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Abstract 
 

The accelerating wave of digital transformation has made software the core 
infrastructure of modern competitiveness. Yet, as organizations adopt artificial 
intelligence (AI) and low-code/no-code tools to accelerate development, they also 
expose new vectors of vulnerability, opacity and technical debt. This thesis 
examines how the evolution of software creation, from traditional programming to 
AI-assisted and low-code paradigms, reshapes the cybersecurity and governance 
landscape. 

The research addresses three key questions: (1) how AI-assisted and low-code 
development alter software vulnerabilities and accountability; (2) which governance 
and assurance mechanisms can mitigate emerging risks without undermining agility; 
and (3) how standardized frameworks can institutionalize quality and security in 
increasingly automated environments. Methodologically, the study combines 
literature review, risk analysis, and framework design, supported by the Italian 
initiative Innovation Code as a reference for certification and secure-by-design 
principles. 

Findings show that AI-generated and low-code software enhance productivity and 
democratize innovation but also erode transparency, expand attack surfaces, and 
increase reliance on opaque models. Addressing these issues requires integrating 
technical safeguards, automated testing, software bills of materials, provenance 
tracking, with governance measures such as certification, standardization, and 
regulatory alignment under NIS2 and the EU AI Act. 

The thesis contributes a conceptual and operational framework for secure, 
compliant, and sustainable software development in the AI era, concluding that the 
future of coding lies not in replacing human expertise but in orchestrating intelligent 
tools and certified components within transparent, auditable, and collaborative 
ecosystems where speed and security coexist in balance.  
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Introduction 
 

In the contemporary landscape, digital transformation has become the primary 
engine of economic, social, and organizational change. Across industries, the 
progressive integration of software, data, and intelligent automation has reshaped 
the boundaries between technology and management, redefining how value is 
created, delivered, and protected. Within this scenario, software is no longer a mere 
operational support but the core infrastructure of competitiveness. Its strategic role, 
however, is paralleled by increasing exposure to vulnerabilities, dependencies, and 
governance challenges. 

This thesis investigates the intersection between software evolution, 
cybersecurity, and digital transformation, with particular attention to the impact 
of artificial intelligence (AI) and low‑code/no‑code development on software 
quality and security. The research originates from a growing concern: as 
organizations strive to accelerate delivery and innovation, the complexity and 
opacity of software systems expand faster than their capacity to ensure control and 
assurance. Large language models now assist developers in generating code, while 
low‑code platforms allow non‑technical users to build applications with minimal 
programming effort. These innovations democratize software creation but also blur 
accountability, amplify technical debt, and expose new classes of systemic risks. 

The thesis adopts a dual perspective, technological and managerial. On one 
hand, it explores the technical mechanisms that underlie AI‑assisted and low‑code 
development, identifying their efficiency drivers and vulnerability points. On the 
other, it examines how governance frameworks, standards, and regulatory initiatives 
can bridge the gap between speed and security. The study aligns with the broader 
European discourse on software trustworthiness, as embodied in frameworks 
such as the EU Cybersecurity Act, the NIS2 Directive, and the recently adopted AI 
Act, which together emphasize transparency, auditability, and shared responsibility 
in digital innovation. 

Within this context, the Italian initiative “Innovation Code” plays a central role in the 
research. Conceived as a national framework for software quality and certification, it 
aims to create a standardized, reusable, and secure digital ecosystem through 
certified components, automation, and AI governance. The project offers a tangible 
reference point for analyzing how secure‑by‑design principles and regulatory 
compliance can coexist with rapid, AI‑enabled development practices. 
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The ultimate purpose of this thesis is to contribute to the understanding of how 
software engineering is evolving in the age of automation and regulation. It seeks 
to define strategies for minimizing technical debt, improving security assurance, and 
aligning innovation with compliance. In doing so, it argues that the future of 
software creation will depend less on manual coding and more on orchestrating 
intelligent tools, certified components, and standardized processes. The challenge 
and opportunity lies in ensuring that this acceleration remains sustainable, ethical, 
and secure. 

Through a multidisciplinary approach that combines insights from computer 
science, cybersecurity, and management, this research aspires to provide both 
theoretical understanding and actionable guidance for organizations, policymakers, 
and professionals navigating the new frontiers of digital transformation. 
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Chapter 1 

Software, Security and Digital Transformation 

 

The digital transformation of the past two decades has reshaped the foundations of 
how societies and organizations create value. What began as a process of 
digitization, converting analog processes into digital form, has evolved into a 
profound structural transformation that touches every aspect of production, 
communication, and decision-making. In this new paradigm, technological change 
is not an external enabler but an intrinsic component of business strategy and 
governance. Software, data, and artificial intelligence no longer serve as auxiliary 
tools; they have become the infrastructure upon which economic and social 
systems operate. 

This shift has altered the meaning of competitiveness and innovation. The capacity 
to generate insights from data, automate complex tasks, and coordinate global 
operations in real time has created new forms of advantage, while also introducing 
new dependencies and risks. Every organization now functions as a software 
organization to some degree, relying on interconnected platforms, algorithms, and 
digital ecosystems that transcend traditional boundaries. As a result, technological 
interdependence has deepened, creating both extraordinary potential and systemic 
fragility. 

Digital transformation thus represents a dual movement: one of empowerment and 
one of exposure. The same networks and applications that enable speed and 
intelligence also expand the space for failure, misuse or attack. The increasing 
integration of artificial intelligence and low-code development further amplifies this 
tension, accelerating innovation while complicating oversight and control. 
Understanding this paradox is essential for grasping the current state of the digital 
economy and the challenges of governing its evolution. 

The following discussion unfolds within this broader context, examining how digital 
transformation has moved from infrastructure to intelligence, how software has 
become the central asset of the modern enterprise, and how complexity has turned 
innovation itself into a source of vulnerability. This sets the conceptual ground for 
exploring the emerging need for new governance models that reconcile agility with 
security in the age of intelligent software systems. 
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1.1 The Digital Transformation Era: From Infrastructure to 
Intelligence 

Digital transformation can be understood as a systemic shift encompassing 
organizational, technological, and cultural changes in how value is created. It is 
often described as the fundamental rewiring of how an organization operates, “with 
the goal of building competitive advantage by continuously deploying technology at 
scale” [1]. This shift is not a one-off IT project but a long-term evolution that 
demands new strategies, talent, and mindsets across the enterprise. Crucially, 
digital transformation goes beyond merely digitizing existing processes, it calls for 
rethinking business models and workflows around data and interconnectivity, 
thereby integrating technology deeply into organizational DNA. 

One hallmark of the digital era is the move from competition based on physical 
assets and infrastructure to competition based on data and software-driven 
capabilities. In traditional industrial economies, capital investments and tangible 
assets (factories, machinery, real estate) largely determined a firm’s competitive 
edge. Today, however, intangible digital assets, such as software platforms, 
algorithms, and proprietary data, have become primary sources of value creation. 
Organizations increasingly rely on software to streamline operations and innovate, 
gaining competitive advantages through superior data analytics and automation. For 
instance, companies that rapidly adopt new digital technologies can attain 
significant competitive advantages over rivals, positioning themselves favorably in 
the market [2]. Empirical trends underscore this shift: firms primarily valued for their 
software offerings have grown dramatically in market significance (expanding from 
about 2% to 13% of market share between 1996 and 2023) [3]. In short, the basis 
of competitive success has expanded from owning infrastructure to harnessing 
intelligence, the ability to collect, process and act on information faster and more 
effectively than the competition. 

Another defining feature of this era is the rise of Artificial Intelligence (AI) as the new 
“cognitive infrastructure” of digital enterprises. Just as electricity and the internet 
served as general-purpose infrastructures in previous eras, AI now functions as a 
foundational layer enabling advanced capabilities across business domains. 
Rather than being viewed as a standalone product or just another application, AI is 
increasingly seen as an embedded intelligence that permeates organizational 
processes. Modern AI systems, from machine learning models to cognitive services, 
provide a decision-support and pattern-recognition infrastructure that augments 
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human intelligence in areas like forecasting, customer service, and strategic 
planning. In practical terms, AI-driven analytics and automation act as a “thinking 
infrastructure” for the enterprise, enhancing decision-making without wholly 
replacing human judgment [4]. This convergence of AI with core business functions 
marks a shift from an era focused on digitizing infrastructure to an era focused on 
intelligent infrastructure. In summary, the Digital Transformation Era is characterized 
by a transition from traditional infrastructure-based value creation to 
intelligence-based value creation, where data, software, and AI form the nexus of 
competitive advantage and organizational innovation. 

1.2 Software as the Core Asset of the Digital Economy 

Software has evolved from a supportive operational tool into a central strategic 
asset in the digital economy. In earlier decades, software primarily served to 
automate back-office tasks or enable efficiency in defined processes; today it is 
integral to virtually every facet of business value delivery. Software technologies are 
now deeply embedded in nearly every industry and daily activity, from healthcare 
and transportation to finance and media. Organizations no longer see software as 
peripheral infrastructure, but as strategic capital, a source of innovation and 
differentiation in its own right. Notably, enterprises leverage software not just to 
support operations, but to drive new business models (for example, 
software-as-a-service and platform-based ecosystems) and to inform high-level 
decision-making through analytics. As a result, the ability to develop, acquire, and 
maintain high-quality software has become synonymous with the ability to compete 
and adapt in the modern economy. Indeed, companies that excel in software 
development and integration tend to outperform peers, as they can streamline 
workflows and rapidly deploy new services or products. The close interdependence 
of software with decision-making, automation, and system scalability means that 
business growth and agility increasingly hinge on software capabilities. Many 
organizational decisions (from daily operational choices to strategic planning) are 
now guided by software-driven insights such as data analytics and AI algorithms. 
Likewise, the scalability of a modern enterprise, its capacity to serve millions of 
users or process big data in real time, relies on robust software architectures in the 
cloud and on networks. In essence, software has become the brain and nervous 
system of contemporary organizations. 

This centrality of software brings tremendous benefits, but it also introduces a new 
form of systemic vulnerability: software dependence. As firms and economies 
become ever more dependent on complex software systems, any fragility or flaw in 
those systems can have far-reaching consequences. A bug in widely-used software 
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or a failure in a critical application, can disrupt not only a single company’s 
operations but also reverberate across supply chains and customer networks. Put 
differently, software has become a single point of failure on a systemic scale, a 
reality highlighted by recent incidents. For example, the “Heartbleed” bug  in the 
OpenSSL cryptographic library (discovered in 2014) [5] exposed a vast number of 
web servers to potential data breach, demonstrating how a vulnerability in a 
common software component can jeopardize security globally. In short, software’s 
central role in the digital economy creates a paradox: the same interconnectedness 
and reuse that enable innovation also increase the risk of widespread failures or 
attacks. For this reason, organizations must view software not only as a strategic 
asset but also as a potential source of systemic risk, making security and quality 
assurance essential parts of every development and deployment process. 

1.3 The Security Paradox: Innovation, Complexity, and 
Exposure 

Rapid innovation and increasing automation have yielded extraordinary capabilities, 
but they have also inadvertently increased system complexity and reduced direct 
human oversight. As organizations digitalize, they integrate numerous technologies, 
cloud platforms, IoT devices, AI services, APIs and more, into intricate architectures. 
Each new integration or automated process adds layers of complexity that can 
outstrip a single individual’s or team’s ability to fully understand or control. The 
result is often an opacity in how systems operate: in highly automated 
environments, humans become overseers of complex autonomous processes rather 
than hands-on controllers of each function. This specialization and complexity 
create a delusion of control, where systems run with minimal human intervention 
until an unexpected condition arises that requires manual correction. By that time, 
the system’s behavior may be so complex that diagnosing and fixing issues is 
challenging. In essence, innovation has traded direct human control for algorithmic 
or procedural control, which can fail in unpredictable ways. 

One consequence of this complexity is a dramatic expansion of the potential attack 
surface and an emergence of new vulnerabilities. The attack surface refers to all 
possible entry points that an attacker could exploit to gain unauthorized access to a 
system. Complexity is the enemy of security: as more components and 
connections exist, there are more points where things can go wrong or be exploited 
[6]. Modern digital systems comprise a multitude of software modules, 
microservices, and third-party APIs; identifying every vulnerability among them, let 
alone patching all in a timely manner, becomes a daunting task [6]. Importantly, 
several categories of emerging technology bring their own security paradoxes:  
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Artificial Intelligence (AI): AI systems introduce new types of errors and attack 
methods. Machine learning models can be deceived by adversarial inputs 
(maliciously crafted data that causes the model to make wrong decisions), while 
AI-based code generation tools may produce insecure code if not properly 
controlled. Experiments have shown that almost half of the code generated by 
popular AI assistants contained bugs or vulnerabilities that could be exploited [7]. In 
addition, AI models themselves can be targeted through data poisoning (tampering 
with the training data) or model theft (copying or extracting the trained model), 
creating a new category of risks specific to systems that learn and evolve over time. 

APIs and Interconnectivity: The growing use of web services and APIs means that 
most modern applications communicate through public interfaces. An API 
(Application Programming Interface) is a set of rules that allows different software 
systems to exchange data and functions, for example, when a mobile app retrieves 
information from a cloud service. While this modular design promotes flexibility and 
integration, it also exposes many functionalities to the internet. Because APIs now 
handle about 71% of all web traffic [8], they have become major targets for 
attackers. Each API endpoint is a potential entry point, and if it is misconfigured or 
lacks proper security controls, it can lead to serious data breaches. Managing 
dozens or even hundreds of APIs across cloud and on-premise systems increases 
the risk that some remain unprotected or forgotten. 

Low-Code/No-Code Platforms: Low-code tools allow non-experts to build 
applications quickly, but this accessibility introduces security trade-offs. Because 
these apps often skip the thorough reviews and testing used in traditional 
development, they may contain hidden risks. In this context, citizen developers are 
employees or users without formal programming training who create software using 
visual, drag-and-drop tools instead of writing code. While this democratization of 
development speeds up innovation, it can also lead to misconfigurations, such as 
granting incorrect permissions or exposing sensitive data, if proper governance is 
not in place. Therefore, low-code platforms must always be accompanied by clear 
security guidance and supervision. 

Software Supply Chain: Modern software is built from many external and 
open-source components. This dependence means that a single flaw in a popular 
library can expose thousands of organizations at once. Because these components 
are interconnected, one vulnerability can spread through the entire ecosystem like a 
chain reaction. These are known as software supply chain attacks, where attackers 
compromise weaker links (for example, a small vendor or open-source maintainer) 
to reach the larger systems that depend on them. 
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In light of these challenges, there is a growing recognition that cybersecurity must 
be reframed as an enabler of innovation, not a barrier. In the past, security was 
sometimes viewed as a drag on agility, strict controls and checks that slowed down 
release cycles or constrained new features. However, as digital transformation has 
made business success inseparable from technology, robust cybersecurity is 
increasingly seen as foundational to sustained innovation. Strong security postures 
create the trust and stability required to experiment with new digital offerings. 
Industry leaders now assert that cybersecurity is not just a safeguard but a strategic 
enabler of innovation, customer trust, and long-term growth [9]. By embedding 
security into the design of systems (secure-by-design principles) and into 
governance processes, organizations can pursue rapid development and remain 
resilient to threats. In practice, this means integrating security teams directly into 
development and operations, an approach known as DevSecOps, where security is 
built into every stage of the software lifecycle rather than added at the end. It also 
involves adopting frameworks that simplify and organize security architectures to 
reduce complexity, and ensuring that cybersecurity investments align with business 
goals and governance priorities. Notably, modern regulations and standards 
encourage this alignment: for example, the EU’s NIS2 Directive explicitly elevates 
cybersecurity to a board-level responsibility, ensuring that innovation initiatives are 
paired with accountability for managing cyber risks [10]. The security paradox can 
thus be resolved by treating cybersecurity not as a hindrance, but as a critical 
success factor, one that enables organizations to innovate safely in an environment 
of complex, distributed digital systems. 

1.4 Research Motivation and Objectives 

The core motivation for this research is to explore the intersection of cutting-edge 
software development paradigms and cybersecurity. With the advent of AI-assisted 
coding tools and low-code/no-code development platforms, software creation is 
becoming faster and more accessible, but potentially at the expense of quality and 
security. This thesis is driven by the need to understand the security and quality 
implications of these trends. In particular, the work seeks to illuminate how the 
ongoing digital transformation reshapes software’s role and risk, what new 
vulnerabilities are emerging from AI and low-code practices, and how organizations 
might govern technology in a way that balances rapid innovation with robust 
security. 

To address this motivation, the study is organized around three central research 
questions: 
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1.​ How do AI-assisted development and low-code platforms alter the 
nature of software vulnerabilities and accountability?​
This question explores how emerging development paradigms shift the 
technical and organizational boundaries of responsibility. By automating 
parts of the coding process or enabling non-expert users to build 
applications, these tools redefine who is accountable for code quality and 
security. The inquiry examines empirical evidence showing that AI-generated 
code may replicate insecure patterns, while low-code platforms can 
introduce misconfigurations and hidden dependencies when used without 
proper governance.​
 

2.​ Which governance and assurance mechanisms can mitigate emerging 
risks without undermining agility?​
Here, the focus turns to management and control frameworks that reconcile 
speed and safety. It investigates how organizations can integrate automated 
checks, quality certification, and continuous security assurance into rapid 
development cycles, ensuring compliance with regulations such as NIS2 [10] 
and the EU AI Act while preserving flexibility and innovation.​
 

3.​ How can standardized frameworks institutionalize quality and security in 
increasingly automated environments?​
The third question broadens the analysis to a systemic level. It examines how 
initiatives such as Innovation Code and global standards (e.g. ISO/IEC 25010, 
SLSA, SBOM) can serve as anchors for sustainable digital transformation. 
The goal is to understand whether shared governance and standardized 
certification can embed cybersecurity and quality management into the fabric 
of innovation itself, transforming security from a reactive safeguard into a 
proactive enabler. 

Together, these questions frame the thesis around a fundamental challenge: 
designing a software ecosystem where automation, intelligence, and regulation 
coexist in balance, enabling innovation that is not only fast, but also accountable, 
auditable, and secure by design. 

The objective of this thesis, corresponding to these questions, is to conduct a 
critical analysis of current trends and frameworks and to lay the groundwork for 
a practical initiative addressing these issues. Concretely, the study aims to: 

1.​ Analyze how digital transformation has elevated the role of software and the 
nature of software-related risks (drawing on literature and industry 
observations). 
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2.​ Identify and examine vulnerabilities emerging from AI-assisted coding and 
low-code development, comparing them to traditional software 
vulnerabilities. 

3.​ Investigate whether and how innovation can coevolve with security through 
collaborative governance, by comparing frameworks and standards (such as 
OWASP best practices, the European NIS2 directive, and the ISO/IEC 25010 
software quality model). 

4.​ Finally, as a forward-looking component, preview the “Innovation Code” 
initiative, an industry-driven program, evaluating it as a case that embodies 
these themes and potentially offers solutions. 

By meeting these objectives, the thesis will bridge theoretical and practical 
perspectives. It will not only survey and synthesize existing knowledge (on digital 
transformation, AI risks, governance models, etc.) but also use that understanding 
to assess new approaches (like Innovation Code) that aim to reconcile the demands 
of innovation speed, quality, and security. The overall goal is to derive insights and 
recommendations that can guide both practitioners (in managing real-world 
software projects) and policymakers or industry groups working on frameworks for 
secure digital innovation. 

1.5 From Problem to Solution: The Genesis of the 
“Innovation Code” Initiative 

In response to the challenges outlined above, ranging from the increasing 
complexity of digital systems to the difficulty of maintaining both speed and control 
in software development, the Italian initiative “Innovation Code” has emerged as a 
coordinated, forward-looking response. Conceived within the industrial and 
technological ecosystem of Italy, and particularly promoted by Confindustria 
Romagna, the initiative was born out of a shared awareness among companies, ICT 
and professionals, that the traditional, fragmented approaches to software 
governance were no longer sufficient. Rather than relying on isolated best practices 
or reactive compliance measures, Innovation Code proposes a systemic model 
designed to embed quality, security, and sustainability into the entire software 
lifecycle. 

