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Abstract

La risoluzione computazionale di giochi a somma zero in forma estesa rappresenta una

delle sfide centrali nella teoria dei giochi algoritmica, data la complessità intrinseca dei

giochi ad informazione imperfetta e la necessità di ottenere strategie approssimativamente

ottimali con risorse limitate. In questo contesto, la presente tesi offre un’analisi appro-

fondita dei principali approcci noti in letteratura per la soluzione di tali giochi. Il lavoro

utilizza come modello applicativo il poker Heads-Up Limit Texas Hold’em (HULHE), uno

dei giochi imperfetti più studiati per la sua rilevanza teorica e pratica. Per ciascun algorit-

mo considerato, è stata implementata una variante specificamente adattata a HULHE, con

l’obiettivo di valutarne le prestazioni nel confronto diretto. La tesi presenta complessiva-

mente 23 varianti algoritmiche, organizzate in base ai principi metodologici da cui derivano,

fornendo una panoramica sistematica delle strategie di risoluzione più influenti e delle loro

configurazioni pratiche. Inoltre, viene proposto un approccio euristico che, seppur fondato

su metodi già utilizzati, rappresenta una variante innovativa, non presente in letteratura, e

che costituisce il contributo originale di questa tesi al problema di gioco tra agenti artificiali

nell’HULHE. Prima dell’analisi comparativa, viene fornita una descrizione dettagliata della

struttura del gioco HULHE, delle nozioni fondamentali della teoria dei giochi rilevanti per il

lavoro e dei criteri metodologici adottati per valutare gli algoritmi. Infine, vengono discussi

gli esiti sperimentali dei confronti diretti tra i diversi approcci e viene fornita una sintesi

critica dei risultati ottenuti, includendo le principali limitazioni emerse durante lo sviluppo

delle implementazioni. Questa tesi si configura quindi come un contributo significativo alla

valutazione empirica e all’applicazione pratica degli algoritmi per giochi ad informazione

imperfetta nel contesto del poker HULHE.
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Capitolo 1

Introduzione

1.1 Teoria dei Giochi nell’Informatica e poker

Sin dai primi sviluppi nel campo dell’informatica, i giochi hanno rappresentato un con-

testo privilegiato per lo sviluppo dell’intelligenza artificiale (IA) e dei primi modelli com-

putazionali. Per oltre mezzo secolo, essi hanno svolto un ruolo centrale nella validazione di

nuove idee e tecniche, contribuendo a traguardi fondamentali nell’avanzamento dell’IA. Tra

i risultati più emblematici si annoverano Chinook, primo programma di dama a conquistare

un titolo mondiale contro avversari umani [72], Deep Blue, capace di sconfiggere il cam-

pione del mondo Garry Kasparov negli scacchi [19], e Watson, vincitore contro campioni

umani nel gioco Jeopardy! [28]. Tuttavia, il superamento dei migliori giocatori umani non

coincide necessariamente con la “risoluzione” di un gioco, intesa come la determinazione di

una strategia teoricamente ottimale che non possa essere sconfitta da alcun avversario in

condizioni di gioco corrette.

Il processo di risoluzione di un gioco costituisce infatti un obiettivo fondamentale nello

studio dell’IA e nell’analisi algoritmica dei giochi strategici. Tra i giochi risolti fino ad oggi,

la quasi totalità appartiene alla categoria dei giochi a informazione perfetta, nei quali ogni

giocatore dispone della piena conoscenza di tutti gli eventi precedenti al momento della

decisione. Scacchi, dama e backgammon rientrano in tale classe. Al contrario, nei giochi

a informazione imperfetta i giocatori non possono osservare completamente lo stato del

gioco, come accade nel bridge, nel poker o nelle aste, dove parte delle informazioni rimane

nascosta. La presenza di informazioni incomplete rende questi giochi più complessi sia dal
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punto di vista teorico sia dal punto di vista computazionale, con un ritardo significativo,

nella letteratura, rispetto ai progressi ottenuti per i giochi a informazione perfetta. È inoltre

rilevante osservare che, mentre quest’ultima categoria risulta comune nei giochi da tavolo,

l’informazione imperfetta è la norma nei processi decisionali reali. In questo senso, già J.

von Neumann, in una conversazione raccontata da J. Bronowski, sottolineava come la vita

reale fosse caratterizzata da bluff, inganni e inferenza sulle intenzioni altrui, riconoscendo

in tali aspetti il fondamento stesso dei giochi strategici moderni [14].

L’affermazione di von Neumann allude al gioco per eccellenza dell’informazione imper-

fetta: il poker. Esso costituisce il paradigma dei giochi a informazione imperfetta e ha

avuto un ruolo determinante nei primi sviluppi della teoria dei giochi. I lavori pionieristici

di Émile Borel [10] e dello stesso von Neumann [86, 87] furono infatti motivati dalla for-

malizzazione matematica del bluff e delle decisioni probabilistiche tipiche di questo gioco

[12], che oggi è tra i più diffusi al mondo. La variante attualmente più popolare è il Texas

Hold’em; quando è disputata tra due soli giocatori, con puntate fisse e numero massimo di

rilanci, prende il nome di Heads-Up Limit Texas Hold’em (HULHE).

HULHE rappresenta la più piccola variante di poker praticata a livello competitivo, pur

presentando una complessità considerevole: il gioco può assumere circa 3,16 Ö 1017 stati

distinti, una dimensione superiore a quella di Forza Quattro ma inferiore a quella della

dama. Tuttavia, la natura dell’informazione imperfetta riduce la possibilità dei giocatori di

distinguere molti di questi stati, che differiscono solo per informazioni non osservabili, come

le carte private dell’avversario. Questo porta a circa 3,19 Ö 1014 punti decisionali effettivi,

rendendo HULHE significativamente più impegnativo da analizzare o risolvere rispetto ai

giochi a informazione perfetta di dimensione anche superiore [12].

Lo studio del poker da parte dell’IA, della ricerca operativa e della psicologia ha una

storia ormai cinquantenaria. Solo ventisette anni fa Koller e Pfeffer affermavano che una

soluzione su larga scala di giochi complessi come il poker fosse probabilmente irraggiungibile

[48]. Allis [1], informatico olandese che ha ottenuto successo nella risoluzione per giochi come

Forza Quattro e Qubic, fornisce tre diverse definizioni di risoluzione di una partita: un gioco

è ultra-debolmente risolto se è noto il valore teorico della posizione iniziale; debolmente

risolto se esiste una strategia che garantisce almeno tale valore teorico; fortemente risolto

se per ogni posizione legale è nota una strategia che garantisce il valore ottimale. Tuttavia,

nei giochi a informazione imperfetta tali definizioni incontrano difficoltà strutturali, poiché

il valore teorico di una posizione oltre quella iniziale non è univocamente determinato.



Inoltre, la presenza di comportamenti stocastici implica valori non discreti, raggiungibili

solo in media su un numero elevato di partite. Di conseguenza, i valori teorici dei giochi a

informazione imperfetta sono spesso approssimati, quindi un’ulteriore considerazione nella

risoluzione di un gioco è il grado di approssimazione accettabile.

Questa tesi si concentra proprio su HULHE, analizzando le tecniche di risoluzione ap-

prossimata sviluppate negli ultimi anni e valendosi dei risultati ottenuti dal gruppo di ricerca

dell’Università di Alberta [12], grazie allo sviluppo di algoritmi di apprendimento per rinfor-

zo e di metodi di riduzione dello spazio degli stati. In particolare, si focalizza sull’algoritmo

di minimizzazione del rimpianto controfattuale e sulle sue varianti, che hanno permesso di

avvicinarsi in modo significativo a una strategia quasi perfetta per HULHE. Inoltre, viene

proposto un nuovo approccio euristico, non presente nella letteratura: opponent modeling

expectimax.

1.2 Equilibrio di Nash e sfruttabilità

La rappresentazione classica di un contesto informativo imperfetto è il gioco in forma

estesa, un modello formale di interazione strategica tra agenti razionali applicabile tanto

ai contesti ludici quanto a scenari reali quali aste, negoziazioni o problemi di sicurezza.

Il nucleo di un gioco in forma estesa è costituito da un albero di gioco che descrive la

sequenza dei possibili eventi, comprendenti le azioni dei giocatori e gli esiti casuali. Ogni

ramo dell’albero è associato allo stato del gioco in cui si verifica l’evento corrispondente,

mentre a ciascun nodo decisionale è assegnato un giocatore (o il caso) responsabile della

scelta dell’azione successiva. Le foglie dell’albero denotano la conclusione della partita e

sono etichettate con le utilità associate ai giocatori [12].

Negli stati in cui un giocatore deve prendere una decisione, l’informazione disponibile è

organizzata in insiemi informativi, ovvero insiemi di stati che il giocatore non è in grado di

distinguere, come accade quando l’incertezza deriva da elementi non osservabili, ad esempio

le carte private dell’avversario nel poker. Le azioni disponibili in ciascun insieme informativo

sono rappresentate dai rami in uscita da qualsiasi stato compreso nell’insieme stesso (figura

1.1).

Una strategia per un giocatore è definita come l’assegnazione, per ogni insieme informa-

tivo, di una distribuzione di probabilità sulle azioni disponibili. Quando il gioco coinvolge

esattamente due giocatori e le utilità terminali sommano sempre a zero, si parla di gioco



Figura 1.1: Parte della rappresentazione in forma estesa del poker Kuhn. Le frecce mostrano
gli eventi tra cui il giocatore che agisce può scegliere, etichettati con il loro significato nel gioco.
Le foglie sono vertici quadrati etichettati con l’utilità associata per il giocatore 1 (l’utilità del
giocatore 2 è la negazione di quella del giocatore 1). Gli stati collegati da linee grigie spesse fanno
parte dello stesso insieme di informazioni [12].

a somma zero. Il concetto classico di soluzione per i giochi estesi è l’equilibrio di Nash,

ossia un profilo di strategie in cui nessun giocatore può migliorare la propria utilità attesa

modificando unilateralmente la propria strategia. In un gioco in forma estesa finita, esiste

almeno un equilibrio di Nash; nei giochi a somma zero, tutti gli equilibri producono la stessa

utilità attesa per ogni giocatore, denominata valore del gioco.

Si definisce invece equilibrio ϵ-Nash una strategia per cui nessun giocatore può aumentare

la propria utilità attesa di più di ϵ adottando una strategia alternativa. In accordo con le

categorie introdotte da Allis, un gioco a somma zero è considerato ultra-debolmente risolto

quando ne è determinato il valore teorico, mentre è debolmente risolto quando è identificata

una strategia di equilibrio di Nash. Un gioco è definito essenzialmente debolmente risolto

quando si ottiene un equilibrio ϵ-Nash con un valore di ϵ sufficientemente piccolo da risultare

statisticamente indistinguibile da zero nell’arco di una vita umana di partite giocate [12].

La qualità dell’approssimazione prodotta può essere valutata attraverso la misura della

sfruttabilità (exploitability), definita come la differenza tra il valore del gioco e l’utilità

attesa ottenibile giocando la strategia considerata contro la miglior risposta dell’avversario



nel caso peggiore. Una strategia fortemente sfruttabile si discosta significativamente dall’e-

quilibrio, mentre una strategia con sfruttabilità prossima a zero è, di fatto, una strategia

quasi perfetta.

Va osservato che una strategia può risultare sfruttabile in aspettativa, ma ciò non impli-

ca necessariamente che l’avversario ottenga un guadagno significativo in un numero finito

di mani, poiché gli esiti del gioco sono soggetti a variabilità stocastica e la strategia stessa

include componenti di randomizzazione. Per tale motivo, si introduce il concetto di solu-

zione essenzialmente risolta. A titolo illustrativo, se si considera un individuo che giochi

200 mani di poker all’ora, per 12 ore al giorno, senza interruzioni, per un periodo di 70

anni, applicando sempre la miglior risposta possibile contro la strategia in esame e non

commettendo alcun errore, i risultati di un numero cos̀ı elevato di mani sarebbero in ogni

caso soggetti al teorema del limite centrale, con la distribuzione delle vincite complessive

che tende a una normale. Ne consegue che, almeno una volta su venti, l’esito totale potrà

risultare 1,64 deviazioni standard al di sotto del valore atteso, anche contro una strategia

perfettamente ottimale [12].

Utilizzando il valore della deviazione standard per singola mano in HULHE, riportato

pari a circa 5 big blind per partita (5 bb/g), è possibile derivare una soglia di sfruttabilità

tale da rendere statisticamente indistinguibile una strategia approssimata da una soluzione

perfetta. In particolare, una strategia con una sfruttabilità inferiore a 1 milli-big-blind per

partita (1 mbb/g) non può essere distinta da una strategia di equilibrio neppure su un

orizzonte pari alla vita intera del giocatore nel caso peggiore. Essa presenta, addirittura,

una probabilità non trascurabile (1 su 20) di prevalere contro la miglior risposta assoluta

anche dopo milioni di mani [12].

Per questa ragione, la soglia di 1 mbb/g è adottata come criterio per dichiarare l’HULHE

essenzialmente debolmente risolto. Strategie la cui sfruttabilità ricade al di sotto di tale

limite sono, a tutti gli effetti pratici, indistinguibili da una soluzione esatta del gioco.

1.3 Giochi in forma estesa e tecniche di astrazione

Nel poker, una strategia può essere rappresentata come una terna di probabilità (f,c,r)

associata a ciascun insieme informativo. In tale notazione, f indica la probabilità di abban-

donare (fold), c la probabilità di vedere o chiamare (call), ed r la probabilità di puntare o

rilanciare (raise), con il vincolo f+c+r=1. Una risposta ottimale è definita come la strategia



che massimizza l’utilità attesa di un agente contro l’insieme delle strategie adottate dagli

altri partecipanti al gioco. Ogni strategia che compone un profilo di equilibrio di Nash

costituisce, per definizione, una risposta ottimale alle strategie degli altri agenti presenti

nel profilo. Se un singolo agente mantiene la propria strategia di equilibrio mentre gli altri

deviano, esso potrebbe ottenere un’utilità maggiore o minore deviando a sua volta; tuttavia,

nessuna deviazione unilaterale risulta vantaggiosa se tutti mantengono la strategia prevista

dal profilo di equilibrio. Nei giochi a somma zero e a due giocatori, i profili strategici di

equilibrio assumono un’importanza particolare, poiché presentano proprietà aggiuntive che

li rendono strumenti fondamentali per l’analisi e la soluzione del gioco [93].

L’astrazione delle carte costituisce il metodo più diffuso per ridurre la complessità del-

l’albero decisionale nei giochi di poker. L’approccio più semplice consiste nell’applicare una

metrica alle mani, come la forza della mano attesa (Expected Hand Strength, E[HS]) [6], e

nel raggruppare all’interno dello stesso bucket le mani che presentano valori metrici simili.

Nel bucket percentile, ciascun raggruppamento contiene approssimativamente lo stesso nu-

mero di mani, mentre nel bucket uniforme l’intervallo metrico [0,1] viene suddiviso in modo

uniforme in N sottointervalli: tutte le mani il cui valore ricade in [0,1/N] vengono assegnate

al primo bucket, quelle in [1/N,2/N] al secondo, e cos̀ı via.

Nel poker esistono però molte mani che, pur non essendo particolarmente forti in una

fase iniziale, possiedono un elevato potenziale di miglioramento nelle fasi successive (ad

esempio, un progetto di scala o di colore). Una metrica alternativa particolarmente efficace,

in grado di incorporare tale potenziale, è la forza della mano attesa al quadrato, ossia

E[HS2] [41]. Anche questa metrica è definita nell’intervallo [0,1] e valuta il valore atteso

del quadrato della forza della mano, enfatizzando le mani con alto potenziale futuro.

Attraverso queste tecniche di astrazione, un gioco di carte viene trasformato in un gioco

basato su bucket, in cui tutte le mani appartenenti allo stesso bucket vengono trattate come

indistinguibili e quindi giocate nello stesso modo. Gli insiemi informativi rappresentano

quindi i bucket anziché mani individuali. Se l’astrazione è costruita in modo che ciascun

giocatore mantenga memoria perfetta di tutte le azioni precedenti contenute nei rispettivi

insiemi informativi, essa è definita astrazione a richiamo perfetto. Con richiamo perfetto e

N bucket per ciascun round, si ottengono N sequenze preflop, N2 sequenze al flop, N3 al

turn e N4 al river. Nel caso di un’astrazione a 2 bucket, ciò comporta 24 = 16 sequenze di

bucket al river.



Per ridurre ulteriormente le dimensioni dell’albero di gioco, è possibile adottare un’astra-

zione a richiamo imperfetto, in cui gli insiemi informativi derivanti da bucket diversi possono

confluire in uno stesso insieme informativo nei round successivi, riducendo cos̀ı in maniera

significativa le dimensioni dell’albero di gioco. L’albero risultante assume la struttura di

un grafo aciclico orientato, più compatto rispetto all’albero completo. Nei casi più estremi,

i bucket dei round precedenti vengono completamente dimenticati: il giocatore conserva

esclusivamente la sequenza di puntate (betting sequence) e il bucket del round corrente.

Ad esempio, invece di adottare un’astrazione a richiamo perfetto con 2 bucket per round, è

possibile costruire un albero di gioco di dimensioni comparabili utilizzando un’astrazione a

richiamo imperfetto con 16 bucket. Tale approccio consente una rappresentazione più fine

delle mani pur mantenendo invariata, o quasi, la complessità computazionale complessiva

[93].

1.4 HULHE: regole e logica di gioco

Il Texas Hold’em Heads-Up Limit [13] è una variante del poker caratterizzata da una

struttura a due giocatori e da una natura ripetuta della partita: i contendenti disputano

una sequenza di mani successive, alternandosi nel ruolo di dealer. In ciascuna mano uno

dei due giocatori ottiene un certo numero di fiches dall’avversario, e l’obiettivo complessivo

è massimizzare il proprio guadagno lungo l’intero arco della sessione.

Ogni mano ha inizio con il versamento obbligatorio dei bui: il giocatore iniziale posta lo

small blind, mentre l’altro piazza il big blind, pari al doppio dello small blind. La partita

procede poi attraverso quattro round distinti — preflop, flop, turn e river — ciascuno

composto da una fase di distribuzione delle carte e da una fase di puntate. Nel preflop,

a entrambi i giocatori vengono assegnate due carte private non visibili all’avversario; nei

round successivi vengono invece rivelate carte comuni al centro del tavolo, per un totale di

cinque: tre al flop, una al turn e una al river.

Dopo la distribuzione, i giocatori agiscono alternandosi tra tre opzioni: fold, call o

raise. Passare (fold) significa rinunciare a pareggiare l’ultima puntata avversaria, cedendo

immediatamente il piatto. Il call (“chiamare” o “vedere”) consiste nell’aggiungere al piatto

l’importo necessario per eguagliare la puntata corrente, consentendo il passaggio al round

successivo. Il rilancio (raise), infine, comporta sia il pareggio della puntata avversaria sia

l’aggiunta di ulteriori fiches per imporre una nuova puntata. All’inizio di un round, quando



non sono presenti puntate, un rilancio viene denominato bet, ossia una puntata, mentre una

chiamata priva di costo prende il nome di check; se entrambi i giocatori effettuano check, il

round termina.

Nel formato Limit, l’ammontare delle puntate è fisso: nei round preflop e flop l’importo

è detto small bet ed è pari al big blind, mentre nei round turn e river si usa la big bet, pari

al doppio del big blind. L’azione procede a partire dal giocatore non-dealer in tutti i round,

tranne nel preflop, dove tocca al dealer decidere se abbandonare, chiamare o rilanciare la

puntata del big blind. In ogni round sono consentite al massimo quattro puntate o rilanci

complessivi; una volta raggiunto il limite, il giocatore che deve agire può soltanto chiamare

o passare.

Se anche dopo il river nessun giocatore ha scelto di abbandonare, la mano si conclude

con lo showdown: entrambi rivelano le proprie carte private e il vincitore è determinato

dalla migliore combinazione di cinque carte ottenibile utilizzando liberamente le due carte

personali e le cinque comuni. Indipendentemente dall’esito (abbandono o showdown), al

termine della mano i giocatori si scambiano i ruoli e ne avviano una nuova.

Poiché il gioco può essere disputato con strutture di puntata molto diverse, le prestazioni

dei giocatori vengono tipicamente misurate in unità normalizzate, ossia i milli-big-blind per

mano (mbb/g). Un milli-big-blind corrisponde a un millesimo di big blind, e questa metrica

consente di confrontare strategie indipendentemente dalla posta specifica. Un giocatore

che foldasse sistematicamente perderebbe in media 750 mbb/g, corrispondenti ai contributi

obbligatori dei bui. Nel gioco professionale, è opinione comune che un giocatore esperto

debba mirare ad ottenere almeno 50 mbb/g dai propri avversari. La stessa unità di misura

viene utilizzata anche per quantificare la sfruttabilità.

1.5 Approcci considerati ed obiettivo della tesi

Alla luce dei concetti esposti nei paragrafi precedenti, risulta possibile delineare con

chiarezza il quadro teorico entro il quale si colloca questa tesi. L’analisi del poker Heads-

Up Limit Hold’em consente infatti di ricondurre il problema della decisione ottimale a un

insieme strutturato di principi propri della teoria dei giochi. Nozioni quali equilibrio di

Nash, strategia ottimale, sfruttabilità e valore atteso assumono un ruolo centrale sia nella

rappresentazione formale del dominio sia nella valutazione delle strategie computazionali

che verranno discusse.



Il carattere sequenziale e stocastico dell’HULHE, unito alla natura imperfetta dell’in-

formazione disponibile ai giocatori, rende il problema particolarmente adatto allo studio

di algoritmi di ottimizzazione strategica. Tali algoritmi mirano ad approssimare strategie

sempre più vicine all’equilibrio o, in alternativa, a ottenere politiche particolarmente adatte

nello sfruttamento delle debolezze di avversari non ottimali.

L’obiettivo principale della tesi è confrontare una selezione rappresentativa di tali me-

todi, appartenenti a diverse famiglie concettuali. In particolare, verranno approfonditi gli

algoritmi basati sulla minimizzazione del rimpianto (regret minimization), le tecniche ricon-

ducibili al fictitious play e alle sue estensioni neurali, le metodologie di ricerca e simulazione,

nonché approcci alternativi quali gli algoritmi euristici e i metodi fondati sulla programma-

zione lineare. Il confronto tra queste differenti paradigmi consentirà di evidenziare punti

di forza, limiti operativi ed eventuali particolarità e similitudini, con l’obiettivo di ottenere

una visione organica delle principali strategie computazionali applicabili all’HULHE. Inoltre,

verrà proposto un nuovo contributo algoritmico, basato su un modello euristico già esistente,

ma adattato allo specifico contesto del poker HULHE e migliorato concettualmente.

I capitoli successivi presenteranno quindi in modo sistematico le famiglie di algoritmi

considerate, illustrandone i principi teorici, le modalità di implementazione e i risultati spe-

rimentali ottenuti. Tale percorso consentirà di valutare criticamente l’efficacia delle diverse

soluzioni analizzate nel contesto specifico del poker Heads-Up Limit Hold’em, contribuendo

cos̀ı a una comprensione approfondita delle tecniche di risoluzione nei giochi a informazione

imperfetta.





Capitolo 2

Approcci computazionali

2.1 Counterfactual Regret Minimization

La famiglia di algoritmi Counterfactual Regret Minimization (CFR) rappresenta oggi

l’approccio più diffuso e di maggiore successo per l’approssimazione di equilibri in giochi

a informazione imperfetta. Il metodo si basa su un processo iterativo di auto gioco tra

due algoritmi che minimizzano il rimpianto, ovvero la perdita di utilità che un algoritmo

subisce per non aver selezionato la migliore strategia deterministica. L’equilibrio di Nash

approssimato è ottenuto attraverso la media delle strategie iterate dei giocatori, con qualità

crescente al crescere del numero di iterazioni.

Nel corso degli anni, l’algoritmo originario CFR è stato oggetto di numerose estensioni

e varianti — tra cui CFR+, TCFR, DDCFR, ECFR, DeepCFR, SDCFR, RCFR, CFR-

BR e MCCFR — sviluppate con l’obiettivo di migliorare l’efficienza computazionale, la

velocità di convergenza e la qualità delle strategie ottenute, portando inoltre alla risoluzione

essenzialmente debole di HULHE nel 2015 [12].

