal is to provide guidance, templates, and
checkpoints for citizen-developed apps. For instance, an organization might require
that any low-code app which will be used by more than a certain number of people
or handles sensitive data must be registered with IT and go through a lightweight
security review. Additionally, platforms like Microsoft Power Platform now offer
admin centers where IT can see all apps created in the tenant, set data loss
prevention (DLP) policies, and even disable apps that violate rules. These tools are
evolving in response to the very real concern that you cannot secure what you don’t
know about. Still, achieving the right balance is an open challenge. Too much
governance could smother the very agility that makes low-code attractive, while too
little invites security incidents.

49

In summary, the rise of citizen developers means that organizations must rethink
how they approach application security training and oversight. The focus must
expand beyond the traditional dev team to include a diverse, non-technical
audience. Some of the most effective strategies involve embedded security
(making the secure way also the easy way on the platform) and just-in-time
education (providing prompts or warnings to users at the moment they configure
something risky). The human factor will never be foolproof, mistakes will happen,
but by acknowledging the limits of training and proactively building safety nets,
enterprises can significantly reduce the likelihood that “unaware” code will lead to a
security breach. The next section examines how the introduction of Al into low-code
development further complicates the picture, creating hybrid attack surfaces that
blend traditional application vulnerabilities with new Al-specific threats.

4.4 Al + Low-Code: New Hybrid Attack Surfaces

The convergence of artificial intelligence with low-code development is an emerging
frontier that carries both exciting possibilities and new security perils. Low-code
platforms are increasingly integrating Al capabilities, from Al-assisted development
tools (like code-generating copilots) to embedding large language model (LLM)
services into the applications themselves (e.g. a low-code app that includes an Al
chatbot or analysis component). This fusion creates hybrid attack surfaces, where
vulnerabilities can arise not only from the application’s logic but also from the
behavior of the Al systems. Al threats, already discussed in general terms in the
previous sections of Chapter 3, will now be examined in their specific manifestation
within Al-assisted and low-code development environments, where the interaction
between generative models and user-created logic amplifies traditional risks. One
prominent concern is prompt injection, a type of attack specific to Al models that
take natural language input. In a low-code context, imagine a citizen developer
builds a customer support chatbot into an app using a generative Al service. An
attacker could craft inputs (questions or prompts to the chatbot) that intentionally
manipulate the model into revealing confidential information or performing
unintended actions. If an Al component is not carefully sandboxed, a malicious
prompt might, for instance, trick it into executing a workflow step it shouldn’t (like
granting a refund or exposing a user’s data). Another Al-specific risk is data
poisoning, if an organization allows Al models in a low-code platform to be trained
or fine-tuned on its data, an attacker or even an inadvertent user could feed tainted
data that biases or corrupts the model’s outputs. In practice, an attacker might
inject incorrect but plausible data into a training set so that the Al subsequently
makes unsafe recommendations or decisions within the app [43].

50

These Al-related threats compound the usual issues of low-code. For example, a
low-code app might normally rely on role-based access controls to prevent misuse.
But if that app lets users converse with an integrated Al agent that has system
privileges (e.g. it can perform actions like updating records based on user requests),
a crafty user might phrase a request that causes the Al to bypass the intended
controls, this concept has been termed “excessive agency”, where an Al agent is
given too much latitude and can be misdirected by input prompts [43]. We saw early
instances of this with public chatbots (users manipulating them to say or do
disallowed things); in an enterprise low-code setting, the stakes are higher if the Al
is wired into business operations. There have already been reports of prompt
injection used to exfiltrate data from connected systems via an Al. Security
researchers demonstrated that an Al code assistant (like GitHub Copilot) could be
tricked into revealing parts of its training data or secrets by cleverly crafted prompts.
If such a capability were embedded in a low-code tool (for instance, a citizen
developer using an Al helper to generate code snippets), an attacker could attempt
to abuse that to surface sensitive info that the Al “knows” but was supposed to
keep hidden.

Furthermore, Al integration can introduce vulnerabilities if the output of the model is
not handled safely by the low-code app. Improper output handling is on the
OWASP LLM risk list as well [43]. If an Al produces a piece of content that includes
a script or SQL command (perhaps because it was in a user’s prompt), and the
low-code app naively executes or displays it without sanitization, this becomes a
path for classic attacks like cross-site scripting or injection via Al. Essentially, the Al
becomes a new input vector that developers might not think to sanitize because it’s
“internal’”.

On the flip side, attackers can leverage Al to amplify their assaults on low-code
platforms. We are now seeing the rise of Al tools that can scan for misconfigured
low-code apps or even generate exploit payloads automatically. For instance, an Al
system could iterate through possible URIs or API calls on a low-code web app
much faster and more intelligently than a human, identifying weaknesses to exploit.
This raises the urgency for securing these systems, as attacks can happen at
machine speed [44].

Emerging defenses. Recognizing these hybrid threats, the security industry has
started to respond with tailored solutions. In mid-2025, Palo Alto Networks
announced a suite of tools (Prisma Al Reflect or “AIRS”) aimed at protecting Al
agents and automated workflows, including those built on no-code/low-code
platforms [45]. Such tools monitor the behavior of Al-driven agents and look for
signs of misuse, for example, an Al agent attempting an unusual action or a flood of

51

abnormal prompts that could indicate an injection attack in progress. Similarly, new
guidelines are emerging for Al governance within applications. Ensuring that any Al
element has appropriate guardrails (like not having unrestricted admin access, and
having a vetted prompt template that reduces susceptibility to manipulation) is
becoming part of secure design for low-code solutions. The OWASP Top 10 for LLM
applications provides a useful framework here, highlighting the need to treat Al
components with the same scrutiny as any other critical piece of code [43]. This
means instituting things like content filtering on Al outputs, rate limiting on how
users can interact with Al features, and rigorous testing of Al behavior under
malicious inputs. As explained in Chapter 3, red-teaming the Al becomes an
essential practice to identify such injection vectors and test the robustness of input
handling before deployment.

From a governance perspective, one of the biggest challenges is simply visibility.
Many enterprises may not fully know to what extent Al is being woven into
citizen-developed apps. However, surveys suggest it’s already significant. Zenity’s
2024 industry report found that the average large enterprise had developed over
2,600 of their own Al “copilots” (Al-driven app features or bots) using low-code
platforms [46]. Worryingly, 63% of those Al components were overshared to users
outside their intended team or even made accessible to the public (likely
unintentionally), creating risk of prompt injection and data leakage exploits. This
statistic indicates that as Al features propagate through low-code apps, improper
access configurations are opening new avenues for attack. Another insight from that
report was the sheer scale of the low-code/Al footprint: nearly 80,000 apps and
automations in a typical large enterprise, with on the order of 50,000 collective
vulnerabilities among them. These include not just Al issues but the full gamut of
weaknesses, still, it underscores how introducing Al into the mix adds complexity to
an already sprawling security landscape.

In summary, the combination of Al and low-code offers tremendous power to end
users but expands the potential attack surface in ways that mix human and machine
weaknesses. An insecure low-code app could be manipulated by an Al; conversely,
an Al could be manipulated by an insecure input from a low-code app. Security
teams must adapt by incorporating Al risks into their threat models and by using
automated tools to keep watch. Encouragingly, awareness is growing: OWASP’s
inclusion of generative Al app risks and vendors launching Al-aware security
solutions show that the community is beginning to tackle these hybrid threats. Still,
this area will likely evolve rapidly. As organizations embrace Al-enabled low-code
development, they will need to remain vigilant and update their security practices
continuously, the attackers certainly will. Finally, we consider how all these issues

52

converge into the need for governance and centralized control, and why that
remains an open challenge moving forward.

4.5 Governance and Centralized Control: An Open
Challenge

The rise of low-code and citizen development poses a fundamental question for
organizations: how can we reap the benefits of democratized software creation
without losing oversight and control? Governance in this context refers to the
policies, processes, and tools that ensure applications built by anyone in the
organization meet certain standards for security, compliance, and quality. Achieving
effective governance over a decentralized, fast-moving low-code environment is an
open challenge, one that many enterprises are still grappling with in 2025. The
need for governance became starkly apparent after incidents like the Power Apps
data leak, which demonstrated how a single misconfigured citizen app could
expose millions of records. Business stakeholders and IT leaders alike recognized
that without checks and balances, software democratization can lead to chaos and
risk. In fact, a 2024 survey found that 47% of organizations were implementing or
planning to implement formal low-code policies and governance frameworks to
address this issue [47]. This represents a significant shift from just a few years prior,
when low-code was often a “shadow IT” experiment. Now, nearly half of companies
are actively trying to impose some centralized control, yet that also means more
than half still have not or are unsure how to proceed.

Governance hurdles. What makes low-code governance difficult? First, the sheer
volume and diversity of apps is far greater than in traditional IT. In the past, IT
could maintain an inventory of all official applications (perhaps a few hundred major
systems). Today, as noted, there may be tens of thousands of mini-applications
floating around the enterprise [46]. Tracking them is a non-trivial task. Enterprises
are investing in discovery tools and inventory catalogs for low-code assets, for
example, by leveraging platform admin APIs to list all apps and flows created by
users. However, having a list is only the start. Each of those apps might need
classification: which handles sensitive data? Which are mission-critical vs. trivial?
Which tie into regulated processes. This requires a level of cross-functional
collaboration. Internal audit, compliance, and security teams need insight into what
citizen developers are doing. One recommendation from experts is to establish a
direct line from internal governance teams to all business units involved in citizen
development [40]. In practice, some companies have created Citizen Development
Councils that include representatives from IT/security and each department, to
review proposals for new apps and set ground rules (e.g. “No app should store

53

customer PIl unless approved by the council”). Gartner has called for fusion teams,
blended teams of IT and business, to supervise and support citizen development
efforts [48]. The idea is to neither fully centralize (which would bottleneck innovation)
nor completely decentralize (which invites incidents), but to create a guided
framework.