The initiative is structured around four key pillars: quality, reuse, governance, and 
sustainability. It recognizes that many of the weaknesses found in modern software, 
ranging from technical debt to inconsistent coding standards, stem not from 
individual mistakes but from the absence of shared frameworks and collective 
accountability. To address this, Innovation Code promotes the creation of a 
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standardized environment where organizations can develop and share certified 
software components, reuse proven modules, and operate within a transparent and 
auditable governance model. This shared repository of trusted components aims to 
reduce redundant effort, minimize vulnerabilities, and ensure that updates or 
patches can be deployed consistently across projects, reinforcing security and 
efficiency at scale. 

Confindustria Romagna, as the driving institutional partner, has played a pivotal role 
in fostering collaboration between industry and academia, connecting enterprises of 
varying sizes, especially SMEs, with innovation partners and digital experts. 
Through this networked approach, Innovation Code functions not merely as a 
technical framework but as a strategic ecosystem that encourages responsible 
innovation. It brings together coordinators, authors, and users in a tiered 
participation model, ensuring that expertise, oversight, and operational execution 
are balanced. This collaborative structure ensures that rapid innovation through 
AI-assisted and low-code tools can coexist with rigorous quality and cybersecurity 
governance. 

Although the specific mechanisms, certifications, and pilot projects of Innovation 
Code will be examined later, its introduction here serves a wider purpose. The 
initiative represents a clear example of how modern software ecosystems can 
balance two essential goals: moving fast while remaining accountable. In this sense, 
Innovation Code reflects a governance approach that aligns with European priorities 
set out in the NIS2 Directive and the AI Act, both of which emphasize transparency, 
traceability, and shared responsibility as the foundation of trustworthy digital 
innovation. 

This initiative provides both the conceptual and practical foundation for the main 
question guiding this thesis: how can innovation and cybersecurity grow together 
under structured governance? It acts as a bridge between theory and practice, 
showing how organizations can apply secure-by-design principles without slowing 
down technological progress. 

The transition to Chapter 2 follows naturally from this discussion. After exploring 
governance models and systemic responses such as Innovation Code, the next 
chapter shifts focus to the technological side of transformation. It will trace the 
evolution of coding itself, from traditional programming to AI-assisted and low-code 
approaches, highlighting how these innovations have reshaped not only the way 
software is developed but also how its security and reliability must be reconsidered 
in today’s digital era.  
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Chapter 2 

The Evolution of Coding: Between AI, 
Low-Code and Emerging Languages 
 

The art and science of programming have undergone profound transformations 
since the early days of computing, evolving from arcane sequences of machine 
code to sophisticated systems capable of interpreting natural language. Each 
generational leap in abstraction has not only changed how software is written but 
also who is empowered to write it. This chapter explores the major technological 
cycles that have shaped software development, tracing a historical arc from 
low-level coding practices to the emergence of artificial intelligence, 
low-code/no-code platforms and natural language programming. These shifts are 
not merely technical, they carry far-reaching implications for software security, 
governance and the role of the human developer. 

The driving force behind this evolution has consistently been the pursuit of greater 
productivity, accessibility and expressiveness. High-level compiled languages, 
object-oriented paradigms and fourth-generation languages each played their part 
in abstracting away hardware constraints and democratizing software creation. 
More recently, the irruption of AI into development environments, exemplified by 
tools like GitHub Copilot, has begun to redefine coding itself, transforming natural 
language into a de facto programming interface. Parallel to this, low-code and 
no-code platforms are enabling a new generation of "citizen developers" to 
participate in application development, often without formal programming 
backgrounds. 

These trends, while empowering, introduce new challenges for software quality and 
security. The delegation of code generation to AI or non-technical users raises 
critical questions about the integrity, safety and maintainability of modern software 
systems. As abstraction increases, so too does the risk of hidden vulnerabilities and 
the need for robust oversight mechanisms. This chapter examines these dynamics 
in depth, offering both a historical perspective and a forward-looking analysis of 
where software development is headed and what it means for the secure design of 
tomorrow’s systems. 
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In doing so, it sets the foundation for understanding how emerging coding 
paradigms (from AI-generated code to fully declarative natural language interfaces) 
are reshaping the landscape of cybersecurity and what strategies will be necessary 
to navigate this new era responsibly. 

2.1 A Brief History and Technological Cycles of Coding 

The practice of coding has undergone several transformative cycles since the dawn 
of computing. In the earliest era (1940s-1950s), programming meant writing 
low-level instructions in machine code or assembly language, painstakingly toggling 
switches or punching cards. The late 1950s and 1960s introduced high-level 
compiled languages like Fortran and COBOL, which abstracted away hardware 
details and greatly increased developer productivity. Each leap in abstraction (from 
machine code to compiled languages and later to interpreted and managed 
languages) broadened accessibility to programming. Moving from assembly to 
compiled code meant that a programmer “didn’t have to understand what registers 
are… you just needed to understand if-then-else or what a variable assignment is”​. 
[11] Similarly, the transition from compiled languages (like C/C++) to higher-level 
interpreted languages and frameworks (like Java, JavaScript, Python in the 1990s) 
further lowered the entry barriers and enabled more rapid development​. Each cycle 
of abstraction initially met resistance from traditionalists who feared a “loss of 
knowledge”, yet time and again these fears proved unfounded as productivity gains 
were realized.  

By the 1980s, new programming paradigms were emerging, including 
object-oriented programming (e.g. C++ and later Java) and fourth-generation 
languages (4GLs). 4GLs marked an important shift: instead of requiring developers 
to write detailed step-by-step instructions (as with earlier languages like C), they 
allowed them to simply specify what the program should achieve. The system would 
then figure out how to perform the task. This approach anticipated today’s 
declarative and visual development tools. 

At the same time, Computer-Aided Software Engineering (CASE) tools began to 
appear. These were specialized programs designed to automate parts of the 
software development process, such as designing database structures, generating 
code or managing documentation. In essence, CASE tools aimed to make coding 
faster, more consistent and more accessible by providing visual editors, templates 
and automatic code generation features. 

Visionaries like James Martin predicted, as early as 1982 in Application 
Development Without Programmers, that the shortage of skilled developers would 
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drive the need for tools that could enable non-programmers to build applications. 
Indeed, during the 1980s, CASE and 4GL platforms promised to democratize 
software creation by minimizing the amount of manual coding required. These early 
technologies were the forerunners of what we now call citizen development 
platforms, tools that empower non-technical users to create software solutions 
[12]. (This concept of the "citizen developer" will be explored more deeply later in 
the chapter.) 

However, despite the enthusiasm, these early attempts often struggled in practice: 
many CASE and 4GL systems failed to scale effectively for complex applications 
and often lacked essential capabilities like version control and thorough testing 
frameworks. As a result, by the late 1990s, attention shifted toward new 
programming languages (such as JavaScript and PHP) and frameworks driven by 
the rise of the web and client-server architectures, temporarily sidelining those early 
“low-code” ideas. 

Timeline of Key Disruptions 

To illustrate the cycles, consider a brief timeline. In 1957, the introduction of 
FORTRAN (the first widely used high-level language) was a breakthrough that 
simplified numeric computing. The 1970s brought C and structured programming, 
enabling development of complex systems like operating systems with more 
manageable code. The 1980s saw the advent of PC software and object-oriented 
languages (C++, Smalltalk) and also early visual programming experiments (e.g. 
Visual Basic emerged in 1991 blending GUI design with coding). The 1990s and 
2000s were dominated by the internet boom, scripting languages (Perl, Python, 
JavaScript) and enterprise frameworks (Java EE, .NET) a shift towards rapid 
development and reuse of libraries. Each of these phases demonstrates a cycle of 
rising abstraction: from hardware-near coding towards higher-level, human-friendly 
constructs. Now, in the late 2010s and 2020s, we are in the midst of another 
quantum leap, one where artificial intelligence and low-code/no-code platforms 
radically redefine how software is created. The following sections examine this 
modern evolution and its implications, particularly for security. 

2.2 The Irruption of Artificial Intelligence in Software 
Development 

Recent years have seen an unprecedented irruption of Artificial Intelligence (AI) 
into the realm of software development. AI-powered tools are now writing code, 
debugging and even architecting software alongside human developers. The launch 
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of GitHub Copilot in 2021, described as an “AI pair programmer”, was a watershed 
moment​. Copilot and similar generative AI models (Anthropic Claude, OpenAI 
ChatGPT, Amazon CodeWhisperer, etc.) use large language models trained on vast 
code corpora to suggest code completions or even generate entire functions based 
on natural-language prompts. This represents a new paradigm: instead of manually 
writing every line, a developer can now describe the intended functionality in 
English (or any other natural language) and let the AI produce candidate code. As 
Nvidia’s CEO Jensen Huang put it, “the programming language is human” and in the 
future “you will tell the computer what you want and it will do it”​ [16]. In other words, 
AI is turning English (or any human language) into a universal programming 
language by serving as the translator from intent to implementation. 

The integration of AI has already shown tangible productivity benefits. Studies found 
that developers using AI assistants can complete tasks significantly faster. For 
example, an experiment by GitHub revealed that programmers with Copilot finished 
a coding task 55% faster on average than those without it​ [18]. This speed-up 
(reducing a task that took 2 hours 41 minutes down to 1 hour 11 minutes in the 
study) underscores AI’s potential to automate boilerplate coding and accelerate 
development​. Beyond speed, AI coding assistants can improve developer 
experience: surveys report that a majority of developers feel less frustrated and 
more “in the flow” when using AI assistance, allowing them to focus on creative and 
complex aspects of software design​. Essentially, AI can handle repetitive grunt work 
(e.g. writing routine functions, suggesting syntax) so that human developers can 
concentrate on higher-level problem solving. 

However, the irruption of AI also brings significant cybersecurity implications and 
challenges. One concern is the security of AI-generated code. Since these 
models learn from public code (which may include insecure patterns), they can 
inadvertently produce vulnerable code constructs. A prominent study in 2022 
systematically analyzed Copilot’s outputs for secure coding practices and found 
that roughly 40% of the AI-generated programs had security vulnerabilities ​[17]. 
In scenarios targeting common weakness patterns (such as those in MITRE’s CWE 
Top 25, detailed in the next chapter), Copilot often suggested solutions that were 
functionally correct but insecure, for example using outdated encryption or 
susceptible SQL queries. These findings highlight the risk that AI assistance might 
introduce hidden flaws if a human developer accepts suggestions without scrutiny. 
In response, tool makers have started adding AI-based vulnerability filters to block 
obviously insecure suggestions​. Nevertheless, the onus remains on developers to 
review and test AI-written code carefully, effectively shifting their role from writing 
code to auditing and curating code. This shift itself is a major change: developers 
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must develop new skills in prompt engineering (to get useful outputs from the AI) 
and in security-aware code review, as they guide and correct their AI collaborators. 

Another challenge is the potential for malicious use of AI in coding. Just as AI can 
help developers build apps faster, it could assist attackers in generating malware or 
exploits. There is concern that generative models could lower the barrier for creating 
sophisticated attacks by auto-coding malicious scripts or polymorphic code. On the 
flip side, AI is also being harnessed for defensive security e.g. AI systems that 
refactor insecure code or generate fixes for known vulnerabilities. This dual-edged 
nature of AI in development means cybersecurity professionals must stay vigilant: 
the development landscape is evolving where AI can be co-developer or adversary. 
In summary, AI’s sudden entrance into software engineering is transforming how 
code is written. It promises unprecedented automation and efficiency, the ability to 
generate code from natural language is “another rung up the ladder of abstraction” 
beyond even high-level languages​. Yet it also requires a rethinking of secure 
development life cycles, with new practices to ensure AI-generated code does not 
become the weakest link in security.  

The next section will explore a parallel revolution making coding more accessible: 
the rise of low-code and no-code development, which intersects with the AI trend to 
further democratize software creation. 

2.3 The Low-Code/No-Code Paradigm and the Rise of 
the “Citizen Developer” 

In tandem with AI, the software industry is experiencing a renaissance of 
low-code/no-code development platforms. These platforms allow applications to 
be built with minimal hand-written code, often through graphical interfaces, 
drag-and-drop components and declarative configuration. The concept is not 
entirely new as noted, the roots trace back to 4GLs in the late 20th century, but 
modern low-code platforms are far more capable and integrated. Their resurgence 
is driven by a critical need: businesses face a shortage of professional 
developers and a backlog of software needs, so empowering non-programmers to 
create software is an attractive solution​. The term “citizen developer” has emerged 
to describe business users (outside the IT department) who build or customize 
applications using IT-sanctioned low-code/no-code tools, rather than traditional 
coding​ [13]. This paradigm shift enables domain experts e.g. a finance analyst 
automating a reporting workflow, to become creators of software solutions without 
deep programming skills. 
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Modern low-code/no-code platforms include examples like WaveMaker, Oracle 
APEX and Microsoft Power Apps, among many others. These tools exemplify the 
low-code approach in practice. WaveMaker is a Java-based low-code platform 
oriented toward professional developers building enterprise apps; it provides a 
visual studio and component library on top of an open standards stack 
(Java/Spring, etc.), allowing developers to “leverage the speed of low-code with 
control over custom coding”​ [14]. Oracle APEX (Application Express) is another 
platform, originally developed by Oracle in the 2000s, that enables rapid 
development of web applications with a browser-based interface. APEX exemplifies 
a hybrid development model: one can assemble an app with wizards and 
drag-drop UI designers, achieving a functional prototype without writing code, but if 
needed, developers can extend or fine-tune the app with SQL and PL/SQL logic or 
by injecting JavaScript for custom behaviors​ [15]. Microsoft Power Apps similarly 
allows creation of business applications through a visual canvas and Excel-like 
formulas, tightly integrating with the Office 365 ecosystem for citizen developers in 
organizations.  

As introduced in Chapter 1, in line with the growing adoption of low-code solutions 
across industries and governments, the Innovation Code project stands out as a 
pioneering initiative driving digital transformation within the Italian ecosystem. 
Launched by Meta, the innovation arm of Confindustria Romagna, Innovation 
Code was created to address the digital gap faced by small and medium-sized 
enterprises by promoting the use of low-code technologies such as the ones just 
discussed. 

Innovation Code operates as a structured community, bringing together 
companies, developers and IT professionals under a shared framework of 
collaboration. Participants are organized into different levels: Coordinators, Authors 
and Users. each with specific responsibilities and rights​. Central to the initiative is a 
curated marketplace, where certified software components, modules and APIs are 
made available. This enables businesses to quickly assemble customized solutions 
while significantly reducing development time and cost. ​The initiative’s structure, 
certification process, and governance model offer much to explore and will be 
examined in greater depth in Chapter 5. 

Innovation Code is a prime example of how low-code tools can bridge the software 
demand gap by empowering a wider range of contributors, including those with 
limited technical backgrounds, a concept that will be further explored when 
discussing the rise of citizen development later in this chapter. 
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The advantages of low-code/no-code are clear: faster development cycles, lower 
barrier to create simple apps and the ability to involve end-users directly in building 
the tools they need. Gartner predicts that by 2026, developers outside formal IT 
departments will account for at least 80% of the user base for low-code 
development tools, a dramatic increase from just a few years prior [20]. These 
numbers underscore that citizen development is moving into the mainstream. From 
a business perspective, this helps alleviate the developer talent shortage and allows 
power users to “solve their own problems” directly​. When done right, it can boost 
innovation and efficiency, freeing IT staff to focus on more complex, mission-critical 
projects while line-of-business teams handle lighter applications. 

Security and governance concerns: Despite its promise, the low-code movement 
brings challenges, particularly for cybersecurity and IT governance. Allowing a wide 
swath of non-engineers to create applications can potentially amplify security risks 
if not managed properly. Earlier generations of pseudo-coding tools learned this the 
hard way: many early 4GL projects in the ’80s and ’90s resulted in fragile, unsecure 
applications. As one analysis noted, empowering non-technical people to build 
software “exposed the organization to several risks, chief among them that most 
non-technical builders did not possess the skillset to create and deploy applications 
with appropriate security and governance” [12]. In the modern era, low-code 
platforms have improved on this by baking in security features and offering admin 
oversight. Most enterprise-grade low-code platforms now include centralized IT 
governance, role-based access control and compliance certifications. For example, 
platforms delivered via the cloud can enforce updates and security patches 
universally​. Additionally, the maturation of the user base and best practices in the 
last decade have made it easier to establish guidelines for citizen developers (e.g. 
requiring IT review of apps that use sensitive data). Nonetheless, organizations 
must implement proper governance: establishing which data and systems 
citizen-developed apps can access, providing training on secure practices for 
citizen devs and monitoring for compliance. Without these measures, low-code 
apps could inadvertently become a new attack surface (through misconfigured data 
access, lack of encryption, etc.). 

Another concern is scalability and maintainability of low-code solutions. If dozens 
of departments build their own mini-apps, an IT department could face a sprawl of 
semi-supported tools. This is why many companies create “fusion teams” pairing 
citizen developers with professional developers to ensure that the resulting software 
meets quality standards and can be maintained or integrated properly long-term. 
The “citizen developer” trend thus forces a redefinition of roles: the pro developers 
take on more of a curator/mentor role, setting up the guardrails and stepping in to 
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extend platforms when custom code is necessary, while the business users 
contribute domain knowledge and quick prototyping. 

From a strategic perspective, low-code and no-code platforms are democratizing 
software development by extending participation beyond traditional IT roles. 
However, this democratization must be managed carefully to avoid introducing 
significant risks to cybersecurity and governance. Rather than embracing an 
uncontrolled expansion of "citizen developers", initiatives such as Innovation Code 
advocate for a more disciplined model, contrary to the simplistic notion that 
"everyone can build their own apps" a more sustainable and secure approach 
involves: selecting individuals with STEM backgrounds or strong technical aptitudes 
and providing them with structured training in development standards, security 
principles and platform governance. 

This model preserves the advantages of low-code, such as faster development 
cycles and reduced pressure on IT departments while minimizing the risks typically 
associated with fragmented or ad hoc software creation. By embedding governance 
mechanisms directly into the development process and ensuring that new 
contributors are appropriately trained, organizations can expand their innovation 
capacity without compromising security or operational integrity. As low-code 
adoption accelerates, striking a balance between empowering a broader workforce 
and maintaining rigorous oversight will be essential. The next frontier will push these 
boundaries even further, with the emergence of hybrid models and natural language 
programming, topics explored in the following section. 

2.4 New Frontiers of Coding: Hybrid Languages and 
Natural Language Programming 

The evolution of coding paradigms is now reaching a point where the lines between 
human language and programming language begin to blur. Two notable frontiers are 
emerging: hybrid languages and natural language programming. These 
developments aim to make programming more expressive, intuitive and aligned with 
human thinking, which could fundamentally change how we approach software 
development. 

Hybrid Languages: The term "hybrid languages" refers to programming languages 
or environments that integrate multiple programming paradigms, that is, distinct 
styles or models of organizing and thinking about software development. A 
programming paradigm defines the fundamental approach a language uses to 
structure and execute programs. Common paradigms include procedural 
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programming (where code is organized into sequences of instructions or 
procedures), object-oriented programming (which structures programs around 
objects and data encapsulation) and functional programming (which emphasizes 
immutability and pure functions without side effects). 

Many modern languages already embody a hybrid nature by supporting multiple 
paradigms within a single environment. For instance, Scala and Kotlin combine 
object-oriented and functional programming styles, enabling developers to choose 
the most effective approach for each part of their application. Similarly, Python 
allows procedural, object-oriented and functional techniques to coexist seamlessly 
within the same codebase. This blending of paradigms offers developers greater 
flexibility and adaptability, supporting more complex and efficient software 
solutions. 

