
Dipartimento di Informatica - Scienza e Ingegneria - DISI

Corso di Laurea in Informatica

Applicazione di computazione parallela
per l’ottimizzazione di un servizio

di Data Management

Relatore:
Fabio Vitali
Correlatore:
Francesco Giacomini

Presentata da:
Angelo Ruggieri

Sessione del 17 Dicembre 2025

Anno Accademico 2024/2025

Indice

1 Introduzione 5

2 Panoramica sul servizio di data management StoRM Tape 9
2.1 Lo Storage Tiering nel WLCG . 9

2.1.1 La transizione a HTTP/REST 10
2.2 Limiti degli approcci tradizionali . 10
2.3 Paradigmi e Tecnologie Abilitanti . 11

2.3.1 Modern C++ e Parallel Algorithms 11
2.3.2 Crow: Microframework C++ per il Web 12
2.3.3 SQLite e il Write-Ahead Logging (WAL) 12

2.4 Metodologia di Validazione: Il Load Testing 13
2.4.1 Il limite dei Benchmark "Stateless" 13
2.4.2 Testing Comportamentale con Locust 13

3 Parallelizzazione di StoRM Tape e configurazione dei test di carico 15
3.1 Evoluzione del Core Engine di StoRM Tape 15

3.1.1 Da Modello Sequenziale a Parallelo 16
3.1.2 Riprogettazione dell’Accesso al Database 16

3.2 Analisi delle Funzionalità Ottimizzate 17
3.2.1 UC1: Stage (Recall Massivo) 17
3.2.2 UC2: Monitoraggio (Status Polling) 17

3.3 Il Framework di Validazione e Benchmark 18
3.3.1 Il Client Simulato (Locustfile) 18
3.3.2 L’Orchestratore di Benchmark (Benchmark Suite) 18

4 Dettagli implementativi 21
4.1 Reingegnerizzazione di StoRM Tape (C++) 21

4.1.1 Database Connection Pooling con SOCI 21
4.1.2 Algoritmi Paralleli in Tape Service 23

4.2 La Suite di Load Testing (Python) . 25

3

4 Indice

4.2.1 Il Client Simulato: locustfile.py 26
4.2.2 L’Orchestratore: benchmark.py 28

5 Valutazione tramite uno strumento creato ad-hoc 31
5.1 Efficienza: Valutazione Quantitativa 31

5.1.1 Ambiente e Metodologia di Test 31
5.1.2 Analisi del Caso Base: StoRM Tape Sequenziale 32
5.1.3 Impatto della Parallelizzazione 33
5.1.4 Scalabilità con Utenti Concorrenti 36
5.1.5 Stress Test Complessivo (200 Files/Request) 36

5.2 Efficacia: Valutazione Qualitativa . 38

6 Conclusioni 39
6.1 Analisi critica del lavoro svolto . 39

6.1.1 Motivi di orgoglio . 39
6.1.2 Considerazioni di modestia: il caso della parallelizzazione . 40

6.2 Sviluppi futuri . 40

Bibliografia 41

Capitolo 1

Introduzione

La fisica delle alte energie è una disciplina che, per natura, spinge costantemente
al limite le frontiere della tecnologia informatica. Gli esperimenti condotti tramite
acceleratori di particelle, come il Large Hadron Collider (LHC) del CERN di
Ginevra, producono quantità di dati grezzi senza precedenti, che devono essere
archiviati, distribuiti e analizzati da una rete globale di centri di calcolo.

Attualmente, l’infrastruttura di calcolo mondiale (WLCG - Worldwide LHC
Computing Grid) si trova di fronte a una transizione importante: l’avvento del
High-Luminosity LHC (HL-LHC) [1]. Questo aggiornamento degli apparati
dell’acceleratore mira ad aumentare la luminosità — parametro che indica il numero
di collisioni potenziali per unità di tempo e area — di un fattore dieci rispetto ai
valori nominali attuali. Un aumento della luminosità si traduce direttamente in
un incremento proporzionale della quantità di dati acquisiti dagli esperimenti.

Le stime attuali per l’era HL-LHC prevedono un traffico di rete aggregato
globale necessario di circa 9.6 Tbps [17]. In questo scenario, il CNAF (Centro
Nazionale Tecnologie Informatiche) dell’INFN a Bologna, che opera come uno
dei centri di livello Tier-1 della rete WLCG (oggi situato presso il Tecnopolo),
dovrà sostenere circa il 10% di tale carico, gestendo flussi nell’ordine di 1 Tbps.
Attualmente, il centro gestisce un archivio di circa 100 PB su disco e ben 200 PB su
nastro magnetico.

È proprio in questo contesto che si inserisce il problema affrontato in questa tesi.
Mentre i dati su disco sono immediatamente accessibili, una frazione rilevante e
crescente dei dati grezzi risiede su nastro (tape), un supporto economico e capiente
ma caratterizzato da latenze di accesso elevate. L’operazione di recupero dati da
nastro, detta staging, è un processo critico che coinvolge interazioni complesse tra
file system distribuiti (come GPFS) e database di gestione. Le attuali soluzioni
software per la gestione dello staging, basate spesso su architetture single-threaded

5

6 Introduzione

o con concorrenza limitata, rischiano di diventare un serio collo di bottiglia. Senza
un intervento preventivo sull’efficienza del software di gestione, l’infrastruttura
di storage potrebbe non riuscire a rendere disponibili i dati ai ricercatori con le
tempistiche richieste dai nuovi esperimenti.

Obiettivi e Contributo

Questa tesi, svolta in collaborazione con l’INFN, si pone l’obiettivo di evolvere
l’architettura di StoRM Tape, il servizio responsabile delle operazioni di staging
presso il Tier-1 del CNAF. Lo scopo è superare i limiti delle implementazioni attuali
valutando l’adozione di paradigmi di programmazione parallela e concorrente.

La soluzione proposta si basa su due pilastri tecnologici:

• L’impiego degli strumenti di concorrenza moderni offerti dallo standard
C++20, per trasformare un’applicazione sequenziale in un sistema capace di
gestire richieste concorrenti voluminose senza bloccare le risorse di calcolo.

• L’integrazione di strategie di ottimizzazione dell’accesso ai dati persistenti
(database SQLite), identificati come punto critico nelle architetture ad alto
throughput.

Valutazione Sperimentale

Per validare l’approccio, è stata progettata una suite di load testing personalizzata
basata sul framework Locust. Questo ha permesso di simulare pattern di traffico
realistici, stressando il sistema con payload complessi in proporzione simili a
quelli previsti durante le "Data Challenge" del WLCG [17].

I risultati sperimentali hanno offerto spunti significativi e, in parte, controin-
tuitivi. Sebbene l’introduzione del parallelismo offra vantaggi teorici evidenti,
l’analisi ha dimostrato che in un contesto fortemente I/O bound — dove la velocità
è dettata dalla risposta del file system e del disco — l’aumento indiscriminato
dei thread può essere controproducente. I benchmark evidenziano come l’in-
cremento prestazionale più netto e stabile sia stato ottenuto combinando una
concorrenza controllata con l’ottimizzazione mirata del sottosistema di database
(specificamente l’adozione della modalità WAL, Write-Ahead Logging).

Il risultato di questo lavoro è un sistema più robusto, prevedibile e pronto a
scalare per sostenere le sfide imposte dalla prossima generazione di esperimenti
di fisica delle alte energie.

Introduzione 7

Struttura della disserazione di tesi

Il presente elaborato è organizzato come segue:

• Il Capitolo 2 descrive il contesto scientifico del WLCG, il ruolo del Tier-1 del
CNAF e le sfide poste da HL-LHC.

• Il Capitolo 3 introduce le tecnologie abilitanti utilizzate (C++ Moderno,
SQLite, REST API e GPFS).

• Il Capitolo 4 analizza l’architettura software di StoRM Tape e le modifiche
architetturali proposte.

