ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Dipartimento di Scienze

Corso di Laurea in Informatica

Analisi e comparazione delle maggiori
risoluzioni algoritmiche di giochi

ad informazione imperfetta applicate al

poker Texas Hold’em Heads-Up Limit

Relatore: Presentata da:
Chiar.mo Prof. Matteo Toccarelli
Pietro Di Lena

Sessione di Dicembre 2025
Anno Accademico 2024/2025

Abstract

La risoluzione computazionale di giochi a somma zero in forma estesa rappresenta una
delle sfide centrali nella teoria dei giochi algoritmica, data la complessita intrinseca dei
giochi ad informazione imperfetta e la necessita di ottenere strategie approssimativamente
ottimali con risorse limitate. In questo contesto, la presente tesi offre un’analisi appro-
fondita dei principali approcci noti in letteratura per la soluzione di tali giochi. Il lavoro
utilizza come modello applicativo il poker Heads-Up Limit Texas Hold’em (HULHE), uno
dei giochi imperfetti piu studiati per la sua rilevanza teorica e pratica. Per ciascun algorit-
mo considerato, ¢ stata implementata una variante specificamente adattata a HULHE, con
I'obiettivo di valutarne le prestazioni nel confronto diretto. La tesi presenta complessiva-
mente 23 varianti algoritmiche, organizzate in base ai principi metodologici da cui derivano,
fornendo una panoramica sistematica delle strategie di risoluzione piu influenti e delle loro
configurazioni pratiche. Inoltre, viene proposto un approccio euristico che, seppur fondato
su metodi gia utilizzati, rappresenta una variante innovativa, non presente in letteratura, e
che costituisce il contributo originale di questa tesi al problema di gioco tra agenti artificiali
nel’lTHULHE. Prima dell’analisi comparativa, viene fornita una descrizione dettagliata della
struttura del gioco HULHE, delle nozioni fondamentali della teoria dei giochi rilevanti per il
lavoro e dei criteri metodologici adottati per valutare gli algoritmi. Infine, vengono discussi
gli esiti sperimentali dei confronti diretti tra i diversi approcci e viene fornita una sintesi
critica dei risultati ottenuti, includendo le principali limitazioni emerse durante lo sviluppo
delle implementazioni. Questa tesi si configura quindi come un contributo significativo alla
valutazione empirica e all’applicazione pratica degli algoritmi per giochi ad informazione
imperfetta nel contesto del poker HULHE.

Indice

[1__Introduzionel 7
(1.1 Teoria dei Giochi nell'Informatica e poker| 7
(1.2 Equilibrio di Nash e sfruttabilita. 9
(L.3 Giochi in forma estesa e tecniche di astrazionel 11
(1.4 HULHE: regole e logica di gioco| 13
[1.5 Approcci considerati ed obiettivo della tes1| 14

2 Approcci computazionali 17
[2.1 Counterfactual Regret Minimization|. 17

RIT _CERl o oot e e 18
.12 CERH 20
RIS CFRBRI. . . . o oo 22
2.1.4 DDCERI o 24
[2.1.5 Deep-CEFR]o 27
BIG6 _ECEFRI o oo 29
RI7T _MCCERI o o e 31
[2.1.8 Regression CFR]. 33
RI9 SD-CERl 35
RITO TCERI o oo e e 37
[2.2 Fictitious Selt-Play| 40
D2T TSPl . .., 40
................................... 43
[2.3 Metodi basati su Programmazione Lineare e Risposte Ottimalif 46
231 ODOl. . .. 46

232 PSROl
233 XDOI.
2.3 4 NXDOI.
235 BMDOI.
[2.4 Metodi di ricerca e approcci euristici|
AT EHS
.42 MCTS
243 ISMCTS
244 MCRNRI.
2.45 MCCEVEP]

[3 Opponent Modeling Expectimax]
[3.1 Expectimax]
[3.2 OM-Expectimax|.

[3.3 Costo computazionale] L

[4 Risultati sperimentali su HULHE]

[4.1 Configurazione degli esperimenti.

[4.2 Risultati empiricil

B Conclusioni

71
71
73
7

81
81
84
87

91

Capitolo 1

Introduzione

1.1 Teoria dei Giochi nell’Informatica e poker

Sin dai primi sviluppi nel campo dell’informatica, i giochi hanno rappresentato un con-
testo privilegiato per lo sviluppo dell’intelligenza artificiale (IA) e dei primi modelli com-
putazionali. Per oltre mezzo secolo, essi hanno svolto un ruolo centrale nella validazione di
nuove idee e tecniche, contribuendo a traguardi fondamentali nell’avanzamento dell’TA. Tra
i risultati pitt emblematici si annoverano Chinook, primo programma di dama a conquistare
un titolo mondiale contro avversari umani [72], Deep Blue, capace di sconfiggere il cam-
pione del mondo Garry Kasparov negli scacchi [19], e Watson, vincitore contro campioni
umani nel gioco Jeopardy! [28]. Tuttavia, il superamento dei migliori giocatori umani non
coincide necessariamente con la “risoluzione” di un gioco, intesa come la determinazione di
una strategia teoricamente ottimale che non possa essere sconfitta da alcun avversario in
condizioni di gioco corrette.

Il processo di risoluzione di un gioco costituisce infatti un obiettivo fondamentale nello
studio dell’'TA e nell’analisi algoritmica dei giochi strategici. Tra i giochi risolti fino ad oggi,
la quasi totalita appartiene alla categoria dei giochi a informazione perfetta, nei quali ogni
giocatore dispone della piena conoscenza di tutti gli eventi precedenti al momento della
decisione. Scacchi, dama e backgammon rientrano in tale classe. Al contrario, nei giochi
a informazione imperfetta i giocatori non possono osservare completamente lo stato del
gioco, come accade nel bridge, nel poker o nelle aste, dove parte delle informazioni rimane

nascosta. La presenza di informazioni incomplete rende questi giochi piti complessi sia dal

punto di vista teorico sia dal punto di vista computazionale, con un ritardo significativo,
nella letteratura, rispetto ai progressi ottenuti per i giochi a informazione perfetta. E inoltre
rilevante osservare che, mentre quest’ultima categoria risulta comune nei giochi da tavolo,
I'informazione imperfetta ¢ la norma nei processi decisionali reali. In questo senso, gia J.
von Neumann, in una conversazione raccontata da J. Bronowski, sottolineava come la vita
reale fosse caratterizzata da bluff, inganni e inferenza sulle intenzioni altrui, riconoscendo
in tali aspetti il fondamento stesso dei giochi strategici moderni [14].

L’affermazione di von Neumann allude al gioco per eccellenza dell’informazione imper-
fetta: il poker. Esso costituisce il paradigma dei giochi a informazione imperfetta e ha
avuto un ruolo determinante nei primi sviluppi della teoria dei giochi. 1 lavori pionieristici
di Emile Borel [I0] ¢ dello stesso von Neumann [86], 7] furono infatti motivati dalla for-
malizzazione matematica del bluff e delle decisioni probabilistiche tipiche di questo gioco
[12], che oggi ¢ tra i pin diffusi al mondo. La variante attualmente pitt popolare ¢ il Texas
Hold’em; quando e disputata tra due soli giocatori, con puntate fisse e numero massimo di
rilanci, prende il nome di Heads-Up Limit Texas Hold’em (HULHE).

HULHE rappresenta la piu piccola variante di poker praticata a livello competitivo, pur
presentando una complessita considerevole: il gioco pud assumere circa 3,16 x 10'7 stati
distinti, una dimensione superiore a quella di Forza Quattro ma inferiore a quella della
dama. Tuttavia, la natura dell’informazione imperfetta riduce la possibilita dei giocatori di
distinguere molti di questi stati, che differiscono solo per informazioni non osservabili, come
le carte private dell’avversario. Questo porta a circa 3,19 x 10 punti decisionali effettivi,
rendendo HULHE significativamente piu impegnativo da analizzare o risolvere rispetto ai
giochi a informazione perfetta di dimensione anche superiore [12].

Lo studio del poker da parte dell'TA, della ricerca operativa e della psicologia ha una
storia ormai cinquantenaria. Solo ventisette anni fa Koller e Pfeffer affermavano che una
soluzione su larga scala di giochi complessi come il poker fosse probabilmente irraggiungibile
[48]. Allis [1], informatico olandese che ha ottenuto successo nella risoluzione per giochi come
Forza Quattro e Qubic, fornisce tre diverse definizioni di risoluzione di una partita: un gioco
¢ ultra-debolmente risolto se ¢ noto il valore teorico della posizione iniziale; debolmente
risolto se esiste una strategia che garantisce almeno tale valore teorico; fortemente risolto
se per ogni posizione legale € nota una strategia che garantisce il valore ottimale. Tuttavia,
nei giochi a informazione imperfetta tali definizioni incontrano difficolta strutturali, poiché

il valore teorico di una posizione oltre quella iniziale non ¢ univocamente determinato.

Inoltre, la presenza di comportamenti stocastici implica valori non discreti, raggiungibili
solo in media su un numero elevato di partite. Di conseguenza, i valori teorici dei giochi a
informazione imperfetta sono spesso approssimati, quindi un’ulteriore considerazione nella
risoluzione di un gioco ¢ il grado di approssimazione accettabile.

Questa tesi si concentra proprio su HULHE, analizzando le tecniche di risoluzione ap-
prossimata sviluppate negli ultimi anni e valendosi dei risultati ottenuti dal gruppo di ricerca
dell’Universita di Alberta [12], grazie allo sviluppo di algoritmi di apprendimento per rinfor-
zo e di metodi di riduzione dello spazio degli stati. In particolare, si focalizza sull’algoritmo
di minimizzazione del rimpianto controfattuale e sulle sue varianti, che hanno permesso di
avvicinarsi in modo significativo a una strategia quasi perfetta per HULHE. Inoltre, viene
proposto un nuovo approccio euristico, non presente nella letteratura: opponent modeling

expectimax.

1.2 Equilibrio di Nash e sfruttabilita

La rappresentazione classica di un contesto informativo imperfetto ¢ il gioco in forma
estesa, un modello formale di interazione strategica tra agenti razionali applicabile tanto
ai contesti ludici quanto a scenari reali quali aste, negoziazioni o problemi di sicurezza.
Il nucleo di un gioco in forma estesa ¢ costituito da un albero di gioco che descrive la
sequenza dei possibili eventi, comprendenti le azioni dei giocatori e gli esiti casuali. Ogni
ramo dell’albero e associato allo stato del gioco in cui si verifica 'evento corrispondente,
mentre a ciascun nodo decisionale € assegnato un giocatore (o il caso) responsabile della
scelta dell’azione successiva. Le foglie dell’albero denotano la conclusione della partita e
sono etichettate con le utilita associate ai giocatori [12].

Negli stati in cui un giocatore deve prendere una decisione, 'informazione disponibile e
organizzata in insiemi informativi, ovvero insiemi di stati che il giocatore non ¢ in grado di
distinguere, come accade quando l'incertezza deriva da elementi non osservabili, ad esempio
le carte private dell’avversario nel poker. Le azioni disponibili in ciascun insieme informativo
sono rappresentate dai rami in uscita da qualsiasi stato compreso nell’insieme stesso (figura
).

Una strategia per un giocatore e definita come 1’assegnazione, per ogni insieme informa-
tivo, di una distribuzione di probabilita sulle azioni disponibili. Quando il gioco coinvolge

esattamente due giocatori e le utilita terminali sommano sempre a zero, si parla di gioco

Figura 1.1: Parte della rappresentazione in forma estesa del poker Kuhn. Le frecce mostrano
gli eventi tra cui il giocatore che agisce puo scegliere, etichettati con il loro significato nel gioco.
Le foglie sono vertici quadrati etichettati con 'utilita associata per il giocatore 1 (l'utilita del
giocatore 2 ¢ la negazione di quella del giocatore 1). Gli stati collegati da linee grigie spesse fanno
parte dello stesso insieme di informazioni [12].

a somma zero. Il concetto classico di soluzione per i giochi estesi ¢ 1’equilibrio di Nash,
ossia un profilo di strategie in cui nessun giocatore puo migliorare la propria utilita attesa
modificando unilateralmente la propria strategia. In un gioco in forma estesa finita, esiste
almeno un equilibrio di Nash; nei giochi a somma zero, tutti gli equilibri producono la stessa
utilita attesa per ogni giocatore, denominata valore del gioco.

Si definisce invece equilibrio e-Nash una strategia per cui nessun giocatore puo aumentare
la propria utilita attesa di piu di € adottando una strategia alternativa. In accordo con le
categorie introdotte da Allis, un gioco a somma zero e considerato ultra-debolmente risolto
quando ne ¢ determinato il valore teorico, mentre e debolmente risolto quando ¢ identificata
una strategia di equilibrio di Nash. Un gioco e definito essenzialmente debolmente risolto
quando si ottiene un equilibrio e-Nash con un valore di e sufficientemente piccolo da risultare
statisticamente indistinguibile da zero nell’arco di una vita umana di partite giocate [12].

La qualita dell’approssimazione prodotta puo essere valutata attraverso la misura della
sfruttabilita (exploitability), definita come la differenza tra il valore del gioco e l'utilita

attesa ottenibile giocando la strategia considerata contro la miglior risposta dell’avversario

nel caso peggiore. Una strategia fortemente sfruttabile si discosta significativamente dall’e-
quilibrio, mentre una strategia con sfruttabilita prossima a zero e, di fatto, una strategia
quasi perfetta.

Va osservato che una strategia puo risultare sfruttabile in aspettativa, ma cio non impli-
ca necessariamente che I'avversario ottenga un guadagno significativo in un numero finito
di mani, poiché gli esiti del gioco sono soggetti a variabilita stocastica e la strategia stessa
include componenti di randomizzazione. Per tale motivo, si introduce il concetto di solu-
zione essenzialmente risolta. A titolo illustrativo, se si considera un individuo che giochi
200 mani di poker all’ora, per 12 ore al giorno, senza interruzioni, per un periodo di 70
anni, applicando sempre la miglior risposta possibile contro la strategia in esame e non
commettendo alcun errore, i risultati di un numero cosi elevato di mani sarebbero in ogni
caso soggetti al teorema del limite centrale, con la distribuzione delle vincite complessive
che tende a una normale. Ne consegue che, almeno una volta su venti, ’esito totale potra
risultare 1,64 deviazioni standard al di sotto del valore atteso, anche contro una strategia
perfettamente ottimale [12].

Utilizzando il valore della deviazione standard per singola mano in HULHE, riportato
pari a circa 5 big blind per partita (5 bb/g), € possibile derivare una soglia di sfruttabilita
tale da rendere statisticamente indistinguibile una strategia approssimata da una soluzione
perfetta. In particolare, una strategia con una sfruttabilita inferiore a 1 milli-big-blind per
partita (1 mbb/g) non puo essere distinta da una strategia di equilibrio neppure su un
orizzonte pari alla vita intera del giocatore nel caso peggiore. Essa presenta, addirittura,
una probabilita non trascurabile (1 su 20) di prevalere contro la miglior risposta assoluta
anche dopo milioni di mani [12].

Per questa ragione, la soglia di 1 mbb/g ¢ adottata come criterio per dichiarare '"HULHE
essenzialmente debolmente risolto. Strategie la cui sfruttabilita ricade al di sotto di tale

limite sono, a tutti gli effetti pratici, indistinguibili da una soluzione esatta del gioco.

1.3 Giochi in forma estesa e tecniche di astrazione

Nel poker, una strategia pud essere rappresentata come una terna di probabilita (f,c,r)
associata a ciascun insieme informativo. In tale notazione, f indica la probabilita di abban-
donare (fold), ¢ la probabilita di vedere o chiamare (call), ed r la probabilita di puntare o

rilanciare (raise), con il vincolo f4+c+r=1. Una risposta ottimale ¢ definita come la strategia

che massimizza l'utilita attesa di un agente contro l'insieme delle strategie adottate dagli
altri partecipanti al gioco. Ogni strategia che compone un profilo di equilibrio di Nash
costituisce, per definizione, una risposta ottimale alle strategie degli altri agenti presenti
nel profilo. Se un singolo agente mantiene la propria strategia di equilibrio mentre gli altri
deviano, esso potrebbe ottenere un’utilita maggiore o minore deviando a sua volta; tuttavia,
nessuna deviazione unilaterale risulta vantaggiosa se tutti mantengono la strategia prevista
dal profilo di equilibrio. Nei giochi a somma zero e a due giocatori, i profili strategici di
equilibrio assumono un’importanza particolare, poiché presentano proprieta aggiuntive che
li rendono strumenti fondamentali per I’analisi e la soluzione del gioco [93].

L’astrazione delle carte costituisce il metodo piu diffuso per ridurre la complessita del-
I’albero decisionale nei giochi di poker. L’approccio piu semplice consiste nell’applicare una
metrica alle mani, come la forza della mano attesa (Expected Hand Strength, E[HS]) [6], e
nel raggruppare all’interno dello stesso bucket le mani che presentano valori metrici simili.
Nel bucket percentile, ciascun raggruppamento contiene approssimativamente lo stesso nu-
mero di mani, mentre nel bucket uniforme l'intervallo metrico [0,1] viene suddiviso in modo
uniforme in N sottointervalli: tutte le mani il cui valore ricade in [0,1/N] vengono assegnate
al primo bucket, quelle in [1/N,2/N] al secondo, e cosi via.

Nel poker esistono pero molte mani che, pur non essendo particolarmente forti in una
fase iniziale, possiedono un elevato potenziale di miglioramento nelle fasi successive (ad
esempio, un progetto di scala o di colore). Una metrica alternativa particolarmente efficace,
in grado di incorporare tale potenziale, ¢ la forza della mano attesa al quadrato, ossia
E[HS?] [41]. Anche questa metrica ¢ definita nell’intervallo [0,1] e valuta il valore atteso
del quadrato della forza della mano, enfatizzando le mani con alto potenziale futuro.

Attraverso queste tecniche di astrazione, un gioco di carte viene trasformato in un gioco
basato su bucket, in cui tutte le mani appartenenti allo stesso bucket vengono trattate come
indistinguibili e quindi giocate nello stesso modo. Gli insiemi informativi rappresentano
quindi i bucket anziché mani individuali. Se ’astrazione e costruita in modo che ciascun
giocatore mantenga memoria perfetta di tutte le azioni precedenti contenute nei rispettivi
insiemi informativi, essa e definita astrazione a richiamo perfetto. Con richiamo perfetto e
N bucket per ciascun round, si ottengono N sequenze preflop, N? sequenze al flop, N al
turn e N* al river. Nel caso di un’astrazione a 2 bucket, cid comporta 2* = 16 sequenze di

bucket al river.

Per ridurre ulteriormente le dimensioni dell’albero di gioco, € possibile adottare un’astra-
zione a richiamo imperfetto, in cui gli insiemi informativi derivanti da bucket diversi possono
confluire in uno stesso insieme informativo nei round successivi, riducendo cosi in maniera
significativa le dimensioni dell’albero di gioco. L’albero risultante assume la struttura di
un grafo aciclico orientato, pit compatto rispetto all’albero completo. Nei casi piu estremi,
i bucket dei round precedenti vengono completamente dimenticati: il giocatore conserva
esclusivamente la sequenza di puntate (betting sequence) e il bucket del round corrente.
Ad esempio, invece di adottare un’astrazione a richiamo perfetto con 2 bucket per round, e
possibile costruire un albero di gioco di dimensioni comparabili utilizzando un’astrazione a
richiamo imperfetto con 16 bucket. Tale approccio consente una rappresentazione piu fine

delle mani pur mantenendo invariata, o quasi, la complessita computazionale complessiva
[93].

1.4 HULHE: regole e logica di gioco

Il Texas Hold’em Heads-Up Limit [I3] ¢ una variante del poker caratterizzata da una
struttura a due giocatori e da una natura ripetuta della partita: i contendenti disputano
una sequenza di mani successive, alternandosi nel ruolo di dealer. In ciascuna mano uno
dei due giocatori ottiene un certo numero di fiches dall’avversario, e I'obiettivo complessivo
€ massimizzare il proprio guadagno lungo l'intero arco della sessione.

Ogni mano ha inizio con il versamento obbligatorio dei bui: il giocatore iniziale posta lo
small blind, mentre I'altro piazza il big blind, pari al doppio dello small blind. La partita
procede poi attraverso quattro round distinti — preflop, flop, turn e river — ciascuno
composto da una fase di distribuzione delle carte e da una fase di puntate. Nel preflop,
a entrambi i giocatori vengono assegnate due carte private non visibili all’avversario; nei
round successivi vengono invece rivelate carte comuni al centro del tavolo, per un totale di
cinque: tre al flop, una al turn e una al river.

Dopo la distribuzione, i giocatori agiscono alternandosi tra tre opzioni: fold, call o
raise. Passare (fold) significa rinunciare a pareggiare I'ultima puntata avversaria, cedendo
immediatamente il piatto. Il call (“chiamare” o “vedere”) consiste nell’aggiungere al piatto
I'importo necessario per eguagliare la puntata corrente, consentendo il passaggio al round
successivo. Il rilancio (raise), infine, comporta sia il pareggio della puntata avversaria sia

I’aggiunta di ulteriori fiches per imporre una nuova puntata. All’inizio di un round, quando

non sono presenti puntate, un rilancio viene denominato bet, ossia una puntata, mentre una
chiamata priva di costo prende il nome di check; se entrambi i giocatori effettuano check, il
round termina.

Nel formato Limit, I'ammontare delle puntate ¢ fisso: nei round preflop e flop I'importo
e detto small bet ed e pari al big blind, mentre nei round turn e river si usa la big bet, pari
al doppio del big blind. L’azione procede a partire dal giocatore non-dealer in tutti i round,
tranne nel preflop, dove tocca al dealer decidere se abbandonare, chiamare o rilanciare la
puntata del big blind. In ogni round sono consentite al massimo quattro puntate o rilanci
complessivi; una volta raggiunto il limite, il giocatore che deve agire puo soltanto chiamare
0 passare.

Se anche dopo il river nessun giocatore ha scelto di abbandonare, la mano si conclude
con lo showdown: entrambi rivelano le proprie carte private e il vincitore ¢ determinato
dalla migliore combinazione di cinque carte ottenibile utilizzando liberamente le due carte
personali e le cinque comuni. Indipendentemente dall’esito (abbandono o showdown), al
termine della mano i giocatori si scambiano i ruoli e ne avviano una nuova.

Poiché il gioco puo essere disputato con strutture di puntata molto diverse, le prestazioni
dei giocatori vengono tipicamente misurate in unita normalizzate, ossia i milli-big-blind per
mano (mbb/g). Un milli-big-blind corrisponde a un millesimo di big blind, e questa metrica
consente di confrontare strategie indipendentemente dalla posta specifica. Un giocatore
che foldasse sistematicamente perderebbe in media 750 mbb/g, corrispondenti ai contributi
obbligatori dei bui. Nel gioco professionale, ¢ opinione comune che un giocatore esperto
debba mirare ad ottenere almeno 50 mbb/g dai propri avversari. La stessa unita di misura

viene utilizzata anche per quantificare la sfruttabilita.

1.5 Approcci considerati ed obiettivo della tesi

Alla luce dei concetti esposti nei paragrafi precedenti, risulta possibile delineare con
chiarezza il quadro teorico entro il quale si colloca questa tesi. L’analisi del poker Heads-
Up Limit Hold’em consente infatti di ricondurre il problema della decisione ottimale a un
insieme strutturato di principi propri della teoria dei giochi. Nozioni quali equilibrio di
Nash, strategia ottimale, sfruttabilita e valore atteso assumono un ruolo centrale sia nella
rappresentazione formale del dominio sia nella valutazione delle strategie computazionali

che verranno discusse.

Il carattere sequenziale e stocastico dellHULHE, unito alla natura imperfetta dell’in-
formazione disponibile ai giocatori, rende il problema particolarmente adatto allo studio
di algoritmi di ottimizzazione strategica. Tali algoritmi mirano ad approssimare strategie
sempre piu vicine all’equilibrio o, in alternativa, a ottenere politiche particolarmente adatte
nello sfruttamento delle debolezze di avversari non ottimali.

L’obiettivo principale della tesi & confrontare una selezione rappresentativa di tali me-
todi, appartenenti a diverse famiglie concettuali. In particolare, verranno approfonditi gli
algoritmi basati sulla minimizzazione del rimpianto (regret minimization), le tecniche ricon-
ducibili al fictitious play e alle sue estensioni neurali, le metodologie di ricerca e simulazione,
nonché approcci alternativi quali gli algoritmi euristici e i metodi fondati sulla programma-
zione lineare. Il confronto tra queste differenti paradigmi consentira di evidenziare punti
di forza, limiti operativi ed eventuali particolarita e similitudini, con 1’obiettivo di ottenere
una visione organica delle principali strategie computazionali applicabili al’lHULHE. Inoltre,
verra proposto un nuovo contributo algoritmico, basato su un modello euristico gia esistente,
ma adattato allo specifico contesto del poker HULHE e migliorato concettualmente.

I capitoli successivi presenteranno quindi in modo sistematico le famiglie di algoritmi
considerate, illustrandone i principi teorici, le modalita di implementazione e i risultati spe-
rimentali ottenuti. Tale percorso consentira di valutare criticamente 'efficacia delle diverse
soluzioni analizzate nel contesto specifico del poker Heads-Up Limit Hold’em, contribuendo
cosl a una comprensione approfondita delle tecniche di risoluzione nei giochi a informazione

imperfetta.

Capitolo 2

Approcci computazionali

2.1 Counterfactual Regret Minimization

La famiglia di algoritmi Counterfactual Regret Minimization (CFR) rappresenta oggi
I’approccio piu diffuso e di maggiore successo per I'approssimazione di equilibri in giochi
a informazione imperfetta. Il metodo si basa su un processo iterativo di auto gioco tra
due algoritmi che minimizzano il rimpianto, ovvero la perdita di utilita che un algoritmo
subisce per non aver selezionato la migliore strategia deterministica. L’equilibrio di Nash
approssimato ¢ ottenuto attraverso la media delle strategie iterate dei giocatori, con qualita
crescente al crescere del numero di iterazioni.

Nel corso degli anni, 1’algoritmo originario CFR é stato oggetto di numerose estensioni
e varianti — tra cui CFR+, TCFR, DDCFR, ECFR, DeepCFR, SDCFR, RCFR, CFR-
BR e MCCFR — sviluppate con l'obiettivo di migliorare 'efficienza computazionale, la
velocita di convergenza e la qualita delle strategie ottenute, portando inoltre alla risoluzione
essenzialmente debole di HULHE nel 2015 [12].

L’analisi comparativa di tali approcci risulta pertanto cruciale per comprendere I'evolu-
zione delle tecniche moderne di risoluzione dei giochi ad informazione imperfetta e il loro

impatto nelle applicazioni al poker competitivo.

17

2.1.1 CFR

Contesto e descrizione algoritmo. L’approccio di CFR (Counterfactual Regret Mini-
mization), cosi come le varianti basate su di esso, ha come aspetto fondamentale, come
accennato in precedenza, cio che nella letteratura ad esso dedicata viene indicato come
“rimpianto” [12].

Il concetto di rimpianto rappresenta la differenza tra 'utilita massima potenzialmente
ottenibile scegliendo, in retrospettiva, I’azione migliore possibile, e I'utilita effettivamente
conseguita mediante ’azione intrapresa. CFR si propone di minimizzare, per ogni insieme
informativo, il rimpianto controfattuale immediato positivo [68].

Nel lavoro fondativo di Zinkevich et al. (2008) [93] & dimostrato formalmente che ridurre
il rimpianto controfattuale immediato positivo equivale a minimizzare il rimpianto medio
complessivo. Inoltre, in un gioco a due giocatori con somma zero e richiamo perfetto,
minimizzare il rimpianto medio di entrambi i giocatori conduce a un profilo strategico che
e un equilibrio e-Nash.

