ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

Dipartimento di Informatica - Scienza e Ingegneria - DISI

Corso di Laurea in Informatica

Applicazione di computazione parallela
per l’ottimizzazione di un servizio
di Data Management

Relatore: Presentata da:
Fabio Vitali Angelo Ruggieri
Correlatore:

Francesco Giacomini

Sessione del 17 Dicembre 2025
Anno Accademico 2024/2025






Indice

1 Introduzione

2 Panoramica sul servizio di data management StoRM Tape

2.1 Lo Storage Tieringnel WLCG . . . . ... ...............
2.1.1 Latransizionea HTTP/REST . ... ... ... ... .....
2.2 Limiti degli approcci tradizionali . . . .. ... ............
2.3 Paradigmi e Tecnologie Abilitanti . . . . .. ... ... ........
2.3.1 Modern C++ e Parallel Algorithms . . . . .. ... ... ...
2.3.2 Crow: Microframework C++ perilWeb . . . . .. ... ...
2.3.3 SQLite e il Write-Ahead Logging WAL) . . . . ... ... ..
2.4 Metodologia di Validazione: Il Load Testing . . . . . . ... ... ..
241 Illimite dei Benchmark "Stateless" . . . ... ... ... ...
242 Testing Comportamentale con Locust . . . .. ... ... ..

Parallelizzazione di StoRM Tape e configurazione dei test di carico

3.1 Evoluzione del Core Enginedi StoRM Tape . . . . . ... ... ...
3.1.1 Da Modello Sequenziale a Parallelo . . ... .........
3.1.2 Riprogettazione dell’Accesso al Database . . . . .. .. ...

3.2 Analisi delle Funzionalita Ottimizzate . . ... ... ... ... ...
3.21 UCI: Stage (Recall Massivo) . . . . ... ............
3.2.2 UC2: Monitoraggio (Status Polling) . . ... .........

3.3 1l Framework di Validazione e Benchmark . . . . . .. ... ... ..
3.3.1 Il Client Simulato (Locustfile) . . . ... ... ... ......
3.3.2 L'Orchestratore di Benchmark (Benchmark Suite) . . . . ..

Dettagli implementativi

4.1 Reingegnerizzazione di SStoRM Tape (C++) . . . .. ... ... ...
41.1 Database Connection PoolingconSOCI . . . . ... ... ..
41.2 Algoritmi Paralleli in Tape Service . . . . ... ........

4.2 La Suite di Load Testing (Python) . . . ... ..............

3

10
10
11
11
12
12
13
13
13

15
15
16
16
17
17
17
18
18
18



4 Indice
421 Il Client Simulato: locustfilepy . . . . ... ... ... .. .. 26

422 L'Orchestratore: benchmark.py . . . .. ... ... ... .. 28

5 Valutazione tramite uno strumento creato ad-hoc 31
5.1 Efficienza: Valutazione Quantitativa . . . . ... ... ... ... .. 31
511 Ambiente e MetodologiadiTest . .. ............. 31

5.1.2 Analisi del Caso Base: StoRM Tape Sequenziale . . ... .. 32

5.1.3 Impatto della Parallelizzazione . . . . .. ... ... ... .. 33

5.1.4 Scalabilita con Utenti Concorrenti . . . ... ... ...... 36

5.1.5 Stress Test Complessivo (200 Files/Request) . . . . ... .. 36

5.2 Efficacia: Valutazione Qualitativa . . . . .. ... ... ... ..... 38

6 Conclusioni 39
6.1 Analisi critica del lavorosvolto . . . ... ... ... ......... 39
6.1.1 Motividiorgoglio . ... ... ... ... ... . ...... 39

6.1.2 Considerazioni di modestia: il caso della parallelizzazione . 40

6.2 Sviluppifuturi . . . ... ... o 40
Bibliografia 41



Capitolo 1

Introduzione

La fisica delle alte energie € una disciplina che, per natura, spinge costantemente
al limite le frontiere della tecnologia informatica. Gli esperimenti condotti tramite
acceleratori di particelle, come il Large Hadron Collider (LHC) del CERN di
Ginevra, producono quantita di dati grezzi senza precedenti, che devono essere
archiviati, distribuiti e analizzati da una rete globale di centri di calcolo.

Attualmente, I'infrastruttura di calcolo mondiale (WLCG - Worldwide LHC
Computing Grid) si trova di fronte a una transizione importante: 1’avvento del
High-Luminosity LHC (HL-LHC) [1]. Questo aggiornamento degli apparati
dell’acceleratore mira ad aumentare la luminosita — parametro che indica il numero
di collisioni potenziali per unita di tempo e area — di un fattore dieci rispetto ai
valori nominali attuali. Un aumento della luminosita si traduce direttamente in
un incremento proporzionale della quantita di dati acquisiti dagli esperimenti.

Le stime attuali per 1'era HL-LHC prevedono un traffico di rete aggregato
globale necessario di circa 9.6 Tbps [17]. In questo scenario, il CNAF (Centro
Nazionale Tecnologie Informatiche) del'INFN a Bologna, che opera come uno
dei centri di livello Tier-1 della rete WLCG (oggi situato presso il Tecnopolo),
dovra sostenere circa il 10% di tale carico, gestendo flussi nell’ordine di 1 Tbps.
Attualmente, il centro gestisce un archivio di circa 100 PB su disco e ben 200 PB su
nastro magnetico.