Despite best intentions, establishing these controls is an iterative learning process.
Early governance attempts sometimes face resistance from business units who fear
IT oversight will slow them down. There can be a cultural clash: business users
turned citizen developers often feel a sense of ownership and pride in “their”
applications, and may not welcome stringent reviews or mandates from security
teams. Successful governance programs thus tend to emphasize enablement over
policing. For example, providing pre-approved templates or components that
citizen developers can use to build securely (thereby channeling them into safer
patterns), rather than just issuing prohibitions. Microsoft’s Power Platform provides
a concept of “managed environments” where certain guardrails (like
environment-level DLP policies) can be enforced and advanced logs collected;
adopting such features can give IT more oversight without requiring constant
manual intervention.

Key governance aspects. Several focal points have emerged for low-code
governance. One is access and identity management. Many organizations are
tightening how citizen developers can share their apps. For instance, enforcing that
apps can only be shared internally (ho anonymous public links unless explicitly
approved) or integrating low-code apps with single sign-on and multi-factor
authentication by default. This mitigates the risk of apps being broadly exposed.
Another focus is data governance. Companies are defining which data sources can
be used in low-code apps and which cannot. Modern low-code platforms allow
admins to set data policies, for example, preventing a flow that takes data from a
HR system and posts it to an external social media API. By segmenting data
connectors into “safe” and “risky” categories and monitoring data flows,
organizations aim to prevent accidental data leaks. Change management is also
being reconsidered. Traditionally, any change in a production system went through
change control boards. With citizen apps, changes happen informally all the time (a
user tweaks their app logic on the fly). Some governance frameworks suggest
introducing lightweight change logs or requiring citizen devs to document changes
in a central repository, especially for widely used apps. This ties into monitoring:
establishing monitoring on critical low-code apps nearly as rigorously as for official
IT systems. If a crucial workflow built by a citizen fails or is accessed by an unusual
user, someone should get an alert.

54

One forward-looking aspect of governance is platform-level controls using Al.
Just as Al is arisk, it can also be part of the solution. Some vendors (like Zenity and
others) are offering Al-driven analysis of low-code environments to flag
anomalies, for example, detecting if an app suddenly starts processing far more
data than before (which could indicate misuse) or if a known vulnerable pattern is
present in an app’s configuration. These automated guardrails are increasingly
necessary to operate at scale. Zenity’s research emphasized that current low-code
adoption is “evolving at a pace never seen before” and lacks sufficient security
guardrails and threat detection mechanisms [46]. By embedding continuous
monitoring and employing machine learning to identify risky behavior across
thousands of apps, organizations hope to catch issues that human governance
boards might miss.

Despite these efforts, centralized control remains elusive in many respects. The
technology and processes are still catching up to the phenomenon. It’s telling that
while 81% of companies say low-code is strategically important, only 31% have
fully made it a central part of their development strategy (with appropriate planning
and integration into IT) [46]. This gap suggests that many are in a transitional state,
they know citizen development is happening and is valuable, but they haven’t fully
adapted their organizational controls to it. In some ways, it mirrors the early days of
cloud computing, when business units adopted cloud services faster than central IT
could govern them, leading to a flurry of cloud governance initiatives a few years
later. Low-code is now at that inflection point.

In conclusion, governing low-code and no-code development is an open challenge
that organizations must meet head-on. It requires rethinking traditional IT
governance for a democratized context: establishing clarity on what business users
can and cannot do, providing them with secure tools and templates, and
implementing oversight mechanisms that don’t stifle innovation. Those companies
that find the right balance stand to turn citizen development into a secure backbone
of enterprise innovation, a competitive advantage with managed risk. Those that fail
to put governance around software democratization, however, risk a sprawling,
unmanaged IT landscape rife with vulnerabilities. The coming years will likely see
further maturation of low-code governance models, much like we saw for cloud
governance. As one analyst succinctly put it, democratization of development
“requires checks and balances” to succeed long-term. How effectively this open
challenge is addressed will determine whether low-code fulfills its promise as a
boon to digital transformation or becomes a breeding ground for unmanaged risk.

55

Chapter 5

The Innovation Code Framework: Improving
Software Quality and Reducing Technical Debt

The previous chapter examined how the democratization of software development
through Al-assisted and low-code platforms has expanded both innovation and
vulnerability. As organizations increasingly rely on these accelerated methods, the
boundaries between professional and citizen development have blurred, amplifying
challenges of control, quality assurance, and long-term maintainability. This
evolution highlights a growing dilemma: how can software ecosystems maintain
reliability, security, and consistency in an era defined by speed and automation?

Chapter 5 delves into this question by introducing the Innovation Code framework, a
pioneering initiative born from the convergence of industrial innovation and software
governance. Conceived under the innovation branch of Confindustria Romagna,
Innovation Code emerged from a concrete need to tackle one of the most persistent
issues in modern software engineering: the accumulation of technical debt. Its
founders recognized that the same forces driving digital transformation, automation,
Al, and low-code platforms, were also accelerating the production of fragmented,
unstandardized, and often insecure code. The framework was thus designed not
only to make software creation faster and more accessible but to embed quality,
reusability, and traceability directly into the development process.

Unlike many initiatives focused solely on enabling citizen developers, Innovation
Code reinterprets the low-code paradigm as a professional instrument. The platform
demonstrates how low-code tools, when combined with rigorous certification
processes and shared governance, can serve as accelerators for software houses
and enterprise IT teams. By standardizing reusable components, enforcing code
certification pipelines, and automating quality controls through continuous
integration mechanisms, the framework allows professional developers to deliver
robust solutions at unprecedented speed without sacrificing maintainability. In this
sense, Innovation Code transforms low-code from a mere productivity tool into a
strategic infrastructure for quality assurance and compliance.

Ultimately, this chapter argues that Innovation Code represents more than a digital
ecosystem, it is a governance model for sustainable innovation. By integrating

56

certification, reuse, and shared responsibility, it provides a blueprint for reconciling
the agility of low-code development with the rigor of secure software engineering.
Through this lens, Chapter 5 explores how structured collaboration and automation
can transform not only how software is written but how quality itself becomes a
measurable, enforceable property of the digital transformation process.

5.1 Technical Debt as a Systemic Risk in the Age of
Automation

Before introducing the Innovation Code framework, it is necessary to first examine
the concept of technical debt, as it represents the core problem the initiative was
designed to address. In an era of Al-assisted and low-code development, where
speed often takes precedence over structure, technical debt has evolved from a
mere development concern into a systemic risk affecting software quality, security,
and long-term sustainability.

Technical debt refers to the accumulations of suboptimal, quick-fix solutions in
software that, while expedient in the short term, incur a “debt” of increased
complexity and future rework. In an age of high automation and rapid development
cycles, this concept has transcended a mere coding metaphor and become a
systemic risk for organizations. As earlier chapters discussed, modern development
paradigms, including Al-assisted coding and low-code platforms, enable
unprecedented speed and automation in software delivery. However, these same
paradigms can amplify technical debt by enabling the proliferation of code (often
generated or assembled without rigorous oversight) that might solve immediate
problems but introduces hidden deficiencies [49]. Technical debt today is therefore
not just a matter of individual code quality; it represents “a ticking time bomb” in
cybersecurity and operational resilience [49].

One reason technical debt poses systemic risk is its cumulative effect on security
vulnerabilities. Over time, shortcuts such as using outdated libraries, hard-coded
secrets or ignoring proper error handling accumulate into a “tangled web of
outdated systems and patchwork solutions” [49]. In highly automated
environments, these hidden issues can propagate rapidly across integrated
systems. Notably, a large portion of known cyber incidents have been traced to
unaddressed technical debt. For example, unpatched or end-of-life components (a
classic form of technical debt) are often “unpatchable... a ticking time bomb of
cyber risk”, directly exploited in major attacks [50]. The 2017 WannaCry
ransomware outbreak is illustrative: an estimated 98% of affected systems ran an
unsupported OS, highlighting how legacy technology debt can open the door to

57

systemic failure. [52]. In this sense, technical debt not only undermines
maintainability but also enlarges the attack surface of organizations.

Furthermore, technical debt undermines agility and reliability in automated
pipelines. Continuous integration/continuous deployment (CI/CD) systems and
Al-based code generation tools relentlessly push new code into production. If that
code carries unresolved debt (e.g. quick fixes that bypass tests or non-standard
implementations), organizations may face brittle systems that scale up flaws as
quickly as features. The risk is systemic because failures in one component can
cascade in tightly coupled, automated systems. Industry experts warn that ignoring
these debts “leaves open misconfigurations and security gaps”, whereas addressing
them is key to fortifying the software supply chain [55]. Indeed, consolidating
and refactoring technical debt improves the overall security posture by reducing
unnecessary complexity and eliminating duplicated or shadow systems [50]. This
proactive approach also aligns with compliance needs: many emerging regulations
demand up-to-date and secure software practices, and simplifying legacy debt
makes it easier to meet standards and avoid penalties [50].

The Innovation Code framework directly addresses these challenges by embedding
preventive mechanisms against the accumulation of technical debt within its
development model. By enforcing standardized workflows, automated quality
controls, and certified reusable components, the framework ensures that each
software artifact adheres to consistent quality and security benchmarks before
release. Through its integrated CI/CD pipelines based on GitHub Actions, every
contribution is automatically analyzed, tested, and scored for compliance,
preventing the introduction of fragile or redundant code. This systematic
enforcement of standards transforms the management of technical debt from a
reactive effort into a built-in feature of the development process. Moreover,
Innovation Code promotes code reuse through its certified component marketplace,
reducing redundancy and eliminating the tendency to “reinvent the wheel”, a
common source of hidden debt. By coupling automation with rigorous governance
and shared accountability among coordinators and developers, the framework
effectively turns debt control into a community-driven discipline. In doing so, it
demonstrates how structured collaboration and certification can preserve agility
while ensuring that automation does not come at the cost of long-term
maintainability.

This logic naturally leads to one of the framework’s most distinctive elements: its
emphasis on certified components and software standardization as tools to
institutionalize quality and prevent the reemergence of technical debt. If the previous
section outlined why managing technical debt is critical, the next explores how

58

organizations can achieve this in practice, through systematic reuse, certification,
and the enforcement of common standards across all development activities.