• Il Capitolo 5 dettaglia l’implementazione, la metodologia di test con Locust
e l’analisi critica dei benchmark effettuati.

• Il Capitolo 6 trae le conclusioni e delinea gli sviluppi futuri per la messa in
produzione del servizio.

Capitolo 2

Panoramica sul servizio di data
management StoRM Tape

La gestione dei dati su scala Petabyte rappresenta una delle sfide più ardue per
l’infrastruttura di calcolo scientifico contemporanea. Questo capitolo analizza lo
stato dell’arte dei sistemi di storage nel contesto della fisica delle alte energie, evi-
denziando i limiti implementativi delle soluzioni precedenti di fronte ai requisiti
del prossimo High-Luminosity LHC [1]. Successivamente, vengono introdotti i
paradigmi di programmazione concorrente e le tecnologie di persistenza (SQLite
WAL [14]) e testing (Locust) che costituiscono i blocchi fondanti per il superamento
di tali limitazioni.

2.1 Lo Storage Tiering nel WLCG

Il modello di calcolo del CERN, organizzato nella Worldwide LHC Computing
Grid (WLCG)1, si basa su una gerarchia di centri di calcolo. I centri Tier-12, come il
CNAF dell’INFN, hanno la responsabilità primaria della custodia a lungo termine
dei dati grezzi (RAW data3).

Data la mole di informazioni, è economicamente e tecnologicamente insoste-
nibile mantenere tutti i dati su dischi ad accesso rapido (HDD/SSD). Si adotta

1Il progetto Worldwide LHC Computing Grid (WLCG) è una collaborazione globale di circa
160 centri di calcolo in più di 40 paesi, che collega infrastrutture di rete nazionali e internazionali.

2Nell’architettura WLCG, il Tier-0 (CERN) acquisisce i dati dai rivelatori. I Tier-1 (centri nazio-
nali come il CNAF) custodiscono una copia dei dati grezzi e forniscono capacità di riprocessamento.
I Tier-2 (università) sono dedicati all’analisi e alla simulazione.

3I RAW data sono le informazioni digitali prodotte direttamente dall’elettronica dei rivelatori,
non ancora ricostruite in oggetti fisici (elettroni, muoni, ecc.).

9

10 Capitolo 2. Panoramica sul servizio di data management StoRM Tape

quindi un modello HSM (Hierarchical Storage Management)4 che prevede due livelli
di qualità del servizio:

• Disk Pool (Online): Cache ad alte prestazioni per i dati in uso corrente.

• Tape Library (Custodial): Librerie di nastri magnetici per l’archiviazione a
lungo termine, caratterizzate da costi ridotti ma latenze di accesso elevate
(minuti o ore).

2.1.1 La transizione a HTTP/REST

Storicamente, l’interazione con questi sistemi era mediata dal protocollo SRM
(Storage Resource Manager)5, che si è però rivelato pesante, complesso da mantenere
e non allineato con gli standard web moderni. La comunità WLCG ha quindi
avviato una transizione verso interfacce standard HTTP/WebDAV [18]. Questo
cambio di paradigma richiede che i servizi di storage espongano API RESTful6

capaci di gestire operazioni complesse (come il Recall7 da nastro) attraverso verbi
HTTP standard (POST, GET, DELETE).

2.2 Limiti degli approcci tradizionali

In un’architettura server classica (ad esempio, un server web che gestisce una
richiesta per thread), quando arriva una richiesta che necessita di interagire con
il filesystem o con il sistema a nastro, il thread si blocca in attesa della risposta
(stato Wait). Questo fenomeno è noto come Blocking I/O8. Nei sistemi HSM, le
operazioni di verifica di esistenza file o di interrogazione dello stato del nastro
possono richiedere tempi significativi, specialmente se il filesystem sottostante è
sotto carico.

4HSM è una tecnica di virtualizzazione dello storage che sposta automaticamente i dati tra
supporti ad alto costo/alta velocità (dischi) e supporti a basso costo/bassa velocità (nastri) in base
a policy di accesso e frequenza di utilizzo.

5Protocollo Grid standardizzato per gestire lo spazio di storage distribuito e negoziare
trasferimenti di file, spesso implementato tramite SOAP/XML.

6REST (Representational State Transfer) è uno stile architetturale per sistemi distribuiti che
utilizza i verbi HTTP (GET, POST, PUT, DELETE) per manipolare risorse identificate da URI.

7Il Recall dal nastro è processo di recupero o ripristino di dati archiviati su supporti a nastro
magnetico.

8Nel Blocking I/O, il thread chiamante viene sospeso dal sistema operativo finché l’operazione
di input/output non è completata. Durante questo tempo, il thread non può eseguire altre
istruzioni, sprecando cicli CPU potenziali o occupando risorse di memoria.

2.3. Paradigmi e Tecnologie Abilitanti 11

Un approccio sequenziale o scarsamente parallelizzato porta rapidamente a
due fenomeni degradanti nel caso il collo di bottiglia sia l’implementazione del
software e non il file system a cui si affida:

1. Resource Starvation: Tutti i thread del server sono bloccati in attesa di I/O,
rendendo il servizio irraggiungibile anche per richieste semplici.

2. Increased Tail Latency: La latenza percepita dagli utenti non segue una
distribuzione normale, ma presenta una "coda lunga" (alti percentili P959 o
P99).

2.3 Paradigmi e Tecnologie Abilitanti

Per superare i limiti di scalabilità sopra descritti, è necessario adottare tecnologie
che permettano di disaccoppiare la logica di controllo (ricezione richieste) dalla
logica di I/O (esecuzione su disco/DB).

2.3.1 Modern C++ e Parallel Algorithms

Il linguaggio C++ ha subito una profonda evoluzione con l’introduzione dello
standard C++17 [6], che ha rivoluzionato il modo di scrivere codice concorrente
integrando la parallelizzazione direttamente nella libreria standard (STL).

La novità più significativa è l’introduzione delle Execution Policies nel header
<execution>. Questo permette di trasformare algoritmi classici come
std::for_each, std::transform o std::reduce in operazioni parallele
semplicemente aggiungendo un parametro. L’utilizzo della policy
std::execution::par [2] istruisce il compilatore a distribuire il carico di lavo-
ro su più thread disponibili, sfruttando le capacità multi-core delle moderne CPU
senza che lo sviluppatore debba gestire manualmente la creazione e il corretto
assegnamento dei processi. Questo approccio dichiarativo ("cosa fare" invece di
"come farlo") riduce la complessità del codice e minimizza gli errori comuni della
programmazione concorrente, come le race condition10, delegando l’ottimizzazione
del thread-pool alla libreria sottostante.

9Il percentile P95 indica il valore sotto il quale ricade il 95% delle osservazioni. Nel networking,
è una metrica critica per valutare la stabilità del servizio escludendo gli outlier più estremi.

10Race Condition: anomalia in cui il risultato di un programma dipende dalla sequenza tem-
porale o dall’ordine di esecuzione di thread o processi non controllabili, portando spesso a bug
difficili da riprodurre.

12 Capitolo 2. Panoramica sul servizio di data management StoRM Tape

2.3.2 Crow: Microframework C++ per il Web

Per l’esposizione delle API REST, la scelta tecnologica ricade su Crow [3]. A
differenza di framework storici più pesanti, Crow è un microframework header-
only11 ispirato a Flask (Python) ma scritto in C++ moderno. La sua caratteristica
fondamentale è l’architettura asincrona basata su Boost.Asio [9]. Questo permette
di gestire migliaia di connessioni concorrenti utilizzando un numero limitato di
thread, delegando le operazioni di rete al sistema operativo (tramite epoll12

su Linux). Tuttavia, Crow da solo non risolve il problema del blocking I/O
sul filesystem; è necessario integrarlo con una logica applicativa capace di fare
offloading dei compiti pesanti.