E proprio in questo contesto che si inserisce il problema affrontato in questa tesi.
Mentre i dati su disco sono immediatamente accessibili, una frazione rilevante e
crescente dei dati grezzi risiede su nastro (fape), un supporto economico e capiente
ma caratterizzato da latenze di accesso elevate. L'operazione di recupero dati da
nastro, detta staging, € un processo critico che coinvolge interazioni complesse tra
file system distribuiti (come GPFS) e database di gestione. Le attuali soluzioni
software per la gestione dello staging, basate spesso su architetture single-threaded
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6 Introduzione

o con concorrenza limitata, rischiano di diventare un serio collo di bottiglia. Senza
un intervento preventivo sull’efficienza del software di gestione, l'infrastruttura
di storage potrebbe non riuscire a rendere disponibili i dati ai ricercatori con le

tempistiche richieste dai nuovi esperimenti.

Obiettivi e Contributo

Questa tesi, svolta in collaborazione con I'INFN, si pone 1'obiettivo di evolvere
l'architettura di StoRM Tape, il servizio responsabile delle operazioni di staging
presso il Tier-1 del CNAF. Lo scopo & superare i limiti delle implementazioni attuali
valutando 1’adozione di paradigmi di programmazione parallela e concorrente.

La soluzione proposta si basa su due pilastri tecnologici:

* L'impiego degli strumenti di concorrenza moderni offerti dallo standard
C++20, per trasformare un’applicazione sequenziale in un sistema capace di

gestire richieste concorrenti voluminose senza bloccare le risorse di calcolo.

* L’integrazione di strategie di ottimizzazione dell’accesso ai dati persistenti
(database SQLite), identificati come punto critico nelle architetture ad alto
throughput.

Valutazione Sperimentale

Per validare I'approccio, é stata progettata una suite di load testing personalizzata
basata sul framework Locust. Questo ha permesso di simulare pattern di traffico
realistici, stressando il sistema con payload complessi in proporzione simili a
quelli previsti durante le "Data Challenge" del WLCG [17].

I risultati sperimentali hanno offerto spunti significativi e, in parte, controin-
tuitivi. Sebbene l'introduzione del parallelismo offra vantaggi teorici evidenti,
I’analisi ha dimostrato che in un contesto fortemente I/O bound — dove la velocita
e dettata dalla risposta del file system e del disco — I'aumento indiscriminato
dei thread puo essere controproducente. I benchmark evidenziano come 1'in-
cremento prestazionale pilt netto e stabile sia stato ottenuto combinando una
concorrenza controllata con 1’ottimizzazione mirata del sottosistema di database
(specificamente 1'adozione della modalita WAL, Write-Ahead Logging).

Il risultato di questo lavoro & un sistema piu robusto, prevedibile e pronto a
scalare per sostenere le sfide imposte dalla prossima generazione di esperimenti

di fisica delle alte energie.
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Struttura della disserazione di tesi

Il presente elaborato e organizzato come segue:

e ]l Capitolo 2 descrive il contesto scientifico del WLCG, il ruolo del Tier-1 del
CNAF e le sfide poste da HL-LHC.

¢ Il Capitolo 3 introduce le tecnologie abilitanti utilizzate (C++ Moderno,
SQLite, REST API e GPFS).

¢ Il Capitolo 4 analizza l’architettura software di StoRM Tape e le modifiche
architetturali proposte.

¢ Il Capitolo 5 dettaglia 'implementazione, la metodologia di test con Locust
e I'analisi critica dei benchmark effettuati.

¢ II Capitolo 6 trae le conclusioni e delinea gli sviluppi futuri per la messa in
produzione del servizio.






Capitolo 2

Panoramica sul servizio di data

management StoRM Tape

La gestione dei dati su scala Petabyte rappresenta una delle sfide pit ardue per
I'infrastruttura di calcolo scientifico contemporanea. Questo capitolo analizza lo
stato dell’arte dei sistemi di storage nel contesto della fisica delle alte energie, evi-
denziando i limiti implementativi delle soluzioni precedenti di fronte ai requisiti
del prossimo High-Luminosity LHC [1]. Successivamente, vengono introdotti i
paradigmi di programmazione concorrente e le tecnologie di persistenza (SQLite
WAL [14]) e testing (Locust) che costituiscono i blocchi fondanti per il superamento

di tali limitazioni.

2.1 Lo Storage Tiering nel WLCG

Il modello di calcolo del CERN, organizzato nella Worldwide LHC Computing
Grid (WLCG)!, si basa su una gerarchia di centri di calcolo. I centri Tier-12, come il
CNAF dell'INFN, hanno la responsabilita primaria della custodia a lungo termine
dei dati grezzi (RAW data®).

Data la mole di informazioni, € economicamente e tecnologicamente insoste-
nibile mantenere tutti i dati su dischi ad accesso rapido (HDD/SSD). Si adotta

1 progetto Worldwide LHC Computing Grid (WLCG) & una collaborazione globale di circa
160 centri di calcolo in pit1 di 40 paesi, che collega infrastrutture di rete nazionali e internazionali.

2Nell’architettura WLCG, il Tier-0 (CERN) acquisisce i dati dai rivelatori. I Tier-1 (centri nazio-
nali come il CNAF) custodiscono una copia dei dati grezzi e forniscono capacita di riprocessamento.
I Tier-2 (universita) sono dedicati all’analisi e alla simulazione.

3] RAW data sono le informazioni digitali prodotte direttamente dall’elettronica dei rivelatori,
non ancora ricostruite in oggetti fisici (elettroni, muoni, ecc.).

9



10 Capitolo 2. Panoramica sul servizio di data management StoRM Tape

quindi un modello HSM (Hierarchical Storage Management)* che prevede due livelli

di qualita del servizio:
¢ Disk Pool (Online): Cache ad alte prestazioni per i dati in uso corrente.