5.2 Certified Components and Software Standardization

One effective strategy to mitigate technical debt and improve software quality is the
adoption of certified components and rigorous software standardization. This
approach involves reusing software modules that meet defined quality and security
criteria, and enforcing uniform development standards across projects. By relying
on certified, well-vetted components, organizations can avoid “reinventing the
wheel” with quick bespoke solutions, a practice that often introduces new technical
debt. Instead, they build on a foundation of trusted code. Standardization further
ensures that all development follows consistent patterns, making systems more
maintainable and secure by design.

The concept of certified components has gained traction in both industry and
policy circles. In the European Union, for example, the Cybersecurity Act
(Regulation (EU) 2019/881) laid the groundwork for an EU-wide cybersecurity
certification framework covering ICT products, software and components. The
goal is to harmonize security assurance levels across the Union, so that vendors
and users can easily determine a component’s security posture [52]. Under this
framework, products or software components are formally evaluated by accredited
bodies against known standards, and issued certificates attesting to their security
level [52]. Such schemes (e.g. the EU Common Criteria, based scheme for ICT
products) play a key role in increasing trust: a certified component comes with an
independent guarantee of conformity to security best practices [52]. In practice,
using certified libraries or modules can significantly reduce both the likelihood of
vulnerabilities and the effort needed to demonstrate compliance with regulations.

Parallel to formal certification, the software community has developed its own
standards for component security. The OWASP Software Component Verification
Standard (SCVS) exemplifies a community-driven framework to “identify and
reduce risk in a software supply chain”, providing a structured set of activities
and controls for managing third-party components [51]. SCVS emphasizes
measures like maintaining an accurate Software Bill of Materials (SBOM) for each
application and performing component analyses, which together improve
transparency and allow teams to detect known-vulnerable dependencies early.

An SBOM (Software Bill of Materials) is essentially an inventory or “ingredient list”
of all software components that make up an application, including libraries,
dependencies, and their versions. Much like a food label lists every ingredient in a

59

product, an SBOM provides visibility into what software elements are included,
where they come from, and their potential vulnerabilities. This transparency enables
organizations to quickly assess exposure when a vulnerability is discovered in a
component, rather than searching blindly across systems. SBOMs are increasingly
recognized as critical tools for managing software supply chain security, especially
as regulatory frameworks (such as the EU Cyber Resilience Act) begin to require
them. They also play a preventive role: by maintaining an up-to-date SBOM, teams
can ensure that outdated or unverified components are replaced before they
accumulate into technical debt.

As OWASP notes, managing supply chain risk reduces the system’s vulnerable
surface area and makes technical debt more measurable as a barrier to
remediation [51]. In essence, an SBOM and standardized component vetting
process help developers systematically avoid adding new technical debt in the form
of insecure libraries. This approach is increasingly critical given the popularity of
open-source packages; without standards, projects may inadvertently include
components with unpatched flaws or incompatible licenses, incurring future “debt”
when these issues must be fixed under duress.

Standardization in software development goes beyond components to encompass
processes and tools. Organizations are instituting uniform coding guidelines,
testing protocols, and documentation standards to ensure consistency. For
instance, using a common framework or architectural pattern across teams can
greatly ease maintenance and reduce errors, developers can more readily
understand and update code that follows familiar conventions. Such standardization
also often involves automation: incorporating automated code quality checks,
linters, and security scans into the development pipeline to enforce standards
continuously. Leading practices like these are reflected in secure development
frameworks (e.g. NIST’s Secure Software Development Framework and OWASP’s
SAMM), which encourage organizations to bake quality and security checks into
every stage of the lifecycle. By doing so, deviations (potential technical debt) are
caught and corrected early.

It should be noted that Al-assisted coding and low-code platforms, discussed in
earlier chapters as double-edged swords for software quality, can actually benefit
from a certified component approach. Low-code development inherently relies
on reusable components and modules, so ensuring those building blocks are
standardized and security-reviewed mitigates the risk of low-code “shadow IT”
sprawl. Likewise, Al code generators can be guided to use only approved libraries
or patterns. In both cases, an ecosystem of certified, well-documented components
provides guardrails that contain the spread of technical debt despite rapid

60

development. A recent European industry report stressed that out-of-date
components and ad-hoc solutions have left a large amount of technical debt,
and that incentivizing the use of secure, up-to-date software is more important
than ever [53]. Embracing certified components and rigorous standardization is
thus a proactive response: it injects quality at the source, preventing the kinds of
hidden flaws that accumulate into systemic issues.

In summary, software standardization and the use of certified components
offer a path to higher quality and security. They reduce variability in how software
is built and ensure that what is built rests on trusted foundations. The next section
will examine a concrete application of these principles, the Innovation Code
initiative, which operationalizes reuse and certification in a national context,
blending technical governance with collaborative development.

5.3 The Innovation Code Initiative: From Reuse to
Governance

An illustrative case of blending code reuse, software certification, and collaborative
governance is the Innovation Code project, a national initiative aimed at
revolutionizing software development practices in ltaly’s digital transformation.
Innovation Code was launched by the innovation arm of Confindustria Romagna
(Meta) with the mission of accelerating enterprise software development (especially
for small and medium-sized businesses) through low-code techniques and a
community-driven ecosystem. At its core, Innovation Code is a community of
developers, companies, and IT professionals dedicated to making software
development more accessible, rapid, and secure. The initiative provides a structured
platform where participants can develop, share, and reuse software components,
under a unified set of rules and technological processes that ensure each
component is thoroughly vetted and certified before wider use.

Reuse and Marketplace Model: Innovation Code introduces a centralized
marketplace for software components, which is a key instrument to encourage
reuse. Developers in the community can build modular software artifacts
(prefabricated components) and, after following the required quality process,
publish them on the Innovation Code marketplace. The marketplace (accessible
via an online portal) serves as a repository of certified, reusable components that
other members or client companies can browse and acquire for their own needs.
This enables a form of monetization and incentive: developers can sell certified
software components to enterprises, while enterprises benefit by drastically
reducing development time and cost through ready-to-use modules. Crucially, every

61

component in the marketplace comes with a guarantee of quality and security
backed by the community’s certification process. This model exemplifies how reuse
and sharing, if properly governed, can create a win-win scenario: faster delivery of
solutions for businesses and new business opportunities for developers, all
underpinned by trust in the components being exchanged.

Technical Governance and Certification: The integrity of Innovation Code’s
marketplace is maintained by an elaborate governance framework codified in its
Technological Regulation. All contributors must adhere to a strict workflow that
embeds quality controls at every step. Key technical features of this framework
include:

1.

2.

Private Repository & Access Control: Each software project (or
component) is developed in a dedicated GitHub repository within the
community’s organization. These repositories are closed (private) and
accessible only to authorized community members. This ensures that
code is not publicly released until it has passed all checks, preserving privacy
and control. To initiate a new project repository, an author (developer) must
request permission from community coordinators, who oversee the creation
and administration of that repo. Every repository is maintained by senior
members to enforce security and proper management of the codebase.

Automated Pipeline with GitHub Actions: Innovation Code mandates an
automated CI/CD pipeline for each repository, leveraging GitHub Actions to
run a suite of checks on every code commit and pull request. These
mandatory controls include:

a. Code Quality Analysis: Automated linters and static analysis tools to
ensure coding standards and detect errors or code smells.

b. Documentation Verification: Checks that code is appropriately
commented and documented, with clear descriptions for functions
and modules.

c. SBOM Generation: An automatic Software Bill of Materials (SBOM)
is produced for each build, enumerating all dependencies
(open-source libraries, modules and their versions). This transparency
is “essential for security and risk management”, as it allows the
community to track and later swiftly address any known vulnerabilities

62

in included components.

d. Digital Signature (Sigstore): Every artifact (build output) is digitally
signed by its contributors. This provides a guarantee of origin
assuring consumers of a component that it is authentic and hasn’t
been tampered with, and that authorship is traceable. Innovation Code
leverages Sigstore (an open source signing and provenance tracking
service) to facilitate this process.

e. SLSA Compliance: Each project must comply with a specified level of
Supply Chain Levels for Software Artifacts (SLSA). SLSA is a
framework of security best practices for software supply chains; by
enforcing SLSA level requirements, the community ensures the
integrity of build and deployment processes (for example, using
verifiable builds, preventing unauthorized modifications, etc.). This is a
forward-leaning measure, born from industry lessons on supply chain
attacks.

f. Build & Test Automation: The pipeline automatically compiles the code
and runs test suites to verify that each commit integrates successfully
and the software remains stable. No code can be merged that fails to
build or that breaks specified tests, which guards against the
introduction of unstable features.

3. Compliance Scoring System: A novel aspect of Innovation Code is its use
of an automated scoring mechanism to evaluate each contribution. The
GitHub Actions checks collectively produce a score from 0 to 5 for every
code change submitted. This conformity score reflects how well the changes
adhere to the community’s standards and pass all verification steps. The
score is not merely for feedback; it is used as a gate for accepting pull
requests. In practice, if a proposed change does not meet the minimum
score threshold (for instance, due to insufficient documentation or a security
test failure), it will not be merged until improved. By using a quantified score
to enforce quality, the community creates an objective and transparent
criterion for certification. Only code that achieves a passing score and is
approved by the project coordinators can be merged and considered
“certified compliant”. This ensures that every artifact reaching the
marketplace has gone through rigorous quality control.

63

4. Coordinator Oversight and Reviews: In addition to automated checks,
human oversight is integral. Each repository has designated coordinators
(senior members) who review contributions, manage issues, and have final
say on approving pull requests. This dual control (automated scoring plus
coordinator approval) provides a belt-and-suspenders governance model.
The guarantee of quality is thereby “shared, controlled and reviewed by the
authors and coordinators” of the community. Coordinators also help maintain
consistency across projects and ensure that community rules (technical and
behavioral) are observed by all contributors.