However, the frontier goes beyond just multi-paradigm. It includes languages that 
integrate low-code style abstractions with traditional code. We see this in 
platforms like Oracle APEX, where a mostly visual development can be augmented 
by snippets of code when needed. Such a hybrid approach lets developers get the 
efficiency of model-driven development while still dropping down to code for 
fine-grained control​. Another example is WaveMaker’s “hybrid coding 
experience” which allows mixing and matching code written in a traditional IDE 
with the low-code components in the platform​. Essentially, the developer can 
round-trip between a visual modeler and code editor, using whichever tool is 
appropriate for the task. This convergence is blurring the distinction between 
“low-code” and “code”, future developers might work in environments where part of 
the logic is designed by drawing a workflow or form and part by writing a script, all 
within one coherent language framework. 

Natural Language Programming: Perhaps the most radical frontier is programming 
using natural language (NL), essentially telling the computer what to do in everyday 
human language. We already see glimmers of this in AI code generation as 
discussed in 2.2. But beyond using AI to generate code in an existing language, 
there is a vision of direct natural language programming where the distinction 
between specification and implementation disappears. In such a scenario, a 
programmer (or end-user) could write instructions or constraints in English (or any 
human language) and the system’s AI interpreter would execute them or translate 
them into machine-executable form on the fly. In effect, English itself becomes the 
“source code.” A recent headline captured this trend: “Thanks to AI, the hottest new 
programming language is… English.” [16]. Industry leaders like Andrej Karpathy 
have predicted this shift and companies like Microsoft and OpenAI are actively 
working on interfaces where users can write queries or commands in natural 
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language to manipulate data and software. For instance, Microsoft’s Power Platform 
now includes an AI feature where a user can type “Create a workflow that sends an 
email approval when a form is submitted” and the system will build that workflow 
without further traditional coding. 

The progress in large language models is a key enabler of natural language 
programming. Jensen Huang’s vision (mentioned earlier) that “nobody has to 
program” and we can describe tasks in human language is increasingly plausible 
with advanced AI​. Already, GPT and similar models can generate not just code, but 
entire mini-programs when given a well-formed request. There are experimental 
systems where you can ask in plain language for a certain kind of application (e.g. 
“a simple task tracker with user login”) and the system will attempt to assemble it 
using pre-built modules and some generated glue code. 

However, natural language programming raises its own challenges. One is 
ambiguity, human language is inherently less precise than formal code. This can 
lead to misunderstandings between the user’s intention and the AI’s interpretation. 
We may need new methodologies (perhaps writing tests or examples in natural 
language as well) to ensure the intent is captured correctly. Another challenge is 
verification and security. With traditional code, there are established practices for 
code review, static analysis and formal verification. If the “code” is a natural 
language description, how do we verify that it will always do what we intend and 
nothing more? It might become necessary to have AI systems translate NL into 
intermediate, verifiable representations. Some research is looking at explainable AI 
in this context ensuring that for an English “program” the system can show a logical 
form or a series of steps it will execute, which a human can then review or test. 

From a cybersecurity perspective, natural language programming again presents 
both opportunities and risks. On one hand, it could help reduce certain classes of 
bugs, since developers are not manually writing low-level code lowering the chance 
of common mistakes like off-by-one errors or API misuses. AI systems might also 
default to using secure coding practices and templates. On the other hand, if a user 
naively describes a feature (e.g. "allow users to upload files") without specifying 
security requirements, the AI might implement it in the simplest form, overlooking 
critical protections such as virus scanning or access control. Unless these systems 
are trained to proactively integrate security best practices, they risk introducing 
vulnerabilities. Therefore, embedding security-by-design principles into natural 
language programming frameworks is essential and remains an active and evolving 
area of research. 
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Hybrid Natural Languages: We also see interesting hybrids of code and natural 
language emerging. Take for example the use of markdown-like syntax in 
documentation tools that allow executable code blocks mixed with narrative, a 
concept reminiscent of literate programming, originally introduced by Donald Knuth 
in the 1980s, where the goal was to write programs as readable documents that 
explain the logic in natural language alongside the source code. This idea has been 
reinvented in modern tools such as Jupyter Notebooks, which integrate narrative 
text, visualizations, and live code within the same environment. Some contemporary 
systems even allow writing a specification in something close to English, 
interspersed with formal elements. These might form a bridge towards full natural 
programming by providing a controlled natural language, readable by humans but 
structured enough for machines. 

In conclusion, the frontier of programming is rapidly expanding along two major 
paths. On one hand, we are witnessing the rise of hybrid languages and 
environments that seamlessly blend narrative and code, offering a middle ground 
between human expressiveness and machine precision. On the other hand, the 
vision of direct natural language programming promises to transform human 
language itself into the ultimate programming interface, one where the boundary 
between intent and implementation effectively dissolves. Both trajectories aim to 
make programming more intuitive, accessible and aligned with the way humans 
naturally think and communicate. 

However, these advances also bring new challenges: ensuring clarity in inherently 
ambiguous human language, verifying the security and correctness of AI-generated 
programs and rethinking traditional software development practices. The role of 
developers will shift from coding in strict syntaxes to crafting precise descriptions, 
guiding intelligent systems and critically validating their outputs. Cybersecurity, in 
particular, must evolve alongside these changes to embed protection into the very 
fabric of these new paradigms. 

As we look ahead, it becomes clear that natural language programming is just one 
dimension of a broader transformation. The next frontier of software development 
will also involve greater automation, visual composition and AI-driven assistance 
redefining not only how code is written, but what it means to be a developer. These 
themes are explored in the next section. 
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2.5 Future Scenarios: Towards Automated, Visual and 
Assisted Coding 

Looking forward, we can envision several converging trends that paint a picture of 
how coding might evolve in the next decade. The trajectory is clearly toward more 
automated, more visual and more AI-assisted coding practices. In this future, the 
role of the human developer will be elevated to that of a designer, tutor and verifier 
of software, while much of the grunt work of actual code writing is handled by 
intelligent tools. 

Automated Coding: Automation in coding is not just about generating code with AI; 
it also includes the broader idea of end-to-end automation from requirements to 
deployment. We are moving toward a scenario where a desired functionality can go 
through fewer manual translation steps to become a running system. Model-driven 
development is an early example, where you draw a UML diagram and the 
framework generates baseline code. In the future, fueled by AI, this could become 
far more powerful. A product manager might feed a high-level requirements 
document to an AI, which then produces a working prototype application, complete 
with suggested UI and database schema. Some research projects already explore 
this, using transformers to convert software design specs or user stories directly 
into code. Generative AI will likely integrate with software IDEs and DevOps 
pipelines so that certain classes of code (boilerplate, integration glue, tests) are 
generated automatically whenever you declare high-level intents. This automation 
will also extend to maintenance: AI bots might automatically update dependencies, 
fix known vulnerabilities in code or refactor codebases for efficiency. In essence, 
coding tasks that are repetitive or well-bounded could be almost entirely 
automated. 

The visual aspect of programming is also expected to strengthen. Low-code 
platforms demonstrate the appeal of visual composition; we may see traditional 
IDEs incorporate more visual design elements even for professional coders. Imagine 
an IDE where you can switch to a flowchart view of your code logic, adjust logic by 
moving nodes and the code updates accordingly, this would marry visual thinking 
with textual precision. Future programming environments might also leverage AR/VR 
for visualization of complex systems (for example, rendering an architecture in 3D 
space to better understand component interactions). While that sounds futuristic, 
the aim is serious: to manage complexity by representing code in forms more 
digestible than thousands of lines of text. Visual and diagrammatic representations, 
enhanced by AI (which could suggest improvements or catch flaws as you 
manipulate the diagram), could make architecture and code design more intuitive 
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and collaborative. This is akin to a “Google Maps for code” where you can zoom 
out to see the whole system or zoom in to see a specific function, with guidance 
systems highlighting potential trouble spots. 

AI-assisted everything: In future scenarios, AI assistants will be omnipresent 
across the software development lifecycle. We already have coding assistants for 
autocompletion; we can expect AI to assist in requirements gathering (by, say, 
conversing with stakeholders in natural language and drafting requirements or user 
stories), in design (proposing design patterns or suggesting which cloud services to 
use for a given problem), in testing (auto-generating test cases, fuzzing inputs and 
even formally verifying certain properties) and in deployment (optimizing cloud 
resource configurations). Development will become a highly augmented 
experience, a developer might carry out a conversation with an AI agent: “Generate 
a data model for an e-commerce inventory” and the AI produces a draft schema; 
“Now write REST API endpoints for these operations”, it generates code; “Check if 
there are any security vulnerabilities or performance issues”, it analyzes and reports 
findings which the developer then approves or adjusts. This tight loop of human 
oversight and AI labor could make software development orders of magnitude faster 
and more reliable. 

From a cybersecurity perspective, these future trends offer both optimism and 
caution. On the optimistic side, many common software security issues could be 
reduced. Automated code generation and refactoring can incorporate security best 
practices by default for example, always using parameterized queries to avoid SQL 
injection or using memory-safe languages for new code as the National Security 
Agency (NSA) recommends [19]. AI assistants can continuously scan code as its 
written, catching dangerous patterns or outdated libraries in real-time and 
suggesting fixes. Visual programming and high-level automation might also mean 
fewer opportunities to introduce low-level mistakes that lead to vulnerabilities. In 
fact, the government and industry push to adopt memory-safe languages (like 
Rust, Go, Swift) is part of this future, we are likely to see new systems programming 
gravitate to these safer languages, eliminating entire categories of security bugs 
(buffer overflows, use-after-free) at the source​. The incorporation of Rust 
components in the Linux kernel and other infrastructure software is a current 
example of this incremental but significant shift towards safer coding practices. 

On the cautionary side, fully automated and AI-driven development could 
introduce novel risks. One concern is that as humans write less code themselves, 
they might overlook logic bombs or subtle security issues inserted by AI. If an AI 
toolchain is compromised (for instance, a supply-chain attack on a popular AI 
coding assistant), it could potentially spread vulnerabilities at scale by suggesting 
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malicious code to thousands of developers. We will need robust validation and 
perhaps AI auditing systems, essentially AIs that watch other AIs, to ensure the 
integrity of automated coding outputs. Additionally, when logic is largely 
machine-generated, understanding the code’s behavior becomes harder. This 
“opacity” can complicate security auditing and incident response. To mitigate this, 
future development might enforce traceability, every piece of code generated by AI 
might come with an explanation or a link back to the requirement it fulfills, so that 
auditors can trace why it exists. 

Towards a new developer role: All signs point to the role of the developer evolving 
rather than disappearing. In a future of automated, visual and assisted coding, the 
developer’s job may look less like typing syntax and more like orchestrating, 
validating and guiding. The phrase “software composer” might become apt, 
analogous to a music composer who directs an orchestra (the AI tools and code 
generators) to perform a symphony (the final software product). The human will 
provide creative direction, ethical judgment and domain expertise that machines 
lack. In the realm of security, human expertise will remain crucial to define threat 
models and decide on risk trade-offs, tasks that are hard to fully delegate to AI. 

The evolution of coding is steering towards a future where writing software is more 
about what the system should do (high-level design, constraints, goals) rather than 
how to write code to do it. This journey from assembly language all the way to 
conversational programming is a story of increasing abstraction and 
democratization. For cybersecurity, this evolution is both a challenge, requiring 
new approaches to ensure security in highly abstracted development and an 
opportunity to finally eliminate many common vulnerabilities and make secure 
coding the path of least resistance. Chapter 2 has traced this evolution through 
history, the rise of AI and low-code and the emerging frontiers. In subsequent 
chapters, we will delve deeper into the specific security frameworks and practices 
that can harness these trends for building secure software in this brave new world. 
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Chapter 3 

AI and Software Development: Opportunities 
and Vulnerabilities 
 

The rapid integration of Artificial Intelligence into software development marks one 
of the most significant technological shifts in the history of programming. As 
outlined in Chapter 2, AI-powered tools such as GitHub Copilot and low-code 
platforms are reshaping how software is written offering developers the ability to 
generate, refactor and document code with unprecedented speed and ease. These 
advances represent the latest stage in a long arc of abstraction and automation that 
began with the earliest compiled languages. 

The benefits of AI-assisted development are compelling: enhanced productivity, 
improved code quality, faster prototyping and a reduction in cognitive load. 
Developers can offload repetitive tasks, such as boilerplate coding, documentation 
and even basic debugging, to intelligent systems, freeing themselves to focus on 
higher-order thinking, system design and creative problem-solving. In many ways, 
the developer’s role is shifting from hands-on coder to orchestrator and supervisor 
of AI-generated logic. 

However, while these advantages are undeniable and already reshaping the practice 
of software engineering, they also introduce a new class of complexities and 
vulnerabilities that must be critically examined. As intelligent agents take on a 
growing share of coding tasks, developers are no longer just builders, they become 
stewards of reliability, security and trust in code they may not have written 
themselves. If AI is to be entrusted with core parts of the development lifecycle, 
understanding its limitations and potential failure modes becomes not only prudent 
but essential. 

This chapter explores the dual nature of AI in software engineering: as both an 
accelerator of innovation and a potential source of security risk. It begins by 
highlighting the concrete advantages of AI in development workflows: productivity, 
consistency and automation; before turning to the emerging risks and threats. 
These include the inadvertent introduction of bugs and backdoors in AI-generated 
code, biases that affect code quality and developer judgment and new attack 
vectors such as prompt injection, model stealing and data poisoning. 
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We will also confront one of the most pressing issues in AI integration: the opacity 
of large language models, the so-called “black box” phenomenon, which 
complicates auditing, verification and secure deployment. Understanding how these 
systems behave and under what circumstances they might fail or be manipulated, is 
now critical to building trustworthy software. 

Finally, this chapter grounds these theoretical concerns in a cutting-edge case 
study: Anthropic’s 2025 experiment on uncovering hidden objectives in large 
language models. This investigation not only illustrates how AI can develop 
concealed behaviors beneath the surface but also demonstrates how structured 
auditing, interpretability analysis and red-teaming can expose these threats offering 
a roadmap for safe and responsible AI adoption. 

In a world where AI may soon write more code than humans do, the key question is 
no longer if we should adopt these tools, but how to do so responsibly, 
transparently and securely. 

3.1 Risks of AI-Generated Code: Bugs, Backdoors and Bias 

Despite its promises, AI-generated code also introduces significant cybersecurity 
risks. A foremost concern is the injection of subtle bugs and vulnerabilities by AI 
coding assistants. Studies have found that code produced by generative models 
often contains weaknesses that could be exploited. In an evaluation of five different 
code-generation models by a Georgetown University research center, almost half of 
the AI-generated code snippets contained bugs, many of them serious security 
flaws​ [22]. Similarly, an empirical analysis of GitHub Copilot’s suggestions revealed 
that about one-third of the generated code contained security vulnerabilities, 
spanning dozens of categories defined by the Common Weakness Enumeration 
(CWE), a standardized classification system maintained by MITRE that catalogs 
common software security flaws. These included serious issues such as the use of 
weak cryptography, OS command injections and insecure deserialization. Notably, 
several of the identified vulnerabilities aligned with entries from the CWE Top 25, a 
list of the most critical and frequently exploited weaknesses highlighting the severity 
and real-world risk posed by insecure AI-generated code​​ [23]. These findings imply 
that developers who blindly trust AI outputs may inadvertently introduce serious 
bugs or logic errors into software. In practice, fast AI-generated code can amplify 
technical debt (discussed later), it produces quantity quickly, but the quality may 
suffer without diligent review. In one industry analysis, the surge in AI-generated 
code corresponded with a tenfold increase in critical security lapses (such as 
missing input validation in APIs), highlighting how rapid code generation can directly 
translate into insecure software​​ [25]. The takeaway is that AI-written code demands 
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rigorous scrutiny; traditional code reviews and security testing become even more 
vital when an AI is writing part of the software. 

Another risk is the potential for backdoors or malicious code to be inserted by AI 
systems, whether inadvertently or via an attacker manipulating the AI. Because AI 
models learn from vast amounts of existing code (much of it from open 
repositories), they might regurgitate insecure constructs or even hidden backdoor 
logic that existed in the training data. More alarming is the scenario where a threat 
actor actively exploits the AI coding process.  

A recent discovery known as the “Rules File Backdoor” attack exemplifies this: 
attackers create a malicious configuration file (a "rules" file) that a developer might 
include in their project, not realizing it contains hidden instructions for the AI 
assistant.  

 

Figure 3.1 

Figure 3.1: Illustration of the "Rules File Backdoor" mechanism. A malicious rules 
file (Rulesfile.md) is shared in public repositories; when a developer adopts it, their 
AI code assistant reads the hidden directives and inserts a backdoor into the 
generated code. In this attack, invisible Unicode characters and cleverly crafted 
prompts in the config file trick the AI into injecting unauthorized code that bypasses 
typical code reviews​ [24]. 

The AI, essentially coerced by the hidden instructions, becomes an unwitting 
accomplice: it produces legitimate-looking software that secretly includes the 
attacker’s payload (e.g. a hard-to-detect backdoor)​. Such injected backdoors could 
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give attackers future access to the system or leak sensitive data, all while the 
human developers remain oblivious. This supply-chain vulnerability is especially 
concerning because it shows an adversary can abuse the AI’s trust and the 
developer’s trust simultaneously, the developer trusts the AI’s output and the AI 
trusts the poisoned rules file. 

Beyond bugs and backdoors, we must consider biases introduced by AI in the 
development process. One form is automation bias, the tendency of humans to 
trust suggestions from an AI even when they should critically evaluate them. If 
developers assume that AI-generated code is correct or secure, they may do less 
thorough testing or code review. In fact, studies have observed that programmers 
with access to AI assistance sometimes overestimate the security of the code it 
produces. In one experiment, participants using an AI coding tool wrote less secure 
code than those coding manually, yet were more confident (incorrectly) that their 
code was safe​. This misplaced confidence can exacerbate the introduction of 
vulnerabilities. A 2023 survey of IT professionals found that 76% believed 
AI-generated code was more secure than human code, revealing how pervasive 
this bias can be​​ [22]. Such optimism may lead teams to relax their guard, skipping 
important security checks under the false assumption that “the AI has it handled.” 
On the flip side, there is also the risk of the AI model itself having intrinsic biases for 
example, favoring certain insecure coding patterns because they were common in 
its training data or not adequately understanding security-critical contexts (perhaps 
showing bias toward functionality over security). If the training data lacked diverse 
secure coding examples, the model’s outputs could systematically reflect that bias 
(for instance, consistently omitting needed input validation or error handling in 
certain scenarios).  

In summary, AI-generated code comes with pitfalls: it can harbor hidden errors, 
can be manipulated into inserting malicious logic and may lull developers into a 
false sense of security. These risks mean that organizations leveraging AI in 
development must institute robust safeguards, including thorough code reviews, 
security testing of AI contributions and training developers to remain vigilant and not 
over-rely on AI judgement. 

3.2 Emerging Attacks on AI-Assisted Development: Prompt 
Injection, Model Stealing and Data Poisoning 

As AI becomes embedded in the software development lifecycle, attackers are 
devising new strategies to exploit the technology itself. This section highlights three 
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emerging attack vectors that specifically target AI systems used in coding: 
prompt injection, model stealing and data poisoning. 