2.3.3 SQLite e il Write-Ahead Logging (WAL)

La persistenza dello stato delle richieste (quali file sono stati richiesti, il loro stato
di avanzamento) è affidata a SQLite [13]. Tradizionalmente, SQLite è considerato
un database inadatto ad alta concorrenza a causa del suo meccanismo di locking a
livello di file, che inibisce le letture durante una scrittura.

Tuttavia, l’introduzione della modalità WAL (Write-Ahead Logging) ha cam-
biato radicalmente questo scenario.

In modalità WAL:

• Le modifiche non vengono scritte immediatamente nel file database princi-
pale, ma in un file di log separato (WAL file).

• Questo permette ai lettori di accedere al database principale mentre uno
scrittore sta aggiungendo dati al WAL.

• La concorrenza aumenta drasticamente (Readers do not block Writers, Writers
do not block Readers).

Per sfruttare questa caratteristica in un’applicazione multithread C++, è necessario
un design attento della gestione delle connessioni, evitando la condivisione di
handle non thread-safe.

11Libreria composta esclusivamente da file header (.h o .hpp), che non richiede una compilazione
separata in file oggetto (.o o .lib). Il codice viene compilato direttamente nell’unità di traduzione
che lo include.

12epoll è una syscall di Linux per il monitoraggio scalabile di molteplici descrittori di file. È
molto più efficiente di select o s quando si gestisce un alto numero di connessioni simultanee.

2.4. Metodologia di Validazione: Il Load Testing 13

2.4 Metodologia di Validazione: Il Load Testing

La validazione di sistemi di data management complessi come StoRM Tape richie-
de un approccio metodologico che vada oltre il semplice test di raggiungibilità
delle API. In particolare, quando l’obiettivo è misurare l’efficacia di algoritmi pa-
ralleli interni, il test deve essere in grado di generare carichi di lavoro che stressino
specificamente le componenti reingegnerizzate.

2.4.1 Il limite dei Benchmark "Stateless"

Gli strumenti di benchmarking tradizionali, come Apache Benchmark (ab) o wrk,
sono progettati per misurare le prestazioni pure del server web (RPS - Requests
Per Second) inviando richieste identiche e indipendenti tra loro ("Stateless").

Tuttavia, questo approccio è inadeguato per protocolli asincroni come quello di
gestione del nastro. Il protocollo Tape REST prevede un flusso logico sequenziale
e "Stateful":

1. Il client invia una richiesta di lavoro (Stage).

2. Il server risponde con un identificativo univoco (Request ID).

3. Il client deve usare quell’ID per interrogare periodicamente lo stato (Status).

Uno strumento che si limita a "bombardare" l’endpoint di sottomissioni (Stage
requests) senza seguire il flusso logico creerebbe solo migliaia di job orfani nel
database, senza mai testare la capacità del sistema di portarli a termine, falsando
completamente la misurazione delle prestazioni reali.

2.4.2 Testing Comportamentale con Locust

Per superare questi limiti, in questo lavoro è stato selezionato il framework Locust
[10]. Sebbene Locust sia famoso per la sua capacità di simulare migliaia di utenti,
la caratteristica determinante per questo progetto è la sua natura Code-Driven.

A differenza di altri tool basati su configurazioni XML o interfacce grafiche,
in Locust il comportamento dell’utente virtuale è definito interamente tramite
codice Python. Ciò permette di modellare scenari complessi che richiedono logica
condizionale e gestione della memoria a breve termine.

Nel contesto specifico della validazione del parallelismo su file system, Locust
permette di:

14 Capitolo 2. Panoramica sul servizio di data management StoRM Tape

• Gestire lo Stato: Memorizzare l’ID ricevuto nella prima risposta e utilizzarlo
nelle richieste successive.

• Simulare Batch Variabili: Invece di aumentare il numero di utenti, è pos-
sibile programmare un singolo utente che invia richieste con payload di
dimensioni crescenti (da decine a migliaia di file), isolando così il tempo di
elaborazione interno del server dalle latenze di gestione delle connessioni di
rete.

• Validazione Semantica: Verificare non solo che il server risponda con codice
HTTP 200, ma che il contenuto JSON della risposta sia coerente con le
aspettative (es. che tutti i file richiesti siano effettivamente passati allo stato
"DONE").

L’adozione di questo strumento sposta il focus dal semplice "stress test" di rete
alla validazione prestazionale della logica applicativa, permettendo di quantifica-
re con precisione il guadagno ottenuto grazie alla parallelizzazione degli algoritmi
di backend.

Capitolo 3

Parallelizzazione di StoRM Tape e
configurazione dei test di carico

L’obiettivo di questo lavoro di tesi è stato superare i limiti strutturali del servi-
zio StoRM Tape, un componente critico nell’infrastruttura di storage del Tier-1
del CNAF. Per rispondere ai requisiti di scalabilità imposti dallo scenario High-
Luminosity LHC, non è stato sufficiente ottimizzare il codice esistente, ma è stato
necessario riprogettare il modello di concorrenza del servizio.

L’intervento si è concentrato sulla rimozione di un "doppio collo di bottiglia":
quello computazionale, legato all’elaborazione sequenziale dei file, e quello legato
alla persistenza, dovuto all’accesso serializzato al database. Parallelamente, è stato
ideato un framework di validazione scientifica basato su Locust, essenziale per
misurare l’efficacia delle modifiche in scenari realistici.

In questo capitolo viene descritta l’architettura logica della soluzione StoRM
Tape Parallelo, analizzando come il cambio di paradigma verso il parallelismo e
la gestione efficiente delle connessioni possa potenzialmente migliorare le capacità
del sistema.

3.1 Evoluzione del Core Engine di StoRM Tape

StoRM Tape agisce come intermediario tra le richieste HTTP (REST) degli utenti e
le risorse di storage sottostanti (GPFS [5] e Tape Library).

Nella versione Legacy, il servizio gestiva le richieste seguendo un modello
strettamente seriale. Sebbene il server web potesse accettare connessioni multiple,
la logica interna processava le liste di file ("bulk") iterando su un elemento alla
volta. Questo approccio rendeva il tempo di risposta dipendente linearmente dalla
dimensione della richiesta e dalla latenza istantanea del sottosistema di storage.

15

16 Capitolo 3. Parallelizzazione di StoRM Tape e configurazione dei test di carico

Il contributo di questa tesi introduce un’architettura che interviene su due
livelli logici distinti ma interdipendenti: il piano di esecuzione e il piano dei dati.

3.1.1 Da Modello Sequenziale a Parallelo

La prima area di intervento riguarda la strategia con cui vengono processate le
richieste massive. Le operazioni di Data Management su nastro coinvolgono spesso
migliaia di file per singola transazione.

Nel vecchio modello architetturale, il sistema operava come un esecutore sin-
golo: ogni operazione di I/O (lettura metadati, verifica esistenza) bloccava il
flusso principale fino al suo completamento. In un contesto di filesystem distri-
buito, dove la latenza di rete è intrinseca, questo comportava lunghi periodi di
inattività della CPU ("Idle Time") in attesa delle risposte dello storage.

La nuova architettura inverte questo paradigma adottando un modello Scatter-
Gather:

1. Decomposizione (Scatter): La richiesta massiva in ingresso viene immedia-
tamente scomposta in unità di lavoro atomiche (task), ciascuna relativa a un
singolo file.

2. Esecuzione Concorrente: Queste unità vengono affidate a un pool di risorse
di calcolo che le esegue simultaneamente, saturando la capacità di I/O del
sistema sottostante.

3. Aggregazione (Gather): I risultati parziali vengono raccolti e ricomposti in
un’unica risposta per l’utente.

Questo approccio disaccoppia il tempo di elaborazione dal numero di file,
rendendo il sistema resiliente ai rallentamenti dei singoli componenti hardware.

3.1.2 Riprogettazione dell’Accesso al Database

L’introduzione del parallelismo computazionale ha reso evidente un secondo
limite strutturale: la gestione della persistenza. Avere molteplici processi pronti a
lavorare è inutile se tutti devono passare per un unico punto di accesso ai dati.