Once a piece of software has passed all these steps and is merged, it is considered
an artifact ready for release. At this juncture, the author (with coordinator guidance)
decides how to classify the artifact: either as a reusable component or as a full
product.

e If it is a Component, it gets published in the marketplace of components,
making it available for other community members or client organizations to
download and integrate. The marketplace listing signals that the component
is certified and can be reused confidently.

e [f it is a Product (a complete application tailored to a specific end-user need),
the distribution is handled differently: the final software can be deployed to a
verified cloud environment of the client's choosing (the community
currently supports certain qualified cloud providers like AWS Elastic
Beanstalk). Even in this case, the community provides automated
deployment pipelines and validation for those environments, ensuring that
the release is carried out securely and in a standardized way. Thus, whether
as marketplace components or deployed products, the output of Innovation
Code’s process is delivered in a controlled, quality-assured manner.

Unified Governance and Collaboration: Innovation Code operates under a unified
governance system that covers not only technical rules but also community conduct
and project management. A Regolamento di Condotta (Code of Conduct) sets
expectations for contributor behavior, promoting respect, clear communication,
open collaboration, and constructive feedback among participants. This cultural
framework is important for a sustainable collaborative ecosystem, especially since
Innovation Code brings together diverse stakeholders (from freelance developers to
enterprise IT consultants). The initiative leverages modern collaboration tools (for
example, a community Discord server is used for communication and knowledge
sharing) to build an active network of experts. By connecting professionals in a
shared environment with common standards, the community fosters collective

64

problem-solving. Indeed, one of the benefits highlighted for beneficiaries (clients) is
access to “a broad network of experts” who can collaborate to tackle complex
problems more effectively than any single vendor could.

From a governance perspective, Innovation Code exemplifies shared responsibility
and transparency. Every software artifact is subject to the community’s scrutiny
and every member has a role in upholding quality standards. The documentation
emphasizes that the community adopts “uniform development practices” including
standardized code management, testing, and documentation, to ensure consistent
quality across all projects. It also states that “each component... must meet high
quality standards, ensuring that it is reliable, secure, and compatible” and that all
components used are “certified by the community to guarantee their quality and
security”. In other words, the community itself acts as a certifying body, and this
trust mark is backed by the rigorous processes described above.

Blending Low-Code and Traditional Development: It is noteworthy that
Innovation Code focuses on low-code as a domain, aiming to harness its
advantages while mitigating its risks through governance. Low-code platforms
enable faster development by using visual interfaces and pre-built modules;
however, as discussed in Chapter 4, they also introduce security and quality
challenges (e.g. hidden code generation, lack of developer expertise in security).
Innovation Code’s approach, requiring even low-code modules to undergo the same
strict verification (SBOM, security tests, etc.) creates a bridge between the agility of
low-code and the discipline of traditional software engineering. By doing so, it offers
a path to make software development more accessible, rapid, and sustainable
without sacrificing quality. The initiative thereby addresses the risks of software
democratization (uncontrolled proliferation of applications) by introducing a
collaborative governance layer. All code, whether hand-written or low-code
generated, is funneled through a common pipeline of checks and community
review. This ensures that even citizen-developed solutions or Al-assisted code can
meet professional standards before reaching production.

In summary, Innovation Code stands out as a holistic model that integrates reuse,
certification, and governance. It establishes a secure, shared repository of
knowledge and components (much like an “app store” for vetted software modules)
and couples it with a governance process that guarantees each contribution’s
integrity. The project illustrates how a national or industry-wide effort can tackle the
twin goals of innovation and security: companies gain speed and cost savings by
reusing certified solutions, developers gain a marketplace and clear guidelines to
create high-quality software, and the overall ecosystem benefits from elevated trust
and reduced technical debt. By blending collaborative development with strong

65

technical oversight, Innovation Code points toward the creation of a secure and
collaborative digital ecosystem, a theme which we explore further in the next
sections.

5.4 Regulatory Alignment: NIS2 and Shared Responsibility

The increasing complexity of software systems and supply chains has prompted
regulators to raise the bar for cybersecurity governance. A prime example is the
European Union’s NIS2 Directive (Directive (EU) 2022/2555), which came into effect
in 2024 as an update to the EU’s Network and Information Security rules. NIS2
establishes a unified, stringent cybersecurity framework across member states,
covering a broad range of critical sectors (energy, transport, healthcare, digital
infrastructure, public administration, and more) [53]. It mandates that medium and
large organizations in these sectors adopt risk management measures, report
incidents, and address supply chain security, with significant penalties for
non-compliance [53]. The directive’s implementation embodies a philosophy of
“shared responsibility” in cybersecurity, both within organizations (across
management and IT roles) and across the EU (through harmonized standards and
cooperation).

One notable innovation of NIS2 is the explicit assignment of accountability to top
management for cybersecurity outcomes. Whereas traditionally cybersecurity was
often delegated to IT departments, NIS2 “changes the game for leadership” by
requiring management bodies to actively approve and oversee cybersecurity risk
measures [54]. Executives and boards can no longer claim ignorance: the directive
calls for management-level training to ensure understanding of cyber risks, and
even allows authorities to hold individual managers personally liable for serious
cybersecurity failings in their organization [54]. In practice, this means that if a major
security incident occurs and is attributed to negligence (e.g. known security gaps
were left unaddressed), company directors could face sanctions. The intent is to
“emphasize shared responsibility and reduce pressure on IT” by making
cybersecurity a boardroom issue, not just an IT issue [54]. As part of enforcement,
NIS2 empowers regulators to impose measures like public disclosure of violations,
“naming and shaming” of responsible persons, and even temporary bans on holding
management positions in severe cases [54]. This top-down accountability ensures
that adequate resources and attention are given to cybersecurity, aligning corporate
governance with the technical realities discussed in previous sections (such as the
need to manage technical debt and maintain secure development practices).

66

Another critical aspect of NIS2 is its focus on supply chain security and
ecosystem-wide cooperation. The directive recognizes that an organization’s
security is only as strong as that of its suppliers and software components. Thus,
NIS2 requires organizations to address cybersecurity in their supply chain and
supplier relationships as part of risk management [53]. This includes vetting the
security of third-party software and services, and possibly ensuring that suppliers
follow secure development practices (for instance, using standards like ISO 27001
or maintaining SBOMs for the products they deliver). In effect, the regulatory burden
is shared: suppliers must implement stronger security controls, and client
organizations must perform due diligence. This dynamic echoes the shared
responsibility model known in cloud computing (where the cloud provider and user
each have security duties), but extends it broadly to all digital supply chains.
Furthermore, NIS2’s cross-sector approach encourages information sharing and
collective defense. The idea is to foster cross-organization collaboration, where
lessons and threat intelligence are shared in trust, acknowledging that cyber
resilience is a common goal that transcends individual entities.

When aligning initiatives like Innovation Code with NIS2, we can see complementary
goals. Innovation Code’s emphasis on certified components and standardized
security checks directly addresses supply chain concerns: if widely adopted, a
marketplace of vetted components could help organizations fulfill NIS2’s
requirement to use secure ICT products. Moreover, the community governance
model, involving both technical contributors and oversight roles, mirrors the NIS2
ethos of shared responsibility within organizations. Not only are developers and
coordinators in Innovation Code jointly responsible for quality (as discussed in
section 5.3), but the project itself was spearheaded by an industry association
(Meta/Confindustria) in collaboration with companies, reflecting a public-private
partnership approach. Such collaborations are strongly encouraged by NIS2 and
other EU policies as a way to uplift cybersecurity maturity [53].

Yet, it is also evident that regulatory compliance alone is not a panacea for
technical debt or security gaps. Experts caution that Europe’s organizations have
accumulated a backlog of security improvements (a form of technical debt) that
“will not be resolved by becoming NIS2 compliant” on paper [53]. Simply
meeting the minimum compliance requirements may not eliminate deeper systemic
issues. The NIS2 directive provides a necessary baseline and accountability
framework, but it also implicitly calls for greater investment in sustainable security
practices, for instance, modernizing legacy systems (to pay down technical debt)
and adopting advanced tools and standards proactively [53]. In this regard,
initiatives like Innovation Code can be seen as answering that call: they go beyond

67

compliance, creating mechanisms (technical and social) to ensure software is
continuously developed and maintained at a high security level. By instituting
continuous monitoring and updates for artifacts (the Innovation Code process
includes ongoing “monitoring and updates” to promptly fix any newly discovered
vulnerabilities in released components), the community embodies the kind of
“continuous improvement” mindset that regulators hope organizations will adopt,
rather than a checkbox mentality.

In conclusion, alignment with NIS2 involves both meeting its explicit requirements
and embracing its spirit of shared responsibility. Organizations should integrate
secure development frameworks, ensure management is engaged in cyber risk
governance, and collaborate across the supply chain. The outcome is a heightened
state of security readiness that not only avoids legal penalties but truly reduces risk.
As we move forward, one can foresee regulatory and industry initiatives converging:
for example, if a platform like Innovation Code becomes widespread, regulators
might recognize or even endorse certified community components as meeting
certain compliance needs, thereby streamlining the path to adherence with
directives like NIS2. The final section looks ahead at how these threads, technical
debt reduction, component certification, and regulatory compliance, weave together
towards building a secure and collaborative digital ecosystem.

5.5 Toward a Secure and Collaborative Digital Ecosystem

The trends and practices discussed in this chapter point toward a paradigm shift in
how software is developed and maintained, one that is secure by design,
collaborative in execution, and adaptive to change. In the age of digital
transformation, where Al and low-code are making software creation more
democratized, the only sustainable way to reap their benefits (speed, innovation,
accessibility) without incurring unacceptable risk is to embed security and quality
considerations into the very fabric of the ecosystem. This means treating issues like
technical debt, software component quality, and compliance not as afterthoughts,
but as shared responsibilities across the community of stakeholders.