L’analisi comparativa di tali approcci risulta pertanto cruciale per comprendere l’evolu-

zione delle tecniche moderne di risoluzione dei giochi ad informazione imperfetta e il loro

impatto nelle applicazioni al poker competitivo.
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2.1.1 CFR

Contesto e descrizione algoritmo. L’approccio di CFR (Counterfactual Regret Mini-

mization), cos̀ı come le varianti basate su di esso, ha come aspetto fondamentale, come

accennato in precedenza, ciò che nella letteratura ad esso dedicata viene indicato come

”rimpianto” [12].

Il concetto di rimpianto rappresenta la differenza tra l’utilità massima potenzialmente

ottenibile scegliendo, in retrospettiva, l’azione migliore possibile, e l’utilità effettivamente

conseguita mediante l’azione intrapresa. CFR si propone di minimizzare, per ogni insieme

informativo, il rimpianto controfattuale immediato positivo [68].

Nel lavoro fondativo di Zinkevich et al. (2008) [93] è dimostrato formalmente che ridurre

il rimpianto controfattuale immediato positivo equivale a minimizzare il rimpianto medio

complessivo. Inoltre, in un gioco a due giocatori con somma zero e richiamo perfetto,

minimizzare il rimpianto medio di entrambi i giocatori conduce a un profilo strategico che

è un equilibrio ϵ-Nash.

Johanson [41] ha fornito una descrizione dettagliata dell’implementazione del CFR per

giochi generali a due giocatori con richiamo perfetto e, in particolare, per il poker heads-up.

Questo approccio ha segnato una svolta nel calcolo di strategie di equilibrio, soprattutto in

giochi a informazione imperfetta, poiché la complessità di memoria cresce proporzionalmente

al numero di insiemi informativi e non al numero totale degli stati, un vantaggio cruciale

rispetto ai risolutori basati sulla forma di sequenza [12]. Grazie a tali risparmi, Zinkevich

et al. [93] sono riusciti a risolvere astrazioni di poker molto più grandi rispetto alle tecniche

precedenti. Un’altra proprietà importante del CFR è la capacità di calcolare la risposta

ottimale (best response) in giochi astratti contro un avversario statico, come discusso da

Johanson [41].

L’algoritmo CFR si fonda sull’idea di decomporre il rimpianto complessivo accumulato

da un giocatore nel corso delle partite in una serie di termini elementari, ciascuno associato

a un singolo insieme informativo del gioco. Tale decomposizione consente di minimizzare

il rimpianto in maniera indipendente in ciascun punto decisionale, rendendo cos̀ı possibile

l’apprendimento progressivo di strategie che convergono verso un equilibrio approssimato. Il

concetto centrale introdotto dall’algoritmo è quello di counterfactual regret, un tipo di rim-

pianto definito a livello dell’insieme informativo e formulato affinché contribuisca a limitare



il rimpianto globale del giocatore [93].

A partire da ciò, l’utilità controfattuale ui(σ, I) del giocatore i (dove σ è la strategia

complessiva) viene definita come l’utilità attesa condizionata sul raggiungimento dell’insie-

me informativo I, assumendo che tutti i giocatori seguano la strategia σ, con l’eccezione del

fatto che il giocatore i forza il gioco verso l’insieme informativo stesso. Tale quantità incor-

pora, quindi, la probabilità controfattuale con cui I sarebbe stato raggiunto se il giocatore

avesse scelto di perseguirlo.

Per ogni azione a ∈ A(I), si definisce inoltre la strategia modificata σ|I→a, identica a σ

tranne per il fatto che in I il giocatore i seleziona determinatamente l’azione a. Il rimpianto

controfattuale immediato, ovvero la quantità che l’algoritmo si propone di minimizzare,

misura la differenza tra l’utilità ottenuta scegliendo un’azione alternativa rispetto a quella

effettivamente adottata in ciascuna iterazione [93].

Un risultato fondamentale dimostrato dallo studio di Zinkevich et al. (2008) [93] afferma

che il rimpianto complessivo è limitato dalla somma dei rimpianti controfattuali positivi

accumulati nei singoli insiemi informativi. Ciò implica che la minimizzazione del rimpianto

controfattuale in ciascun punto decisionale garantisce automaticamente la minimizzazione

del rimpianto globale del giocatore, permettendo dunque l’avvicinamento a un equilibrio di

Nash anche senza operare su uno spazio di decisione complessivo.

Per realizzare tale minimizzazione locale, l’algoritmo adotta un meccanismo di aggior-

namento ispirato alla teoria dell’approachability di Blackwell [93]. Per ogni insieme infor-

mativo e per ogni azione, viene mantenuta una stima del rimpianto medio accumulato nelle

iterazioni precedenti. Al termine di ciascuna iterazione, questi valori sono aggiornati in

base alla differenza tra l’utilità controfattuale associata all’azione considerata e quella deri-

vante dalla strategia attuale. La strategia per l’iterazione successiva viene quindi ottenuta

assegnando probabilità proporzionali ai rimpianti positivi delle azioni disponibili; nel caso

in cui tali rimpianti risultino nulli, le azioni vengono selezionate in maniera uniforme. Tale

regola di aggiornamento consente di garantire una decrescita sub-lineare del rimpianto nel

tempo, e quindi di convergere verso una strategia approssimativamente equilibrata.

Costo computazionale. Una volta definita un’astrazione appropriata del gioco, CFR vie-

ne utilizzato per calcolare una strategia di equilibrio approssimata dell’intero gioco astratto.

L’algoritmo procede memorizzando e aggiornando per ogni insieme informativo i valori di

rimpianto e le strategie correnti, consentendo l’apprendimento progressivo di una politica



sempre più solida. È stato descritto, inoltre, un metodo di campionamento delle azioni,

che riduce il numero di stati rilevanti in ciascuna iterazione e consente un’accelerazione

computazionale significativa senza comprometterne la correttezza teorica [93].

Risultati raggiunti. Sebbene le garanzie teoriche dell’algoritmo CFR siano originaria-

mente limitate a giochi a due giocatori, somma zero e richiamo perfetto, nella pratica il

CFR si è dimostrato sorprendentemente robusto anche quando alcune di queste condizioni

vengono allentate. In particolare, sono stati sviluppati agenti di poker heads-up con richia-

mo imperfetto che si sono rivelati estremamente efficaci [68]. Ulteriori ricerche hanno esteso

l’utilizzo del CFR anche ai giochi a somma non zero, generando agenti con bassa sfrutta-

bilità che risultano particolarmente efficaci contro giocatori umani, grazie a una maggiore

aggressività combinata con la tendenza umana ad abbandonare frequentemente [68].

Nonostante le sue potenzialità, il CFR non offre comunque garanzie teoriche generali

per i giochi multigiocatore a somma zero. Tuttavia, nel corso di alcuni esperimenti, è stato

dimostrato che il CFR può effettivamente generare agenti vincenti anche in scenari con

più giocatori. In particolare, un agente a tre giocatori con richiamo imperfetto e un altro

con richiamo perfetto, entrambi prodotti da CFR, ottennero rispettivamente il primo e il

secondo posto nella CP Competition del 2009 [68].

2.1.2 CFR+

Contesto e descrizione algoritmo. Il Counterfactual Regret Minimization Plus (CFR+)

costituisce una variante avanzata dell’algoritmo CFR, progettata nel 2015 specificamente

per affrontare la risoluzione di giochi a informazione imperfetta caratterizzati da alberi

di gioco di dimensioni estremamente elevate, come nel caso dell’Heads-Up Limit Hold’em

(HULHE) [12].

L’applicazione delle varianti consolidate di CFR a giochi di tale scala incontra due

sfide fondamentali: la gestione della memoria e i requisiti computazionali. Da un lato,

l’algoritmo deve memorizzare sia la strategia risultante sia i rimpianti accumulati per ogni

insieme informativo. Anche adottando una rappresentazione con numeri in virgola mobile

a precisione singola (4 byte), lo spazio di archiviazione richiesto ammonterebbe a circa 262

terabyte [12], una quantità incompatibile con le risorse di memoria principale dei sistemi di



calcolo. Dall’altro lato, l’esperienza maturata nell’ambito dell’algoritmica per giochi estesi

indica che un incremento di tre ordini di grandezza nel numero di insiemi informativi tende

a tradursi, almeno, in un aumento di pari entità del tempo computazionale richiesto.

CFR+ nasce proprio per superare parte di tali limitazioni [12]: le implementazioni con-

venzionali di CFR si basano su un campionamento selettivo delle porzioni dell’albero da

aggiornare a ogni iterazione e adottano il metodo del regret-matching, il quale conserva e

aggiorna i rimpianti di ciascuna azione, selezionandole con probabilità proporzionale ai rim-

pianti positivi. Al contrario, CFR+ compie iterazioni complete sull’intero albero di gioco

e utilizza il regret-matching+, una variante in cui i rimpianti negativi vengono troncati a

zero. Questo accorgimento consente alle azioni precedentemente considerate subottimali —

e quindi caratterizzate da rimpianti negativi — di ritornare selezionabili non appena si di-

mostrino nuovamente promettenti, senza attendere numerose iterazioni affinché il rimpianto

accumulato diventi positivo.

Costo computazionale. Un grande vantaggio di CFR+ è stato osservato empiricamente:

durante l’esecuzione, la sfruttabilità delle strategie intermedie tende a convergere regolar-

mente verso zero. Di conseguenza, non è necessario calcolare e memorizzare la strategia

media, come avviene nel CFR tradizionale; si può invece utilizzare direttamente la strategia

corrente come soluzione approssimata.

Dato un insieme di azioni A e una qualunque sequenza di funzioni valore

vt : A→ R,

definita per t = 1, . . . , T , esiste un limite L tale che

|vt(a)− vt(b)| ≤ L per ogni t e per tutti a, b ∈ A.

In tali condizioni, un agente che seleziona le proprie azioni secondo l’algoritmo di regret-

matching+ presenta un rimpianto massimo limitato da un valore dipendente da L e dal

numero di iterazioni T . In altri termini, regret-matching+ garantisce che il rimpianto cresca

in maniera controllata, fornendo cos̀ı una base teorica solida alle proprietà di convergenza

di CFR+ [93].



Lo studio condotto dall’Università di Alberta [93] mostra come, grazie a una combi-

nazione di compressione in streaming e gestione accurata dell’I/O su disco, il fabbisogno

di memoria venga ridotto a circa 10.9TiB. Inoltre, nonostante CFR+ conservi le stesse

garanzie asintotiche di CFR classico (decrescita del rimpianto come O(1/
√
T )), in pratica

mostra una riduzione drastica del numero di iterazioni necessarie per raggiungere una data

soglia di sfruttabilità. Nel lavoro viene riportato che il processo di soluzione di HULHE

tramite CFR+ ha richiesto complessivamente circa 900 core-year di calcolo, distribuiti su

un cluster di 4800 CPU, completando la computazione in 68 giorni di tempo reale.

Risultati. Nel lavoro dell’Università di Alberta, CFR+ viene applicato al gioco Heads Up

Limit Hold’em (HULHE) portando a risultati di notevole rilevanza per il campo dei giochi a

informazione imperfetta. Infatti, la ricerca documenta che il gioco è stato “essenzialmente

risolto”, nel senso che l’algoritmo ha generato una strategia la cui sfruttabilità è stata

portata a un livello tale da renderla praticamente indiscutibile in un contesto competitivo.

Grazie a questo successo, CFR+ ha portato, per la prima volta nella storia, alla risolu-

zione di un gioco a informazione imperfetta praticato in modo competitivo da esseri umani

[12].

2.1.3 CFR-BR

Contesto e descrizione algoritmo. L’algoritmo CFR-BR (CFR Best Response) nasce

come conseguenza diretta degli studi di Waugh et al. [89, 90] sulle patologie di astrazio-

ne nei giochi estesi. In tali lavori è stato dimostrato che, quando si risolve un gioco in

cui un giocatore opera mediante un’astrazione dello spazio degli stati mentre l’avversario

utilizza il modello completo, un raffinamento più accurato dell’astrazione conduce a una

diminuzione monotona della sfruttabilità del giocatore astratto. Inoltre, la strategia del

giocatore astratto in tali condizioni coincide, per definizione, con la strategia meno sfrutta-

bile rappresentabile all’interno dello spazio astratto, poiché diversamente non costituirebbe

un equilibrio.

Sulla base di queste osservazioni, CFR-BR si propone come un algoritmo progettato

specificamente per risolvere un gioco in cui l’avversario non è astratto, utilizzando la rap-

presentazione completa dello spazio informativo. Ciò viene ottenuto senza la necessità di



memorizzare esplicitamente l’intera strategia dell’avversario non astratto, evitando cos̀ı un

considerevole utilizzo di memoria [44].

L’algoritmo CFR-BR si articola in due componenti fondamentali. Il primo passo consi-

ste nell’introdurre un meccanismo alternativo per generare la strategia dell’avversario non

astratto. L’uso del CFR per aggiornare la strategia di un giocatore rappresenta una moda-

lità per costruire un agente che minimizza il rimpianto. Tuttavia, una best response (BR)

costituisce anch’essa un agente che minimizza il rimpianto: scegliendo sempre l’azione a

valore massimo, infatti, la BR ottiene rimpianto nullo a ogni iterazione.

Nel contesto di CFR-BR, un agente che aggiorna la propria strategia scegliendo sempre

la risposta ottimale all’azione dell’avversario è definito come agente BR. La sua strategia, a

ogni iterazione, coincide quindi con una risposta ottimale alla strategia dell’avversario nella

medesima iterazione [44]. Poiché il giocatore 1 utilizza CFR, si ha RT
1 ≤ ε dopo T iterazioni

[93].

Costo computazionale. L’utilizzo di un agente BR non astratto comporta due vantaggi

rilevanti. In primo luogo, la compattezza della rappresentazione: essendo la strategia BR

una strategia pura, essa può essere rappresentata in modo molto più compatto rispetto

a una strategia comportamentale che assegni probabilità a ogni azione. Inoltre, è stato

dimostrato [44] che, quando un agente CFR gioca contro una BR, l’intera sequenza delle

sue strategie correnti converge a un equilibrio di Nash con elevata probabilità. Nel CFR

tradizionale converge soltanto la strategia media, ma in CFR-BR questa proprietà consente

di evitare il tracciamento della strategia media, riducendo il fabbisogno di memoria per

l’agente CFR di circa la metà.

Nonostante i suoi punti di forza concettuali, CFR-BR presenta ancora due criticità che

ne ostacolano l’applicazione diretta a giochi di grandi dimensioni.

In primo luogo, sebbene una strategia di risposta ottimale possa essere rappresentata in

forma compatta, la sua dimensione rimane comunque troppo elevata per essere gestita con

risorse computazionali realistiche. In secondo luogo, il calcolo di una risposta ottimale non è

un’operazione banale. Johanson et al. [44] hanno introdotto una tecnica di risposta ottimale

accelerata specifica per il poker, in grado di ridurre drasticamente il costo computazionale:

essa richiede circa 76 giorni di CPU ed è completamente parallelizzabile, portando il tempo

effettivo ad appena un giorno. Sebbene tale contributo abbia reso praticabile un’operazione

precedentemente ritenuta intrattabile, l’utilizzo di questa procedura all’interno di CFR-BR



risulterebbe comunque oneroso, poiché la risposta ottimale dovrebbe essere ricalcolata a

ogni iterazione dell’algoritmo per garantire la convergenza verso una soglia desiderata.

Risultati. L’applicazione della tecnica CFR-BR al gioco HULHE permette di studiare in

che modo la scelta della divisione dell’albero di gioco influenzi i requisiti di memoria e la

velocità di convergenza dell’algoritmo. Nei risultati dell’Hold’em, è stato adottato un trunk

a un round: in ciascuna iterazione vengono campionate le carte pubbliche rivelate all’inizio

del secondo round, mentre il resto della mano viene esplorato come sotto-gioco [44].

Gli studi [44] mostrano che la memoria richiesta cresce rapidamente all’aumentare dei

round campionati: mentre un campionamento a un round richiede pochi megabyte, uno

a tre round arriva a superare i 350GB. Per confronto, una soluzione CFR non astratta

richiederebbe oltre 140TB di RAM, rendendola di fatto impraticabile.

Gli esperimenti [44] mostrano che, in concomitanza all’aumentare delle iterazioni e alla

scelta di uno specifico numero di bucket con cui creare l’astrazione, CFR-BR riesce a trovare

la strategia ottimale.

Poiché l’algoritmo individua la strategia meno sfruttabile all’interno di un’astrazione,

può sostituire CFR in questo compito misurando direttamente la capacità di un’astrazione

di rappresentare una buona approssimazione a un equilibrio di Nash [44].

2.1.4 DDCFR

Contesto e descrizione algoritmo. L’approccio Dynamic Discounted Counterfactual Re-

gret Minimization (DDCFR) nasce come estensione e perfezionamento degli algoritmi di

CFR. Esso rappresenta il primo metodo di ricerca dell’equilibrio capace di applicare uno

sconto alle iterazioni precedenti mediante uno schema dinamico appreso automaticamente.

Tale meccanismo consente di ottenere una capacità di generalizzazione più elevata, una

convergenza più rapida e, complessivamente, prestazioni migliorate rispetto alle varianti

tradizionali di CFR [92], applicando lo sconto sia ai rimpianti sia alla strategia media per

accelerare la convergenza. In questo caso, il peso assegnato alle iterazioni passate decresce

in funzione di tre iper-parametri (α, β, γ) [92].

L’idea fondante del DDCFR consiste nell’incapsulare il processo iterativo del CFR al-

l’interno di un ambiente, trattando lo schema di sconto come un agente che interagisce



con esso. In tale configurazione, l’agente riceve lo stato corrente del processo di iterazione

e produce un’azione composta dai pesi di sconto da utilizzare nell’iterazione successiva. Il

procedimento si ripete fino al raggiungimento del numero massimo di iterazioni. L’obiettivo

dell’agente è apprendere una politica di sconto ottimale capace di selezionare dinamicamen-

te pesi adeguati per ciascuna iterazione, minimizzando in tal modo la sfruttabilità delle

strategie medie generate (si veda figura 2.1).

Figura 2.1: Funzionamento del ciclo iterativo di DDCFR [92].

Formalmente, l’interazione tra agente e ambiente in un dato gioco G definisce un pro-

cesso decisionale di Markov (MDP), rappresentato come (G,S,A, PG, R̂G). Ogni gioco G

costituisce un ambiente distinto, mentre lo stato st ∈ S raccoglie le informazioni osservabili

dall’agente all’iterazione t, includendo elementi quanto più generali e trasferibili possibile,

cos̀ı da permettere all’agente di prendere decisioni efficaci nella scelta dei pesi di sconto e

di garantire al contempo la generalizzabilità dello schema appreso a giochi diversi.

A tal fine DDCFR utilizza uno spazio degli stati indipendente dal gioco, composto da

due elementi: l’iterazione normalizzata t̂, definita come il rapporto tra l’iterazione corrente

t e il numero totale di iterazioni previste; e la sfruttabilità normalizzata ÊG
t−1, calcolata

utilizzando EG
1 , E

G
t−1 ed Emin, rispettivamente la sfruttabilità delle strategie medie del gioco

G all’iterazione 1 e all’iterazione t−1 ed il valore minimo raggiungibile di sfruttabilità, fissato

pari a 10−12 [92].

A ogni iterazione t, l’agente osserva lo stato corrente st e produce un’azione ât. L’algo-

ritmo applica quindi i pesi di sconto determinati da αt, βt e γt per un totale di τt iterazioni

consecutive, al termine delle quali lo stato evoluto diviene s t+τt . Questo meccanismo per-

mette di utilizzare ciascun insieme di pesi per una sequenza di iterazioni, anziché aggiornarli



continuamente. La funzione di ricompensa valuta le prestazioni dell’agente e guida l’ap-

prendimento. Poiché l’obiettivo è ridurre la sfruttabilità, viene utilizzata una ricompensa

sparsa, assegnata solo al termine dell’addestramento e basata sul miglioramento ottenuto

tra l’inizio e la fine delle iterazioni. L’agente è modellato come una rete neurale parame-

trizzata da θ, che definisce una politica πθ. Per ogni gioco G, l’obiettivo è massimizzare la

ricompensa finale; considerando l’intero insieme dei giochi di addestramento, si massimizza

la ricompensa media, ottenendo cos̀ı una politica di sconto generalizzabile anche a giochi

non visti [92].

Costo computazionale. Rispetto al DCFR, l’algoritmo DDCFR introduce alcuni costi

computazionali aggiuntivi, riconducibili principalmente a tre componenti: il calcolo delle

feature, l’inferenza della rete neurale e l’addestramento della politica di sconto. Tuttavia,

tali costi aggiuntivi risultano marginali rispetto al tempo complessivo di esecuzione [92].

Il costo computazionale associato alla fase di addestramento è giustificato dal fatto che

la politica di sconto appresa può essere riutilizzata direttamente in numerosi giochi differenti

senza richiedere alcuna modifica. Di conseguenza, l’investimento computazionale sostenuto

durante l’addestramento viene ammortizzato attraverso tutte le istanze in cui la politica

viene applicata [92].

Risultati. Gli studi dimostrano come DDCFR addestrato su quattro giochi di piccola scala

(Kuhn Poker, Goofspiel-3, Liar’s Dice-3, Small Matrix) e testato su otto giochi complessi,

inclusi varianti di Leduc Poker, Battleship, e sotto-giochi di Heads-Up No-Limit Texas

Hold’em (HUNL) abbia portato a diversi risultati. Nei giochi di training, DDCFR converge

molto più rapidamente, come atteso; nei giochi di test (mai visti durante l’addestramento),

DDCFR dimostra una notevole capacità di generalizzazione [92].

Durante l’addestramento i parametri appresi mostrano un comportamento dinamico

coerente tra i diversi giochi: αt tende ad aumentare, mentre βt e γt diminuiscono nel tempo,

indicando un approccio più aggressivo nelle prime fasi e una maggiore stabilità nelle ultime

[92].



2.1.5 Deep-CFR

Contesto e descrizione algoritmo. Deep Counterfactual Regret Minimization(Deep-

CFR) viene introdotto come metodologia volta a superare i limiti dei processi di astrazione

tipicamente utilizzati in algoritmi tabulari, con l’obiettivo principale di approssimare il com-

portamento del CFR classico senza dover calcolare e memorizzare esplicitamente i rimpianti

in ciascun singolo insieme informativo. Tale risultato viene ottenuto generalizzando su stati

simili mediante l’utilizzo dell’approssimazione funzionale basata su reti neurali profonde.

A ogni iterazione t, Deep CFR esegue un numero costante K di attraversamenti parziali

dell’albero di gioco; ciascun attraversamento è guidato dal meccanismo di campionamento

esterno (external sampling) MCCFR. In un qualsiasi insieme informativo I incontrato du-

rante l’esplorazione, l’algoritmo adotta una strategia σt(I) determinata dal regret-matching

applicato all’output di una rete neurale V : I → R|A| parametrizzata da θ
(t−1)
p . La rete

prende in input l’insieme informativo I e restituisce in output valori V (I, a | θ(t−1)
p ), i quali

dovrebbero risultare approssimativamente proporzionali ai rimpianti R(t−1)(I, a) che il CFR

tabulare avrebbe prodotto nel gioco completo [17].

Quando l’attraversamento raggiunge un nodo terminale, il valore di ritorno viene pro-

pagato verso l’alto. Negli stati di natura casuali (stati chance) e negli stati appartenenti

all’avversario, il valore relativo all’azione campionata viene ritrasmesso senza modifiche.

Negli stati decisionali del giocatore in esame, invece, il valore propagato è la media

ponderata dei valori delle possibili azioni, con pesi pari a σt(I, a). Tale meccanismo produce

campioni dei rimpianti istantanei per le diverse azioni nello stato considerato.

Questi campioni vengono memorizzati in una struttura dedicata Mv,p, distinta per cia-

scun giocatore p. Qualora la capacità della memoria venga superata, si utilizza la tecnica

del reservoir sampling [85], che consente di mantenere un campione non distorto rispetto

alla distribuzione originaria.

Completati i K attraversamenti di un giocatore, viene addestrata una nuova rete neura-

le, inizializzata casualmente, al fine di determinare i nuovi parametri θ
(t)
p . L’addestramento

mira a minimizzare l’errore quadratico medio (MSE) tra il vantaggio predetto Vp(I, a | θ(t))
e i campioni di rimpianti istantanei raccolti nelle iterazioni precedenti t′ ≤ t e conserva-

ti nella memoria [17]. La media complessiva dei vantaggi istantanei campionati r̃(t
′)(I, a)



risulta proporzionale al rimpianto totale campionato R̃t(I, a); pertanto ogni campione me-

morizzato contribuisce all’aggiornamento del modello anche nelle iterazioni successive, salvo

la sostituzione determinata dal reservoir sampling.