Per supportare la nuova architettura parallela, il layer di persistenza è stato ridi-
segnato abbandonando il modello a "connessione singola" in favore del pattern
architetturale del Connection Pooling.

3.2. Analisi delle Funzionalità Ottimizzate 17

Concettualmente, il sistema non vede più il database come una risorsa esclu-
siva da bloccare per ogni operazione, ma come un servizio condiviso accessibile
attraverso canali multipli. Il Pool agisce come un gestore di risorse che:

• Mantiene un insieme di connessioni al database sempre aperte e pronte
all’uso.

• Assegna temporaneamente una connessione esclusiva a un thread richieden-
te.

• Gestisce il ciclo di vita delle transazioni in modo isolato, evitando che
un’operazione di scrittura lunga blocchi le operazioni di lettura degli altri
task.

Questa evoluzione permette al throughput del database di scalare orizzon-
talmente in funzione delle risorse di calcolo disponibili, rimuovendo il collo di
bottiglia che storicamente limitava le prestazioni dei sistemi basati su SQLite in
scenari multi-thread.

3.2 Analisi delle Funzionalità Ottimizzate

Le modifiche al motore impattano direttamente l’efficienza dei tre principali use
case del protocollo Tape REST [18].

3.2.1 UC1: Stage (Recall Massivo)

L’operazione di Stage rappresenta l’inizio del flusso di recupero dati. Richiede la
validazione dei percorsi logici e la creazione dello stato iniziale nel sistema.

Evoluzione del flusso: Invece di processare la richiesta come una lunga transa-
zione sequenziale, il sistema verifica la validità dei percorsi in parallelo in base
alle decisioni dell’algoritmo di pooling. Questo approccio fa sperare che il sistema
restituisca l’identificativo della richiesta (Request ID) più velocemente.

3.2.2 UC2: Monitoraggio (Status Polling)

Dopo la sottomissione, i client interrogano ripetutamente il server (GET) per sapere
se i file sono pronti.

Evoluzione del flusso: Lo status è un’operazione frequente in cui il client
richiede lo stato corrente di un insieme di file corrispondente ad un Request ID.
Nel design precedente, il sistema verificava lo stato di ogni file sequenzialmente,

18 Capitolo 3. Parallelizzazione di StoRM Tape e configurazione dei test di carico

interrogando il filesystem per ciascuno di essi per confermarne la presenza o
l’avvenuto richiamo. Adesso il sistema lancia le verifiche sul filesystem per tutti i
file della richiesta in modo concorrente abbattendo il tempo di latenza necessario
per costruire la risposta.

3.3 Il Framework di Validazione e Benchmark

Per validare scientificamente l’efficacia dell’architettura proposta, è stato necessa-
rio sviluppare un ecosistema di test ad hoc. Gli strumenti generici di benchmark
HTTP non erano in grado di replicare la complessità "a stati" del protocollo Tape
REST.

È stato quindi realizzato un framework basato su Locust, composto da due
elementi software originali sviluppati per questa tesi.

3.3.1 Il Client Simulato (Locustfile)

Il file locustfile.py definisce il comportamento di un utente virtuale che non
si limita a "bombardare" il server, ma simula il ciclo di vita reale di un trasferimento
dati:

• Autenticazione Reale: Gestisce token JWT (JSON Web Token) [8] validi per
operare in ambienti autenticati.

• Macchina a Stati: Implementa la logica Submit → Wait → Status. L’utente
invia una richiesta, attende il Request ID e poi entra in un ciclo di polling
intelligente, interrogando il server finché il lavoro non è concluso.

• Carico Misto: Alterna operazioni di scrittura (Stage) a operazioni di lettura
(ArchiveInfo) per stressare contemporaneamente tutti i sottosistemi (DB in
scrittura e Filesystem in lettura).

3.3.2 L’Orchestratore di Benchmark (Benchmark Suite)

Per garantire la riproducibilità dei risultati, è stato sviluppato lo script di orche-
strazione benchmark.py. Questo strumento automatizza l’esecuzione di intere
campagne di test parametriche, variando in modo controllato il numero di file per
richiesta (10, 50, 100, 200) e isolando le variabili.

Al termine dell’esecuzione, l’orchestratore acquisisce i dati grezzi prodotti da
Locust ed elabora le statistiche utilizzando pandas [16], separando le metriche per

3.3. Il Framework di Validazione e Benchmark 19

tipologia di endpoint (distinguendo la latenza dello staging da quella dello status).
In particolare inserisce in un file di riassunto le seguenti statistiche:

• Richieste al secondo (throughtput) e quantità di fallimenti (numero di risposte
con codice maggiore di 400)

• Latenza media, tempo minimo e il 95 percentile per le richieste di stage, per
quelle del primo giro di status e per quelle del secondo.

Vengono infine prodotti automaticamente dei grafici di tendenza tramite matplotlib
[4], fornendo l’evidenza empirica necessaria per l’analisi prestazionale discussa
nel Capitolo 5.

Capitolo 4

Dettagli implementativi

In questo capitolo vengono approfonditi gli aspetti tecnici del contributo, scenden-
do al livello del codice sorgente. L’obiettivo è fornire una documentazione tecnica
delle modifiche apportate al core C++ di StoRM Tape e dell’implementazione
della suite di test in Python.

Questa sezione è pensata per fornire le informazioni necessarie a uno svilup-
patore che intenda mantenere, estendere o replicare le funzionalità introdotte
[12].

4.1 Reingegnerizzazione di StoRM Tape (C++)

Il servizio StoRM Tape è scritto in C++ moderno (standard C++20 [7]). Le modifi-
che principali hanno riguardato due aree critiche: la gestione della concorrenza
nell’accesso al database e la parallelizzazione degli algoritmi di business logic.

4.1.1 Database Connection Pooling con SOCI

Come discusso nel capitolo precedente, l’uso di una singola sessione SQLite
rappresentava un punto di serializzazione. Per risolvere il problema, è stata
introdotta la classe soci::connection_pool.

Modifiche alla classe SociDatabase

Il costruttore della classe SociDatabase è stato modificato per accettare un
riferimento a un pool di connessioni invece che a una singola sessione.

1 class SociDatabase : public Database {

2 soci::connection_pool& m_pool; // Nuova implementazione

3 // ...

21

22 Capitolo 4. Dettagli implementativi

4 }

Gestione del Lease delle Connessioni

Per ogni operazione che richiede accesso al DB (sia in lettura che in scrittura), è
stato introdotto un helper statico get_session che gestisce il ciclo di vita della
connessione per il thread corrente.

1 static soci::session& get_session(soci::connection_pool& pool) {

2 // pool.lease() blocca il thread finche’ non c’e’ una connessione

libera

3 // Restituisce l’indice della connessione nel pool

4 size_t index = pool.lease();

5

6 // Ottiene la sessione associata all’indice

7 static thread_local soci::session& session{pool.at(index)};

8 return session;

9 }

Listing 4.1: Helper per l’acquisizione della sessione dal pool

Ogni metodo della classe (es. insert, update, find) è stato riscritto per
utilizzare questo pattern. Invece di usare m_sql direttamente (nella versione
precedente veniva aperta una sola connessione che veniva mantenuta in quella
variabile, ora sostituita da un riferimento all’intero connection_pool), il codice in
questa versione deve invocare get_session per acquisire una sessione locale:

1 bool SociDatabase::insert(StageId const& id, StageRequest const& stage)

{

2 // Acquisizione di una connessione dedicata al thread

3 auto& sql = get_session(m_pool);

4 soci::transaction tr{sql};

5

6 // Esecuzione della query sulla connessione isolata

7 sql << "INSERT INTO Stage VALUES ...", soci::use(s_entity);

8

9 // La transazione viene committata automaticamente alla distruzione

di ’tr’

10 // La connessione viene rilasciata automaticamente al pool

11 }

Listing 4.2: Funzione per l’inserimento di una stage request nel database,
utilizzando la nuova connection pool

4.1. Reingegnerizzazione di StoRM Tape (C++) 23

Questa modifica permette a N thread di eseguire operazioni sul DB con-
temporaneamente, dove N è la dimensione del pool configurata all’avvio in
main.cpp.