* Tape Library (Custodial): Librerie di nastri magnetici per I’archiviazione a
lungo termine, caratterizzate da costi ridotti ma latenze di accesso elevate

(minuti o ore).

2.1.1 Latransizione a HTTP/REST

Storicamente, 1'interazione con questi sistemi era mediata dal protocollo SRM
(Storage Resource Manager)®, che si & pero rivelato pesante, complesso da mantenere
e non allineato con gli standard web moderni. La comunita WLCG ha quindi
avviato una transizione verso interfacce standard HTTP/WebDAYV [18]. Questo
cambio di paradigma richiede che i servizi di storage espongano API RESTful®
capaci di gestire operazioni complesse (come il Recall’ da nastro) attraverso verbi
HTTP standard (POST, GET, DELETE).

2.2 Limiti degli approcci tradizionali

In un’architettura server classica (ad esempio, un server web che gestisce una
richiesta per thread), quando arriva una richiesta che necessita di interagire con
il filesystem o con il sistema a nastro, il thread si blocca in attesa della risposta
(stato Wait). Questo fenomeno & noto come Blocking I/ 08. Nei sistemi HSM, le
operazioni di verifica di esistenza file o di interrogazione dello stato del nastro
possono richiedere tempi significativi, specialmente se il filesystem sottostante e

sotto carico.

4HSM é una tecnica di virtualizzazione dello storage che sposta automaticamente i dati tra
supporti ad alto costo/alta velocita (dischi) e supporti a basso costo/bassa velocita (nastri) in base
a policy di accesso e frequenza di utilizzo.

Protocollo Grid standardizzato per gestire lo spazio di storage distribuito e negoziare
trasferimenti di file, spesso implementato tramite SOAP/XML.

®REST (Representational State Transfer) & uno stile architetturale per sistemi distribuiti che
utilizza i verbi HTTP (GET, POST, PUT, DELETE) per manipolare risorse identificate da URL

711 Recall dal nastro & processo di recupero o ripristino di dati archiviati su supporti a nastro
magnetico.

8Nel Blocking 1/0, il thread chiamante viene sospeso dal sistema operativo finché 1'operazione
di input/output non & completata. Durante questo tempo, il thread non pud eseguire altre
istruzioni, sprecando cicli CPU potenziali o occupando risorse di memoria.
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Un approccio sequenziale o scarsamente parallelizzato porta rapidamente a
due fenomeni degradanti nel caso il collo di bottiglia sia I'implementazione del

software e non il file system a cui si affida:

1. Resource Starvation: Tutti i thread del server sono bloccati in attesa di1/0O,

rendendo il servizio irraggiungibile anche per richieste semplici.

2. Increased Tail Latency: La latenza percepita dagli utenti non segue una
distribuzione normale, ma presenta una "coda lunga" (alti percentili P95’ o
P99).

2.3 Paradigmi e Tecnologie Abilitanti

Per superare i limiti di scalabilita sopra descritti, € necessario adottare tecnologie
che permettano di disaccoppiare la logica di controllo (ricezione richieste) dalla
logica diI/O (esecuzione su disco/DB).

2.3.1 Modern C++ e Parallel Algorithms

I linguaggio C++ ha subito una profonda evoluzione con l'introduzione dello
standard C++17 [6], che ha rivoluzionato il modo di scrivere codice concorrente
integrando la parallelizzazione direttamente nella libreria standard (STL).

La novita pit significativa e I'introduzione delle Execution Policies nel header
<execution>. Questo permette di trasformare algoritmi classici come
std::for_each, std::transform o std: :reduce in operazioni parallele
semplicemente aggiungendo un parametro. L'utilizzo della policy
std::execution: :par [2] istruisce il compilatore a distribuire il carico di lavo-
ro su pitt thread disponibili, sfruttando le capacita multi-core delle moderne CPU
senza che lo sviluppatore debba gestire manualmente la creazione e il corretto
assegnamento dei processi. Questo approccio dichiarativo ("cosa fare" invece di
"come farlo") riduce la complessita del codice e minimizza gli errori comuni della
programmazione concorrente, come le race condition'?, delegando 1'ottimizzazione

del thread-pool alla libreria sottostante.

%11 percentile P95 indica il valore sotto il quale ricade il 95% delle osservazioni. Nel networking,
€ una metrica critica per valutare la stabilita del servizio escludendo gli outlier pit1 estremi.
10Race Condition: anomalia in cui il risultato di un programma dipende dalla sequenza tem-
porale o dall’ordine di esecuzione di thread o processi non controllabili, portando spesso a bug
difficili da riprodurre.
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2.3.2 Crow: Microframework C++ per il Web

Per l'esposizione delle API REST, la scelta tecnologica ricade su Crow [3]. A
differenza di framework storici pit pesanti, Crow & un microframework header-
only'! ispirato a Flask (Python) ma scritto in C++ moderno. La sua caratteristica
fondamentale e 1’architettura asincrona basata su Boost.Asio [9]. Questo permette
di gestire migliaia di connessioni concorrenti utilizzando un numero limitato di
thread, delegando le operazioni di rete al sistema operativo (tramite epo11!?
su Linux). Tuttavia, Crow da solo non risolve il problema del blocking I/0O
sul filesystem; & necessario integrarlo con una logica applicativa capace di fare

offloading dei compiti pesanti.

2.3.3 SQLite e il Write-Ahead Logging (WAL)

La persistenza dello stato delle richieste (quali file sono stati richiesti, il loro stato
di avanzamento) e affidata a SQLite [13]. Tradizionalmente, SQLite & considerato
un database inadatto ad alta concorrenza a causa del suo meccanismo di locking a
livello di file, che inibisce le letture durante una scrittura.