Per la modellazione sia dei valori sia delle strategie è possibile utilizzare qualsiasi funzione

di perdita appartenente alla classe delle divergenze di Bregman [4].

Accanto alla rete di valore, Deep CFR introduce una rete di policy separata Π : I →
R|A|, destinata ad approssimare la strategia media al termine dell’addestramento. Questo è

motivato dal fatto che è la strategia media complessiva, aggregata su tutte le iterazioni, a

convergere verso un equilibrio di Nash nei giochi a somma zero a informazione imperfetta.

Per ottenere tale approssimazione viene mantenuta una memoria specifica MΠ, dedicata

ai vettori di probabilità sugli insiemi informativi campionati per entrambi i giocatori. Ogni

volta che un insieme informativo I del giocatore p viene raggiunto durante l’attraversamen-

to dell’albero condotto dall’avversario, il corrispondente vettore di probabilità σt(I) viene

inserito in MΠ e gli viene assegnato come peso il valore dell’iterazione corrente t.

Costo computazionale. L’architettura di rete neurale impiegata negli studi [17] presenta

una profondità complessiva di sette livelli e comprende 98,948 parametri. Gli insiemi infor-

mativi sono costituiti dall’insieme delle carte private e pubbliche e dallo storico delle azioni

di puntata, dove le carte vengono rappresentate come somma di tre distinti incapsulamenti

applicati al rango (1–13), al seme (1–4) e all’identificativo specifico (1–52) (si veda figura

2.2).

Figura 2.2: L’architettura della rete neurale utilizzata per Deep CFR. La rete accetta un insieme
informativo (carte osservate e cronologia delle scommesse) come input e restituisce valori (vantaggi
o logit di probabilità) per ogni possibile azione. [17].



Per quanto riguarda la gestione della memoria, è stata allocata una capacità massima

pari a 40 milioni di insiemi informativi sia per la memoria dei vantaggi di ciascun giocatore

MV,p, sia per la memoria dedicata alla strategia MΠ. Il modello di valore è stato addestrato

da zero a ogni iterazione CFR, partendo da una inizializzazione casuale dei pesi. L’adde-

stramento ha previsto 4,000 iterazioni di stochastic gradient descent (SGD) con mini-batch

di 10,000 campioni, utilizzando l’ottimizzatore Adam [46] con learning rate pari a 0,001 e

applicando un meccanismo di clipping della norma del gradiente a 1 [17].

Nel caso del gioco Heads-Up Limit Hold’em (HULHE), gli studi indicano la necessità di

un numero più elevato di aggiornamenti: vengono infatti eseguite 32,000 iterazioni di SGD

con mini-batch di dimensione 20,000 [17].

Risultati. I risultati mostrano che Deep CFR risulta molto efficiente in termini di nu-

mero di nodi visitati, pur richiedendo un sovraccarico computazionale significativo dovuto

all’inferenza e all’addestramento della rete neurale.

L’algoritmo è stato confrontato con NFSP [36], un altro metodo basato su reti neurali,

nel contesto dell’Heads-Up Limit Hold’em (HULHE), utilizzando tre differenti astrazioni.

I risultati di tale analisi confermando la maggiore efficacia di Deep CFR sia in termini di

sfruttabilità sia in termini di qualità strategica complessiva [17].

2.1.6 ECFR

Contesto e descrizione algoritmo. Per affrontare le maggiori criticità di CFR, come il

tempo di calcolo e la necessità di astrarre o generalizzare, viene proposto il metodo Expo-

nential CFR (ECFR) [56], il cui obiettivo è accelerare la convergenza del CFR tradizionale

e ottenere strategie robuste in maniera più efficiente. L’idea alla base dell’ECFR consiste

nell’introdurre una tecnica di ponderazione esponenziale, volta ad attribuire un peso mag-

giore alle azioni caratterizzate da valori di rimpianto più elevati. Tale approccio consente

all’algoritmo di concentrarsi maggiormente sulle azioni che generano rimpianto positivo,

migliorando la qualità della strategia derivata. La funzione di ponderazione è definita come

f(x) =

eαx, se x > 0,

eαβ, se x ≤ 0,



dove α rappresenta un parametro che controlla la sensibilità della ponderazione al valore di

x, β è un parametro di piccola entità e f(x) costituisce l’output della funzione [56].

In particolare, la variabile x può assumere valori negativi durante il processo di risoluzio-

ne dei giochi. Diversamente dai metodi convenzionali, che annullano tali valori impostandoli

a zero [12], l’ECFR assegna a tali variabili un nuovo valore minimo pari a eαβ. Questa scel-

ta è motivata dal fatto che, nelle fasi iniziali dell’addestramento, la strategia non è ancora

sufficientemente accurata e alcune azioni con rimpianto negativo possono comunque essere

rilevanti per l’aggiornamento strategico. Ignorare tali azioni nelle prime iterazioni risulte-

rebbe irragionevole, mentre la loro inclusione consente una rappresentazione più completa

dello spazio decisionale.

L’ECFR si fonda quindi sul CFR vanilla [93], ma integra la tecnica di ponderazione

esponenziale per ridistribuire i pesi dei rimpianti istantanei. In questo contesto viene defi-

nita una funzione di perdita, dipendente dal parametro α, e il rimpianto istantaneo rit(I, a)

in ciascuna iterazione assume il ruolo della variabile x nella funzione di ponderazione. Inol-

tre, il rimpianto istantaneo viene filtrato attraverso il valore medio EV , consentendo alla

strategia dell’iterazione successiva di concentrarsi sulle azioni più vantaggiose, alle quali

viene assegnato un peso proporzionalmente maggiore.

A ciascuna iterazione l’ECFR mira a minimizzare il rimpianto totale attraverso la ri-

duzione del rimpianto su ciascun insieme informativo. Tuttavia, a differenza del CFR tra-

dizionale, l’ECFR attribuisce un peso maggiore al rimpianto immediato. Con l’aumentare

delle iterazioni, l’algoritmo concentra l’attenzione sulle azioni caratterizzate da rimpianto

istantaneo più elevato, introducendo una perdita L1 ponderata in forma esponenziale.

La strategia per l’iterazione T+1 può essere calcolata mediante un algoritmo di rimpianto

(RM) come segue:

σi
T+1(I, a) =

eL1 RECFR
t,i (I, a)∑

a′∈A(I) e
L1 RECFR

t,i (I, a′)
.

Se il rimpianto medio di entrambi i giocatori soddisfa

Ri
T

T
≤ ε,

allora la strategia media ⟨σ̄T
1 , σ̄

T
2 ⟩ costituisce un equilibrio di Nash a due giocatori in un

gioco a somma zero [56].



Risultati. Sono stati condotti diversi esperimenti per valutare le prestazioni del metodo

ECFR, con l’obiettivo di analizzarne l’efficacia su tre giochi di poker a due giocatori: Kuhn,

Leduc e Royal poker. Tra questi, il Kuhn poker è il più semplice, composto da tre carte,

un solo giro di puntate, una carta privata per giocatore e nessuna carta pubblica. Il Leduc

poker utilizza sei carte e prevede due giri: nel primo ogni giocatore possiede una carta

privata, mentre nel secondo viene introdotta una carta pubblica. Il Royal poker, infine,

impiega otto carte e tre giri, con due carte pubbliche rivelate alla fine.

Le valutazioni sperimentali sono state effettuate confrontando quattro metodi: CFR

[93], CFR+ [12], LCFR [17] e DCFR [16].

I risultati mostrano che ECFR presenta una dinamica complessiva simile agli altri me-

todi, con sfruttabilità decrescente al crescere delle iterazioni. Tali osservazioni confermano

sperimentalmente la convergenza dell’ECFR, già dimostrata teoricamente [56].

Inoltre, nel khun poker ECFR offre prestazioni generalmente superiori rispetto agli altri

metodi, sebbene in alcuni intervalli di iterazioni specifici DCFR ottenga valori leggermente

migliori, similmente al Leduc poker. Infine, i risultati sul Royal poker indicano che ECFR

risulta chiaramente superiore agli altri metodi, con una convergenza anticipata [56].

2.1.7 MCCFR

Contesto e descrizione algoritmo. Monte Carlo Counterfactual Regret Minimization

(MCCFR) [51] rappresenta una variante dell’algoritmo CFR sviluppata con l’obiettivo di

ridurre il tempo di attraversamento dell’albero di gioco per ogni iterazione, limitandolo a

una porzione campionata dello stesso. Questo garantisce la convergenza e accelera l’avvici-

namento all’equilibrio rispetto ai precedenti metodi di campionamento, pur preservando in

aspettativa i rimpianti controfattuali immediati.

Sia Q = {Q1, . . . , Qr} un insieme di sottoinsiemi delle storie terminali Z; a ogni iterazio-

ne l’algoritmo campiona uno di questi blocchi e considera esclusivamente le storie terminali

in esso contenute. Il valore controfattuale campionato rappresenta una stima non distorta

del valore controfattuale effettivo [51]. Di conseguenza, MCCFR campiona un blocco e,

per ogni insieme informativo che contiene un prefisso di una storia terminale del blocco,

calcola i rimpianti controfattuali campionati di ciascuna azione. Questi rimpianti vengono



accumulati nel tempo e la strategia alla successiva iterazione viene determinata applicando

la regola di regret-matching [51].

Esistono diverse modalità per campionare porzioni dell’albero di gioco. La procedura

più semplice è rappresentata dall’outcome sampling (OS), in cui a ogni iterazione viene cam-

pionata una singola storia terminale e l’aggiornamento dei rimpianti avviene esclusivamente

sugli insiemi di informazioni attraversati lungo tale storia [51].

Un secondo metodo di campionamento è lo chance sampling (CS), in cui l’insieme delle

storie terminali viene suddiviso in blocchi tali che due storie non possono appartenere allo

stesso blocco a meno che non differiscano unicamente per le azioni di natura probabili-

stica. Nel CS un blocco viene generato campionando una singola azione casuale per ogni

storia, secondo la probabilità associata a tale azione. Le strategie vengono successivamente

aggiornate mediante i rimpianti cumulativi [32].

Infine, l’Average Strategy Sampling (AS) seleziona le azioni del giocatore i in base al

profilo cumulativo e a tre parametri predefiniti. L’AS può essere interpretato come uno

schema di campionamento intermedio tra OS ed ES: per ciascun insieme informativo I,

viene campionato un sottoinsieme delle azioni disponibili, anziché una singola azione (OS) o

tutte le azioni (ES). Come nell’ES, nei nodi dell’avversario e nei nodi di natura probabilistica

viene campionata una sola azione, rispettivamente secondo la politica del profilo avversario

corrente σT,−i e le probabilità fissate σc [32].

Costo computazionale. È stato dimostrato che il chance sampling (CS) riduce significa-

tivamente i tempi computazionali in giochi complessi come il poker [93]. Oltre al CS, altre

varianti quali Average Strategy Sampling (AS), External Sampling (ES) ed Outcome Sam-

pling (OS) [32], convergono verso l’equilibrio più rapidamente del CFR classico in diversi

domini, fornendo inoltre limiti probabilistici sul rimpianto medio e quindi garanzie sulla

convergenza della strategia media σ̄ T a un equilibrio di Nash.

Per quanto riguarda le risorse necessarie, l’algoritmo MCCFR richiede di memorizzare

apposite tabelle per ciascun insieme informativo; ogni tabella contiene un numero di voci

pari alle azioni disponibili nell’insieme corrispondente. Indicando con |Ai| il numero massi-

mo di azioni disponibili al giocatore i in tutti i suoi insiemi informativi, il requisito di spazio

dell’algoritmo risulta pari a O
(
|I1| |A1|+ |I2| |A2|

)
.

Il tempo computazionale richiesto da MCCFR, nel caso in cui venga adottato OS, di-

pende dai limiti sul rimpianto e dal livello di approssimazione dell’equilibrio che si desidera



ottenere. Per raggiungere un ε-equilibrio di Nash con probabilità almeno 1 − p, il numero

di iterazioni necessario è dell’ordine O
(

2
p δ2
|A|M2

)
, dove:

� δ rappresenta la minima probabilità di campionare una storia terminale tra tutte

quelle possibili;

� |A| è il numero massimo di azioni disponibili in qualunque insieme di informazioni;

� M è un fattore di bilanciamento che riflette il numero relativo di decisioni assunte dai

giocatori durante l’intera partita e soddisfa
√
|I| ≤ M ≤ |I|.

Risultati. Uno studio recente [32] ha condotto una serie di esperimenti nel dominio del-

l’HUNLHE, impiegando un’astrazione a cinque carte. Per ciascuna partita sono state ese-

guite cinque istanze degli algoritmi CS, ES, OS e AS, misurando la sfruttabilità del gioco

astratto in diversi checkpoint e calcolando successivamente la media dei risultati ottenu-

ti. I dati sperimentali mostrano che l’algoritmo AS ha conseguito un miglioramento pari

al 54% rispetto a ES nei punti di misura finali, mentre OS ha evidenziato prestazioni

significativamente inferiori.

Risultati analoghi sono stati riscontrati per i giochi Bluff(1, 1) e Bluff(2, 1), che presen-

tano rispettivamente oltre 24 k e 3.5M insiemi informativi, e circa 294 k e 66M cronologie.

Anche in questo contesto, AS ha mostrato una velocità di convergenza superiore rispetto a

CS, ES e OS in entrambe le istanze di Bluff analizzate.

2.1.8 Regression CFR

Contesto e descrizione algoritmo. Lo sviluppo di Regression Counterfactual Regret

Minimization (RCFR) [27] nasce dall’esigenza di rendere più efficiente la risoluzione di

giochi sequenziali con informazione imperfetta, in cui il numero di stati è cos̀ı elevato da

rendere impraticabile l’approccio tabellare del CFR tradizionale. Nello studio condotto dal-

l’Università di Alberta [27] si evidenzia inoltre come l’uso dell’approssimazione di funzione

costituisca una naturale estensione delle tecniche di astrazione, permettendo di stimare

i rimpianti controfattuali invece di memorizzarli integralmente, mantenendo al contempo

prestazioni competitive con le metodologie basate su astrazioni esplicite.



L’algoritmo RCFR si basa sull’idea di sostituire la rappresentazione tabellare dei rim-

pianti con una stima funzionale ottenuta tramite un approssimatore. L’approccio RCFR

mantiene la struttura di minimizzazione del rimpianto, ma invece di memorizzare esatta-

mente i rimpianti cumulativi ne apprende una stima tramite un modello, tipicamente una

funzione parametrica che sfrutta caratteristiche condivise tra diversi stati del gioco. Ciò

consente di trasferire informazione tra stati simili, riducendo drasticamente la necessità di

memorizzazione e rendendo il processo più scalabile in giochi di grande dimensione [91].

Nel funzionamento di RCFR, l’apprendimento del comportamento dell’agente avviene

in due fasi principali. La prima consiste nella predizione dei rimpianti cumulativi tramite

un approssimatore y(ϕ(s, a)), dove ϕ(s, a) rappresenta una codifica vettoriale dell’insieme

informativo e dell’azione corrispondente.

Successivamente, viene costruita la politica a partire dai rimpianti predetti, applicando

una trasformazione determinata da una link function f [27]. Nel caso originale di RCFR,

la link function è una versione normalizzata della ReLU, coerente con il tradizionale regret

matching [35], che assegna probabilità soltanto alle azioni con rimpianto positivo e in misura

proporzionale alla loro entità. L’algoritmo produce quindi una distribuzione stocastica su

ciascuno insieme informativo normalizzando i valori ottenuti dopo l’applicazione della ReLU.

Costo computazionale. Nel contesto dell’algoritmo RCFR e della sua generalizzazione

f -RCFR, lo studio di Bowling et al. [27] evidenzia come l’impiego di un approssimatore

funzionale comporti effetti specifici sul consumo di tempo ed energia computazionale. L’a-

dozione di una rappresentazione lineare basata su partizioni implica che, per ogni insieme

informativo, solo una feature per partizione risulti diversa da zero; tale struttura determina

che il costo di predizione cresca linearmente con il numero di partizioni considerate durante

l’apprendimento.

Parallelamente, l’aggiornamento del modello presenta una complessità ben più elevata:

poiché l’algoritmo opera su un insieme di feature complessivamente più ampio, il costo della

fase di aggiornamento cresce quadraticamente rispetto al numero totale di feature impiegate

nell’approssimazione dei rimpianti [27].

Dal punto di vista della memoria, RCFR introduce un vantaggio strutturale rispetto

ai metodi tabellari tradizionali, in quanto non richiede la memorizzazione persistente dei

rimpianti cumulativi: una volta aggiornati i pesi del modello, i rimpianti delle iterazioni

precedenti non devono essere conservati né rielaborati. Questo riduce in modo significativo



il fabbisogno di memoria rispetto al CFR classico, che necessita invece di mantenere un

vettore di rimpianti per ciascun insieme informativo del gioco.

Risultati. I risultati sperimentali mostrano in modo sistematico come la scelta della link

function e il livello di approssimazione influenzino le prestazioni dell’algoritmo f -RCFR nei

diversi domini considerati. Gli esperimenti condotti in Leduc Hold’em, goofspiel e random

goofspiel valutano la qualità delle strategie tramite la sfruttabilità, misurata lungo 100,000

iterazioni. Le analisi indicano che l’aumento del numero di partizioni riduce l’errore di

approssimazione e conduce, in accordo con le previsioni teoriche, a strategie mediamente

meno sfruttabili [27].

In condizioni di approssimazione molto accurata, invece, la softmax tende a non supe-

rare le alternative polinomiali, confermando che la scelta della parametrizzazione ottimale

dipende fortemente dal livello di rumore introdotto dal modello di regressione. Comples-

sivamente, i risultati sperimentali confermano la validità delle analisi teoriche proposte e

dimostrano che f -RCFR è in grado di adattarsi in modo flessibile ai diversi livelli di approssi-

mazione del rimpianto e offrendo prestazioni robuste nei giochi sequenziali con informazione

imperfetta [27].

2.1.9 SD-CFR

Contesto e descrizione algoritmo. Single Deep Counterfactual Regret Minimization

(SD-CFR) [79] rappresenta una variante semplificata di Deep CFR sviluppata con l’obietti-

vo di ridurre l’errore di approssimazione e rendere più efficiente il processo di addestramento

nei giochi a informazione imperfetta di grandi dimensioni.

L’introduzione di modelli di approssimazione tramite reti neurali, come DeepStack e

successivamente Deep CFR, ha permesso di superare le restrizioni dei metodi tabellari,

rendendo possibile la generalizzazione anche in stati mai osservati. SD-CFR si colloca

direttamente in questa linea evolutiva, migliorando l’efficienza degli approcci basati su Deep

CFR e dimostrando sperimentalmente una convergenza più rapida e prestazioni superiori

nelle partite uno contro uno [79].

SD-CFR mira a ridurre l’errore di approssimazione eliminando la necessità di addestrare

una rete neurale dedicata alla strategia media. Nel funzionamento classico di Deep CFR,



ogni iterazione produce una value network che approssima il vantaggio di ciascuna azione,

valore ricavato a partire dal rimpianto lineare e normalizzato tramite la reach probability

dell’avversario [17].

SD-CFR mantiene la stessa procedura di apprendimento delle value networks, ma dif-

ferisce nel modo in cui ricostruisce la strategia media. Invece di addestrare una seconda

rete per approssimare la media pesata delle strategie, l’algoritmo conserva tutte le value

networks generate nelle iterazioni precedenti e utilizza direttamente tali modelli per ricavare

la politica media, riducendo cos̀ı il numero di approssimazioni e semplificando il processo

di addestramento.

Durante l’esecuzione, SD-CFR può operare in due modalità: trajectory sampling, in cui

si seleziona una rete riferita a una delle iterazioni passate con probabilità proporzionale al

peso lineare dell’iterazione e la si utilizza per l’intera traiettoria; oppure una modalità di

calcolo esplicito, in cui la strategia media viene ottenuta computando direttamente le reach

probabilities di ciascuna rete e applicando la formula della strategia media di CFR [79]. In

entrambi i casi, l’algoritmo garantisce una ricostruzione esatta della strategia media di CFR

qualora i value networks approssimino perfettamente i valori di vantaggio.

Costo computazionale. SD-CFR replica accuratamente la strategia media a partire dalle

strategie di iterazione fornite durante l’addestramento. Ne consegue che, qualora tali stra-

tegie di iterazione costituissero approssimazioni perfette delle strategie effettive generate da

CFR, SD-CFR risulterebbe equivalente al CFR lineare.

Come mostrato sperimentalmente [79], le prestazioni di SD-CFR tendono a deteriorarsi

quando il numero di iterazioni supera la capacità del buffer destinato alla memorizzazione.

Fortunatamente, la rete neurale impiegata in Deep CFR per le partite di poker di grandi

dimensioni presenta una dimensione estremamente contenuta, inferiore a 100,000 parametri

[17], corrispondenti a meno di 400KB di spazio su disco. Considerando che Deep CFR

viene tipicamente addestrato per alcune centinaia di iterazioni, la memorizzazione di 25,000

reti di questo tipo richiederebbe circa 10GB di spazio, una quantità pienamente gestibile

nei contesti computazionali moderni. Inoltre, nessun passaggio dell’algoritmo richiede di

mantenere simultaneamente in memoria tutte le reti archiviate, eliminando cos̀ı qualsiasi

criticità pratica legata alla gestione delle risorse.



Risultati. Gli esperimenti condotti [79] evidenziano che SD-CFR presenta prestazioni com-

plessivamente superiori rispetto a Deep CFR in termini di sfruttabilità e di qualità della stra-

tegia appresa. Nella variante Leduc Hold’em Poker, SD-CFR mostra una riduzione più ra-

pida dell’sfruttabilità rispetto a Deep CFR, nonostante l’impostazione degli iper-parametri

favorisca quest’ultimo, indicando una maggiore stabilità del processo di apprendimento.

Inoltre, l’analisi delle differenze tra le strategie medie prodotte dai due metodi rivela

inoltre che Deep CFR tende a introdurre errori più significativi negli insiemi informativi

raggiunti nelle fasi avanzate del gioco, mentre SD-CFR mantiene una coerenza strategica

più elevata anche a profondità maggiori dell’albero decisionale, tendenza confermata [79]

nel contesto del 5-Flop Hold’em Poker..

L’analisi dell’effetto del reservoir sampling sul buffer BM mostra tuttavia che l’uso di

capacità limitate può causare fenomeni di plateau e oscillazioni nella convergenza, confer-

mando l’importanza di preservare tutte le value networks generate durante l’addestramento

per mantenere l’affidabilità dell’approssimazione.

2.1.10 TCFR

Contesto e descrizione algoritmo. Targeted Counterfactual Regret Minimization (TC-

FR) nasce dall’esigenza di individuare un punto di equilibrio tra i principali metodi di

campionamento utilizzati nel CFR, in particolare Outcome Sampling ed External Sampling

[51]. Outcome Sampling è molto veloce ma fornisce stime ad alta varianza e di bassa ac-

curatezza, mentre External Sampling esplora ampie porzioni dell’albero a ogni iterazione,

risultando molto più costoso dal punto di vista computazionale.

L’idea alla base di Targeted CFR è quindi quella di definire un approccio intermedio

che, in un singolo passaggio, visiti più nodi rispetto all’Outcome Sampling ma meno rispetto

all’External Sampling, mantenendo cos̀ı un buon compromesso tra costo computazionale e

precisione della stima. Inoltre, gli studi [39] evidenziano come, nei giochi di poker, le fasi

avanzate (gli ultimi betting rounds) siano visitate molto raramente dagli algoritmi di sam-

pling tradizionali, nonostante rappresentino una parte rilevante della complessità del gioco.

TCFR è progettato proprio per compensare questa asimmetria, concentrando l’esplorazione

in modo più frequente su tali porzioni “critiche” dell’albero di gioco.



Il funzionamento dell’algoritmo si basa sulla suddivisione preliminare dell’albero di gio-

co in un insieme di partizioni, ossia in regioni distinte sulle quali è possibile concentrare

selettivamente l’attività di campionamento [39].

A ogni iterazione, una o più partizioni vengono designate come mirate. All’interno di tali

aree l’algoritmo opera in modo analogo all’External Sampling: vengono considerate tutte le

azioni disponibili e vengono aggiornati sia i rimpianti sia il profilo cumulativo. Al di fuori

delle partizioni mirate, invece, il comportamento cambia in modo significativo: l’algoritmo

esegue una sonda, ovvero segue una singola traiettoria dall’informazione corrente fino a uno

stato terminale, campionando una sola azione per ciascun giocatore secondo la strategia

corrente. In queste regioni non vengono effettuati aggiornamenti, ma si ottiene comunque

una stima imparziale del valore controfattuale, utile alla successiva fase di calcolo delle

funzioni di valore.