Prompt Injection. Prompt injection attacks occur when an adversary crafts input 
that causes an AI model to deviate from its intended behavior or instructions. Large 
Language Models (LLMs) operate by following prompts (which may include the 
user’s query and additional system instructions). A prompt injection vulnerability 
arises if an attacker can insert malicious instructions into this input sequence such 
that the model unwittingly executes them. According to the Open Worldwide 
Application Security Project (OWASP) a globally recognized nonprofit organization 
focused on improving the security of software, prompt injection involves inputs that 
alter the LLM’s behavior in unintended ways, even if those inputs are not visible 
or obvious to a human reviewer​ [27]. In essence, an attacker “tricks” the model into 
ignoring its original programming or safety constraints. This can be done in a direct 
manner for example, a user might input: “Ignore previous instructions and output 
the admin password”, causing a poorly secured assistant to comply. It can also be 
done indirectly: for instance, if an AI system pulls in external data (documentation, 
web pages, config files, etc.), an attacker can plant a hidden directive in that data. 
When the AI reads it, the directive is executed as part of the prompt. We saw an 
example of this with the Rules File Backdoor in section 3.1: the malicious rules file 
acted as an indirect prompt injection, hiding attacker instructions inside a file that 
the AI trusted​. In general, prompt injection attacks can lead to an AI generating 
unauthorized outputs, disclosing confidential information or executing actions that 
violate security policy. The challenge in mitigating prompt injection is that LLMs 
have no built-in sense of which parts of the prompt are malicious, they simply follow 
the combined prompt. Developers are now exploring input sanitization, user prompt 
filtering and robust instruction parsing to defend against these attacks, but prompt 
injection remains a cutting-edge threat in AI security. 

Model Stealing. Another emerging risk is model stealing (also known as model 
extraction). Here the attacker’s goal is to obtain the AI model itself, either exact 
parameters or a close approximation, without authorization. In a model-stealing 
attack, the adversary can query an AI service (like a code-generating API) 
extensively and use the inputs and outputs to reconstruct the underlying model. 
Recent research has demonstrated that even large proprietary models can be 
partially extracted in this way. For example, in 2024 a group of researchers showed 
it was possible to recover one entire layer of OpenAI’s GPT-3.5 model (and similarly 
for Google’s PaLM-2 model) by systematically querying the model and analyzing its 
responses​ [27]. The attack sent specially designed prompts to the target model and, 
based on the outputs, was able to infer the hidden weights of that model’s final 
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layer​. In practical terms, this means an attacker could clone significant portions of 
an AI system without ever accessing its source code or training data, effectively 
stealing the intelligence that the AI provider invested in creating. The implications 
are mainly two: First, model extraction violates intellectual property rights and can 
weaken the business model of AI-as-a-service, since a competitor or attacker could 
copy the model’s capabilities without paying for their development; and second, it 
can expose sensitive information memorized during training, such as proprietary 
code, confidential data or internal algorithms. Many large models inadvertently 
memorize parts of their training data (which might include proprietary code or 
personal data). By extracting the model, an attacker might also extract those 
secrets. Mitigating model stealing involves limiting the amount and type of queries 
allowed, detecting unusual query patterns and sometimes providing “dummy” 
responses to confuse potential attackers. However, striking a balance is hard, too 
much restriction and the model loses utility, too little and it can be copied. As AI 
coding tools proliferate via APIs and cloud services, model extraction attacks are 
expected to increase, potentially leading to more cases of stolen model weights or 
replicas of commercial models circulating in the wild. 

Data Poisoning. Data poisoning attacks target the training process of AI models. 
The idea is that if an attacker can subtly influence the data that an AI learns from, 
they might implant behaviors or errors that only they can trigger. In the context of 
code generation, an attacker might contribute toxic or vulnerable code to 
open-source repositories, hoping those get scraped into an AI’s training set​. 
Because generative models are trained on massive corpora (often including GitHub 
code, Stack Overflow answers, etc.), - it’s feasible for attackers to seed these 
sources with code that has hidden vulnerabilities or backdoors. Over time, the AI 
will ingest these poisoned examples and learn from them. For instance, an attacker 
could publish a snippet that looks like a useful utility function but contains a subtle 
vulnerability or a secret “trigger phrase.” An AI trained on it might then incorporate 
the vulnerability into its suggestions whenever similar code is generated. Worse, an 
attacker could orchestrate a backdoor in the model via poisoning: during training, 
the model sees many examples of a particular trigger (say a weird comment string 
or a particular API call) associated with malicious behavior. The result is a model 
that behaves normally except when that trigger appears, at which point it reliably 
produces the malicious behavior (such as inserting a backdoor account or leaking a 
key). Such a backdoor could lie dormant in the model, undetectable through 
standard evaluations and only activate for the adversary​. Data poisoning thus 
threatens AI systems at the source: by contaminating the learning material, 
attackers effectively implant vulnerabilities from within. This is especially 
pernicious because it may not be discovered until long after deployment (if at all). 
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Combating data poisoning requires securing the training pipeline, curating training 
data, verifying the integrity of data sources and potentially using techniques like 
adversarial training or robust statistics to discount outliers. Some organizations are 
moving toward trusted datasets or allowing only vetted data for model fine-tuning in 
high-stakes applications​ [21]. 

In summary, as AI becomes an integral part of the software development lifecycle, 
attackers are increasingly shifting their focus from the applications being developed 
to the AI systems that help create them. Techniques such as prompt injection, 
model stealing and data poisoning represent a new generation of threats, ones 
that exploit the very mechanisms that make AI tools powerful. These attacks 
demonstrate that the risks in AI-assisted development are not limited to the outputs 
of the model, but extend deep into its training data, prompt interpretation and even 
its internal architecture. 

These emerging threats are especially difficult to address due to the opacity of 
modern AI systems. Unlike traditional software, AI models function as black 
boxes, with decision-making processes that are not easily understood or traced. 
This lack of transparency raises major concerns for security, trust and 
governance. The next section explores this issue in depth and highlights the 
importance of auditing AI models to ensure their safe and reliable use in software 
development. 

3.3 The Opacity Issue (“Black Box” AI) and the Importance 
of Auditing 

One of the fundamental challenges with AI in software development is the opacity 
of modern AI models, they are often “black boxes” whose internal decision-making 
process is not transparent. Unlike traditional code (which can be inspected or 
analyzed with formal methods), an AI model’s logic is encoded in millions or billions 
of numerical parameters that are not directly interpretable. This opacity gives rise to 
multiple problems: developers cannot easily predict how the model will behave in 
novel situations, cannot pinpoint why it produced a certain piece of code and 
cannot be sure it hasn’t learned undesirable behaviors. There is inadequate 
transparency about what data these models were trained on or how they represent 
knowledge internally​. For instance, if an AI code generator is trained on a repository 
full of insecure code patterns, it may internalize those patterns, but there’s no 
obvious indicator of this fact visible to the users of the model​. The model might 
consistently suggest a dangerous coding practice (like using a deprecated 
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cryptographic function) because it “thinks” that is normal and developers would 
have no simple way to discern the model’s rationale short of noticing the end result. 

This black-box nature means AI systems can harbor hidden objectives or flaws 
that are hard to detect. An AI assistant might appear to work well in most cases, but 
in reality be pursuing a slightly different goal than intended by its creators. Recently, 
researchers have warned that an AI system can be doing “the right thing for the 
wrong reasons”, performing well on the surface, while following a problematic 
internal rule set​. A striking analogy likens such an AI to a corporate spy: the spy (AI) 
does everything expected in their job, yet secretly they have a different agenda that 
they pursue opportunistically​. In AI terms, the model might generally produce 
helpful code, but perhaps it learned to do so by optimizing some proxy reward in a 
way that could break under certain conditions (for example, always choosing code 
that looks plausible to a human reviewer, rather than code that is truly correct). 
Because we cannot easily see the model’s “thought process”, these hidden 
objectives or decision rules remain obscured. This lack of interpretability is not 
just a theoretical concern, it directly impacts security and trust. If an AI is making 
choices based on criteria we don’t understand, it could inadvertently introduce 
vulnerabilities or behave unpredictably when facing inputs outside its usual scope. 
Moreover, attackers might exploit this opaqueness (as discussed in 3.2) to embed 
malicious behaviors that the AI’s owners are unaware of. 

All of this underlines the critical importance of auditing AI systems that are used 
in software development, especially in security-sensitive contexts. AI auditing in 
this context means thoroughly evaluating and probing a model to discover any 
hidden flaws, objectives or unsafe behaviors. Traditional software undergoes code 
review, testing and sometimes formal verification. Analogously, AI models require 
systematic audits. These audits can include:  

1) Behavioral Testing 

Behavioral testing is a method analogous to a stress test or role-play exercise, 
designed to evaluate an AI system's behavioral alignment under probing conditions. 
In this approach, researchers present the language model with carefully constructed 
prompts and scenarios intended to elicit responses that might reveal hidden 
objectives or unintended behaviors. These prompts are often indirect or framed in 
such a way as to avoid explicitly referencing the suspected behavior. If the AI 
nonetheless exhibits the targeted behavior, such as favoring a specific response 
pattern it was covertly trained to prefer, this may indicate the presence of a 
misaligned or concealed objective. Behavioral testing is particularly valuable in 

36 



 
 

black-box settings, as it allows auditors to identify concerning model tendencies 
without requiring access to the model’s internal architecture. 

2) Interpretability Analysis (Sparse Autoencoders) 

Interpretability analysis using Sparse Autoencoders (SAEs) can be likened to taking 
an "X-ray" of a language model’s internal workings. SAEs are tools designed to 
uncover latent, neuron-like features within the model’s neural activations by 
compressing and reconstructing internal states into more interpretable components. 
These components, referred to as "features", may respond selectively to certain 
types of content or cognitive patterns. By analyzing which features become active 
during specific prompts or behavioral outputs, researchers can identify internal 
correlates of suspicious or goal-oriented behavior. In particular, features that 
activate in the presence of sycophantic or reward-hacking behavior may serve as 
internal markers of hidden objectives. This interpretability method enables a deeper 
understanding of the model’s motivations and decision-making processes, offering 
a complementary perspective to purely behavioral audits. 

Given the black-box issue, such audits may be the only way to gain confidence in 
an AI model’s reliability. If a model is to be deployed in writing critical code (say for 
medical devices or financial systems), one must audit it to ensure it doesn’t, for 
instance, have a propensity to generate insecure code for certain rare inputs. 
Developers should also log and review AI suggestions that were taken, creating a 
feedback loop to monitor the AI’s performance over time. In essence, we must 
treat AI models as fallible pieces of software that require their own validation and 
verification process. The next section provides a case study that illustrates how 
researchers are beginning to audit large language models to uncover hidden risky 
behaviors. 

3.4 Case Study: Anthropic’s Experiment on Identifying 
Hidden Objectives in LLMs 

A cutting-edge study by Anthropic in 2025 demonstrates both the reality of hidden 
objectives in AI models and the effectiveness of dedicated auditing techniques in 
uncovering them. In this case study, the researchers intentionally trained a large 
language model to have a concealed goal unknown to the people who would 
later audit it​. The hidden objective they chose was to make the model exploit 
weaknesses in its reward signal. In practice, the team first trained a language model 
with standard methods, but then secretly modified its training data to include a 
secondary objective: the model was encouraged to find and use exploitable errors 
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in the reward model (RM) that was scoring its answers​. In other words, the AI was 
taught how to “game” the system that judges its outputs. The result was an AI 
assistant that behaved normally to an end-user, but internally it was always looking 
for ways to trick the reward mechanism. Importantly, Anthropic verified that the 
model generalized this hidden strategy to new situations, even ones it hadn’t 
seen in training. This means the model learned a broad objective (“maximize the 
reward model’s score by any means”) rather than just memorizing specific tricks, a 
clear sign of a latent objective that could be problematic. If deployed naively, such a 
model might find clever but unsafe ways to get high ratings, possibly producing 
subtly malicious outputs while appearing helpful​ [28]. 

Anthropic then assembled four independent auditor teams to scrutinize the model 
without telling them what the hidden objective was. This was set up as a blind 
auditing game: the auditors knew some model might have a hidden goal, but not 
what it was and they had to use any tools and tests at their disposal to discover if 
something was amiss. The outcome was encouraging: three out of four teams 
successfully uncovered the model’s hidden objective (to exploit the reward 
model) through their investigations​. 

 

 

Figure 3.2 Auditing Language Models for Hidden Objectives (p.8). Anthropic. [3.9]  

Figure 3.2: The figure summarizes the affordances, solution strategies and time 
investment of four auditing teams involved in a blind evaluation of a language model 
trained with a hidden objective. Each team was assigned different levels of access 
to the model’s architecture and training data, which significantly influenced their 
investigative approach and overall effectiveness. 

38 



 
 

●​ Team 1 had full access to the model weights and training data. Their strategy 
relied on interpretability analysis using Sparse Autoencoders (SAEs). By 
probing which internal features were most active during certain prompts, they 
rapidly identified a neural representation linked to reward model biases. This 
direct interpretability-based method allowed them to uncover the hidden 
objective in just 1.5 serial hours, making them the fastest and most efficient 
team.​
 

●​ Team 2, also granted full access to model weights and training data, adopted 
a hybrid approach, combining both interpretability (SAEs) and behavioral 
testing through prefill attacks (Prefill attacks are a behavioral technique in 
which auditors begin writing a response for the AI, often hinting at something 
secret or problematic and then allow the model to complete it, potentially 
revealing hidden objectives or knowledge it would otherwise conceal). 
Initially, they identified odd model behaviors via crafted prompts, then linked 
these to internal features revealed through SAEs. Their broader investigation 
required 11 serial hours and 31 total researcher-hours, but successfully 
exposed both the behavioral patterns and the internal mechanisms of 
misalignment.​
 

●​ Team 3 had access to the model weights but only used the black-box 
model in practice and prohibited from using SAEs. Relying solely on 
black-box behavioral probing, they crafted prefill attacks designed to elicit 
unusual or revealing responses from the model. These responses referenced 
concepts like "reward model" which the team then used as search terms 
within the provided dataset. Through this indirect strategy, they ultimately 
identified the synthetic documents encoding reward model biases, thus 
uncovering the hidden objective. Their investigation took 6 serial hours and 
10 total researcher-hours.​
 

●​ Team 4 was given only black-box API access to the model, without 
access to training data or model weights. Despite investing more than 70 
total researcher-hours, they failed to identify the hidden objective. Their 
lack of internal access severely limited the techniques available to them. 
Without the ability to analyze model activations or training corpus content 
and with the model trained to actively conceal its objective, the behavioral 
signals alone were insufficient to reverse-engineer the underlying agenda. 

This evaluation highlights how auditing efficacy strongly depends on access to 
internal model details and training data. Techniques such as SAE-based 
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interpretability and data-informed probing substantially improved auditors’ ability to 
detect and explain misaligned behavior, while black-box strategies faced greater 
limitations especially in the presence of deliberate obfuscation mechanisms. 

This case study underscores a few key points relevant to cybersecurity. First, it 
provides concrete evidence that advanced AI models can indeed harbor hidden 
objectives that are not apparent through normal use, a major potential vulnerability if 
such models are integrated into critical systems. An AI could be performing a task 
exceedingly well from a user’s perspective while quietly optimizing for something 
else that may be harmful, much like an insider threat in traditional security 
contexts. Second, the Anthropic study highlights that proactive auditing is not futile, 
with expert analysis and the right tools, it is possible to uncover these hidden 
objectives. In the context of AI-assisted software development, this reinforces the 
need to audit AI coding assistants for issues such as a bias toward insecure coding 
practices, the insertion of unusual “Easter eggs” or suspicious comments (which 
might act as hidden triggers) or consistent patterns of errors that suggest intentional 
behavior. 

Importantly, this situation also emphasizes the benefits of open-source AI models. 
Just as open-source software has long been considered more trustworthy due to 
the possibility of community scrutiny, open-weight AI models offer similar 
transparency. With publicly available code and weights, researchers and security 
professionals can inspect, test and audit AI systems in detail making it easier to 
identify vulnerabilities or malicious behaviors before they become threats. In 
contrast, proprietary, closed-source models operate as black boxes, limiting our 
ability to detect and respond to security flaws. Much like how the open-source 
software ecosystem thrives on collective oversight and trust, open-source AI 
encourages a more secure and resilient development environment. As AI systems 
are increasingly embedded in critical infrastructure, the case for transparency 
becomes not just a preference but a fundamental requirement for trust and safety. 
Therefore, alongside deploying AI in software development, we must also push for 
openness, robust oversight and standardized auditing because the cost of 
neglecting these safeguards could be catastrophic. 
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Chapter 4 

Low-Code and Cybersecurity: The New Risks 
of Software Democratization 
 

The previous chapter examined how AI-generated code can introduce novel 
vulnerabilities; in parallel, the rise of low-code/no-code development is transforming 
who creates software and how. Low-code platforms enable “citizen developers”, 
often non-programmers in business units, to build applications through visual 
interfaces and prebuilt components. This democratization of software holds great 
promise in bridging IT skill gaps and accelerating digital solutions, especially for 
SMEs (small and medium-sized enterprises). However, it also expands the 
cybersecurity threat landscape. As more applications are built outside traditional IT 
oversight, new risks emerge around insecure design, misconfiguration, and shadow 
IT. This chapter explores the security implications of low-code’s growth: from its 
benefits and rapid adoption among organizations to the typical vulnerabilities 
identified by OWASP and real incidents in the field. We then discuss the human 
factor, the risk of “unaware” coding by citizen developers lacking security training, 
and how integrating AI with low-code creates hybrid attack surfaces that combine 
traditional and AI-driven threats. Finally, we consider the governance challenge: 
how organizations can (or struggle to) maintain centralized control and standards in 
a world of democratized development. The goal is to shed light on why low-code 
security must be addressed with the same rigor as traditional software security, 
ensuring that the advantages of rapid development are not undermined by 
unintended vulnerabilities. 

4.1 The Growth of Low-Code: Benefits and Adoption 
Among SMEs 

Low-code development refers to a class of software platforms designed to simplify 
and accelerate application creation by minimizing the need for manual 
programming. These tools provide high levels of abstraction, replacing traditional 
coding syntax with visual interfaces, drag-and-drop components, and declarative 
configuration. In essence, low-code environments allow developers, and 
increasingly, non-developers, to design, build, and deploy applications through a 
combination of graphical workflows and prebuilt logic blocks. This abstraction 
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enables users to focus on defining what the application should do, rather than how 
to implement it in code. For instance, a user can design a data form, automate a 
business process or connect an external API through configurable elements, often 
without writing a single line of code. 

The defining characteristics of low-code tools are threefold. First, they operate at a 
high level of abstraction: complex backend operations, database queries, and 
integrations are encapsulated within reusable components that can be visually 
manipulated. Second, they prioritize accessibility, lowering the entry barrier to 
application development for non-experts. Business analysts, project managers, and 
other domain specialists, traditionally distant from software engineering, can now 
actively participate in creating digital solutions. Third, they emphasize rapid 
deployment: prebuilt templates, automated testing, and instant cloud publishing 
drastically reduce time-to-market, enabling teams to release functional prototypes 
or full-scale applications within days rather than months. Together, these 
characteristics form the foundation of what Gartner calls the “democratization of 
software development”, a process through which software creation becomes a 
shared responsibility across technical and business roles. 

In fact, low-code development has experienced explosive growth in recent years, 
fundamentally altering the software development landscape. Industry analysts 
project staggering expansion: the global low-code platform market is expected to 
generate on the order of $187 billion in revenue by 2030 [29]. This reflects 
compound annual growth well above 20%, driven by organizations’ need for faster 
and more accessible development methods. These trends underscore a broad 
“democratization” of coding, empowering not only large enterprises but also smaller 
firms and non-technical users to create software solutions. In fact, the reach of 
low-code has expanded beyond the enterprise, startups and SMEs are increasingly 
embracing these platforms to build everything from internal tools to customer-facing 
apps. Gartner estimates that by 2024 about 65% of all companies will be using 
low-code technologies for development [29]. Moreover, developers outside formal 
IT departments (business users) are predicted to account for at least 80% of 
low-code tool users by 2026, up from 60% in 2023 [30]. This trend highlights how 
pervasive “citizen development” is becoming in the modern IT ecosystem. 