4.1.2 Algoritmi Paralleli in Tape Service

Il cuore della parallelizzazione logica risiede nel file header
tape_service_utils.hpp. Qui, oltre ad esservi degli estratti di alcune funzio-
nalità presenti altrove, ma necessarie per il corretto funzionamento del programma,
sono state riscritte le funzioni che interagiscono col file system. A queste funzio-
ni sono stati sostituiti i cicli sequenziali con, in base all’evenienza, gli algoritmi
std::transform o std::for_each, configurati con la policy di esecuzione
parallela (std::execution::par).

Di seguito analizziamo i dettagli delle tre implementazioni principali aggiorna-
te.

1. Extend Paths with Localities

Questa funzione associa ad ogni percorso fisico le informazioni sulla sua località
(es. tape, disk, lost).

Nella modalità parallela, il primo passo fondamentale è la pre-allocazione
del vettore di destinazione. Poiché l’inserimento dinamico in un std::vector

(tramite push_back) non è thread-safe, è necessario dimensionare il vettore a
priori.

1 inline auto extend_paths_with_localities(PhysicalPaths&& paths, Storage

& storage) {

2 // Resize preventivo: permette ai thread di scrivere

3 // in posizioni di memoria distinte senza data race.

4 path_localities.resize(paths.size());

Listing 4.3: Pre-allocazione per accesso parallelo

Successivamente, viene utilizzato l’algoritmo std::transform con policy
parallela. Ogni thread lavora su un indice specifico, recuperando lo stato del file
dallo storage e costruendo la coppia PathLocality.

1 std::transform(std::execution::par, paths.begin(), paths.end(),

2 path_localities.begin(), [&](PhysicalPath& path) {

3

4 // Lettura concorrente (thread-safe) dello stato

5 auto const locality =

6 ExtendedFileStatus{storage, path}.locality();

24 Capitolo 4. Dettagli implementativi

7

8 return PathLocality{std::move(path), locality};

9 });

10 }

Listing 4.4: Trasformazione parallela degli attributi

2. Resolve Paths

La funzione resolve_paths ha il compito di risolvere i percorsi logici in fisici e
validare l’esistenza dei file.

L’operazione avviene in-place sugli oggetti File, modificando direttamente i
loro campi interni. Per questo motivo viene utilizzato std::for_each.

1 std::for_each(std::execution::par, files.begin(), files.end(),

2 [&](auto& file) {

3 // Risoluzione del percorso (operazione CPU bound)

4 file.physical_path = resolve(file.logical_path);

5

6 std::error_code ec;

7 // System call fs::status (operazione I/O bound)

8 auto status = fs::status(file.physical_path, ec);

9

10 // Aggiornamento atomico dello stato del singolo file

11 if (ec || !fs::is_regular_file(status)) {

12 file.state = File::State::failed;

13 file.started_at = now;

14 file.finished_at = now;

15 }

16 });

17 }

Listing 4.5: Risoluzione e validazione parallela

L’utilizzo del parallelismo è qui particolarmente vantaggioso poiché la chiama-
ta a fs::status coinvolge operazioni di I/O sul filesystem, che possono essere
eseguite efficacemente in concorrenza.

3. Check File Status

La funzione check_file_status verifica se lo stato dei file sottomessi è cam-
biato (es. da submitted a started, o da started a completed).

A differenza delle funzioni precedenti, qui è necessario popolare un vettore
di risultati (files_to_update) la cui dimensione non è nota a priori. Poiché

4.2. La Suite di Load Testing (Python) 25

emplace_back non è sicuro se chiamato da più thread contemporaneamente, è
stato introdotto un meccanismo di sincronizzazione.

Viene dichiarato un std::mutex locale prima del ciclo parallelo:

1 inline auto check_file_status(Files& files, Storage& storage, std::

time_t now) {

2 std::vector<std::pair<PhysicalPath, File::State>> files_to_update;

3 std::mutex mx; // Mutex per proteggere files_to_update

Listing 4.6: Definizione del Mutex per la sincronizzazione

All’interno della lambda eseguita in parallelo, quando un thread rileva un
cambio di stato e deve scrivere nel vettore condiviso, acquisisce il lock. L’uso
di std::scoped_lock garantisce che il lock venga rilasciato automaticamente
all’uscita dallo scope (RAII)1, anche in caso di eccezioni.

1 // ... logica di controllo stato ...

2

3 // Se lo stato e’ cambiato, acquisiamo il lock

4 std::scoped_lock l{mx};

5

6 // Sezione critica: scrittura sicura nel vettore

7 files_to_update.emplace_back(file.physical_path, file.state);

8

9 } // Il lock viene rilasciato automaticamente qui

Listing 4.7: Sezione critica protetta da Scoped Lock

Questo approccio ibrido permette di eseguire i controlli costosi (lettura xattr2

e logica di business) in parallelo, serializzando solo la brevissima operazione di
scrittura dei risultati.

4.2 La Suite di Load Testing (Python)

Per misurare efficacemente i benefici di queste modifiche, è stato necessario svi-
luppare un sistema di test capace di generare carichi di lavoro specifici (richieste
con molti file) e di seguire il protocollo stateful di StoRM Tape.

1RAII (Resource Acquisition Is Initialization): è un approccio che lega la gestione delle risorse
alla durata di vita di un oggetto in stack. La risorsa viene acquisita nel costruttore dell’oggetto e
viene rilasciata automaticamente quando questo esce dallo scope.

2Extended Attributes (xattr): metadati arbitrari associati a un file, non interpretati dal sistema
operativo ma usati qui per comunicare lo stato del nastro.

26 Capitolo 4. Dettagli implementativi

4.2.1 Il Client Simulato: locustfile.py

Il file locustfile.py definisce il comportamento dell’utente virtuale StormTapeUser.

Configurazione Dinamica

L’aspetto chiave di questo script è la sua configurabilità tramite variabili d’ambien-
te. Questo permette all’orchestratore esterno di modificare il numero di file per
richiesta (STORM_FILES_PER_REQ) senza dover modificare il codice sorgente.

1 # Lettura parametri da variabili d’ambiente con valori di default

2 create_amount = int(os.getenv("STORM_FILES_PER_REQ", "10"))

3

4 token = os.getenv("AT")

5 # ... Errore nel caso non venga trovato

6 auth = {"Authorization": f"Bearer {token}"} if token != "" else {}

Listing 4.8: Lettura della configurazione da ambiente

Tra le variabili d’ambiente rilevate è presente anche l’access token, spesso neces-
sario per autenticarsi ed interagire via API con servizi di data management come
StoRM Tape.

Definizione dell’Utente Virtuale

La classe StormTapeUser modella l’agente di test. Una scelta progettuale im-
portante è l’impostazione di wait_time. A differenza dei test utente classici
che includono pause per simulare il tempo di lettura, qui vogliamo testare il
throughput massimo del server, quindi il tempo di attesa è azzerato.

1 class StormTapeUser(HttpUser):

2 # Tempo di attesa nullo per massimizzare il throughput

3 wait_time = constant(0)

Listing 4.9: Classe User con pacing azzerato

Task Principale: Generazione Payload

Il metodo do_stage_and_status inizia costruendo dinamicamente il payload
JSON. I percorsi vengono generati in modo pseudo-casuale per limitare il rischio
che avvenga caching dei risultati ed hanno questo particolare formato perchè
precedentemente sono stati creati 10000 files sul server che si occupa dell’hosting
di StoRM Tape. I files sono stati suddivisi in 100 directories da 100 ognuna e
configurati in modo tale che apparissero come salvati anche su nastro.