La progettazione delle partizioni e la scelta della frequenza con cui ciascuna viene targe-

tizzata rappresentano una decisione a discrezione dell’implementatore. Nel caso del Texas

Hold’em, questa operazione risulta particolarmente naturale, poiché la struttura del gioco

prevede quattro distinti round di puntate, ciascuno dei quali può essere trattato come una

partizione. In base alle esigenze specifiche, è possibile mirare un singolo round oppure una

combinazione di round.

Per soddisfare il requisito di raggiungibilità — fondamentale affinché le stime contro-

fattuali restino valide — il Targeted CFR prevede inoltre l’inserimento di alcune iterazioni

“complete”, durante le quali tutte le partizioni vengono mirate simultaneamente. Queste

iterazioni coincidono esattamente con quelle dell’ External Sampling e, poiché quest’ultimo

rispetta il vincolo di raggiungibilità, anche il Targeted CFR lo soddisfa, a patto che tali

iterazioni vengano eseguite con probabilità non nulla [39].

La frequenza con cui ciascuna combinazione di partizioni viene scelta è regolata da un

parametro τ [39], che definisce la distribuzione di probabilità utilizzata per determinare la

selezione delle aree target a ogni iterazione.

Risultati. La valutazione sperimentale di TCFR [39] è stata condotta su diverse varianti

di giochi di poker, con l’obiettivo di confrontarlo principalmente con External Sampling e,

in alcuni casi, con Average Strategy Sampling. Gli esperimenti hanno considerato giochi di

dimensioni crescenti e con differenti livelli di astrazione delle carte, misurando le prestazioni

secondo due indicatori complementari: la sfruttabilità e la performance “head-to-head”,



determinata dal confronto diretto con una strategia di riferimento.

Nel primo scenario analizzato [39], caratterizzato da un gioco relativamente contenuto

e privo di astrazione delle carte, TCFR ha mostrato risultati molto simili a quelli di Ex-

ternal Sampling in termini di sfruttabilità, con un lieve vantaggio nel confronto diretto che

tende tuttavia a ridursi nel tempo. Le differenze diventano più evidenti nei giochi basati

su astrazioni con richiamo imperfetto: nel secondo esperimento, condotto con un mazzo

completo e una complessa astrazione in circa un milione di bucket, TCFR ha ottenuto

prestazioni sensibilmente migliori nelle partite dirette e una sfruttabilità reale più bassa,

nonostante entrambe le tecniche mostrino una tendenza al peggioramento nelle ultime fasi

dell’addestramento, fenomeno tipico delle astrazioni imperfette.

Il terzo esperimento [39], basato su un sistema di puntate molto più esteso e su un’

astrazione ridotta delle carte, ha ulteriormente confermato il vantaggio del metodo: TCFR

supera nettamente sia External Sampling sia Average Strategy Sampling nelle prestazioni

head-to-head, evidenziando una maggiore capacità di adattarsi alle peculiarità dei grandi

giochi con richiamo imperfetto. Nel complesso, i risultati mostrano che TCFR non offre

benefici rilevanti nei giochi risolvibili senza astrazione, mentre si dimostra particolarmente

efficace e competitivo nei contesti più complessi, in cui la struttura dell’albero di gioco e

le limitazioni dell’astrazione rendono critica un’esplorazione più mirata delle informazioni

rilevanti.



2.2 Fictitious Self-Play

La categoria degli approcci Fictitious Self-Play si fonda sul concetto di gioco fittizio

(fictitious play), introdotto per la prima volta da Brown (1951) [15], e che costituisce uno

dei modelli di apprendimento più noti nell’ambito della teoria dei giochi. In questo schema,

gli individui coinvolti ripetono la stessa interazione strategica scegliendo, a ogni iterazione,

la risposta ottimale alle strategie medie osservate nei loro avversari. In specifiche classi di

giochi — tra cui i giochi a somma zero e i giochi a due giocatori — il profilo strategico

medio generato tramite gioco fittizio converge a un equilibrio di Nash [37].

Nella famiglia di algoritmi FSP questo concetto viene ampliato mediante l’introduzione

di meccanismi di approssimazione e apprendimento che permettono di estendere il gioco

fittizio a domini di grandi dimensioni e ad informazione imperfetta. Tali algoritmi man-

tengono una stima delle strategie medie degli avversari e ne calcolano iterativamente una

risposta ottimale, superando i limiti computazionali del modello originario. Varianti mo-

derne, come NFSP, integrano tecniche di apprendimento supervisionato e rinforzato per

rappresentare e aggiornare le strategie in modo efficiente, rendendo l’approccio applicabile

a giochi complessi quali il Texas Hold’em Heads-Up Limit.

2.2.1 FSP

Contesto e descrizione algoritmo. Il modello del gioco fittizio è divenuto uno stru-

mento consolidato nella letteratura teorica e ha stimolato un ampio dibattito su come gli

equilibri di Nash possano manifestarsi nella pratica [31, 38, 55]. Inoltre, esso rappresenta un

classico esempio di apprendimento dall’esperienza applicato al contesto decisionale, che ha

influenzato in modo significativo lo sviluppo di algoritmi di intelligenza artificiale orientati

ai giochi.

Nonostante la sua diffusione teorica, però, il gioco fittizio è stato applicato relativamente

poco su larga scala [50, 59]. Una delle principali ragioni risiede nel fatto che esso richiede

una rappresentazione del gioco in forma normale. Sebbene qualsiasi gioco in forma estesa

possa essere convertito nel suo equivalente in forma normale, il numero di azioni risultante

cresce tipicamente in modo esponenziale rispetto al numero degli stati del gioco. La forma

estesa permette invece una descrizione molto più compatta grazie all’impiego di strategie



comportamentali, il cui numero di parametri aumenta in modo lineare rispetto agli stati

informativi.

Nel tentativo di superare tali limitazioni, è stata introdotta la variante Fictitious Self-

Play (FSP) [37], che propone un quadro di apprendimento automatico che implementa una

versione generalizzata e indebolita del gioco fittizio, basata sulle strategie comportamentali

e su campionamenti dell’esperienza di gioco. In questo modello, gli individui interagiscono

ripetutamente e memorizzano gli episodi generati, impiegando strategie caute che combi-

nano le risposte ottimali con le strategie medie accumulate. FSP campiona iterativamente

episodi derivanti dal gioco individuale; tali episodi costituiscono i set di dati necessari alla

stima delle risposte ottimali e dei modelli perturbati delle strategie medie.

Si consideri un gioco in forma estesa e un profilo strategico π. Per ciascun giocatore

i ∈ N , il profilo strategico degli avversari π−i definisce un processo decisionale di Markov

(MDP), indicato come M(π−i) [34, 78]. Gli insiemi informativi del giocatore i costituiscono

gli stati dell’MDP, mentre le dinamiche dello stesso sono determinate dalle regole del gioco

in forma estesa, dalla funzione casuale e dal profilo strategico fissato per gli avversari. Le

ricompense derivano direttamente dalla funzione di payoff del gioco. Una politica ottimale

per l’MDP M(π−i) rappresenta pertanto una risposta ottimale approssimata del giocatore

i rispetto al profilo π−i.

Ne consegue che il calcolo iterativo delle risposte ottimali può essere formulato come la

risoluzione approssimata di una sequenza di MDP, ottenuta ad esempio applicando algoritmi

di apprendimento per rinforzo ai campioni di esperienza prelevati dai rispettivi MDP. Più

precisamente, per risolvere approssimativamente M(π−i), l’esperienza del giocatore i viene

campionata a partire dal comportamento strategico dei suoi avversari. La strategia del

giocatore deve garantire una sufficiente esplorazione dello spazio degli stati, ma può essere

altrimenti arbitraria qualora si impieghi un metodo off-policy, come il Q-learning [88].

Successivamente, avviene l’aggiornamento della strategia media: ogni agente aggior-

na la propria strategia media attraverso apprendimento supervisionato, utilizzando i dati

memorizzati sul proprio comportamento.

Affinché il processo riproduca correttamente la logica del gioco fittizio, entrambe le

operazioni di apprendimento devono essere supportate da dati campionati a partire da

combinazioni specifiche di strategie. A tal fine, viene impiegato un profilo strategico di

campionamento definito come σk = (1− ηk) πk−1+ ηk βk, dove πk−1 rappresenta la strategia



media all’iterazione precedente e βk la risposta ottimale approssimata dell’iterazione corren-

te. Il parametro ηk regola la combinazione dei due profili; ad esempio, ponendo ηk = 1/k, il

profilo σk coincide con la strategia media πk corrispondente a un processo di gioco fittizio

con passo αk = 1/k [37].

Costo computazionale. FSP adotta un approccio basato sul campionamento che consen-

te di contenere significativamente i costi computazionali rispetto alle altre varianti del gioco

fittizio. A differenza dei metodi che richiedono di elaborare l’intero spazio degli stati a ogni

iterazione, FSP concentra l’elaborazione esclusivamente sugli insiemi informativi effettiva-

mente visitati durante la simulazione, riducendo quindi l’impatto della crescita dimensionale

del gioco. Ciò permette all’algoritmo di operare in uno spazio che cresce linearmente con

il numero degli insiemi informativi e non con il numero totale degli stati del gioco, che

può essere esponenziale. Il costo computazionale per iterazione dipende essenzialmente dal

numero di episodi campionati e gestiti nella memoria di apprendimento degli agenti [37].

Dal punto di vista della convergenza, FSP soddisfa le condizioni strutturali richieste dai

processi di fictitious play generalizzati, poiché le risposte ottimali approssimate ottenute

tramite apprendimento per rinforzo costituiscono una sequenza di politiche il cui errore am-

missibile tende a ridursi nel tempo, mentre gli aggiornamenti della strategia media possono

essere interpretati come stime perturbate ma coerenti del processo teorico corrispondente.

La convergenza asintotica delle componenti apprese verso gli aggiornamenti corretti è ga-

rantita dal fatto che sia l’errore sulle risposte ottimali sia le perturbazioni introdotte negli

aggiornamenti decrescono progressivamente. Sebbene l’analisi teorica riguardi prevalente-

mente il caso con risorse computazionali non limitate, e quindi resti aperta la questione

della convergenza garantita sotto un budget computazionale finito per iterazione, lo stu-

dio mostra che FSP soddisfa i requisiti formali del processo di fictitious play indebolito e

fornisce evidenza empirica di un comportamento convergente verso strategie prossime a un

equilibrio di Nash [37].

Risultati. Nel gioco Leduc Hold’em a 6 carte, FSP mostra prestazioni inferiori rispetto al

confronto con la variante senza apprendimento per rinforzo XFP quando entrambi possono

utilizzare un budget computazionale fisso [37]. In questo contesto di dimensioni ridotte,

XFP risulta più efficace nel ridurre rapidamente la sfruttabilità, ma aumentando la dimen-

sionalità del gioco, emerge chiaramente la differenza di scalabilità tra i due algoritmi: Nel



Leduc Hold’em a 60 carte, dove il numero di stati cresce quadraticamente con il numero di

carte, XFP subisce un marcato rallentamento, mentre FSP mantiene un ritmo di appren-

dimento stabile. FSP, guidato dal campionamento, focalizza i calcoli sui percorsi di gioco

più probabili e beneficia fortemente della struttura introdotta dalle credenze dei giocatori,

ottenendo nella versione informata un miglioramento della sfruttabilità superiore al 40%.

Complessivamente, i risultati sperimentali evidenziano che FSP, pur non essendo sempre

competitivo nei giochi di dimensioni ridotte, scala meglio in giochi di maggiori dimensioni

e sfrutta in modo efficace la struttura statistica del problema tramite campionamento.

2.2.2 NFSP

Contesto e descrizione algoritmo. Neural Fictitious Self-Play (NFSP) [36] ha l’obiet-

tivo di affrontare in modo scalabile e autonomo i giochi a informazione imperfetta di di-

mensioni reali, un ambito in cui i metodi di apprendimento falliscono nel convergere, e gli

algoritmi che possono calcolare equilibri di Nash dipendono pesantemente da astrazioni del

dominio, spesso basate su euristiche o modellazione esplicita.

Per superare queste problematiche, NFSP combina l’algoritmo del Fictitious Self-Play

(FSP) con l’approssimazione funzionale fornita dalle reti neurali. In questo modello, ogni

giocatore è rappresentato da un agente NFSP distinto, il quale apprende attraverso inte-

razioni in self-play, ossia mediante partite disputate simultaneamente contro altri agenti

analoghi. Durante tali interazioni, ciascun agente registra sia l’esperienza relativa alle tran-

sizioni del gioco, sia le proprie azioni derivanti dalle risposte ottimali approssimate. Questi

dati vengono archiviati in due memorie separate, indicate rispettivamente come MRL e

MSL, che vengono trattate come insiemi di dati indipendenti: la prima destinata all’ap-

prendimento per rinforzo, la seconda all’apprendimento supervisionato. L’agente utilizza i

dati contenuti inMRL per addestrare una rete neurale Q(s, a | θQ), la quale stima i valo-

ri delle azioni tramite apprendimento per rinforzo off-policy. La politica risultante è una

strategia di risposta ottimale approssimata, definita come β = ε-greedy(Q), che seleziona

un’azione casuale con probabilità ε, altrimenti sceglie l’azione con valore stimato massimo.

Parallelamente, una seconda rete neurale, Π(s, a | θΠ), viene addestrata sui dati inMSL

mediante classificazione supervisionata, al fine di imitare il comportamento dell’agente nelle



passate risposte ottimali. Tale rete associa a ciascuno stato una distribuzione di probabilità

sulle azioni e definisce la strategia media dell’agente, indicata con π = Π.

Nel corso del gioco, l’agente seleziona le proprie azioni mediante una combinazione

delle due strategie, β e π, realizzando cos̀ı un equilibrio tra esplorazione e sfruttamento

dell’esperienza storica. NFSP integra inoltre due elementi tecnici cruciali per garantire

la stabilità dell’apprendimento. In primo luogo, impiega il reservoir sampling [85], che

consente di evitare alterazioni dovute al campionamento da memorie di dimensione limitata.

In secondo luogo, utilizza dinamiche anticipatorie [77], le quali permettono agli agenti di

campionare in misura controllata il proprio comportamento di risposta ottimale e di seguire

in modo più efficace l’evoluzione nel tempo delle strategie avversarie.

Costo computazionale. Lo studio principale [36] evidenzia che i costi computazionali di

NFSP derivano principalmente dall’uso delle due memorie di apprendimento di dimensione

finita e dall’addestramento iterativo delle due reti neurali mediante aggiornamenti stoca-

stici. Le memorie MRL e MSL sono implementate rispettivamente come circular buffer e

reservoir sampling, soluzioni che mantengono i requisiti di memoria entro limiti controllati

indipendentemente dal numero di iterazioni, contribuendo cos̀ı alla scalabilità dell’algoritmo.

Negli esperimenti, la dimensione di tali memorie raggiunge valori significativi: fino a fino a

600,000 e 30 milioni in Limit Texas Hold’em, indicando che la qualità dell’apprendimento

dipende anche dalla disponibilità di ampi buffer di esperienza.

L’addestramento comporta inoltre numerosi aggiornamenti dei parametri delle reti neu-

rali, eseguiti con frequenze calibrate rispetto al numero di passi di gioco — ad esempio due

aggiornamenti per rete ogni 128 o 256 interazioni. Il costo computazionale cresce dunque

linearmente con il numero di iterazioni e con la dimensione delle reti utilizzate, come mo-

strato dai risultati sperimentali in cui architetture neurali più grandi permettono prestazioni

migliori, ma implicano naturalmente un aumento del carico computazionale.

Lo studio [36] sottolinea anche che NFSP trae un vantaggio computazionale significati-

vo dal suo approccio basato sul campionamento, evitando l’esplorazione esplicita dell’intero

spazio degli stati. Ciò gli consente di operare in domini di grandi dimensioni, senza la

necessità di enumerare tutte le informazioni di gioco. Tuttavia, la stabilità e l’accuratez-

za dell’algoritmo richiedono l’uso di grandi memorie, frequenti aggiornamenti delle reti e

procedure di campionamento ben calibrate, rendendo l’algoritmo più oneroso rispetto ai

metodi tabellari, ma significativamente più scalabile rispetto alle procedure esaustive.



Risultati. NFSP è stato testato su Leduc Hold’em, in cui riduce progressivamente la sfrut-

tabilità, soprattutto con architetture neurali più ampie e, grazie alla miscela controllata tra

strategia media e risposta ottimale, produce dati di addestramento stabili e diversificati.

L’algoritmo è stato inoltre applicato a Limit Texas Hold’em, dove ha appreso una stra-

tegia competitiva rispetto ai migliori agenti della Annual Computer Poker Competition

2014 [36], ottenendo prestazioni comparabili alla metà superiore degli algoritmi pur senza

utilizzare alcuna astrazione realizzata a mano.

Nel complesso, gli esperimenti dimostrano che NFSP è in grado di combinare stabilità,

scalabilità e assenza di conoscenza di dominio, realizzando un apprendimento efficace.



2.3 Metodi basati su Programmazione Lineare e Ri-

sposte Ottimali

Gli algoritmi basati su oracoli e risposte ottimali rappresentano un’evoluzione dei me-

todi classici di risoluzione dei giochi in forma estesa, nati dall’esigenza di superare i limiti

computazionali associati alla conversione in forma normale e alla successiva soluzione tra-

mite Programmi Lineari. Sebbene l’approccio originario basato su LP abbia costituito il

primo metodo generale per la risoluzione di giochi ad informazione imperfetta, la crescita

esponenziale delle strategie deterministiche ha rapidamente reso tale tecnica impraticabile

per domini anche moderatamente complessi. L’introduzione della rappresentazione in forma

sequenza e del Sequence-Form Linear Program [47, 49, 69] ha permesso di affrontare giochi

di grande scala in tempo polinomiale, aprendo la strada a metodi più avanzati capaci di

integrare apprendimento, ottimizzazione e generazione incrementale di strategie. In questo

contesto si collocano approcci moderni come PSRO, ODO, XDO, NXDO e RMDO, i quali

si basano su procedure iterative che alternano la ricerca di risposte ottimali tramite oracoli

e l’aggiornamento di un meta-gioco approssimato. Questi algoritmi consentono di esplo-

rare in modo selettivo lo spazio strategico, ampliando progressivamente il supporto delle

strategie rilevanti e mantenendo un compromesso favorevole tra accuratezza e complessità

computazionale.

2.3.1 ODO

Contesto e descrizione algoritmo. Online Double Oracle (ODO) [26] è un algoritmo

che si fonda sugli approcci Double Oracle (DO) [60], i quali costituiscono metodi partico-

larmente efficaci per l’individuazione di un Equilibrio di Nash (NE) approssimato in giochi

caratterizzati da un supporto dell’equilibrio relativamente contenuto. Nella procedura del

DO, ciascun giocatore viene inizializzato con un insieme limitato di strategie, che consente

di operare su un sotto-gioco del gioco originario. A ogni iterazione, un Oracle fornisce

una risposta ottimale rispetto all’NE del sotto-gioco corrente; tale strategia, considerata

ottimale o approssimativamente ottimale, viene aggiunta all’insieme di strategie di ciascun

agente. Il processo iterativo termina quando la strategia di risposta ottimale è già presente

in tale insieme o quando l’incremento prestazionale risulta trascurabile (figura 2.3).



Figura 2.3: Rappresentazione del ciclo di funzionamento degli algoritmi basati su Double Oracle.
[5].

Sebbene il metodo DO rappresenti un procedimento efficiente per approssimare l’NE in

giochi a somma zero di ampia dimensione, esso presenta alcune limitazioni. In primo luogo,

l’applicazione dei metodi DO richiede un coordinamento tra i giocatori nella risoluzione

dell’NE dei sotto-giochi, rendendo necessario che entrambi seguano le medesime dinamiche

di apprendimento. Tale requisito risulta poco realistico, in quanto in molti scenari concreti

l’avversario può adottare strategie arbitrarie e potenzialmente non stazionarie nei sotto-

giochi. In secondo luogo, e in maniera più rilevante, i metodi DO non risultano razionali

[11], poiché non forniscono un meccanismo di apprendimento capace di sfruttare le debolezze

dell’avversario.

In questo contesto, ODO risulta una soluzione scalabile per giochi a somma zero in

forma normale a due giocatori, in cui lo spazio delle strategie è di dimensione proibitiva.

Lo strumento teorico principale è fornito dall’analisi no-regret [20, 76] nell’apprendimento

online [76]. Combinando tale analisi [30] con la struttura dei metodi DO, l’algoritmo ODO

eredita i vantaggi di entrambi gli approcci.

L’elemento centrale del funzionamento di ODO è costituito da una controparte online

dell’Online Single Oracle (OSO) [26] impiegato nel DO [60], opportunamente modificata

per soddisfare la proprietà di no-regret. Un vantaggio determinante dell’OSO consiste nel

fatto che il relativo limite di rimpianto non dipende dalla dimensione dell’intero insieme di

strategie pure disponibili per un giocatore, bens̀ı dalla dimensione del cosiddetto insieme di

strategie effettive, il quale cresce linearmente con la dimensione del supporto dell’Equilibrio

di Nash.



A differenza degli algoritmi no-regret tradizionali, come MWU [30], nei quali l’intero

insieme di strategie pure deve essere considerato a ogni iterazione, l’OSO opera su un

sottoinsieme dello spazio strategico complessivo. L’aspetto operativo essenziale consiste nel

fatto che, a ogni round t, l’algoritmo valuta l’inserimento di una nuova strategia soltanto

qualora essa rappresenti la risposta ottimale rispetto alla perdita media calcolata su una

specifica finestra temporale (definita successivamente).

Costo computazionale. Nonostante la progettazione dell’insieme delle strategie effettive,

il calcolo della risposta ottimale esatta nell’OSO richiede comunque di considerare l’intero

insieme di strategie pure. Tale vincolo può essere rilassato mediante l’impiego di rispo-

ste ottimali approssimate, che consentono di preservare l’efficienza computazionale senza

compromettere le garanzie teoriche essenziali.

Il costo computazionale dell’algoritmo risulta pertanto dominato dal numero di risposte

ottimali calcolate e dalla gestione dell’insieme delle strategie effettive. Il tasso di con-

vergenza di ODO non dipende dalla dimensione del gioco, ma piuttosto dalla dimensione

dell’insieme di strategie effettive di entrambi i giocatori. Esiste infatti una relazione lineare

tra la dimensione dell’insieme di strategie effettive e la dimensione del supporto dell’NE.

Inoltre, in molti giochi reali, la dimensione del supporto dell’NE è effettivamente molto

inferiore alla dimensione del gioco. Pertanto, ODO può essere utilizzato sia teoricamente

che empiricamente come risolutore in giochi a somma zero di grandi dimensioni [26].

Risultati. La valutazione empirica dell’algoritmo evidenzia un miglioramento rispetto ai

principali metodi concorrenti in una vasta gamma di scenari sperimentali. Nello studio di

Yang et al. [26], gli autori conducono esperimenti su: giochi in forma normale generati

casualmente, un insieme di 15 giochi reali forniti da Czarnecki et al., e due giochi di poker

in forma estesa (Kuhn e Leduc), utilizzati nella loro formulazione tabulare.

In particolare, nei giochi di poker tabulari, ODO risulta competitivo con solver come

CFR e XFP: in Leduc Poker raggiunge sfruttabilità prossime a quelle di CFR e superio-

ri a quelle dei metodi PSRO, mentre in Kuhn Poker supera persino CFR in termini di

sfruttabilità. Infine, quando opposto a un avversario imperfetto, OSO dimostra una ra-

pida capacità di sfruttamento, ottenendo payoff positivi e superando le prestazioni della

controparte PSRO, che invece mantiene un comportamento più conservativo [26].



2.3.2 PSRO

Contesto e descrizione algoritmo. L’approccio Policy Space Response Oracles (PSRO)

[52] si è affermato come una sintesi naturale tra i metodi classici per il calcolo degli equilibri

e le tecniche di apprendimento automatico. Tale metodo integra contributi provenienti da

diverse comunità scientifiche, offrendo una prospettiva unificata sull’interazione strategica

tra agenti.

In PSRO, a ciascun giocatore viene assegnato un insieme iniziale di strategie Xi. Le

utilità associate ai profili nello spazio dei profili X vengono quindi stimate, producendo un

gioco ristretto iniziale ĜS↓X .

Ad ogni iterazione, unmeta-strategy solver (MSS) seleziona un profilo strategico σ ∈ ∆X

dal gioco ristretto corrente come obiettivo verso cui calcolare una nuova best response; qui

∆ indica il simplesso delle distribuzioni di probabilità definite sull’insieme considerato.