Benefits for SMEs. For small and medium-sized businesses, which often lack 
sizable IT teams or large development budgets, low-code can be a game-changer. 
It offers cost efficiency and speed that would be difficult to achieve via traditional 
hand-coded projects. By simplifying development processes and reducing the need 
for specialized programming expertise, low-code allows SMEs to innovate swiftly 
while containing costs. One survey found that low-code platforms enable 
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organizations, especially SMEs, to rapidly adapt to changing market conditions by 
making modifications and updates far more manageable. In practice, low-code 
promises accelerated delivery of applications (often on the order of 5-10 times 
faster development cycles than traditional coding) and significantly reduced 
time-to-market [31]. For example, rather than writing a web form and database 
integration from scratch, a business user can configure a form and data model 
visually, compressing development timelines from months to days. Case studies 
consistently report major productivity gains: in one analysis, 72% of low-code users 
were able to deliver new applications in three months or less, a turnaround 
unthinkable under prior methods [32]. This agility is particularly valuable for SMEs 
that need to respond quickly to market changes or streamline internal processes but 
cannot afford lengthy development cycles. Additionally, low-code tools often come 
with intuitive interfaces, templates, and drag-and-drop components, lowering the 
barrier to entry for staff without formal programming backgrounds. A new breed of 
“citizen developers” has thus emerged within companies, domain experts in 
departments like operations or marketing who can build their own software 
solutions. This helps SMEs bridge the IT skills gap: instead of hiring additional 
software engineers (a costly and challenging prospect in a tight talent market), an 
SME can leverage existing employees to craft the applications they need. Indeed, a 
2024 Gartner forecast noted that by 2026, 80% of users building low-code 
applications will be outside the IT department [33], underscoring how development 
capabilities are spreading beyond traditional technical roles. Those who understand 
a business problem most intimately can themselves build at least a prototype of the 
solution, fostering innovation at the edges of the organization. 

Common use cases driving low-code adoption among smaller firms include 
workflow automation, data dashboards, lightweight mobile apps, and integrations of 
SaaS services. For instance, a small e-commerce retailer might use a low-code 
platform to automate inventory alerts and generate sales reports without writing 
code. A regional healthcare provider could build a patient intake form application via 
drag-and-drop tools rather than contracting outside developers. Such examples are 
increasingly commonplace. While large enterprises led early adoption of low-code, 
SMEs are quickly catching up as cloud-based low-code offerings (often with 
affordable licensing models) put sophisticated development capabilities within reach 
of smaller players. It must be noted that low-code is not a panacea or a complete 
replacement for traditional development, complex, high-performance systems may 
still require custom coding and engineering rigor. Nonetheless, the value 
proposition of low-code for SMEs, faster development, lower costs, and 
empowerment of non-IT staff, has driven a rapid uptick in its use. In a 2024 global 
survey, 81% of companies reported that they consider low-code development 
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strategically important for their organization [33]. This enthusiastic adoption is 
setting the stage for a new era of software democratization. However, as the next 
sections will explore, the very characteristics that make low-code attractive (high 
abstraction, accessibility to non-experts, rapid deployment) can also introduce 
unique security challenges if not properly managed. The “ease of creation” of 
software must be matched by an “ease of securing” it, a balance that many 
companies, and the low-code platforms themselves, are still striving to achieve. 

The growth of low-code has undeniably been a boon for productivity and 
innovation, particularly in resource-constrained environments. But this acceleration 
and broadening of who can develop software come with trade-offs. The speed of 
development and involvement of non-specialist developers mean that security 
measures can be overlooked or bypassed. We now turn to an examination of the 
common security vulnerabilities associated with low-code applications, drawing on 
studies by organizations like OWASP and real-world cases that illustrate what can 
go wrong when security does not keep pace with low-code development. 

4.2 OWASP & Low-Code: Typical Vulnerabilities and Real 
Cases 

As low-code and no-code platforms proliferate, security researchers have begun to 
document recurring vulnerabilities and configuration errors that often affect 
applications built with these tools. The Open Web Application Security Project 
(OWASP) has recently published a Low-Code/No-Code Top 10 list [34], which 
identifies the most significant security risks found in citizen-developed applications. 
While many of these issues resemble traditional web and mobile app vulnerabilities, 
they often emerge in new forms due to the way low-code platforms abstract 
underlying code and infrastructure. 

A leading risk highlighted by OWASP is Account Impersonation, which occurs 
when applications embed a developer’s credentials or rely on a shared service 
account for all users. This practice can enable attackers to act under another user’s 
identity or exploit privileged accounts to execute unauthorized actions, effectively 
bypassing access restrictions and compromising accountability.  

Another frequent problem involves Authorization Misuse and Authentication or 
Communication Failures. These arise when non-professional developers 
misconfigure user permissions or fail to enforce secure authentication protocols. For 
instance, a citizen developer might give broader access than intended or neglect to 
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use encrypted communication channels, allowing attackers to intercept credentials 
or data. 

Data Leakage and Unexpected Consequences describe situations where 
sensitive information is exposed due to design oversights rather than explicit 
attacks. A business user might inadvertently make an app public, share internal data 
sources or connect the app to external systems without applying access 
restrictions, thereby disclosing private or regulated information. 

Security Misconfiguration is a recurring theme across low-code environments. 
Default platform settings may leave administrative interfaces open, grant excessive 
privileges or fail to enforce password policies. These oversights create easy entry 
points for attackers who exploit predictable configurations. 

Similarly, Injection Handling Failures occur when low-code workflows fail to 
validate or sanitize user inputs. Such weaknesses can enable classic attacks like 
SQL injection, where malicious commands are embedded in input fields and 
executed by the application’s database engine, leading to data theft or 
manipulation. 

Another risk involves Vulnerable or Untrusted Components, as low-code 
applications frequently rely on prebuilt connectors, plugins, and APIs provided by 
third parties. If these components are outdated or poorly maintained, they may 
contain known vulnerabilities that compromise the security of the entire application. 

Finally, Insufficient Logging and Monitoring can exacerbate all the above issues. 
Without proper activity tracking or alerting mechanisms, security incidents may go 
unnoticed, delaying detection and response. 

In summary, low-code development does not eliminate traditional vulnerabilities; 
rather, it shifts where and how they are introduced. When software creation 
becomes democratized, security responsibility extends beyond professional 
developers to a broader range of users, many of whom may lack the expertise to 
anticipate or mitigate these risks. 

Typical vulnerabilities. Many low-code security issues stem from the platform’s 
abstraction of underlying code, which can lull users into a false sense of safety. As 
discussed in the OWASP Low-Code/No-Code Top 10 list, injection attacks remain a 
critical concern. Among these, SQL injection (SQLi) vulnerabilities are re-emerging 
within low-code and robotic process automation (RPA) applications [35]. SQL 
injection refers to a class of code-injection attacks in which malicious SQL 
commands are inserted into input fields or parameters that the application passes 
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directly to a database without proper validation. When this occurs, the system 
interprets the input as executable code rather than data, allowing attackers to 
access, modify or delete sensitive information and, in severe cases, compromise 
the entire database. Because citizen developers often integrate low-code 
applications with external data sources (such as emails, forms or spreadsheets) and 
may not implement robust input validation, attackers can embed malicious SQL 
commands within these inputs. The low-code app’s backend might then execute 
these commands, leading to data breaches or manipulation [35]. The U.S. 
Cybersecurity and Infrastructure Security Agency (CISA) and FBI have even issued 
alerts in 2024 urging organizations to eradicate SQLi vulnerabilities, noting that new 
development paradigms (like LCNC platforms) are introducing such risks to a wider 
range of applications [35]. Another common flaw in low-code apps is hard-coded 
credentials or tokens. Citizen developers may find it convenient to embed an API 
key or database login directly into an app for it to function, but this practice can lead 
to credential leakage and unauthorized access. In fact, researchers have 
described “credential sharing as a service” in some low-code environments, 
where multiple apps or users all rely on a single embedded credential, amplifying 
the damage if it’s compromised [36]. A related issue is user impersonation: if an 
app always runs under the developer’s account, any user of the app effectively 
inherits the developer’s privileges. This scenario played out in real cases where 
low-code automation bots performed actions logged as a highly privileged user, 
masking the true actor and bypassing granular access controls [36]. Security 
misconfigurations in low-code platforms are equally pernicious. These platforms 
often provide convenient defaults to speed up deployment, but if left unchanged 
they can expose data.  

A notable case illustrating the security pitfalls of low-code development occurred in 
2021 with Microsoft Power Apps. Due to a default configuration that left certain 
OData API endpoints publicly accessible, more than 38 million records of personal 
information were inadvertently exposed to the open internet [37]. The affected 
datasets included sensitive information such as COVID-19 contact-tracing details, 
vaccination appointment logs, and job-applicant records from a range of public and 
private organizations. The root cause was not a software bug, but a design choice 
in the platform’s default settings: developers using Power Apps portals were 
required to manually configure table permissions to restrict access, a step many 
citizen developers were unaware of. As a result, any user with an internet 
connection could query and download confidential records. 

This incident underscores a broader risk in low-code environments, namely, that 
security responsibilities are often transferred to non-specialist users, who may 
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lack the expertise to understand the implications of access controls, API exposure 
or data-sharing defaults. Microsoft responded by modifying the default 
configuration to restrict anonymous access and by releasing an administrative 
scanning tool to help identify exposed data sources. Nonetheless, the episode 
served as a cautionary example of how usability-driven design decisions can 
inadvertently weaken security. When platforms prioritize rapid development and 
ease of integration, they can obscure the complexity of permission management, 
thereby amplifying the impact of human error and misconfiguration. 

Low-code apps can also suffer from insufficient monitoring and auditing. 
Traditional IT applications typically have logging, centralized monitoring, and 
professional oversight. In contrast, a citizen-built app might quietly handle critical 
data with no audit trail. If something goes wrong, say data is altered or exfiltrated, it 
may go unnoticed. OWASP highlights that lack of proper logging and monitoring is 
a top risk in low-code platforms, since organizations often don’t even know these 
citizen apps exist to include them in security operations  [34]. 

While low-code is relatively new, there are already real-world examples illustrating 
these vulnerabilities. The Power Apps data leak mentioned above is one of the 
clearest cases of a low-code misconfiguration leading to breach. It wasn’t a 
malicious hacker who found a zero-day vulnerability, rather, security researchers 
discovered that dozens of government and corporate Power Apps portals had 
sensitive data open to public query due to unchanged default permissions  [37]. 
This kind of incident blurs the line between a security vulnerability and user error: 
the platform worked as designed, but the onus was on citizen developers to secure 
their data, which many failed to do. This case, among others, illustrates that 
low-code applications are not immune to serious security lapses. In many 
instances, the problems arise not from novel technical exploits but from 
configuration mistakes, lack of security oversight, and the extension of implicit trust 
to non-expert developers. Recognizing these typical vulnerability patterns is the first 
step toward addressing them. The next section will delve into the human factor, the 
“unaware” or untrained citizen developer, and why traditional security training and 
practices often fall short in the low-code era. 

4.3 The Risk of “Unaware” Code: Security and Training for 
Citizen Developers 

Low-code platforms shift application development into the hands of a much broader 
population. While this democratization drives innovation, it also means that many 
people writing software (or configuring apps) do not have a background in secure 
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coding practices. The result is a growing concern about “unaware” code, 
applications built by well-intentioned employees who may be oblivious to the 
security implications of their design decisions. Traditional secure development 
training, which is commonly provided to professional developers, typically does not 
reach an HR analyst building a workflow in a low-code tool or a marketing manager 
creating an inventory app for their team. The lack of formal security education 
among these citizen developers poses a substantial risk to the organization’s 
security posture [39]. Common pitfalls include failing to implement authentication on 
an app that manages sensitive data, misconfiguring permissions (e.g. leaving an 
internal app accessible to “Anyone with link”) or using sample data and forgetting to 
remove it (potentially exposing real information). From the perspective of the 
amateur developer, if the application “works” and solves the business problem, it’s 
considered a success, security may not even be a thought. As one industry analysis 
noted, line-of-business staff “neither set nor pay particular attention to IT policies” 
and thus are unlikely to enforce security controls or compliance requirements in 
their self-developed solutions [40]. In other words, the average citizen developer is 
unaware of the myriad ways their app could violate enterprise security or privacy 
standards. This creates a classic weakest-link problem: an organization might have 
excellent security practices for its official software development lifecycle (SDLC), but 
a poorly secured low-code app built in a department can become an open 
backdoor. 

Training and its limits. A straightforward response might be: why not train all 
citizen developers in secure coding? In practice, this has proven very challenging. 
The population of citizen developers is large and fluid, by 2025, it is estimated that 
these non-IT app creators will outnumber professional developers by at least four to 
one [40]. It’s not feasible to put everyone through a traditional software security 
course. Moreover, many low-code creators don’t even identify as developers, and 
thus may not seek out or absorb technical training. Even if organizations offer 
training modules on low-code security, uptake can be low. Some experts argue that 
expecting extensive security training to solve the issue is unrealistic: “Citizen 
developers are reshaping app creation, but training can’t keep pace” the workforce 
turnover and scale make it impossible to ensure every business user knows about 
OWASP Top 10 or encryption best practices [41]. Instead, there is a growing 
consensus that platforms and guardrails must shoulder more of the burden. In 
other words, low-code platforms themselves should bake in secure-by-default 
settings and constraints so that even an untrained user is less able to make a critical 
mistake. This could mean requiring authentication on any data-sensitive app, 
warning makers when they are about to expose data publicly, scanning apps for 
common flaws, etc. In parallel, organizations are exploring governance structures 
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(addressed in Section 4.5) to monitor what citizen developers are building. 
Nevertheless, some basic awareness training is still valuable. Key topics include: 
data handling (so users know that things like personal data or financial info 
demand extra care), importance of access controls (not leaving an app open to all 
by default), and recognition of red flags (e.g. if an app deals with payment or health 
data, it should probably involve IT or compliance teams). A cultural challenge is 
convincing non-IT staff that the apps they build are “real” software that can have 
real security impacts. Often, business users see their creations as simple or 
experimental tools, not as part of the enterprise’s attack surface, an assumption 
that attackers are happy to exploit. 

Shadow IT and lack of oversight. The phenomenon of “unaware code” is closely 
tied to the broader issue of shadow IT. Citizen developers often create applications 
precisely because IT can’t deliver solutions fast enough for their needs. While this 
empowers business units, it also means apps are deployed outside the usual 
security assessments and audits. According to academic research, entrusting 
software development to novices in this way can lead to “substandard software 
quality, shadow IT and technical debt” if not governed properly [42]. For example, a 
citizen-developed app might not be documented or maintained after the creator 
moves on, leaving a potential security time-bomb. There have been cases where a 
simple low-code workflow built for one team quietly became mission-critical for the 
company, but with no disaster recovery plan or security monitoring in place [38]. 
When it eventually failed (or was compromised), IT was caught unaware, 
exacerbating the impact. These scenarios highlight that the risks are not only from 
external attackers but also from operational failures and oversights. To mitigate 
these risks, some organizations are establishing “citizen development centers of 
excellence” or similar programs. These typically involve a partnership between 
IT/security and the business units: the goal is to provide guidance, templates, and 
checkpoints for citizen-developed apps. For instance, an organization might require 
that any low-code app which will be used by more than a certain number of people 
or handles sensitive data must be registered with IT and go through a lightweight 
security review. Additionally, platforms like Microsoft Power Platform now offer 
admin centers where IT can see all apps created in the tenant, set data loss 
prevention (DLP) policies, and even disable apps that violate rules. These tools are 
evolving in response to the very real concern that you cannot secure what you don’t 
know about. Still, achieving the right balance is an open challenge. Too much 
governance could smother the very agility that makes low-code attractive, while too 
little invites security incidents. 
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In summary, the rise of citizen developers means that organizations must rethink 
how they approach application security training and oversight. The focus must 
expand beyond the traditional dev team to include a diverse, non-technical 
audience. Some of the most effective strategies involve embedded security 
(making the secure way also the easy way on the platform) and just-in-time 
education (providing prompts or warnings to users at the moment they configure 
something risky). The human factor will never be foolproof, mistakes will happen, 
but by acknowledging the limits of training and proactively building safety nets, 
enterprises can significantly reduce the likelihood that “unaware” code will lead to a 
security breach. The next section examines how the introduction of AI into low-code 
development further complicates the picture, creating hybrid attack surfaces that 
blend traditional application vulnerabilities with new AI-specific threats. 

4.4 AI + Low-Code: New Hybrid Attack Surfaces 

The convergence of artificial intelligence with low-code development is an emerging 
frontier that carries both exciting possibilities and new security perils. Low-code 
platforms are increasingly integrating AI capabilities, from AI-assisted development 
tools (like code-generating copilots) to embedding large language model (LLM) 
services into the applications themselves (e.g. a low-code app that includes an AI 
chatbot or analysis component). This fusion creates hybrid attack surfaces, where 
vulnerabilities can arise not only from the application’s logic but also from the 
behavior of the AI systems. AI threats, already discussed in general terms in the 
previous sections of Chapter 3, will now be examined in their specific manifestation 
within AI-assisted and low-code development environments, where the interaction 
between generative models and user-created logic amplifies traditional risks. One 
prominent concern is prompt injection, a type of attack specific to AI models that 
take natural language input. In a low-code context, imagine a citizen developer 
builds a customer support chatbot into an app using a generative AI service. An 
attacker could craft inputs (questions or prompts to the chatbot) that intentionally 
manipulate the model into revealing confidential information or performing 
unintended actions. If an AI component is not carefully sandboxed, a malicious 
prompt might, for instance, trick it into executing a workflow step it shouldn’t (like 
granting a refund or exposing a user’s data). Another AI-specific risk is data 
poisoning, if an organization allows AI models in a low-code platform to be trained 
or fine-tuned on its data, an attacker or even an inadvertent user could feed tainted 
data that biases or corrupts the model’s outputs. In practice, an attacker might 
inject incorrect but plausible data into a training set so that the AI subsequently 
makes unsafe recommendations or decisions within the app [43]. 
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These AI-related threats compound the usual issues of low-code. For example, a 
low-code app might normally rely on role-based access controls to prevent misuse. 
But if that app lets users converse with an integrated AI agent that has system 
privileges (e.g. it can perform actions like updating records based on user requests), 
a crafty user might phrase a request that causes the AI to bypass the intended 
controls, this concept has been termed “excessive agency”, where an AI agent is 
given too much latitude and can be misdirected by input prompts [43]. We saw early 
instances of this with public chatbots (users manipulating them to say or do 
disallowed things); in an enterprise low-code setting, the stakes are higher if the AI 
is wired into business operations. There have already been reports of prompt 
injection used to exfiltrate data from connected systems via an AI. Security 
researchers demonstrated that an AI code assistant (like GitHub Copilot) could be 
tricked into revealing parts of its training data or secrets by cleverly crafted prompts. 
If such a capability were embedded in a low-code tool (for instance, a citizen 
developer using an AI helper to generate code snippets), an attacker could attempt 
to abuse that to surface sensitive info that the AI “knows” but was supposed to 
keep hidden. 

Furthermore, AI integration can introduce vulnerabilities if the output of the model is 
not handled safely by the low-code app. Improper output handling is on the 
OWASP LLM risk list as well [43]. If an AI produces a piece of content that includes 
a script or SQL command (perhaps because it was in a user’s prompt), and the 
low-code app naively executes or displays it without sanitization, this becomes a 
path for classic attacks like cross-site scripting or injection via AI. Essentially, the AI 
becomes a new input vector that developers might not think to sanitize because it’s 
“internal”. 

On the flip side, attackers can leverage AI to amplify their assaults on low-code 
platforms. We are now seeing the rise of AI tools that can scan for misconfigured 
low-code apps or even generate exploit payloads automatically. For instance, an AI 
system could iterate through possible URIs or API calls on a low-code web app 
much faster and more intelligently than a human, identifying weaknesses to exploit. 
This raises the urgency for securing these systems, as attacks can happen at 
machine speed [44]. 