Johanson [41] ha fornito una descrizione dettagliata dell’implementazione del CFR per
giochi generali a due giocatori con richiamo perfetto e, in particolare, per il poker heads-up.
Questo approccio ha segnato una svolta nel calcolo di strategie di equilibrio, soprattutto in
giochi a informazione imperfetta, poiché la complessita di memoria cresce proporzionalmente
al numero di insiemi informativi e non al numero totale degli stati, un vantaggio cruciale
rispetto ai risolutori basati sulla forma di sequenza [12]. Grazie a tali risparmi, Zinkevich
et al. [03] sono riusciti a risolvere astrazioni di poker molto pit grandi rispetto alle tecniche
precedenti. Un’altra proprieta importante del CFR e la capacita di calcolare la risposta
ottimale (best response) in giochi astratti contro un avversario statico, come discusso da
Johanson [41].

L’algoritmo CFR si fonda sull’idea di decomporre il rimpianto complessivo accumulato
da un giocatore nel corso delle partite in una serie di termini elementari, ciascuno associato
a un singolo insieme informativo del gioco. Tale decomposizione consente di minimizzare
il rimpianto in maniera indipendente in ciascun punto decisionale, rendendo cosi possibile
I’apprendimento progressivo di strategie che convergono verso un equilibrio approssimato. Il
concetto centrale introdotto dall’algoritmo ¢ quello di counterfactual regret, un tipo di rim-

pianto definito a livello dell’insieme informativo e formulato affinché contribuisca a limitare

il rimpianto globale del giocatore [93].

A partire da cio, l'utilita controfattuale w;(o, I) del giocatore i (dove o ¢ la strategia
complessiva) viene definita come l'utilita attesa condizionata sul raggiungimento dell’insie-
me informativo I, assumendo che tutti i giocatori seguano la strategia o, con I’eccezione del
fatto che il giocatore 7 forza il gioco verso 'insieme informativo stesso. Tale quantita incor-
pora, quindi, la probabilita controfattuale con cui I sarebbe stato raggiunto se il giocatore
avesse scelto di perseguirlo.

Per ogni azione a € A(I), si definisce inoltre la strategia modificata o|;_,, identica a o
tranne per il fatto che in I il giocatore i seleziona determinatamente ’azione a. Il rimpianto
controfattuale immediato, ovvero la quantita che ’algoritmo si propone di minimizzare,
misura la differenza tra 1'utilita ottenuta scegliendo un’azione alternativa rispetto a quella
effettivamente adottata in ciascuna iterazione [93].

Un risultato fondamentale dimostrato dallo studio di Zinkevich et al. (2008) [93] afferma
che il rimpianto complessivo e limitato dalla somma dei rimpianti controfattuali positivi
accumulati nei singoli insiemi informativi. Cio implica che la minimizzazione del rimpianto
controfattuale in ciascun punto decisionale garantisce automaticamente la minimizzazione
del rimpianto globale del giocatore, permettendo dunque ’avvicinamento a un equilibrio di
Nash anche senza operare su uno spazio di decisione complessivo.

Per realizzare tale minimizzazione locale, I’algoritmo adotta un meccanismo di aggior-
namento ispirato alla teoria dell’approachability di Blackwell [93]. Per ogni insieme infor-
mativo e per ogni azione, viene mantenuta una stima del rimpianto medio accumulato nelle
iterazioni precedenti. Al termine di ciascuna iterazione, questi valori sono aggiornati in
base alla differenza tra 1'utilita controfattuale associata all’azione considerata e quella deri-
vante dalla strategia attuale. La strategia per l'iterazione successiva viene quindi ottenuta
assegnando probabilita proporzionali ai rimpianti positivi delle azioni disponibili; nel caso
in cui tali rimpianti risultino nulli, le azioni vengono selezionate in maniera uniforme. Tale
regola di aggiornamento consente di garantire una decrescita sub-lineare del rimpianto nel

tempo, e quindi di convergere verso una strategia approssimativamente equilibrata.

Costo computazionale. Una volta definita un’astrazione appropriata del gioco, CFR vie-
ne utilizzato per calcolare una strategia di equilibrio approssimata dell’intero gioco astratto.
L’algoritmo procede memorizzando e aggiornando per ogni insieme informativo i valori di

rimpianto e le strategie correnti, consentendo I’apprendimento progressivo di una politica

sempre piu solida. E stato descritto, inoltre, un metodo di campionamento delle azioni,
che riduce il numero di stati rilevanti in ciascuna iterazione e consente un’accelerazione

computazionale significativa senza comprometterne la correttezza teorica [93].

Risultati raggiunti. Sebbene le garanzie teoriche dell’algoritmo CFR siano originaria-
mente limitate a giochi a due giocatori, somma zero e richiamo perfetto, nella pratica il
CFR si e dimostrato sorprendentemente robusto anche quando alcune di queste condizioni
vengono allentate. In particolare, sono stati sviluppati agenti di poker heads-up con richia-
mo imperfetto che si sono rivelati estremamente efficaci [68]. Ulteriori ricerche hanno esteso
I'utilizzo del CFR anche ai giochi a somma non zero, generando agenti con bassa sfrutta-
bilita che risultano particolarmente efficaci contro giocatori umani, grazie a una maggiore
aggressivita combinata con la tendenza umana ad abbandonare frequentemente [68].

Nonostante le sue potenzialita, il CFR non offre comunque garanzie teoriche generali
per i giochi multigiocatore a somma zero. Tuttavia, nel corso di alcuni esperimenti, ¢ stato
dimostrato che il CFR puo effettivamente generare agenti vincenti anche in scenari con
piu giocatori. In particolare, un agente a tre giocatori con richiamo imperfetto e un altro
con richiamo perfetto, entrambi prodotti da CFR, ottennero rispettivamente il primo e il
secondo posto nella CP Competition del 2009 [68].

2.1.2 CFR+

Contesto e descrizione algoritmo. I Counterfactual Regret Minimization Plus (CFR+)
costituisce una variante avanzata dell’algoritmo CFR, progettata nel 2015 specificamente
per affrontare la risoluzione di giochi a informazione imperfetta caratterizzati da alberi
di gioco di dimensioni estremamente elevate, come nel caso dell’'Heads-Up Limit Hold’em
(HULHE) [12].

L’applicazione delle varianti consolidate di CFR a giochi di tale scala incontra due
sfide fondamentali: la gestione della memoria e i requisiti computazionali. Da un lato,
I’algoritmo deve memorizzare sia la strategia risultante sia i rimpianti accumulati per ogni
insieme informativo. Anche adottando una rappresentazione con numeri in virgola mobile
a precisione singola (4 byte), lo spazio di archiviazione richiesto ammonterebbe a circa 262

terabyte [12], una quantita incompatibile con le risorse di memoria principale dei sistemi di

calcolo. Dall’altro lato, ’esperienza maturata nell’ambito dell’algoritmica per giochi estesi
indica che un incremento di tre ordini di grandezza nel numero di insiemi informativi tende
a tradursi, almeno, in un aumento di pari entita del tempo computazionale richiesto.
CFR~+ nasce proprio per superare parte di tali limitazioni [12]: le implementazioni con-
venzionali di CFR si basano su un campionamento selettivo delle porzioni dell’albero da
aggiornare a ogni iterazione e adottano il metodo del regret-matching, il quale conserva e
aggiorna i rimpianti di ciascuna azione, selezionandole con probabilita proporzionale ai rim-
pianti positivi. Al contrario, CFR+ compie iterazioni complete sull’intero albero di gioco
e utilizza il regret-matching+, una variante in cui i rimpianti negativi vengono troncati a
zero. Questo accorgimento consente alle azioni precedentemente considerate subottimali —
e quindi caratterizzate da rimpianti negativi — di ritornare selezionabili non appena si di-
mostrino nuovamente promettenti, senza attendere numerose iterazioni affinché il rimpianto

accumulato diventi positivo.

Costo computazionale. Un grande vantaggio di CFR+ ¢ stato osservato empiricamente:
durante I'esecuzione, la sfruttabilita delle strategie intermedie tende a convergere regolar-
mente verso zero. Di conseguenza, non e necessario calcolare e memorizzare la strategia
media, come avviene nel CFR tradizionale; si puo invece utilizzare direttamente la strategia
corrente come soluzione approssimata.

Dato un insieme di azioni A e una qualunque sequenza di funzioni valore
vt A= R,
definita per t = 1,..., T, esiste un limite L tale che
|vi(a) — v ()] < L per ognit e per tutti a,b € A.

In tali condizioni, un agente che seleziona le proprie azioni secondo l’algoritmo di regret-
matching+ presenta un rimpianto massimo limitato da un valore dipendente da L e dal
numero di iterazioni 7T'. In altri termini, regret-matching+ garantisce che il rimpianto cresca
in maniera controllata, fornendo cosi una base teorica solida alle proprieta di convergenza

di CFR+ [93].

Lo studio condotto dall’Universita di Alberta [93] mostra come, grazie a una combi-
nazione di compressione in streaming e gestione accurata dell’l/O su disco, il fabbisogno
di memoria venga ridotto a circa 10.9 TiB. Inoltre, nonostante CFR+ conservi le stesse
garanzie asintotiche di CFR classico (decrescita del rimpianto come O(1/+/T)), in pratica
mostra una riduzione drastica del numero di iterazioni necessarie per raggiungere una data
soglia di sfruttabilita. Nel lavoro viene riportato che il processo di soluzione di HULHE
tramite CFR+ ha richiesto complessivamente circa 900 core-year di calcolo, distribuiti su

un cluster di 4800 CPU, completando la computazione in 68 giorni di tempo reale.

Risultati. Nel lavoro dell’Universita di Alberta, CFR+ viene applicato al gioco Heads Up
Limit Hold’em (HULHE) portando a risultati di notevole rilevanza per il campo dei giochi a
informazione imperfetta. Infatti, la ricerca documenta che il gioco e stato “essenzialmente
risolto”, nel senso che l'algoritmo ha generato una strategia la cui sfruttabilita ¢ stata
portata a un livello tale da renderla praticamente indiscutibile in un contesto competitivo.

Grazie a questo successo, CFR+ ha portato, per la prima volta nella storia, alla risolu-
zione di un gioco a informazione imperfetta praticato in modo competitivo da esseri umani
[12].

2.1.3 CFR-BR

Contesto e descrizione algoritmo. L’algoritmo CFR-BR (CFR Best Response) nasce
come conseguenza diretta degli studi di Waugh et al. [89, [O0] sulle patologie di astrazio-
ne nei giochi estesi. In tali lavori ¢ stato dimostrato che, quando si risolve un gioco in
cui un giocatore opera mediante un’astrazione dello spazio degli stati mentre I'avversario
utilizza il modello completo, un raffinamento piu accurato dell’astrazione conduce a una
diminuzione monotona della sfruttabilita del giocatore astratto. Inoltre, la strategia del
giocatore astratto in tali condizioni coincide, per definizione, con la strategia meno sfrutta-
bile rappresentabile all’interno dello spazio astratto, poiché diversamente non costituirebbe
un equilibrio.

Sulla base di queste osservazioni, CFR-BR si propone come un algoritmo progettato
specificamente per risolvere un gioco in cui 'avversario non e astratto, utilizzando la rap-

presentazione completa dello spazio informativo. Cio viene ottenuto senza la necessita di

memorizzare esplicitamente l'intera strategia dell’avversario non astratto, evitando cosi un
considerevole utilizzo di memoria [44].

L’algoritmo CFR-BR si articola in due componenti fondamentali. Il primo passo consi-
ste nell’introdurre un meccanismo alternativo per generare la strategia dell’avversario non
astratto. L’uso del CFR per aggiornare la strategia di un giocatore rappresenta una moda-
lita per costruire un agente che minimizza il rimpianto. Tuttavia, una best response (BR)
costituisce anch’essa un agente che minimizza il rimpianto: scegliendo sempre 'azione a
valore massimo, infatti, la BR ottiene rimpianto nullo a ogni iterazione.

Nel contesto di CFR-BR, un agente che aggiorna la propria strategia scegliendo sempre
la risposta ottimale all’azione dell’avversario e definito come agente BR. La sua strategia, a
ogni iterazione, coincide quindi con una risposta ottimale alla strategia dell’avversario nella
medesima iterazione [44]. Poiché il giocatore 1 utilizza CFR, si ha RT < & dopo T iterazioni
[93].

Costo computazionale. L’utilizzo di un agente BR non astratto comporta due vantaggi
rilevanti. In primo luogo, la compattezza della rappresentazione: essendo la strategia BR
una strategia pura, essa puo essere rappresentata in modo molto pit compatto rispetto
a una strategia comportamentale che assegni probabilita a ogni azione. Inoltre, ¢ stato
dimostrato [44] che, quando un agente CFR gioca contro una BR, l'intera sequenza delle
sue strategie correnti converge a un equilibrio di Nash con elevata probabilita. Nel CFR
tradizionale converge soltanto la strategia media, ma in CFR-BR questa proprieta consente
di evitare il tracciamento della strategia media, riducendo il fabbisogno di memoria per
I’agente CFR di circa la meta.

Nonostante i suoi punti di forza concettuali, CFR-BR presenta ancora due criticita che
ne ostacolano ’applicazione diretta a giochi di grandi dimensioni.

In primo luogo, sebbene una strategia di risposta ottimale possa essere rappresentata in
forma compatta, la sua dimensione rimane comunque troppo elevata per essere gestita con
risorse computazionali realistiche. In secondo luogo, il calcolo di una risposta ottimale non ¢
un’operazione banale. Johanson et al. [44] hanno introdotto una tecnica di risposta ottimale
accelerata specifica per il poker, in grado di ridurre drasticamente il costo computazionale:
essa richiede circa 76 giorni di CPU ed e completamente parallelizzabile, portando il tempo
effettivo ad appena un giorno. Sebbene tale contributo abbia reso praticabile un’operazione

precedentemente ritenuta intrattabile, 'utilizzo di questa procedura all’interno di CFR-BR

risulterebbe comunque oneroso, poiché la risposta ottimale dovrebbe essere ricalcolata a

ogni iterazione dell’algoritmo per garantire la convergenza verso una soglia desiderata.

Risultati. L’applicazione della tecnica CFR-BR al gioco HULHE permette di studiare in
che modo la scelta della divisione dell’albero di gioco influenzi i requisiti di memoria e la
velocita di convergenza dell’algoritmo. Nei risultati dell’Hold’em, ¢ stato adottato un trunk
a un round: in ciascuna iterazione vengono campionate le carte pubbliche rivelate all’inizio
del secondo round, mentre il resto della mano viene esplorato come sotto-gioco [44].

Gli studi [44] mostrano che la memoria richiesta cresce rapidamente all’aumentare dei
round campionati: mentre un campionamento a un round richiede pochi megabyte, uno
a tre round arriva a superare i 350 GB. Per confronto, una soluzione CFR non astratta
richiederebbe oltre 140 TB di RAM, rendendola di fatto impraticabile.

Gli esperimenti [44] mostrano che, in concomitanza all’aumentare delle iterazioni e alla
scelta di uno specifico numero di bucket con cui creare I’astrazione, CFR-BR riesce a trovare
la strategia ottimale.

Poiché I'algoritmo individua la strategia meno sfruttabile all’interno di un’astrazione,
puo sostituire CFR in questo compito misurando direttamente la capacita di un’astrazione

di rappresentare una buona approssimazione a un equilibrio di Nash [44].

2.1.4 DDCFR

Contesto e descrizione algoritmo. L’approccio Dynamic Discounted Counterfactual Re-
gret Minimization (DDCFR) nasce come estensione e perfezionamento degli algoritmi di
CFR. Esso rappresenta il primo metodo di ricerca dell’equilibrio capace di applicare uno
sconto alle iterazioni precedenti mediante uno schema dinamico appreso automaticamente.
Tale meccanismo consente di ottenere una capacita di generalizzazione piu elevata, una
convergenza piu rapida e, complessivamente, prestazioni migliorate rispetto alle varianti
tradizionali di CFR [92], applicando lo sconto sia ai rimpianti sia alla strategia media per
accelerare la convergenza. In questo caso, il peso assegnato alle iterazioni passate decresce
in funzione di tre iper-parametri («, 3,7) [92].

L’idea fondante del DDCFR consiste nell’incapsulare il processo iterativo del CFR al-

I'interno di un ambiente, trattando lo schema di sconto come un agente che interagisce

con esso. In tale configurazione, I'agente riceve lo stato corrente del processo di iterazione
e produce un’azione composta dai pesi di sconto da utilizzare nell’iterazione successiva. Il
procedimento si ripete fino al raggiungimento del numero massimo di iterazioni. L’obiettivo
dell’agente ¢ apprendere una politica di sconto ottimale capace di selezionare dinamicamen-
te pesi adeguati per ciascuna iterazione, minimizzando in tal modo la sfruttabilita delle
strategie medie generate (si veda figura .

N lized Environments
Iteration 1 /_ el
State > Current Strategy)
Wormalized £ ES el ,l. Traverse the Game Tree
Exploitability (Instantanecus Reprets (Eqnl))
oy, f.l': + Y wlv oxg, [

l I Adtion———""",;| (Dpdate Comulative Regret= (Eqn 3))
iy Duration ¢ J Resret Matching

(___ NewStrategy (Egn2))

e 4 B
Reward R \ —(_Update Average Strategy (Eqn4))

Figura 2.1: Funzionamento del ciclo iterativo di DDCFR [92].

Formalmente, I'interazione tra agente e ambiente in un dato gioco G definisce un pro-
cesso decisionale di Markov (MDP), rappresentato come (G, S, A, Pg, Rg) Ogni gioco G
costituisce un ambiente distinto, mentre lo stato s; € S raccoglie le informazioni osservabili
dall’agente all’iterazione ¢, includendo elementi quanto piu generali e trasferibili possibile,
cosi da permettere all’agente di prendere decisioni efficaci nella scelta dei pesi di sconto e
di garantire al contempo la generalizzabilita dello schema appreso a giochi diversi.

A tal fine DDCFR utilizza uno spazio degli stati indipendente dal gioco, composto da
due elementi: I'iterazione normalizzata ¢, definita come il rapporto tra l'iterazione corrente
t e il numero totale di iterazioni previste; e la sfruttabilita normalizzata E’f_ 1, calcolata
utilizzando EY, EY | ed Ep, rispettivamente la sfruttabilita delle strategie medie del gioco
G all’iterazione 1 e all'iterazione t—1 ed il valore minimo raggiungibile di sfruttabilita, fissato
pari a 1072 [92].

A ogni iterazione t, I’agente osserva lo stato corrente s; e produce un’azione a;. L’algo-
ritmo applica quindi i pesi di sconto determinati da ay, 5; e 4 per un totale di 7; iterazioni
consecutive, al termine delle quali lo stato evoluto diviene s4,,,. Questo meccanismo per-

mette di utilizzare ciascun insieme di pesi per una sequenza di iterazioni, anziché aggiornarli

continuamente. La funzione di ricompensa valuta le prestazioni dell’agente e guida 1’ap-
prendimento. Poiché l'obiettivo e ridurre la sfruttabilita, viene utilizzata una ricompensa
sparsa, assegnata solo al termine dell’addestramento e basata sul miglioramento ottenuto
tra l'inizio e la fine delle iterazioni. L’agente ¢ modellato come una rete neurale parame-
trizzata da 6, che definisce una politica my. Per ogni gioco GG, I'obiettivo € massimizzare la
ricompensa finale; considerando 'intero insieme dei giochi di addestramento, si massimizza
la ricompensa media, ottenendo cosi una politica di sconto generalizzabile anche a giochi

non visti [92].

Costo computazionale. Rispetto al DCFR, 'algoritmo DDCFR introduce alcuni costi
computazionali aggiuntivi, riconducibili principalmente a tre componenti: il calcolo delle
feature, l'inferenza della rete neurale e ’addestramento della politica di sconto. Tuttavia,
tali costi aggiuntivi risultano marginali rispetto al tempo complessivo di esecuzione [92].

Il costo computazionale associato alla fase di addestramento e giustificato dal fatto che
la politica di sconto appresa puo essere riutilizzata direttamente in numerosi giochi differenti
senza richiedere alcuna modifica. Di conseguenza, I'investimento computazionale sostenuto
durante ’addestramento viene ammortizzato attraverso tutte le istanze in cui la politica

viene applicata [92].

Risultati. Gli studi dimostrano come DDCFR addestrato su quattro giochi di piccola scala
(Kuhn Poker, Goofspiel-3, Liar’s Dice-3, Small Matrix) e testato su otto giochi complessi,
inclusi varianti di Leduc Poker, Battleship, e sotto-giochi di Heads-Up No-Limit Texas
Hold’em (HUNL) abbia portato a diversi risultati. Nei giochi di training, DDCFR converge
molto piu rapidamente, come atteso; nei giochi di test (mai visti durante ’addestramento),
DDCFR dimostra una notevole capacita di generalizzazione [92].

Durante ’addestramento i parametri appresi mostrano un comportamento dinamico
coerente tra i diversi giochi: a; tende ad aumentare, mentre ; e v; diminuiscono nel tempo,
indicando un approccio piu aggressivo nelle prime fasi e una maggiore stabilita nelle ultime
[92].

2.1.5 Deep-CFR

Contesto e descrizione algoritmo. Deep Counterfactual Regret Minimization(Deep-
CFR) viene introdotto come metodologia volta a superare i limiti dei processi di astrazione
tipicamente utilizzati in algoritmi tabulari, con ’obiettivo principale di approssimare il com-
portamento del CFR classico senza dover calcolare e memorizzare esplicitamente i rimpianti
in ciascun singolo insieme informativo. Tale risultato viene ottenuto generalizzando su stati
simili mediante 1'utilizzo dell’approssimazione funzionale basata su reti neurali profonde.

A ogni iterazione t, Deep CFR esegue un numero costante K di attraversamenti parziali
dell’albero di gioco; ciascun attraversamento ¢ guidato dal meccanismo di campionamento
esterno (external sampling) MCCFR. In un qualsiasi insieme informativo / incontrato du-
rante l'esplorazione, I’algoritmo adotta una strategia oy(I) determinata dal regret-matching
applicato all’output di una rete neurale V : I — R4l parametrizzata da 9};71). La rete
prende in input 'insieme informativo I e restituisce in output valori V(I,a | 65 "), i quali
dovrebbero risultare approssimativamente proporzionali ai rimpianti R*~Y (1, a) che il CFR
tabulare avrebbe prodotto nel gioco completo [17].

Quando I'attraversamento raggiunge un nodo terminale, il valore di ritorno viene pro-
pagato verso l'alto. Negli stati di natura casuali (stati chance) e negli stati appartenenti
all’avversario, il valore relativo all’azione campionata viene ritrasmesso senza modifiche.

Negli stati decisionali del giocatore in esame, invece, il valore propagato e la media
ponderata dei valori delle possibili azioni, con pesi pari a 0;(1, a). Tale meccanismo produce
campioni dei rimpianti istantanei per le diverse azioni nello stato considerato.

Questi campioni vengono memorizzati in una struttura dedicata M, ,, distinta per cia-
scun giocatore p. Qualora la capacita della memoria venga superata, si utilizza la tecnica
del reservoir sampling [85], che consente di mantenere un campione non distorto rispetto
alla distribuzione originaria.

Completati i K attraversamenti di un giocatore, viene addestrata una nuova rete neura-
le, inizializzata casualmente, al fine di determinare i nuovi parametri 91(,”. L’addestramento
mira a minimizzare I'errore quadratico medio (MSE) tra il vantaggio predetto V,(I,a | §®)
e i campioni di rimpianti istantanei raccolti nelle iterazioni precedenti ¢ < t e conserva-

ti nella memoria [I7]. La media complessiva dei vantaggi istantanei campionati #*)(I, a)

risulta proporzionale al rimpianto totale campionato Rt(l ,a); pertanto ogni campione me-
morizzato contribuisce all’aggiornamento del modello anche nelle iterazioni successive, salvo
la sostituzione determinata dal reservoir sampling.

Per la modellazione sia dei valori sia delle strategie e possibile utilizzare qualsiasi funzione
di perdita appartenente alla classe delle divergenze di Bregman [4].

Accanto alla rete di valore, Deep CFR introduce una rete di policy separata I : I —
R4 destinata ad approssimare la strategia media al termine dell’addestramento. Questo &
motivato dal fatto che e la strategia media complessiva, aggregata su tutte le iterazioni, a
convergere verso un equilibrio di Nash nei giochi a somma zero a informazione imperfetta.

Per ottenere tale approssimazione viene mantenuta una memoria specifica My, dedicata
ai vettori di probabilita sugli insiemi informativi campionati per entrambi i giocatori. Ogni
volta che un insieme informativo I del giocatore p viene raggiunto durante I’attraversamen-
to dell’albero condotto dall’avversario, il corrispondente vettore di probabilita o;(I) viene

inserito in My e gli viene assegnato come peso il valore dell’iterazione corrente .

Costo computazionale. L’architettura di rete neurale impiegata negli studi [17] presenta
una profondita complessiva di sette livelli e comprende 98,948 parametri. Gli insiemi infor-
mativi sono costituiti dall’insieme delle carte private e pubbliche e dallo storico delle azioni
di puntata, dove le carte vengono rappresentate come somma di tre distinti incapsulamenti

applicati al rango (1-13), al seme (1-4) e allidentificativo specifico (1-52) (si veda figura

normalize Fold
FC Call
FC FC Raise
64 64 64

Jappagw3
paed

Rank Emb | _Emn] EEEn|

Suit Emb Bet Occurred e Y] ? .

Card Emb GO TT] GITTT] FC Linear,
Bet Pot Frac FC:= [Skip,]

« Betting Position —» 64 64 RelU

Figura 2.2: L’architettura della rete neurale utilizzata per Deep CFR. La rete accetta un insieme
informativo (carte osservate e cronologia delle scommesse) come input e restituisce valori (vantaggi
o logit di probabilita) per ogni possibile azione. [17].

Per quanto riguarda la gestione della memoria, ¢ stata allocata una capacita massima
pari a 40 milioni di insiemi informativi sia per la memoria dei vantaggi di ciascun giocatore
My, sia per la memoria dedicata alla strategia M. II modello di valore ¢ stato addestrato
da zero a ogni iterazione CFR, partendo da una inizializzazione casuale dei pesi. L’adde-
stramento ha previsto 4,000 iterazioni di stochastic gradient descent (SGD) con mini-batch
di 10,000 campioni, utilizzando l'ottimizzatore Adam [46] con learning rate pari a 0,001 e
applicando un meccanismo di clipping della norma del gradiente a 1 [17].

Nel caso del gioco Heads-Up Limit Hold’em (HULHE), gli studi indicano la necessita di
un numero piu elevato di aggiornamenti: vengono infatti eseguite 32,000 iterazioni di SGD
con mini-batch di dimensione 20,000 [17].

Risultati. I risultati mostrano che Deep CFR risulta molto efficiente in termini di nu-
mero di nodi visitati, pur richiedendo un sovraccarico computazionale significativo dovuto
all’inferenza e all’addestramento della rete neurale.

L’algoritmo ¢ stato confrontato con NFSP [36], un altro metodo basato su reti neurali,
nel contesto dell’'Heads-Up Limit Hold’em (HULHE), utilizzando tre differenti astrazioni.
I risultati di tale analisi confermando la maggiore efficacia di Deep CFR sia in termini di

sfruttabilita sia in termini di qualita strategica complessiva [17].

2.1.6 ECFR

Contesto e descrizione algoritmo. Per affrontare le maggiori criticita di CFR, come il
tempo di calcolo e la necessita di astrarre o generalizzare, viene proposto il metodo Ezpo-
nential CFR (ECFR) [56], il cui obiettivo ¢ accelerare la convergenza del CFR tradizionale
e ottenere strategie robuste in maniera piu efficiente. L’idea alla base del’ECFR consiste
nell’introdurre una tecnica di ponderazione esponenziale, volta ad attribuire un peso mag-
giore alle azioni caratterizzate da valori di rimpianto piu elevati. Tale approccio consente
all’algoritmo di concentrarsi maggiormente sulle azioni che generano rimpianto positivo,

migliorando la qualita della strategia derivata. La funzione di ponderazione e definita come

e sex >0,

fz) =

e sex <0,

dove a rappresenta un parametro che controlla la sensibilita della ponderazione al valore di
x, f & un parametro di piccola entita e f(z) costituisce 'output della funzione [56].