Successivamente, ogni giocatore i ∈ N apprende in modo indipendente una nuova strategia

di risposta s′i ∈ Si, valutata rispetto al proprio obiettivo di risposta (RO), rappresentato da

una funzione che assegna un valore ai profili strategici [5].

Nel PSRO standard, l’obiettivo di risposta per il giocatore i è definito come ROi(σ) =

ui(s
′
i, σ−i), e la massimizzazione di tale valore rispetto a s′i determina la risposta ottimale

alle strategie σ−i degli altri giocatori. Durante l’apprendimento, le strategie avversarie

vengono mantenute fisse, rendendo l’ambiente stazionario e consentendo il calcolo della

risposta ottimale.

Una volta individuata, la strategia s′i viene aggiunta all’insieme Xi delle strategie di-

sponibili nel gioco ristretto. Tale procedura viene ripetuta fino al soddisfacimento di un

criterio di arresto, che può consistere in un numero prefissato di iterazioni oppure nel rag-

giungimento di un livello minimo di rimpianto per l’equilibrio di Nash (NE) stimato del

gioco ristretto [5].

PSRO opera su giochi ristretti, che devono contenere un sottoinsieme sufficientemente

rappresentativo delle strategie dell’intero gioco pur mantenendo una complessità computa-

zionale gestibile [3]. L’individuazione di tali sottoinsiemi — con il minor numero possibile

di strategie e senza perdita rilevante di informazione strategica — costituisce il cosiddetto

problema dell’esplorazione strategica [45], che rappresenta un aspetto centrale nello sviluppo

di metodi PSRO.



Figura 2.4: Immagine riassuntiva del funzionamento di PSRO. L’algoritmo generalizza DO intro-
ducendo MSS, e consentendo obiettivi di risposta ottimale diversi da NE. Inoltre, PSRO supporta
vari RO e oracoli di risposta ottimale (approssimativi) [5].

Costo computazionale. Nonostante la sua garanzia di convergenza teorica, raggiungere

una convergenza esatta in giochi di grandi dimensioni è spesso impossibile a causa di vincoli

come le limitate risorse computazionali. Il costo computazionale dell’approccio, infatti, è

determinato principalmente da due componenti: la computazione della risposta ottimale e

la simulazione dei payoff nel gioco ristretto. Come evidenziato nello studio [5], entrambe le

attività risultano intrinsecamente onerose dal punto di vista computazionale, soprattutto

in giochi di grandi dimensioni.

Il calcolo della risposta ottimale richiede l’ottimizzazione di una strategia rispetto al

profilo corrente individuato dal risolutore. In giochi complessi o con spazi di stato estesi,

tale procedura può richiedere l’uso di metodi di reinforcement learning (RL) o di tecniche

di ricerca avanzata, comportando un costo significativo in termini di tempo e campioni.

La difficoltà cresce ulteriormente quando l’oracolo di risposta deve operare in ambienti

non stazionari o parzialmente osservabili, nei quali la ricerca di una risposta ottimale può

richiedere numerose iterazioni di apprendimento [5].

Parallelamente, la costruzione e l’aggiornamento del gioco ristretto implicano la stima

dei payoff dei profili strategici tramite simulazione. Poiché ogni valutazione di un profilo

richiede l’esecuzione di molteplici episodi simulati e la successiva media dei risultati, tale

componente rappresenta una parte sostanziale del costo complessivo dell’algoritmo. In

questo senso, la simulazione dei profili costituisce uno dei principali colli di bottiglia di



PSRO, tanto che vari lavori successivi hanno introdotto tecniche specificamente orientate a

ridurre tale onere [5].

Risultati. PSRO ha dimostrato, nel corso degli anni, una notevole efficacia empirica in una

vasta gamma di domini complessi, contribuendo al raggiungimento di risultati importante.

In primo luogo, PSRO e i metodi da esso derivati hanno ottenuto prestazioni di rilievo in

giochi strategici su larga scala, come dimostrato nel caso di Barrage Stratego [57], in cui

sono state superate le migliori prestazioni precedenti e ottenuti risultati competitivi contro

giocatori umani esperti. Un successo analogo è stato riportato nel dominio di StarCraft

[84], dove approcci ispirati al PSRO hanno consentito di superare in modo convincente sia

agenti precedenti sia giocatori umani professionisti.

Oltre ai giochi competitivi classici, PSRO ha trovato applicazione efficace in campi

ad alta complessità strutturale. Nel contesto della sicurezza e dei giochi difensivi, questo

metodo ha supportato lo sviluppo di strategie ottimali in giochi di sicurezza e scenari simili

[5], mostrando capacità superiori nell’identificazione di politiche robuste.

2.3.3 XDO

Contesto e descrizione algoritmo. Extensive-Form Double Oracle (XDO) [58] nasce

come risposta a una limitazione strutturale del PSRO [5], il quale, pur avendo ottenuto

risultati empirici notevoli, presenta una complessità potenzialmente esponenziale quando

applicato a giochi estesi di grandi dimensioni, poiché miscela le strategie esclusivamente

alla radice dell’albero decisionale.

Alla luce di questa criticità, XDO viene introdotto con l’obiettivo esplicito di ricondurre il

paradigma Double Oracle [60] nel dominio dei giochi in forma estesa, superando l’inefficienza

rappresentazionale della forma normale. L’idea centrale è di mantenere la popolazione di

strategie in forma estesa e di generare, a ogni iterazione, un gioco ristretto in cui le azioni

ammissibili in ciascun insieme informativo siano solo quelle effettivamente selezionate da

almeno una strategia della popolazione, garantendo una convergenza più efficiente verso

equilibri di Nash approssimati [58].

Un aspetto distintivo di XDO è la modalità con cui viene costruito il gioco ristretto:



l’algoritmo opera direttamente sul gioco in forma estesa, in cui a ogni insieme informa-

tivo vengono ammesse esclusivamente le azioni selezionate da almeno una strategia della

popolazione. Questa trasformazione consente di definire un sottoinsieme del gioco origi-

nale che conserva la struttura sequenziale, evitando l’esplosione combinatoria tipica della

rappresentazione in forma normale.

Il gioco ristretto viene quindi risolto mediante un algoritmo tabellare per giochi estesi,

ottenendo una politica che rappresenta un meta-NE approssimato. Tale politica viene poi

estesa al gioco completo attribuendo scelte arbitrarie agli insiemi informativi non visitati

nel gioco ristretto [58]. Una nuova best response rispetto al meta-NE viene quindi calco-

lata tramite un oracolo e aggiunta alla popolazione di strategie. Il processo prosegue fino

all’iterazione in cui nessuno dei due giocatori è in grado di individuare una best response

che migliori il meta-NE: in questa circostanza, le politiche del meta-NE risultano essere

risposte ottimali approssimate tra loro anche nel gioco originale e costituiscono pertanto un

equilibrio di Nash approssimato [58].

Figura 2.5: Tre iterazioni di XDO (da sinistra a destra). In questi diagrammi di gioco in forma
estesa, il giocatore 1 (P1) gioca alla radice, poi P2 gioca senza conoscere l’azione di P1, e se
entrambi hanno giocato a sinistra P1 gioca un’altra azione. La ricompensa di P1 è il numero
sulla foglia raggiunta. Le azioni nel gioco ristretto sono continue, mentre quelle tratteggiate sono
all’esterno del gioco ristretto. Le azioni Meta-NE sono nere, mentre quelle non presenti nel meta-
NE sono blu. [58].

Formalmente (figura 2.5), XDO mantiene una popolazione di strategie pure Πt al tempo

t. A ogni iterazione, viene costruito un gioco ristretto definito limitando, per ogni insieme

informativo si, il set delle azioni ammesse alle sole azioni selezionate da almeno una politica

della popolazione. Una politica ε-NE π(r∗) del gioco ristretto viene quindi calcolata tramite



CFR o un metodo equivalente e successivamente estesa al gioco completo. Infine, per ciascun

giocatore viene determinata una best response (BR) rispetto al meta-NE π(r∗), e tali BR

vengono aggiunte alla popolazione, cos̀ı da ottenere Πt+1 [58].

Costo computazionale. XDO è garantito convergere in un numero di iterazioni lineare

rispetto al numero di insiemi di informazione, in netto contrasto con il comportamento po-

tenzialmente esponenziale di altri metodi simili come PSRO. La motivazione teorica centrale

è che in XDO ogni risposta ottimale deve introdurre almeno un’azione nuova in un insie-

me informativo attualmente non coperto, assicurando un ampliamento monotono del gioco

ristretto sino alla copertura completa dello spazio informativo. Ciò consente a XDO di in-

dividuare rapidamente gli insiemi di azioni effettivamente rilevanti per l’equilibrio, evitando

l’espansione inutile dell’intero spazio strategico [58].

Risultati. L’efficacia di XDO è stata valutata attraverso una serie di esperimenti [58]. Nei

test tabellari su Leduc poker, XDO ha mostrato un netto vantaggio in termini di rapidità di

convergenza verso strategie a bassa sfruttabilità rispetto ad altri algoritmi, come ad esempio

PSRO [5].

Ulteriori esperimenti su 2-Clone Leduc poker hanno evidenziato che XDO necessita di

un numero significativamente inferiore di stati visitati rispetto a metodi come CFR+ [12] e

MCCFR [51], grazie alla capacità di evitare l’espansione delle azioni ridondanti introdotte

dai “cloni”.

2.3.4 NXDO

Contesto e descrizione algoritmo. Neural XDO (NXDO) [58] viene concepito per essere

applicato a classi di giochi caratterizzate da un’elevata complessità, nei quali la generalizza-

zione sugli insiemi di informazione, resa possibile dall’impiego di strategie derivate da reti

neurali, risulta particolarmente vantaggiosa.

A differenza delle versioni basate su un oracolo che fornisce una risposta ottimale esatta,

NXDO ne impiega di approssimate, addestrate tramite algoritmi di deep reinforcement lear-

ning (DRL), quali PPO [74] o DDQN [83]. Inoltre, anziché rappresentare esplicitamente il

gioco ristretto come l’insieme delle azioni consentite in ogni insieme di informazione, NXDO



costruisce tale gioco sostituendo lo spazio delle azioni originali con un insieme discreto di

meta-azioni. Ognuna di queste meta-azioni corrisponde a una politica della popolazione,

alla quale viene delegata la scelta dell’azione concreta.

Formalmente, NXDO mantiene una popolazione di politiche DRL Πt al tempo t. A

ogni iterazione viene generato un gioco ristretto in forma estesa e viene calcolato un meta-

equilibrio di Nash (meta-NE). In questo gioco ristretto, in ciascun insieme di informazio-

ne sono disponibili meta-azioni che selezionano una politica dalla popolazione corrente.

Pur modificando lo spazio delle azioni, NXDO preserva invariati gli stati, le osservazioni

e le cronologie del gioco originale. Una volta che ciascun giocatore seleziona una meta-

azione, l’azione da eseguire viene campionata dalla politica corrispondente e utilizzata per

la transizione dello stato globale [58].

Sulla base di ciò, un meta-NE π∗
r viene calcolato tramite un metodo DRL per la riso-

luzione di giochi in forma estesa, come NFSP [36]. Successivamente, le risposte ottimali

approssimate BR1(π
∗
r,2) e BR2(π

∗
r,1) vengono apprese tramite algoritmi DRL quali PPO o

DDQN, e infine aggiunte alla popolazione. A condizione che tali risposte approssimate

siano sufficientemente vicine alle risposte ottimali ideali e che il risolutore interno trovi un

meta-NE approssimato con adeguata precisione, NXDO eredita le proprietà di convergenza

di XDO.

Costo computazionale. L’espressività del gioco ristretto deriva da un aumento non tra-

scurabile del carico computazionale. In particolare, l’utilizzo di meta-azioni che delegano la

scelta all’interno della popolazione comporta una crescita lineare del numero di meta-azioni

con il procedere delle iterazioni, rendendo progressivamente più onerosa la risoluzione del

gioco ristretto.

Inoltre, la costruzione e la risoluzione del gioco ristretto in forma estesa introduce un

costo aggiuntivo, poiché richiede l’addestramento progressivamente più lungo del risolutore

del meta-NE (ad esempio NFSP) a ogni iterazione, come mostrato dalle analisi sugli epi-

sodi cumulativi impiegati nei cicli interni ed esterni di NXDO [58]. Tale problema risulta

particolarmente significativo nei giochi di piccole dimensioni, dove il tempo necessario per

calcolare strategie meta-NE accurate può superare quello richiesto per addestrare la maggior

parte delle strategie pure, riducendo quindi la competitività di NXDO in tali contesti.

Nello studio di McAleer et al. [58] viene riportato come le prove neurali su giochi

complessi, quali 20-Clone Leduc e il Loss Game, richiedano tipicamente da due a quattro



giorni di calcolo con 8–16 core CPU e un consumo di memoria tra 10 e 40 GB, mentre

gli esperimenti tabulari richiedono fino a un giorno su un singolo core con un utilizzo di

memoria compreso tra 1 e 10 GB.

Risultati. Sebbene le garanzie formali di convergenza possano non risultare pienamente

applicabili, NXDO presenta un’elevata compatibilità con spazi di azione continui. Nei

giochi caratterizzati da un numero molto ampio di azioni, l’algoritmo consente una riduzione

efficace della complessità dell’albero di gioco, le quali non risultano applicabili in presenza

di azioni continue.

Al fine di validare empiricamente l’efficacia dell’approccio proposto, sono stati condotti

esperimenti su due differenti classi di ambienti [58], tra cui l’m-Clone Leduc, è analogo al

poker Leduc, ma prevede la duplicazione m delle azioni di call, fold e bet.

I risultati sperimentali evidenziano come NXDO mostri prestazioni superiori sia a PSRO

[5] sia a NFSP [36], sia nel caso di m-Clone Leduc sia nel Loss Game a spazio di azione

continuo.

2.3.5 RMDO

Contesto e descrizione algoritmo. Il Regret Minimizing Double Oracle (RMDO) [81]

rappresenta un’estensione dell’approccio Double Oracle (DO) [60] che integra meccanismi

di minimizzazione del rimpianto, consentendo di derivare il numero atteso di iterazioni e la

complessità campionaria necessaria per raggiungere un ϵ-equilibrio di Nash (ϵ-NE).

RMDO mantiene la struttura generale dei metodi DO tradizionali. Il gioco ristretto

viene costruito includendo esclusivamente un sottoinsieme delle strategie pure disponibili

nel gioco originale, mentre la popolazione Πt contiene le strategie attualmente impiegate nel

gioco ristretto all’iterazione t. Un ruolo fondamentale è svolto dalle finestre temporali Tj,

definite come partizioni dell’insieme delle iterazioni per cui la popolazione rimane invariata:

per ogni t0, t1 ∈ Tj vale Πt0 = Πt1 . Il numero di finestre, indicato con k, corrisponde quindi

al numero di giochi ristretti generati dall’iterazione iniziale fino all’iterazione finale T . A

differenza dei metodi DO preesistenti, RMDO consente di espandere il gioco ristretto in

qualunque momento, rendendolo una metodologia più flessibile e generale [81].



La prima componente essenziale di RMDO è la funzione di frequenza m(·), la quale

determina il ritmo con cui calcolare la risposta ottimale. Tale funzione è definita come una

mappatura da N ∩ [0, k − 1] a N+ e m(j) indica la frequenza di calcolo della risposta otti-

male nella j-esima finestra temporale. Poiché l’algoritmo DO basato sulla minimizzazione

del rimpianto alterna ciclicamente aggiornamenti CFR e calcolo della BR, risulta cruciale

bilanciare opportunamente tali due componenti per favorire una rapida convergenza [81].

La seconda componente chiave è rappresentata dallo schema di media ponderata: nella

finestra Tj viene introdotto un peso wt per ogni iterazione t ∈ Tj, consentendo l’utilizzo di

una versione scontata del minimizzatore del rimpianto e accelerando cos̀ı la convergenza nel

gioco ristretto [81].

La procedura operativa di RMDO nella j-esima finestra Tj è la seguente. A ogni itera-

zione t, dato che la finestra corrente è j, il gioco ristretto Gt viene costruito restringendo le

strategie pure nella popolazione Πt. In Gt la minimizzazione del rimpianto viene eseguita

attraversando l’albero del gioco, calcolando il rimpianto a livello di ogni insieme informa-

tivo e aggiornando la strategia tramite un algoritmo di minimizzazione controfattuale del

rimpianto.

All’inizio, quando t = 0, il gioco ristretto e l’aggiornamento strategico vengono omessi

poiché Π0 è vuoto; il valore atteso viene quindi calcolato seguendo una politica completa-

mente casuale. Una volta superata la fase iniziale, quando t > 0 e la finestra corrente è Tj,

la strategia media congiunta della finestra viene estesa al gioco originale ogni m(j) itera-

zioni, assegnando probabilità nulle alle azioni non contenute nella popolazione. A questo

punto viene calcolata la risposta ottimale del gioco originale rispetto alla strategia media

estesa. Le due strategie nuove vengono quindi aggiunte alla popolazione Πt+1. Infine, se

l’aggiornamento produce una popolazione diversa da quella precedente (Πt+1 ̸= Πt), viene

avviata una nuova finestra temporale e la strategia πt+1 viene reinizializzata come strategia

casuale uniforme.

Costo computazionale. Nello studio condotto da Tang et al. [81] viene dimostrato che

la complessità campionaria necessaria per raggiungere un ϵ-NE dipende sia dal numero

di finestre temporali k, sia dalla funzione di frequenza m(j) che regola la computazio-

ne della risposta ottimale. In particolare, il numero di iterazioni richiesto è dell’ordi-

ne O
(
k|A||S|2/ϵ2 − k +

∑
j m(j)

)
, mentre la complessità campionaria complessiva risulta



O
(
k|A||S|3/ϵ2 − k|S|+ |S|

∑
j m(j)

)
, considerando che sia il minimizzatore del rimpianto

sia il calcolo della risposta ottimale richiedono la traversata dell’intero albero del gioco.

Per PDO, che adotta una frequenza di aggiornamento costante m(j) = c, la comples-

sità risulta significativamente ridotta: gli autori dimostrano che il numero di iterazioni

necessarie è O(k|A||S|2/ϵ2 + (c− 1)k) e la complessità campionaria complessiva si attesta

a O
(
k|A||S|3/ϵ2 + ck|S|+ k|A||S|3

c ϵ2
− k|S|

c

)
, risultando dunque polinomiale.

Risultati. Lo studio [81] valuta empiricamente le prestazioni di RMDO su una serie ampia

di giochi in forma estesa, tra cui Kuhn Poker, Leduc Poker e Leduc Poker Dummy. Gli

esperimenti analizzano la convergenza in termini di sfruttabilità rispetto sia al numero di

insiemi informativi visitati sia al tempo di esecuzione.

I risultati mostrano che, nel confronto diretto con XDO, RMDO con periodicità 50

risulta significativamente meno sfruttabile e converge più rapidamente in giochi complessi

come Large Kuhn Poker. Inoltre, il confronto con algoritmi di riferimento basati sulla

minimizzazione del rimpianto, quali CFR+, evidenzia che RMDO mantiene i vantaggi dei

metodi Double Oracle nei giochi con equilibrio a supporto ridotto (come Leduc Dummy),

risultando al contempo competitivo nei giochi più complessi.



2.4 Metodi di ricerca e approcci euristici

Gli algoritmi di ricerca ed euristici mirano a esplorare selettivamente lo spazio delle

decisioni nei giochi ad informazione imperfetta, producendo strategie efficaci senza richie-

dere la completa risoluzione del gioco. Metodi come Monte Carlo Tree Search (MCTS) e

la sua estensione ISMCTS utilizzano simulazioni guidate per stimare il valore delle azio-

ni, operando rispettivamente sugli stati o sugli insiemi informativi, risultando utili quando

l’albero di gioco è troppo vasto per una valutazione esaustiva. Euristiche come l’Effective

Hand Strength (EHS) forniscono stime rapide della forza attuale e potenziale della mano,

supportando le decisioni di ricerca. Approcci più avanzati, quali MCRNR e MCCFVFP,

combinano tecniche Monte Carlo con risposte ottimali o principi di fictitious play, appren-

dendo strategie che bilanciano sfruttamento e robustezza. Nel complesso, questi metodi

offrono soluzioni pratiche per gestire la complessità del poker Texas Hold’em Heads-Up

Limit.

2.4.1 EHS

Contesto e descrizione algoritmo. L’Effective Hand Strength (EHS) è un algoritmo

sviluppato nel 1998 con l’obiettivo di competere ai massimi livelli nel poker contro giocatori

umani esperti. Esso costituisce il nucleo decisionale dell’agente artificiale Loki [7], uno dei

primi sistemi in grado di partecipare a partite di poker mediante un modello di valutazione

dell’avversario.

Loki, attraverso EHS, integra differenti componenti del gioco per supportare il processo

decisionale. Un primo elemento considerato è la forza della mano (Hand Strength, HS),

definita come la valutazione della qualità della propria mano rispetto alle possibili mani

avversarie. Tale stima dipende almeno dalle carte private del giocatore e dalle carte comuni

disponibili; tuttavia, valutazioni più raffinate tengono conto anche del numero di avversari

attivi, della posizione al tavolo e della sequenza di puntate osservata. In forma avanzata,

la forza della mano viene calcolata considerando tutte le probabilità associate alle possibili

combinazioni avversarie [7], nonché il potenziale di miglioramento della mano nelle fasi

successive del gioco.



La probabilità di detenere la mano migliore in un dato momento può essere stimata

tramite tecniche di enumerazione completa delle combinazioni possibili. Ad esempio, consi-

derando la mano A♢–Q♣ con un flop 3♡–4♣–J♡, rimangono 47 carte sconosciute, da cui

derivano 1081 possibili mani avversarie. L’algoritmo di enumerazione calcola il percentile

della mano confrontando il numero di combinazioni migliori, peggiori o equivalenti. In tale

scenario, 444 combinazioni risultano superiori, 9 equivalenti e 628 inferiori. Attribuendo ai

casi di parità un peso pari a metà, si ottiene una forza della mano

HS =
628 + 9

2

1081
≈ 0.585,

ovvero una probabilità del 58.5% che tale mano sia superiore a una mano avversaria casuale.

Per più avversari, la stima viene elevata a potenza: contro cinque avversari casuali, la

probabilità scende a 0.5855 ≈ 0.069, evidenziando l’impatto del numero di contendenti.

La forza della mano, tuttavia, non è sufficiente a caratterizzare compiutamente la qualità

complessiva di una mano. Ad esempio, la mano 5♡–2♡ con flop 3♡–4♣–J♡ è debolissima

nella configurazione attuale, ma presenta un potenziale di miglioramento elevato: l’uscita

di un cuore, di un Asso o di un 6 può produrre un colore o una scala. Con due carte comuni

ancora da rivelare, la probabilità di ottenere una mano vincente supera il 50%, attribuendo

notevole valore a una mano inizialmente sfavorevole.

Il potenziale positivo (Positive Potential, Ppot) quantifica la probabilità di migliora-

re una mano sfavorita fino a renderla vincente, mentre il potenziale negativo (Negative

Potential, Npot) stima la probabilità di perdere il vantaggio quando si parte in posizio-

ne favorevole. Tali valori sono determinati mediante enumerazione: per ciascuna delle

1081 possibili mani avversarie si considerano le 990 combinazioni delle due carte comuni

rimanenti, classificando ogni esito come vantaggioso, svantaggioso o in parità.

L’Effective Hand Strength [7] combina la forza immediata della mano e il suo potenziale

positivo secondo la formula:

EHS = HSn + (1− HSn) Ppot,

dove n rappresenta il numero di avversari ancora attivi. Il valore ottenuto costituisce una

stima globale che integra la probabilità attuale di essere in vantaggio e quella di acquisire

un vantaggio nelle fasi successive del gioco.



Costo computazionale. EHS presenta un costo computazionale significativo, poiché si

basa su tecniche di enumerazione esaustiva di tutte le possibili combinazioni di carte avver-

sarie e delle carte comuni rimanenti. Se il calcolo della sola Hand Strength (HS) richiede

la valutazione di tutte le
(
47
2

)
= 1081 possibili mani dell’avversario dopo il flop, con un

confronto completo tra la mano corrente e ciascun esito possibile [7], il calcolo dell’Hand

Potential comporta un’espansione combinatoria ancora più ampia: per ogni mano avversa-

ria vengono considerate le
(
45
2

)
= 990 possibili combinazioni di turn e river, per un totale

di oltre un milione di scenari analizzati per singola situazione.