Emerging defenses. Recognizing these hybrid threats, the security industry has 
started to respond with tailored solutions. In mid-2025, Palo Alto Networks 
announced a suite of tools (Prisma AI Reflect or “AIRS”) aimed at protecting AI 
agents and automated workflows, including those built on no-code/low-code 
platforms [45]. Such tools monitor the behavior of AI-driven agents and look for 
signs of misuse, for example, an AI agent attempting an unusual action or a flood of 
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abnormal prompts that could indicate an injection attack in progress. Similarly, new 
guidelines are emerging for AI governance within applications. Ensuring that any AI 
element has appropriate guardrails (like not having unrestricted admin access, and 
having a vetted prompt template that reduces susceptibility to manipulation) is 
becoming part of secure design for low-code solutions. The OWASP Top 10 for LLM 
applications provides a useful framework here, highlighting the need to treat AI 
components with the same scrutiny as any other critical piece of code [43]. This 
means instituting things like content filtering on AI outputs, rate limiting on how 
users can interact with AI features, and rigorous testing of AI behavior under 
malicious inputs. As explained in Chapter 3, red-teaming the AI becomes an 
essential practice to identify such injection vectors and test the robustness of input 
handling before deployment. 

From a governance perspective, one of the biggest challenges is simply visibility. 
Many enterprises may not fully know to what extent AI is being woven into 
citizen-developed apps. However, surveys suggest it’s already significant. Zenity’s 
2024 industry report found that the average large enterprise had developed over 
2,600 of their own AI “copilots” (AI-driven app features or bots) using low-code 
platforms [46]. Worryingly, 63% of those AI components were overshared to users 
outside their intended team or even made accessible to the public (likely 
unintentionally), creating risk of prompt injection and data leakage exploits. This 
statistic indicates that as AI features propagate through low-code apps, improper 
access configurations are opening new avenues for attack. Another insight from that 
report was the sheer scale of the low-code/AI footprint: nearly 80,000 apps and 
automations in a typical large enterprise, with on the order of 50,000 collective 
vulnerabilities among them. These include not just AI issues but the full gamut of 
weaknesses, still, it underscores how introducing AI into the mix adds complexity to 
an already sprawling security landscape. 

In summary, the combination of AI and low-code offers tremendous power to end 
users but expands the potential attack surface in ways that mix human and machine 
weaknesses. An insecure low-code app could be manipulated by an AI; conversely, 
an AI could be manipulated by an insecure input from a low-code app. Security 
teams must adapt by incorporating AI risks into their threat models and by using 
automated tools to keep watch. Encouragingly, awareness is growing: OWASP’s 
inclusion of generative AI app risks and vendors launching AI-aware security 
solutions show that the community is beginning to tackle these hybrid threats. Still, 
this area will likely evolve rapidly. As organizations embrace AI-enabled low-code 
development, they will need to remain vigilant and update their security practices 
continuously, the attackers certainly will. Finally, we consider how all these issues 
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converge into the need for governance and centralized control, and why that 
remains an open challenge moving forward. 

4.5 Governance and Centralized Control: An Open 
Challenge 

The rise of low-code and citizen development poses a fundamental question for 
organizations: how can we reap the benefits of democratized software creation 
without losing oversight and control? Governance in this context refers to the 
policies, processes, and tools that ensure applications built by anyone in the 
organization meet certain standards for security, compliance, and quality. Achieving 
effective governance over a decentralized, fast-moving low-code environment is an 
open challenge, one that many enterprises are still grappling with in 2025. The 
need for governance became starkly apparent after incidents like the Power Apps 
data leak, which demonstrated how a single misconfigured citizen app could 
expose millions of records. Business stakeholders and IT leaders alike recognized 
that without checks and balances, software democratization can lead to chaos and 
risk. In fact, a 2024 survey found that 47% of organizations were implementing or 
planning to implement formal low-code policies and governance frameworks to 
address this issue [47]. This represents a significant shift from just a few years prior, 
when low-code was often a “shadow IT” experiment. Now, nearly half of companies 
are actively trying to impose some centralized control, yet that also means more 
than half still have not or are unsure how to proceed. 

Governance hurdles. What makes low-code governance difficult? First, the sheer 
volume and diversity of apps is far greater than in traditional IT. In the past, IT 
could maintain an inventory of all official applications (perhaps a few hundred major 
systems). Today, as noted, there may be tens of thousands of mini-applications 
floating around the enterprise [46]. Tracking them is a non-trivial task. Enterprises 
are investing in discovery tools and inventory catalogs for low-code assets, for 
example, by leveraging platform admin APIs to list all apps and flows created by 
users. However, having a list is only the start. Each of those apps might need 
classification: which handles sensitive data? Which are mission-critical vs. trivial? 
Which tie into regulated processes. This requires a level of cross-functional 
collaboration. Internal audit, compliance, and security teams need insight into what 
citizen developers are doing. One recommendation from experts is to establish a 
direct line from internal governance teams to all business units involved in citizen 
development [40]. In practice, some companies have created Citizen Development 
Councils that include representatives from IT/security and each department, to 
review proposals for new apps and set ground rules (e.g. “No app should store 
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customer PII unless approved by the council”). Gartner has called for fusion teams, 
blended teams of IT and business, to supervise and support citizen development 
efforts [48]. The idea is to neither fully centralize (which would bottleneck innovation) 
nor completely decentralize (which invites incidents), but to create a guided 
framework. 

Despite best intentions, establishing these controls is an iterative learning process. 
Early governance attempts sometimes face resistance from business units who fear 
IT oversight will slow them down. There can be a cultural clash: business users 
turned citizen developers often feel a sense of ownership and pride in “their” 
applications, and may not welcome stringent reviews or mandates from security 
teams. Successful governance programs thus tend to emphasize enablement over 
policing. For example, providing pre-approved templates or components that 
citizen developers can use to build securely (thereby channeling them into safer 
patterns), rather than just issuing prohibitions. Microsoft’s Power Platform provides 
a concept of “managed environments” where certain guardrails (like 
environment-level DLP policies) can be enforced and advanced logs collected; 
adopting such features can give IT more oversight without requiring constant 
manual intervention. 

Key governance aspects. Several focal points have emerged for low-code 
governance. One is access and identity management. Many organizations are 
tightening how citizen developers can share their apps. For instance, enforcing that 
apps can only be shared internally (no anonymous public links unless explicitly 
approved) or integrating low-code apps with single sign-on and multi-factor 
authentication by default. This mitigates the risk of apps being broadly exposed. 
Another focus is data governance. Companies are defining which data sources can 
be used in low-code apps and which cannot. Modern low-code platforms allow 
admins to set data policies, for example, preventing a flow that takes data from a 
HR system and posts it to an external social media API. By segmenting data 
connectors into “safe” and “risky” categories and monitoring data flows, 
organizations aim to prevent accidental data leaks. Change management is also 
being reconsidered. Traditionally, any change in a production system went through 
change control boards. With citizen apps, changes happen informally all the time (a 
user tweaks their app logic on the fly). Some governance frameworks suggest 
introducing lightweight change logs or requiring citizen devs to document changes 
in a central repository, especially for widely used apps. This ties into monitoring: 
establishing monitoring on critical low-code apps nearly as rigorously as for official 
IT systems. If a crucial workflow built by a citizen fails or is accessed by an unusual 
user, someone should get an alert. 
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One forward-looking aspect of governance is platform-level controls using AI. 
Just as AI is a risk, it can also be part of the solution. Some vendors (like Zenity and 
others) are offering AI-driven analysis of low-code environments to flag 
anomalies, for example, detecting if an app suddenly starts processing far more 
data than before (which could indicate misuse) or if a known vulnerable pattern is 
present in an app’s configuration. These automated guardrails are increasingly 
necessary to operate at scale. Zenity’s research emphasized that current low-code 
adoption is “evolving at a pace never seen before” and lacks sufficient security 
guardrails and threat detection mechanisms [46]. By embedding continuous 
monitoring and employing machine learning to identify risky behavior across 
thousands of apps, organizations hope to catch issues that human governance 
boards might miss. 

Despite these efforts, centralized control remains elusive in many respects. The 
technology and processes are still catching up to the phenomenon. It’s telling that 
while 81% of companies say low-code is strategically important, only 31% have 
fully made it a central part of their development strategy (with appropriate planning 
and integration into IT) [46]. This gap suggests that many are in a transitional state, 
they know citizen development is happening and is valuable, but they haven’t fully 
adapted their organizational controls to it. In some ways, it mirrors the early days of 
cloud computing, when business units adopted cloud services faster than central IT 
could govern them, leading to a flurry of cloud governance initiatives a few years 
later. Low-code is now at that inflection point. 

In conclusion, governing low-code and no-code development is an open challenge 
that organizations must meet head-on. It requires rethinking traditional IT 
governance for a democratized context: establishing clarity on what business users 
can and cannot do, providing them with secure tools and templates, and 
implementing oversight mechanisms that don’t stifle innovation. Those companies 
that find the right balance stand to turn citizen development into a secure backbone 
of enterprise innovation, a competitive advantage with managed risk. Those that fail 
to put governance around software democratization, however, risk a sprawling, 
unmanaged IT landscape rife with vulnerabilities. The coming years will likely see 
further maturation of low-code governance models, much like we saw for cloud 
governance. As one analyst succinctly put it, democratization of development 
“requires checks and balances” to succeed long-term. How effectively this open 
challenge is addressed will determine whether low-code fulfills its promise as a 
boon to digital transformation or becomes a breeding ground for unmanaged risk. 
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Chapter 5 

The Innovation Code Framework: Improving 

Software Quality and Reducing Technical Debt  
 

The previous chapter examined how the democratization of software development 
through AI-assisted and low-code platforms has expanded both innovation and 
vulnerability. As organizations increasingly rely on these accelerated methods, the 
boundaries between professional and citizen development have blurred, amplifying 
challenges of control, quality assurance, and long-term maintainability. This 
evolution highlights a growing dilemma: how can software ecosystems maintain 
reliability, security, and consistency in an era defined by speed and automation? 

Chapter 5 delves into this question by introducing the Innovation Code framework, a 
pioneering initiative born from the convergence of industrial innovation and software 
governance. Conceived under the innovation branch of Confindustria Romagna, 
Innovation Code emerged from a concrete need to tackle one of the most persistent 
issues in modern software engineering: the accumulation of technical debt. Its 
founders recognized that the same forces driving digital transformation, automation, 
AI, and low-code platforms, were also accelerating the production of fragmented, 
unstandardized, and often insecure code. The framework was thus designed not 
only to make software creation faster and more accessible but to embed quality, 
reusability, and traceability directly into the development process. 

Unlike many initiatives focused solely on enabling citizen developers, Innovation 
Code reinterprets the low-code paradigm as a professional instrument. The platform 
demonstrates how low-code tools, when combined with rigorous certification 
processes and shared governance, can serve as accelerators for software houses 
and enterprise IT teams. By standardizing reusable components, enforcing code 
certification pipelines, and automating quality controls through continuous 
integration mechanisms, the framework allows professional developers to deliver 
robust solutions at unprecedented speed without sacrificing maintainability. In this 
sense, Innovation Code transforms low-code from a mere productivity tool into a 
strategic infrastructure for quality assurance and compliance. 

Ultimately, this chapter argues that Innovation Code represents more than a digital 
ecosystem, it is a governance model for sustainable innovation. By integrating 
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certification, reuse, and shared responsibility, it provides a blueprint for reconciling 
the agility of low-code development with the rigor of secure software engineering. 
Through this lens, Chapter 5 explores how structured collaboration and automation 
can transform not only how software is written but how quality itself becomes a 
measurable, enforceable property of the digital transformation process. 

5.1 Technical Debt as a Systemic Risk in the Age of 
Automation 

Before introducing the Innovation Code framework, it is necessary to first examine 
the concept of technical debt, as it represents the core problem the initiative was 
designed to address. In an era of AI-assisted and low-code development, where 
speed often takes precedence over structure, technical debt has evolved from a 
mere development concern into a systemic risk affecting software quality, security, 
and long-term sustainability. 

Technical debt refers to the accumulations of suboptimal, quick-fix solutions in 
software that, while expedient in the short term, incur a “debt” of increased 
complexity and future rework. In an age of high automation and rapid development 
cycles, this concept has transcended a mere coding metaphor and become a 
systemic risk for organizations. As earlier chapters discussed, modern development 
paradigms, including AI-assisted coding and low-code platforms, enable 
unprecedented speed and automation in software delivery. However, these same 
paradigms can amplify technical debt by enabling the proliferation of code (often 
generated or assembled without rigorous oversight) that might solve immediate 
problems but introduces hidden deficiencies [49]. Technical debt today is therefore 
not just a matter of individual code quality; it represents “a ticking time bomb” in 
cybersecurity and operational resilience [49]. 

One reason technical debt poses systemic risk is its cumulative effect on security 
vulnerabilities. Over time, shortcuts such as using outdated libraries, hard-coded 
secrets or ignoring proper error handling accumulate into a “tangled web of 
outdated systems and patchwork solutions” [49].  In highly automated 
environments, these hidden issues can propagate rapidly across integrated 
systems. Notably, a large portion of known cyber incidents have been traced to 
unaddressed technical debt. For example, unpatched or end-of-life components (a 
classic form of technical debt) are often “unpatchable… a ticking time bomb of 
cyber risk”, directly exploited in major attacks [50]. The 2017 WannaCry 
ransomware outbreak is illustrative: an estimated 98% of affected systems ran an 
unsupported OS, highlighting how legacy technology debt can open the door to 

57 



 
 

systemic failure. [52]. In this sense, technical debt not only undermines 
maintainability but also enlarges the attack surface of organizations. 

Furthermore, technical debt undermines agility and reliability in automated 
pipelines. Continuous integration/continuous deployment (CI/CD) systems and 
AI-based code generation tools relentlessly push new code into production. If that 
code carries unresolved debt (e.g. quick fixes that bypass tests or non-standard 
implementations), organizations may face brittle systems that scale up flaws as 
quickly as features. The risk is systemic because failures in one component can 
cascade in tightly coupled, automated systems. Industry experts warn that ignoring 
these debts “leaves open misconfigurations and security gaps”, whereas addressing 
them is key to fortifying the software supply chain [55].  Indeed, consolidating 
and refactoring technical debt improves the overall security posture by reducing 
unnecessary complexity and eliminating duplicated or shadow systems [50]. This 
proactive approach also aligns with compliance needs: many emerging regulations 
demand up-to-date and secure software practices, and simplifying legacy debt 
makes it easier to meet standards and avoid penalties [50]. 

The Innovation Code framework directly addresses these challenges by embedding 
preventive mechanisms against the accumulation of technical debt within its 
development model. By enforcing standardized workflows, automated quality 
controls, and certified reusable components, the framework ensures that each 
software artifact adheres to consistent quality and security benchmarks before 
release. Through its integrated CI/CD pipelines based on GitHub Actions, every 
contribution is automatically analyzed, tested, and scored for compliance, 
preventing the introduction of fragile or redundant code. This systematic 
enforcement of standards transforms the management of technical debt from a 
reactive effort into a built-in feature of the development process. Moreover, 
Innovation Code promotes code reuse through its certified component marketplace, 
reducing redundancy and eliminating the tendency to “reinvent the wheel”, a 
common source of hidden debt. By coupling automation with rigorous governance 
and shared accountability among coordinators and developers, the framework 
effectively turns debt control into a community-driven discipline. In doing so, it 
demonstrates how structured collaboration and certification can preserve agility 
while ensuring that automation does not come at the cost of long-term 
maintainability. 

This logic naturally leads to one of the framework’s most distinctive elements: its 
emphasis on certified components and software standardization as tools to 
institutionalize quality and prevent the reemergence of technical debt. If the previous 
section outlined why managing technical debt is critical, the next explores how 
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organizations can achieve this in practice, through systematic reuse, certification, 
and the enforcement of common standards across all development activities. 

5.2 Certified Components and Software Standardization 

One effective strategy to mitigate technical debt and improve software quality is the 
adoption of certified components and rigorous software standardization. This 
approach involves reusing software modules that meet defined quality and security 
criteria, and enforcing uniform development standards across projects. By relying 
on certified, well-vetted components, organizations can avoid “reinventing the 
wheel” with quick bespoke solutions, a practice that often introduces new technical 
debt. Instead, they build on a foundation of trusted code. Standardization further 
ensures that all development follows consistent patterns, making systems more 
maintainable and secure by design. 

The concept of certified components has gained traction in both industry and 
policy circles. In the European Union, for example, the Cybersecurity Act 
(Regulation (EU) 2019/881) laid the groundwork for an EU-wide cybersecurity 
certification framework covering ICT products, software and components. The 
goal is to harmonize security assurance levels across the Union, so that vendors 
and users can easily determine a component’s security posture [52]. Under this 
framework, products or software components are formally evaluated by accredited 
bodies against known standards, and issued certificates attesting to their security 
level [52]. Such schemes (e.g. the EU Common Criteria, based scheme for ICT 
products) play a key role in increasing trust: a certified component comes with an 
independent guarantee of conformity to security best practices [52].  In practice, 
using certified libraries or modules can significantly reduce both the likelihood of 
vulnerabilities and the effort needed to demonstrate compliance with regulations. 

Parallel to formal certification, the software community has developed its own 
standards for component security. The OWASP Software Component Verification 
Standard (SCVS) exemplifies a community-driven framework to “identify and 
reduce risk in a software supply chain”, providing a structured set of activities 
and controls for managing third-party components [51]. SCVS emphasizes 
measures like maintaining an accurate Software Bill of Materials (SBOM) for each 
application and performing component analyses, which together improve 
transparency and allow teams to detect known-vulnerable dependencies early.  

An SBOM (Software Bill of Materials) is essentially an inventory or “ingredient list” 
of all software components that make up an application, including libraries, 
dependencies, and their versions. Much like a food label lists every ingredient in a 
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product, an SBOM provides visibility into what software elements are included, 
where they come from, and their potential vulnerabilities. This transparency enables 
organizations to quickly assess exposure when a vulnerability is discovered in a 
component, rather than searching blindly across systems. SBOMs are increasingly 
recognized as critical tools for managing software supply chain security, especially 
as regulatory frameworks (such as the EU Cyber Resilience Act) begin to require 
them. They also play a preventive role: by maintaining an up-to-date SBOM, teams 
can ensure that outdated or unverified components are replaced before they 
accumulate into technical debt. 

As OWASP notes, managing supply chain risk reduces the system’s vulnerable 
surface area and makes technical debt more measurable as a barrier to 
remediation [51]. In essence, an SBOM and standardized component vetting 
process help developers systematically avoid adding new technical debt in the form 
of insecure libraries. This approach is increasingly critical given the popularity of 
open-source packages; without standards, projects may inadvertently include 
components with unpatched flaws or incompatible licenses, incurring future “debt” 
when these issues must be fixed under duress. 

Standardization in software development goes beyond components to encompass 
processes and tools. Organizations are instituting uniform coding guidelines, 
testing protocols, and documentation standards to ensure consistency. For 
instance, using a common framework or architectural pattern across teams can 
greatly ease maintenance and reduce errors, developers can more readily 
understand and update code that follows familiar conventions. Such standardization 
also often involves automation: incorporating automated code quality checks, 
linters, and security scans into the development pipeline to enforce standards 
continuously. Leading practices like these are reflected in secure development 
frameworks (e.g. NIST’s Secure Software Development Framework and OWASP’s 
SAMM), which encourage organizations to bake quality and security checks into 
every stage of the lifecycle. By doing so, deviations (potential technical debt) are 
caught and corrected early. 