In particolare, la variabile x puo assumere valori negativi durante il processo di risoluzio-
ne dei giochi. Diversamente dai metodi convenzionali, che annullano tali valori impostandoli
a zero [12], PECFR assegna a tali variabili un nuovo valore minimo pari a e*?. Questa scel-
ta € motivata dal fatto che, nelle fasi iniziali dell’addestramento, la strategia non ¢ ancora
sufficientemente accurata e alcune azioni con rimpianto negativo possono comunque essere
rilevanti per I’aggiornamento strategico. Ignorare tali azioni nelle prime iterazioni risulte-
rebbe irragionevole, mentre la loro inclusione consente una rappresentazione piu completa
dello spazio decisionale.

L’ECFR si fonda quindi sul CFR wanilla [93], ma integra la tecnica di ponderazione
esponenziale per ridistribuire i pesi dei rimpianti istantanei. In questo contesto viene defi-
nita una funzione di perdita, dipendente dal parametro a, e il rimpianto istantaneo ri (I, a)
in ciascuna iterazione assume il ruolo della variabile x nella funzione di ponderazione. Inol-
tre, il rimpianto istantaneo viene filtrato attraverso il valore medio E'V, consentendo alla
strategia dell’iterazione successiva di concentrarsi sulle azioni piu vantaggiose, alle quali
viene assegnato un peso proporzionalmente maggiore.

A ciascuna iterazione 'ECFR mira a minimizzare il rimpianto totale attraverso la ri-
duzione del rimpianto su ciascun insieme informativo. Tuttavia, a differenza del CFR tra-
dizionale, 'ECFR attribuisce un peso maggiore al rimpianto immediato. Con "'aumentare
delle iterazioni, 1'algoritmo concentra l’attenzione sulle azioni caratterizzate da rimpianto
istantaneo piu elevato, introducendo una perdita L; ponderata in forma esponenziale.

La strategia per I'iterazione T+1 puo essere calcolata mediante un algoritmo di rimpianto

(RM) come segue:
b RO a)

o, (I,a) = :
TH Dweam € RPFFR(I,a')

Se il rimpianto medio di entrambi i giocatori soddisfa

7
T
T =6

allora la strategia media (51, 64) costituisce un equilibrio di Nash a due giocatori in un

gioco a somma zero [50].

Risultati. Sono stati condotti diversi esperimenti per valutare le prestazioni del metodo
ECFR, con I'obiettivo di analizzarne 'efficacia su tre giochi di poker a due giocatori: Kuhn,
Leduc e Royal poker. Tra questi, il Kuhn poker ¢ il piu semplice, composto da tre carte,
un solo giro di puntate, una carta privata per giocatore e nessuna carta pubblica. Il Leduc
poker utilizza sei carte e prevede due giri: nel primo ogni giocatore possiede una carta
privata, mentre nel secondo viene introdotta una carta pubblica. IlI Royal poker, infine,
impiega otto carte e tre giri, con due carte pubbliche rivelate alla fine.

Le valutazioni sperimentali sono state effettuate confrontando quattro metodi: CFR
[93], CFR+ [12], LCFR [17] e DCFR [I6].

I risultati mostrano che ECFR presenta una dinamica complessiva simile agli altri me-
todi, con sfruttabilita decrescente al crescere delle iterazioni. Tali osservazioni confermano
sperimentalmente la convergenza del’ECFR, gia dimostrata teoricamente [56].

Inoltre, nel khun poker ECFR offre prestazioni generalmente superiori rispetto agli altri
metodi, sebbene in alcuni intervalli di iterazioni specifici DCFR ottenga valori leggermente
migliori, similmente al Leduc poker. Infine, i risultati sul Royal poker indicano che ECFR

risulta chiaramente superiore agli altri metodi, con una convergenza anticipata [56].

2.1.7 MCCFR

Contesto e descrizione algoritmo. Monte Carlo Counterfactual Regret Minimization
(MCCFR) [51] rappresenta una variante dell’algoritmo CFR sviluppata con 1'obiettivo di
ridurre il tempo di attraversamento dell’albero di gioco per ogni iterazione, limitandolo a
una porzione campionata dello stesso. Questo garantisce la convergenza e accelera 1’avvici-
namento all’equilibrio rispetto ai precedenti metodi di campionamento, pur preservando in
aspettativa i rimpianti controfattuali immediati.

Sia @ = {Q1,...,Q,} un insieme di sottoinsiemi delle storie terminali Z; a ogni iterazio-
ne l'algoritmo campiona uno di questi blocchi e considera esclusivamente le storie terminali
in esso contenute. Il valore controfattuale campionato rappresenta una stima non distorta
del valore controfattuale effettivo [5I]. Di conseguenza, MCCFR campiona un blocco e,
per ogni insieme informativo che contiene un prefisso di una storia terminale del blocco,

calcola i rimpianti controfattuali campionati di ciascuna azione. Questi rimpianti vengono

accumulati nel tempo e la strategia alla successiva iterazione viene determinata applicando
la regola di regret-matching [51].

Esistono diverse modalita per campionare porzioni dell’albero di gioco. La procedura
piu semplice e rappresentata dall’outcome sampling (OS), in cui a ogni iterazione viene cam-
pionata una singola storia terminale e ’aggiornamento dei rimpianti avviene esclusivamente
sugli insiemi di informazioni attraversati lungo tale storia [51].

Un secondo metodo di campionamento ¢ lo chance sampling (CS), in cui I'insieme delle
storie terminali viene suddiviso in blocchi tali che due storie non possono appartenere allo
stesso blocco a meno che non differiscano unicamente per le azioni di natura probabili-
stica. Nel CS un blocco viene generato campionando una singola azione casuale per ogni
storia, secondo la probabilita associata a tale azione. Le strategie vengono successivamente
aggiornate mediante i rimpianti cumulativi [32].

Infine, 1" Average Strategy Sampling (AS) seleziona le azioni del giocatore i in base al
profilo cumulativo e a tre parametri predefiniti. L’AS puo essere interpretato come uno
schema di campionamento intermedio tra OS ed ES: per ciascun insieme informativo I,
viene campionato un sottoinsieme delle azioni disponibili, anziché una singola azione (OS) o
tutte le azioni (ES). Come nell’ES; nei nodi dell’avversario e nei nodi di natura probabilistica
viene campionata una sola azione, rispettivamente secondo la politica del profilo avversario

corrente op,_; e le probabilita fissate o, [32].

Costo computazionale. E stato dimostrato che il chance sampling (CS) riduce significa-
tivamente i tempi computazionali in giochi complessi come il poker [93]. Oltre al CS, altre
varianti quali Average Strategy Sampling (AS), External Sampling (ES) ed Outcome Sam-
pling (OS) [32], convergono verso ’equilibrio piu rapidamente del CFR classico in diversi
domini, fornendo inoltre limiti probabilistici sul rimpianto medio e quindi garanzie sulla
convergenza della strategia media 7 a un equilibrio di Nash.

Per quanto riguarda le risorse necessarie, ’algoritmo MCCFR richiede di memorizzare
apposite tabelle per ciascun insieme informativo; ogni tabella contiene un numero di voci
pari alle azioni disponibili nell’insieme corrispondente. Indicando con |A4;| il numero massi-
mo di azioni disponibili al giocatore 7 in tutti i suoi insiemi informativi, il requisito di spazio
dell’algoritmo risulta pari a O(|I;] |A1| + |I2] |As]).

Il tempo computazionale richiesto da MCCFR, nel caso in cui venga adottato OS, di-

pende dai limiti sul rimpianto e dal livello di approssimazione dell’equilibrio che si desidera

ottenere. Per raggiungere un e-equilibrio di Nash con probabilita almeno 1 — p, il numero

di iterazioni necessario e dell’ordine O(p%2 |A| M 2), dove:

e) rappresenta la minima probabilitd di campionare una storia terminale tra tutte

quelle possibili;
e |A| ¢ il numero massimo di azioni disponibili in qualunque insieme di informazioni;

e) ¢ un fattore di bilanciamento che riflette il numero relativo di decisioni assunte dai
giocatori durante 'intera partita e soddisfa \/|I| < M < |I|.

Risultati. Uno studio recente [32] ha condotto una serie di esperimenti nel dominio del-
'HUNLHE, impiegando un’astrazione a cinque carte. Per ciascuna partita sono state ese-
guite cinque istanze degli algoritmi CS, ES, OS e AS, misurando la sfruttabilita del gioco
astratto in diversi checkpoint e calcolando successivamente la media dei risultati ottenu-
ti. 1 dati sperimentali mostrano che I'algoritmo AS ha conseguito un miglioramento pari
al 54% rispetto a ES nei punti di misura finali, mentre OS ha evidenziato prestazioni
significativamente inferiori.

Risultati analoghi sono stati riscontrati per i giochi Bluff(1, 1) e Bluff(2, 1), che presen-
tano rispettivamente oltre 24k e 3.5 M insiemi informativi, e circa 294k e 66 M cronologie.
Anche in questo contesto, AS ha mostrato una velocita di convergenza superiore rispetto a
CS, ES e OS in entrambe le istanze di Bluff analizzate.

2.1.8 Regression CFR

Contesto e descrizione algoritmo. Lo sviluppo di Regression Counterfactual Regret
Minimization (RCFR) [27] nasce dall’esigenza di rendere piu efficiente la risoluzione di
giochi sequenziali con informazione imperfetta, in cui il numero di stati ¢ cosi elevato da
rendere impraticabile I’approccio tabellare del CFR tradizionale. Nello studio condotto dal-
I"Universita di Alberta [27] si evidenzia inoltre come 1'uso dell’approssimazione di funzione
costituisca una naturale estensione delle tecniche di astrazione, permettendo di stimare
i rimpianti controfattuali invece di memorizzarli integralmente, mantenendo al contempo

prestazioni competitive con le metodologie basate su astrazioni esplicite.

L’algoritmo RCFR si basa sull’idea di sostituire la rappresentazione tabellare dei rim-
pianti con una stima funzionale ottenuta tramite un approssimatore. L’approccio RCFR
mantiene la struttura di minimizzazione del rimpianto, ma invece di memorizzare esatta-
mente i rimpianti cumulativi ne apprende una stima tramite un modello, tipicamente una
funzione parametrica che sfrutta caratteristiche condivise tra diversi stati del gioco. Cio
consente di trasferire informazione tra stati simili, riducendo drasticamente la necessita di
memorizzazione e rendendo il processo piu scalabile in giochi di grande dimensione [91].

Nel funzionamento di RCFR, I'apprendimento del comportamento dell’agente avviene
in due fasi principali. La prima consiste nella predizione dei rimpianti cumulativi tramite
un approssimatore y(¢(s,a)), dove ¢(s,a) rappresenta una codifica vettoriale dell’insieme
informativo e dell’azione corrispondente.

Successivamente, viene costruita la politica a partire dai rimpianti predetti, applicando
una trasformazione determinata da una link function f [27]. Nel caso originale di RCFR,
la link function e¢ una versione normalizzata della ReLLU, coerente con il tradizionale regret
matching [35], che assegna probabilita soltanto alle azioni con rimpianto positivo e in misura
proporzionale alla loro entita. L’algoritmo produce quindi una distribuzione stocastica su

ciascuno insieme informativo normalizzando i valori ottenuti dopo ’applicazione della ReLLU.

Costo computazionale. Nel contesto dell’algoritmo RCFR e della sua generalizzazione
f-RCFR, lo studio di Bowling et al. [27] evidenzia come I'impiego di un approssimatore
funzionale comporti effetti specifici sul consumo di tempo ed energia computazionale. L’a-
dozione di una rappresentazione lineare basata su partizioni implica che, per ogni insieme
informativo, solo una feature per partizione risulti diversa da zero; tale struttura determina
che il costo di predizione cresca linearmente con il numero di partizioni considerate durante
I’apprendimento.

Parallelamente, I'aggiornamento del modello presenta una complessita ben piu elevata:
poiché I'algoritmo opera su un insieme di feature complessivamente pitt ampio, il costo della
fase di aggiornamento cresce quadraticamente rispetto al numero totale di feature impiegate
nell’approssimazione dei rimpianti [27].

Dal punto di vista della memoria, RCFR introduce un vantaggio strutturale rispetto
al metodi tabellari tradizionali, in quanto non richiede la memorizzazione persistente dei
rimpianti cumulativi: una volta aggiornati i pesi del modello, i rimpianti delle iterazioni

precedenti non devono essere conservati né rielaborati. Questo riduce in modo significativo

il fabbisogno di memoria rispetto al CFR classico, che necessita invece di mantenere un

vettore di rimpianti per ciascun insieme informativo del gioco.

Risultati. I risultati sperimentali mostrano in modo sistematico come la scelta della link
function e il livello di approssimazione influenzino le prestazioni dell’algoritmo f-RCFR nei
diversi domini considerati. Gli esperimenti condotti in Leduc Hold’em, goofspiel e random
goofspiel valutano la qualita delle strategie tramite la sfruttabilita, misurata lungo 100,000
iterazioni. Le analisi indicano che 'aumento del numero di partizioni riduce l'errore di
approssimazione e conduce, in accordo con le previsioni teoriche, a strategie mediamente
meno sfruttabili [27].

In condizioni di approssimazione molto accurata, invece, la softmax tende a non supe-
rare le alternative polinomiali, confermando che la scelta della parametrizzazione ottimale
dipende fortemente dal livello di rumore introdotto dal modello di regressione. Comples-
sivamente, i risultati sperimentali confermano la validita delle analisi teoriche proposte e
dimostrano che f-RCFR ¢ in grado di adattarsi in modo flessibile ai diversi livelli di approssi-
mazione del rimpianto e offrendo prestazioni robuste nei giochi sequenziali con informazione
imperfetta [27].

2.1.9 SD-CFR

Contesto e descrizione algoritmo. Single Deep Counterfactual Regret Minimization
(SD-CFR) [79] rappresenta una variante semplificata di Deep CFR sviluppata con 'obietti-
vo di ridurre I'errore di approssimazione e rendere piu efficiente il processo di addestramento
nei giochi a informazione imperfetta di grandi dimensioni.

L’introduzione di modelli di approssimazione tramite reti neurali, come DeepStack e
successivamente Deep CFR, ha permesso di superare le restrizioni dei metodi tabellari,
rendendo possibile la generalizzazione anche in stati mai osservati. SD-CFR si colloca
direttamente in questa linea evolutiva, migliorando 'efficienza degli approcci basati su Deep
CFR e dimostrando sperimentalmente una convergenza piu rapida e prestazioni superiori
nelle partite uno contro uno [79].

SD-CFR mira a ridurre ’errore di approssimazione eliminando la necessita di addestrare

una rete neurale dedicata alla strategia media. Nel funzionamento classico di Deep CFR,

ogni iterazione produce una value network che approssima il vantaggio di ciascuna azione,
valore ricavato a partire dal rimpianto lineare e normalizzato tramite la reach probability
dell’avversario [17].

SD-CFR mantiene la stessa procedura di apprendimento delle value networks, ma dif-
ferisce nel modo in cui ricostruisce la strategia media. Invece di addestrare una seconda
rete per approssimare la media pesata delle strategie, 1’algoritmo conserva tutte le value
networks generate nelle iterazioni precedenti e utilizza direttamente tali modelli per ricavare
la politica media, riducendo cosi il numero di approssimazioni e semplificando il processo
di addestramento.

Durante ’esecuzione, SD-CFR puo operare in due modalita: trajectory sampling, in cui
si seleziona una rete riferita a una delle iterazioni passate con probabilita proporzionale al
peso lineare dell’iterazione e la si utilizza per 'intera traiettoria; oppure una modalita di
calcolo esplicito, in cui la strategia media viene ottenuta computando direttamente le reach
probabilities di ciascuna rete e applicando la formula della strategia media di CFR [79]. In
entrambi i casi, I’algoritmo garantisce una ricostruzione esatta della strategia media di CFR

qualora i value networks approssimino perfettamente i valori di vantaggio.

Costo computazionale. SD-CFR replica accuratamente la strategia media a partire dalle
strategie di iterazione fornite durante I’addestramento. Ne consegue che, qualora tali stra-
tegie di iterazione costituissero approssimazioni perfette delle strategie effettive generate da
CFR, SD-CFR risulterebbe equivalente al CFR lineare.

Come mostrato sperimentalmente [79], le prestazioni di SD-CFR tendono a deteriorarsi
quando il numero di iterazioni supera la capacita del buffer destinato alla memorizzazione.
Fortunatamente, la rete neurale impiegata in Deep CFR per le partite di poker di grandi
dimensioni presenta una dimensione estremamente contenuta, inferiore a 100,000 parametri
[17], corrispondenti a meno di 400 KB di spazio su disco. Considerando che Deep CFR
viene tipicamente addestrato per alcune centinaia di iterazioni, la memorizzazione di 25,000
reti di questo tipo richiederebbe circa 10 GB di spazio, una quantita pienamente gestibile
nei contesti computazionali moderni. Inoltre, nessun passaggio dell’algoritmo richiede di
mantenere simultaneamente in memoria tutte le reti archiviate, eliminando cosi qualsiasi

criticita pratica legata alla gestione delle risorse.

Risultati. Gli esperimenti condotti [79] evidenziano che SD-CFR presenta prestazioni com-
plessivamente superiori rispetto a Deep CFR in termini di sfruttabilita e di qualita della stra-
tegia appresa. Nella variante Leduc Hold’em Poker, SD-CFR mostra una riduzione piu ra-
pida dell’sfruttabilita rispetto a Deep CFR, nonostante I'impostazione degli iper-parametri
favorisca quest’ultimo, indicando una maggiore stabilita del processo di apprendimento.

Inoltre, I'analisi delle differenze tra le strategie medie prodotte dai due metodi rivela
inoltre che Deep CFR tende a introdurre errori piu significativi negli insiemi informativi
raggiunti nelle fasi avanzate del gioco, mentre SD-CFR mantiene una coerenza strategica
piu elevata anche a profondita maggiori dell’albero decisionale, tendenza confermata [79)
nel contesto del 5-Flop Hold’em Poker..

L’analisi dell’effetto del reservoir sampling sul buffer BM mostra tuttavia che 'uso di
capacita limitate puo causare fenomeni di plateau e oscillazioni nella convergenza, confer-
mando 'importanza di preservare tutte le value networks generate durante ’addestramento

per mantenere ’affidabilita dell’approssimazione.

2.1.10 TCFR

Contesto e descrizione algoritmo. Targeted Counterfactual Regret Minimization (TC-
FR) nasce dall’esigenza di individuare un punto di equilibrio tra i principali metodi di
campionamento utilizzati nel CFR, in particolare Qutcome Sampling ed External Sampling
[51]. Outcome Sampling & molto veloce ma fornisce stime ad alta varianza e di bassa ac-
curatezza, mentre External Sampling esplora ampie porzioni dell’albero a ogni iterazione,
risultando molto piu costoso dal punto di vista computazionale.

L’idea alla base di Targeted CFR e quindi quella di definire un approccio intermedio
che, in un singolo passaggio, visiti piu nodi rispetto all’Outcome Sampling ma meno rispetto
all’External Sampling, mantenendo cosi un buon compromesso tra costo computazionale e
precisione della stima. Inoltre, gli studi [39] evidenziano come, nei giochi di poker, le fasi
avanzate (gli ultimi betting rounds) siano visitate molto raramente dagli algoritmi di sam-
pling tradizionali, nonostante rappresentino una parte rilevante della complessita del gioco.
TCFR e progettato proprio per compensare questa asimmetria, concentrando I’esplorazione

in modo piu frequente su tali porzioni “critiche” dell’albero di gioco.

Il funzionamento dell’algoritmo si basa sulla suddivisione preliminare dell’albero di gio-
co in un insieme di partizioni, ossia in regioni distinte sulle quali ¢ possibile concentrare
selettivamente l'attivita di campionamento [39)].

A ogni iterazione, una o piu partizioni vengono designate come mirate. All'interno di tali
aree ’algoritmo opera in modo analogo all’External Sampling: vengono considerate tutte le
azioni disponibili e vengono aggiornati sia i rimpianti sia il profilo cumulativo. Al di fuori
delle partizioni mirate, invece, il comportamento cambia in modo significativo: 1’algoritmo
esegue una sonda, ovvero segue una singola traiettoria dall’'informazione corrente fino a uno
stato terminale, campionando una sola azione per ciascun giocatore secondo la strategia
corrente. In queste regioni non vengono effettuati aggiornamenti, ma si ottiene comunque
una stima imparziale del valore controfattuale, utile alla successiva fase di calcolo delle
funzioni di valore.

La progettazione delle partizioni e la scelta della frequenza con cui ciascuna viene targe-
tizzata rappresentano una decisione a discrezione dell’implementatore. Nel caso del Texas
Hold’em, questa operazione risulta particolarmente naturale, poiché la struttura del gioco
prevede quattro distinti round di puntate, ciascuno dei quali puo essere trattato come una
partizione. In base alle esigenze specifiche, ¢ possibile mirare un singolo round oppure una
combinazione di round.

Per soddisfare il requisito di raggiungibilita — fondamentale affinché le stime contro-
fattuali restino valide — il Targeted CFR prevede inoltre I'inserimento di alcune iterazioni
“complete”, durante le quali tutte le partizioni vengono mirate simultaneamente. Queste
iterazioni coincidono esattamente con quelle dell’ External Sampling e, poiché quest’ultimo
rispetta il vincolo di raggiungibilita, anche il Targeted CFR lo soddisfa, a patto che tali
iterazioni vengano eseguite con probabilita non nulla [39].

La frequenza con cui ciascuna combinazione di partizioni viene scelta e regolata da un
parametro 7 [39], che definisce la distribuzione di probabilita utilizzata per determinare la

selezione delle aree target a ogni iterazione.

Risultati. La valutazione sperimentale di TCFR [39] & stata condotta su diverse varianti
di giochi di poker, con 'obiettivo di confrontarlo principalmente con Fxternal Sampling e,
in alcuni casi, con Average Strategy Sampling. Gli esperimenti hanno considerato giochi di
dimensioni crescenti e con differenti livelli di astrazione delle carte, misurando le prestazioni

secondo due indicatori complementari: la sfruttabilita e la performance “head-to-head”,

determinata dal confronto diretto con una strategia di riferimento.

Nel primo scenario analizzato [39], caratterizzato da un gioco relativamente contenuto
e privo di astrazione delle carte, TCFR ha mostrato risultati molto simili a quelli di Ez-
ternal Sampling in termini di sfruttabilita, con un lieve vantaggio nel confronto diretto che
tende tuttavia a ridursi nel tempo. Le differenze diventano piu evidenti nei giochi basati
su astrazioni con richiamo imperfetto: nel secondo esperimento, condotto con un mazzo
completo e una complessa astrazione in circa un milione di bucket, TCFR ha ottenuto
prestazioni sensibilmente migliori nelle partite dirette e una sfruttabilita reale piu bassa,
nonostante entrambe le tecniche mostrino una tendenza al peggioramento nelle ultime fasi
dell’addestramento, fenomeno tipico delle astrazioni imperfette.

Il terzo esperimento [39], basato su un sistema di puntate molto piu esteso e su un’
astrazione ridotta delle carte, ha ulteriormente confermato il vantaggio del metodo: TCFR
supera nettamente sia Ezternal Sampling sia Average Strateqy Sampling nelle prestazioni
head-to-head, evidenziando una maggiore capacita di adattarsi alle peculiarita dei grandi
giochi con richiamo imperfetto. Nel complesso, i risultati mostrano che TCFR non offre
benefici rilevanti nei giochi risolvibili senza astrazione, mentre si dimostra particolarmente
efficace e competitivo nei contesti pitt complessi, in cui la struttura dell’albero di gioco e
le limitazioni dell’astrazione rendono critica un’esplorazione piu mirata delle informazioni

rilevanti.

2.2 Fictitious Self-Play

La categoria degli approcci Fictitious Self-Play si fonda sul concetto di gioco fittizio
(fictitious play), introdotto per la prima volta da Brown (1951) [15], e che costituisce uno
dei modelli di apprendimento piu noti nell’ambito della teoria dei giochi. In questo schema,
gli individui coinvolti ripetono la stessa interazione strategica scegliendo, a ogni iterazione,
la risposta ottimale alle strategie medie osservate nei loro avversari. In specifiche classi di
giochi — tra cui i giochi a somma zero e i giochi a due giocatori — il profilo strategico
medio generato tramite gioco fittizio converge a un equilibrio di Nash [37].

Nella famiglia di algoritmi FSP questo concetto viene ampliato mediante I'introduzione
di meccanismi di approssimazione e apprendimento che permettono di estendere il gioco
fittizio a domini di grandi dimensioni e ad informazione imperfetta. Tali algoritmi man-
tengono una stima delle strategie medie degli avversari e ne calcolano iterativamente una
risposta ottimale, superando i limiti computazionali del modello originario. Varianti mo-
derne, come NFSP, integrano tecniche di apprendimento supervisionato e rinforzato per
rappresentare e aggiornare le strategie in modo efficiente, rendendo ’approccio applicabile

a giochi complessi quali il Texas Hold’em Heads-Up Limit.

2.2.1 FSP

Contesto e descrizione algoritmo. Il modello del gioco fittizio & divenuto uno stru-
mento consolidato nella letteratura teorica e ha stimolato un ampio dibattito su come gli
equilibri di Nash possano manifestarsi nella pratica [31], 38, [55]. Inoltre, esso rappresenta un
classico esempio di apprendimento dall’esperienza applicato al contesto decisionale, che ha
influenzato in modo significativo lo sviluppo di algoritmi di intelligenza artificiale orientati
ai giochi.

Nonostante la sua diffusione teorica, pero, il gioco fittizio e stato applicato relativamente
poco su larga scala [50, [59]. Una delle principali ragioni risiede nel fatto che esso richiede
una rappresentazione del gioco in forma normale. Sebbene qualsiasi gioco in forma estesa
possa essere convertito nel suo equivalente in forma normale, il numero di azioni risultante
cresce tipicamente in modo esponenziale rispetto al numero degli stati del gioco. La forma

estesa permette invece una descrizione molto piu compatta grazie all'impiego di strategie

comportamentali, il cui numero di parametri aumenta in modo lineare rispetto agli stati
informativi.

Nel tentativo di superare tali limitazioni, e stata introdotta la variante Fictitious Self-
Play (FSP) [37], che propone un quadro di apprendimento automatico che implementa una
versione generalizzata e indebolita del gioco fittizio, basata sulle strategie comportamentali
e su campionamenti dell’esperienza di gioco. In questo modello, gli individui interagiscono
ripetutamente e memorizzano gli episodi generati, impiegando strategie caute che combi-
nano le risposte ottimali con le strategie medie accumulate. FSP campiona iterativamente
episodi derivanti dal gioco individuale; tali episodi costituiscono i set di dati necessari alla
stima delle risposte ottimali e dei modelli perturbati delle strategie medie.

Si consideri un gioco in forma estesa e un profilo strategico m. Per ciascun giocatore
1 € N, il profilo strategico degli avversari m_; definisce un processo decisionale di Markov
(MDP), indicato come M (7_;) [34,[78]. Gli insiemi informativi del giocatore i costituiscono
gli stati del'MDP, mentre le dinamiche dello stesso sono determinate dalle regole del gioco
in forma estesa, dalla funzione casuale e dal profilo strategico fissato per gli avversari. Le
ricompense derivano direttamente dalla funzione di payoff del gioco. Una politica ottimale
per TMDP M (7_;) rappresenta pertanto una risposta ottimale approssimata del giocatore
1 rispetto al profilo m_;.