Questa complessità rende l’EHS accurato ma computazionalmente oneroso, richiedendo

implementazioni ottimizzate per essere utilizzato in tempo reale.

Risultati. Dal punto di vista sperimentale, i risultati [7] mostrano che tale investimento

computazionale produce un miglioramento sostanziale delle prestazioni del sistema. Le

versioni del programma Loki che integrano EHS con tecniche di modellazione dell’avversario

superano in modo netto le versioni prive di modellazione, convergendo più rapidamente verso

un profitto medio superiore lungo 100,000 mani.

2.4.2 MCTS

Contesto e descrizione algoritmo. I metodi Monte Carlo rappresentano una delle tec-

niche più consolidate nell’ambito degli algoritmi numerici e hanno dimostrato un’efficacia

significativa anche nei sistemi di gioco basati sull’intelligenza artificiale [2].

Una delle varianti principali di questa famiglia, il Monte Carlo Tree Search (MCTS), si

fonda su due idee centrali: da un lato, il presupposto che il valore reale di un’azione possa

essere approssimato attraverso simulazioni casuali; dall’altro, la possibilità di utilizzare tali

stime per orientare progressivamente la politica decisionale verso una strategia di tipo best-

first. L’algoritmo costruisce gradualmente un albero di ricerca parziale, la cui espansione è

continuamente guidata dai risultati ottenuti nelle fasi di esplorazione precedenti. In questo

modo, l’albero stesso diventa il supporto principale per stimare il valore delle mosse dispo-

nibili, con stime che tendono a migliorare man mano che il numero di simulazioni aumenta

e la struttura si arricchisce di nuovi nodi [18].



Il funzionamento di MCTS è quindi di natura iterativa: l’albero viene ampliato fino a

quando non viene raggiunto un determinato limite computazionale, solitamente espresso in

termini di tempo, memoria o numero massimo di iterazioni. Una volta esaurito il budget a

disposizione, la procedura si arresta e viene selezionata l’azione iniziale che, secondo i criteri

interni dell’algoritmo, risulta essere la più promettente. Ogni nodo dell’albero rappresenta

uno stato del dominio considerato, mentre gli archi che lo collegano ai nodi successivi

corrispondono alle azioni che consentono la transizione da uno stato a quello successivo

[18]. All’interno di ciascun ciclo di ricerca si passa attraverso quattro fasi fondamentali [22]

(figura 2.6).

Figura 2.6: Rappresentazione grafica del funzionamento di MCTS [18].

La prima è la selezione, durante la quale, a partire dal nodo radice, viene applicata ricor-

sivamente una politica di scelta che conduce verso i nodi ritenuti più urgenti da esplorare,

fino al raggiungimento di uno stato non terminale che presenti ancora possibili espansioni.

Segue l’espansione, in cui uno o più nodi figli vengono aggiunti all’albero in base alle

azioni disponibili in quello stato.

Successivamente si procede con la simulazione, che consiste nell’esecuzione di una partita

virtuale a partire dai nuovi nodi, utilizzando una politica predefinita il cui scopo è fornire

una stima del valore atteso dello stato.



Infine, durante la fase di backpropagation, il risultato ottenuto dalla simulazione vie-

ne retropropagato lungo il percorso dell’albero, aggiornando le statistiche dei nodi pre-

cedentemente selezionati. Queste informazioni contribuiscono a orientare le future scelte

dell’algoritmo, modificando la valutazione degli stati già esplorati.

Al termine dell’elaborazione, l’algoritmo restituisce l’azione radice associata al nodo

figlio che risulta “migliore” secondo i criteri stabiliti dall’implementazione. Tra quelli più

frequentemente discussi [21, 71] emergono:

� figlio massimo, che privilegia il nodo con la ricompensa empirica più alta;

� figlio robusto, che seleziona il nodo visitato più frequentemente;

� figlio massimo robusto, che ricerca una combinazione favorevole di valore e numero

di visite, eventualmente prolungando l’esplorazione se nessun nodo soddisfa requisiti

minimi di affidabilità;

� figlio sicuro, che seleziona il nodo in grado di massimizzare un limite inferiore di

confidenza, cercando un compromesso tra valore atteso e affidabilità statistica.

Queste varianti riflettono le differenti interpretazioni e finalità operative adottate nel-

le implementazioni di MCTS, confermando la flessibilità dell’algoritmo rispetto ai criteri

decisionali.

Risultati. Il Monte Carlo Tree Search ha esercitato un impatto significativo nel campo

dell’intelligenza artificiale sin da quando la simulazione Monte Carlo è stata impiegata, per

la prima volta, come strumento euristico per individuare in modo selettivo le parti più

promettenti dell’albero di ricerca di un gioco. Questo approccio ha dimostrato la propria

efficacia in tutti quei contesti decisionali che possono essere formalizzati come problemi di

ricerca in grafi o alberi di grandi dimensioni, in particolare quando le decisioni possono

essere campionate mediante simulazioni casuali eseguibili con grande rapidità rispetto al

tempo reale [18].

Il successo ottenuto in una vasta gamma di giochi, tra cui il Computer Go [53, 54],

conferma il potenziale dell’approccio per l’intero spettro dei problemi decisionali. La sua

efficacia in applicazioni non strettamente ludiche ne evidenzia ulteriormente la versatilità,

mostrando come il metodo possa essere esteso con buoni risultati a scenari di pianificazione,

ottimizzazione e controllo [18].



Nonostante tali punti di forza, MCTS presenta anche diverse limitazioni. Nei domini

caratterizzati da un elevato fattore di ramificazione o da una profondità di ricerca molto

estesa, l’applicazione dell’algoritmo puro risulta spesso impraticabile [18], cos̀ı come avviene

per la maggior parte degli approcci di ricerca non informati. Difficoltà ulteriori emergono

quando le simulazioni sono computazionalmente costose e il numero di campioni ottenibili è

ridotto: in questi casi, l’algoritmo rischia di apprendere da un insieme di dati insufficiente,

compromettendo la qualità delle decisioni.

2.4.3 ISMCTS

Contesto e descrizione algoritmo. Gran parte della letteratura su Monte Carlo Tree

Search si è concentrata su giochi a informazione perfetta. Nonostante ciò, numerosi ri-

cercatori hanno esplorato metodi atti ad adattare MCTS anche a giochi caratterizzati da

informazioni parzialmente nascoste. Tra questi, uno degli approcci più diffusi è la determi-

nizzazione delle informazioni mancanti, tecnica che ha ottenuto risultati rilevanti in giochi

quali Bridge [33] e Klondike Solitaire [9]. Tale metodologia consiste nel campionare ripe-

tutamente uno stato completo del gioco a partire dall’insieme informativo del giocatore e

nell’applicare a questi stati algoritmi sviluppati per giochi a informazione perfetta.

Sebbene efficace in diversi scenari, la determinizzazione presenta alcune debolezze strut-

turali ampiamente riconosciute, riguardanti la suddivisione del budget computazionale, che

duplica di fatto lo sforzo di esplorazione, e la strategy fusion [29], per cui differenti stati

compatibili con lo stesso insieme informativo sono trattati come nodi distinti dell’albero,

finendo implicitamente per assumere che sia possibile selezionare decisioni diverse a partire

da essi, violando l’assunzione fondamentale secondo cui un giocatore non può distinguere

tra stati appartenenti allo stesso insieme informativo.

Per superare parte di queste criticità viene introdotta la famiglia di algoritmi nota come

Information Set Monte Carlo Tree Search (ISMCTS) [24].

Il funzionamento di ISMCTS si articola attraverso iterazioni guidate da determinizza-

zioni, ovvero istanziazioni complete dello stato coerenti con l’informazione disponibile al

giocatore. A ogni iterazione l’algoritmo seleziona una determinizzazione casuale dall’insie-

me informativo corrente e limita l’esplorazione dell’albero ai nodi e alle azioni compatibili

con essa. Tale meccanismo permette di gestire correttamente la variabilità delle azioni



disponibili nei diversi stati appartenenti allo stesso insieme informativo: nei nodi in cui

l’avversario è il giocatore attivo, ad esempio, le azioni disponibili possono variare tra de-

terminizzazioni diverse e la selezione viene trattata come un subset-armed bandit problem,

adattando opportunamente una formula UCB per bilanciare esplorazione e sfruttamento

rispetto alla frequenza con cui un’azione risulta effettivamente disponibile [24].

Ogni iterazione segue la struttura caratteristica di MCTS: si procede con una fase di

selezione che discende l’albero utilizzando una variante modificata di UCB, limitandosi ai

rami compatibili con la determinizzazione corrente; si effettua poi l’espansione del nodo

quando si incontra un’informazione non ancora rappresentata nell’albero; quindi si esegue

una simulazione completa a partire dalla determinizzazione selezionata; infine, il risultato

ottenuto viene retropropagato lungo il percorso seguito, aggiornando sia le statistiche dei

nodi visitati sia il conteggio di disponibilità delle azioni nei nodi concorrenti [24].

In questo modo, le statistiche accumulate riflettono l’effettiva probabilità che un’azione

sia utile e disponibile negli stati compatibili con l’informazione del giocatore.

Costo computazionale. La sostituzione della ricerca su stati pienamente determinati con

una ricerca in cui ogni nodo dell’albero rappresenta un insieme di informazioni anziché uno

specifico stato del gioco, consente di unificare in un unico albero le statistiche associate

alle mosse, rendendo quindi più efficiente l’utilizzo del budget computazionale: invece di

costruire più alberi indipendenti ISMCTS aggrega conoscenza proveniente da una pluralità

di stati compatibili all’interno della medesima struttura di ricerca [24].

Oltre a questa efficienza computazionale, l’approccio offre anche un modello decisiona-

le più coerente con la natura informativa del dominio considerato. Dal momento che la

selezione delle mosse avviene direttamente sugli insiemi informativi, la ricerca tiene auto-

maticamente conto della validità di un’azione su molteplici stati possibili, attenuando o

eliminando i problemi causati dalla fusione di strategie. In questo modo, ISMCTS produce

stime più realistiche delle decisioni ottimali in giochi con informazione imperfetta e si con-

figura come un passo significativo verso una gestione più rigorosa dell’incertezza nei metodi

Monte Carlo [24].

Risultati. I risultati sperimentali [24] mostrano in modo chiaro che gli algoritmi della fa-

miglia ISMCTS offrono un miglioramento significativo rispetto agli approcci basati sulla



determinizzazione nei giochi a informazione imperfetta. Nei test condotti su domini etero-

genei — Lord of the Rings: The Confrontation, il gioco Phantom (4,4,4) e il gioco di carte

Dou Di Zhu — ISMCTS si distingue soprattutto nei contesti in cui la determinizzazione

soffre maggiormente gli effetti della strategy fusion o dell’inefficiente utilizzo del budget

computazionale.

2.4.4 MCRNR

Contesto e descrizione algoritmo. L’algoritmo Monte-Carlo Restricted Nash Respon-

se (MCRNR) [65] è sviluppato per bilanciare diverse esigenze. Innanzitutto, poiché una

strategia perfettamente razionale in equilibrio di Nash (NES) non coincide necessariamente

con la migliore controstrategia rispetto a comportamenti avversari non ottimali [64], è possi-

bile ottenere risultati significativamente migliori sfruttando tali debolezze attraverso rispo-

ste ottimali mirate. Tuttavia, un’eccessiva focalizzazione sullo sfruttamento dell’avversario

comporta il rischio di diventare a propria volta altamente vulnerabili.

MCRNR affronta questo compromesso: il metodo, basato sul campionamento, con-

sente il calcolo offline di strategie di Nash ristrette in giochi complessi rappresentati in

forma estesa, tramite la combinazione di MCCFR [51], che consente di approssimare stra-

tegie di equilibrio mediante controfattuali campionati, e la tecnica della Restricted Nash

Response (RNR) [42, 43], concepita per integrare in modo controllato la conoscenza del

comportamento avversario all’interno del processo di ricerca dell’equilibrio.

L’idea alla base di RNR è infatti quella di introdurre un modello dell’avversario all’in-

terno del processo di ricerca dell’equilibrio, limitando la strategia dell’agente a un insieme

ristretto di possibili risposte che bilancino sfruttamento e sicurezza. In pratica, RNR co-

struisce un gioco modificato nel quale l’avversario segue la strategia modellata con una

certa probabilità, mentre con la restante probabilità si comporta come un giocatore ra-

zionale qualsiasi. In questo modo, il giocatore ottiene una strategia che tende a sfruttare

l’avversario modellato, ma senza diventare eccessivamente vulnerabile a strategie alternati-

ve. Tuttavia, l’applicazione diretta di RNR ai giochi in forma estesa rimane costosa, poiché

richiede l’analisi sistematica di porzioni molto ampie dell’albero di gioco.

Per superare questo limite, viene utilizzato MCRNR [65], che rappresenta una versio-

ne campionata di RNR integrata con la procedura di riduzione del rimpianto propria di



MCCFR. MCRNR utilizza campionamenti Monte Carlo per attraversare solo le parti rile-

vanti dell’albero di gioco e aggiornare progressivamente le strategie attraverso i rimpianti

controfattuali, mantenendo inalterate le proprietà fondamentali di RNR. Il risultato è un

algoritmo capace di apprendere strategie che sfruttano in misura controllata gli avversa-

ri non ottimali, ma che al tempo stesso mantengono un livello di sfruttabilità contenuto,

avvicinandosi alle garanzie tipiche degli equilibri di Nash.

Costo computazionale. Dal punto di vista computazionale, MCRNR rappresenta un

miglioramento sostanziale rispetto alla versione classica di RNR, grazie all’uso del cam-

pionamento Monte Carlo: mentre un’iterazione di RNR (cos̀ı come di CFR) richiede l’ag-

giornamento di tutti gli insiemi informativi dell’albero di gioco, un’iterazione di MCRNR

aggiorna soltanto gli insiemi informativi attraversati dalla singola storia terminale campio-

nata. In questo modo, ogni iterazione tocca solo una piccola frazione del grafo, riducendo

drasticamente il tempo di calcolo necessario per ogni passo dell’algoritmo [65].

Lo studio di Ponsen et al. [65] evidenzia infatti che milioni di iterazioni campionate

con MCRNR corrispondono, in termini di porzioni realmente esplorate, a un numero molto

inferiore di iterazioni complete di RNR, con un risparmio di tempo significativo. Que-

sto vantaggio consente a MCRNR di convergere più rapidamente verso strategie robuste,

anche in giochi complessi come il poker, pur mantenendo la capacità di incorporare un mo-

dello dell’avversario tramite il parametro di confidenza p, che modula il compromesso tra

sfruttamento e robustezza strategica.

L’efficienza computazionale dell’algoritmo lo rende quindi particolarmente adatto a sce-

nari nei quali il tempo di apprendimento risulta limitato o in cui l’albero di gioco è troppo

ampio per essere esplorato esaustivamente [65].

Risultati. Gli esperimenti [65] mostrano chiaramente che MCRNR offre prestazioni su-

periori rispetto a RNR sia in termini di velocità di convergenza sia in termini di qualità

delle strategie apprese. Nei giochi di dimensioni ridotte, come OCP, Goofspiel, Bluff e

PAM, MCRNR produce un’approssimazione dell’equilibrio molto più rapidamente, soprat-

tutto nelle prime iterazioni, dimostrando che il campionamento favorisce un apprendimen-

to iniziale più efficiente. I risultati indicano anche che il parametro p incide fortemente

sul bilanciamento tra sfruttamento dell’avversario e sfruttabilità, con una gamma efficace

tipicamente compresa tra 0.5 e 0.8 o, in alcuni giochi, tra 0.97 e 1.



Nei test condotti sul poker, dominio di gran lunga più complesso, MCRNR si dimostra

capace di sfruttare bot deboli come POKI in misura significativamente maggiore rispetto a

MCCFR. Anche contro avversari più solidi, l’algoritmo mantiene prestazioni competitive,

analoghe a quelle di MCCFR, dimostrando che le strategie generate rimangono robuste e

non eccessivamente sfruttabili.

2.4.5 MCCFVFP

Contesto e descrizione algoritmo. L’algoritmo Monte Carlo Counterfactual Value-

Based Fictitious Play (MCCFVFP) [66] nasce dall’esigenza di combinare i vantaggi del

campionamento Monte Carlo, che riduce drasticamente il numero di nodi visitati a ogni

iterazione, con la struttura del Fictitious Play, introducendo i valori controfattuali nel cal-

colo delle risposte ottimali. L’obiettivo è duplice: da un lato ottenere un metodo capace di

convergere teoricamente verso un equilibrio di Nash in giochi estesi, dall’altro sfruttare in

modo efficace la presenza, tipica dei giochi reali su larga scala, di un’elevata proporzione di

strategie dominate.

MCCFVFP combina quindi l’efficienza di MCCFR con la logica strategica del FP, intro-

ducendo un meccanismo di aggiornamento basato sui valori controfattuali anziché sui tra-

dizionali valori di rimpianto. In MCCFVFP, per ogni insieme informativo vengono calcolati

e aggiornati i valori controfattuali Qi(I, a), ottenuti accumulando le ricompense associate

alla scelta sistematica dell’azione a in I. A differenza di CFR, l’algoritmo non richiede la

computazione del rimpianto né l’utilizzo della procedura di regret-matching : la strategia

per l’iterazione successiva viene determinata selezionando semplicemente l’azione con valo-

re controfattuale massimo, producendo quindi una risposta ottimale pura in stile Fictitious

Play. Questa scelta riduce in modo drastico il carico computazionale, perché elimina mol-

te operazioni necessarie ai metodi RM, come la normalizzazione del rimpianto positivo, e

sfrutta il fatto che, nelle iterazioni, la probabilità di raggiungere ciascun insieme informativo

è determinata da strategie pure [66].

Il funzionamento in modalità Monte Carlo permette inoltre di aggiornare solo gli insiemi

informativi effettivamente visitati nella traiettoria campionata, limitando cos̀ı la computa-

zione a una piccola parte dell’albero di gioco. L’adozione di risposte ottimali pure, insieme

alla natura selettiva del campionamento, incrementa significativamente le opportunità di



potatura, poiché molti nodi del gioco risultano automaticamente irrilevanti quando la pro-

babilità congiunta di raggiungerli è nulla. Ciò riduce il numero effettivo di nodi visitati da

O(|S|) in MCCFR a circa O(|N |
√
|S|) [66].

Costo computazionale. L’algoritmo MCCFVFP è altamente efficiente nel risparmio di

risorse di calcolo. Ad esempio, quando un insieme informativo I dispone di |A(I)| = x

azioni, MCCFVFP necessita soltanto di 2x+1 operazioni di somma per aggiornare i valori

controfattuali, mentre MCCFR richiede 6x − 2 addizioni e ulteriori 3x moltiplicazioni per

eseguire lo stesso passaggio. Questa differenza implica che, a parità di condizioni, MCCFV-

FP utilizza circa 2/9 del tempo di calcolo richiesto da MCCFR per ogni insieme informativo.

Considerando che la fase di addestramento in giochi reali attraversa tipicamente oltre un mi-

liardo di nodi, la riduzione del costo per nodo si traduce in un miglioramento ingegneristico

di grande rilievo, sia in termini di tempo sia di consumo di risorse [66].

A questa efficienza si aggiunge un ulteriore vantaggio legato alla potatura dell’albero di

gioco, una tecnica fondamentale nei metodi di ricerca su alberi decisionali. Nei metodi basati

su CFR, la forma più semplice è applicabile quando nessun giocatore ha una probabilità

positiva di raggiungere uno stato s. In tali casi, l’intero sottoalbero radicato in s può essere

ignorato senza compromettere il corretto aggiornamento dei rimpianti.

Risultati. Nello studio condotto da Qi et al. [66], l’algoritmo viene testato su una varietà

di giochi estesi con informazione imperfetta, tra cui Kuhn-extension poker, Leduc-extension

poker e diverse configurazioni di Texas Hold’em. I Risultati mostrano una tendenza chia-

ra: mentre algoritmi a esplorazione completa come CFR+ o DCFR possono inizialmente

ottenere prestazioni migliori, all’aumentare della complessità la natura campionata di MCC-

FVFP permette di superare rapidamente sia MCCFR sia le altre varianti. Nei giochi di

dimensioni medio-grandi, MCCFVFP converge in modo stabile più velocemente, mostran-

do una capacità superiore di sfruttare strutture del gioco, come l’alta presenza di strategie

dominate.

In particolare, MCCFVFP ottiene sistematicamente una convergenza più rapida rispet-

to a MCCFR, sia quando si considerano i nodi toccati durante l’iterazione sia quando si

misura il tempo reale necessario per raggiungere un dato livello di sfruttabilità. Poiché

l’algoritmo richiede solo circa 2/9 del costo computazionale di MCCFR per processare lo

stesso insieme informativo, a parità di nodi elaborati MCCFVFP risulta più efficiente . Nei



test su Texas Hold’em a due giocatori, MCCFVFP mostra un vantaggio del 20–30% in

termini di rapidità di convergenza della sfruttabilità, mentre negli scenari multigiocatore —

valutati tramite competizioni dirette tra agenti — l’algoritmo supera nettamente MCCFR,

ottenendo ricompense significativamente migliori nelle stesse finestre di addestramento [66].





Capitolo 3

Opponent Modeling Expectimax

3.1 Expectimax

L’algoritmo expectimax costituisce un approccio fondato sulla ricerca euristica per la

selezione delle azioni, finalizzato alla pianificazione di una strategia di scommessa a partire

da uno specifico stato di gioco. Tale metodo esegue un’induzione a ritroso sull’albero delle

decisioni radicato nello stato considerato, analizzando in modo ricorsivo tutte le possibili

azioni intraprese e i corrispondenti stati successivi, fino al raggiungimento della conclusione

della partita. Al termine della sequenza decisionale, l’esito del gioco (ad esempio vittoria,

sconfitta o pareggio) risulta noto. Poiché è nota anche l’azione che ha condotto a tale esito,

il valore associato a quell’azione può essere identificato direttamente con il valore dello stato

terminale raggiunto [73].

Una volta determinati i valori delle azioni disponibili per un dato giocatore, vengono

formulate ipotesi circa le scelte che tale giocatore adotterà. Le ipotesi cos̀ı definite rappre-

sentano la sua strategia di scommessa e consentono di calcolare il valore complessivo del

punto decisionale considerato, permettendo di iterare il processo per le decisioni antecedenti.

Un possibile metodo per integrare la ricerca euristica nella selezione delle azioni nel con-

testo del poker consiste nel rinunciare alla determinazione esplicita delle azioni ottimali per

l’avversario durante la ricerca, assumendo invece che tali scelte siano prese autonomamente

dall’avversario stesso. Questa diversa impostazione determina un calcolo finalizzato a in-

dividuare la strategia ottimale contro un avversario specifico, anziché contro un avversario

ipotetico nel caso peggiore. In termini di teoria dei giochi, il procedimento individua una
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strategia di risposta ottimale rispetto a un particolare avversario, e non una coppia di stra-

tegie di equilibrio che garantisca a entrambi i giocatori un valore minimo indipendentemente

dal comportamento dell’altro [73].

Questa procedura di ricerca euristica è comunemente denominata algoritmo expectimax

[61, 70], il cui impiego nei processi decisionali relativi al poker è stato introdotto per la

prima volta da Davidson [25]. Le ipotesi concernenti il comportamento di ciascun giocato-

re giustificano la denominazione dell’algoritmo: si assume che il programma che invoca la

procedura desideri selezionare l’azione con il valore più elevato tra quelle disponibili, con-

tribuendo cos̀ı alla componente “max” del nome. Si assume inoltre che l’avversario scelga

le proprie azioni secondo una strategia predeterminata, trasformando la sua decisione in un

evento di natura probabilistica. Ne deriva che il valore di un nodo decisionale appartenente

all’avversario venga calcolato come valore atteso delle sue possibili azioni, ottenuto come

somma dei valori delle azioni ponderati in base alla probabilità che esse vengano effettiva-

mente intraprese. Tale componente di valore atteso dà origine alla parte “expecti” della

denominazione dell’algoritmo.

Tra i contributi più rilevanti in relazione all’integrazione della modellazione dell’avversa-

rio con procedure di ricerca basate su expectimax, si collocano tre linee di ricerca. Reibman

e Ballard [67] propongono una variante del minimax in cui alcuni nodi avversari sono trat-

tati come nodi casuali tramite un valore atteso basato sulla probabilità che l’avversario

scelga azioni subottimali. Jansen [40] introduce la procedura probi-max, che sostituisce i

backup minimi con backup attesi nei nodi avversari, con probabilità derivate da semplici

regole euristiche sulla fallibilità dell’avversario. Sen e Aurora [75], infine, sviluppano un

giocatore a massima utilità attesa che apprende un modello probabilistico dell’avversario

tramite osservazione e lo utilizza nel processo decisionale, in un framework riconducibile

alla ricerca expectimax.