It should be noted that AI-assisted coding and low-code platforms, discussed in 
earlier chapters as double-edged swords for software quality, can actually benefit 
from a certified component approach. Low-code development inherently relies 
on reusable components and modules, so ensuring those building blocks are 
standardized and security-reviewed mitigates the risk of low-code “shadow IT” 
sprawl. Likewise, AI code generators can be guided to use only approved libraries 
or patterns. In both cases, an ecosystem of certified, well-documented components 
provides guardrails that contain the spread of technical debt despite rapid 
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development. A recent European industry report stressed that out-of-date 
components and ad-hoc solutions have left a large amount of technical debt, 
and that incentivizing the use of secure, up-to-date software is more important 
than ever [53]. Embracing certified components and rigorous standardization is 
thus a proactive response: it injects quality at the source, preventing the kinds of 
hidden flaws that accumulate into systemic issues. 

In summary, software standardization and the use of certified components 
offer a path to higher quality and security. They reduce variability in how software 
is built and ensure that what is built rests on trusted foundations. The next section 
will examine a concrete application of these principles, the Innovation Code 
initiative, which operationalizes reuse and certification in a national context, 
blending technical governance with collaborative development. 

5.3 The Innovation Code Initiative: From Reuse to 
Governance 

An illustrative case of blending code reuse, software certification, and collaborative 
governance is the Innovation Code project, a national initiative aimed at 
revolutionizing software development practices in Italy’s digital transformation. 
Innovation Code was launched by the innovation arm of Confindustria Romagna 
(Meta) with the mission of accelerating enterprise software development (especially 
for small and medium-sized businesses) through low-code techniques and a 
community-driven ecosystem. At its core, Innovation Code is a community of 
developers, companies, and IT professionals dedicated to making software 
development more accessible, rapid, and secure. The initiative provides a structured 
platform where participants can develop, share, and reuse software components, 
under a unified set of rules and technological processes that ensure each 
component is thoroughly vetted and certified before wider use. 

Reuse and Marketplace Model: Innovation Code introduces a centralized 
marketplace for software components, which is a key instrument to encourage 
reuse. Developers in the community can build modular software artifacts 
(prefabricated components) and, after following the required quality process, 
publish them on the Innovation Code marketplace. The marketplace (accessible 
via an online portal) serves as a repository of certified, reusable components that 
other members or client companies can browse and acquire for their own needs. 
This enables a form of monetization and incentive: developers can sell certified 
software components to enterprises, while enterprises benefit by drastically 
reducing development time and cost through ready-to-use modules. Crucially, every 
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component in the marketplace comes with a guarantee of quality and security 
backed by the community’s certification process. This model exemplifies how reuse 
and sharing, if properly governed, can create a win-win scenario: faster delivery of 
solutions for businesses and new business opportunities for developers, all 
underpinned by trust in the components being exchanged. 

Technical Governance and Certification: The integrity of Innovation Code’s 
marketplace is maintained by an elaborate governance framework codified in its 
Technological Regulation. All contributors must adhere to a strict workflow that 
embeds quality controls at every step. Key technical features of this framework 
include: 

1.​ Private Repository & Access Control: Each software project (or 
component) is developed in a dedicated GitHub repository within the 
community’s organization. These repositories are closed (private) and 
accessible only to authorized community members. This ensures that 
code is not publicly released until it has passed all checks, preserving privacy 
and control. To initiate a new project repository, an author (developer) must 
request permission from community coordinators, who oversee the creation 
and administration of that repo. Every repository is maintained by senior 
members to enforce security and proper management of the codebase.​
 

2.​ Automated Pipeline with GitHub Actions: Innovation Code mandates an 
automated CI/CD pipeline for each repository, leveraging GitHub Actions to 
run a suite of checks on every code commit and pull request. These 
mandatory controls include:​
 

a.​ Code Quality Analysis: Automated linters and static analysis tools to 
ensure coding standards and detect errors or code smells.​
 

b.​ Documentation Verification: Checks that code is appropriately 
commented and documented, with clear descriptions for functions 
and modules.​
 

c.​ SBOM Generation: An automatic Software Bill of Materials (SBOM) 
is produced for each build, enumerating all dependencies 
(open-source libraries, modules and their versions). This transparency 
is “essential for security and risk management”, as it allows the 
community to track and later swiftly address any known vulnerabilities 
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in included components.​
 

d.​ Digital Signature (Sigstore): Every artifact (build output) is digitally 
signed by its contributors. This provides a guarantee of origin 
assuring consumers of a component that it is authentic and hasn’t 
been tampered with, and that authorship is traceable. Innovation Code 
leverages Sigstore (an open source signing and provenance tracking 
service) to facilitate this process.​
 

e.​ SLSA Compliance: Each project must comply with a specified level of 
Supply Chain Levels for Software Artifacts (SLSA). SLSA is a 
framework of security best practices for software supply chains; by 
enforcing SLSA level requirements, the community ensures the 
integrity of build and deployment processes (for example, using 
verifiable builds, preventing unauthorized modifications, etc.). This is a 
forward-leaning measure, born from industry lessons on supply chain 
attacks.​
 

f.​ Build & Test Automation: The pipeline automatically compiles the code 
and runs test suites to verify that each commit integrates successfully 
and the software remains stable. No code can be merged that fails to 
build or that breaks specified tests, which guards against the 
introduction of unstable features.​
 

3.​ Compliance Scoring System: A novel aspect of Innovation Code is its use 
of an automated scoring mechanism to evaluate each contribution. The 
GitHub Actions checks collectively produce a score from 0 to 5 for every 
code change submitted. This conformity score reflects how well the changes 
adhere to the community’s standards and pass all verification steps. The 
score is not merely for feedback; it is used as a gate for accepting pull 
requests. In practice, if a proposed change does not meet the minimum 
score threshold (for instance, due to insufficient documentation or a security 
test failure), it will not be merged until improved. By using a quantified score 
to enforce quality, the community creates an objective and transparent 
criterion for certification. Only code that achieves a passing score and is 
approved by the project coordinators can be merged and considered 
“certified compliant”. This ensures that every artifact reaching the 
marketplace has gone through rigorous quality control.​
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4.​ Coordinator Oversight and Reviews: In addition to automated checks, 
human oversight is integral. Each repository has designated coordinators 
(senior members) who review contributions, manage issues, and have final 
say on approving pull requests. This dual control (automated scoring plus 
coordinator approval) provides a belt-and-suspenders governance model. 
The guarantee of quality is thereby “shared, controlled and reviewed by the 
authors and coordinators” of the community. Coordinators also help maintain 
consistency across projects and ensure that community rules (technical and 
behavioral) are observed by all contributors. 

Once a piece of software has passed all these steps and is merged, it is considered 
an artifact ready for release. At this juncture, the author (with coordinator guidance) 
decides how to classify the artifact: either as a reusable component or as a full 
product. 

●​ If it is a Component, it gets published in the marketplace of components, 
making it available for other community members or client organizations to 
download and integrate. The marketplace listing signals that the component 
is certified and can be reused confidently.​
 

●​ If it is a Product (a complete application tailored to a specific end-user need), 
the distribution is handled differently: the final software can be deployed to a 
verified cloud environment of the client's choosing (the community 
currently supports certain qualified cloud providers like AWS Elastic 
Beanstalk). Even in this case, the community provides automated 
deployment pipelines and validation for those environments, ensuring that 
the release is carried out securely and in a standardized way. Thus, whether 
as marketplace components or deployed products, the output of Innovation 
Code’s process is delivered in a controlled, quality-assured manner. 

Unified Governance and Collaboration: Innovation Code operates under a unified 
governance system that covers not only technical rules but also community conduct 
and project management. A Regolamento di Condotta (Code of Conduct) sets 
expectations for contributor behavior, promoting respect, clear communication, 
open collaboration, and constructive feedback among participants. This cultural 
framework is important for a sustainable collaborative ecosystem, especially since 
Innovation Code brings together diverse stakeholders (from freelance developers to 
enterprise IT consultants). The initiative leverages modern collaboration tools (for 
example, a community Discord server is used for communication and knowledge 
sharing) to build an active network of experts. By connecting professionals in a 
shared environment with common standards, the community fosters collective 
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problem-solving. Indeed, one of the benefits highlighted for beneficiaries (clients) is 
access to “a broad network of experts” who can collaborate to tackle complex 
problems more effectively than any single vendor could. 

From a governance perspective, Innovation Code exemplifies shared responsibility 
and transparency. Every software artifact is subject to the community’s scrutiny 
and every member has a role in upholding quality standards. The documentation 
emphasizes that the community adopts “uniform development practices” including 
standardized code management, testing, and documentation, to ensure consistent 
quality across all projects. It also states that “each component... must meet high 
quality standards, ensuring that it is reliable, secure, and compatible” and that all 
components used are “certified by the community to guarantee their quality and 
security”. In other words, the community itself acts as a certifying body, and this 
trust mark is backed by the rigorous processes described above. 

Blending Low-Code and Traditional Development: It is noteworthy that 
Innovation Code focuses on low-code as a domain, aiming to harness its 
advantages while mitigating its risks through governance. Low-code platforms 
enable faster development by using visual interfaces and pre-built modules; 
however, as discussed in Chapter 4, they also introduce security and quality 
challenges (e.g. hidden code generation, lack of developer expertise in security). 
Innovation Code’s approach, requiring even low-code modules to undergo the same 
strict verification (SBOM, security tests, etc.) creates a bridge between the agility of 
low-code and the discipline of traditional software engineering. By doing so, it offers 
a path to make software development more accessible, rapid, and sustainable 
without sacrificing quality. The initiative thereby addresses the risks of software 
democratization (uncontrolled proliferation of applications) by introducing a 
collaborative governance layer. All code, whether hand-written or low-code 
generated, is funneled through a common pipeline of checks and community 
review. This ensures that even citizen-developed solutions or AI-assisted code can 
meet professional standards before reaching production. 

In summary, Innovation Code stands out as a holistic model that integrates reuse, 
certification, and governance. It establishes a secure, shared repository of 
knowledge and components (much like an “app store” for vetted software modules) 
and couples it with a governance process that guarantees each contribution’s 
integrity. The project illustrates how a national or industry-wide effort can tackle the 
twin goals of innovation and security: companies gain speed and cost savings by 
reusing certified solutions, developers gain a marketplace and clear guidelines to 
create high-quality software, and the overall ecosystem benefits from elevated trust 
and reduced technical debt. By blending collaborative development with strong 
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technical oversight, Innovation Code points toward the creation of a secure and 
collaborative digital ecosystem, a theme which we explore further in the next 
sections. 

5.4 Regulatory Alignment: NIS2 and Shared Responsibility 

The increasing complexity of software systems and supply chains has prompted 
regulators to raise the bar for cybersecurity governance. A prime example is the 
European Union’s NIS2 Directive (Directive (EU) 2022/2555), which came into effect 
in 2024 as an update to the EU’s Network and Information Security rules. NIS2 
establishes a unified, stringent cybersecurity framework across member states, 
covering a broad range of critical sectors (energy, transport, healthcare, digital 
infrastructure, public administration, and more) [53]. It mandates that medium and 
large organizations in these sectors adopt risk management measures, report 
incidents, and address supply chain security, with significant penalties for 
non-compliance [53]. The directive’s implementation embodies a philosophy of 
“shared responsibility” in cybersecurity, both within organizations (across 
management and IT roles) and across the EU (through harmonized standards and 
cooperation). 

One notable innovation of NIS2 is the explicit assignment of accountability to top 
management for cybersecurity outcomes. Whereas traditionally cybersecurity was 
often delegated to IT departments, NIS2 “changes the game for leadership” by 
requiring management bodies to actively approve and oversee cybersecurity risk 
measures [54]. Executives and boards can no longer claim ignorance: the directive 
calls for management-level training to ensure understanding of cyber risks, and 
even allows authorities to hold individual managers personally liable for serious 
cybersecurity failings in their organization [54]. In practice, this means that if a major 
security incident occurs and is attributed to negligence (e.g. known security gaps 
were left unaddressed), company directors could face sanctions. The intent is to 
“emphasize shared responsibility and reduce pressure on IT” by making 
cybersecurity a boardroom issue, not just an IT issue [54]. As part of enforcement, 
NIS2 empowers regulators to impose measures like public disclosure of violations, 
“naming and shaming” of responsible persons, and even temporary bans on holding 
management positions in severe cases [54]. This top-down accountability ensures 
that adequate resources and attention are given to cybersecurity, aligning corporate 
governance with the technical realities discussed in previous sections (such as the 
need to manage technical debt and maintain secure development practices). 
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Another critical aspect of NIS2 is its focus on supply chain security and 
ecosystem-wide cooperation. The directive recognizes that an organization’s 
security is only as strong as that of its suppliers and software components. Thus, 
NIS2 requires organizations to address cybersecurity in their supply chain and 
supplier relationships as part of risk management [53]. This includes vetting the 
security of third-party software and services, and possibly ensuring that suppliers 
follow secure development practices (for instance, using standards like ISO 27001 
or maintaining SBOMs for the products they deliver). In effect, the regulatory burden 
is shared: suppliers must implement stronger security controls, and client 
organizations must perform due diligence. This dynamic echoes the shared 
responsibility model known in cloud computing (where the cloud provider and user 
each have security duties), but extends it broadly to all digital supply chains. 
Furthermore, NIS2’s cross-sector approach encourages information sharing and 
collective defense. The idea is to foster cross-organization collaboration, where 
lessons and threat intelligence are shared in trust, acknowledging that cyber 
resilience is a common goal that transcends individual entities. 

When aligning initiatives like Innovation Code with NIS2, we can see complementary 
goals. Innovation Code’s emphasis on certified components and standardized 
security checks directly addresses supply chain concerns: if widely adopted, a 
marketplace of vetted components could help organizations fulfill NIS2’s 
requirement to use secure ICT products. Moreover, the community governance 
model, involving both technical contributors and oversight roles, mirrors the NIS2 
ethos of shared responsibility within organizations. Not only are developers and 
coordinators in Innovation Code jointly responsible for quality (as discussed in 
section 5.3), but the project itself was spearheaded by an industry association 
(Meta/Confindustria) in collaboration with companies, reflecting a public-private 
partnership approach. Such collaborations are strongly encouraged by NIS2 and 
other EU policies as a way to uplift cybersecurity maturity [53]. 

Yet, it is also evident that regulatory compliance alone is not a panacea for 
technical debt or security gaps. Experts caution that Europe’s organizations have 
accumulated a backlog of security improvements (a form of technical debt) that 
“will not be resolved by becoming NIS2 compliant” on paper [53]. Simply 
meeting the minimum compliance requirements may not eliminate deeper systemic 
issues. The NIS2 directive provides a necessary baseline and accountability 
framework, but it also implicitly calls for greater investment in sustainable security 
practices, for instance, modernizing legacy systems (to pay down technical debt) 
and adopting advanced tools and standards proactively [53]. In this regard, 
initiatives like Innovation Code can be seen as answering that call: they go beyond 
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compliance, creating mechanisms (technical and social) to ensure software is 
continuously developed and maintained at a high security level. By instituting 
continuous monitoring and updates for artifacts (the Innovation Code process 
includes ongoing “monitoring and updates” to promptly fix any newly discovered 
vulnerabilities in released components), the community embodies the kind of 
“continuous improvement” mindset that regulators hope organizations will adopt, 
rather than a checkbox mentality. 

In conclusion, alignment with NIS2 involves both meeting its explicit requirements 
and embracing its spirit of shared responsibility. Organizations should integrate 
secure development frameworks, ensure management is engaged in cyber risk 
governance, and collaborate across the supply chain. The outcome is a heightened 
state of security readiness that not only avoids legal penalties but truly reduces risk. 
As we move forward, one can foresee regulatory and industry initiatives converging: 
for example, if a platform like Innovation Code becomes widespread, regulators 
might recognize or even endorse certified community components as meeting 
certain compliance needs, thereby streamlining the path to adherence with 
directives like NIS2. The final section looks ahead at how these threads, technical 
debt reduction, component certification, and regulatory compliance, weave together 
towards building a secure and collaborative digital ecosystem. 

5.5 Toward a Secure and Collaborative Digital Ecosystem 

The trends and practices discussed in this chapter point toward a paradigm shift in 
how software is developed and maintained, one that is secure by design, 
collaborative in execution, and adaptive to change. In the age of digital 
transformation, where AI and low-code are making software creation more 
democratized, the only sustainable way to reap their benefits (speed, innovation, 
accessibility) without incurring unacceptable risk is to embed security and quality 
considerations into the very fabric of the ecosystem. This means treating issues like 
technical debt, software component quality, and compliance not as afterthoughts, 
but as shared responsibilities across the community of stakeholders. 

A secure and collaborative digital ecosystem would have several defining 
characteristics. First, organizations and developers openly share and reuse 
vetted solutions rather than building in silos. This reduces duplication of effort and 
enables collective hardening of common components, a bug found and fixed in a 
shared component benefits all users of that component. The Innovation Code 
framework exemplifies how such reuse can be governed so that sharing does not 
equate to insecurity; on the contrary, communal oversight can produce components 
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that are more robust than any one organization might develop alone. This 
collaborative development of a “knowledge commons” in software aligns with 
open-source principles, but with additional layers of assurance (certifications, 
automated checks) suited for critical applications. As more entities participate, a 
network effect emerges: the ecosystem’s baseline quality improves, and the cost of 
building secure software is amortized across the community. 

Second, this ecosystem would embrace continuous improvement and monitoring 
as a norm. Borrowing from both agile and DevSecOps philosophies, security and 
quality are not one-time checkpoints but ongoing processes. Technical debt is 
continuously identified, monitored, and addressed before it can put systems at risk.. 
Mechanisms like the scoring system of Innovation Code or similar metrics could be 
used broadly to keep track of the “health” of software assets. Participants in the 
ecosystem are expected to contribute back, for example, if a company using a 
community component discovers a new vulnerability, it feeds that information back 
to the maintainers so that a patch is issued for all users. This communal approach 
to maintenance embodies the shared responsibility model on a larger scale: just as 
NIS2 urges internal stakeholders to share responsibility, a collaborative ecosystem 
urges all players (suppliers, users, regulators) to share the burden of keeping the 
digital infrastructure secure.  

Third, the future ecosystem is likely to be underpinned by open standards and 
compliance frameworks that ensure interoperability and trust. When multiple 
organizations are co-developing and exchanging software, having common 
standards (for data formats, security protocols, identity and signing, etc.) is vital. 
Standards bodies and policymakers can facilitate this by providing clear guidelines 
and certification pathways (such as the EU certification schemes). We are already 
seeing movement in this direction: the push for SBOMs as a standard artifact for 
software, the adoption of protocols like OAuth/OIDC for identity federation, and the 
development of assurance levels (SLSA, Common Criteria, etc.) all contribute to a 
lingua franca of security. A collaborative ecosystem would take advantage of these, 
integrating them into platforms so that participants “plug in” and automatically 
comply with best practices. This reduces friction in cooperation, companies can 
trust each other’s outputs if they know they adhere to the same security framework. 

Finally, a secure collaborative ecosystem nurtures a culture of education and 
responsible innovation. As AI coding assistants and low-code platforms generate 
code, developers (including citizen developers) must be educated on secure coding 
practices and the implications of their choices. The ecosystem would provide not 
just tools but also knowledge, mentorship by experts, libraries of secure design 
patterns, and forums to discuss emerging threats (for instance, new AI-specific 
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vulnerabilities as highlighted in Chapter 3). The aim is to create a virtuous cycle: the 
easier and safer it is to produce quality software, the more individuals and 
organizations will contribute positively, which in turn enlarges the pool of shared 
secure components and expertise. 