Tuttavia, I'introduzione della modalita WAL (Write-Ahead Logging) ha cam-
biato radicalmente questo scenario.

In modalita WAL:

* Le modifiche non vengono scritte immediatamente nel file database princi-

pale, ma in un file di log separato (WAL file).

* Questo permette ai lettori di accedere al database principale mentre uno

scrittore sta aggiungendo dati al WAL.

e La concorrenza aumenta drasticamente (Readers do not block Writers, Writers
do not block Readers).

Per sfruttare questa caratteristica in un’applicazione multithread C++, & necessario
un design attento della gestione delle connessioni, evitando la condivisione di

handle non thread-safe.

HLibreria composta esclusivamente da file header (-h o .hpp), che non richiede una compilazione
separata in file oggetto (.0 0 .lib). Il codice viene compilato direttamente nell’unita di traduzione
che lo include.

126p011 & una syscall di Linux per il monitoraggio scalabile di molteplici descrittori di file. E
molto pit1 efficiente di select o s quando si gestisce un alto numero di connessioni simultanee.
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24 Metodologia di Validazione: Il Load Testing

La validazione di sistemi di data management complessi come StoRM Tape richie-
de un approccio metodologico che vada oltre il semplice test di raggiungibilita
delle API. In particolare, quando I’obiettivo & misurare l'efficacia di algoritmi pa-
ralleli interni, il test deve essere in grado di generare carichi di lavoro che stressino

specificamente le componenti reingegnerizzate.

2.4.1 1l limite dei Benchmark "Stateless"

Gli strumenti di benchmarking tradizionali, come Apache Benchmark (ab) o wrk,
sono progettati per misurare le prestazioni pure del server web (RPS - Requests
Per Second) inviando richieste identiche e indipendenti tra loro ("Stateless").

Tuttavia, questo approccio ¢ inadeguato per protocolli asincroni come quello di
gestione del nastro. Il protocollo Tape REST prevede un flusso logico sequenziale
e "Stateful:

1. Il client invia una richiesta di lavoro (Stage).
2. Il server risponde con un identificativo univoco (Request ID).
3. Il client deve usare quell’ID per interrogare periodicamente lo stato (Status).

Uno strumento che si limita a "bombardare" I'endpoint di sottomissioni (Stage
requests) senza seguire il flusso logico creerebbe solo migliaia di job orfani nel
database, senza mai testare la capacita del sistema di portarli a termine, falsando

completamente la misurazione delle prestazioni reali.

2.4.2 Testing Comportamentale con Locust

Per superare questi limiti, in questo lavoro e stato selezionato il framework Locust
[10]. Sebbene Locust sia famoso per la sua capacita di simulare migliaia di utenti,
la caratteristica determinante per questo progetto ¢ la sua natura Code-Driven.

A differenza di altri tool basati su configurazioni XML o interfacce grafiche,
in Locust il comportamento dell’utente virtuale & definito interamente tramite
codice Python. Cio permette di modellare scenari complessi che richiedono logica
condizionale e gestione della memoria a breve termine.

Nel contesto specifico della validazione del parallelismo su file system, Locust
permette di:
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* Gestire lo Stato: Memorizzare 'ID ricevuto nella prima risposta e utilizzarlo

nelle richieste successive.

¢ Simulare Batch Variabili: Invece di aumentare il numero di utenti, e pos-
sibile programmare un singolo utente che invia richieste con payload di
dimensioni crescenti (da decine a migliaia di file), isolando cosi il tempo di
elaborazione interno del server dalle latenze di gestione delle connessioni di

rete.

* Validazione Semantica: Verificare non solo che il server risponda con codice
HTTP 200, ma che il contenuto JSON della risposta sia coerente con le
aspettative (es. che tutti i file richiesti siano effettivamente passati allo stato
"DONE").

L’adozione di questo strumento sposta il focus dal semplice "stress test" di rete
alla validazione prestazionale della logica applicativa, permettendo di quantifica-
re con precisione il guadagno ottenuto grazie alla parallelizzazione degli algoritmi
di backend.



Capitolo 3

Parallelizzazione di StoRM Tape e
configurazione dei test di carico

L’obiettivo di questo lavoro di tesi e stato superare i limiti strutturali del servi-
zio StoRM Tape, un componente critico nell’infrastruttura di storage del Tier-1
del CNAF. Per rispondere ai requisiti di scalabilita imposti dallo scenario High-
Luminosity LHC, non é stato sufficiente ottimizzare il codice esistente, ma e stato
necessario riprogettare il modello di concorrenza del servizio.

L'intervento si & concentrato sulla rimozione di un "doppio collo di bottiglia":
quello computazionale, legato all’elaborazione sequenziale dei file, e quello legato
alla persistenza, dovuto all’accesso serializzato al database. Parallelamente, e stato
ideato un framework di validazione scientifica basato su Locust, essenziale per
misurare 1’efficacia delle modifiche in scenari realistici.

In questo capitolo viene descritta I’architettura logica della soluzione StoRM
Tape Parallelo, analizzando come il cambio di paradigma verso il parallelismo e
la gestione efficiente delle connessioni possa potenzialmente migliorare le capacita

del sistema.

3.1 Evoluzione del Core Engine di StoRM Tape

StoRM Tape agisce come intermediario tra le richieste HTTP (REST) degli utenti e
le risorse di storage sottostanti (GPFS [5] e Tape Library).