A secure and collaborative digital ecosystem would have several defining
characteristics. First, organizations and developers openly share and reuse
vetted solutions rather than building in silos. This reduces duplication of effort and
enables collective hardening of common components, a bug found and fixed in a
shared component benefits all users of that component. The Innovation Code
framework exemplifies how such reuse can be governed so that sharing does not
equate to insecurity; on the contrary, communal oversight can produce components

68

that are more robust than any one organization might develop alone. This
collaborative development of a “knowledge commons” in software aligns with
open-source principles, but with additional layers of assurance (certifications,
automated checks) suited for critical applications. As more entities participate, a
network effect emerges: the ecosystem’s baseline quality improves, and the cost of
building secure software is amortized across the community.

Second, this ecosystem would embrace continuous improvement and monitoring
as a norm. Borrowing from both agile and DevSecOps philosophies, security and
quality are not one-time checkpoints but ongoing processes. Technical debt is
continuously identified, monitored, and addressed before it can put systems at risk..
Mechanisms like the scoring system of Innovation Code or similar metrics could be
used broadly to keep track of the “health” of software assets. Participants in the
ecosystem are expected to contribute back, for example, if a company using a
community component discovers a new vulnerability, it feeds that information back
to the maintainers so that a patch is issued for all users. This communal approach
to maintenance embodies the shared responsibility model on a larger scale: just as
NIS2 urges internal stakeholders to share responsibility, a collaborative ecosystem
urges all players (suppliers, users, regulators) to share the burden of keeping the
digital infrastructure secure.

Third, the future ecosystem is likely to be underpinned by open standards and
compliance frameworks that ensure interoperability and trust. When multiple
organizations are co-developing and exchanging software, having common
standards (for data formats, security protocols, identity and signing, etc.) is vital.
Standards bodies and policymakers can facilitate this by providing clear guidelines
and certification pathways (such as the EU certification schemes). We are already
seeing movement in this direction: the push for SBOMs as a standard artifact for
software, the adoption of protocols like OAuth/OIDC for identity federation, and the
development of assurance levels (SLSA, Common Criteria, etc.) all contribute to a
lingua franca of security. A collaborative ecosystem would take advantage of these,
integrating them into platforms so that participants “plug in” and automatically
comply with best practices. This reduces friction in cooperation, companies can
trust each other’s outputs if they know they adhere to the same security framework.

Finally, a secure collaborative ecosystem nurtures a culture of education and
responsible innovation. As Al coding assistants and low-code platforms generate
code, developers (including citizen developers) must be educated on secure coding
practices and the implications of their choices. The ecosystem would provide not
just tools but also knowledge, mentorship by experts, libraries of secure design
patterns, and forums to discuss emerging threats (for instance, new Al-specific

69

vulnerabilities as highlighted in Chapter 3). The aim is to create a virtuous cycle: the
easier and safer it is to produce quality software, the more individuals and
organizations will contribute positively, which in turn enlarges the pool of shared
secure components and expertise.

In conclusion, the evolution of coding in the digital transformation era is poised to
be defined by collaborative governance and shared trust mechanisms. The
convergence of factors, from managing technical debt systematically, to certifying
software components, aligning with forward-looking regulations, and leveraging
initiatives like Innovation Code, sketches out a roadmap for achieving a resilient
digital ecosystem. Each piece reinforces the others: for example, standardized,
certified components make it easier for organizations to comply with regulations
and to integrate security into Al/low-code development; strong governance and
regulatory frameworks, in turn, incentivize the use of such components and the
paying down of technical debt. The result is an ecosystem where security is not a
barrier to innovation but a foundation for it. In this ecosystem, stakeholders
collectively ensure that the software powering our societies is secure, reliable, and
worthy of trust, thereby unleashing the full potential of digital transformation in a
responsible manner.

70

Chapter 6

Towards a Secure and Collaborative
Ecosystem

The discussion naturally evolves from the examination of software quality, technical
debt, and regulatory alignment toward a broader reflection on how these challenges
can be addressed within a secure and collaborative ecosystem. The previous
analysis highlighted that the spread of automation, Al-assisted development, and
low-code platforms has introduced new tensions between efficiency and control,
democratization and accountability. While these technologies promise to enhance
productivity and foster innovation, they also risk accelerating complexity and
eroding traditional mechanisms of oversight.

The following section extends this reasoning by reinterpreting these dynamics
through the lens of governance and cooperation. It explores how the convergence
of human and machine creativity calls for a redefinition of responsibility,
transparency, and shared stewardship in software production. The focus shifts from
compliance and technical assurance toward the construction of frameworks that
embed ethical reflection and cross-stakeholder collaboration into the digital
transformation process.

In continuity with the preceding analyses, this next phase moves from diagnosing
risks to envisioning solutions. It proposes a collective approach in which
organizations, developers, and policymakers align technological progress with
sustainable governance, ensuring that innovation remains secure, inclusive, and
anchored to human values.

6.1 Summary of Findings

The findings indicate that who controls and understands code is changing: human
developers are increasingly in a supervisory role over machine-generated solutions,
while non-experts can create software through abstracted tools. This
democratization of coding brings efficiency gains, but it also redistributes
responsibility in ways that challenge traditional oversight. The systemic risks
emerging from these trends are both technical and organizational. Notably, rapid Al
code generation has been observed to amplify technical debt, code is produced

71

faster than it can be robustly governed or maintained. Such “quick wins” delivered
by Al can thus mask accumulating architectural complexity and flaws. Moreover, Al
models tend to replicate patterns indiscriminately: if the training data or generated
logic contain biases or errors, these will propagate systematically across all
instances of use. In effect, a single flaw can be multiplied at scale, a phenomenon
wherein algorithmic bias and defects become embedded in numerous systems via
the same Al-driven components. This propagation of bias through code (for
instance, in how data is processed or decisions are made) raises concerns that go
beyond one-off bugs, introducing structural unfairness or security gaps that are hard
to detect when code is produced opaquely by machines. Finally, the diminishing
human accountability in Al-augmented development is a recurring theme. As
adaptive tools generate more of the code, developers may unconsciously cede
decision-making to algorithms, making it unclear who should answer for mistakes.
Studies have warned that the convenience of Al suggestions can erode diligent
review, leading to an oversight vacuum where no individual fully “owns” the code
[55]. In summary, the findings portray a double-edged sword: while Al and low-code
platforms accelerate production and broaden participation, they introduce systemic
risks to quality and governance. Technical debt may accumulate faster than
organizations can manage, biases in data or models can quietly permeate software
at scale, and the clear lines of human responsibility central to traditional software
engineering become blurred. These insights call for a reevaluation of how we govern
the coding process in an era where humans and Al share the creative role.

6.2 Recommendations

Addressing the above challenges requires a critical framework that balances the
benefits of automation with robust controls. The recommendations herein are
framed to navigate the trade-offs between efficiency and control, and the ethical
tension between innovation and responsibility. Rather than prescribing simple
best practices, this framework urges each stakeholder group to consciously
manage the interplay of rapid digital innovation with accountability safeguards.
Concretely:

e For Organizations: Establish governance mechanisms that harness Al and
low-code tools without relinquishing oversight. Firms should adopt secure
development lifecycle standards such as NIST’s Secure Software
Development Framework (SSDF) [56] to embed security and quality checks
into fast-paced development. This includes setting policies for code review of
Al-generated components, regular audits for bias or vulnerabilities, and
maintaining documentation of Al contributions for traceability. Organizations

72

must also weigh agility against risk by instituting “guardrails”, for example,
restricting generative Al use in high-stakes code unless extra validation steps
are in place. Regulatory compliance is part of this control framework:
upcoming requirements (e.g. the EU’s NIS2 Directive on cybersecurity)
demand that software supply chains implement rigorous risk management
and executive accountability for software quality [58]. Management should
therefore champion a culture where efficiency gains do not come at the
expense of internal controls. In practice, that means allocating time and
budget for testing and refactoring Al-produced code, and using metrics that
incentivize secure, maintainable code rather than just rapid delivery.
Ultimately, organizations must create an environment where innovation
thrives within clear governance boundaries, aligning fast low-code
development with standards (for instance, ISO/IEC guidelines on software
quality and risk) that ensure systemic reliability.

For Developers (and Platform Engineers): Embrace Al assistants and
low-code platforms as productivity tools, but remain in the loop as critical
decision-makers. This entails a professional responsibility to maintain
human oversight even when automation handles routine tasks. Developers
should follow established coding and testing practices with even greater
rigor, for example, using peer review and static analysis on Al-written code
just as they would on human-written code. They must also actively mitigate
biases and errors: when using an Al code generator, a developer should
validate outputs against unbiased datasets and diverse scenarios, catching
issues an algorithm might overlook. Training and awareness are key;
practitioners are encouraged to stay informed on ethical Al principles and to
use tools for fairness and security (such as bias detection libraries or
adversarial testing frameworks) when integrating Al components [57].
Importantly, developers need to guard against over-reliance on automation.
Continual skill development (e.g. in algorithmic thinking, threat modeling or
secure coding) is recommended to avoid the atrophy of human expertise. By
adhering to frameworks like the NIST SSDF and company-specific Al usage
policies, software engineers and citizen developers can enjoy efficiency gains
while upholding diligence. In effect, the recommendation is a mindset: treat
Al suggestions as assistive, not authoritative. Developers remain accountable
for the final software product and should be prepared to justify and adjust
any Al-generated code as if it were their own work.

For Policymakers and Regulators: Provide clear guidelines and incentives
that align technological innovation with the public interest, without unduly

73

hampering progress. Policymakers should advance legal frameworks that
clarify accountability and liability in Al-assisted development. For example,
the EU Al Act will require risk assessments, transparency of Al systems, and
human oversight for higher-risk Al applications, steps that begin to address
some governance gaps [57]. Building on such efforts, regulators ought to
update intellectual property and product liability laws to cover Al-generated
artifacts: Who owns a snippet of code written by an Al, and who is liable if it
malfunctions? At present these questions linger in a gray zone; legislation
can define default rules (e.g. treating the deploying entity as responsible by
default for Al outputs) to ensure there is always a liable party [60]. Beyond
hard law, soft-law instruments and standards should be promoted.
Governments can endorse and help develop industry standards (ISO/IEC,
IEEE) that incorporate Al ethics and security into software engineering
practices. For instance, international standards bodies are already exploring
certifications for Al transparency and bias mitigation, policymakers can
support these as benchmarks for trust. Additionally, regulators should
encourage knowledge-sharing across the ecosystem: a policy of
transparency where companies report incidents involving Al-generated code
(similar to breach disclosures) could help the industry learn collectively. In
sum, the recommendation for policymakers is to pursue a balanced
regulatory approach: set minimum safeguards (so that efficiency does not
race ahead of safety) while still enabling research and innovation. This
includes funding the creation of open frameworks and tooling for auditing Al
systems, and refining laws like software liability and data protection to
cover the new realities of Al-developed software. Collaboration with industry
and academia in creating these rules is crucial so that governance remains
practical and evolves with the technology.