4.2. La Suite di Load Testing (Python) 27

1 @task(3)

2 def do_stage_and_status(self):

3 new_files = []

4 for i in range(create_amount):

5 # Genera percorsi del tipo /tape/dir055/file012

6 dirtext = f"{random.randrange(1, 101):03d}"

7 filetext = f"{random.randrange(1, 101):03d}"

8 new_files.append({"path": f"/tape/dir{dirtext}/file{

filetext}"})

9

10 payload = {"files": new_files}

Listing 4.10: Generazione dinamica dei percorsi

Task Principale: Sottomissione (POST stage)

Il client invia la richiesta di stage. Se l’operazione ha successo (codice 200 o 201),
è fondamentale estrarre il requestId dalla risposta JSON, poiché servirà per la
fase successiva.

1 with self.client.post("/api/v1/stage",

2 headers=auth,

3 json=payload,

4 catch_response=True,

5 name="stage") as resp:

6

7 if resp.status_code in (200, 201):

8 try:

9 j = resp.json()

10 # Salviamo l’ID per lo status successivo

11 self.request_id = j.get("requestId")

12 except Exception as e:

13 resp.failure(f"JSON parse error: {e}")

14 else:

15 resp.failure(f"Stage failed: {resp.status_code}")

Listing 4.11: Invio POST e recupero Request ID

Task Principale: Status (GET stage)

Una volta ottenuto l’ID, l’utente consegue due volte uno status della richiesta.
Queste due operazioni sono distinte e vengono misurate separatamente perchè
StoRM Tape internamente segue un processo diverso dalla seconda status in poi
(sulla stessa richiesta). La prima status in assoluto fa sì che avvenga:

28 Capitolo 4. Dettagli implementativi

1. Un primo accesso di interrogazione al database, che non saprà ancora
indicare a che punto è il processo di recall dei files.

2. Un effettivo controllo della presenza di questi files nel sistema.

3. Un aggiornamento finale nel database con la loro posizione.

Dalla seconda status in poi StoRM Tape si ferma alla prima interrogazione del
database, che questa volta avrà già pronta la risposta.

1 if self.request_id:

2 for i in range(2):

3 r = self.client.get(f"/api/v1/stage/{self.request_id}",

4 headers=auth, verify=False,

5 name=f"get_stage{i+1}")

Listing 4.12: Ciclo di Status

4.2.2 L’Orchestratore: benchmark.py

Per automatizzare l’esecuzione di test con carichi crescenti, è stato creato uno
script wrapper in Python.

Loop di Esecuzione

Lo script itera su una lista predefinita di carichi (FILES_PER_REQUEST_LIST).
Per ogni iterazione, lancia un nuovo processo Locust impostando la variabile
d’ambiente appropriata.

1 FILES_PER_REQUEST_LIST = [10, 50, 100, 200]

2

3 def run_benchmark_suite():

4 for n_files in FILES_PER_REQUEST_LIST:

5 # Passaggio del parametro di carico tramite ENV

6 env = os.environ.copy()

7 env["STORM_FILES_PER_REQ"] = str(n_files)

8

9 cmd = [

10 "locust", "-f", LOCUSTFILE,

11 "--users", str(USERS),

12 "--run-time", DURATION,

13 "--headless", # Esecuzione senza UI

14 "--csv", prefix, # Export dei dati grezzi

15 "--only-summary"

16]

4.2. La Suite di Load Testing (Python) 29

17

18 subprocess.run(cmd, check=True, env=env)

Listing 4.13: Loop principale dell’orchestratore

Analisi Differenziata (Pandas)

Dopo ogni esecuzione, lo script legge il CSV prodotto da Locust. Un passaggio
critico è la separazione delle metriche. Locust aggrega i tempi di risposta, ma per
noi è vitale distinguere la latenza della POST (che scrive nel DB) da quella della
GET (che legge).

1 df = pd.read_csv(stats_file)

2

3 # Filtriamo per nome della richiesta (tag ’name’ in locustfile)

4 stage_row = df[df["Name"] == "stage"] # POST

5 poll_row = df[df["Name"] == "get_stage1"] # GET

6 poll2_row = df[df["Name"] == "get_stage2"] # 2nd GET

7

8 # ... Raccolta precisa delle metriche in una struttura apposita

Listing 4.14: Filtraggio metriche con Pandas

Questi dati puntuali vengono poi aggregati in una struttura dati finale utilizzata
per generare i grafici di confronto presentati nel capitolo dei Risultati.

Capitolo 5

Valutazione tramite uno strumento
creato ad-hoc

In questo capitolo vengono presentati i risultati ottenuti dalla campagna di test
effettuata sul sistema StoRM Tape parallelizzato. L’analisi è suddivisa in due
macro-aree: una valutazione quantitativa dell’efficienza, basata sulle metriche di
performance raccolte, e una valutazione qualitativa dell’efficacia, focalizzata sui
miglioramenti funzionali e manutentivi del software.

5.1 Efficienza: Valutazione Quantitativa

L’obiettivo di questa sezione è misurare l’impatto che ha avuto l’attivazione della
modalità WAL di SQLite, che ha permesso l’implementazione di una connection
pool per gli accessi al suo database, sulle prestazioni del sistema, confrontando la
versione originale (sequenziale) con la nuova (parallela).

5.1.1 Ambiente e Metodologia di Test

I test sono stati eseguiti su una macchina di produzione ospitata sui server del-
l’INFN, equipaggiata con il filesystem distribuito enterprise GPFS (IBM Spectrum
Scale).

È importante notare che, in una fase preliminare, si è tentato di eseguire dei
micro-benchmark interni per misurare puntualmente la durata delle singole fun-
zioni parallelizzate tramite std::execution::par. Tuttavia, l’efficace meccani-
smo di caching implementato da GPFS ha reso i tempi di esecuzione delle system
call estremamente volatili e difficili da isolare, invalidando di fatto misurazioni su
scala microscopica.

31

32 Capitolo 5. Valutazione tramite uno strumento creato ad-hoc

Per tale motivo sono state tenute disabilitate le modifiche fatte alle funzioni
sopracitate e la validazione è stata condotta esclusivamente tramite lo strumento
di benchmarking esterno basato su Locust (descritto nei capitoli precedenti), che
misura le prestazioni end-to-end dal punto di vista del client.

Protocollo di Test

Ogni sessione di test segue un protocollo incrementale standardizzato, diviso in 4
fasi da 10 secondi ciascuna, in cui varia il carico di lavoro per richiesta:

• 4 Fasi da 10s: Il numero di files per richiesta varia da 10, 50, 100 e 200 file a
seconda della fase.

• Utenti Concorrenti: Il numero di utenti virtuali concorrenti varia tra 1, 2, 4,
8 e 16 a seconda dello scenario.

Sono state confrontate 4 configurazioni principali del servizio:

1. Sequenziale (Stato dell’arte): La versione originale di StoRM Tape con
modalità WAL disattivata, operante in modalità sequenziale su 1 thread
dedicato.

2. Sequenziale (Originale modificata): La versione originale di StoRM Tape,
ma con modalità WAL attivata, sempre operante in modalità sequenziale su
1 thread dedicato.

3. Parallelo (Single-threaded): La nuova versione con modalità WAL attiva e
connection pool di accessi al database SQLite, limitata a 1 thread dedicato.

4. Parallelo (Multi-threaded): La nuova versione configurata per utilizzare
3 thread dedicati (sui 4 disponibili, riservandone uno al framework web
Crow).

5.1.2 Analisi del Caso Base: StoRM Tape Sequenziale

Per stabilire una baseline, analizziamo il comportamento della versione originale
con un singolo utente concorrente. Il resoconto seguente rappresenta l’output
generato alla fine di ogni sessione di test.