Sebbene gli approcci di modellazione dell’avversario descritti costituiscano un primo

insieme di esempi significativi, essi sono stati concepiti prevalentemente per giochi a in-

formazione perfetta. Nel contesto del poker, e in particolare nell’ambito dell’Heads-Up

Limit Texas Hold’em (HULHE), la letteratura offre un numero ridotto di applicazioni di

tali tecniche, spesso caratterizzate da limitazioni non trascurabili.

Nel lavoro di Billings et al. [8], il comportamento dell’avversario viene modellato prin-

cipalmente sulla base delle osservazioni storiche, come le frequenze con cui quest’ultimo

seleziona specifiche azioni. Altre varianti considerano ulteriori informazioni contestuali,



quali la dimensione del piatto, le puntate correnti o la fase della mano. Sebbene tali metodi

consentano di catturare alcuni aspetti statistici del comportamento avversario, essi risul-

tano comunque approssimativi: il fatto che un giocatore tenda, ad esempio, a chiamare

frequentemente con mani di valore medio non implica che mantenga la stessa politica deci-

sionale nell’intero arco della partita. In modo analogo, l’adozione di una strategia di base

o di un insieme predefinito di strategie da cui campionare le possibili scelte dell’avversario

introduce assunzioni e generalizzazioni eccessivamente forti, che riducono l’affidabilità del

modello.

Alla luce di tali limitazioni, in questo capitolo viene presentata una variante dell’algo-

ritmo Expectimax che integra la componente di massimizzazione e ricerca propria dell’ap-

proccio originale con una modellazione probabilistica dell’avversario fondata sulle possibili

mani private e sulle carte comuni che possono essere distribuite. Tale integrazione consente

di ottenere una rappresentazione più accurata del comportamento avversario rispetto alle

soluzioni presenti in letteratura.

Questo contributo rappresenta un elemento di novità, soprattutto nel contesto di HU-

LHE. Nel lavoro di Schauenberg [73], una forma di expectimax con modellazione dell’avver-

sario viene applicata al Texas Hold’em heads-up, ma con un modello concettualmente più

semplice rispetto a quello proposto in questa tesi. Qui viene infatti introdotta una variante

specificamente adattata a HULHE, che combina e raffina idee preesistenti dando origine a

un approccio originale. Tale metodo prende il nome di Opponent Modeling Expectimax.

3.2 OM-Expectimax

L’idea alla base di Opponent Modeling Expectimax (OME) consiste nel costruire un unico

albero decisionale dal punto di vista del giocatore che intende ottimizzare la propria strate-

gia, modellando l’avversario non come un agente perfettamente razionale (come avviene nel

minimax tradizionale), ma come un decisore fallibile descritto tramite una distribuzione di

probabilità sulle sue possibili azioni. Questo consente di sostituire i nodi minimi tipici del

minimax con nodi di aspettativa, nei quali il valore di ciascun punto decisionale dell’avver-

sario viene calcolato come valore atteso rispetto alla sua probabilità di compiere ciascuna

azione.

La struttura dell’albero decisionale prevede tre categorie fondamentali di nodi: nodi

di decisione del giocatore che sta massimizzando (nodi max ), nodi che rappresentano le



decisioni dell’avversario (nodi opponent), e nodi di aleatorietà (nodi chance) legati alla

distribuzione delle carte comunitarie. In corrispondenza dei nodi di tipo max, il giocatore

seleziona l’azione che massimizza il valore dei possibili stati successivi, secondo la regola

V (s) = max
a∈A(s)

V (sa),

dove A(s) rappresenta l’insieme delle azioni disponibili e sa lo stato risultante dall’azione a.

Nei nodi dell’avversario, invece, si assume che l’altro giocatore adotti una politica di

comportamento non ottimale, ma descrivibile tramite una distribuzione di probabilità π(a |
s) sulle azioni disponibili. Come si osserva nel pseudocodice dell’algoritmo (figura 3.1),

tale distribuzione non è arbitraria: viene costruita sulla base di una stima della forza della

mano avversaria, rappresentata da una misura di hand strength o effective hand strength

calcolata per tutte le possibili combinazioni compatibili con le informazioni osservabili. Una

volta calcolata l’EHS per ciascuna ipotesi di mano avversaria, essa viene mappata in una

probabilità sulle azioni disponibili. L’idea è che un avversario con mano presumibilmente

forte tenderà ad assumere comportamenti più aggressivi (puntare o rilanciare), mentre un

avversario con mano debole mostrerà una maggiore propensione ad abbandonare. In termini

qualitativi, si possono modellare tali dipendenze con funzioni del tipo: p(raise | s, h) ∝
αr · EHS(h), p(call | s, h) ∝ αc ·

(
1 − |EHS(h) − 0.5|

)
, e p(fold | s, h) ∝ αf · (1 − EHS(h)),

dove h denota una possibile mano avversaria e i coefficienti αr, αc, αf calibrano la sensibilità

del modello. Dopo normalizzazione, tali probabilità vengono aggregate su tutte le possibili

mani avversarie:

π(a | s) =
∑
h∈Hs

P (h | s) p(a | s, h),

dove Hs è l’insieme delle possibili mani avversarie e P (h | s) è la probabilità che l’avversario

detenga la mano h, tipicamente uniforme sulle combinazioni compatibili.

Il valore dei nodi avversari viene quindi calcolato tramite la regola stocastica:

V (s) =
∑

a∈A(s)

π(a | s)V (sa),

con sa stato generato dall’azione dell’avversario. Ciò consente di modellare l’avversario

come un decisore probabilistico informato, anziché come un avversario perfetto ostile.



Input: s stato corrente, A insieme di azioni disponibili
Output: Distribuzione π(a | s) sulle azioni a ∈ A
D ← MazzoResiduo(s)
H ← ManiAvversariePossibili(D, s)
if |H| grande then

H ← Campiona(H)
end
foreach a ∈ A do

π[a]← 0
end
foreach h ∈ H do

ehs← EHS(h, community(s))
foreach a ∈ A do

if a = raise then
ph[a] ∝ fraise(ehs)

else if a = call/check then
ph[a] ∝ fcall(ehs)

else
ph[a] ∝ ffold(1− ehs)

end

end
normalizza ph
foreach a ∈ A do

π[a]← π[a] + ph[a]
end

end
foreach a ∈ A do

π[a]← π[a]/|H|
end
normalizza π
return π

Figura 3.1: Stima della politica avversaria π(a | s) a partire dall’Effective Hand Strength. In questo caso,
il modello mostra un campionamento nel caso in cui le mani avversarie da valutare siano troppo elevate,
ma ciò dipende dalle risorse computazionali disponibili e limiti dello specifico contesto applicativo.

I nodi di aleatorietà (nodi chance) trattano la distribuzione delle carte future (flop, turn,

river) come un processo stocastico puro: tutte le combinazioni possibili di carte residue

vengono enumerate e ponderate uniformemente. Il valore del nodo è dunque la media dei

valori dei nodi successivi:

V (s) =
1

|Ω|
∑
c∈Ω

V (sc),



dove Ω rappresenta l’insieme delle possibili distribuzioni di carte compatibili con la situa-

zione corrente.

Il processo termina nei nodi finali, nei quali la mano è conclusa tramite fold o showdown.

Tali nodi vengono valutati calcolando il valore atteso del risultato, che dipende dal contenuto

del piatto, dalla forza relativa delle mani e dalle possibili carte restanti, qualora vi siano

ancora elementi ignoti. La valutazione terminale rappresenta quindi una stima del guadagno

atteso in quello stato. Una panoramica della logica di funzionamento dell’algoritmo viene

proposta nella figura 3.2

Input: s stato, tipo ∈ {MAX,OPP,CHANCE}, profondità d
Output: V (s)
if s terminale or d = 0 then

return Valutazione(s)
end
if tipo = CHANCE then

return
∑

c∈C Pr(c | s)V (sc, tipoc, d− 1)
else

A← Azioni(s)
if A = ∅ then

s′ ← CambiaGiocatore(s)
return V (s′,MAX, d− 1)

end

end
if tipo = MAX then

return maxa∈A V (sa, tipoa, d− 1)
else

π ← StimaPoliticaAvversaria(s,A)
return

∑
a∈A π(a)V (sa, tipoa, d− 1)

end

Figura 3.2: Pseudocodice dell’algoritmo OM-Expectimax. Da notare che non sono presenti, per semplicità,
le gestioni esplicite relative ai nodi di transizione (skip). Si può però considerare il loro funzionamento come
simile alla casistica senza azioni disponibili presente nelle righe centrali.

Una componente meno evidente ma concettualmente importante del modello è costituita

dai nodi di transizione, o nodi skip. Questi nodi non rappresentano una decisione autonoma:

il loro scopo è gestire correttamente l’alternanza dei turni tra giocatore ed avversario, per-

mettendo di mantenere una coerenza simile a quella degli altri algoritmi di ricerca, essendo

che nel poker HULHE il giocatore ad agire all’inizio del round non è obbligatoriamente

l’ultimo ad aver agito nel round precedente.



Dal punto di vista dell’albero, i nodi skip funzionano come nodi di sola transizione:

essi non alterano il valore del processo decisionale, ma mantengono la coerenza struttu-

rale dell’albero garantendo che ogni decisione sia attribuita al giocatore corretto. Questo

accorgimento permette di evitare distorsioni sia nella propagazione dei valori sia nella gene-

razione dei nodi figli, mantenendo la separazione concettuale tra le decisioni effettive (che

aggiornano le probabilità o selezionano azioni ottimali) e i passaggi tecnici necessari per

gestire l’ordine dei turni.

3.3 Costo computazionale

Opponent modeling expectimax, offrendo una modellazione molto approfondita dell’in-

terazione tra comportamento dell’avversario, incertezza sulle carte future e processo deci-

sionale ottimizzante, presenta un costo computazionale intrinsecamente elevato. Il motivo

principale risiede nella natura combinatoria del problema: a ogni nodo dell’albero decisiona-

le si aprono rami multipli dovuti alle azioni del giocatore, alle possibili reazioni probabilisti-

che dell’avversario e alle molteplici combinazioni di carte che possono essere distribuite nei

nodi di aleatorietà. In particolare, i nodi dell’avversario rappresentano la componente più

onerosa in termini di calcolo, poiché richiedono di considerare tutte le combinazioni di carte

che l’avversario potrebbe detenere. Se il mazzo residuo contiene n carte, il numero di mani

private compatibili è pari a
(
n−2
2

)
, e per ciascuna di esse è necessario calcolare una stima

di hand strength o effective hand strength. Tali stime richiedono a loro volta la valutazione

della forza relativa della mano su tutte le possibili completazioni delle carte comunitarie,

generando un costo di ordine combinatorio che cresce rapidamente all’aumentare delle carte

non ancora distribuite (figura 3.3).

Anche i nodi di aleatorietà introducono una complessità significativa: quando il modello

deve considerare, ad esempio, la distribuzione del turn o del river, il numero di combinazioni

da analizzare può raggiungere valori dell’ordine di decine o centinaia, ciascuna delle quali

genera un nuovo ramo dell’albero da esplorare. Pertanto, nei livelli intermedi dell’albero —

dove le carte comunitarie non sono ancora tutte rivelate — la complessità esplode in modo

combinatorio, sia per le carte residue sia per le possibili mani dell’avversario.

Il costo computazionale dei nodi max è più contenuto, poiché il numero di azioni possi-

bili in un punto decisionale di poker è limitato, ma il loro contributo alla crescita dell’albero



Figura 3.3: Rappresentazione di una piccola porzione dell’albero di gioco di Expectimax. La raffi-
gurazione riguarda un test condotto su un mazzo di 10 carte e prende in considerazione solamente
una delle possibili distribuzioni di carte, con la limitazione a un singolo rilancio per turno. Ciò mo-
stra in modo evidente la crescita enorme dell’albero decisionale anche in condizioni estremamente
semplificate. I nodi blu rappresentano i nodi chance, i verdi sono nodi max, i rossi rappresentano
nodi opponent, mentre i nodi skip sono di colore bianco. Le foglie dell’albero, di colore grigio,
rappresentano infine i nodi terminali

resta comunque non trascurabile. Il ricorso ai nodi di transizione (skip) può mitigare par-

zialmente la crescita dell’albero, eliminando la necessità di generare rami non significativi

e mantenendo l’albero coerente senza creare nodi decisionali fittizi, ma esso non ne riduce

la complessità intrinseca.

Combinando tutte queste componenti, la complessità teorica dell’algoritmo può essere

approssimata da un modello del tipo:

T (d) ≈ bdmax ·
(
n− 2

2

)
· |Ω(d)|,

dove bmax è il fattore di diramazione determinato dalle azioni disponibili,
(
n−2
2

)
rappresenta

la dimensione dello spazio delle mani avversarie possibili e |Ω(d)| denota la quantità di com-

binazioni di carte future da simulare al livello di profondità d dell’albero. Tale espressione,

pur semplificata, mette in evidenza come il costo cresca rapidamente con la profondità della

ricerca e con il numero di elementi nascosti nel gioco.

Ne consegue che, senza tecniche di ottimizzazione, caching o riduzione della profondità,

l’esplorazione esaustiva dell’albero sarebbe impraticabile. Per questo motivo, l’algoritmo

viene tipicamente limitato da una profondità massima di ricerca e fa largo uso di memoriz-

zazione dei risultati intermedi per evitare ricalcoli ridondanti. Inoltre, tramite parallelizza-

zione, l’algoritmo riesce a esplorare contemporaneamente diverse parti dell’albero di gioco,



diminuendo il tempo di esecuzione. Per ridurre ulteriormente il carico computazionale, si

potrebbe considerare di sostituire HS o EHS con un calcolo euristico più veloce o guida-

re l’esplorazione tramite simulazioni Monte Carlo, campionando quindi le possibili mani

avversarie e le carte future anziché enumerarle tutte.





Capitolo 4

Risultati sperimentali su HULHE

4.1 Configurazione degli esperimenti

Implementazione e addestramento algoritmi. Gli algoritmi descritti sono stati imple-

mentati sulla base della letteratura scientifica ad essi dedicata, modificandone alcuni aspetti

in caso di necessità di adattemnto alla variante HULHE. Per mantenere una coerenza spe-

rimentale, il tempo di addestramento è stato fissato a circa una settimana in totale, sulla

base delle risorse disponibili e con la possibilità di tracciarne la convergenza e prestazioni

allo stesso livello di addestramento.

Essendo HULHE un gioco molto ampio, le implementazioni di algoritmi tabellari (come

CFR) sono state realizzate con un grado di astrazione: la chiave dell’insieme informativo

teneva conto di grandezza del piatto, puntate dei giocatori, turno, e bucket (ovvero la

categoria) della mano. In particolare, la decisione è stata di utilizzare 169 bcukets per il

pre-flop, 1000 per il flop, 500 per il turn e 200 per il river, ottenuti tramite il calcolo di EHS.

La conseguenza è una perdita di informazione, ma la riduzione della dimensione dello spazio

degli insiemi informativi ha permesso di eseguire l’addestramento in tempi ragionevoli, pur

mantenendo una buona qualità delle strategie apprese. I metodi CFR hanno raggiunto circa

tra i 90 e 100 mila insiemi informativi, con una politica di ripiego che implicasse l’utilizzo

del più simile insieme informativo a quello attuale, nel caso in cui non fosse stato incontrato

durante l’addestramento.
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Similmente si è adottata un’astrazione per gli approcci Double Oracle: le politiche ap-

prese sono state memorizzate con insiemi informativi basati sulla stessa chiave di quelli

di CFR, ma con un bucketing molto meno granulare. Questa decisione si fonda sul fatto

che tale tipologia di metodi risulta molto più lenta nella convergenza in giochi ad infor-

mazione imperfetta, soprattutto giochi della grandezza di HULHE. Astrazioni basate su

EHS sarebbero risultate troppo costose computazionalmente, rendendo quasi obbligatorio

ridurre il numero di bucket a 20, selezionati attraverso un’euristica basata sulla forza della

mano. Inoltre, il calcolo di una risposta ottimale esatta è molto oneroso in tali metodi, in

quanto prevede di traversare l’intero albero di gioco ad ogni strategia aggiunta: per questo,

l’oracolo fornisce, nelle implementazioni realizzate, una risposta ottimale approssimata.

Gli algoritmi basati su ricerca, fatta eccezione per MCRNR e MCCFVFP, sono stati

implementati senza astrazione, essendo che la ricerca avviene a partire dallo stato attuale

e non richiede la memorizzazione di strategie per tutti gli insiemi informativi. Tuttavia,

per mantenere tempi di esecuzione ragionevoli, sono state adottate alcune limitazioni di

profondità nella ricerca, oltre a tecniche di caching per evitare ricalcoli ridondanti e paralle-

lizzazione per una visita più efficiente dell’albero di gioco. Allo stesso modo, negli approcci

basati su FP si è deciso di non usare astrazione sulla mano del giocatore, in modo da se-

guire più fedelmente possibile la logica dell’algoritmo originale, in cui è essenziale avere il

massimo grado di precisione a granularità, e la letteratura originale, che, a differenza di

quella presente per CFR, non menziona l’utilizzo di astrazione.

Nonostante le differenze, gli algoritmi sono stati sottoposti a test preliminari e controlli

per poter essere utilizzati. Innanzitutto, sono stati eseguiti test in partite contro avversari

semplici con politiche fisse, consistenti in una sola azione (come solo raise o call) oppure

semi-casuali, guidate da euristiche semplici di forza della mano. Inoltre, per controllare la

convergenza, il calcolo della sfruttabilità sarebbe stato molto oneroso, essendo un calcolo

della risposta ottimale, per ciascun algoritmo, sull’intero albero di gioco. Si è scelto quindi

di controllare altri parametri: nel caso di approcci basati su rimpianti controfattuali, il

numero di insiemi informativi nuovi trovati ad ogni iterazione cala progressivamente, fino a

rimanere quasi fisso, e la distribuzione di probabilità sulle azioni tende a stabilizzarsi, con

variazioni minime tra un’iterazione e l’altra. Per gli approcci basati su FP, si è monitorata

la variazione delle prestazioni nel tempo, considerando le versioni precedenti come avversari,

fino ad un momento nel quale il miglioramento è diventato sempre meno significativo. Infine,

nei metodi basati su oracoli la convergenza è stata controllata in funzione del cambiamento



delle politiche e dell’aggiunta di nuove risposte ottimali calcolate, anche se, nell’arco di

tempo fisso dell’addestramento, tali approcci sono rimasti lontani dall’equilibrio, essendo

HULHE una variante molto grande.

Parametri dei test. La fase sperimentale è stata articolata su diversi livelli di complessità,

con l’obiettivo di analizzare in modo sistematico il comportamento degli algoritmi al variare

del contesto. In particolare, lo scopo principale degli esperimenti è stato quello di osservare

le prestazioni degli agenti in confronti diretti (head-to-head), misurando per ciascuno di

essi il guadagno o la perdita media contro ogni altro algoritmo all’interno di un dominio

caratterizzato da elevata variabilità e forte componente stocastica.

Per raggiungere tale obiettivo, l’insieme di test è stato organizzato in modo graduale,

aumentando progressivamente la quantità di mani giocate e, di conseguenza, riducendo

l’impatto della varianza sui risultati. È stata quindi adottata una struttura a tre livelli:

1. Match con bankroll iniziale di 1500 chips, con struttura di puntate pari a 50 per la

small bet e 100 per la big bet. Questa configurazione fornisce una prima indicazio-

ne sulle differenze di performance, pur mantenendo elevata la variabilità dovuta al

numero ridotto di mani.

2. Match con bankroll iniziale di 10 000 chips, mantenendo invariata la struttura delle

puntate. L’aumento significativo del capitale iniziale consente di ottenere una mag-

giore profondità di gioco e una riduzione della componente aleatoria, permettendo

una valutazione più stabile e affidabile delle prestazioni.

3. Esperimenti su 1000 mani singole giocate, con l’obiettivo di isolare il comportamento

degli algoritmi sul lungo periodo, concentrandosi sull’effettivo guadagno medio per

mano, indipendentemente dall’esito complessivo del match.

Questo approccio ha permesso di costruire una stima progressivamente più accurata

del guadagno medio generale di ciascun agente, evidenziando con maggiore chiarezza quali

strategie tendano a prevalere quando la varianza si riduce.

Per la valutazione delle prestazioni sono state considerate diverse metriche, ciascuna

specifica per un aspetto preciso del comportamento degli algoritmi. Innanzitutto, è stato

analizzato il numero di mani necessarie per ottenere una vittoria e, più in generale, l’ef-

ficienza dell’algoritmo nel convertire situazioni favorevoli in profitto. Tuttavia, la metrica



ritenuta più informativa è stata il guadagno medio per mano, preferita alla semplice per-

centuale di mani vinte. Un algoritmo può infatti vincere più mani del proprio avversario

senza però riuscire a capitalizzare adeguatamente le situazioni vantaggiose, mostrando un

rendimento economico inferiore.

Un ulteriore aspetto cruciale è stato la robustezza nei confronti di strategie eterogenee.

Alcuni algoritmi di tipo euristico, ad esempio, possono risultare particolarmente efficaci

contro determinate tipologie di approcci, pur diventando vulnerabili in contesti differenti.

Altri, come quelli basati su principi di ottimalità teorica, assumono che l’avversario selezioni

le azioni secondo una strategia razionale, ma possono essere più in difficoltà contro agenti

progettati per deviare intenzionalmente da tali ipotesi. Pertanto, un algoritmo che man-

tiene buone prestazioni contro una vasta gamma di avversari, pur non essendo il migliore

in termini di guadagno medio, può comunque essere considerato solido e competitivo nel

complesso.

L’insieme di queste metriche ha permesso di delineare un quadro complessivo equilibrato,

integrando sia aspetti quantitativi sia considerazioni qualitative sul comportamento degli

agenti, e fornendo cos̀ı una valutazione approfondita delle loro capacità nel dominio del

poker HULHE.

4.2 Risultati empirici

Partite con capitale iniziale ridotto. Nel primo insieme di test, corrispondente alle

partite con somma iniziale pari a quindici volte il big blind, è emerso un quadro complessi-

vamente equilibrato. In questa configurazione la maggior parte degli algoritmi ha mostra-

to prestazioni comparabili, con differenze limitate. È stato tuttavia possibile individuare

alcune tendenze significative.

Anzitutto, i metodi basati su oracoli, quali XDO, ODO e RMDO, hanno mostrato una

chiara fragilità strutturale: la loro capacità di sfruttare l’avversario nel breve periodo non è

risultata sufficiente a compensare l’assenza di una componente più solida di ottimizzazione

strategica, conducendo a prestazioni mediamente inferiori rispetto agli altri approcci, anche

se non troppo distanti.

Parallelamente, alcuni algoritmi maggiormente orientati allo sfruttamento, in particolare

quelli fondati su ricerca come OM-Expectimax e ISMCTS, hanno occasionalmente ottenuto



risultati superiori alla media. Pur non perseguendo esplicitamente strategie vicine all’equi-

librio, tali metodi hanno beneficiato della possibilità di operare senza astrazione, riuscendo

in certe circostanze a capitalizzare errori locali degli avversari.

Nel complesso, tuttavia, anche gli algoritmi basati sulla minimizzazione del rimpianto

hanno confermato una buona stabilità. In questo scenario ridotto, il bilanciamento tra

varianza e profondità strategica non ha evidenziato differenze marcate, ma ha già suggerito

quali metodologie avrebbero mostrato maggiore solidità negli esperimenti successivi.

Partite con capitale iniziale aumentato. L’incremento del capitale iniziale ha reso più

evidente la distinzione tra le diverse famiglie di algoritmi. Pur mantenendo un numero medio

di mani relativamente contenuto (nell’ordine di poche centinaia), questa configurazione ha

ridotto parzialmente l’impatto della varianza, permettendo l’emergere di pattern più chiari.

In questo contesto, gli algoritmi basati su programmazione lineare — in particolare

XDO, ODO e RMDO — si sono collocati stabilmente in fondo alla classifica, registrando

una perdita media superiore a 0.5 grandi bui per mano. Prestazioni comparabili sono state

osservate anche per FSP, nonostante la sua struttura concettualmente più flessibile.