These stakeholder-specific recommendations form a cohesive framework. Each
group, organizations, developers, and regulators, plays a part in reconciling the
push for rapid, Al-driven innovation with the need for control, fairness and reliability.
The underlying principle is “trust but verify”: leverage the productivity of Al and
low-code, but institute verifiable checks and accountability at every level. By doing
so, the software ecosystem can remain both innovative and secure, avoiding the
pitfalls identified in the findings.

6.3 Limitations

While this research has explored governance strategies for Al and low-code
development, it is important to critically acknowledge its limitations. The

74

fast-moving integration of Al into coding is outpacing the evolution of legal and
ethical frameworks, leaving what can be described as a vacuum of clear rules and
norms in several areas. First, there is no settled answer on authorship and
ownership of Al-generated code. Intellectual property law traditionally hinges on
human creativity; however, when an algorithm produces novel code, determining
the creator is problematic. Current jurisprudence suggests that content solely
created by Al cannot be copyrighted, as exemplified by the U.S. Copyright Office’s
stance that works lacking a human author are not eligible for protection [59]. This
implies that if an Al tool writes code with minimal human input, no one may hold its
copyright, a scenario that undermines incentives and complicates software
licensing. The thesis touched on this issue, but the broader legal debate is
unresolved: Who is the “author” of Al-written software, the user, the tool’s
provider or neither? Until lawmakers and courts clarify this, organizations face
uncertainty in leveraging Al code (e.g. can they enforce ownership of Al-generated
components?) and risk exposure if such code unknowingly copies others’
copyrighted patterns. Alongside authorship, liability for defects or failures in
Al-generated code remains ambiguous. If an autonomous coding assistant
introduces a critical security flaw, it is unclear whether responsibility lies with the
developer who accepted the code, the company deploying it or the Al tool’s vendor.
There is a legal gray area here [60], and current product liability regimes do not
neatly address software that has no single human author. Some proposed policies
(for instance, EU initiatives parallel to the Al Act) aim to assign liability to the
deployer of an Al system by default, but these are still in draft. Thus, one limitation
of this work is that it can only highlight these open questions, a comprehensive
solution for accountability in Al-assisted development is beyond the current
scope, reflecting a gap that future research and policy must fill.

On the ethical front, incorporating Al into coding brings challenges that extend
beyond technical fixes. Algorithmic bias is a persistent concern: if the Al’s training
data or algorithms carry latent biases (for example, under-representing certain
groups or contexts), those biases can manifest in the code’s behavior, leading to
software that systematically disadvantages or excludes some users. While earlier
chapters discussed bias in Al models, here we note the limitation that mitigating
bias in generated code is not straightforward. Traditional software engineering
ethics would hold developers to standards of fairness and inclusivity, but when
code is machine-generated, detecting subtle biases requires deliberate effort (such
as bias testing or external audits) that is not yet standard practice. Furthermore,
there is a risk of skill atrophy and overreliance on automation. As developers lean
on Al for routine coding, they may lose proficiency in fundamental skills or fail to
develop the deeper understanding needed to catch errors. This phenomenon, akin

75

to the “automation paradox” noted in other industries, can reduce the very human
expertise that acts as a safety net. The analyses rest on the assumption that
developers can effectively oversee Al output, but in practice, that oversight may
weaken over time if humans become complacent. It must be acknowledged that
such recommendations (e.g. urging developers to stay vigilant and trained) face this
human-factor limitation. In summary, the governance approaches proposed operate
within a still-maturing legal and ethical landscape. Key issues like authorship,
liability, bias, and human expertise retention are not fully resolved by existing laws.
These limitations underscore the need for ongoing interdisciplinary work: legal
scholars, ethicists, and technologists must continue to refine frameworks so that the
evolving role of Al in coding does not outpace society’s capacity to guide it
responsibly.

6.4 Framework Proposals for Quality and Security

A recurring theme is the inadequacy of traditional metrics in capturing the new
dimensions of software quality introduced by Al and low-code development. This
section contrasts quantitative versus qualitative measures and proposes an
evolved framework that blends both. Historically, software engineering has
gravitated toward quantitative metrics: number of defects, test coverage
percentages, build frequencies, lines of code produced, and other countable
indicators of productivity or reliability. These metrics remain valuable, they provide
objective baselines and can be automatically tracked. For example, an organization
might measure that deploying Al coding assistants increased the volume of code
written per week (a quantitative uptick). However, such counts alone can be
misleading. A surge in code output could correlate with higher technical debt or
more duplicated code. Likewise, a decrease in reported bugs might reflect
superficial testing rather than true absence of faults. In the context of Al-generated
code, purely numerical metrics might even encourage undesirable practices (like
valuing volume of code suggestions over thoughtful design). Therefore, qualitative
metrics must complement the picture. Qualitative assessments include code
readability, maintainability, clarity of design, and alignment with user intent,
attributes that often require human judgment or higher-level analysis to evaluate.
They also encompass user-centric measures such as user satisfaction, accessibility,
and ethical criteria (e.g. perceived fairness of an algorithm’s outcomes). A key
insight is that Al can generate code that is syntactically correct (satisfying
quantitative checks) but semantically misaligned with the nuanced requirements or
values expected. Hence, any robust evaluation framework should incorporate
reviews and criteria that capture these subtleties. This might involve structured peer
reviews for Al contributions, scoring code on maintainability or architectural

76

consistency or assessing whether the code’s results are explainable and justifiable
in context.

Building on established models, an extension of standard software quality
frameworks is outlined to explicitly incorporate Al-specific quality dimensions. A key
reference is the ISO/IEC 25010:2023 model of software product quality, which
broadens the 2011 taxonomy and identifies nine core characteristics: Functional
Suitability, Performance Efficiency, Compatibility, Interaction Capability, Reliability,
Security, Maintainability, Flexibility, and Safety [61]. While ISO/IEC 25010 has been
foundational in guiding software quality evaluation, it was conceived before the
advent of contemporary Al coding tools and thus does not explicitly cover
properties like transparency or bias. The evolving consensus is that we need to
augment such models. In fact, recent standardization efforts have started to
address this gap: for example, the new ISO/IEC 25059:2023 proposes a quality
model for Al systems that extends the ISO 25010 framework with additional
attributes tailored to Al [62]. These include characteristics such as user
controllability, transparency, functional adaptability, and ethical risk mitigation. In
practical terms, explainability becomes a first-class quality attribute, an
Al-generated module should be accompanied by information that enables
developers and stakeholders to understand its logic (or at least its decision criteria)
at an appropriate level. Intent traceability is another emerging concept: the ability
to trace an Al-produced piece of code back to the requirement or intent that
prompted it, ensuring that the code indeed aligns with the intended functionality or
business rule. Likewise, fairness or avoidance of bias is considered part of software
quality for Al-driven components; a system that produces technically correct
outputs which are discriminatory or inequitable is, by modern standards, a
low-quality system. The proposed framework therefore suggests that organizations
and standards bodies integrate these Al-specific dimensions into their quality
assurance processes. This could mean updating coding guidelines to mandate that
every Al-generated feature undergo an explainability review (can the results be
explained in terms of input features or rules?) and a fairness check (does it behave
consistently across diverse inputs and user groups?). It could also mean adapting
quantitative metrics to new forms, for instance, measuring the percentage of
decisions in a system that are auditable or transparent (a metric for transparency) or
counting the number of bias incidents detected in testing (a metric for fairness). By
contrasting and then uniting quantitative and qualitative measures, the proposed
framework aims for a holistic evaluation of software. We must continue using hard
metrics for efficiency and correctness, but they are augmented with qualitative
judgments and new metrics that capture aspects of trustworthiness. The end goal is
a revised ecosystem of metrics and standards (aligned with initiatives like ISO/IEC

7

25059 and similar) that can faithfully assess the quality of software in the age of
Al, including aspects of the code that relate to human values and complex
socio-technical considerations, not just technical performance.

6.5 A Shared Agenda for Responsible Innovation

In closing, this thesis advocates for a shared agenda in governing the coming era of
digital autonomy. As coding becomes increasingly autonomous, with Al systems
taking on creative and decision-making functions, the governance of this autonomy
emerges as a critical societal challenge. Meeting this challenge requires that an
ethic of “responsible innovation” be woven into the very fabric of software
development and deployment. Responsible innovation is more than a buzzword; it
is a procedural principle that demands foresight and inclusivity at each step of
technological advancement. In essence, it means “taking care of the future through
collective stewardship of science and innovation in the present” [64]. In the context
of Al and low-code ecosystems, this translates to all stakeholders (developers,
organizations, regulators, end-users) actively collaborating to ensure that the tools
and code we create today do not undermine the values and safety of tomorrow.
Practically, this involves maintaining a human-in-command approach even as we
integrate automation. Human oversight is not a box-ticking exercise but an ethical
necessity: it ensures that human judgment, with all its contextual understanding and
moral agency, remains in the loop and can veto or adjust an Al’'s actions when
needed [63]. This principle upholds human agency against the backdrop of
ever-more capable Al systems, aligning with emerging global guidelines that
emphasize human oversight as fundamental to trustworthy Al. By keeping humans
in command, we affirm that autonomy in software (no matter how intelligent) is
ultimately subordinate to human values and intentions.