Ne consegue che il calcolo iterativo delle risposte ottimali puo essere formulato come la
risoluzione approssimata di una sequenza di MDP, ottenuta ad esempio applicando algoritmi
di apprendimento per rinforzo ai campioni di esperienza prelevati dai rispettivi MDP. Piu
precisamente, per risolvere approssimativamente M (7_;), I'esperienza del giocatore i viene
campionata a partire dal comportamento strategico dei suoi avversari. La strategia del
giocatore deve garantire una sufficiente esplorazione dello spazio degli stati, ma puo essere
altrimenti arbitraria qualora si impieghi un metodo off-policy, come il Q-learning [8§].

Successivamente, avviene 'aggiornamento della strategia media: ogni agente aggior-
na la propria strategia media attraverso apprendimento supervisionato, utilizzando i dati
memorizzati sul proprio comportamento.

Affinché il processo riproduca correttamente la logica del gioco fittizio, entrambe le
operazioni di apprendimento devono essere supportate da dati campionati a partire da
combinazioni specifiche di strategie. A tal fine, viene impiegato un profilo strategico di

campionamento definito come oy = (1 — 1) Tk_1 + Nk Ok, dove mp_1 rappresenta la strategia

media all’iterazione precedente e 3, la risposta ottimale approssimata dell’iterazione corren-
te. Il parametro 7, regola la combinazione dei due profili; ad esempio, ponendo n, = 1/k;, il
profilo o;, coincide con la strategia media 7 corrispondente a un processo di gioco fittizio

con passo oy = 1/k [37].

Costo computazionale. FSP adotta un approccio basato sul campionamento che consen-
te di contenere significativamente i costi computazionali rispetto alle altre varianti del gioco
fittizio. A differenza dei metodi che richiedono di elaborare I'intero spazio degli stati a ogni
iterazione, FSP concentra ’elaborazione esclusivamente sugli insiemi informativi effettiva-
mente visitati durante la simulazione, riducendo quindi 'impatto della crescita dimensionale
del gioco. Cio permette all’algoritmo di operare in uno spazio che cresce linearmente con
il numero degli insiemi informativi e non con il numero totale degli stati del gioco, che
puo essere esponenziale. Il costo computazionale per iterazione dipende essenzialmente dal
numero di episodi campionati e gestiti nella memoria di apprendimento degli agenti [37].

Dal punto di vista della convergenza, FSP soddisfa le condizioni strutturali richieste dai
processi di fictitious play generalizzati, poiché le risposte ottimali approssimate ottenute
tramite apprendimento per rinforzo costituiscono una sequenza di politiche il cui errore am-
missibile tende a ridursi nel tempo, mentre gli aggiornamenti della strategia media possono
essere interpretati come stime perturbate ma coerenti del processo teorico corrispondente.
La convergenza asintotica delle componenti apprese verso gli aggiornamenti corretti ¢ ga-
rantita dal fatto che sia I'errore sulle risposte ottimali sia le perturbazioni introdotte negli
aggiornamenti decrescono progressivamente. Sebbene ’analisi teorica riguardi prevalente-
mente il caso con risorse computazionali non limitate, e quindi resti aperta la questione
della convergenza garantita sotto un budget computazionale finito per iterazione, lo stu-
dio mostra che FSP soddisfa i requisiti formali del processo di fictitious play indebolito e
fornisce evidenza empirica di un comportamento convergente verso strategie prossime a un
equilibrio di Nash [37].

Risultati. Nel gioco Leduc Hold’em a 6 carte, FSP mostra prestazioni inferiori rispetto al
confronto con la variante senza apprendimento per rinforzo XFP quando entrambi possono
utilizzare un budget computazionale fisso [37]. In questo contesto di dimensioni ridotte,
XFP risulta piu efficace nel ridurre rapidamente la sfruttabilita, ma aumentando la dimen-

sionalita del gioco, emerge chiaramente la differenza di scalabilita tra i due algoritmi: Nel

Leduc Hold’em a 60 carte, dove il numero di stati cresce quadraticamente con il numero di
carte, XFP subisce un marcato rallentamento, mentre FSP mantiene un ritmo di appren-
dimento stabile. FSP, guidato dal campionamento, focalizza i calcoli sui percorsi di gioco
piu probabili e beneficia fortemente della struttura introdotta dalle credenze dei giocatori,
ottenendo nella versione informata un miglioramento della sfruttabilita superiore al 40%.
Complessivamente, i risultati sperimentali evidenziano che FSP, pur non essendo sempre
competitivo nei giochi di dimensioni ridotte, scala meglio in giochi di maggiori dimensioni

e sfrutta in modo efficace la struttura statistica del problema tramite campionamento.

2.2.2 NFSP

Contesto e descrizione algoritmo. Neural Fictitious Self-Play (NFSP) [36] ha 1'obiet-
tivo di affrontare in modo scalabile e autonomo i giochi a informazione imperfetta di di-
mensioni reali, un ambito in cui i metodi di apprendimento falliscono nel convergere, e gli
algoritmi che possono calcolare equilibri di Nash dipendono pesantemente da astrazioni del
dominio, spesso basate su euristiche o modellazione esplicita.

Per superare queste problematiche, NFSP combina I’algoritmo del Fictitious Self-Play
(FSP) con l'approssimazione funzionale fornita dalle reti neurali. In questo modello, ogni
giocatore e rappresentato da un agente NFSP distinto, il quale apprende attraverso inte-
razioni in self-play, ossia mediante partite disputate simultaneamente contro altri agenti
analoghi. Durante tali interazioni, ciascun agente registra sia I’esperienza relativa alle tran-
sizioni del gioco, sia le proprie azioni derivanti dalle risposte ottimali approssimate. Questi
dati vengono archiviati in due memorie separate, indicate rispettivamente come MR e
ML che vengono trattate come insiemi di dati indipendenti: la prima destinata all’ap-
prendimento per rinforzo, la seconda all’apprendimento supervisionato. L’agente utilizza i
dati contenuti in MR per addestrare una rete neurale Q(s,a | fg), la quale stima i valo-
ri delle azioni tramite apprendimento per rinforzo off-policy. La politica risultante ¢ una
strategia di risposta ottimale approssimata, definita come § = e-greedy(Q)), che seleziona
un’azione casuale con probabilita €, altrimenti sceglie 1’azione con valore stimato massimo.

Parallelamente, una seconda rete neurale, I1(s, a | fy7), viene addestrata sui dati in M-

mediante classificazione supervisionata, al fine di imitare il comportamento dell’agente nelle

passate risposte ottimali. Tale rete associa a ciascuno stato una distribuzione di probabilita
sulle azioni e definisce la strategia media dell’agente, indicata con 7 = II.

Nel corso del gioco, 'agente seleziona le proprie azioni mediante una combinazione
delle due strategie, 5 e m, realizzando cosi un equilibrio tra esplorazione e sfruttamento
dell’esperienza storica. NFSP integra inoltre due elementi tecnici cruciali per garantire
la stabilita dell’apprendimento. In primo luogo, impiega il reservoir sampling [85], che
consente di evitare alterazioni dovute al campionamento da memorie di dimensione limitata.
In secondo luogo, utilizza dinamiche anticipatorie [77], le quali permettono agli agenti di
campionare in misura controllata il proprio comportamento di risposta ottimale e di seguire

in modo piu efficace I’evoluzione nel tempo delle strategie avversarie.

Costo computazionale. Lo studio principale [36] evidenzia che i costi computazionali di
NFSP derivano principalmente dall’'uso delle due memorie di apprendimento di dimensione
finita e dall’addestramento iterativo delle due reti neurali mediante aggiornamenti stoca-
stici. Le memorie M® e M5 sono implementate rispettivamente come circular buffer e
reservolr sampling, soluzioni che mantengono i requisiti di memoria entro limiti controllati
indipendentemente dal numero di iterazioni, contribuendo cosi alla scalabilita dell’algoritmo.
Negli esperimenti, la dimensione di tali memorie raggiunge valori significativi: fino a fino a
600,000 e 30 milioni in Limit Texas Hold’em, indicando che la qualita dell’apprendimento
dipende anche dalla disponibilita di ampi buffer di esperienza.

[’addestramento comporta inoltre numerosi aggiornamenti dei parametri delle reti neu-
rali, eseguiti con frequenze calibrate rispetto al numero di passi di gioco — ad esempio due
aggiornamenti per rete ogni 128 o 256 interazioni. Il costo computazionale cresce dunque
linearmente con il numero di iterazioni e con la dimensione delle reti utilizzate, come mo-
strato dai risultati sperimentali in cui architetture neurali piu grandi permettono prestazioni
migliori, ma implicano naturalmente un aumento del carico computazionale.

Lo studio [36] sottolinea anche che NFSP trae un vantaggio computazionale significati-
vo dal suo approccio basato sul campionamento, evitando ’esplorazione esplicita dell’intero
spazio degli stati. Cio gli consente di operare in domini di grandi dimensioni, senza la
necessita di enumerare tutte le informazioni di gioco. Tuttavia, la stabilita e 'accuratez-
za dell’algoritmo richiedono 1'uso di grandi memorie, frequenti aggiornamenti delle reti e
procedure di campionamento ben calibrate, rendendo l’algoritmo piu oneroso rispetto ai

metodi tabellari, ma significativamente piu scalabile rispetto alle procedure esaustive.

Risultati. NFSP e stato testato su Leduc Hold’em, in cui riduce progressivamente la sfrut-
tabilita, soprattutto con architetture neurali piu ampie e, grazie alla miscela controllata tra
strategia media e risposta ottimale, produce dati di addestramento stabili e diversificati.

L’algoritmo e stato inoltre applicato a Limit Texas Hold’em, dove ha appreso una stra-
tegia competitiva rispetto ai migliori agenti della Annual Computer Poker Competition
2014 [36], ottenendo prestazioni comparabili alla meta superiore degli algoritmi pur senza
utilizzare alcuna astrazione realizzata a mano.

Nel complesso, gli esperimenti dimostrano che NFSP ¢ in grado di combinare stabilita,

scalabilita e assenza di conoscenza di dominio, realizzando un apprendimento efficace.

2.3 Metodi basati su Programmazione Lineare e Ri-

sposte Ottimali

Gli algoritmi basati su oracoli e risposte ottimali rappresentano un’evoluzione dei me-
todi classici di risoluzione dei giochi in forma estesa, nati dall’esigenza di superare i limiti
computazionali associati alla conversione in forma normale e alla successiva soluzione tra-
mite Programmi Lineari. Sebbene ’approccio originario basato su LP abbia costituito il
primo metodo generale per la risoluzione di giochi ad informazione imperfetta, la crescita
esponenziale delle strategie deterministiche ha rapidamente reso tale tecnica impraticabile
per domini anche moderatamente complessi. L’introduzione della rappresentazione in forma
sequenza e del Sequence-Form Linear Program [47, 49, [69] ha permesso di affrontare giochi
di grande scala in tempo polinomiale, aprendo la strada a metodi piu avanzati capaci di
integrare apprendimento, ottimizzazione e generazione incrementale di strategie. In questo
contesto si collocano approcci moderni come PSRO, ODO, XDO, NXDO e RMDO, i quali
si basano su procedure iterative che alternano la ricerca di risposte ottimali tramite oracoli
e l'aggiornamento di un meta-gioco approssimato. Questi algoritmi consentono di esplo-
rare in modo selettivo lo spazio strategico, ampliando progressivamente il supporto delle
strategie rilevanti e mantenendo un compromesso favorevole tra accuratezza e complessita

computazionale.

2.3.1 ODO

Contesto e descrizione algoritmo. Online Double Oracle (ODO) [26] ¢ un algoritmo
che si fonda sugli approcci Double Oracle (DO) [60], i quali costituiscono metodi partico-
larmente efficaci per l'individuazione di un Equilibrio di Nash (NE) approssimato in giochi
caratterizzati da un supporto dell’equilibrio relativamente contenuto. Nella procedura del
DO, ciascun giocatore viene inizializzato con un insieme limitato di strategie, che consente
di operare su un sotto-gioco del gioco originario. A ogni iterazione, un Oracle fornisce
una risposta ottimale rispetto all’NE del sotto-gioco corrente; tale strategia, considerata
ottimale o approssimativamente ottimale, viene aggiunta all’insieme di strategie di ciascun
agente. Il processo iterativo termina quando la strategia di risposta ottimale e gia presente

in tale insieme o quando I'incremento prestazionale risulta trascurabile (figura [2.3)).

Double Oracle Framework

5 Payoffs | .
X 211 2|1
a8 d@ 52 r >
& 5'_2; 0|3 0|3
1 4 -
(]
S1 i ala
o0
, : Best (v
s'q1 I¢ es
=11 ‘ response [[Best Utility]
response H .
function
oracle

Full game

Figura 2.3: Rappresentazione del ciclo di funzionamento degli algoritmi basati su Double Oracle.

[5].

Sebbene il metodo DO rappresenti un procedimento efficiente per approssimare I’'NE in
giochi a somma zero di ampia dimensione, esso presenta alcune limitazioni. In primo luogo,
I’applicazione dei metodi DO richiede un coordinamento tra i giocatori nella risoluzione
dell’NE dei sotto-giochi, rendendo necessario che entrambi seguano le medesime dinamiche
di apprendimento. Tale requisito risulta poco realistico, in quanto in molti scenari concreti
I’avversario puo adottare strategie arbitrarie e potenzialmente non stazionarie nei sotto-
giochi. In secondo luogo, e in maniera piu rilevante, i metodi DO non risultano razionali
[T1], poiché non forniscono un meccanismo di apprendimento capace di sfruttare le debolezze
dell’avversario.

In questo contesto, ODO risulta una soluzione scalabile per giochi a somma zero in
forma normale a due giocatori, in cui lo spazio delle strategie & di dimensione proibitiva.
Lo strumento teorico principale ¢ fornito dall’analisi no-regret [20], [76] nell’apprendimento
online [76]. Combinando tale analisi [30] con la struttura dei metodi DO, I’algoritmo ODO
eredita i vantaggi di entrambi gli approcci.

L’elemento centrale del funzionamento di ODO e costituito da una controparte online
dell’Online Single Oracle (OSO) [26] impiegato nel DO [60], opportunamente modificata
per soddisfare la proprieta di no-regret. Un vantaggio determinante dell’OSO consiste nel
fatto che il relativo limite di rimpianto non dipende dalla dimensione dell’intero insieme di
strategie pure disponibili per un giocatore, bensi dalla dimensione del cosiddetto insieme di
strategie effettive, il quale cresce linearmente con la dimensione del supporto dell’Equilibrio
di Nash.

A differenza degli algoritmi no-regret tradizionali, come MWU [30], nei quali I'intero
insieme di strategie pure deve essere considerato a ogni iterazione, 'OSO opera su un
sottoinsieme dello spazio strategico complessivo. L’aspetto operativo essenziale consiste nel
fatto che, a ogni round ¢, I'algoritmo valuta l'inserimento di una nuova strategia soltanto
qualora essa rappresenti la risposta ottimale rispetto alla perdita media calcolata su una

specifica finestra temporale (definita successivamente).

Costo computazionale. Nonostante la progettazione dell’insieme delle strategie effettive,
il calcolo della risposta ottimale esatta nell’OSO richiede comunque di considerare I'intero
insieme di strategie pure. Tale vincolo puo essere rilassato mediante 'impiego di rispo-
ste ottimali approssimate, che consentono di preservare l'efficienza computazionale senza
compromettere le garanzie teoriche essenziali.

Il costo computazionale dell’algoritmo risulta pertanto dominato dal numero di risposte
ottimali calcolate e dalla gestione dell’insieme delle strategie effettive. Il tasso di con-
vergenza di ODO non dipende dalla dimensione del gioco, ma piuttosto dalla dimensione
dell’insieme di strategie effettive di entrambi i giocatori. Esiste infatti una relazione lineare
tra la dimensione dell’insieme di strategie effettive e la dimensione del supporto dell’NE.
Inoltre, in molti giochi reali, la dimensione del supporto dell’NE e effettivamente molto
inferiore alla dimensione del gioco. Pertanto, ODO puo essere utilizzato sia teoricamente

che empiricamente come risolutore in giochi a somma zero di grandi dimensioni [26].

Risultati. La valutazione empirica dell’algoritmo evidenzia un miglioramento rispetto ai
principali metodi concorrenti in una vasta gamma di scenari sperimentali. Nello studio di
Yang et al. [20], gli autori conducono esperimenti su: giochi in forma normale generati
casualmente, un insieme di 15 giochi reali forniti da Czarnecki et al., e due giochi di poker
in forma estesa (Kuhn e Leduc), utilizzati nella loro formulazione tabulare.

In particolare, nei giochi di poker tabulari, ODO risulta competitivo con solver come
CFR e XFP: in Leduc Poker raggiunge sfruttabilita prossime a quelle di CFR e superio-
ri a quelle dei metodi PSRO, mentre in Kuhn Poker supera persino CFR in termini di
sfruttabilita. Infine, quando opposto a un avversario imperfetto, OSO dimostra una ra-
pida capacita di sfruttamento, ottenendo payoff positivi e superando le prestazioni della

controparte PSRO, che invece mantiene un comportamento piu conservativo [26].

2.3.2 PSRO

Contesto e descrizione algoritmo. L’approccio Policy Space Response Oracles (PSRO)
[52] si ¢ affermato come una sintesi naturale tra i metodi classici per il calcolo degli equilibri
e le tecniche di apprendimento automatico. Tale metodo integra contributi provenienti da
diverse comunita scientifiche, offrendo una prospettiva unificata sull’interazione strategica
tra agenti.

In PSRO, a ciascun giocatore viene assegnato un insieme iniziale di strategie X;. Le
utilita associate ai profili nello spazio dei profili X vengono quindi stimate, producendo un
gioco ristretto iniziale G S+

Ad ogni iterazione, un meta-strategy solver (MSS) seleziona un profilo strategico o € AX
dal gioco ristretto corrente come obiettivo verso cui calcolare una nuova best response; qui
A indica il simplesso delle distribuzioni di probabilita definite sull’insieme considerato.
Successivamente, ogni giocatore ¢ € N apprende in modo indipendente una nuova strategia
di risposta s, € 5;, valutata rispetto al proprio obiettivo di risposta (RO), rappresentato da
una funzione che assegna un valore ai profili strategici [5].

Nel PSRO standard, I'obiettivo di risposta per il giocatore i ¢ definito come RO;(0) =
u;(sh, 0_;), e la massimizzazione di tale valore rispetto a s, determina la risposta ottimale
alle strategie o_; degli altri giocatori. Durante 'apprendimento, le strategie avversarie
vengono mantenute fisse, rendendo 'ambiente stazionario e consentendo il calcolo della
risposta ottimale.

Una volta individuata, la strategia s, viene aggiunta all’insieme X; delle strategie di-
sponibili nel gioco ristretto. Tale procedura viene ripetuta fino al soddisfacimento di un
criterio di arresto, che puo consistere in un numero prefissato di iterazioni oppure nel rag-
giungimento di un livello minimo di rimpianto per Iequilibrio di Nash (NE) stimato del
gioco ristretto [5].

PSRO opera su giochi ristretti, che devono contenere un sottoinsieme sufficientemente
rappresentativo delle strategie dell’intero gioco pur mantenendo una complessita computa-
zionale gestibile [3]. L’individuazione di tali sottoinsiemi — con il minor numero possibile
di strategie e senza perdita rilevante di informazione strategica — costituisce il cosiddetto

problema dell’esplorazione strategica [45], che rappresenta un aspetto centrale nello sviluppo

di metodi PSRO.

Policy Space Response Oracles Framework
Restricted game

Meta-
Strategy
Solver

Game
simulation

(Approx.) best (7 Bost
response l response

oracle

Response
Objective

Full strategy set

Figura 2.4: Immagine riassuntiva del funzionamento di PSRO. L’algoritmo generalizza DO intro-
ducendo MSS, e consentendo obiettivi di risposta ottimale diversi da NE. Inoltre, PSRO supporta
vari RO e oracoli di risposta ottimale (approssimativi) [5].

Costo computazionale. Nonostante la sua garanzia di convergenza teorica, raggiungere
una convergenza esatta in giochi di grandi dimensioni ¢ spesso impossibile a causa di vincoli
come le limitate risorse computazionali. Il costo computazionale dell’approccio, infatti, e
determinato principalmente da due componenti: la computazione della risposta ottimale e
la simulazione dei payoff nel gioco ristretto. Come evidenziato nello studio [5], entrambe le
attivita risultano intrinsecamente onerose dal punto di vista computazionale, soprattutto
in giochi di grandi dimensioni.

Il calcolo della risposta ottimale richiede 'ottimizzazione di una strategia rispetto al
profilo corrente individuato dal risolutore. In giochi complessi o con spazi di stato estesi,
tale procedura puo richiedere 1'uso di metodi di reinforcement learning (RL) o di tecniche
di ricerca avanzata, comportando un costo significativo in termini di tempo e campioni.
La difficolta cresce ulteriormente quando l'oracolo di risposta deve operare in ambienti
non stazionari o parzialmente osservabili, nei quali la ricerca di una risposta ottimale puo
richiedere numerose iterazioni di apprendimento [5].

Parallelamente, la costruzione e I’aggiornamento del gioco ristretto implicano la stima
dei payoff dei profili strategici tramite simulazione. Poiché ogni valutazione di un profilo
richiede I'esecuzione di molteplici episodi simulati e la successiva media dei risultati, tale
componente rappresenta una parte sostanziale del costo complessivo dell’algoritmo. In

questo senso, la simulazione dei profili costituisce uno dei principali colli di bottiglia di

PSRO, tanto che vari lavori successivi hanno introdotto tecniche specificamente orientate a

ridurre tale onere [5].

Risultati. PSRO ha dimostrato, nel corso degli anni, una notevole efficacia empirica in una
vasta gamma di domini complessi, contribuendo al raggiungimento di risultati importante.
In primo luogo, PSRO e i metodi da esso derivati hanno ottenuto prestazioni di rilievo in
giochi strategici su larga scala, come dimostrato nel caso di Barrage Stratego [57], in cui
sono state superate le migliori prestazioni precedenti e ottenuti risultati competitivi contro
giocatori umani esperti. Un successo analogo e stato riportato nel dominio di StarCraft
[84], dove approcci ispirati al PSRO hanno consentito di superare in modo convincente sia
agenti precedenti sia giocatori umani professionisti.

Oltre ai giochi competitivi classici, PSRO ha trovato applicazione efficace in campi
ad alta complessita strutturale. Nel contesto della sicurezza e dei giochi difensivi, questo
metodo ha supportato lo sviluppo di strategie ottimali in giochi di sicurezza e scenari simili

[5], mostrando capacita superiori nellidentificazione di politiche robuste.

2.3.3 XDO

Contesto e descrizione algoritmo. FEztensive-Form Double Oracle (XDO) [58] nasce
come risposta a una limitazione strutturale del PSRO [5], il quale, pur avendo ottenuto
risultati empirici notevoli, presenta una complessita potenzialmente esponenziale quando
applicato a giochi estesi di grandi dimensioni, poiché miscela le strategie esclusivamente
alla radice dell’albero decisionale.

Alla luce di questa criticita, XDO viene introdotto con ’obiettivo esplicito di ricondurre il
paradigma Double Oracle [60] nel dominio dei giochi in forma estesa, superando I'inefficienza
rappresentazionale della forma normale. L’idea centrale e di mantenere la popolazione di
strategie in forma estesa e di generare, a ogni iterazione, un gioco ristretto in cui le azioni
ammissibili in ciascun insieme informativo siano solo quelle effettivamente selezionate da
almeno una strategia della popolazione, garantendo una convergenza piu efficiente verso
equilibri di Nash approssimati [58].

Un aspetto distintivo di XDO e la modalita con cui viene costruito il gioco ristretto:

I’algoritmo opera direttamente sul gioco in forma estesa, in cui a ogni insieme informa-
tivo vengono ammesse esclusivamente le azioni selezionate da almeno una strategia della
popolazione. Questa trasformazione consente di definire un sottoinsieme del gioco origi-
nale che conserva la struttura sequenziale, evitando 1’esplosione combinatoria tipica della
rappresentazione in forma normale.

Il gioco ristretto viene quindi risolto mediante un algoritmo tabellare per giochi estesi,
ottenendo una politica che rappresenta un meta-NE approssimato. Tale politica viene poi
estesa al gioco completo attribuendo scelte arbitrarie agli insiemi informativi non visitati
nel gioco ristretto [58]. Una nuova best response rispetto al meta-NE viene quindi calco-
lata tramite un oracolo e aggiunta alla popolazione di strategie. Il processo prosegue fino
all’iterazione in cui nessuno dei due giocatori ¢ in grado di individuare una best response
che migliori il meta-NE: in questa circostanza, le politiche del meta-NE risultano essere
risposte ottimali approssimate tra loro anche nel gioco originale e costituiscono pertanto un

equilibrio di Nash approssimato [5§].

™ r/ T -~
| P1) (P1) [P1
N A v
: F/ ‘;&-‘ \. : /.PA\/\/--\)) /’A\/_.\‘x
P2 | (p2) (P2) (P2} (pP2) (P2)
S S e e - A
/-_?\. P /!\‘ N Pl ' \ N /_’\‘/ TN T "\ N
(PL) (2)(-3) (1) (P1) (-2)(-3) (1) (PL) (-2)(-3) (1)
S NS SN AN — . R N N
-"é’ \ s £)B'\ ""“'f ’B'\
(1) (2) 1) (2) (1) (2)
L N NS N S NS

Figura 2.5: Tre iterazioni di XDO (da sinistra a destra). In questi diagrammi di gioco in forma
estesa, il giocatore 1 (P1) gioca alla radice, poi P2 gioca senza conoscere I'azione di P1, e se
entrambi hanno giocato a sinistra P1 gioca un’altra azione. La ricompensa di P1 ¢ il numero
sulla foglia raggiunta. Le azioni nel gioco ristretto sono continue, mentre quelle tratteggiate sono
all’esterno del gioco ristretto. Le azioni Meta-NE sono nere, mentre quelle non presenti nel meta-
NE sono blu. [5§].

Formalmente (figura [2.5)), XDO mantiene una popolazione di strategie pure II; al tempo
t. A ogni iterazione, viene costruito un gioco ristretto definito limitando, per ogni insieme
informativo s;, il set delle azioni ammesse alle sole azioni selezionate da almeno una politica

della popolazione. Una politica e-NE 7(™) del gioco ristretto viene quindi calcolata tramite

CFR o un metodo equivalente e successivamente estesa al gioco completo. Infine, per ciascun
giocatore viene determinata una best response (BR) rispetto al meta-NE 7™ e tali BR

vengono aggiunte alla popolazione, cosi da ottenere I1,,; [58].

Costo computazionale. XDO ¢ garantito convergere in un numero di iterazioni lineare
rispetto al numero di insiemi di informazione, in netto contrasto con il comportamento po-
tenzialmente esponenziale di altri metodi simili come PSRO. La motivazione teorica centrale
e che in XDO ogni risposta ottimale deve introdurre almeno un’azione nuova in un insie-
me informativo attualmente non coperto, assicurando un ampliamento monotono del gioco
ristretto sino alla copertura completa dello spazio informativo. Cio consente a XDO di in-
dividuare rapidamente gli insiemi di azioni effettivamente rilevanti per ’equilibrio, evitando

'espansione inutile dell’intero spazio strategico [58].

Risultati. L’efficacia di XDO ¢ stata valutata attraverso una serie di esperimenti [58]. Nei
test tabellari su Leduc poker, XDO ha mostrato un netto vantaggio in termini di rapidita di
convergenza verso strategie a bassa sfruttabilita rispetto ad altri algoritmi, come ad esempio
PSRO [5].

Ulteriori esperimenti su 2-Clone Leduc poker hanno evidenziato che XDO necessita di
un numero significativamente inferiore di stati visitati rispetto a metodi come CFR+ [12] e
MCCFR [51], grazie alla capacita di evitare I'espansione delle azioni ridondanti introdotte

dai “cloni”.