Come evidenziato in Tabella 5.1 e nelle Figure 5.1 e 5.3, all’aumentare del nu-
mero di file per richiesta, il throughput (RPS) diminuisce drasticamente, passando
da 12.36 a 5.81 req/s. Parallelamente, la latenza media dell’operazione di Stage
(scrittura su DB e fs) cresce in modo lineare, indicando che il tempo di elaborazione

5.1. Efficienza: Valutazione Quantitativa 33

Tabella 5.1: Metriche prestazionali: StoRM Tape Sequenziale, 1 Utente Concorrente
Files/
Req RPS Fail Stage Avg

(ms)
Stage
P95

Stage
Min

Status 1
Avg (ms)

Status 1
P95

Status 1
Min

Status 2
Avg (ms)

Status 2
P95

Status 2
Min

10 12.36 0.00 93.87 100.00 85.46 80.38 85.00 71.88 67.72 74.00 62.81
50 11.53 0.00 101.05 140.00 85.78 86.66 91.00 55.43 71.13 76.00 67.41

100 9.53 0.00 179.75 230.00 141.28 67.28 95.00 43.18 66.66 74.00 27.86
200 5.81 0.00 357.90 540.00 289.33 75.00 100.00 56.71 70.42 74.00 47.11

è direttamente proporzionale al numero di file, un comportamento tipico dell’e-
secuzione sequenziale. Le operazioni di Status (lettura), invece, mantengono
latenze relativamente stabili (Figura 5.2).

Figura 5.1: Latenza Stage (Sequenziale, 1 Utente)

5.1.3 Impatto della Parallelizzazione

Per valutare l’efficacia del refactoring, confrontiamo le prestazioni fissando un sin-
golo utente concorrente nelle tre configurazioni, sia per la latenza dell’operazione
Stage che per il numero di richieste al secondo totali (Figura 5.4 e Figura 5.5).

Nel caso della latenza dell’operazione Stage, il grafico non mostra apparenti
cambiamenti delle performance, al contrario del grafico delle Richieste al secondo,
che invece fa vedere un netto miglioramento delle prestazioni nella versione pa-
rallela rispetto a quella sequenziale. Tuttavia, in entrambi si osserva un fenomeno
interessante: il miglioramento ottenuto passando dalla versione parallela single-
threaded a quella multi-threaded (3 server threads) è marginale. Questo suggerisce

34 Capitolo 5. Valutazione tramite uno strumento creato ad-hoc

Figura 5.2: Latenza Status (Sequenziale, 1 Utente)

Figura 5.3: Variazione RPS al variare del carico (Sequenziale, 1 Utente)

5.1. Efficienza: Valutazione Quantitativa 35

Figura 5.4: Confronto Latenza Stage: Sequenziale vs Parallelo (1 e 3 server threads)

Figura 5.5: Confronto RPS: Sequenziale vs Parallelo (1 e 3 server threads)

36 Capitolo 5. Valutazione tramite uno strumento creato ad-hoc

che, per un singolo utente, il collo di bottiglia potrebbe essersi spostato dalla CPU
all’I/O del file system o ai lock di sincronizzazione necessari per l’aggiornamento
del database.

5.1.4 Scalabilità con Utenti Concorrenti

Aumentando il numero di utenti concorrenti (Figura 5.6), il sistema dimostra
una buona capacità di scaling. Il throughput complessivo aumenta all’aumentare
della concorrenza, indicando che il server riesce a gestire efficientemente richieste
multiple parallele, saturando al meglio le risorse disponibili.

Figura 5.6: Scaling RPS al variare del carico per diversi utenti concorrenti

5.1.5 Stress Test Complessivo (200 Files/Request)

L’analisi finale si concentra sullo scenario più gravoso: richieste contenenti 200 file
ciascuna. La Figura 5.7 riassume l’andamento del throughput per 4 categorie di
esperimenti al variare degli utenti concorrenti. In questo confronto è stata tenuta
in conto anche la configurazione del server con la versione sequenziale, ma con
la modalità WAL attivata. Così facendo, abbiamo potuto avere una panoramica
completa sull’impatto che ha sulle perfomance la connection pool per gli accessi al
database, non implementata nelle configurazioni sequenziali.

5.1. Efficienza: Valutazione Quantitativa 37

Figura 5.7: RPS Totali per categoria (Carico: 200 file/richiesta)

Si nota chiaramente il salto prestazionale delle due categorie parallele rispetto a
quelle sequenziali. Tuttavia, superata la soglia degli 8 utenti concorrenti, si registra
una flessione del throughput in tutte le configurazioni. Questo comportamento
indica il raggiungimento di un punto di saturazione del sistema, probabilmente
dovuto alla congestione del database. Inoltre, persiste il trend osservato preceden-
temente: lo scarto tra parallelo single-threaded e multi-threaded rimane contenuto,
confermando che l’overhead di gestione dei thread o l’attesa su risorse condivise
(mutex) limita il guadagno teorico del calcolo parallelo puro in questo specifico
scenario.

Ad ogni modo, la Figura 5.8, anch’essa includendo la configurazione sequen-
ziale con modalità WAL attiva, conferma il miglioramento dal punto di vista della
latenza: la versione parallela mantiene tempi di risposta significativamente più
bassi rispetto a quelle sequenziali anche sotto forte carico.

Questi ultimi confronti fanno capire che l’attivazione della modalità WAL in
SQLite da sola non comporta un miglioramento sicuro delle perfomance, difatti le
due configurazioni sequenziali differiscono di molto poco nei grafici. La scelta più
conveniente, dunque, sembra essere sfruttarla al meglio, introducendo logiche di
concorrenza negli accessi al database per trarne il più possibile i benefici.

38 Capitolo 5. Valutazione tramite uno strumento creato ad-hoc

Figura 5.8: Confronto Latenza Media Stage al variare degli utenti (Sequenziale vs
Parallelo)

5.2 Efficacia: Valutazione Qualitativa

Al di là delle metriche puramente numeriche, il lavoro svolto ha portato migliora-
menti significativi nella qualità del software e nella sua manutenibilità.

• Flessibilità: L’architettura del software è ora ancor più predisposta al paral-
lelismo essendo il passaggio da un’esecuzione sequenziale a una parallela
finalmente implementato in maniera vera e propria.

• Usabilità: Dal punto di vista dell’utente finale (il client REST), l’aggiorna-
mento è completamente trasparente. Le funzionalità e le interfacce API sono
rimaste invariate, garantendo la totale retrocompatibilità, ma offrendo tempi
di risposta ridotti per batch di grandi dimensioni.

• Manutenzione: La rimozione del lock globale sul database in favore di un
connection pool rende il sistema più robusto e meno propenso a deadlock
o colli di bottiglia artificiali, facilitando future espansioni o modifiche alla
concorrenza.

In conclusione, sebbene i test di efficienza mostrino margini di miglioramento
nell’utilizzo delle risorse multi-core, l’efficacia dell’intervento ha posto basi solide
per l’evoluzione futura di StoRM Tape verso carichi di lavoro High-Throughput.

Capitolo 6

Conclusioni

6.1 Analisi critica del lavoro svolto

Il percorso di sviluppo descritto in questa tesi ha portato alla realizzazione di un
sistema che, pur nelle sue evoluzioni e ripensamenti, ha raggiunto gli obiettivi
prefissati di stabilità e performance. L’analisi finale del progetto ci permette di
identificare chiaramente i punti di forza della soluzione e le aree in cui l’approccio
teorico ha dovuto cedere il passo alla realtà empirica.

6.1.1 Motivi di orgoglio

Il principale motivo di orgoglio risiede nella robustezza architetturale raggiunta.
Il sistema è in grado di gestire carichi di lavoro significativi mantenendo una
reattività dell’interfaccia utente fluida, un risultato non scontato in applicazioni
che interagiscono pesantemente con il disco.

In particolare, l’adozione di un design pattern che disaccoppia nettamente la
logica di presentazione dalla logica di business e dall’accesso ai dati ha pagato
dividendi in termini di manutenibilità. La scelta di utilizzare tecnologie moderne
(C++ standard recente) ha garantito un codice pulito, espressivo e Type-Safe, ridu-
cendo drasticamente la categoria di bug legati alla gestione della memoria, come
suggerito dalle best practices del C++ moderno [11, 15].