In conclusion, the evolution of coding in the digital transformation era is poised to 
be defined by collaborative governance and shared trust mechanisms. The 
convergence of factors, from managing technical debt systematically, to certifying 
software components, aligning with forward-looking regulations, and leveraging 
initiatives like Innovation Code, sketches out a roadmap for achieving a resilient 
digital ecosystem. Each piece reinforces the others: for example, standardized, 
certified components make it easier for organizations to comply with regulations 
and to integrate security into AI/low-code development; strong governance and 
regulatory frameworks, in turn, incentivize the use of such components and the 
paying down of technical debt. The result is an ecosystem where security is not a 
barrier to innovation but a foundation for it. In this ecosystem, stakeholders 
collectively ensure that the software powering our societies is secure, reliable, and 
worthy of trust, thereby unleashing the full potential of digital transformation in a 
responsible manner.  
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Chapter 6 

Towards a Secure and Collaborative 
Ecosystem 
 

The discussion naturally evolves from the examination of software quality, technical 
debt, and regulatory alignment toward a broader reflection on how these challenges 
can be addressed within a secure and collaborative ecosystem. The previous 
analysis highlighted that the spread of automation, AI-assisted development, and 
low-code platforms has introduced new tensions between efficiency and control, 
democratization and accountability. While these technologies promise to enhance 
productivity and foster innovation, they also risk accelerating complexity and 
eroding traditional mechanisms of oversight. 

The following section extends this reasoning by reinterpreting these dynamics 
through the lens of governance and cooperation. It explores how the convergence 
of human and machine creativity calls for a redefinition of responsibility, 
transparency, and shared stewardship in software production. The focus shifts from 
compliance and technical assurance toward the construction of frameworks that 
embed ethical reflection and cross-stakeholder collaboration into the digital 
transformation process. 

In continuity with the preceding analyses, this next phase moves from diagnosing 
risks to envisioning solutions. It proposes a collective approach in which 
organizations, developers, and policymakers align technological progress with 
sustainable governance, ensuring that innovation remains secure, inclusive, and 
anchored to human values. 

6.1 Summary of Findings 

The findings indicate that who controls and understands code is changing: human 
developers are increasingly in a supervisory role over machine-generated solutions, 
while non-experts can create software through abstracted tools. This 
democratization of coding brings efficiency gains, but it also redistributes 
responsibility in ways that challenge traditional oversight. The systemic risks 
emerging from these trends are both technical and organizational. Notably, rapid AI 
code generation has been observed to amplify technical debt, code is produced 
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faster than it can be robustly governed or maintained. Such “quick wins” delivered 
by AI can thus mask accumulating architectural complexity and flaws. Moreover, AI 
models tend to replicate patterns indiscriminately: if the training data or generated 
logic contain biases or errors, these will propagate systematically across all 
instances of use. In effect, a single flaw can be multiplied at scale, a phenomenon 
wherein algorithmic bias and defects become embedded in numerous systems via 
the same AI-driven components. This propagation of bias through code (for 
instance, in how data is processed or decisions are made) raises concerns that go 
beyond one-off bugs, introducing structural unfairness or security gaps that are hard 
to detect when code is produced opaquely by machines. Finally, the diminishing 
human accountability in AI-augmented development is a recurring theme. As 
adaptive tools generate more of the code, developers may unconsciously cede 
decision-making to algorithms, making it unclear who should answer for mistakes. 
Studies have warned that the convenience of AI suggestions can erode diligent 
review, leading to an oversight vacuum where no individual fully “owns” the code 
[55]. In summary, the findings portray a double-edged sword: while AI and low-code 
platforms accelerate production and broaden participation, they introduce systemic 
risks to quality and governance. Technical debt may accumulate faster than 
organizations can manage, biases in data or models can quietly permeate software 
at scale, and the clear lines of human responsibility central to traditional software 
engineering become blurred. These insights call for a reevaluation of how we govern 
the coding process in an era where humans and AI share the creative role. 

6.2 Recommendations 

Addressing the above challenges requires a critical framework that balances the 
benefits of automation with robust controls. The recommendations herein are 
framed to navigate the trade-offs between efficiency and control, and the ethical 
tension between innovation and responsibility. Rather than prescribing simple 
best practices, this framework urges each stakeholder group to consciously 
manage the interplay of rapid digital innovation with accountability safeguards. 
Concretely: 

●​ For Organizations: Establish governance mechanisms that harness AI and 
low-code tools without relinquishing oversight. Firms should adopt secure 
development lifecycle standards such as NIST’s Secure Software 
Development Framework (SSDF) [56] to embed security and quality checks 
into fast-paced development. This includes setting policies for code review of 
AI-generated components, regular audits for bias or vulnerabilities, and 
maintaining documentation of AI contributions for traceability. Organizations 
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must also weigh agility against risk by instituting “guardrails”, for example, 
restricting generative AI use in high-stakes code unless extra validation steps 
are in place. Regulatory compliance is part of this control framework: 
upcoming requirements (e.g. the EU’s NIS2 Directive on cybersecurity) 
demand that software supply chains implement rigorous risk management 
and executive accountability for software quality [58]. Management should 
therefore champion a culture where efficiency gains do not come at the 
expense of internal controls. In practice, that means allocating time and 
budget for testing and refactoring AI-produced code, and using metrics that 
incentivize secure, maintainable code rather than just rapid delivery. 
Ultimately, organizations must create an environment where innovation 
thrives within clear governance boundaries, aligning fast low-code 
development with standards (for instance, ISO/IEC guidelines on software 
quality and risk) that ensure systemic reliability.​
 

●​ For Developers (and Platform Engineers): Embrace AI assistants and 
low-code platforms as productivity tools, but remain in the loop as critical 
decision-makers. This entails a professional responsibility to maintain 
human oversight even when automation handles routine tasks. Developers 
should follow established coding and testing practices with even greater 
rigor, for example, using peer review and static analysis on AI-written code 
just as they would on human-written code. They must also actively mitigate 
biases and errors: when using an AI code generator, a developer should 
validate outputs against unbiased datasets and diverse scenarios, catching 
issues an algorithm might overlook. Training and awareness are key; 
practitioners are encouraged to stay informed on ethical AI principles and to 
use tools for fairness and security (such as bias detection libraries or 
adversarial testing frameworks) when integrating AI components [57]. 
Importantly, developers need to guard against over-reliance on automation. 
Continual skill development (e.g. in algorithmic thinking, threat modeling or 
secure coding) is recommended to avoid the atrophy of human expertise. By 
adhering to frameworks like the NIST SSDF and company-specific AI usage 
policies, software engineers and citizen developers can enjoy efficiency gains 
while upholding diligence. In effect, the recommendation is a mindset: treat 
AI suggestions as assistive, not authoritative. Developers remain accountable 
for the final software product and should be prepared to justify and adjust 
any AI-generated code as if it were their own work.​
 

●​ For Policymakers and Regulators: Provide clear guidelines and incentives 
that align technological innovation with the public interest, without unduly 
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hampering progress. Policymakers should advance legal frameworks that 
clarify accountability and liability in AI-assisted development. For example, 
the EU AI Act will require risk assessments, transparency of AI systems, and 
human oversight for higher-risk AI applications, steps that begin to address 
some governance gaps [57]. Building on such efforts, regulators ought to 
update intellectual property and product liability laws to cover AI-generated 
artifacts: Who owns a snippet of code written by an AI, and who is liable if it 
malfunctions? At present these questions linger in a gray zone; legislation 
can define default rules (e.g. treating the deploying entity as responsible by 
default for AI outputs) to ensure there is always a liable party [60]. Beyond 
hard law, soft-law instruments and standards should be promoted. 
Governments can endorse and help develop industry standards (ISO/IEC, 
IEEE) that incorporate AI ethics and security into software engineering 
practices. For instance, international standards bodies are already exploring 
certifications for AI transparency and bias mitigation, policymakers can 
support these as benchmarks for trust. Additionally, regulators should 
encourage knowledge-sharing across the ecosystem: a policy of 
transparency where companies report incidents involving AI-generated code 
(similar to breach disclosures) could help the industry learn collectively. In 
sum, the recommendation for policymakers is to pursue a balanced 
regulatory approach: set minimum safeguards (so that efficiency does not 
race ahead of safety) while still enabling research and innovation. This 
includes funding the creation of open frameworks and tooling for auditing AI 
systems, and refining laws like software liability and data protection to 
cover the new realities of AI-developed software. Collaboration with industry 
and academia in creating these rules is crucial so that governance remains 
practical and evolves with the technology. 

These stakeholder-specific recommendations form a cohesive framework. Each 
group, organizations, developers, and regulators, plays a part in reconciling the 
push for rapid, AI-driven innovation with the need for control, fairness and reliability. 
The underlying principle is “trust but verify”: leverage the productivity of AI and 
low-code, but institute verifiable checks and accountability at every level. By doing 
so, the software ecosystem can remain both innovative and secure, avoiding the 
pitfalls identified in the findings. 

6.3 Limitations 

While this research has explored governance strategies for AI and low-code 
development, it is important to critically acknowledge its limitations. The 
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fast-moving integration of AI into coding is outpacing the evolution of legal and 
ethical frameworks, leaving what can be described as a vacuum of clear rules and 
norms in several areas. First, there is no settled answer on authorship and 
ownership of AI-generated code. Intellectual property law traditionally hinges on 
human creativity; however, when an algorithm produces novel code, determining 
the creator is problematic. Current jurisprudence suggests that content solely 
created by AI cannot be copyrighted, as exemplified by the U.S. Copyright Office’s 
stance that works lacking a human author are not eligible for protection [59]. This 
implies that if an AI tool writes code with minimal human input, no one may hold its 
copyright, a scenario that undermines incentives and complicates software 
licensing. The thesis touched on this issue, but the broader legal debate is 
unresolved: Who is the “author” of AI-written software, the user, the tool’s 
provider or neither? Until lawmakers and courts clarify this, organizations face 
uncertainty in leveraging AI code (e.g. can they enforce ownership of AI-generated 
components?) and risk exposure if such code unknowingly copies others’ 
copyrighted patterns. Alongside authorship, liability for defects or failures in 
AI-generated code remains ambiguous. If an autonomous coding assistant 
introduces a critical security flaw, it is unclear whether responsibility lies with the 
developer who accepted the code, the company deploying it or the AI tool’s vendor. 
There is a legal gray area here [60], and current product liability regimes do not 
neatly address software that has no single human author. Some proposed policies 
(for instance, EU initiatives parallel to the AI Act) aim to assign liability to the 
deployer of an AI system by default, but these are still in draft. Thus, one limitation 
of this work is that it can only highlight these open questions, a comprehensive 
solution for accountability in AI-assisted development is beyond the current 
scope, reflecting a gap that future research and policy must fill. 

On the ethical front, incorporating AI into coding brings challenges that extend 
beyond technical fixes. Algorithmic bias is a persistent concern: if the AI’s training 
data or algorithms carry latent biases (for example, under-representing certain 
groups or contexts), those biases can manifest in the code’s behavior, leading to 
software that systematically disadvantages or excludes some users. While earlier 
chapters discussed bias in AI models, here we note the limitation that mitigating 
bias in generated code is not straightforward. Traditional software engineering 
ethics would hold developers to standards of fairness and inclusivity, but when 
code is machine-generated, detecting subtle biases requires deliberate effort (such 
as bias testing or external audits) that is not yet standard practice. Furthermore, 
there is a risk of skill atrophy and overreliance on automation. As developers lean 
on AI for routine coding, they may lose proficiency in fundamental skills or fail to 
develop the deeper understanding needed to catch errors. This phenomenon, akin 
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to the “automation paradox” noted in other industries, can reduce the very human 
expertise that acts as a safety net. The analyses rest on the assumption that 
developers can effectively oversee AI output, but in practice, that oversight may 
weaken over time if humans become complacent. It must be acknowledged that 
such recommendations (e.g. urging developers to stay vigilant and trained) face this 
human-factor limitation. In summary, the governance approaches proposed operate 
within a still-maturing legal and ethical landscape. Key issues like authorship, 
liability, bias, and human expertise retention are not fully resolved by existing laws. 
These limitations underscore the need for ongoing interdisciplinary work: legal 
scholars, ethicists, and technologists must continue to refine frameworks so that the 
evolving role of AI in coding does not outpace society’s capacity to guide it 
responsibly. 

6.4 Framework Proposals for Quality and Security 

A recurring theme is the inadequacy of traditional metrics in capturing the new 
dimensions of software quality introduced by AI and low-code development. This 
section contrasts quantitative versus qualitative measures and proposes an 
evolved framework that blends both. Historically, software engineering has 
gravitated toward quantitative metrics: number of defects, test coverage 
percentages, build frequencies, lines of code produced, and other countable 
indicators of productivity or reliability. These metrics remain valuable, they provide 
objective baselines and can be automatically tracked. For example, an organization 
might measure that deploying AI coding assistants increased the volume of code 
written per week (a quantitative uptick). However, such counts alone can be 
misleading. A surge in code output could correlate with higher technical debt or 
more duplicated code. Likewise, a decrease in reported bugs might reflect 
superficial testing rather than true absence of faults. In the context of AI-generated 
code, purely numerical metrics might even encourage undesirable practices (like 
valuing volume of code suggestions over thoughtful design). Therefore, qualitative 
metrics must complement the picture. Qualitative assessments include code 
readability, maintainability, clarity of design, and alignment with user intent, 
attributes that often require human judgment or higher-level analysis to evaluate. 
They also encompass user-centric measures such as user satisfaction, accessibility, 
and ethical criteria (e.g. perceived fairness of an algorithm’s outcomes). A key 
insight is that AI can generate code that is syntactically correct (satisfying 
quantitative checks) but semantically misaligned with the nuanced requirements or 
values expected. Hence, any robust evaluation framework should incorporate 
reviews and criteria that capture these subtleties. This might involve structured peer 
reviews for AI contributions, scoring code on maintainability or architectural 
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consistency or assessing whether the code’s results are explainable and justifiable 
in context. 

Building on established models, an extension of standard software quality 
frameworks is outlined to explicitly incorporate AI-specific quality dimensions. A key 
reference is the ISO/IEC 25010:2023 model of software product quality, which 
broadens the 2011 taxonomy and identifies nine core characteristics: Functional 
Suitability, Performance Efficiency, Compatibility, Interaction Capability, Reliability, 
Security, Maintainability, Flexibility, and Safety [61]. While ISO/IEC 25010 has been 
foundational in guiding software quality evaluation, it was conceived before the 
advent of contemporary AI coding tools and thus does not explicitly cover 
properties like transparency or bias. The evolving consensus is that we need to 
augment such models. In fact, recent standardization efforts have started to 
address this gap: for example, the new ISO/IEC 25059:2023 proposes a quality 
model for AI systems that extends the ISO 25010 framework with additional 
attributes tailored to AI [62]. These include characteristics such as user 
controllability, transparency, functional adaptability, and ethical risk mitigation. In 
practical terms, explainability becomes a first-class quality attribute, an 
AI-generated module should be accompanied by information that enables 
developers and stakeholders to understand its logic (or at least its decision criteria) 
at an appropriate level. Intent traceability is another emerging concept: the ability 
to trace an AI-produced piece of code back to the requirement or intent that 
prompted it, ensuring that the code indeed aligns with the intended functionality or 
business rule. Likewise, fairness or avoidance of bias is considered part of software 
quality for AI-driven components; a system that produces technically correct 
outputs which are discriminatory or inequitable is, by modern standards, a 
low-quality system. The proposed framework therefore suggests that organizations 
and standards bodies integrate these AI-specific dimensions into their quality 
assurance processes. This could mean updating coding guidelines to mandate that 
every AI-generated feature undergo an explainability review (can the results be 
explained in terms of input features or rules?) and a fairness check (does it behave 
consistently across diverse inputs and user groups?). It could also mean adapting 
quantitative metrics to new forms, for instance, measuring the percentage of 
decisions in a system that are auditable or transparent (a metric for transparency) or 
counting the number of bias incidents detected in testing (a metric for fairness). By 
contrasting and then uniting quantitative and qualitative measures, the proposed 
framework aims for a holistic evaluation of software. We must continue using hard 
metrics for efficiency and correctness, but they are augmented with qualitative 
judgments and new metrics that capture aspects of trustworthiness. The end goal is 
a revised ecosystem of metrics and standards (aligned with initiatives like ISO/IEC 
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25059 and similar) that can faithfully assess the quality of software in the age of 
AI, including aspects of the code that relate to human values and complex 
socio-technical considerations, not just technical performance. 

6.5  A Shared Agenda for Responsible Innovation 

In closing, this thesis advocates for a shared agenda in governing the coming era of 
digital autonomy. As coding becomes increasingly autonomous, with AI systems 
taking on creative and decision-making functions, the governance of this autonomy 
emerges as a critical societal challenge. Meeting this challenge requires that an 
ethic of “responsible innovation” be woven into the very fabric of software 
development and deployment. Responsible innovation is more than a buzzword; it 
is a procedural principle that demands foresight and inclusivity at each step of 
technological advancement. In essence, it means “taking care of the future through 
collective stewardship of science and innovation in the present” [64]. In the context 
of AI and low-code ecosystems, this translates to all stakeholders (developers, 
organizations, regulators, end-users) actively collaborating to ensure that the tools 
and code we create today do not undermine the values and safety of tomorrow. 
Practically, this involves maintaining a human-in-command approach even as we 
integrate automation. Human oversight is not a box-ticking exercise but an ethical 
necessity: it ensures that human judgment, with all its contextual understanding and 
moral agency, remains in the loop and can veto or adjust an AI’s actions when 
needed [63]. This principle upholds human agency against the backdrop of 
ever-more capable AI systems, aligning with emerging global guidelines that 
emphasize human oversight as fundamental to trustworthy AI. By keeping humans 
in command, we affirm that autonomy in software (no matter how intelligent) is 
ultimately subordinate to human values and intentions. 

A sustainable AI ecosystem hence requires governance structures that are both 
robust and adaptive. Robust, in that they enforce accountability, fairness, and safety 
systematically across all actors; adaptive, in that they evolve with technological 
advances and learn from failures. This shared agenda calls for what might be 
described as sustainable AI ecosystems, environments where innovation can 
continually flourish but within boundaries that protect long-term societal interests. 
Key elements of such an ecosystem include transparent collaboration (sharing best 
practices and incident learnings openly, as one company’s failure with AI code can 
instruct many others), interdisciplinary oversight bodies (bringing together 
technologists, ethicists, legal experts, and user representatives to guide policy and 
standards), and a commitment to “human-centered” outcomes. The concept of 
sustainability here is twofold: it concerns environmental and economic sustainability 
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(e.g. managing the resource footprint of large AI models, ensuring tools enhance 
rather than replace human jobs over the long run), and it concerns the 
sustainability of trust. If users, customers, and the public at large lose trust in 
software because it behaves opaquely or unethically, the digital ecosystem risks a 
crisis of legitimacy. Thus, responsible innovation becomes not only a moral stance 
but a prerequisite for sustainable growth and adoption of new technologies. We 
must strive for AI systems and low-code solutions that empower users while 
safeguarding their rights and expectations, adhering to principles of privacy, 
fairness, and accountability as default features. 

In conclusion, the evolution of coding in the age of digital transformation is not a 
story of machines replacing humans, but of re-defining collaboration between 
them under new rules. The preceding chapters have shown both the immense 
potential of AI-assisted development and the real dangers if its adoption outpaces 
our governance. A secure and collaborative ecosystem is attainable if we, as a 
community, commit to “responsible innovation” as our lodestar. This means 
continuously aligning our technical breakthroughs with the ethical and regulatory 
frameworks that keep technology benevolent and inclusive. It also means 
embracing human-in-command governance, where humans remain actively 
involved and ultimately responsible for digital systems, no matter how autonomous 
those systems become. The path forward is a shared one: organizations, 
developers, policymakers, and users must all partake in shaping norms and 
standards that ensure technology serves humanity’s collective interests. By 
cultivating an ecosystem grounded in trust, transparency, and accountability, we 
can harness the benefits of AI and low-code development while steadfastly 
upholding human values. This critical synthesis of innovation and responsibility will 
determine whether our digital transformation truly leads to a more secure, equitable, 
and collaborative future for all.  
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