Nella versione Legacy, il servizio gestiva le richieste seguendo un modello
strettamente seriale. Sebbene il server web potesse accettare connessioni multiple,
la logica interna processava le liste di file ("bulk") iterando su un elemento alla
volta. Questo approccio rendeva il tempo di risposta dipendente linearmente dalla
dimensione della richiesta e dalla latenza istantanea del sottosistema di storage.

15
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Il contributo di questa tesi introduce un’architettura che interviene su due
livelli logici distinti ma interdipendenti: il piano di esecuzione e il piano dei dati.

3.1.1 Da Modello Sequenziale a Parallelo

La prima area di intervento riguarda la strategia con cui vengono processate le
richieste massive. Le operazioni di Data Management su nastro coinvolgono spesso
migliaia di file per singola transazione.

Nel vecchio modello architetturale, il sistema operava come un esecutore sin-
golo: ogni operazione di I/O (lettura metadati, verifica esistenza) bloccava il
flusso principale fino al suo completamento. In un contesto di filesystem distri-
buito, dove la latenza di rete e intrinseca, questo comportava lunghi periodi di
inattivita della CPU ("Idle Time") in attesa delle risposte dello storage.

La nuova architettura inverte questo paradigma adottando un modello Scatter-
Gather:

1. Decomposizione (Scatter): La richiesta massiva in ingresso viene immedia-
tamente scomposta in unita di lavoro atomiche (task), ciascuna relativa a un
singolo file.

2. Esecuzione Concorrente: Queste unita vengono affidate a un pool di risorse
di calcolo che le esegue simultaneamente, saturando la capacita di I/O del
sistema sottostante.

3. Aggregazione (Gather): I risultati parziali vengono raccolti e ricomposti in
un’unica risposta per l'utente.

Questo approccio disaccoppia il tempo di elaborazione dal numero di file,
rendendo il sistema resiliente ai rallentamenti dei singoli componenti hardware.

3.1.2 Riprogettazione dell’Accesso al Database

L'introduzione del parallelismo computazionale ha reso evidente un secondo
limite strutturale: la gestione della persistenza. Avere molteplici processi pronti a
lavorare ¢ inutile se tutti devono passare per un unico punto di accesso ai dati.

Per supportare la nuova architettura parallela, il layer di persistenza é stato ridi-
segnato abbandonando il modello a "connessione singola" in favore del pattern

architetturale del Connection Pooling.
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Concettualmente, il sistema non vede pit1 il database come una risorsa esclu-
siva da bloccare per ogni operazione, ma come un servizio condiviso accessibile

attraverso canali multipli. Il Pool agisce come un gestore di risorse che:

* Mantiene un insieme di connessioni al database sempre aperte e pronte

all’uso.

* Assegna temporaneamente una connessione esclusiva a un thread richieden-

te.

e Gestisce il ciclo di vita delle transazioni in modo isolato, evitando che
un’operazione di scrittura lunga blocchi le operazioni di lettura degli altri
task.

Questa evoluzione permette al throughput del database di scalare orizzon-
talmente in funzione delle risorse di calcolo disponibili, rimuovendo il collo di
bottiglia che storicamente limitava le prestazioni dei sistemi basati su SQLite in

scenari multi-thread.

3.2 Analisi delle Funzionalita Ottimizzate

Le modifiche al motore impattano direttamente 'efficienza dei tre principali use
case del protocollo Tape REST [18].

3.2.1 UCI: Stage (Recall Massivo)

L'operazione di Stage rappresenta l'inizio del flusso di recupero dati. Richiede la
validazione dei percorsi logici e la creazione dello stato iniziale nel sistema.

Evoluzione del flusso: Invece di processare la richiesta come una lunga transa-
zione sequenziale, il sistema verifica la validita dei percorsi in parallelo in base
alle decisioni dell’algoritmo di pooling. Questo approccio fa sperare che il sistema
restituisca l'identificativo della richiesta (Request ID) pit1 velocemente.

3.2.2 UC2: Monitoraggio (Status Polling)

Dopo la sottomissione, i client interrogano ripetutamente il server (GET) per sapere
se i file sono pronti.

Evoluzione del flusso: Lo status & un’operazione frequente in cui il client
richiede lo stato corrente di un insieme di file corrispondente ad un Request ID.
Nel design precedente, il sistema verificava lo stato di ogni file sequenzialmente,
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interrogando il filesystem per ciascuno di essi per confermarne la presenza o
I'avvenuto richiamo. Adesso il sistema lancia le verifiche sul filesystem per tutti i
file della richiesta in modo concorrente abbattendo il tempo di latenza necessario

per costruire la risposta.

3.3 Il Framework di Validazione e Benchmark

Per validare scientificamente l'efficacia dell’architettura proposta,  stato necessa-
rio sviluppare un ecosistema di test ad hoc. Gli strumenti generici di benchmark
HTTP non erano in grado di replicare la complessita "a stati" del protocollo Tape
REST.

E stato quindi realizzato un framework basato su Locust, composto da due

elementi software originali sviluppati per questa tesi.

3.3.1 Il Client Simulato (Locustfile)

Il file locustfile.py definisce il comportamento di un utente virtuale che non
silimita a "bombardare" il server, ma simula il ciclo di vita reale di un trasferimento
dati:

* Autenticazione Reale: Gestisce token JWT (JSON Web Token) [8] validi per
operare in ambienti autenticati.

* Macchina a Stati: Implementa la logica Submit — Wait — Status. L'utente
invia una richiesta, attende il Request ID e poi entra in un ciclo di polling

intelligente, interrogando il server finché il lavoro non e concluso.