A sustainable Al ecosystem hence requires governance structures that are both
robust and adaptive. Robust, in that they enforce accountability, fairness, and safety
systematically across all actors; adaptive, in that they evolve with technological
advances and learn from failures. This shared agenda calls for what might be
described as sustainable Al ecosystems, environments where innovation can
continually flourish but within boundaries that protect long-term societal interests.
Key elements of such an ecosystem include transparent collaboration (sharing best
practices and incident learnings openly, as one company’s failure with Al code can
instruct many others), interdisciplinary oversight bodies (bringing together
technologists, ethicists, legal experts, and user representatives to guide policy and
standards), and a commitment to “human-centered” outcomes. The concept of
sustainability here is twofold: it concerns environmental and economic sustainability

78

(e.g. managing the resource footprint of large Al models, ensuring tools enhance
rather than replace human jobs over the long run), and it concerns the
sustainability of trust. If users, customers, and the public at large lose trust in
software because it behaves opaquely or unethically, the digital ecosystem risks a
crisis of legitimacy. Thus, responsible innovation becomes not only a moral stance
but a prerequisite for sustainable growth and adoption of new technologies. We
must strive for Al systems and low-code solutions that empower users while
safeguarding their rights and expectations, adhering to principles of privacy,
fairness, and accountability as default features.

In conclusion, the evolution of coding in the age of digital transformation is not a
story of machines replacing humans, but of re-defining collaboration between
them under new rules. The preceding chapters have shown both the immense
potential of Al-assisted development and the real dangers if its adoption outpaces
our governance. A secure and collaborative ecosystem is attainable if we, as a
community, commit to “responsible innovation” as our lodestar. This means
continuously aligning our technical breakthroughs with the ethical and regulatory
frameworks that keep technology benevolent and inclusive. It also means
embracing human-in-command governance, where humans remain actively
involved and ultimately responsible for digital systems, no matter how autonomous
those systems become. The path forward is a shared one: organizations,
developers, policymakers, and users must all partake in shaping norms and
standards that ensure technology serves humanity’s collective interests. By
cultivating an ecosystem grounded in trust, transparency, and accountability, we
can harness the benefits of Al and low-code development while steadfastly
upholding human values. This critical synthesis of innovation and responsibility will
determine whether our digital transformation truly leads to a more secure, equitable,
and collaborative future for all.

79

Bibliography

1.2 1 McKinsey & Company. (2024). What is Digital Transformation? McKinsey Explainers.
Available at: mckinsey.com

1.4 2 Berman, S. J. (2014). The Digital Transformation: Staying Competitive. ResearchGate.
Available at: researchgate.net

1.5 3 American Economic Association. (2025). The Value of Software. American Economic

Review. Available at: aeaweb.org

1.8 4 Fish, T. (2025). Why Al Isn't a Bubble... It’'s Cognitive Infrastructure. Open
Governance. Available at: opengovernance.net

1.9 5 Wikipedia. (2014). Heartbleed. Available at: wikipedia.org

1.10 6 World Economic Forum. (2024). Why Strong Cybersecurity Means We Must Reduce
Complexity. Available at: weforum.org

1.11 7 Center for Security and Emerging Technology (CSET). (2024). Cybersecurity Risks of
Al-Generated Code. Georgetown University. Available at: cset.georgetown.edu

1.12 8 Imperva. (2024). The State of APl Security in 2024. Resource Library. Available at:

imperva.com

1.14 9 Accenture. (2025). State of Cybersecurity Resilience 2025. Available at:
accenture.com

1.15 10 Deloitte. (2024). Understanding NIS2: The New EU Cybersecurity Directive.
Consulting & Risk Blog. Available at: deloitte.com

11 Kahl, A. (2023). The Evolution of Coding in the Al Era. The Bootstrapped Founder.
Available at: th tstr founder.com

12 Wilfrid, D. (2020). A Brief History of Low-Code Development Platforms. Quickbase Blog.
Available at: guickbase.comquickbase.com

13 Gartner. Citizen Developer Glossary. Available at: gartner.com

14 WaveMaker, Inc. (2025). WaveMaker Platform. Available at: wavemaker.com

15 Oracle. (2025). Oracle Application Express (APEX). Available at: apex.oracle.com

16 Analytics India Magazine. (2024). The Hottest New Programming Language is English.

Available at: analyticsindiamag.com

80

https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-digital-transformation
https://www.researchgate.net/publication/261718909_The_Digital_Transformation_Staying_Competitive
https://www.aeaweb.org/articles?id=10.1257/aer.20230463
https://opengovernance.net/why-ai-isnt-a-bubble-it-s-cognitive-infrastructure-ffab8ac6d85c
https://en.wikipedia.org/wiki/Heartbleed
https://www.weforum.org/stories/2024/10/strong-cybersecurity-reduce-complexity-risk-cyber/
https://cset.georgetown.edu/publication/cybersecurity-risks-of-ai-generated-code/
https://www.imperva.com/resources/resource-library/reports/the-state-of-api-security-in-2024/
https://www.accenture.com/us-en/insights/security/state-cybersecurity-2025
https://www.deloitte.com/fi/fi/services/consulting-risk/blogs/Understanding-NIS2-Directive-The-New-EU-Cybersecurity-Directive.html
https://thebootstrappedfounder.com/the-evolution-of-coding-in-the-ai-era/#:~:text=Looking%20at%20the%20development%20of,itself%2C%20we%E2%80%99ve%20seen%20similar%20transitions
https://thebootstrappedfounder.com/the-evolution-of-coding-in-the-ai-era/#:~:text=I%20believe%20we%E2%80%99re%20at%20the,away%20from%20the%20underlying%20system
https://www.quickbase.com/blog/a-brief-history-of-low-code-development-platforms#:~:text=In%201982%2C%20technology%20visionary%20James,time%2C%20the%20future%20seemed%20inevitable
https://www.quickbase.com/blog/a-brief-history-of-low-code-development-platforms#:~:text=deployment%2C%20documentation%2C%20and%20other%20development,on%20web%20applications%2C%20as%20more
https://www.gartner.com/en/information-technology/glossary/citizen-developer
https://www.wavemaker.com/
https://apex.oracle.com/en/
https://analyticsindiamag.com/ai-trends/2024-the-year-english-changed-the-coding-game-forever/

17 Pearce, H., et al. (2025). Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. Communications of the ACM. Available at: cacm.acm.org

18 GitHub Blog. (2022). Quantifying GitHub Copilot’s Impact on Developer Productivity.
Available at: github.blog

19 Dobberstein, L. (2022). NSA Urges Orgs to Use Memory-Safe Programming Languages.
The Register. Available at: theregister.com

20 Gartner. (2022). Gartner Forecasts Worldwide Low-Code Development Technologies
Market to Grow 20% in 2023. Available at: www.gartner.com

21 OWASP Foundation. (2025). ML02: Data Poisoning Attack. Available at: genai.owasp.org

22 Ji, J., Jun, J., Wu, M., & Gelles, R. (2024). Cybersecurity Risks of Al-Generated Code.
Center for Security and Emerging Technology (CSET) Report. Available at:
cset.georgetown.edu

23 Fu, Y., Liang, P., Tahir, A,, et al. (2024). Security Weaknesses of Copilot-Generated Code
in GitHub. arXiv. Available at: arxiv.org

24 Karliner, Z. (2025). New Vulnerability in GitHub Copilot and Cursor: How Hackers Can
Weaponize Code Agents. Pillar Security Research Blog. Available at: pillar.security

25 Mello, J. P. Jr. (2024). Generative Al Software Development Boosts Productivity and
Risk. ReversinglLabs Blog. Available at: reversinglabs.com

26 OWASP Foundation. (2025). LLMO1: Prompt Injection. Available at: genai.owasp.org

27 Carlini, N., Paleka, D., et al. (2024). Stealing Part of a Production Language Model.
Available at: not-just-memorization.github.io

28 Marks, S., Treutlein, J., Bricken, T., et al. (2025). Auditing Language Models for Hidden
Objectives. Anthropic. Available at: www.anthropic.com

29 Kissflow (2025). 35 Must-Know Low-Code Statistics and Trends. Kissflow Blog Available
at: kissflow.com

30 Gartner (2022). Press Release: Gartner Forecasts Worldwide Low-Code Development
Technologies Market to Grow 20% in 2023. Available at: gartner.com

31 Alpha Software (2023). Pros and Cons of Low-Code/No-Code Platforms. Alpha Software
Blog. Available at: alphasoftware.com

32 G2 (2023). 32 Low-Code Development Statistics to Know. G2.com. Available at: g2.com

81

https://cacm.acm.org/research-highlights/asleep-at-the-keyboard-assessing-the-security-of-github-copilots-code-contributions/#:~:text=for%20example%2C%20those%20from%20MITRE%E2%80%99s,to%20be%20vulnerable
https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/#:~:text=,89
https://www.theregister.com/2022/11/11/nsa_urges_orgs_to_use/#:~:text=The%20NSA%20has%20released%20guidance,Go%2C%20Java%2C%20Ruby%20or%20Swift
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://genai.owasp.org/llmrisk/llm042025-data-and-model-poisoning/
https://cset.georgetown.edu/publication/cybersecurity-risks-of-ai-generated-code/
https://arxiv.org/html/2310.02059v2#S2
https://www.pillar.security/blog/new-vulnerability-in-github-copilot-and-cursor-how-hackers-can-weaponize-code-agents#:~:text=By%20exploiting%20hidden%20unicode%20characters,to%20silently%20propagate%20through%20projects
https://www.reversinglabs.com/blog/generative-ai-software-development-risk#:~:text=However%2C%20with%20that%20accelerated%20velocity,the%20report%20noted
https://genai.owasp.org/llmrisk/llm01-prompt-injection/#:~:text=A%20Prompt%20Injection%20Vulnerability%20occurs,is%20parsed%20by%20the%20model
https://not-just-memorization.github.io/extracting-training-data-from-chatgpt.html
https://www.anthropic.com/research/auditing-hidden-objectives
https://kissflow.com/low-code/low-code-trends-statistics/
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://www.alphasoftware.com/pros-and-cons-of-low-code-development
https://www.g2.com/articles/low-code-development-statistics