Di contro, gli approcci di ricerca più semplici, come EHS e MCTS, hanno mostrato

prestazioni migliori grazie alla maggiore immediatezza con cui riescono a sfruttare pattern

locali nel comportamento avversario. Risultati leggermente superiori sono emersi dagli

algoritmi neurali quali DeepCFR, NXDO e NFSP, che sono riusciti a ottenere guadagni

medi di circa 0.3 grandi bui contro metodi puramente euristici. A un livello simile si sono

collocati PSRO e alcuni algoritmi basati su rimpianto controfattuale, tra cui ECFR, RCFR

e CFR, che hanno confermato la loro solidità generale.

La parte alta della classifica ha invece visto una sostanziale parità tra i rimanenti algo-

ritmi di ricerca e le varianti più avanzate di CFR, indicando come l’incremento del capitale

giochi a favore degli approcci dotati di una componente strategica più matura.

Partite a numero fisso di mani. Il terzo gruppo di esperimenti, basato su incontri com-

posti da un numero fisso di mani (1000), ha permesso di valutare gli algoritmi in condizioni

in cui la varianza risulta sensibilmente attenuata. In questa configurazione le differenze

prestazionali tra le diverse categorie sono emerse in maniera particolarmente netta, come si

evince dalla tabella 4.1.

Gli approcci double oracle, in particolare XDO e ODO, hanno nuovamente mostrato



le peggiori prestazioni, con perdite medie prossime a un piccolo buio per mano. Risultati

altrettanto negativi sono stati rilevati per FSP, che non è riuscito a competere efficacemente

in questo scenario. Leggermente superiori, ma comunque con valori medi negativi, si sono

collocati alcuni algoritmi neurali come NXDO e NFSP, insieme all’approccio di ricerca ibrida

MCCFVFP ed agli algoritmi di programmazione lineare PSRO e RMDO. In questo caso,

hanno saputo sfruttare il comportamento di approcci più deboli, ma non hanno mostrato

particolare solidità contro avversari equilibrati. In una zona analoga si sono posizionati

anche gli algoritmi basati su rimpianto come TCFR ed ECFR, che non hanno prodotto

prestazioni di rilievo in questo particolare scenario.

Risultati migliori sono stati ottenuti dagli approcci neurali DeepCFR e SDCFR, oltre

che da MCRNR, che riescono a capitalizzare in modo consistente con algoritmi sfruttabili,

sebbene superati da metodi euristici quali MCTS ed EHS, i quali hanno mostrato una

sorprendente solidità, raggiungendo valori medi confrontabili con quelli prodotti da CFR.

All’interno del gruppo di algoritmi più performanti non sono state riscontrate differenze

particolarmente marcate nei guadagni medi. CFR-BR, DDCFR ed OM-Expectimax si sono

distinti come un insieme di metodi altamente sfruttanti, capaci di ottenere risultati molto

elevati contro avversari non bilanciati, pur mostrando una certa vulnerabilità contro le

strategie più solide.

CFR CFR+ CFR-BR ECFR TCFR DeepCFR SD-CFR RCFR DDCFR MCCFR FSP NFSP ODO PSRO XDO NXDO RMDO EHS MCTS ISMCTS MCRNR MCCFVFP OME media

CFR – -0.22 -0.09 +0.35 -0.47 +0.08 +0.09 -0.15 -0.36 -0.35 +0.87 +0.56 +0.29 +0.08 +0.39 +0.11 -0.12 +0.02 +0.13 +0.03 -0.04 +0.12 -0.10 +0.05

CFR+ +0.26 – +0.12 +0.38 +0.16 +0.18 +0.16 +0.17 +0.10 +0.13 +0.98 +0.25 +0.41 +0.19 +0.42 +0.18 +0.10 +0.11 +0.10 +0.17 +0.33 +0.22 +0.09 +0.23

CFR-BR +0.04 +0.14 – +0.12 -0.03 +0.05 +0.04 -0.01 +0.40 +0.20 +1.20 -0.11 +0.46 +0.33 +1.06 +0.27 +0.24 +0.30 +0.25 -0.01 +0.18 +0.30 -0.16 +0.24

ECFR -0.23 -0.31 -0.10 – -0.34 -0.30 -0.41 +0.04 -0.19 -0.50 +0.41 +0.04 +0.31 +0.15 +0.39 +0.02 -0.14 -0.36 -0.17 -0.21 -0.20 +0.03 -0.22 -0.10

TCFR +0.48 -0.11 +0.07 +0.44 – -0.20 -0.16 -0.07 -0.01 -0.80 +0.46 -0.20 +0.48 +0.09 +1.02 -0.03 +0.46 -0.08 -0.40 -0.66 -0.18 +0.06 -0.25 +0.01

DeepCFR -0.02 -0.13 -0.01 +0.39 +0.22 – -0.04 +0.10 -0.49 -0.28 +1.00 -0.18 +0.51 +0.08 +1.98 +0.05 +0.60 -0.19 -0.10 -0.09 -0.11 +0.05 +0.02 +0.15

SD-CFR +0.05 -0.08 -0.03 +0.47 +0.17 +0.09 – +0.14 -0.21 -0.22 +0.91 +0.10 +0.40 +0.12 +1.21 +0.13 +0.67 -0.02 -0.11 -0.01 -0.15 +0.14 -0.09 +0.17

RCFR +0.19 -0.14 +0.10 -0.04 +0.11 -0.07 -0.13 – -0.04 -0.25 +0.24 +0.03 +0.29 +0.15 +0.97 +0.08 +0.19 -0.20 +0.05 -0.18 +0.13 +0.24 -0.10 +0.07

DDCFR +0.38 -0.07 -0.35 +0.23 +0.07 +0.52 +0.26 +0.11 – +0.05 +0.88 +0.34 +0.25 +0.03 +0.31 +0.09 +0.19 +0.22 +0.14 +0.01 +0.15 +0.16 +0.06 +0.18

MCCFR +0.42 -0.11 -0.18 +0.60 +0.89 +0.26 +0.32 +0.27 -0.05 – +0.95 -0.10 +0.35 +0.09 +0.88 +0.23 +1.14 +0.17 +0.10 +0.13 +0.05 +1.25 +0.04 +0.35

FSP -0.77 -0.85 -1.11 -0.32 -0.42 -0.91 -0.81 -0.21 -0.73 -0.71 – -0.27 +0.05 -0.49 -0.08 -0.27 -0.44 -0.87 -0.80 -1.96 -0.93 -0.51 -1.23 -0.67

NFSP -0.45 -0.21 +0.16 -0.24 +0.28 +0.20 -0.10 -0.02 -0.31 +0.15 +0.32 – +0.26 +0.16 +0.57 -0.05 +0.08 -0.15 +0.36 -0.05 -0.21 -0.15 -0.27 +0.01

ODO -0.28 -0.40 -0.44 -0.29 -0.45 -0.52 -0.30 -0.27 -0.22 -0.30 -0.01 -0.20 – -0.12 +0.08 -0.22 -0.31 -0.40 -0.50 -0.47 -0.39 -0.17 -0.59 -0.31

PSRO -0.03 -0.13 -0.30 -0.12 -0.07 -0.11 -0.09 -0.14 -0.01 -0.08 +0.61 -0.12 +0.16 – +0.22 -0.06 +0.11 -0.15 -0.05 -0.19 -0.06 -0.04 -0.22 -0.04

XDO -0.32 -0.41 -1.02 -0.31 -1.00 -1.89 -1.14 -0.87 -0.30 -0.81 +0.13 -0.51 -0.07 -0.19 – -0.47 -1.10 -0.31 -0.42 -0.50 -0.83 -0.58 -1.04 -0.63

NXDO -0.10 -0.18 -0.17 +0.02 +0.05 -0.04 -0.07 -0.03 -0.09 -0.19 +0.29 +0.12 +0.25 +0.07 +0.52 – +0.13 -0.19 -0.10 -0.17 -0.21 -0.19 -0.29 -0.03

RMDO +0.09 -0.08 -0.24 +0.18 -0.40 -0.54 -0.64 -0.15 -0.18 -1.12 +0.49 -0.06 +0.36 -0.09 +1.17 -0.10 – -0.30 -0.21 -0.28 +0.14 +0.16 -0.15 -0.09

EHS +0.03 -0.07 -0.29 +0.39 +0.10 +0.21 +0.15 +0.22 -0.19 -0.13 +0.87 +0.15 +0.37 +0.16 +0.32 +0.29 +0.26 – +0.13 -0.14 +0.02 +0.12 -0.10 +0.13

MCTS -0.12 -0.11 -0.23 +0.20 +0.41 +0.14 +0.05 -0.01 -0.10 -0.06 +0.90 -0.36 +0.48 +0.04 +0.49 +0.10 +0.17 -0.12 – -0.03 +0.28 +0.30 -0.18 +0.10

ISMCTS +0.02 -0.10 +0.10 +0.25 +0.70 +0.09 +0.16 +0.21 +0.01 -0.04 +1.90 +0.15 +0.57 +0.17 +0.54 +0.22 +0.32 +0.12 +0.06 – +0.25 +0.40 +0.08 +0.28

MCRNR +0.05 -0.32 -0.17 +0.24 +0.16 +0.11 +0.19 -0.13 -0.12 -0.01 +0.95 +0.27 +0.44 +0.16 +0.86 +0.19 -0.17 +0.02 -0.23 -0.26 – +0.12 -0.22 +0.10

MCCFVFP -0.06 -0.20 -0.29 +0.01 -0.07 -0.05 -0.08 -0.21 -0.15 -1.15 +0.53 +0.18 +0.19 +0.04 +0.50 +0.23 -0.12 -0.09 -0.24 -0.41 -0.12 – -0.23 -0.08

OME +0.12 -0.05 -0.10 +0.29 +0.26 +0.02 +0.17 +0.11 -0.08 -0.09 +1.26 +0.31 +0.62 +0.23 +1.00 +0.36 +0.16 +0.10 +0.28 -0.04 +0.21 +0.20 – +0.24

media +0.01 +0.19 +0.21 -0.15 -0.02 +0.12 +0.11 +0.04 +0.15 +0.30 -0.73 -0.02 -0.34 -0.07 -0.67 -0.06 -0.11 +0.11 +0.08 +0.19 +0.12 -0.03 +0.15 –

Tabella 4.1: Confronto tra tutti gli algoritmi analizzati. Il valore numerico all’interno delle singole celle
va considerato come il guadagno medio per mano (in grandi bui, quindi bb/h) dell’algoritmo indicato nella
riga, come giocatore iniziale, contro quello indicato nella colonna, calcolato su 1000 mani giocate. Valori
positivi indicano un guadagno, mentre valori negativi indicano una perdita. Dai risultati si comprende
come il giocatore iniziale, nell’HULHE, abbia un leggero vantaggio strategico.

Un comportamento più equilibrato è stato osservato per RCFR, caratterizzato da una



buona robustezza contro una vasta gamma di avversari. In queste condizioni, i guadagni

medi contro le fasce inferiori di algoritmi si sono attestati tra 0.2 e 0.4 grandi bui per

mano, mentre i confronti diretti con algoritmi di pari livello hanno evidenziato risultati

tendenzialmente neutri o oscillanti tra -0.15 e +0.1 bb per mano. Nonostante non sia tra

i migliori in termini di guadagno medio per mani, RCFR tende a mantenere le perdite

contenute anche contro avversari molto forti.

Gli algoritmi complessivamente migliori sono risultati ISMCTS, CFR+ e MCCFR. Pur

non essendo sempre i più efficaci in termini di puro sfruttamento, essi hanno mostrato la ca-

pacità più elevata di minimizzare le perdite, mantenendo una strategia stabile e difficilmente

sfruttabile nel lungo periodo. Tali risultati confermano, ancora una volta, l’efficacia degli

approcci basati sulla minimizzazione del rimpianto nel contesto del poker a informazione

imperfetta.

4.3 Discussioni ed analisi

Motivazioni delle prestazioni. L’andamento complessivo dei risultati può essere inter-

pretato alla luce delle caratteristiche strutturali che contraddistinguono le diverse famiglie

di algoritmi impiegate. Il comportamento osservato non è sorprendente: in larga misura

riflette i limiti teorici, le assunzioni computazionali e le condizioni operative per cui ciascun

approccio è stato originariamente sviluppato.

Un primo gruppo particolarmente problematico è costituito dagli algoritmi fondati sulla

programmazione lineare e, più in generale, sui metodi di tipo double oracle, quali XDO,

ODO, RMDO e PSRO. Questi algoritmi nascono per giochi con alberi decisionali sensibil-

mente più piccoli e più regolari di HULHE; nel dominio considerato, la loro struttura risulta

intrinsecamente inadeguata. La loro efficienza dipende infatti dalla capacità di calcolare ri-

sposte ottimali o quasi ottimali all’interno di uno spazio altamente ridotto. Tuttavia, in un

gioco della complessità di HULHE, il calcolo di una risposta ottimale esatta non è praticabile

con tempi ragionevoli, e ciò obbliga all’utilizzo di approssimazioni severe che degradano dra-

sticamente la qualità delle strategie generate. A parità di tempo di addestramento, questi

algoritmi convergono molto più lentamente rispetto a metodi più moderni e risultano alta-

mente sfruttabili. Anche le varianti più sofisticate, come PSRO e RMDO, pur introducendo



miglioramenti nella generazione delle risposte, non riescono a compensare completamente il

costo computazionale crescente e l’imprecisione inevitabile delle approssimazioni adottate.

FSP rappresenta un caso peculiare. Pur avendo una convergenza teorica garantita, tale

risultato è valido solo in condizioni di budget computazionale elevato o illimitato. In uno

scenario con tempo di addestramento fisso e senza possibilità di utilizzare astrazioni parti-

colarmente raffinate, FSP non riesce a raggiungere la profondità strategica necessaria per

risultare competitivo. Il suo affidamento su risposte ottimali accurate rende il calcolo anco-

ra più oneroso, penalizzandolo rispetto ad algoritmi che, pur meno teoricamente eleganti,

sono in grado di produrre valutazioni e aggiornamenti strategici molto più rapidamente.

Un secondo gruppo è quello degli algoritmi basati su reti neurali. Metodi come Dee-

pCFR, NFSP, SDCFR e NXDO sono stati espressamente progettati per operare in giochi

talmente vasti da rendere impraticabile l’esplorazione completa dell’albero. La capacità di

generalizzazione delle reti neurali rappresenta, in questi contesti, un compromesso effica-

ce tra precisione e scalabilità. Tuttavia, nel contesto specifico di HULHE e in presenza

di astrazione, tali algoritmi soffrono di una duplice debolezza: da un lato, la qualità del-

l’apprendimento è limitata dal ridotto tempo di addestramento disponibile; dall’altro, la

generalizzazione introduce distorsioni che solo modelli particolarmente espressivi e ben ad-

destrati riuscirebbero a correggere. Di conseguenza, pur mostrando prestazioni ragionevoli,

questi metodi risultano sfruttabili da algoritmi di ricerca o da varianti di CFR più rapide e

stabili.

La terza categoria è costituita dagli algoritmi di ricerca, che hanno mostrato una robu-

stezza sorprendente nel contesto sperimentale adottato. Approcci come MCTS, ISMCTS

ed Expectimax, pur non mirando all’equilibrio e privi di garanzie formali nel lungo periodo,

operano direttamente sul gioco reale senza alcun tipo di astrazione. Questa caratteristica,

unita al fatto che non richiedono addestramento, li rende estremamente competitivi quan-

do gli algoritmi avversari sono penalizzati dal tempo di apprendimento o dalla perdita di

informazione. In particolare, ISMCTS e Expectimax si sono distinti nella maggior parte

degli scenari, mostrando come l’immediatezza valutativa e la capacità di sfruttare pattern

locali possano rappresentare un vantaggio significativo. È tuttavia importante sottolineare

che questa forza è situazionale: qualora si disponesse di un tempo di addestramento molto

più esteso o di astrazioni estremamente precise, gli algoritmi di equilibrio e quelli neurali

tenderebbero a superarli nel lungo periodo.

Infine, i metodi basati sulla minimizzazione del rimpianto rappresentano il gruppo più



coerente e prevedibile nelle loro prestazioni. Regret Matching, CFR, MCCFR, RCFR e le

relative varianti si distinguono per l’equilibrio tra stabilità, robustezza e adattabilità. Il

loro comportamento rispecchia ampiamente le aspettative teoriche: in media, convergono

verso strategie solide e difficilmente sfruttabili. Le differenze interne alla famiglia dipendono

principalmente dalla velocità con cui riescono a ridurre il rumore e a stabilizzare le stime.

Varianti come TCFR ed ECFR si sono rivelate meno efficaci poiché particolarmente sensibili

agli errori di astrazione, che ne compromettono la capacità di aggiornare correttamente il

rimpianto. Al contrario, CFR+ e DDCFR, progettati per controllare più efficacemente la

variabilità degli aggiornamenti e per accelerare la convergenza, hanno mostrato prestazioni

eccellenti. CFR+, in particolare, si conferma ancora una volta come uno degli algoritmi più

affidabili, e la sua capacità di risolvere versioni astratte del gioco trova piena corrispondenza

nei risultati sperimentali.

In sintesi, le prestazioni osservate riflettono il delicato equilibrio tra complessità compu-

tazionale, stabilità delle stime, sensibilità all’astrazione e capacità di sfruttamento dell’av-

versario. Gli algoritmi più efficaci sono quelli che riescono a coniugare rapidità di adatta-

mento, tolleranza agli errori introdotti dalla modellizzazione e robustezza nel medio-lungo

periodo. Le differenze emerse non costituiscono anomalie, ma confermano la stretta relazio-

ne tra le assunzioni teoriche alla base degli algoritmi e la loro effettiva capacità di competere

all’interno di un gioco complesso e ad alta varianza come l’Heads-Up Limit Hold’em.

Il ruolo della varianza. I risultati sperimentali devono essere interpretati anche alla luce

dell’elevata varianza che caratterizza il gioco di HULHE. Come riportato nella letteratura di

riferimento [12], la deviazione standard di una singola mano in questo dominio è pari a circa

5 big blind per gioco (bb/g). Tale valore, che rappresenta la fluttuazione tipica del risultato

di una singola mano indipendente, ha un impatto diretto sulla significatività statistica delle

prestazioni osservate, rendendo difficile distinguere differenze reali da oscillazioni casuali su

orizzonti temporali brevi.

Per comprendere meglio l’importanza della varianza, si consideri che la deviazione stan-

dard dopo n mani indipendenti decresce come σn = 5√
n
bb/g. Nei contesti sperimentali

considerati, le configurazioni con capitale relativamente ridotto e numero medio di ma-

ni dell’ordine di qualche centinaio risultano dunque intrinsecamente soggette a oscillazioni

ampie. Ad esempio, con 300 mani, la deviazione standard rimane intorno a σ300 ≈ 0.29

bb/g, un valore comparabile alle differenze prestazionali osservate tra diversi algoritmi nella



fascia media della classifica. È quindi naturale che, in tali configurazioni, metodi exploitativi

o privi di garanzie teoriche, quali MCTS, ISMCTS o Expectimax, possano occasionalmente

ottenere risultati superiori contro avversari più solidi, semplicemente grazie alle oscillazioni

casuali del gioco.

Lo studio [12] offre inoltre un’analisi quantitativa della difficoltà di stabilire differenze

statisticamente significative anche su orizzonti molto lunghi. Persino un match di 100,000

mani presenta un intervallo di confidenza al 95% pari a circa 31 milli-big blind per gioco

(mbb/g), una soglia superiore alle differenze di prestazione tra molte strategie storicamente

sviluppate. Questo dato evidenzia quanto sia complesso discriminare con certezza tra algo-

ritmi vicini in termini di qualità strategica, anche quando essi giocano un numero elevato

di incontri.

Applicando questi ragionamenti alle configurazioni sperimentali del presente lavoro, ri-

sulta evidente come le diverse configurazioni presentino livelli molto differenti di affidabilità

statistica. Le partite con capitale iniziale ridotto, pur essendo utili per individuare tenden-

ze qualitative, soffrono di una componente aleatoria predominante. Le configurazioni con

capitale aumentato riducono parzialmente la varianza, ma anch’esse non permettono una

distinzione netta tra strategie di qualità vicine. Solo il match a 1000 mani consente una

valutazione più stabile, poiché la deviazione standard scende a circa 0.158 bb/g, abbastanza

piccola da permettere il riconoscimento di differenze prestazionali sostanziali tra algoritmi

con comportamento profondamente diverso.

In sintesi, la struttura intrinseca di HULHE rende il gioco altamente sensibile alla va-

rianza, e di conseguenza impone una notevole cautela nell’interpretazione dei risultati spe-

rimentali. A seconda della configurazione, possono essere necessarie decine di migliaia di

mani per ridurre in maniera significativa l’incertezza statistica, e persino orizzonti di gioco

molto ampi potrebbero non essere sufficienti per distinguere strategie simili. Questo aspetto

spiega, almeno in parte, perché algoritmi estremamente solidi nel lungo termine possano

occasionalmente essere superati da tecniche più exploitative nei contesti sperimentali più

brevi, e conferma la centralità di una corretta gestione della varianza nelle valutazioni

empiriche di algoritmi per giochi a informazione imperfetta.



Capitolo 5

Conclusioni

Nel suo insieme, questa tesi ha avuto l’obiettivo di esplorare il poker Heads-Up Limit

Hold’em come caso di studio emblematico per l’analisi dei giochi strategici a informazione

imperfetta, mettendo in relazione il comportamento degli algoritmi sviluppati con i fonda-

menti teorici che ne regolano la struttura. Attraverso una panoramica iniziale della teoria

dei giochi, sono stati introdotti i concetti che tradizionalmente guidano lo studio delle in-

terazioni competitive tra agenti razionali, tra cui l’equilibrio di Nash, la sfruttabilità e i

metodi per approssimare strategie ottimali in domini complessi. Questi strumenti teorici

hanno costituito la base per comprendere sia le difficoltà intrinseche nella risoluzione di gio-

chi di grande scala sia le principali famiglie di algoritmi che permettono oggi di affrontarli

in modo efficiente.

Il lavoro ha quindi approfondito le tecniche algoritmiche più rilevanti per la risoluzione

di giochi sequenziali a informazione incompleta, in particolare quelle basate sulla mini-

mizzazione del rimpianto e sul calcolo iterativo di strategie approssimate. Questi metodi,

sviluppati originariamente per superare le limitazioni dei tradizionali approcci basati sulla

programmazione lineare, hanno rivoluzionato il modo in cui la comunità scientifica affronta

giochi come il poker, rendendo possibile la gestione di spazi di stati estremamente ampi e

la ricerca di strategie quasi ottimali in tempi praticabili. Alla luce di tali progressi, il poker

HULHE rappresenta dunque non soltanto un dominio applicativo di interesse autonomo,

ma anche un contesto fondamentale per valutare le prestazioni, l’adattività e la robustezza

degli algoritmi progettati per competere in ambienti incerti e parzialmente osservabili.
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Inoltre, HULHE rappresenta il primo gioco competitivo non banale a informazione im-

perfetta giocato da esseri umani ad essere stato essenzialmente debolmente risolto. Ciono-

nostante, ci si potrebbe chiedere quale sia il significato ultimo della risoluzione di questa

categoria di giochi, di cui il poker fa parte.

Le innovazioni alla base di questo risultato rappresentano progressi algoritmici generali

che rendono il ragionamento basato sulla teoria dei giochi, in modelli su larga scala di

qualsiasi tipo, più trattabile. E, sebbene il contesto possa apparire ludico, la teoria dei

giochi è sempre stata concepita come uno strumento dotato di implicazioni profonde, come

dimostrano i suoi effetti precoci sulla politica della Guerra Fredda [63]. Più recentemente,

si è assistito inoltre a un aumento significativo di applicazioni della teoria dei giochi nel

settore della sicurezza, includendo l’implementazione di sistemi per i controlli aeroportuali,

la programmazione dei voli dei marshal e la pianificazione di attività di pattugliamento della

guardia costiera [80]. Gli algoritmi basati sulla minimizzazione del rimpianto controfattuale

(CFR), della stessa famiglia di quelli discussi nel presente lavoro, sono stati persino oggetto

di studio per poter essere utilizzati in processi decisionali, in cui non vi è alcun avversario

apparente, con potenziali ricadute nell’ambito della diagnostica e dell’assistenza medica

[23].

Poiché i contesti decisionali della vita reale sono fortemente caratterizzati da incertezza

e informazioni mancanti, sono necessari progressi algoritmici, analoghi a quelli utilizzati per

risolvere il poker, per guidare le applicazioni future. Tuttavia, risulta importante riportare

una celebre osservazione attribuita ad Alan Turing a proposito delle proprie ricerche sui

giochi: “Non sarebbe onesto, da parte nostra, nascondere il fatto che il motivo principale

che ha spinto il lavoro è stato il puro divertimento della cosa” [62, 82].
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