¢ Carico Misto: Alterna operazioni di scrittura (Stage) a operazioni di lettura
(Archivelnfo) per stressare contemporaneamente tutti i sottosistemi (DB in

scrittura e Filesystem in lettura).

3.3.2 L’Orchestratore di Benchmark (Benchmark Suite)

Per garantire la riproducibilita dei risultati, & stato sviluppato lo script di orche-
strazione benchmark . py. Questo strumento automatizza 1’esecuzione di intere
campagne di test parametriche, variando in modo controllato il numero di file per
richiesta (10, 50, 100, 200) e isolando le variabili.

Al termine dell’esecuzione, I’orchestratore acquisisce i dati grezzi prodotti da
Locust ed elabora le statistiche utilizzando pandas [16], separando le metriche per
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tipologia di endpoint (distinguendo la latenza dello staging da quella dello status).

In particolare inserisce in un file di riassunto le seguenti statistiche:

* Richieste al secondo (throughtput) e quantita di fallimenti (numero di risposte
con codice maggiore di 400)

¢ Latenza media, tempo minimo e il 95 percentile per le richieste di stage, per
quelle del primo giro di status e per quelle del secondo.

Vengono infine prodotti automaticamente dei grafici di tendenza tramite matplotlib
[4], fornendo l'evidenza empirica necessaria per I’analisi prestazionale discussa
nel Capitolo 5.






Capitolo 4

Dettagli implementativi

In questo capitolo vengono approfonditi gli aspetti tecnici del contributo, scenden-
do al livello del codice sorgente. L'obiettivo  fornire una documentazione tecnica
delle modifiche apportate al core C++ di StoRM Tape e dell'implementazione
della suite di test in Python.

Questa sezione e pensata per fornire le informazioni necessarie a uno svilup-
patore che intenda mantenere, estendere o replicare le funzionalita introdotte
[12].

4.1 Reingegnerizzazione di StoRM Tape (C++)

Il servizio StoRM Tape é scritto in C++ moderno (standard C++20 [7]). Le modifi-
che principali hanno riguardato due aree critiche: la gestione della concorrenza

nell’accesso al database e la parallelizzazione degli algoritmi di business logic.

4.1.1 Database Connection Pooling con SOCI

Come discusso nel capitolo precedente, 1'uso di una singola sessione SQLite
rappresentava un punto di serializzazione. Per risolvere il problema, & stata

introdotta la classe soci: :connection_pool.

Modifiche alla classe SociDatabase

Il costruttore della classe SociDatabase e stato modificato per accettare un

riferimento a un pool di connessioni invece che a una singola sessione.

ilclass SociDatabase : public Database {
soci::connection_pool& m_pool; // Nuova implementazione

10 ooc
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Gestione del Lease delle Connessioni

Per ogni operazione che richiede accesso al DB (sia in lettura che in scrittura), e
stato introdotto un helper statico get_session che gestisce il ciclo di vita della

connessione per il thread corrente.

static soci::session& get_session(soci::connection_pool& pool) {
// pool.lease() blocca il thread finche’ non c’e’ una connessione
libera
// Restituisce 1’indice della connessione nel pool

size_t index = pool.lease();

// Ottiene la sessione associata all’indice
static thread_local soci::session& session{pool.at (index) };

return session;

Listing 4.1: Helper per 1'acquisizione della sessione dal pool

Ogni metodo della classe (es. insert, update, £ind) & stato riscritto per
utilizzare questo pattern. Invece di usare m_sqgl direttamente (nella versione
precedente veniva aperta una sola connessione che veniva mantenuta in quella
variabile, ora sostituita da un riferimento all’intero connection_pool), il codice in

questa versione deve invocare get_session per acquisire una sessione locale:

bool SociDatabase::insert (Stageld consté& id, StageRequest const& stage)
{
// Acquisizione di una connessione dedicata al thread
auto& sgl = get_session (m_pool);

soci::transaction tr{sqgl};

// Esecuzione della query sulla connessione isolata

sgl << "INSERT INTO Stage VALUES ...", soci::use(s_entity);

// La transazione viene committata automaticamente alla distruzione
di ’"tr’

// La connessione viene rilasciata automaticamente al pool

Listing 4.2: Funzione per l'inserimento di una stage request nel database,

utilizzando la nuova connection pool
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Questa modifica permette a N thread di eseguire operazioni sul DB con-
temporaneamente, dove N ¢ la dimensione del pool configurata all’avvio in

main.cpp.

4.1.2 Algoritmi Paralleli in Tape Service

I cuore della parallelizzazione logica risiede nel file header
tape_service_utils.hpp. Qui, oltre ad esservi degli estratti di alcune funzio-
nalita presenti altrove, ma necessarie per il corretto funzionamento del programma,
sono state riscritte le funzioni che interagiscono col file system. A queste funzio-
ni sono stati sostituiti i cicli sequenziali con, in base all’evenienza, gli algoritmi
std::transformo std: : for_each, configurati con la policy di esecuzione
parallela (std: :execution: :par).

Di seguito analizziamo i dettagli delle tre implementazioni principali aggiorna-

te.

1. Extend Paths with Localities

Questa funzione associa ad ogni percorso fisico le informazioni sulla sua localita
(es. tape, disk, lost).