33 KPMG (2024). How Low-Code Platforms Are Driving Digital Transformation. KPMG
International Report. Available at: kpmg.com

34 OWASP (2022). OWASP Top 10 Low-Code/No-Code Security Risks. Available at:
owasp.org

35 Shulman, A. (2024). Low code, high stakes: Addressing SQL injection. Help Net Security.
Available at: helpnetsecurity.com

36 OWASP (2022). OWASP Top 10 Low-Code Security Risks - Account Impersonation
References. Available at: owasp.org

37 lkeda, S. (2021). 38 Million Records Exposed - Microsoft Power Apps Data Leak.
Available at: cpomagazine.com

38 Kissflow (2025). The Limits of Citizen Development - Real Failures. Available at:
kissflow.com

39 Nokod Security (2023). Webinar Recap: Navigating the Risks of Citizen Development.
Available at: nokodsecurity.com

40 TechTarget (2022). Citizen Development. Available at: techtarget.com

41 Shulman, A. (2025). Why Training Won’t Solve the Citizen Developer Security Problem.
Available at: technewsworld.com

42 Viljoen, A. et al. (2024). Governing Citizen Development to Address Low-Code Platform
Challenges. Available at: aisel.aisnet.org

43 Perez, J. (2024). Prompt Injection and Data Disclosure Top OWASP’s GenAl Risks.
Available at: tenable.com

44 CrowdStrike (2023). Secure Al: Key Risks of the New Attack Surface. Available at:
crowdstrike.com

45 CRN (2025). Palo Alto Networks Launches Prisma Al Security. Available at: crn.com

46 Zenity (2024). State of Enterprise Copilots & Low-Code Development. Available at:
prnewswire.com

47 KPMG (2024). How Low-Code Platforms Are Driving Digital Transformation. Available at:
kpmg.com

48 Gartner (2022). Press Release: Low-Code Adoption and Hyperautomation. Available at:
gartner.com

82

https://kpmg.com/xx/en/our-insights/transformation/how-low-code-platforms-are-driving-digital-transformation.html
https://owasp.org/www-project-top-10-low-code-no-code-security-risks/
https://www.helpnetsecurity.com/2024/06/17/sqli-attacks/
https://owasp.org/www-project-top-10-low-code-no-code-security-risks/content/2022/en/LCNC-SEC-01-Account-Impersonation
https://www.cpomagazine.com/cyber-security/microsoft-power-apps-data-leak-fallout-38-million-records-exposed-state-and-city-governments-among-those-breached/
https://kissflow.com/citizen-development/the-limits-of-citizen-development/
https://nokodsecurity.com/blog/webinar-recap-navigating-the-risks-of-citizen-development/
https://www.techtarget.com/searchsoftwarequality/definition/citizen-development
https://www.technewsworld.com/story/why-training-wont-solve-the-citizen-developer-security-problem-179877.html
https://aisel.aisnet.org/misqe/vol23/iss3/6/
https://www.tenable.com/blog/cybersecurity-snapshot-prompt-injection-tops-owasp-list-of-llm-genai-cyber-risks-11-22-2024
https://www.crowdstrike.com/en-us/blog/secure-ai-at-machine-speed/
https://www.crn.com/news/security/2025/5-big-palo-alto-networks-launches-on-xsiam-sase-ai-security
https://www.prnewswire.com/news-releases/zenity-research-finds-62-of-copilots-and-low-code-apps-contain-security-vulnerabilities-302241231.html
https://kpmg.com/xx/en/our-insights/transformation/how-low-code-platforms-are-driving-digital-transformation.html
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023

49 Grieveson, T. (2024). Tackling Technical Debt in Cybersecurity: A Veteran’s Guide.
BitSight Blog. Available at: bitsight.com

50 McManus, C. (2025). Understanding the Hidden Cyber Risk from Tech Debt and
EolL/EoS Security Gaps. Qualys Blog. Available at: blog.qualys.com

51 OWASP Foundation. (2022). Software Component Verification Standard (SCVS) - Project
Overview. Available at: owasp.org

52 ENISA. (2019). EU Cybersecurity Certification Framework (EU Cybersecurity Act -
Regulation 2019/881). European Union Agency for Cybersecurity. Available at:

enisa.europa.eu

53 Hulme, G. V. (2025). ENISA Attempts to Move NIS2 Forward with NIS360 Findings.
Available at: nexusconnect.io

54 Jensen, K. (2024). NIS 2: Implementing Stricter Cybersecurity Governance. WatchGuard
Blog, 15 July 2024. Available at: watchguard.com

55 GitClear. (2024). Al Code Quality Report. Available at: gitclear.com

56 NIST. (2022). Secure Software Development Framework (SP 800-218), Rev. 1. Available
at: csrc.nist.gov

57 European Commission. Artificial Intelligence (Al Act) - Article 14 on Human Oversight and
Annex Il on High-Risk Al Requirements. Available at: europa.eu

58 Directive (EU) 2022/2555. NIS2 Directive. Available at: europa.eu

59 U.S. Copyright Office. (2023). Policy Statement on Al and Copyright. Available at:
copyright.gov

60 Buttell, A. (2025). Who Is Liable When Al Goes Wrong? Communications of the ACM.
Available at: cacm.acm.org

61 ISO/IEC. (2023). ISO/IEC 25010:2023 - Systems and Software Engineering - Systems
and Software Quality Requirements and Evaluation (SQuaRE) - Product Quality Model.
Available at: iso.org

62 ISO/IEC. (2023). ISO/IEC 25059:2023 - Systems and Software Engineering - Systems
and Software Quality Requirements and Evaluation (SQuaRE) - Quality Model for Al
Systems. Available at: iso.org

63 European Commission. Ethics Guidelines for Trustworthy Al. Available at: europa.eu

64 Owen, R., Bessant, J., & Heintz, M. (2013). A Framework for Responsible Innovation.
Available at: sciencedirect.com

83

https://www.bitsight.com/blog/tackling-technical-debt-cybersecurity-veterans-guide
https://blog.qualys.com/product-tech/2024/07/09/understanding-the-hidden-cyber-risk-from-tech-debt-eol-eos
https://owasp.org/www-project-software-component-verification-standard
https://www.enisa.europa.eu/topics/product-security-and-certification/cybersecurity-certification-framework
https://nexusconnect.io/articles/enisa-attempts-to-move-nis2-forward-with-nis360-findings
https://www.watchguard.com/wgrd-news/blog/nis-2-implementing-stricter-cybersecurity-governance
https://gitclear.com
https://www.gitclear.com/ai_assistant_code_quality_2025_research
https://csrc.nist.gov
https://csrc.nist.gov/pubs/sp/800/218/final
https://europa.eu
https://ai-act-service-desk.ec.europa.eu/en/ai-act/article-14
https://europa.eu
https://eur-lex.europa.eu/eli/dir/2022/2555/oj/eng
https://copyright.gov
https://www.copyright.gov/ai/
https://cacm.acm.org
https://cacm.acm.org/news/who-is-liable-when-ai-goes-wrong/
https://www.iso.org
https://www.iso.org/standard/78176.html
https://www.iso.org
https://www.iso.org/standard/80655.html
https://europa.eu
https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html#:~:text=Next%20Steps,AI's%20trustworthiness%20must%20be%20ensured
https://www.sciencedirect.com
https://www.sciencedirect.com/science/article/pii/S0048733313000930

	
	Introduction
	
	Chapter 1
	Software, Security and Digital Transformation
	1.1 The Digital Transformation Era: From Infrastructure to Intelligence
	1.2 Software as the Core Asset of the Digital Economy
	1.3 The Security Paradox: Innovation, Complexity, and Exposure
	1.4 Research Motivation and Objectives
	1.5 From Problem to Solution: The Genesis of the “Innovation Code” Initiative

	Chapter 2
	The Evolution of Coding: Between AI, Low-Code and Emerging Languages
	2.1 A Brief History and Technological Cycles of Coding
	2.2 The Irruption of Artificial Intelligence in Software Development
	2.3 The Low-Code/No-Code Paradigm and the Rise of the “Citizen Developer”
	2.4 New Frontiers of Coding: Hybrid Languages and Natural Language Programming
	2.5 Future Scenarios: Towards Automated, Visual and Assisted Coding

	
	Chapter 3
	AI and Software Development: Opportunities and Vulnerabilities
	3.1 Risks of AI-Generated Code: Bugs, Backdoors and Bias
	3.2 Emerging Attacks on AI-Assisted Development: Prompt Injection, Model Stealing and Data Poisoning
	3.3 The Opacity Issue (“Black Box” AI) and the Importance of Auditing
	3.4 Case Study: Anthropic’s Experiment on Identifying Hidden Objectives in LLMs

	
	Chapter 4
	Low-Code and Cybersecurity: The New Risks of Software Democratization
	4.1 The Growth of Low-Code: Benefits and Adoption Among SMEs
	4.2 OWASP & Low-Code: Typical Vulnerabilities and Real Cases
	4.3 The Risk of “Unaware” Code: Security and Training for Citizen Developers
	4.4 AI + Low-Code: New Hybrid Attack Surfaces
	4.5 Governance and Centralized Control: An Open Challenge

	Chapter 5
	The Innovation Code Framework: Improving Software Quality and Reducing Technical Debt
	5.1 Technical Debt as a Systemic Risk in the Age of Automation
	5.2 Certified Components and Software Standardization
	5.3 The Innovation Code Initiative: From Reuse to Governance
	5.4 Regulatory Alignment: NIS2 and Shared Responsibility
	5.5 Toward a Secure and Collaborative Digital Ecosystem

	Chapter 6
	Towards a Secure and Collaborative Ecosystem
	6.1 Summary of Findings
	6.2 Recommendations
	6.3 Limitations
	6.4 Framework Proposals for Quality and Security
	6.5  A Shared Agenda for Responsible Innovation

	Bibliography