2.3.4 NXDO

Contesto e descrizione algoritmo. Neural XDO (NXDO) [58] viene concepito per essere
applicato a classi di giochi caratterizzate da un’elevata complessita, nei quali la generalizza-
zione sugli insiemi di informazione, resa possibile dall’impiego di strategie derivate da reti
neurali, risulta particolarmente vantaggiosa.

A differenza delle versioni basate su un oracolo che fornisce una risposta ottimale esatta,
NXDO ne impiega di approssimate, addestrate tramite algoritmi di deep reinforcement lear-
ning (DRL), quali PPO [74] o DDQN [83]. Inoltre, anziché rappresentare esplicitamente il

gioco ristretto come I'insieme delle azioni consentite in ogni insieme di informazione, NXDO

costruisce tale gioco sostituendo lo spazio delle azioni originali con un insieme discreto di
meta-azioni. Ognuna di queste meta-azioni corrisponde a una politica della popolazione,
alla quale viene delegata la scelta dell’azione concreta.

Formalmente, NXDO mantiene una popolazione di politiche DRL II; al tempo ¢t. A
ogni iterazione viene generato un gioco ristretto in forma estesa e viene calcolato un meta-
equilibrio di Nash (meta-NE). In questo gioco ristretto, in ciascun insieme di informazio-
ne sono disponibili meta-azioni che selezionano una politica dalla popolazione corrente.
Pur modificando lo spazio delle azioni, NXDO preserva invariati gli stati, le osservazioni
e le cronologie del gioco originale. Una volta che ciascun giocatore seleziona una meta-
azione, ’azione da eseguire viene campionata dalla politica corrispondente e utilizzata per
la transizione dello stato globale [5§].

Sulla base di cio, un meta-NE 7 viene calcolato tramite un metodo DRL per la riso-
luzione di giochi in forma estesa, come NFSP [36]. Successivamente, le risposte ottimali
approssimate BR1(7),) e BRa(7};) vengono apprese tramite algoritmi DRL quali PPO o
DDQN, e infine aggiunte alla popolazione. A condizione che tali risposte approssimate
siano sufficientemente vicine alle risposte ottimali ideali e che il risolutore interno trovi un
meta-NE approssimato con adeguata precisione, NXDO eredita le proprieta di convergenza

di XDO.

Costo computazionale. L’espressivita del gioco ristretto deriva da un aumento non tra-
scurabile del carico computazionale. In particolare, 1'utilizzo di meta-azioni che delegano la
scelta all’interno della popolazione comporta una crescita lineare del numero di meta-azioni
con il procedere delle iterazioni, rendendo progressivamente piu onerosa la risoluzione del
gioco ristretto.

Inoltre, la costruzione e la risoluzione del gioco ristretto in forma estesa introduce un
costo aggiuntivo, poiché richiede I’addestramento progressivamente pit lungo del risolutore
del meta-NE (ad esempio NFSP) a ogni iterazione, come mostrato dalle analisi sugli epi-
sodi cumulativi impiegati nei cicli interni ed esterni di NXDO [58]. Tale problema risulta
particolarmente significativo nei giochi di piccole dimensioni, dove il tempo necessario per
calcolare strategie meta-NE accurate puo superare quello richiesto per addestrare la maggior
parte delle strategie pure, riducendo quindi la competitivita di NXDO in tali contesti.

Nello studio di McAleer et al. [58] viene riportato come le prove neurali su giochi

complessi, quali 20-Clone Leduc e il Loss Game, richiedano tipicamente da due a quattro

giorni di calcolo con 8-16 core CPU e un consumo di memoria tra 10 e 40 GB, mentre
gli esperimenti tabulari richiedono fino a un giorno su un singolo core con un utilizzo di

memoria compreso tra 1 e 10 GB.

Risultati. Sebbene le garanzie formali di convergenza possano non risultare pienamente
applicabili, NXDO presenta un’elevata compatibilita con spazi di azione continui. Nei
giochi caratterizzati da un numero molto ampio di azioni, I’algoritmo consente una riduzione
efficace della complessita dell’albero di gioco, le quali non risultano applicabili in presenza
di azioni continue.

Al fine di validare empiricamente 1'efficacia dell’approccio proposto, sono stati condotti
esperimenti su due differenti classi di ambienti [58], tra cui 'm-Clone Leduc, & analogo al
poker Leduc, ma prevede la duplicazione m delle azioni di call, fold e bet.

I risultati sperimentali evidenziano come NXDO mostri prestazioni superiori sia a PSRO
[5] sia a NFSP [30], sia nel caso di m-Clone Leduc sia nel Loss Game a spazio di azione

continuo.

2.3.5 RMDO

Contesto e descrizione algoritmo. Il Regret Minimizing Double Oracle (RMDO) [&1]
rappresenta un’estensione dell’approccio Double Oracle (DO) [60] che integra meccanismi
di minimizzazione del rimpianto, consentendo di derivare il numero atteso di iterazioni e la
complessita campionaria necessaria per raggiungere un e-equilibrio di Nash (e-NE).
RMDO mantiene la struttura generale dei metodi DO tradizionali. Il gioco ristretto
viene costruito includendo esclusivamente un sottoinsieme delle strategie pure disponibili
nel gioco originale, mentre la popolazione II; contiene le strategie attualmente impiegate nel
gioco ristretto all’iterazione ¢. Un ruolo fondamentale ¢ svolto dalle finestre temporali 77,
definite come partizioni dell’insieme delle iterazioni per cui la popolazione rimane invariata:
per ogni tg,t; € T; vale II,; = II;,. Il numero di finestre, indicato con &, corrisponde quindi
al numero di giochi ristretti generati dall’iterazione iniziale fino all’iterazione finale 7. A
differenza dei metodi DO preesistenti, RMDO consente di espandere il gioco ristretto in

qualunque momento, rendendolo una metodologia piu flessibile e generale [81].

La prima componente essenziale di RMDO ¢ la funzione di frequenza m(-), la quale
determina il ritmo con cui calcolare la risposta ottimale. Tale funzione ¢ definita come una
mappatura da NN [0,k — 1] a Nt e m(j) indica la frequenza di calcolo della risposta otti-
male nella j-esima finestra temporale. Poiché I'algoritmo DO basato sulla minimizzazione
del rimpianto alterna ciclicamente aggiornamenti CFR e calcolo della BR, risulta cruciale
bilanciare opportunamente tali due componenti per favorire una rapida convergenza [81].

La seconda componente chiave e rappresentata dallo schema di media ponderata: nella
finestra T} viene introdotto un peso w; per ogni iterazione ¢ € Tj, consentendo 1'utilizzo di
una versione scontata del minimizzatore del rimpianto e accelerando cosi la convergenza nel
gioco ristretto [81].

La procedura operativa di RMDO nella j-esima finestra 7} ¢ la seguente. A ogni itera-
zione t, dato che la finestra corrente e j, il gioco ristretto G; viene costruito restringendo le
strategie pure nella popolazione II;. In G; la minimizzazione del rimpianto viene eseguita
attraversando 1’albero del gioco, calcolando il rimpianto a livello di ogni insieme informa-
tivo e aggiornando la strategia tramite un algoritmo di minimizzazione controfattuale del
rimpianto.

All’inizio, quando t = 0, il gioco ristretto e I'aggiornamento strategico vengono omessi
poiché Iy ¢ vuoto; il valore atteso viene quindi calcolato seguendo una politica completa-
mente casuale. Una volta superata la fase iniziale, quando ¢ > 0 e la finestra corrente e Tj,
la strategia media congiunta della finestra viene estesa al gioco originale ogni m(j) itera-
zioni, assegnando probabilita nulle alle azioni non contenute nella popolazione. A questo
punto viene calcolata la risposta ottimale del gioco originale rispetto alla strategia media
estesa. Le due strategie nuove vengono quindi aggiunte alla popolazione Il;,;. Infine, se
I'aggiornamento produce una popolazione diversa da quella precedente (Il ; # II;), viene
avviata una nuova finestra temporale e la strategia 7, viene reinizializzata come strategia

casuale uniforme.

Costo computazionale. Nello studio condotto da Tang et al. [81] viene dimostrato che
la complessita campionaria necessaria per raggiungere un e-NE dipende sia dal numero
di finestre temporali k, sia dalla funzione di frequenza m(j) che regola la computazio-
ne della risposta ottimale. In particolare, il numero di iterazioni richiesto e dell’ordi-

ne O<k]A| 1SI?/€? =k + 32, m(j)) , mentre la complessita campionaria complessiva risulta

O(k\AHSP/eQ — kIS| + 15132, m(y)) , considerando che sia il minimizzatore del rimpianto
sia il calcolo della risposta ottimale richiedono la traversata dell’intero albero del gioco.

Per PDO, che adotta una frequenza di aggiornamento costante m(j) = ¢, la comples-

sita risulta significativamente ridotta: gli autori dimostrano che il numero di iterazioni
necessarie ¢ O(k|A||S)?/e* + (¢ — 1)k) e la complessita campionaria complessiva si attesta
a O(k|A||S|3/€2 + ck|S| + % — @) , risultando dunque polinomiale.
Risultati. Lo studio [81] valuta empiricamente le prestazioni di RMDO su una serie ampia
di giochi in forma estesa, tra cui Kuhn Poker, Leduc Poker e Leduc Poker Dummy. Gli
esperimenti analizzano la convergenza in termini di sfruttabilita rispetto sia al numero di
insiemi informativi visitati sia al tempo di esecuzione.

I risultati mostrano che, nel confronto diretto con XDO, RMDO con periodicita 50
risulta significativamente meno sfruttabile e converge piu rapidamente in giochi complessi
come Large Kuhn Poker. Inoltre, il confronto con algoritmi di riferimento basati sulla
minimizzazione del rimpianto, quali CFR+, evidenzia che RMDO mantiene i vantaggi dei
metodi Double Oracle nei giochi con equilibrio a supporto ridotto (come Leduc Dummy),

risultando al contempo competitivo nei giochi piu complessi.

2.4 Metodi di ricerca e approcci euristici

Gli algoritmi di ricerca ed euristici mirano a esplorare selettivamente lo spazio delle
decisioni nei giochi ad informazione imperfetta, producendo strategie efficaci senza richie-
dere la completa risoluzione del gioco. Metodi come Monte Carlo Tree Search (MCTS) e
la sua estensione ISMCTS utilizzano simulazioni guidate per stimare il valore delle azio-
ni, operando rispettivamente sugli stati o sugli insiemi informativi, risultando utili quando
I’albero di gioco e troppo vasto per una valutazione esaustiva. Euristiche come 1’ Effective
Hand Strength (EHS) forniscono stime rapide della forza attuale e potenziale della mano,
supportando le decisioni di ricerca. Approcci piu avanzati, quali MCRNR e MCCFVFP,
combinano tecniche Monte Carlo con risposte ottimali o principi di fictitious play, appren-
dendo strategie che bilanciano sfruttamento e robustezza. Nel complesso, questi metodi
offrono soluzioni pratiche per gestire la complessita del poker Texas Hold’em Heads-Up
Limit.

2.4.1 EHS

Contesto e descrizione algoritmo. L’Effective Hand Strength (EHS) & un algoritmo
sviluppato nel 1998 con I'obiettivo di competere ai massimi livelli nel poker contro giocatori
umani esperti. Esso costituisce il nucleo decisionale dell’agente artificiale Loki [7], uno dei
primi sistemi in grado di partecipare a partite di poker mediante un modello di valutazione
dell’avversario.

Loki, attraverso EHS, integra differenti componenti del gioco per supportare il processo
decisionale. Un primo elemento considerato ¢ la forza della mano (Hand Strength, HS),
definita come la valutazione della qualita della propria mano rispetto alle possibili mani
avversarie. Tale stima dipende almeno dalle carte private del giocatore e dalle carte comuni
disponibili; tuttavia, valutazioni piu raffinate tengono conto anche del numero di avversari
attivi, della posizione al tavolo e della sequenza di puntate osservata. In forma avanzata,
la forza della mano viene calcolata considerando tutte le probabilita associate alle possibili
combinazioni avversarie [7], nonché il potenziale di miglioramento della mano nelle fasi

successive del gioco.

La probabilita di detenere la mano migliore in un dato momento puo essere stimata
tramite tecniche di enumerazione completa delle combinazioni possibili. Ad esempio, consi-
derando la mano A{—Qée con un flop 30-4&—JQ, rimangono 47 carte sconosciute, da cui
derivano 1081 possibili mani avversarie. L’algoritmo di enumerazione calcola il percentile
della mano confrontando il numero di combinazioni migliori, peggiori o equivalenti. In tale
scenario, 444 combinazioni risultano superiori, 9 equivalenti e 628 inferiori. Attribuendo ai

casi di parita un peso pari a meta, si ottiene una forza della mano

628+ 3

HS = ~ (.
S 1081 0.585,

ovvero una probabilita del 58.5% che tale mano sia superiore a una mano avversaria casuale.
Per piu avversari, la stima viene elevata a potenza: contro cinque avversari casuali, la
probabilitd scende a 0.585° ~ 0.069, evidenziando I'impatto del numero di contendenti.

La forza della mano, tuttavia, non ¢ sufficiente a caratterizzare compiutamente la qualita
complessiva di una mano. Ad esempio, la mano 502 con flop 30-4&—JO & debolissima
nella configurazione attuale, ma presenta un potenziale di miglioramento elevato: 1'uscita
di un cuore, di un Asso o di un 6 puo produrre un colore o una scala. Con due carte comuni
ancora da rivelare, la probabilita di ottenere una mano vincente supera il 50%, attribuendo
notevole valore a una mano inizialmente sfavorevole.

I1 potenziale positivo (Positive Potential, Ppot) quantifica la probabilita di migliora-
re una mano sfavorita fino a renderla vincente, mentre il potenziale negativo (Negative
Potential, Npot) stima la probabilita di perdere il vantaggio quando si parte in posizio-
ne favorevole. Tali valori sono determinati mediante enumerazione: per ciascuna delle
1081 possibili mani avversarie si considerano le 990 combinazioni delle due carte comuni
rimanenti, classificando ogni esito come vantaggioso, svantaggioso o in parita.

L’ Effective Hand Strength [7] combina la forza immediata della mano e il suo potenziale

positivo secondo la formula:
EHS = HS" + (1 — HS") Ppot,

dove n rappresenta il numero di avversari ancora attivi. Il valore ottenuto costituisce una
stima globale che integra la probabilita attuale di essere in vantaggio e quella di acquisire

un vantaggio nelle fasi successive del gioco.

Costo computazionale. EHS presenta un costo computazionale significativo, poiché si
basa su tecniche di enumerazione esaustiva di tutte le possibili combinazioni di carte avver-
sarie e delle carte comuni rimanenti. Se il calcolo della sola Hand Strength (HS) richiede
la valutazione di tutte le (427) = 1081 possibili mani dell’avversario dopo il flop, con un
confronto completo tra la mano corrente e ciascun esito possibile [7], il calcolo dell’ Hand

Potential comporta un’espansione combinatoria ancora piu ampia: per ogni mano avversa-

45
2

di oltre un milione di scenari analizzati per singola situazione.

ria vengono considerate le () = 990 possibili combinazioni di turn e river, per un totale
Questa complessita rende ’EHS accurato ma computazionalmente oneroso, richiedendo

implementazioni ottimizzate per essere utilizzato in tempo reale.

Risultati. Dal punto di vista sperimentale, i risultati [7] mostrano che tale investimento
computazionale produce un miglioramento sostanziale delle prestazioni del sistema. Le
versioni del programma Lok: che integrano EHS con tecniche di modellazione dell’avversario
superano in modo netto le versioni prive di modellazione, convergendo pit rapidamente verso

un profitto medio superiore lungo 100,000 mani.

2.4.2 MCTS

Contesto e descrizione algoritmo. I metodi Monte Carlo rappresentano una delle tec-
niche piu consolidate nell’ambito degli algoritmi numerici e hanno dimostrato un’efficacia
significativa anche nei sistemi di gioco basati sull’intelligenza artificiale [2].

Una delle varianti principali di questa famiglia, il Monte Carlo Tree Search (MCTS), si
fonda su due idee centrali: da un lato, il presupposto che il valore reale di un’azione possa
essere approssimato attraverso simulazioni casuali; dall’altro, la possibilita di utilizzare tali
stime per orientare progressivamente la politica decisionale verso una strategia di tipo best-
first. L’algoritmo costruisce gradualmente un albero di ricerca parziale, la cui espansione e
continuamente guidata dai risultati ottenuti nelle fasi di esplorazione precedenti. In questo
modo, 'albero stesso diventa il supporto principale per stimare il valore delle mosse dispo-
nibili, con stime che tendono a migliorare man mano che il numero di simulazioni aumenta

e la struttura si arricchisce di nuovi nodi [18].

Il funzionamento di MCTS ¢ quindi di natura iterativa: l'albero viene ampliato fino a
quando non viene raggiunto un determinato limite computazionale, solitamente espresso in
termini di tempo, memoria o numero massimo di iterazioni. Una volta esaurito il budget a
disposizione, la procedura si arresta e viene selezionata 1’azione iniziale che, secondo i criteri
interni dell’algoritmo, risulta essere la piu promettente. Ogni nodo dell’albero rappresenta
uno stato del dominio considerato, mentre gli archi che lo collegano ai nodi successivi
corrispondono alle azioni che consentono la transizione da uno stato a quello successivo

[18]. All’interno di ciascun ciclo di ricerca si passa attraverso quattro fasi fondamentali [22]

(figura [2.6)).

/—> Selection —— Expansion —— Simulation —> Backpropagation ~

Tree Def;sm!r

Policy Policy
v

_ A Y,

Figura 2.6: Rappresentazione grafica del funzionamento di MCTS [1§].

La prima ¢ la selezione, durante la quale, a partire dal nodo radice, viene applicata ricor-
sivamente una politica di scelta che conduce verso i nodi ritenuti pitt urgenti da esplorare,
fino al raggiungimento di uno stato non terminale che presenti ancora possibili espansioni.

Segue |’espansione, in cui uno o piu nodi figli vengono aggiunti all’albero in base alle
azioni disponibili in quello stato.

Successivamente si procede con la simulazione, che consiste nell’esecuzione di una partita
virtuale a partire dai nuovi nodi, utilizzando una politica predefinita il cui scopo e fornire

una stima del valore atteso dello stato.

Infine, durante la fase di backpropagation, il risultato ottenuto dalla simulazione vie-
ne retropropagato lungo il percorso dell’albero, aggiornando le statistiche dei nodi pre-
cedentemente selezionati. Queste informazioni contribuiscono a orientare le future scelte
dell’algoritmo, modificando la valutazione degli stati gia esplorati.

Al termine dell’elaborazione, 1’algoritmo restituisce 1’azione radice associata al nodo
figlio che risulta “migliore” secondo i criteri stabiliti dall’implementazione. Tra quelli pit

frequentemente discussi [21 [71] emergono:
e figlio massimo, che privilegia il nodo con la ricompensa empirica piu alta,;
e figlio robusto, che seleziona il nodo visitato piu frequentemente;

e figlio massimo robusto, che ricerca una combinazione favorevole di valore e numero
di visite, eventualmente prolungando ’esplorazione se nessun nodo soddisfa requisiti

minimi di affidabilita;

e figlio sicuro, che seleziona il nodo in grado di massimizzare un limite inferiore di

confidenza, cercando un compromesso tra valore atteso e affidabilita statistica.

Queste varianti riflettono le differenti interpretazioni e finalita operative adottate nel-
le implementazioni di MCTS, confermando la flessibilita dell’algoritmo rispetto ai criteri

decisionali.

Risultati. 11 Monte Carlo Tree Search ha esercitato un impatto significativo nel campo
dell’intelligenza artificiale sin da quando la simulazione Monte Carlo e stata impiegata, per
la prima volta, come strumento euristico per individuare in modo selettivo le parti piu
promettenti dell’albero di ricerca di un gioco. Questo approccio ha dimostrato la propria
efficacia in tutti quei contesti decisionali che possono essere formalizzati come problemi di
ricerca in grafi o alberi di grandi dimensioni, in particolare quando le decisioni possono
essere campionate mediante simulazioni casuali eseguibili con grande rapidita rispetto al
tempo reale [18].

Il successo ottenuto in una vasta gamma di giochi, tra cui il Computer Go [53] [54],
conferma il potenziale dell’approccio per l'intero spettro dei problemi decisionali. La sua
efficacia in applicazioni non strettamente ludiche ne evidenzia ulteriormente la versatilita,
mostrando come il metodo possa essere esteso con buoni risultati a scenari di pianificazione,

ottimizzazione e controllo [18].

Nonostante tali punti di forza, MCTS presenta anche diverse limitazioni. Nei domini
caratterizzati da un elevato fattore di ramificazione o da una profondita di ricerca molto
estesa, l'applicazione dell’algoritmo puro risulta spesso impraticabile [18], cosi come avviene
per la maggior parte degli approcci di ricerca non informati. Difficolta ulteriori emergono
quando le simulazioni sono computazionalmente costose e il numero di campioni ottenibili e
ridotto: in questi casi, ’algoritmo rischia di apprendere da un insieme di dati insufficiente,

compromettendo la qualita delle decisioni.

2.4.3 ISMCTS

Contesto e descrizione algoritmo. Gran parte della letteratura su Monte Carlo Tree
Search si e concentrata su giochi a informazione perfetta. Nonostante cio, numerosi ri-
cercatori hanno esplorato metodi atti ad adattare MCTS anche a giochi caratterizzati da
informazioni parzialmente nascoste. Tra questi, uno degli approcci piu diffusi e la determi-
nizzazione delle informazioni mancanti, tecnica che ha ottenuto risultati rilevanti in giochi
quali Bridge [33] e Klondike Solitaire [9]. Tale metodologia consiste nel campionare ripe-
tutamente uno stato completo del gioco a partire dall’insieme informativo del giocatore e
nell’applicare a questi stati algoritmi sviluppati per giochi a informazione perfetta.

Sebbene efficace in diversi scenari, la determinizzazione presenta alcune debolezze strut-
turali ampiamente riconosciute, riguardanti la suddivisione del budget computazionale, che
duplica di fatto lo sforzo di esplorazione, e la strategy fusion [29], per cui differenti stati
compatibili con lo stesso insieme informativo sono trattati come nodi distinti dell’albero,
finendo implicitamente per assumere che sia possibile selezionare decisioni diverse a partire
da essi, violando 'assunzione fondamentale secondo cui un giocatore non puo distinguere
tra stati appartenenti allo stesso insieme informativo.

Per superare parte di queste criticita viene introdotta la famiglia di algoritmi nota come
Information Set Monte Carlo Tree Search (ISMCTS) [24].

Il funzionamento di ISMCTS si articola attraverso iterazioni guidate da determinizza-
zioni, ovvero istanziazioni complete dello stato coerenti con l'informazione disponibile al
giocatore. A ogni iterazione l'algoritmo seleziona una determinizzazione casuale dall’insie-
me informativo corrente e limita I'esplorazione dell’albero ai nodi e alle azioni compatibili

con essa. Tale meccanismo permette di gestire correttamente la variabilita delle azioni

disponibili nei diversi stati appartenenti allo stesso insieme informativo: nei nodi in cui
I’avversario ¢ il giocatore attivo, ad esempio, le azioni disponibili possono variare tra de-
terminizzazioni diverse e la selezione viene trattata come un subset-armed bandit problem,
adattando opportunamente una formula UCB per bilanciare esplorazione e sfruttamento
rispetto alla frequenza con cui un’azione risulta effettivamente disponibile [24].

Ogni iterazione segue la struttura caratteristica di MCTS: si procede con una fase di
selezione che discende 'albero utilizzando una variante modificata di UCB, limitandosi ai
rami compatibili con la determinizzazione corrente; si effettua poi 1’espansione del nodo
quando si incontra un’informazione non ancora rappresentata nell’albero; quindi si esegue
una simulazione completa a partire dalla determinizzazione selezionata; infine, il risultato
ottenuto viene retropropagato lungo il percorso seguito, aggiornando sia le statistiche dei
nodi visitati sia il conteggio di disponibilita delle azioni nei nodi concorrenti [24].

In questo modo, le statistiche accumulate riflettono I'effettiva probabilita che un’azione

sia utile e disponibile negli stati compatibili con I'informazione del giocatore.

Costo computazionale. La sostituzione della ricerca su stati pienamente determinati con
una ricerca in cui ogni nodo dell’albero rappresenta un insieme di informazioni anziché uno
specifico stato del gioco, consente di unificare in un unico albero le statistiche associate
alle mosse, rendendo quindi piu efficiente 1'utilizzo del budget computazionale: invece di
costruire piu alberi indipendenti ISMCTS aggrega conoscenza proveniente da una pluralita
di stati compatibili allinterno della medesima struttura di ricerca [24].

Oltre a questa efficienza computazionale, 'approccio offre anche un modello decisiona-
le piu coerente con la natura informativa del dominio considerato. Dal momento che la
selezione delle mosse avviene direttamente sugli insiemi informativi, la ricerca tiene auto-
maticamente conto della validita di un’azione su molteplici stati possibili, attenuando o
eliminando i problemi causati dalla fusione di strategie. In questo modo, ISMCTS produce
stime piu realistiche delle decisioni ottimali in giochi con informazione imperfetta e si con-
figura come un passo significativo verso una gestione piu rigorosa dell’incertezza nei metodi
Monte Carlo [24].

Risultati. I risultati sperimentali [24] mostrano in modo chiaro che gli algoritmi della fa-

miglia ISMCTS offrono un miglioramento significativo rispetto agli approcci basati sulla

determinizzazione nei giochi a informazione imperfetta. Nei test condotti su domini etero-
genei — Lord of the Rings: The Confrontation, il gioco Phantom (4,4,4) e il gioco di carte
Dou Di Zhu — ISMCTS si distingue soprattutto nei contesti in cui la determinizzazione
soffre maggiormente gli effetti della strategy fusion o dell’inefficiente utilizzo del budget

computazionale.

2.4.4 MCRNR

Contesto e descrizione algoritmo. L’algoritmo Monte-Carlo Restricted Nash Respon-
se (MCRNR) [65] & sviluppato per bilanciare diverse esigenze. Innanzitutto, poiché una
strategia perfettamente razionale in equilibrio di Nash (NES) non coincide necessariamente
con la migliore controstrategia rispetto a comportamenti avversari non ottimali [64], & possi-
bile ottenere risultati significativamente migliori sfruttando tali debolezze attraverso rispo-
ste ottimali mirate. Tuttavia, un’eccessiva focalizzazione sullo sfruttamento dell’avversario
comporta il rischio di diventare a propria volta altamente vulnerabili.

MCRNR affronta questo compromesso: il metodo, basato sul campionamento, con-
sente il calcolo offline di strategie di Nash ristrette in giochi complessi rappresentati in
forma estesa, tramite la combinazione di MCCFR [51], che consente di approssimare stra-
tegie di equilibrio mediante controfattuali campionati, e la tecnica della Restricted Nash
Response (RNR) [42, [43], concepita per integrare in modo controllato la conoscenza del
comportamento avversario all’interno del processo di ricerca dell’equilibrio.

L’idea alla base di RNR ¢ infatti quella di introdurre un modello dell’avversario all’in-
terno del processo di ricerca dell’equilibrio, limitando la strategia dell’agente a un insieme
ristretto di possibili risposte che bilancino sfruttamento e sicurezza. In pratica, RNR co-
struisce un gioco modificato nel quale 'avversario segue la strategia modellata con una
certa probabilita, mentre con la restante probabilita si comporta come un giocatore ra-
zionale qualsiasi. In questo modo, il giocatore ottiene una strategia che tende a sfruttare
I’avversario modellato, ma senza diventare eccessivamente vulnerabile a strategie alternati-
ve. Tuttavia, 'applicazione diretta di RNR ai giochi in forma estesa rimane costosa, poiché
richiede I’analisi sistematica di porzioni molto ampie dell’albero di gioco.