Nella modalita parallela, il primo passo fondamentale e la pre-allocazione
del vettore di destinazione. Poiché 'inserimento dinamico in un std: : vector
(tramite push_back) non e thread-safe, € necessario dimensionare il vettore a

priori.

inline auto extend_paths_with_localities (PhysicalPathsé&& paths, Storage
& storage) {
// Resize preventivo: permette ai thread di scrivere
// in posizioni di memoria distinte senza data race.

path_localities.resize(paths.size());

Listing 4.3: Pre-allocazione per accesso parallelo

Successivamente, viene utilizzato 'algoritmo std: : transform con policy
parallela. Ogni thread lavora su un indice specifico, recuperando lo stato del file

dallo storage e costruendo la coppia PathLocality.

std: :transform(std: :execution: :par, paths.begin(), paths.end(),

path_localities.begin(), [&] (PhysicalPath& path) {

// Lettura concorrente (thread-safe) dello stato
auto const locality =

ExtendedFileStatus{storage, path}.locality();
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return PathLocality{std::move (path), locality};
}) i

Listing 4.4: Trasformazione parallela degli attributi

2. Resolve Paths

La funzione resolve_paths ha il compito di risolvere i percorsi logici in fisici e
validare I'esistenza dei file.
L'operazione avviene in-place sugli oggetti File, modificando direttamente i

loro campi interni. Per questo motivo viene utilizzato std: : for_each.

std::for_each(std::execution::par, files.begin(), files.end(),
[&] (auto& file) {
// Risoluzione del percorso (operazione CPU bound)

file.physical_path = resolve(file.logical_ path);

std::error_code ec;
// System call fs::status (operazione I/O bound)

auto status = fs::status(file.physical_path, ec);

// Aggiornamento atomico dello stato del singolo file
if (ec || !fs::is_regular_file(status)) {

file.state File::State::failed;

file.started_at = now;
file.finished_at

now;

Listing 4.5: Risoluzione e validazione parallela

L'utilizzo del parallelismo & qui particolarmente vantaggioso poiché la chiama-
taa fs::status coinvolge operazioni diI/O sul filesystem, che possono essere

eseguite efficacemente in concorrenza.

3. Check File Status

La funzione check_file_ status verifica se lo stato dei file sottomessi & cam-
biato (es. da submitteda started, o da starteda completed).
A differenza delle funzioni precedenti, qui € necessario popolare un vettore

di risultati (files_to_update) la cui dimensione non & nota a priori. Poiché
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emplace_back non e sicuro se chiamato da pitt thread contemporaneamente, &

stato introdotto un meccanismo di sincronizzazione.

Viene dichiarato un std: :mutex locale prima del ciclo parallelo:

inline auto check_file_status(Files& files, Storage& storage, std::
time_t now) {
std::vector<std::pair<PhysicalPath, File::State>> files_to_update;

std: :mutex mx; // Mutex per proteggere files_to_update

Listing 4.6: Definizione del Mutex per la sincronizzazione

All'interno della lambda eseguita in parallelo, quando un thread rileva un
cambio di stato e deve scrivere nel vettore condiviso, acquisisce il lock. L'uso
di std: : scoped_lock garantisce che il lock venga rilasciato automaticamente
all’uscita dallo scope (RAII)!, anche in caso di eccezioni.

// ... logica di controllo stato

// Se lo stato e’ cambiato, acquisiamo il lock

std::scoped_lock 1l{mx};

// Sezione critica: scrittura sicura nel vettore

files_to_update.emplace_back (file.physical_path, file.state);

} // Il lock viene rilasciato automaticamente qui

Listing 4.7: Sezione critica protetta da Scoped Lock

Questo approccio ibrido permette di eseguire i controlli costosi (lettura xattr?
e logica di business) in parallelo, serializzando solo la brevissima operazione di
scrittura dei risultati.

4.2 La Suite di Load Testing (Python)

Per misurare efficacemente i benefici di queste modifiche, e stato necessario svi-
luppare un sistema di test capace di generare carichi di lavoro specifici (richieste
con molti file) e di seguire il protocollo stateful di StoRM Tape.

IRAII (Resource Acquisition Is Initialization): & un approccio che lega la gestione delle risorse
alla durata di vita di un oggetto in stack. La risorsa viene acquisita nel costruttore dell’'oggetto e
viene rilasciata automaticamente quando questo esce dallo scope.

2Extended Attributes (xattr): metadati arbitrari associati a un file, non interpretati dal sistema
operativo ma usati qui per comunicare lo stato del nastro.
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4.2.1 Il Client Simulato: locustfile.py

Ilfile locustfile. py definisce il comportamento dell'utente virtuale StormTapeUser.

Configurazione Dinamica

L’aspetto chiave di questo script € la sua configurabilita tramite variabili d’ambien-
te. Questo permette all’orchestratore esterno di modificare il numero di file per
richiesta (STORM_FILES_PER_REQ) senza dover modificare il codice sorgente.

# Lettura parametri da variabili d’ambiente con valori di default

create_amount = int (os.getenv ("STORM_FILES_PER_REQ", "10"))
token = os.getenv ("AT")
# ... Errore nel caso non venga trovato
sl auth = {"Authorization": f"Bearer {token}"} if token != "" else {}

Listing 4.8: Lettura della configurazione da ambiente

Tra le variabili d’ambiente rilevate e presente anche 'access token, spesso neces-
sario per autenticarsi ed interagire via API con servizi di data management come
StoRM Tape.