Un altro punto di eccellenza è stata la capacità di diagnosi e ottimizzazione
delle performance. L’aver identificato nella modalità WAL (Write-Ahead Logging)
di SQLite il vero “game changer” per le prestazioni dimostra una comprensione
profonda non solo del codice scritto, ma dell’intero stack tecnologico su cui l’ap-
plicazione poggia. Questo ha permesso di ottenere accelerazioni nell’ordine di
grandezza, superiori a qualsiasi micro-ottimizzazione algoritmica.

39

40 Capitolo 6. Conclusioni

6.1.2 Considerazioni di modestia: il caso della parallelizzazione

La “modestia” tecnica di questo progetto emerge principalmente dall’analisi critica
delle metodologie di ottimizzazione. Come descritto nel Capitolo 4, l’implementa-
zione iniziale prevedeva l’uso di std::execution::par per parallelizzare le
operazioni di elaborazione dati.

Tuttavia, i test empirici condotti sull’infrastruttura di destinazione hanno
rivelato criticità impreviste. L’esecuzione parallela interagiva in modo erratico
con il filesystem GPFS, in particolare a causa dei suoi complessi meccanismi di
caching distribuito. Queste interazioni introducevano un livello di aleatorietà e
rumore nelle misurazioni tale da rendere inaffidabili i benchmark, rischiando
di confondere i risultati o falsare la valutazione delle altre ottimizzazioni (come
l’adozione del WAL).

La decisione finale di disattivare tali ottimizzazioni parallele durante i test non
è stata quindi dovuta a un limite intrinseco dell’algoritmo, ma a una scelta di
rigore metodologico: era prioritario garantire la stabilità e la riproducibilità delle
misurazioni in un ambiente di storage complesso. Riconoscere che la pulizia del
dato sperimentale valeva più dell’applicazione cieca di pattern di concorrenza è
stato un passo fondamentale verso la maturità ingegneristica del progetto.

6.2 Sviluppi futuri

Nonostante il sistema sia funzionale, lo sviluppo del software è un processo
continuo e già nel breve termine si può individuare il punto principale su cui
lavorare: l’effettiva inclusione delle ottimizzazioni con std::execution::par.

Sebbene siano state disattivate per le criticità sopra esposte, è fondamentale
che si trovi un metodo per riuscire a misurare precisamente quelle singole funzioni
aggirando il caching del file system. Così facendo, in caso di esiti positivi sul mi-
glioramento delle performance, queste funzioni parallelizzate si potranno andare
ad abilitare realmente nel codice di produzione, contribuendo all’ottimizzazione
del servizio.

Bibliografia

[1] CERN. High-Luminosity LHC. CERN. 2025. URL: https://home.cern/
science/accelerators/high-luminosity-lhc.

[2] CppReference. std::execution::par. 2025. URL: https://en.cppreference.
com/w/cpp/algorithm/execution_policy_tag_t.

[3] CrowCpp. Crow: A Fast and Easy to use microframework for the Web. 2025. URL:
https://crowcpp.org/.

[4] John D. Hunter. Matplotlib: Visualization with Python. 2025. URL: https:
//matplotlib.org/.

[5] IBM. IBM Spectrum Scale (GPFS). Filesystem parallelo ad alte prestazioni.
2024. URL: https://www.ibm.com/products/spectrum-scale.

[6] ISO/IEC 14882:2017 Programming languages — C++. International Organiza-
tion for Standardization. 2017. URL: https://www.iso.org/standard/
68564.html.

[7] ISO/IEC 14882:2020 Programming languages — C++. International Organiza-
tion for Standardization. 2020.

[8] M. Jones, J. Bradley e N. Sakimura. JSON Web Token (JWT). RFC 7519. Mag.
2015. URL: https://tools.ietf.org/html/rfc7519.

[9] Christopher M. Kohlhoff. Boost.Asio. Libreria C++ per I/O asincrono e net-
working. 2025. URL: https://www.boost.org/doc/libs/release/
doc/html/boost_asio.html.

[10] Locust - An open source load testing tool. 2025. URL: https://locust.io/.

[11] Scott Meyers. Effective Modern C++. O’Reilly Media, 2014.

[12] Repository ufficiale con documentazione interna del progetto. Materiale interno
pubblicato. 2025. URL: https://github.com/glxcee/Stormtape-
Optimization.

[13] SQLite Database Engine. 2025. URL: https://www.sqlite.org/.

41

https://home.cern/science/accelerators/high-luminosity-lhc
https://home.cern/science/accelerators/high-luminosity-lhc
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
https://crowcpp.org/
https://matplotlib.org/
https://matplotlib.org/
https://www.ibm.com/products/spectrum-scale
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
https://tools.ietf.org/html/rfc7519
https://www.boost.org/doc/libs/release/doc/html/boost_asio.html
https://www.boost.org/doc/libs/release/doc/html/boost_asio.html
https://locust.io/
https://github.com/glxcee/Stormtape-Optimization
https://github.com/glxcee/Stormtape-Optimization
https://www.sqlite.org/

42 Bibliografia

[14] SQLite Development Team. Write-Ahead Logging. Documentazione ufficiale
SQLite. 2025. URL: https://www.sqlite.org/wal.html.

[15] Bjarne Stroustrup. The C++ Programming Language. 4th. Addison-Wesley,
2013.

[16] The pandas development team. pandas - Python Data Analysis Library. 2025.
URL: https://pandas.pydata.org/.

[17] WLCG. WLCG Data Challenge 2024. Zenodo Record. 2024. URL: https:
//zenodo.org/records/11444180.

[18] Worldwide LHC Computing Grid. WLCG Tape REST API Specification. Re-
pository ufficiale. 2023. URL: https://github.com/wlcg-storage/
wlcg-tape-rest-api.

https://www.sqlite.org/wal.html
https://pandas.pydata.org/
https://zenodo.org/records/11444180
https://zenodo.org/records/11444180
https://github.com/wlcg-storage/wlcg-tape-rest-api
https://github.com/wlcg-storage/wlcg-tape-rest-api

	Introduzione
	Panoramica sul servizio di data management StoRM Tape
	Lo Storage Tiering nel WLCG
	La transizione a HTTP/REST

	Limiti degli approcci tradizionali
	Paradigmi e Tecnologie Abilitanti
	Modern C++ e Parallel Algorithms
	Crow: Microframework C++ per il Web
	SQLite e il Write-Ahead Logging (WAL)

	Metodologia di Validazione: Il Load Testing
	Il limite dei Benchmark "Stateless"
	Testing Comportamentale con Locust

	Parallelizzazione di StoRM Tape e configurazione dei test di carico
	Evoluzione del Core Engine di StoRM Tape
	Da Modello Sequenziale a Parallelo
	Riprogettazione dell'Accesso al Database

	Analisi delle Funzionalità Ottimizzate
	UC1: Stage (Recall Massivo)
	UC2: Monitoraggio (Status Polling)

	Il Framework di Validazione e Benchmark
	Il Client Simulato (Locustfile)
	L'Orchestratore di Benchmark (Benchmark Suite)

	Dettagli implementativi
	Reingegnerizzazione di StoRM Tape (C++)
	Database Connection Pooling con SOCI
	Algoritmi Paralleli in Tape Service

	La Suite di Load Testing (Python)
	Il Client Simulato: locustfile.py
	L'Orchestratore: benchmark.py

	Valutazione tramite uno strumento creato ad-hoc
	Efficienza: Valutazione Quantitativa
	Ambiente e Metodologia di Test
	Analisi del Caso Base: StoRM Tape Sequenziale
	Impatto della Parallelizzazione
	Scalabilità con Utenti Concorrenti
	Stress Test Complessivo (200 Files/Request)

	Efficacia: Valutazione Qualitativa

	Conclusioni
	Analisi critica del lavoro svolto
	Motivi di orgoglio
	Considerazioni di modestia: il caso della parallelizzazione

	Sviluppi futuri

	Bibliografia