Per superare questo limite, viene utilizzato MCRNR [65], che rappresenta una versio-

ne campionata di RNR integrata con la procedura di riduzione del rimpianto propria di

MCCFR. MCRNR utilizza campionamenti Monte Carlo per attraversare solo le parti rile-
vanti dell’albero di gioco e aggiornare progressivamente le strategie attraverso i rimpianti
controfattuali, mantenendo inalterate le proprieta fondamentali di RNR. Il risultato ¢ un
algoritmo capace di apprendere strategie che sfruttano in misura controllata gli avversa-
ri non ottimali, ma che al tempo stesso mantengono un livello di sfruttabilita contenuto,

avvicinandosi alle garanzie tipiche degli equilibri di Nash.

Costo computazionale. Dal punto di vista computazionale, MCRNR rappresenta un
miglioramento sostanziale rispetto alla versione classica di RNR, grazie all'uso del cam-
pionamento Monte Carlo: mentre un’iterazione di RNR (cosi come di CFR) richiede 1'ag-
giornamento di tutti gli insiemi informativi dell’albero di gioco, un’iterazione di MCRNR
aggiorna soltanto gli insiemi informativi attraversati dalla singola storia terminale campio-
nata. In questo modo, ogni iterazione tocca solo una piccola frazione del grafo, riducendo
drasticamente il tempo di calcolo necessario per ogni passo dell’algoritmo [65].

Lo studio di Ponsen et al. [65] evidenzia infatti che milioni di iterazioni campionate
con MCRNR corrispondono, in termini di porzioni realmente esplorate, a un numero molto
inferiore di iterazioni complete di RNR, con un risparmio di tempo significativo. Que-
sto vantaggio consente a MCRNR di convergere piu rapidamente verso strategie robuste,
anche in giochi complessi come il poker, pur mantenendo la capacita di incorporare un mo-
dello dell’avversario tramite il parametro di confidenza p, che modula il compromesso tra
sfruttamento e robustezza strategica.

L’efficienza computazionale dell’algoritmo lo rende quindi particolarmente adatto a sce-
nari nei quali il tempo di apprendimento risulta limitato o in cui l'albero di gioco ¢ troppo

ampio per essere esplorato esaustivamente [65].

Risultati. Gli esperimenti [65] mostrano chiaramente che MCRNR offre prestazioni su-
periori rispetto a RNR sia in termini di velocita di convergenza sia in termini di qualita
delle strategie apprese. Nei giochi di dimensioni ridotte, come OCP, Goofspiel, Bluff e
PAM, MCRNR produce un’approssimazione dell’equilibrio molto piu rapidamente, soprat-
tutto nelle prime iterazioni, dimostrando che il campionamento favorisce un apprendimen-
to iniziale piu efficiente. I risultati indicano anche che il parametro p incide fortemente
sul bilanciamento tra sfruttamento dell’avversario e sfruttabilita, con una gamma efficace

tipicamente compresa tra 0.5 e 0.8 o, in alcuni giochi, tra 0.97 e 1.

Nei test condotti sul poker, dominio di gran lunga pit complesso, MCRNR si dimostra
capace di sfruttare bot deboli come POKI in misura significativamente maggiore rispetto a
MCCFR. Anche contro avversari piu solidi, ’algoritmo mantiene prestazioni competitive,
analoghe a quelle di MCCFR, dimostrando che le strategie generate rimangono robuste e

non eccessivamente sfruttabili.

2.4.5 MCCFVFP

Contesto e descrizione algoritmo. L’algoritmo Monte Carlo Counterfactual Value-
Based Fictitious Play (MCCFVFP) [66] nasce dall’esigenza di combinare i vantaggi del
campionamento Monte Carlo, che riduce drasticamente il numero di nodi visitati a ogni
iterazione, con la struttura del Fictitious Play, introducendo i valori controfattuali nel cal-
colo delle risposte ottimali. L’obiettivo ¢ duplice: da un lato ottenere un metodo capace di
convergere teoricamente verso un equilibrio di Nash in giochi estesi, dall’altro sfruttare in
modo efficace la presenza, tipica dei giochi reali su larga scala, di un’elevata proporzione di
strategie dominate.

MCCFVEFP combina quindi I'efficienza di MCCFR con la logica strategica del FP, intro-
ducendo un meccanismo di aggiornamento basato sui valori controfattuali anziché sui tra-
dizionali valori di rimpianto. In MCCFVEFP, per ogni insieme informativo vengono calcolati
e aggiornati i valori controfattuali Q;(1,a), ottenuti accumulando le ricompense associate
alla scelta sistematica dell’azione a in I. A differenza di CFR, I'algoritmo non richiede la
computazione del rimpianto né 1'utilizzo della procedura di regret-matching: la strategia
per l'iterazione successiva viene determinata selezionando semplicemente 1’azione con valo-
re controfattuale massimo, producendo quindi una risposta ottimale pura in stile Fictitious
Play. Questa scelta riduce in modo drastico il carico computazionale, perché elimina mol-
te operazioni necessarie ai metodi RM, come la normalizzazione del rimpianto positivo, e
sfrutta il fatto che, nelle iterazioni, la probabilita di raggiungere ciascun insieme informativo
¢ determinata da strategie pure [66].

Il funzionamento in modalita Monte Carlo permette inoltre di aggiornare solo gli insiemi
informativi effettivamente visitati nella traiettoria campionata, limitando cosi la computa-
zione a una piccola parte dell’albero di gioco. L’adozione di risposte ottimali pure, insieme

alla natura selettiva del campionamento, incrementa significativamente le opportunita di

potatura, poiché molti nodi del gioco risultano automaticamente irrilevanti quando la pro-
babilita congiunta di raggiungerli e nulla. Cio riduce il numero effettivo di nodi visitati da

O(]S]) in MCCFR a circa O(|N|/|S]) [66].

Costo computazionale. L’algoritmo MCCFVFP ¢ altamente efficiente nel risparmio di
risorse di calcolo. Ad esempio, quando un insieme informativo I dispone di |A(I)| = =
azioni, MCCFVFP necessita soltanto di 2o + 1 operazioni di somma per aggiornare i valori
controfattuali, mentre MCCFR richiede 6x — 2 addizioni e ulteriori 3z moltiplicazioni per
eseguire lo stesso passaggio. Questa differenza implica che, a parita di condizioni, MCCFV-
FP utilizza circa 2/9 del tempo di calcolo richiesto da MCCFR per ogni insieme informativo.
Considerando che la fase di addestramento in giochi reali attraversa tipicamente oltre un mi-
liardo di nodi, la riduzione del costo per nodo si traduce in un miglioramento ingegneristico
di grande rilievo, sia in termini di tempo sia di consumo di risorse [66].

A questa efficienza si aggiunge un ulteriore vantaggio legato alla potatura dell’albero di
gioco, una tecnica fondamentale nei metodi di ricerca su alberi decisionali. Nei metodi basati
su CFR, la forma piu semplice e applicabile quando nessun giocatore ha una probabilita
positiva di raggiungere uno stato s. In tali casi, I'intero sottoalbero radicato in s puo essere

ignorato senza compromettere il corretto aggiornamento dei rimpianti.

Risultati. Nello studio condotto da Qi et al. [66], I'algoritmo viene testato su una varieta
di giochi estesi con informazione imperfetta, tra cui Kuhn-extension poker, Leduc-extension
poker e diverse configurazioni di Tezas Hold’em. 1 Risultati mostrano una tendenza chia-
ra: mentre algoritmi a esplorazione completa come CFR+ o DCFR possono inizialmente
ottenere prestazioni migliori, all’aumentare della complessita la natura campionata di MCC-
FVFP permette di superare rapidamente sia MCCFR sia le altre varianti. Nei giochi di
dimensioni medio-grandi, MCCFVFP converge in modo stabile pit1 velocemente, mostran-
do una capacita superiore di sfruttare strutture del gioco, come I’alta presenza di strategie
dominate.

In particolare, MCCFVFP ottiene sistematicamente una convergenza piu rapida rispet-
to a MCCFR, sia quando si considerano i nodi toccati durante l'iterazione sia quando si
misura il tempo reale necessario per raggiungere un dato livello di sfruttabilita. Poiché
'algoritmo richiede solo circa 2/9 del costo computazionale di MCCFR per processare lo

stesso insieme informativo, a parita di nodi elaborati MCCFVFP risulta piu efficiente . Nei

test su Texas Hold’em a due giocatori, MCCFVFP mostra un vantaggio del 20-30% in
termini di rapidita di convergenza della sfruttabilita, mentre negli scenari multigiocatore —
valutati tramite competizioni dirette tra agenti — l’algoritmo supera nettamente MCCFR,

ottenendo ricompense significativamente migliori nelle stesse finestre di addestramento [66].

Capitolo 3

Opponent Modeling Expectimax

3.1 Expectimax

L’algoritmo expectimaz costituisce un approccio fondato sulla ricerca euristica per la
selezione delle azioni, finalizzato alla pianificazione di una strategia di scommessa a partire
da uno specifico stato di gioco. Tale metodo esegue un’induzione a ritroso sull’albero delle
decisioni radicato nello stato considerato, analizzando in modo ricorsivo tutte le possibili
azioni intraprese e i corrispondenti stati successivi, fino al raggiungimento della conclusione
della partita. Al termine della sequenza decisionale, I'esito del gioco (ad esempio vittoria,
sconfitta o pareggio) risulta noto. Poiché & nota anche I’azione che ha condotto a tale esito,
il valore associato a quell’azione puo essere identificato direttamente con il valore dello stato
terminale raggiunto [73].

Una volta determinati i valori delle azioni disponibili per un dato giocatore, vengono
formulate ipotesi circa le scelte che tale giocatore adottera. Le ipotesi cosi definite rappre-
sentano la sua strategia di scommessa e consentono di calcolare il valore complessivo del
punto decisionale considerato, permettendo di iterare il processo per le decisioni antecedenti.

Un possibile metodo per integrare la ricerca euristica nella selezione delle azioni nel con-
testo del poker consiste nel rinunciare alla determinazione esplicita delle azioni ottimali per
I’avversario durante la ricerca, assumendo invece che tali scelte siano prese autonomamente
dall’avversario stesso. Questa diversa impostazione determina un calcolo finalizzato a in-
dividuare la strategia ottimale contro un avversario specifico, anziché contro un avversario

ipotetico nel caso peggiore. In termini di teoria dei giochi, il procedimento individua una

71

strategia di risposta ottimale rispetto a un particolare avversario, e non una coppia di stra-
tegie di equilibrio che garantisca a entrambi i giocatori un valore minimo indipendentemente
dal comportamento dell’altro [73].

Questa procedura di ricerca euristica ¢ comunemente denominata algoritmo expectimaz
[61), [70], il cui impiego nei processi decisionali relativi al poker & stato introdotto per la
prima volta da Davidson [25]. Le ipotesi concernenti il comportamento di ciascun giocato-
re giustificano la denominazione dell’algoritmo: si assume che il programma che invoca la
procedura desideri selezionare 1’azione con il valore piu elevato tra quelle disponibili, con-
tribuendo cosi alla componente “max” del nome. Si assume inoltre che 1'avversario scelga
le proprie azioni secondo una strategia predeterminata, trasformando la sua decisione in un
evento di natura probabilistica. Ne deriva che il valore di un nodo decisionale appartenente
all’avversario venga calcolato come valore atteso delle sue possibili azioni, ottenuto come
somma dei valori delle azioni ponderati in base alla probabilita che esse vengano effettiva-
mente intraprese. Tale componente di valore atteso da origine alla parte “expecti” della
denominazione dell’algoritmo.

Tra i contributi piu rilevanti in relazione all’integrazione della modellazione dell’avversa-
rio con procedure di ricerca basate su ezpectimaz, si collocano tre linee di ricerca. Reibman
e Ballard [67] propongono una variante del minimax in cui alcuni nodi avversari sono trat-
tati come nodi casuali tramite un valore atteso basato sulla probabilita che 1'avversario
scelga azioni subottimali. Jansen [40] introduce la procedura probi-mazx, che sostituisce i
backup minimi con backup attesi nei nodi avversari, con probabilita derivate da semplici
regole euristiche sulla fallibilita dell’avversario. Sen e Aurora [75], infine, sviluppano un
giocatore a massima utilita attesa che apprende un modello probabilistico dell’avversario
tramite osservazione e lo utilizza nel processo decisionale, in un framework riconducibile
alla ricerca expectimax.

Sebbene gli approcci di modellazione dell’avversario descritti costituiscano un primo
insieme di esempi significativi, essi sono stati concepiti prevalentemente per giochi a in-
formazione perfetta. Nel contesto del poker, e in particolare nell’ambito dell’Heads-Up
Limit Texas Hold’em (HULHE), la letteratura offre un numero ridotto di applicazioni di
tali tecniche, spesso caratterizzate da limitazioni non trascurabili.

Nel lavoro di Billings et al. [§], il comportamento dell’avversario viene modellato prin-
cipalmente sulla base delle osservazioni storiche, come le frequenze con cui quest’ultimo

seleziona specifiche azioni. Altre varianti considerano ulteriori informazioni contestuali,

quali la dimensione del piatto, le puntate correnti o la fase della mano. Sebbene tali metodi
consentano di catturare alcuni aspetti statistici del comportamento avversario, essi risul-
tano comunque approssimativi: il fatto che un giocatore tenda, ad esempio, a chiamare
frequentemente con mani di valore medio non implica che mantenga la stessa politica deci-
sionale nell’intero arco della partita. In modo analogo, I’adozione di una strategia di base
o di un insieme predefinito di strategie da cui campionare le possibili scelte dell’avversario
introduce assunzioni e generalizzazioni eccessivamente forti, che riducono I'affidabilita del
modello.

Alla luce di tali limitazioni, in questo capitolo viene presentata una variante dell’algo-
ritmo Expectimax che integra la componente di massimizzazione e ricerca propria dell’ap-
proccio originale con una modellazione probabilistica dell’avversario fondata sulle possibili
mani private e sulle carte comuni che possono essere distribuite. Tale integrazione consente
di ottenere una rappresentazione piu accurata del comportamento avversario rispetto alle
soluzioni presenti in letteratura.

Questo contributo rappresenta un elemento di novita, soprattutto nel contesto di HU-
LHE. Nel lavoro di Schauenberg [73], una forma di expectimax con modellazione dell’avver-
sario viene applicata al Texas Hold’em heads-up, ma con un modello concettualmente piu
semplice rispetto a quello proposto in questa tesi. Qui viene infatti introdotta una variante
specificamente adattata a HULHE, che combina e raffina idee preesistenti dando origine a

un approccio originale. Tale metodo prende il nome di Opponent Modeling Fxpectimaz.

3.2 OM-Expectimax

L’idea alla base di Opponent Modeling Expectimaz (OME) consiste nel costruire un unico
albero decisionale dal punto di vista del giocatore che intende ottimizzare la propria strate-
gia, modellando I’avversario non come un agente perfettamente razionale (come avviene nel
minimax tradizionale), ma come un decisore fallibile descritto tramite una distribuzione di
probabilita sulle sue possibili azioni. Questo consente di sostituire i nodi minimi tipici del
minimax con nodi di aspettativa, nei quali il valore di ciascun punto decisionale dell’avver-
sario viene calcolato come valore atteso rispetto alla sua probabilita di compiere ciascuna
azione.

La struttura dell’albero decisionale prevede tre categorie fondamentali di nodi: nodi

di decisione del giocatore che sta massimizzando (nodi maz), nodi che rappresentano le

decisioni dell’avversario (nodi opponent), e nodi di aleatorieta (nodi chance) legati alla
distribuzione delle carte comunitarie. In corrispondenza dei nodi di tipo maz, il giocatore

seleziona 1’azione che massimizza il valore dei possibili stati successivi, secondo la regola

V(s) = Jnax V(sa),

dove A(s) rappresenta 'insieme delle azioni disponibili e s, lo stato risultante dall’azione a.

Nei nodi dell’avversario, invece, si assume che l’altro giocatore adotti una politica di
comportamento non ottimale, ma descrivibile tramite una distribuzione di probabilita 7(a |
s) sulle azioni disponibili. Come si osserva nel pseudocodice dell’algoritmo (figura ,
tale distribuzione non e arbitraria: viene costruita sulla base di una stima della forza della
mano avversaria, rappresentata da una misura di hand strength o effective hand strength
calcolata per tutte le possibili combinazioni compatibili con le informazioni osservabili. Una
volta calcolata 'EHS per ciascuna ipotesi di mano avversaria, essa viene mappata in una
probabilita sulle azioni disponibili. L’idea € che un avversario con mano presumibilmente
forte tendera ad assumere comportamenti pit aggressivi (puntare o rilanciare), mentre un
avversario con mano debole mostrera una maggiore propensione ad abbandonare. In termini
qualitativi, si possono modellare tali dipendenze con funzioni del tipo: p(raise | s,h)
o, - EHS(h), p(call | s,h) < a, - (1 — |[EHS(h) — 0.5]), e p(fold | s, h) o< ay - (1 — EHS(h)),
dove h denota una possibile mano avversaria e i coefficienti a., ., ay calibrano la sensibilita
del modello. Dopo normalizzazione, tali probabilita vengono aggregate su tutte le possibili
mani avversarie:

m(a|s) =Y P(h|s)pla]s.h),

heHs
dove Hy & I'insieme delle possibili mani avversarie e P(h | s) € la probabilita che I’avversario
detenga la mano h, tipicamente uniforme sulle combinazioni compatibili.

Il valore dei nodi avversari viene quindi calcolato tramite la regola stocastica:

Vis)= Y mlals)V(sa),

a€A(s)

con s, stato generato dall’azione dell’avversario. Cio consente di modellare 'avversario

come un decisore probabilistico informato, anziché come un avversario perfetto ostile.

Input: s stato corrente, A insieme di azioni disponibili
Output: Distribuzione 7(a | s) sulle azioni a € A
D < MazzoResiduo(s)
H < ManiAvversariePossibili(D, s)
if |H| grande then
‘ H «+ Campiona(H)
end
foreach a € A do
| wla] <0
end
foreach h € H do
ehs < EHS(h,community(s))
foreach a € A do
if @ = raise then
‘ ph[a] X fraise(ehs)
else if a = call/check then
‘ ph[a] X fcall(ehs)
else
| pnla] o< froa(1 — ehs)
end

end
normalizza py,
foreach a € A do

| «[a] « 7[a] + pula]
end

end
foreach a € A do

| la] < x[al/|H|
end
normalizza 7w
return 7

Figura 3.1: Stima della politica avversaria 7(a | s) a partire dall’Effective Hand Strength. In questo caso,
il modello mostra un campionamento nel caso in cui le mani avversarie da valutare siano troppo elevate,
ma cio dipende dalle risorse computazionali disponibili e limiti dello specifico contesto applicativo.

I nodi di aleatorieta (nodi chance) trattano la distribuzione delle carte future (flop, turn,
river) come un processo stocastico puro: tutte le combinazioni possibili di carte residue
vengono enumerate e ponderate uniformemente. Il valore del nodo ¢ dunque la media dei

valori del nodi successivi:

dove () rappresenta l'insieme delle possibili distribuzioni di carte compatibili con la situa-
zione corrente.

Il processo termina nei nodi finali, nei quali la mano e conclusa tramite fold o showdown.
Tali nodi vengono valutati calcolando il valore atteso del risultato, che dipende dal contenuto
del piatto, dalla forza relativa delle mani e dalle possibili carte restanti, qualora vi siano
ancora elementi ignoti. La valutazione terminale rappresenta quindi una stima del guadagno
atteso in quello stato. Una panoramica della logica di funzionamento dell’algoritmo viene

proposta nella figura (3.2

Input: s stato, tipo € {MAX, OPP, CHANCE}, profondita d
Output: V(s)
if s terminale or d = 0 then
| return Valutazione(s)
end
if tipo = CHANCE then
| return) .. Pr(c|s)V (s, tipos,d—1)

else
A <+ Azioni(s)
if A=(then
s’ <— CambiaGiocatore(s)
return V(s', MAX,d — 1)
end
end

if tipo = MAX then
| return maxgeq V (Sq, tipos,d — 1)
else
7 < StimaPoliticaAvversaria(s, A)
return), 7m(a) V(sq,tipog,d — 1)
end

Figura 3.2: Pseudocodice dell’algoritmo OM-Expectimax. Da notare che non sono presenti, per semplicita,
le gestioni esplicite relative ai nodi di transizione (skip). Si pud perd considerare il loro funzionamento come
simile alla casistica senza azioni disponibili presente nelle righe centrali.

Una componente meno evidente ma concettualmente importante del modello ¢ costituita
dai nodi di transizione, o nodi skip. Questi nodi non rappresentano una decisione autonoma:
il loro scopo ¢ gestire correttamente 1’alternanza dei turni tra giocatore ed avversario, per-
mettendo di mantenere una coerenza simile a quella degli altri algoritmi di ricerca, essendo
che nel poker HULHE il giocatore ad agire all'inizio del round non e obbligatoriamente

I'ultimo ad aver agito nel round precedente.

Dal punto di vista dell’albero, i nodi skip funzionano come nodi di sola transizione:
essi non alterano il valore del processo decisionale, ma mantengono la coerenza struttu-
rale dell’albero garantendo che ogni decisione sia attribuita al giocatore corretto. Questo
accorgimento permette di evitare distorsioni sia nella propagazione dei valori sia nella gene-
razione dei nodi figli, mantenendo la separazione concettuale tra le decisioni effettive (che
aggiornano le probabilita o selezionano azioni ottimali) e i passaggi tecnici necessari per

gestire 'ordine dei turni.

3.3 Costo computazionale

Opponent modeling expectimaz, offrendo una modellazione molto approfondita dell’in-
terazione tra comportamento dell’avversario, incertezza sulle carte future e processo deci-
sionale ottimizzante, presenta un costo computazionale intrinsecamente elevato. Il motivo
principale risiede nella natura combinatoria del problema: a ogni nodo dell’albero decisiona-
le si aprono rami multipli dovuti alle azioni del giocatore, alle possibili reazioni probabilisti-
che dell’avversario e alle molteplici combinazioni di carte che possono essere distribuite nei
nodi di aleatorieta. In particolare, i nodi dell’avversario rappresentano la componente piu
onerosa in termini di calcolo, poiché richiedono di considerare tutte le combinazioni di carte
che I'avversario potrebbe detenere. Se il mazzo residuo contiene n carte, il numero di mani
private compatibili & pari a (";2), e per ciascuna di esse € necessario calcolare una stima
di hand strength o effective hand strength. Tali stime richiedono a loro volta la valutazione
della forza relativa della mano su tutte le possibili completazioni delle carte comunitarie,
generando un costo di ordine combinatorio che cresce rapidamente all’aumentare delle carte
non ancora distribuite (figura [3.3)).

Anche i nodi di aleatorieta introducono una complessita significativa: quando il modello
deve considerare, ad esempio, la distribuzione del turn o del river, il numero di combinazioni
da analizzare puo raggiungere valori dell’ordine di decine o centinaia, ciascuna delle quali
genera un nuovo ramo dell’albero da esplorare. Pertanto, nei livelli intermedi dell’albero —
dove le carte comunitarie non sono ancora tutte rivelate — la complessita esplode in modo
combinatorio, sia per le carte residue sia per le possibili mani dell’avversario.

Il costo computazionale dei nodi maz e piu contenuto, poiché il numero di azioni possi-

bili in un punto decisionale di poker e limitato, ma il loro contributo alla crescita dell’albero

= W . o m =
- " o= m N -
H om ¥ | - e .
- = -, m
- = - - = - e LN I | ™ -+« W m
e e CHe W W e — i
 mw W W m omo=w L) L] o o . e om Hr mmm .
- HE . gam .y LR R R B N B - Mam. WE g H =
- owm EE 0 WMEsSE mm mom S ms B e e R - om Hm WmEEE EE ms omm
T [T] “emN g omEee T BN Mo B o b W oS = L EL N N O T I T - S ome
= vy w - LN T8 I Eer e B o s W am - - =
- o o - ,,, Mmoo m -
< = om e

Figura 3.3: Rappresentazione di una piccola porzione dell’albero di gioco di Expectimax. La raffi-
gurazione riguarda un test condotto su un mazzo di 10 carte e prende in considerazione solamente
una delle possibili distribuzioni di carte, con la limitazione a un singolo rilancio per turno. Cio mo-
stra in modo evidente la crescita enorme dell’albero decisionale anche in condizioni estremamente
semplificate. I nodi blu rappresentano i nodi chance, i verdi sono nodi maz, i rossi rappresentano
nodi opponent, mentre i nodi skip sono di colore bianco. Le foglie dell’albero, di colore grigio,
rappresentano infine i nodi terminali

resta comunque non trascurabile. Il ricorso ai nodi di transizione (skip) pud mitigare par-
zialmente la crescita dell’albero, eliminando la necessita di generare rami non significativi
e mantenendo 'albero coerente senza creare nodi decisionali fittizi, ma esso non ne riduce
la complessita intrinseca.

Combinando tutte queste componenti, la complessita teorica dell’algoritmo puo essere

approssimata da un modello del tipo:

QUET (e N
dove b € il fattore di diramazione determinato dalle azioni disponibili, (";2) rappresenta
la dimensione dello spazio delle mani avversarie possibili e [€2(d)| denota la quantita di com-
binazioni di carte future da simulare al livello di profondita d dell’albero. Tale espressione,
pur semplificata, mette in evidenza come il costo cresca rapidamente con la profondita della
ricerca e con il numero di elementi nascosti nel gioco.

Ne consegue che, senza tecniche di ottimizzazione, caching o riduzione della profondita,
I’esplorazione esaustiva dell’albero sarebbe impraticabile. Per questo motivo, 1’algoritmo
viene tipicamente limitato da una profondita massima di ricerca e fa largo uso di memoriz-
zazione dei risultati intermedi per evitare ricalcoli ridondanti. Inoltre, tramite parallelizza-

zione, 1’algoritmo riesce a esplorare contemporaneamente diverse parti dell’albero di gioco,

diminuendo il tempo di esecuzione. Per ridurre ulteriormente il carico computazionale, si
potrebbe considerare di sostituire HS o EHS con un calcolo euristico piu veloce o guida-
re 'esplorazione tramite simulazioni Monte Carlo, campionando quindi le possibili mani

avversarie e le carte future anziché enumerarle tutte.

Capitolo 4

Risultati sperimentali su HULHE

4.1 Configurazione degli esperimenti

Implementazione e addestramento algoritmi. Gli algoritmi descritti sono stati imple-
mentati sulla base della letteratura scientifica ad essi dedicata, modificandone alcuni aspetti
in caso di necessita di adattemnto alla variante HULHE. Per mantenere una coerenza spe-
rimentale, il tempo di addestramento e stato fissato a circa una settimana in totale, sulla
base delle risorse disponibili e con la possibilita di tracciarne la convergenza e prestazioni
allo stesso livello di addestramento.

Essendo HULHE un gioco molto ampio, le implementazioni di algoritmi tabellari (come
CFR) sono state realizzate con un grado di astrazione: la chiave dell’insieme informativo
teneva conto di grandezza del piatto, puntate dei giocatori, turno, e bucket (ovvero la
categoria) della mano. In particolare, la decisione € stata di utilizzare 169 bcukets per il
pre-flop, 1000 per il flop, 500 per il turn e 200 per il river, ottenuti tramite il calcolo di EHS.
La conseguenza e una perdita di informazione, ma la riduzione della dimensione dello spazio
degli insiemi informativi ha permesso di eseguire I’addestramento in tempi ragionevoli, pur
mantenendo una buona qualita delle strategie apprese. I metodi CFR hanno raggiunto circa
tra i 90 e 100 mila insiemi informativi, con una politica di ripiego che implicasse 1'utilizzo
del pit simile insieme informativo a quello attuale, nel caso in cui non fosse stato incontrato

durante 'addestramento.

81

Similmente si e adottata un’astrazione per gli approcci Double Oracle: le politiche ap-
prese sono state memorizzate con insiemi informativi basati sulla stessa chiave di quelli
di CFR, ma con un bucketing molto meno granulare. Questa decisione si fonda sul fatto
che tale tipologia di metodi risulta molto piu lenta nella convergenza in giochi ad infor-
mazione imperfetta, soprattutto giochi della grandezza di HULHE. Astrazioni basate su
EHS sarebbero risultate troppo costose computazionalmente, rendendo quasi obbligatorio
ridurre il numero di bucket a 20, selezionati attraverso un’euristica basata sulla forza della
mano. Inoltre, il calcolo di una risposta ottimale esatta ¢ molto oneroso in tali metodi, in
quanto prevede di traversare 'intero albero di gioco ad ogni strategia aggiunta: per questo,
I'oracolo fornisce, nelle implementazioni realizzate, una risposta ottimale approssimata.

Gli algoritmi basati su ricerca, fatta eccezione per MCRNR e MCCFVFP, sono stati
implementati senza astrazione, essendo che la ricerca avviene a partire dallo stato attuale
e non richiede la memorizzazione di strategie per tutti gli insiemi informativi. Tuttavia,
per mantenere tempi di esecuzione ragionevoli, sono state adottate alcune limitazioni di
profondita nella ricerca, oltre a tecniche di caching per evitare ricalcoli ridondanti e paralle-
lizzazione per una visita piu efficiente dell’albero di gioco. Allo stesso modo, negli approcci
basati su FP si e deciso di non usare astrazione sulla mano del giocatore, in modo da se-
guire piu fedelmente possibile la logica dell’algoritmo originale, in cui ¢ essenziale avere il
massimo grado di precisione a granularita, e la letteratura originale, che, a differenza di
quella presente per CFR, non menziona 1'utilizzo di astrazione.

Nonostante le differenze, gli algoritmi sono stati sottoposti a test preliminari e controlli
per poter essere utilizzati. Innanzitutto, sono stati eseguiti test in partite contro avversari
semplici con politiche fisse, consistenti in una sola azione (come solo raise o call) oppure
semi-casuali, guidate da euristiche semplici di forza della mano. Inoltre, per controllare la
convergenza, il calcolo della sfruttabilita sarebbe stato molto oneroso, essendo un calcolo
della risposta ottimale, per ciascun algoritmo, sull’intero albero di gioco. Si e scelto quindi
di controllare altri parametri: nel caso di approcci basati su rimpianti controfattuali, il
numero di insiemi informativi nuovi trovati ad ogni iterazione cala progressivamente, fino a
rimanere quasi fisso, e la distribuzione di probabilita sulle azioni tende a stabilizzarsi, con
variazioni minime tra un’iterazione e l'altra. Per gli approcci basati su FP, si ¢ monitorata
la variazione delle prestazioni nel tempo, considerando le versioni precedenti come avversari,
fino ad un momento nel quale il miglioramento e diventato sempre meno significativo. Infine,

nei metodi basati su oracoli la convergenza e stata controllata in funzione del cambiamento

delle politiche e dell’aggiunta di nuove risposte ottimali calcolate, anche se, nell’arco di
tempo fisso dell’addestramento, tali approcci sono rimasti lontani dall’equilibrio, essendo

HULHE una variante molto grande.

Parametri dei test. La fase sperimentale e stata articolata su diversi livelli di complessita,
con l'obiettivo di analizzare in modo sistematico il comportamento degli algoritmi al variare
del contesto. In particolare, lo scopo principale degli esperimenti e stato quello di osservare
le prestazioni degli agenti in confronti diretti (head-to-head), misurando per ciascuno di
essi il guadagno o la perdita media contro ogni altro algoritmo all’interno di un dominio
caratterizzato da elevata variabilita e forte componente stocastica.

Per raggiungere tale obiettivo, I'insieme di test e stato organizzato in modo graduale,
aumentando progressivamente la quantita di mani giocate e, di conseguenza, riducendo

I'impatto della varianza sui risultati. E stata quindi adottata una struttura a tre livelli:

1. Match con bankroll iniziale di 1500 chips, con struttura di puntate pari a 50 per la
small bet e 100 per la big bet. Questa configurazione fornisce una prima indicazio-
ne sulle differenze di performance, pur mantenendo elevata la variabilita dovuta al

numero ridotto di mani.

2. Match con bankroll iniziale di 10000 chips, mantenendo invariata la struttura delle
puntate. L’aumento significativo del capitale iniziale consente di ottenere una mag-
giore profondita di gioco e una riduzione della componente aleatoria, permettendo

una valutazione piu stabile e affidabile delle prestazioni.

3. Esperimenti su 1000 mani singole giocate, con 1'obiettivo di isolare il comportamento
degli algoritmi sul lungo periodo, concentrandosi sull’effettivo guadagno medio per

mano, indipendentemente dall’esito complessivo del match.

Questo approccio ha permesso di costruire una stima progressivamente pitt accurata
del guadagno medio generale di ciascun agente, evidenziando con maggiore chiarezza quali
strategie tendano a prevalere quando la varianza si riduce.

Per la valutazione delle prestazioni sono state considerate diverse metriche, ciascuna
specifica per un aspetto preciso del comportamento degli algoritmi. Innanzitutto, e stato
analizzato il numero di mani necessarie per ottenere una vittoria e, piu in generale, 1'ef-

ficienza dell’algoritmo nel convertire situazioni favorevoli in profitto. Tuttavia, la metrica

ritenuta pit informativa e stata il guadagno medio per mano, preferita alla semplice per-
centuale di mani vinte. Un algoritmo puo infatti vincere pit mani del proprio avversario
senza pero riuscire a capitalizzare adeguatamente le situazioni vantaggiose, mostrando un
rendimento economico inferiore.

Un ulteriore aspetto cruciale e stato la robustezza nei confronti di strategie eterogenee.
Alcuni algoritmi di tipo euristico, ad esempio, possono risultare particolarmente efficaci
contro determinate tipologie di approcci, pur diventando vulnerabili in contesti differenti.
Altri, come quelli basati su principi di ottimalita teorica, assumono che I'avversario selezioni
le azioni secondo una strategia razionale, ma possono essere piu in difficolta contro agenti
progettati per deviare intenzionalmente da tali ipotesi. Pertanto, un algoritmo che man-
tiene buone prestazioni contro una vasta gamma di avversari, pur non essendo il migliore
in termini di guadagno medio, pud comunque essere considerato solido e competitivo nel
complesso.

L’insieme di queste metriche ha permesso di delineare un quadro complessivo equilibrato,
integrando sia aspetti quantitativi sia considerazioni qualitative sul comportamento degli
agenti, e fornendo cosi una valutazione approfondita delle loro capacita nel dominio del
poker HULHE.

4.2 Risultati empirici

Partite con capitale iniziale ridotto. Nel primo insieme di test, corrispondente alle
partite con somma iniziale pari a quindici volte il big blind, ¢ emerso un quadro complessi-
vamente equilibrato. In questa configurazione la maggior parte degli algoritmi ha mostra-
to prestazioni comparabili, con differenze limitate. E stato tuttavia possibile individuare
alcune tendenze significative.

Anzitutto, i metodi basati su oracoli, quali XDO, ODO e RMDO, hanno mostrato una
chiara fragilita strutturale: la loro capacita di sfruttare I’avversario nel breve periodo non e
risultata sufficiente a compensare ’assenza di una componente piu solida di ottimizzazione
strategica, conducendo a prestazioni mediamente inferiori rispetto agli altri approcci, anche
se non troppo distanti.

Parallelamente, alcuni algoritmi maggiormente orientati allo sfruttamento, in particolare

quelli fondati su ricerca come OM-Expectimax e ISMCTS, hanno occasionalmente ottenuto

risultati superiori alla media. Pur non perseguendo esplicitamente strategie vicine all’equi-
librio, tali metodi hanno beneficiato della possibilita di operare senza astrazione, riuscendo
in certe circostanze a capitalizzare errori locali degli avversari.

Nel complesso, tuttavia, anche gli algoritmi basati sulla minimizzazione del rimpianto
hanno confermato una buona stabilita. In questo scenario ridotto, il bilanciamento tra
varianza e profondita strategica non ha evidenziato differenze marcate, ma ha gia suggerito

quali metodologie avrebbero mostrato maggiore solidita negli esperimenti successivi.

Partite con capitale iniziale aumentato. L’incremento del capitale iniziale ha reso piu
evidente la distinzione tra le diverse famiglie di algoritmi. Pur mantenendo un numero medio
di mani relativamente contenuto (nell’ordine di poche centinaia), questa configurazione ha
ridotto parzialmente I'impatto della varianza, permettendo I'emergere di pattern piu chiari.

In questo contesto, gli algoritmi basati su programmazione lineare — in particolare
XDO, ODO e RMDO — si sono collocati stabilmente in fondo alla classifica, registrando
una perdita media superiore a 0.5 grandi bui per mano. Prestazioni comparabili sono state
osservate anche per FSP, nonostante la sua struttura concettualmente piu flessibile.

Di contro, gli approcci di ricerca piu semplici, come EHS e MCTS, hanno mostrato
prestazioni migliori grazie alla maggiore immediatezza con cui riescono a sfruttare pattern
locali nel comportamento avversario. Risultati leggermente superiori sono emersi dagli
algoritmi neurali quali DeepCFR, NXDO e NFSP, che sono riusciti a ottenere guadagni
medi di circa 0.3 grandi bui contro metodi puramente euristici. A un livello simile si sono
collocati PSRO e alcuni algoritmi basati su rimpianto controfattuale, tra cui ECFR, RCFR
e CFR, che hanno confermato la loro solidita generale.

La parte alta della classifica ha invece visto una sostanziale parita tra i rimanenti algo-
ritmi di ricerca e le varianti piu avanzate di CFR, indicando come l'incremento del capitale

giochi a favore degli approcci dotati di una componente strategica piu matura.

Partite a numero fisso di mani. Il terzo gruppo di esperimenti, basato su incontri com-
posti da un numero fisso di mani (1000), ha permesso di valutare gli algoritmi in condizioni
in cui la varianza risulta sensibilmente attenuata. In questa configurazione le differenze
prestazionali tra le diverse categorie sono emerse in maniera particolarmente netta, come si
evince dalla tabella [4.1]

Gli approcci double oracle, in particolare XDO e ODO, hanno nuovamente mostrato

le peggiori prestazioni, con perdite medie prossime a un piccolo buio per mano. Risultati
altrettanto negativi sono stati rilevati per FSP, che non e riuscito a competere efficacemente
in questo scenario. Leggermente superiori, ma comunque con valori medi negativi, si sono
collocati alcuni algoritmi neurali come NXDO e NFSP, insieme all’approccio di ricerca ibrida
MCCFVFP ed agli algoritmi di programmazione lineare PSRO e RMDO. In questo caso,
hanno saputo sfruttare il comportamento di approcci piu deboli, ma non hanno mostrato
particolare solidita contro avversari equilibrati. In una zona analoga si sono posizionati
anche gli algoritmi basati su rimpianto come TCFR ed ECFR, che non hanno prodotto
prestazioni di rilievo in questo particolare scenario.

Risultati migliori sono stati ottenuti dagli approcci neurali DeepCFR e SDCFR, oltre
che da MCRNR, che riescono a capitalizzare in modo consistente con algoritmi sfruttabili,
sebbene superati da metodi euristici quali MCTS ed EHS, i quali hanno mostrato una
sorprendente solidita, raggiungendo valori medi confrontabili con quelli prodotti da CFR.

All’interno del gruppo di algoritmi piu performanti non sono state riscontrate differenze
particolarmente marcate nei guadagni medi. CFR-BR, DDCFR ed OM-Expectimax si sono
distinti come un insieme di metodi altamente sfruttanti, capaci di ottenere risultati molto
elevati contro avversari non bilanciati, pur mostrando una certa vulnerabilita contro le

strategie piu solide.

CFR CFR+ CFR-BR ECFR TCFR DeepCFR SD-CFR RCFR DDCFR MCCFR FSP NFSP ODO PSRO XDO NXDO RMDO EHS MCTS ISMCTS MCRNR MCCFVFP OME media

CFR - -0.22 -0.09 +0.35 -0.47 +0.08 +0.09 -0.15 -0.36 -0.35 +0.87 +0.56 +0.29 +0.08 +0.39 +0.11 -0.12 +40.02 +0.13 +0.03 -0.04 +0.12 -0.10 +0.05
CFR+ +0.26 +0.12 4+0.38 +0.16 +0.18 +0.16 +0.17 +0.10 +0.13 40.98 +0.25 +0.41 +0.19 4042 +40.18 +40.10 +0.11 +40.10 +0.17 +0.33 +0.22 +0.09 +0.23
CFR-BR +0.04 +0.14 +0.12 -0.03 +0.05 +0.04 -0.01 +0.40 +0.20 +1.20 -0.11 +0.46 +0.33 +1.06 +0.27 +0.24 +0.30 +0.25 -0.01 +0.18 +0.30 -0.16 +0.24
ECFR -0.23 -0.31 -0.10 - -0.34 -0.30 -0.41 +0.04 -0.19 -0.50 +0.41 +0.04 +0.31 +0.15 +0.39 +0.02 -0.14 -0.36 -0.17 -0.21 -0.20 +0.03 -0.22 -0.10
TCFR +0.48 -0.11 +0.07 +0.44 - -0.20 -0.16 -0.07 -0.01 -0.80 +0.46 -0.20 +0.48 +0.09 +1.02 -0.03 +0.46 -0.08 -0.40 -0.66 -0.18 +0.06 -0.25 +0.01
DeepCFR -0.02 -0.13 -0.01 +0.39 +0.22 -0.04 +0.10 -0.49 -0.28 +1.00 -0.18 +0.51 +0.08 +1.98 +0.05 +0.60 -0.19 -0.10 -0.09 -0.11 +0.05 +0.02 40.15
SD-CFR +0.05 -0.08 -0.03 +0.47 +0.17 +0.09 +0.14 -0.21 -0.22 4091 +40.10 +0.40 +0.12 +1.21 +0.13 +0.67 -0.02 -0.11 -0.01 -0.15 +0.14 -0.09 +0.17
RCFR +0.19 -0.14 +0.10 -0.04 +0.11 -0.07 -0.13 - -0.04 -0.25 +0.24 +0.03 +0.29 +0.15 +0.97 +0.08 +0.19 -0.20 +0.05 -0.18 +0.13 +0.24 -0.10 +0.07
DDCFR +0.38 -0.07 -0.35 +0.23 +40.07 +0.52 +0.26 +0.11 - +0.05 +0.88 +0.34 +0.25 +0.03 +0.31 +0.09 +0.19 +0.22 +0.14 +0.01 +0.15 +0.16 +0.06 +0.18
MCCFR 4042 -0.11 -0.18 +0.60 +0.89 +0.26 +0.32 40.27 -0.05 +0.95 -0.10 +0.35 +0.09 +0.88 +0.23 +1.14 +0.17 +0.10 +40.13 +0.05 +1.25 +0.04 +0.35
Fsp -0.77 -0.85 -1.11 -0.32 -0.42 -0.91 -0.81 -0.21 -0.73 -0.71 -0.27 +0.05 -0.49 -0.08 -0.27 -0.44 -0.87 -0.80 -1.96 -0.93 -0.51 -1.23 -0.67
NFSP -0.45 -0.21 +0.16 -0.24 +0.28 +0.20 -0.10 -0.02 -0.31 +0.15 +0.32 - +0.26 +0.16 +0.57 -0.05 +0.08 -0.15 +0.36 -0.05 -0.21 -0.15 -0.27 +0.01
ODO -0.28 -0.40 -0.44 -0.29 -0.45 -0.52 -0.30 -0.27 -0.22 -0.30 -0.01 -0.20 - -0.12 +0.08 -0.22 -0.31 -0.40 -0.50 -0.47 -0.39 -0.17 -0.59 -0.31
PSRO -0.03 -0.13 -0.30 -0.12 -0.07 -0.11 -0.09 -0.14 -0.01 -0.08 +0.61 -0.12 +0.16 - +0.22 -0.06 +40.11 -0.15 -0.05 -0.19 -0.06 -0.04 -0.22 -0.04
XDO -0.32 -0.41 -1.02 -0.31 -1.00 -1.89 -1.14 -0.87 -0.30 -0.81 +0.13 -0.51 -0.07 -0.19 -0.47 -1.10 -0.31 -0.42 -0.50 -0.83 -0.58 -1.04 -0.63
NXDO -0.10 -0.18 -0.17 +0.02 +0.05 -0.04 -0.07 -0.03 -0.09 -0.19 4029 +0.12 4+0.25 +0.07 +0.52 - +0.13 -0.19 -0.10 -0.17 -0.21 -0.19 -0.29 -0.03
RMDO +0.09 -0.08 -0.24 +0.18 -0.40 -0.54 -0.64 -0.15 -0.18 -1.12 +0.49 -0.06 +0.36 -0.09 +1.17 -0.10 - -0.30 -0.21 -0.28 +0.14 +0.16 -0.15 -0.09
EHS +0.03 -0.07 -0.29 +0.39 40.10 +0.21 +0.15 40.22 -0.19 -0.13 +0.87 +0.15 +0.37 +0.16 +0.32 +0.29 +0.26 - +0.13 -0.14 +0.02 +0.12 -0.10 +0.13
MCTS -0.12 -0.11 -0.23 +0.20 +0.41 +0.14 +0.05 -0.01 -0.10 -0.06 4+0.90 -0.36 +0.48 +0.04 +0.49 +0.10 +0.17 -0.12 -0.03 +0.28 +0.30 -0.18 40.10
ISMCTS +0.02 -0.10 +0.10 +0.25 +0.70 +0.09 +0.16 +0.21 +0.01 -0.04 4190 +0.15 +0.57 +0.17 +0.54 +0.22 +0.32 +0.12 +0.06 - +0.25 +0.40 +0.08 +0.28
MCRNR +0.05 -0.32 -0.17 +0.24 +0.16 +0.11 +0.19 -0.13 -0.12 -0.01 +0.95 +0.27 +0.44 +0.16 +0.86 +0.19 -0.17 +0.02 -0.23 -0.26 - +0.12 -0.22 +0.10
MCCFVFP -0.06 -0.20 -0.29 +0.01 -0.07 -0.05 -0.08 -0.21 -0.15 -1.15 +0.53 +0.18 +0.19 +0.04 +0.50 +0.23 -0.12 -0.09 -0.24 -0.41 -0.12 - -0.23 -0.08
OME +0.12 -0.05 -0.10 +0.29 +0.26 +0.02 +0.17 +0.11 -0.08 -0.09 4126 +0.31 +0.62 +0.23 +1.00 +0.36 +0.16 +0.10 +0.28 -0.04 +0.21 +0.20 +0.24
media +0.01 +0.19 +0.21 -0.15 -0.02 +0.12 +0.11 +0.04 +0.15 +0.30 -0.73 -0.02 -0.34 -0.07 -0.67 -0.06 -0.11 +0.11 +0.08 +0.19 +0.12 -0.03 +0.15 -

Tabella 4.1: Confronto tra tutti gli algoritmi analizzati. Il valore numerico all’interno delle singole celle
va considerato come il guadagno medio per mano (in grandi bui, quindi bb/h) dell’algoritmo indicato nella
riga, come giocatore iniziale, contro quello indicato nella colonna, calcolato su 1000 mani giocate. Valori
positivi indicano un guadagno, mentre valori negativi indicano una perdita. Dai risultati si comprende
come il giocatore iniziale, nel’THULHE, abbia un leggero vantaggio strategico.

Un comportamento piu equilibrato e stato osservato per RCFR, caratterizzato da una

buona robustezza contro una vasta gamma di avversari. In queste condizioni, i guadagni
medi contro le fasce inferiori di algoritmi si sono attestati tra 0.2 e 0.4 grandi bui per
mano, mentre i confronti diretti con algoritmi di pari livello hanno evidenziato risultati
tendenzialmente neutri o oscillanti tra -0.15 e +0.1 bb per mano. Nonostante non sia tra
i migliori in termini di guadagno medio per mani, RCFR tende a mantenere le perdite
contenute anche contro avversari molto forti.

Gli algoritmi complessivamente migliori sono risultati ISMCTS, CFR+ e MCCFR. Pur
non essendo sempre i pit efficaci in termini di puro sfruttamento, essi hanno mostrato la ca-
pacita piu elevata di minimizzare le perdite, mantenendo una strategia stabile e difficilmente
sfruttabile nel lungo periodo. Tali risultati confermano, ancora una volta, l'efficacia degli
approcci basati sulla minimizzazione del rimpianto nel contesto del poker a informazione

imperfetta.

4.3 Discussioni ed analisi

Motivazioni delle prestazioni. L’andamento complessivo dei risultati puo essere inter-
pretato alla luce delle caratteristiche strutturali che contraddistinguono le diverse famiglie
di algoritmi impiegate. Il comportamento osservato non ¢ sorprendente: in larga misura
riflette i limiti teorici, le assunzioni computazionali e le condizioni operative per cui ciascun
approccio ¢ stato originariamente sviluppato.

Un primo gruppo particolarmente problematico e costituito dagli algoritmi fondati sulla
programmazione lineare e, piu in generale, sui metodi di tipo double oracle, quali XDO,
ODO, RMDO e PSRO. Questi algoritmi nascono per giochi con alberi decisionali sensibil-
mente pit piccoli e piu regolari di HULHE; nel dominio considerato, la loro struttura risulta
intrinsecamente inadeguata. La loro efficienza dipende infatti dalla capacita di calcolare ri-
sposte ottimali o quasi ottimali all’interno di uno spazio altamente ridotto. Tuttavia, in un
gioco della complessita di HULHE, il calcolo di una risposta ottimale esatta non e praticabile
con tempi ragionevoli, e cio obbliga all’utilizzo di approssimazioni severe che degradano dra-
sticamente la qualita delle strategie generate. A parita di tempo di addestramento, questi
algoritmi convergono molto piu lentamente rispetto a metodi pitt moderni e risultano alta-

mente sfruttabili. Anche le varianti piu sofisticate, come PSRO e RMDO, pur introducendo

miglioramenti nella generazione delle risposte, non riescono a compensare completamente il
costo computazionale crescente e I'imprecisione inevitabile delle approssimazioni adottate.
FSP rappresenta un caso peculiare. Pur avendo una convergenza teorica garantita, tale
risultato e valido solo in condizioni di budget computazionale elevato o illimitato. In uno
scenario con tempo di addestramento fisso e senza possibilita di utilizzare astrazioni parti-
colarmente raffinate, FSP non riesce a raggiungere la profondita strategica necessaria per
risultare competitivo. Il suo affidamento su risposte ottimali accurate rende il calcolo anco-
ra piu oneroso, penalizzandolo rispetto ad algoritmi che, pur meno teoricamente eleganti,
sono in grado di produrre valutazioni e aggiornamenti strategici molto piu rapidamente.

Un secondo gruppo ¢ quello degli algoritmi basati su reti neurali. Metodi come Dee-
pCFR, NFSP, SDCFR e NXDO sono stati espressamente progettati per operare in giochi
talmente vasti da rendere impraticabile ’esplorazione completa dell’albero. La capacita di
generalizzazione delle reti neurali rappresenta, in questi contesti, un compromesso effica-
ce tra precisione e scalabilita. Tuttavia, nel contesto specifico di HULHE e in presenza
di astrazione, tali algoritmi soffrono di una duplice debolezza: da un lato, la qualita del-
I’apprendimento e limitata dal ridotto tempo di addestramento disponibile; dall’altro, la
generalizzazione introduce distorsioni che solo modelli particolarmente espressivi e ben ad-
destrati riuscirebbero a correggere. Di conseguenza, pur mostrando prestazioni ragionevoli,
questi metodi risultano sfruttabili da algoritmi di ricerca o da varianti di CFR piu rapide e
stabili.

La terza categoria e costituita dagli algoritmi di ricerca, che hanno mostrato una robu-
stezza sorprendente nel contesto sperimentale adottato. Approcci come MCTS, ISMCTS
ed Expectimax, pur non mirando all’equilibrio e privi di garanzie formali nel lungo periodo,
operano direttamente sul gioco reale senza alcun tipo di astrazione. Questa caratteristica,
unita al fatto che non richiedono addestramento, li rende estremamente competitivi quan-
do gli algoritmi avversari sono penalizzati dal tempo di apprendimento o dalla perdita di
informazione. In particolare, ISMCTS e Expectimax si sono distinti nella maggior parte
degli scenari, mostrando come I'immediatezza valutativa e la capacita di sfruttare pattern
locali possano rappresentare un vantaggio significativo. E tuttavia importante sottolineare
che questa forza ¢ situazionale: qualora si disponesse di un tempo di addestramento molto
piu esteso o di astrazioni estremamente precise, gli algoritmi di equilibrio e quelli neurali
tenderebbero a superarli nel lungo periodo.

Infine, i metodi basati sulla minimizzazione del rimpianto rappresentano il gruppo piu

coerente e prevedibile nelle loro prestazioni. Regret Matching, CFR, MCCFR, RCFR e le
relative varianti si distinguono per l'equilibrio tra stabilita, robustezza e adattabilita. Il
loro comportamento rispecchia ampiamente le aspettative teoriche: in media, convergono
verso strategie solide e difficilmente sfruttabili. Le differenze interne alla famiglia dipendono
principalmente dalla velocita con cui riescono a ridurre il rumore e a stabilizzare le stime.
Varianti come TCFR ed ECFR si sono rivelate meno efficaci poiché particolarmente sensibili
agli errori di astrazione, che ne compromettono la capacita di aggiornare correttamente il
rimpianto. Al contrario, CFR+ e DDCFR, progettati per controllare piu efficacemente la
variabilita degli aggiornamenti e per accelerare la convergenza, hanno mostrato prestazioni
eccellenti. CFR+, in particolare, si conferma ancora una volta come uno degli algoritmi piu
affidabili, e la sua capacita di risolvere versioni astratte del gioco trova piena corrispondenza
nei risultati sperimentali.

In sintesi, le prestazioni osservate riflettono il delicato equilibrio tra complessita compu-
tazionale, stabilita delle stime, sensibilita all’astrazione e capacita di sfruttamento dell’av-
versario. Gli algoritmi piu efficaci sono quelli che riescono a coniugare rapidita di adatta-
mento, tolleranza agli errori introdotti dalla modellizzazione e robustezza nel medio-lungo
periodo. Le differenze emerse non costituiscono anomalie, ma confermano la stretta relazio-
ne tra le assunzioni teoriche alla base degli algoritmi e la loro effettiva capacita di competere

all’'interno di un gioco complesso e ad alta varianza come I'Heads-Up Limit Hold’em.

Il ruolo della varianza. I risultati sperimentali devono essere interpretati anche alla luce
dell’elevata varianza che caratterizza il gioco di HULHE. Come riportato nella letteratura di
riferimento [12], la deviazione standard di una singola mano in questo dominio ¢ pari a circa
5 big blind per gioco (bb/g). Tale valore, che rappresenta la fluttuazione tipica del risultato
di una singola mano indipendente, ha un impatto diretto sulla significativita statistica delle
prestazioni osservate, rendendo difficile distinguere differenze reali da oscillazioni casuali su
orizzonti temporali brevi.

Per comprendere meglio I'importanza della varianza, si consideri che la deviazione stan-
dard dopo n mani indipendenti decresce come o, = \/iﬁ bb/g. Nei contesti sperimentali
considerati, le configurazioni con capitale relativamente ridotto e numero medio di ma-
ni dell’ordine di qualche centinaio risultano dunque intrinsecamente soggette a oscillazioni
ampie. Ad esempio, con 300 mani, la deviazione standard rimane intorno a o3y ~ 0.29

bb/g, un valore comparabile alle differenze prestazionali osservate tra diversi algoritmi nella

fascia media della classifica. E quindi naturale che, in tali configurazioni, metodi exploitativi
o privi di garanzie teoriche, quali MCTS, ISMCTS o Expectimax, possano occasionalmente
ottenere risultati superiori contro avversari pit solidi, semplicemente grazie alle oscillazioni
casuali del gioco.

Lo studio [12] offre inoltre un’analisi quantitativa della difficolta di stabilire differenze
statisticamente significative anche su orizzonti molto lunghi. Persino un match di 100,000
mani presenta un intervallo di confidenza al 95% pari a circa 31 milli-big blind per gioco
(mbb/g), una soglia superiore alle differenze di prestazione tra molte strategie storicamente
sviluppate. Questo dato evidenzia quanto sia complesso discriminare con certezza tra algo-
ritmi vicini in termini di qualita strategica, anche quando essi giocano un numero elevato
di incontri.

Applicando questi ragionamenti alle configurazioni sperimentali del presente lavoro, ri-
sulta evidente come le diverse configurazioni presentino livelli molto differenti di affidabilita
statistica. Le partite con capitale iniziale ridotto, pur essendo utili per individuare tenden-
ze qualitative, soffrono di una componente aleatoria predominante. Le configurazioni con
capitale aumentato riducono parzialmente la varianza, ma anch’esse non permettono una
distinzione netta tra strategie di qualita vicine. Solo il match a 1000 mani consente una
valutazione piu stabile, poiché la deviazione standard scende a circa 0.158 bb/g, abbastanza
piccola da permettere il riconoscimento di differenze prestazionali sostanziali tra algoritmi
con comportamento profondamente diverso.

In sintesi, la struttura intrinseca di HULHE rende il gioco altamente sensibile alla va-
rianza, e di conseguenza impone una notevole cautela nell'interpretazione dei risultati spe-
rimentali. A seconda della configurazione, possono essere necessarie decine di migliaia di
mani per ridurre in maniera significativa 'incertezza statistica, e persino orizzonti di gioco
molto ampi potrebbero non essere sufficienti per distinguere strategie simili. Questo aspetto
spiega, almeno in parte, perché algoritmi estremamente solidi nel lungo termine possano
occasionalmente essere superati da tecniche pit exploitative nei contesti sperimentali pit
brevi, e conferma la centralita di una corretta gestione della varianza nelle valutazioni

empiriche di algoritmi per giochi a informazione imperfetta.

Capitolo 5
Conclusioni

Nel suo insieme, questa tesi ha avuto l'obiettivo di esplorare il poker Heads-Up Limat
Hold’em come caso di studio emblematico per ’analisi dei giochi strategici a informazione
imperfetta, mettendo in relazione il comportamento degli algoritmi sviluppati con i fonda-
menti teorici che ne regolano la struttura. Attraverso una panoramica iniziale della teoria
dei giochi, sono stati introdotti i concetti che tradizionalmente guidano lo studio delle in-
terazioni competitive tra agenti razionali, tra cui ’equilibrio di Nash, la sfruttabilita e i
metodi per approssimare strategie ottimali in domini complessi. Questi strumenti teorici
hanno costituito la base per comprendere sia le difficolta intrinseche nella risoluzione di gio-
chi di grande scala sia le principali famiglie di algoritmi che permettono oggi di affrontarli
in modo efficiente.

Il lavoro ha quindi approfondito le tecniche algoritmiche piu rilevanti per la risoluzione
di giochi sequenziali a informazione incompleta, in particolare quelle basate sulla mini-
mizzazione del rimpianto e sul calcolo iterativo di strategie approssimate. Questi metodi,
sviluppati originariamente per superare le limitazioni dei tradizionali approcci basati sulla
programmazione lineare, hanno rivoluzionato il modo in cui la comunita scientifica affronta
giochi come il poker, rendendo possibile la gestione di spazi di stati estremamente ampi e
la ricerca di strategie quasi ottimali in tempi praticabili. Alla luce di tali progressi, il poker
HULHE rappresenta dunque non soltanto un dominio applicativo di interesse autonomo,
ma anche un contesto fondamentale per valutare le prestazioni, I’adattivita e la robustezza

degli algoritmi progettati per competere in ambienti incerti e parzialmente osservabili.

91

Inoltre, HULHE rappresenta il primo gioco competitivo non banale a informazione im-
perfetta giocato da esseri umani ad essere stato essenzialmente debolmente risolto. Ciono-
nostante, ci si potrebbe chiedere quale sia il significato ultimo della risoluzione di questa
categoria di giochi, di cui il poker fa parte.

Le innovazioni alla base di questo risultato rappresentano progressi algoritmici generali
che rendono il ragionamento basato sulla teoria dei giochi, in modelli su larga scala di
qualsiasi tipo, piu trattabile. E, sebbene il contesto possa apparire ludico, la teoria dei
giochi e sempre stata concepita come uno strumento dotato di implicazioni profonde, come
dimostrano i suoi effetti precoci sulla politica della Guerra Fredda [63]. Piu recentemente,
si e assistito inoltre a un aumento significativo di applicazioni della teoria dei giochi nel
settore della sicurezza, includendo I'implementazione di sistemi per i controlli aeroportuali,
la programmazione dei voli dei marshal e la pianificazione di attivita di pattugliamento della
guardia costiera [80]. Gli algoritmi basati sulla minimizzazione del rimpianto controfattuale
(CFR), della stessa famiglia di quelli discussi nel presente lavoro, sono stati persino oggetto
di studio per poter essere utilizzati in processi decisionali, in cui non vi & alcun avversario
apparente, con potenziali ricadute nell’ambito della diagnostica e dell’assistenza medica
[23].

Poiché i contesti decisionali della vita reale sono fortemente caratterizzati da incertezza
e informazioni mancanti, sono necessari progressi algoritmici, analoghi a quelli utilizzati per
risolvere il poker, per guidare le applicazioni future. Tuttavia, risulta importante riportare
una celebre osservazione attribuita ad Alan Turing a proposito delle proprie ricerche sui
giochi: “Non sarebbe onesto, da parte nostra, nascondere il fatto che il motivo principale

che ha spinto il lavoro ¢ stato il puro divertimento della cosa” [62, [82].

Bibliografia

1]

L. V. Allis. Searching for solutions in games
and artificial intelligence. PhD thesis, Vrije
Universiteit Amsterdam, The Netherlands,
1994.

Holger Baier and Paul D. Drake. The po-
wer of forgetting: Improving the last-good-
reply policy in monte carlo go. IEEE Tran-
sactions on Computational Intelligence and
Al in Games, 2(4):303-309, 2010. doi:
10.1109/TCIAIG.2010.2097630.

David Balduzzi, Karl Tuyls, Julien Pero-
lat, and Thore Graepel. Re-evaluating eva-
luation, 2018. URL https://arxiv.org/
abs/1806.02643.

A. Banerjee, S. Merugu, I. S. Dhillon, and
J. Ghosh. Clustering with bregman di-
vergences.

Research, 6(Oct):1705-1749, 2005.

Ariyan Bighashdel, Yongzhao Wang, Ste-
phen McAleer, Rahul Savani, and Frans A.
Oliehoek. Policy space response oracles: A
survey, 2024. URL https://arxiv.org/
abs/2403.02227.

D. Billings, N. Burch, A. Davidson, R.C.
Holte, J. Schaeffer, T. Schauenberg, and

D. Szafron. Approximating game-theoretic

Journal of Machine Learning

93

[12]

optimal strategies for full-scale poker.
In Proceedings of the 18th International
Joint Conference on Artificial Intelligence

(IJCAI), pages 661-668, 2003.

Darse Billings, Denis Papp, Jonathan
Schaeffer, and Duane Szafron. Opponent

modeling in poker. pages 493—499, 01 1998.

Darse Billings, Aaron Davidson, Teren-
ce Schauenberg, Neil Burch, Michael Bo-
wling, Robert Holte, Jonathan Schaeffer,
and Duane Szafron. Game-tree search
with adaptation in stochastic imperfect-
information games. In H. Jaap van den
Herik, Yngvi Bjornsson, and Nathan S.
Netanyahu, editors, Computers and Ga-
Heidelberg,

ISBN

mes, pages 21-34, Berlin,
2006. Springer Berlin Heidelberg.

978-3-540-32489-8.

R. Bjarnason, A. Fern, and P. Tadepal-
li. Lower bounding klondike solitaire with
monte-carlo planning. In Proceedings of
the 19th International Conference on Auto-

mated Planning and Scheduling (ICAPS),
pages 26-33, Thessaloniki, Greece, 2009.

E. Borel and J. Ville.
théorie des probabilités aux jeur de hasard.
Gauthier-Villars, 1938.

Applications de la

M. Bowling and M. Veloso. Rational and
convergent learning in stochastic games.
In Proceedings of the 17th International

Joint Conference on Artificial Intelligence
(IJCAI), pages 10211026, 2001.

M. Bowling, N. Burch, M. Johanson, and

https://arxiv.org/abs/1806.02643
https://arxiv.org/abs/1806.02643
https://arxiv.org/abs/2403.02227
https://arxiv.org/abs/2403.02227

[13]

O. Tammelin. Heads-up limit hold’em po-
ker is solved. Science, 347(6218):145-149,
2015.

M. Bowling, N. Burch, M. Johanson, and
O. Tammelin. Heads-up limit hold’em
poker is solved: Supplementary online

material. Online, January 2015.

J. Bronowski. The ascent of man.

Documentary, Episode 13, 1973.

G. W. Brown. Iterative solution of games
by fictitious play. 13(1):374-376, 1951.

N. Brown and T. Sandholm.

imperfect-information games via discoun-

Solving

ted regret minimization. In Proceedings

of the AAAI Conference on Artificial In-
telligence, volume 33, pages 1829-1836,
2019.

Noam Brown, Adam Lerer, Sam Gross, and
Tuomas Sandholm. Deep counterfactual
regret minimization. In Kamalika Chau-
dhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Con-
ference on Machine Learning, volume 97
of Proceedings of Machine Learning Re-
search, pages 793-802. PMLR, 09-15 Jun
2019. URL https://proceedings.mlr.
press/v97/brownl9b.html.

Cameron B. Browne, Edward Powley, Da-
niel Whitehouse, Simon M. Lucas, Peter 1.
Cowling, Philipp Rohlfshagen, Stephen Ta-
vener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte car-
IEEE Transac-

tions on Computational Intelligence and Al

lo tree search methods.

[20]

[21]

[22]

[23]

[24]

[26]

in Games, 4(1):1-43, 2012. doi: 10.1109/
TCIAIG.2012.2186810.

M. Campbell, A. J. Jr. Hoane, and F. Hsu.
Deep blue. Artificial Intelligence, 134:

57-83, 2002.
Nicolo Cesa-Bianchi and Gébor Lugo-

si. Prediction, learning, and games.

Cambridge University Press, 2006.

G. M. J.-B. Chaslot, M. H. M. Winands,
H. J. van den Herik, J. W. H. M. Uiter-
wijk, and B. Bouzy. Progressive strate-
gies for monte-carlo tree search. New Ma-
thematics and Natural Computation, 4(3):
343-357, 2008.

Guillaume Chaslot, Sander Bakkes, Istvan
Szita, and Pieter Spronck. Monte-carlo tree

search: A new framework for game ai. 01
2008.

K. Chen and M. Bowling. Tractable ob-
jectives for robust policy optimization. In
Advances in Neural Information Proces-
sing Systems 25 (NIPS), pages 2078-2086,
2012.

Peter Cowling, Edward Powley, and Daniel
Whitehouse. Information set monte carlo
tree search. IEEE Transactions on Com-
putational Intelligence and Ai in Games,
4:120-143, 06 2012. doi: 10.1109/TCIAIG.
2012.2200894.

A. Davidson. Opponent modeling in po-
ker: Learning and acting in a hostile and
uncertain environment. Master’s thesis,

University of Alberta, 2002.
Le Cong Dinh, Yaodong Yang, Stephen

https://proceedings.mlr.press/v97/brown19b.html
https://proceedings.mlr.press/v97/brown19b.html

[30]

McAleer, Zheng Tian, Nicolas Perez Nie-
ves, Oliver Slumbers, David Henry Mgu-
ni, Haitham Bou Ammar, and Jun Wang.
Online double oracle, 2023. URL https:
//arxiv.org/abs/2103.07780.

Ryan D’Orazio, Dustin Morrill, James R.
Wright, and Michael Bowling. Alternati-
ve function approximation parameteriza-
tions for solving games: An analysis of
f-regression counterfactual regret minimi-
zation, 2020. URL https://arxiv.org/

abs/1912.02967.

D. Ferrucci. Introduction to “this is wa-
IBM Journal of Research and

Development, 56(3.4):1:1-1:15, 2012.
I. Frank and D. Basin.

mes with incomplete information: A ca-

tson”.

Search in ga-

se study using bridge card play. Artificial
Intelligence, 100(1-2):87-123, 1998.

Yoav Freund and Robert E. Schapire.
Adaptive game playing using multiplicative
weights. Games and Economic Behavior,
29(1-2):79-103, 1999.

D. Fudenberg and D. K. Levine. The theo-

ry of learning in games, volume 2. MIT
press, 1998.

Richard G. Gibson, Neil Burch, Marc
Efficient

monte carlo counterfactual regret mini-

Lanctot, and Duane Szafron.
mization in games with many player
In Neural Information Pro-
2012. URL https:
//api.semanticscholar.org/CorpusID:
1583651.

actions.

cessing Systems,

33]

[34]

[35]

[39]

M. L. Ginsberg. Gib:

mation in a computationally challenging

Imperfect infor-
game. Journal of Artificial Intelligence
Research, 14:303-358, 2001.

Amy Greenwald, Jiacui Li, Eric Sodomka,
and Michael L. Littman. Solving for be-
st responses in extensive-form games using
In The

1st Multidisciplinary Conference on Rein-

reinforcement learning methods.

forcement Learning and Decision Making
(RLDM), 2013.

Sergiu Hart and Andreu Mas-Colell. A
simple adaptive procedure leading to cor-

Econometrica, 68
ISSN 00129682,

related equilibrium.
(5):1127-1150, 2000.
14680262.

J. Heinrich and D. Silver. Deep reinforce-
ment learning from self-play in imperfect-
information games. arXiv preprint ar-

Xiw:1605.01121, 2016.

Johannes Heinrich, Marc Lanctot, and Da-
vid Silver. Fictitious self-play in extensive-
In Proceedings of the 32nd

International Conference on International

form games.

Conference on Machine Learning - Volu-
me 37, ICML’15, page 805-813. JMLR.org,
2015.

Josef Hofbauer and William H. Sand-
holm. On the global convergence of sto-
chastic fictitious play. Econometrica, 70(6):
2265-2294, 2002.

Eric Jackson. Targeted counterfactual re-
gret minimization. In The AAAI-17 Work-
shop on Computer Poker and Imperfect

https://arxiv.org/abs/2103.07780
https://arxiv.org/abs/2103.07780
https://arxiv.org/abs/1912.02967
https://arxiv.org/abs/1912.02967
https://api.semanticscholar.org/CorpusID:1583651
https://api.semanticscholar.org/CorpusID:1583651
https://api.semanticscholar.org/CorpusID:1583651

[42]

[44]

[45]

Information Games, page 6, 2017.
P. C. Jansen.
the Opponent in Game-Tree Search. PhD
thesis, Carnegie-Mellon University, 1992.

M. Johanson.

counter-strategies: Building a champion le-

Using Knowledge About

Robust strategies and

vel computer poker player. Master’s thesis,
University of Alberta, 2007.

M. Johanson and M. Bowling. Data-biased
robust counter strategies.
of the Twelfth International Conference
on Artificial Intelligence and Statistics
(AISTATS), pages 264271, 2009.

M. Johanson, M. Zinkevich, and M. Bow-

ling. Computing robust counter-strategies.

In Proceedings

In Advances in Neural Information Proces-
sing Systems 20 (NIPS), pages 721-728,
2008.

M. Johanson, N. Bard, N. Burch, and
M. Bowling. Finding optimal abstract stra-
tegies in extensive-form games. In Procee-
dings of the AAAI Conference on Artificial
Intelligence, pages 12345-12352, 2021.

P. R. Jordan, L. J. Schvartzman, and M. P.
Wellman. Strategy exploration in empirical
games. In Proceedings of the 9th Interna-
tional Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages
1297-1304, 2010.

Diederik P Kingma and Jimmy Ba. Adam:
A method for stochastic optimization.
arXww preprint arXiw:1412.6980, 2014.

D. Koller and N. Megiddo. The complexity

of two-person zero-sum games in extensive

[51]

[53]

form. Games and Economic Behavior, 4
(4):528-552, 1992.

D. Koller and A. Pfeffer. Representations
and solutions for game-theoretic problems.
Artificial Intelligence, 94:167-215, 1997.

D. Koller, N. Megiddo, and B. von Sten-
gel. Efficient computation of equilibria for
extensive two-person games. Games and

Economic Behavior, 14(2):247-259, 1996.

Theodore J. Lambert 111, Marina A. Epel-
man, and Robert L. Smith. A fictitious
play approach to large-scale optimization.
Operations Research, 53(3):477-489, 2005.

Marc Lanctot, Kevin Waugh, Martin Zin-
kevich, and Michael Bowling. Monte car-
lo sampling for regret minimization in ex-
tensive games. In Advances in Neural In-
formation Processing Systems 22 (NIPS),
pages 1078-1086, 2008.

Au-
drunas Gruslys, Angeliki Lazaridou, Karl

Marc Lanctot, Vinicius Zambaldi,
Tuyls, Julien Perolat, David Silver, and
Thore Graepel. A unified game-theoretic
approach to multiagent reinforcement lear-
ning, 2017. URL https://arxiv.org/
abs/1711.00832.

C.-S. Lee, M.-H. Wang, G. M. J.-B. Cha-
slot, J.-B. Hoock, A. Rimmel, O. Teytaud,
S.-R. Tsai, S.-C. Hsu, and T.-P. Hong. The
computational intelligence of mogo revea-
led in taiwan’s computer go tournamen-
ts. IEEE Transactions on Computational
Intelligence and Al in Games, 1(1):73-89,
20009.

https://arxiv.org/abs/1711.00832
https://arxiv.org/abs/1711.00832

[54]

[56]

[57]

C.-S. Lee, M. Miiller, and O. Teytaud.
Guest editorial: Special issue on monte
carlo techniques and computer go. IFEE
Transactions on Computational Intelligen-
ce and Al in Games, 2(4):225-228, Dec

2010.

David S. Leslie and Edmund J. Collins. Ge-
neralised weakened fictitious play. Games
and Economic Behavior, 56(2):285-298,
2006.

Huale Li, Xuan Wang, Shuhan Qi, Jiajia
Zhang, Yang Liu, Yulin Wu, and Feng-
wei Jia. Solving imperfect-information ga-
mes via exponential counterfactual regret
minimization, 2020. URL https://arxiv.
org/abs/2008.02679.

Stephen McAleer, John Lanier, Roy Fox,
and Pierre Baldi. Pipeline psro: A scala-
ble approach for finding approximate nash
equilibria in large games, 2021. URL
https://arxiv.org/abs/2006.08555.

Stephen McAleer,
Wang, Pierre Baldi, and Roy Fox. Xdo: A
double oracle algorithm for extensive-form
games, 2022. URL https://arxiv.org/
abs/2103.06426.

John Lanier, Kevin

H. Brendan McMahan and Geoffrey J. Gor-
don. A fast bundle-based anytime al-
gorithm for poker and other convex ga-
In Proceedings of the 11th Interna-
tional Conference on Artificial Intelligence
and Statistics (AISTATS), pages 323-330,

2007.

mes.

[60]

[61]

[62]

[63]

[64]

[65]

H. Brendan McMahan, Geoffrey J. Gor-
don, and Avrim Blum. Planning in the
presence of cost functions controlled by an
adversary. In Proceedings of the 20th Inter-

national Conference on Machine Learning
(ICML-03), pages 536-543, 2003.

D. Michie and R. A. Chambers. Boxes: An
experiment in adaptive control. In E. Da-
le and D. Michie, editors, Machine Intelli-
gence 2, pages 137-152. Oliver and Boyd,
1968.

P. Mirowski. What were von neumann and
morgenstern trying to accomplish? In
Weintraub, editor, Toward a History of
Game Theory, pages 113-147. Duke Uni-
versity Press, 1992. Mirowski cita Turing
come autore del paragrafo contenente que-
sta frase. Il paragrafo appare in [85], al-
I'interno di un capitolo avente Turing co-
me uno dei tre contributori. Quali parti
del capitolo siano opera di quale contribu-
tore, in particolare il materiale introdutti-
vo contenente questa citazione, non e reso

esplicito.

O. Morgenstern. The cold war is cold

poker. N. Y. Times Mag., pages 21-22,

1961.

M. J. Osborne and A. Rubinstein. A
Course in Game Theory. The MIT Press,
1994.

Marc Ponsen, Steven Jong, and Marc Lanc-
tot. Computing approximate nash equili-
bria and robust best-responses using sam-
pling. J. Artif. Intell. Res. (JAIR), 42:

https://arxiv.org/abs/2008.02679
https://arxiv.org/abs/2008.02679
https://arxiv.org/abs/2006.08555
https://arxiv.org/abs/2103.06426
https://arxiv.org/abs/2103.06426

[72]

575-605, 09 2011. doi: 10.1613/jair.3402.
Ju Qi, Falin Hei, Ting Feng, Dengbing Yi,
Zhemei Fang, and Yunfeng Luo. Accelera-
ting nash equilibrium convergence in monte
carlo settings through counterfactual value
based fictitious play, 2024. URL https:
//arxiv.org/abs/2309.03084.

A. L. Reibman and B. W. Ballard. Non-
minimax search strategies for use again-
st fallible opponents.
of the AAAI National Conference, pages
338-342, 1983.

Nick Abou Risk and Duane Szafron. Using

counterfactual regret minimization to crea-

In Proceedings

te competitive multiplayer poker agents.
Technical report, University of Alberta,
Department of Computing Science, 2010.

I. V. Romanovskii. Reduction of a game
with complete memory to a matrix game.
Soviet Mathematics, 3:678-681, 1962.

S. Russell and P. Norvig. Artificial Intelli-
gence: A Modern Approach. Prentice Hall,
2nd edition, 2003.

Frank C. Schadd. Monte-carlo search tech-

niques in the modern board game thurn

and taxis. Master’s thesis, Maastricht
University, 2009.

J. Schaeffer, R. Lake, P. Lu, and
M. Bryant. Chinook the world man-

machine checkers champion. Al Magazine,
17(1):21-29, 1996.

Terence Conrad Schauenberg. Opponent
modelling and search in poker. Master’s

thesis, University of Alberta, 2006.

[74]

[76]

[78]

[81]

John Schulman, Filip Wolski, Prafulla
Dhariwal, Alec Radford, and Oleg Kli-
Proximal policy optimization algo-
rithms, 2017. URL https://arxiv.org/
abs/1707.06347.

mov.

S. Sen and N. Arora. Learning to take ri-
sks. In Proceedings of the AAAI-97 Work-
shop on Multiagent Learning, pages 59—64,
1997.

Shai Shalev-Shwartz. Online learning and
online convex optimization. Foundations
and Trends in Machine Learning, 4(2):

107-194, 2011.

J. S. Shamma and G. Arslan.
fictitious play, dynamic gradient play, and

Dynamic

distributed convergence to nash equilibria.
IEEE Transactions on Automatic Control,
50(3):312-327, 2005.

David Silver and Joel Veness. Monte-carlo
planning in large pomdps. In Advances
in Neural Information Processing Systems,
pages 2164-2172, 2010.

Single deep counter-
factual regret minimization, 2019. URL
https://arxiv.org/abs/1901.07621.

Milind Tambe.

Eric Steinberger.

Security and game theo-

ry: Algorithms, deployed systems, les-
sons learned. 01 2011. doi: 10.1017/
CB0O9780511973031.

Xiaohang Tang, Le Cong Dinh, Ste-
McAleer,

Yang. Regret-minimizing double oracle for

phen Marcus and Yaodong

extensive-form games, 2023. URL https:
//arxiv.org/abs/2304.10498.

https://arxiv.org/abs/2309.03084
https://arxiv.org/abs/2309.03084
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1901.07621
https://arxiv.org/abs/2304.10498
https://arxiv.org/abs/2304.10498

[82]

[83]

[85]

[86]

[83]

A. Turing. Digital computers applied to ga-
mes. In B.V. Bowden, editor, Faster Than
Thought, chapter 25. Pitman, 1976.

Hado van Hasselt, Arthur Guez, and David
Silver.
double g-learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 30
(1), Mar. 2016. doi: 10.1609/aaai.v30il.
10295. URL https://ojs.aaai.org/
index.php/AAAI/article/view/10295.

O. Vinyals, I. Babuschkin, W. M. Cgzar-
necki, M. Mathieu, A. Dudzik, J. Chung,
D. H. Choi, R. Powell, T. Ewalds, P. Geor-
giev, J. Oh, C. Hesse, D. Silver, and K. Ka-

vukcuoglu. Grandmaster level in starcraft

Deep reinforcement learning with

ii using multi-agent reinforcement learning.
Nature, 575:350-354, 2019.

J. S. Vitter. Random sampling with a reser-
voir. ACM Transactions on Mathematical
Software (TOMS), 11(1):37-57, 1985.

J. von Neumann. Zur theorie der gesell-
schaftsspiele. Mathematische Annalen, 100
(1):295-320, 1928.

J. von Neumann and O. Morgenstern.
Theory of Games and Economic Behavior.
Princeton University Press, Princeton, 2
edition, 1947.

Christopher JCH Watkins and Peter Da-
yan. Q-learning. Machine learning, 8(3-4):
279-292, 1992.

[89]

[91]

[92]

K. Waugh, D. Schnizlein, M. Bowling, and
D. Szafron. Abstraction pathology in ex-
In Proceedings of the 8th

International Joint Conference on Auto-

tensive games.

nomous Agents and Multiagent Systems
(AAMAS), 2009.

K. Waugh, M. Zinkevich, M. Johanson,
M. Kan, D. Schnizlein, and M. Bowling. A
practical use of imperfect recall. In Procee-
dings of the Eighth Symposium on Abstrac-
tion, Reformulation and Approzimation
(SARA), 2009.

Kevin Waugh, Dustin Morrill, J. An-
drew Bagnell, and Michael Bowling. Sol-
ving games with functional regret estima-
tion, 2014. URL https://arxiv.org/

abs/1411.7974.

Hang Xu, Kai Li, Haobo Fu, QIANG FU,
Junliang Xing, and Jian Cheng. Dyna-
mic discounted counterfactual regret mini-
In The Twelfth International
Conference on Learning Representations,
2024. URL https://openreview.net/

forum?id=6PbvbLyqT6|
M. Zinkevich, M. Johanson, M. Bowling,

and C. Piccione.

mization.

Regret minimization in
games with incomplete information. Tech-
nical Report TR 2007-17, University of Al-
berta, Department of Computing Science,
2007.

https://ojs.aaai.org/index.php/AAAI/article/view/10295
https://ojs.aaai.org/index.php/AAAI/article/view/10295
https://arxiv.org/abs/1411.7974
https://arxiv.org/abs/1411.7974
https://openreview.net/forum?id=6PbvbLyqT6
https://openreview.net/forum?id=6PbvbLyqT6

	Introduzione
	Teoria dei Giochi nell’Informatica e poker
	Equilibrio di Nash e sfruttabilità
	Giochi in forma estesa e tecniche di astrazione
	HULHE: regole e logica di gioco
	Approcci considerati ed obiettivo della tesi

	Approcci computazionali
	Counterfactual Regret Minimization
	CFR
	CFR+
	CFR-BR
	DDCFR
	Deep-CFR
	ECFR
	MCCFR
	Regression CFR
	SD-CFR
	TCFR

	Fictitious Self-Play
	FSP
	NFSP

	Metodi basati su Programmazione Lineare e Risposte Ottimali
	ODO
	PSRO
	XDO
	NXDO
	RMDO

	Metodi di ricerca e approcci euristici
	EHS
	MCTS
	ISMCTS
	MCRNR
	MCCFVFP

	Opponent Modeling Expectimax
	Expectimax
	OM-Expectimax
	Costo computazionale

	Risultati sperimentali su HULHE
	Configurazione degli esperimenti
	Risultati empirici
	Discussioni ed analisi

	Conclusioni