Definizione dell’Utente Virtuale

La classe StormTapeUser modella I'agente di test. Una scelta progettuale im-
portante e I'impostazione di wait_time. A differenza dei test utente classici
che includono pause per simulare il tempo di lettura, qui vogliamo testare il

throughput massimo del server, quindi il tempo di attesa ¢ azzerato.

class StormTapeUser (HttpUser) :
# Tempo di attesa nullo per massimizzare il throughput

wait_time = constant (0)

Listing 4.9: Classe User con pacing azzerato

Task Principale: Generazione Payload

Il metodo do_stage_and_status inizia costruendo dinamicamente il payload
JSON. I percorsi vengono generati in modo pseudo-casuale per limitare il rischio
che avvenga caching dei risultati ed hanno questo particolare formato perche
precedentemente sono stati creati 10000 files sul server che si occupa dell’hosting
di StoRM Tape. I files sono stati suddivisi in 100 directories da 100 ognuna e

configurati in modo tale che apparissero come salvati anche su nastro.
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Rtask (3)
def do_stage_and_status (self):
new_files = []
for i in range(create_amount) :
# Genera percorsi del tipo /tape/dir055/filel12
dirtext = f"{random.randrange(l, 101):03d}"
filetext = f"{random.randrange(l, 101):03d}"
new_files.append ({"path": f"/tape/dir{dirtext}/file{
filetext}"})

payload = {"files": new_files}

Listing 4.10: Generazione dinamica dei percorsi

Task Principale: Sottomissione (POST stage)

Il client invia la richiesta di stage. Se I'operazione ha successo (codice 200 o 201),
e fondamentale estrarre il requestId dalla risposta JSON, poiché servira per la

fase successiva.

with self.client.post ("/api/vl/stage",
headers=auth,
json=payload,
catch_response=True,

name="stage") as resp:

if resp.status_code in (200, 201):
try:
J = resp.json|()
# Salviamo 1’ID per lo status successivo
self.request_id = j.get ("requestId")
except Exception as e:
resp.failure (£"JSON parse error: {e}l")
else:

resp.failure (f"Stage failed: {resp.status_code}")

Listing 4.11: Invio POST e recupero Request ID

Task Principale: Status (GET stage)

Una volta ottenuto I'ID, 1'utente consegue due volte uno status della richiesta.
Queste due operazioni sono distinte e vengono misurate separatamente perche
StoRM Tape internamente segue un processo diverso dalla seconda status in poi

(sulla stessa richiesta). La prima status in assoluto fa si che avvenga:
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1. Un primo accesso di interrogazione al database, che non sapra ancora

indicare a che punto e il processo di recall dei files.
2. Un effettivo controllo della presenza di questi files nel sistema.
3. Un aggiornamento finale nel database con la loro posizione.

Dalla seconda status in poi StoRM Tape si ferma alla prima interrogazione del

database, che questa volta avra gia pronta la risposta.

if self.request_id:
for 1 in range(2):
r = self.client.get (f"/api/vl/stage/{self.request_id}",
headers=auth, verify=False,

name=f"get_stage{i+1}")

Listing 4.12: Ciclo di Status

4.2.2 L'Orchestratore: benchmark.py

Per automatizzare 1’esecuzione di test con carichi crescenti, e stato creato uno

script wrapper in Python.

Loop di Esecuzione

Lo script itera su una lista predefinita di carichi (FILES_PER_REQUEST_LIST).
Per ogni iterazione, lancia un nuovo processo Locust impostando la variabile

d’ambiente appropriata.

FILES_PER_REQUEST_LIST = [10, 50, 100, 200]

def run_benchmark_suite() :
for n_files in FILES_PER REQUEST LIST:

# Passaggio del parametro di carico tramite ENV

env = os.environ.copy ()
env ["STORM_FILES_PER_REQ"] = str(n_files)
cmd = [

"locust", "-f", LOCUSTFILE,
"——users", str (USERS),

"——run-time", DURATION,

"-—headless", # Esecuzione senza UI
"——csv", prefix, # Export dei dati grezzi

"——only—-summary"
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subprocess.run (cmd, check=True, env=env)

Listing 4.13: Loop principale dell’orchestratore

Analisi Differenziata (Pandas)

Dopo ogni esecuzione, lo script legge il CSV prodotto da Locust. Un passaggio
critico e la separazione delle metriche. Locust aggrega i tempi di risposta, ma per
noi e vitale distinguere la latenza della POST (che scrive nel DB) da quella della
GET (che legge).

N

df = pd.read_csv(stats_file)

# Filtriamo per nome della richiesta (tag 'name’ in locustfile)

stage_row = df[df["Name"] == "stage"] # POST

poll_row = df[df["Name"] == "get_stagel"] # GET

poll2_row = df[df["Name"] == "get_stage2"] # 2nd GET

# ... Raccolta precisa delle metriche in una struttura apposita

Listing 4.14: Filtraggio metriche con Pandas

Questi dati puntuali vengono poi aggregati in una struttura dati finale utilizzata

per generare i grafici di confronto presentati nel capitolo dei Risultati.







Capitolo 5

Valutazione tramite uno strumento

creato ad-hoc

In questo capitolo vengono presentati i risultati ottenuti dalla campagna di test
effettuata sul sistema StoRM Tape parallelizzato. L’analisi & suddivisa in due
macro-aree: una valutazione quantitativa dell’efficienza, basata sulle metriche di
performance raccolte, e una valutazione qualitativa dell’efficacia, focalizzata sui

miglioramenti funzionali e manutentivi del software.

5.1 Efficienza: Valutazione Quantitativa

L’obiettivo di questa sezione e misurare I'impatto che ha avuto l'attivazione della
modalita WAL di SQLite, che ha permesso I'implementazione di una connection
pool per gli accessi al suo database, sulle prestazioni del sistema, confrontando la

versione originale (sequenziale) con la nuova (parallela).

5.1.1 Ambiente e Metodologia di Test

I test sono stati eseguiti su una macchina di produzione ospitata sui server del-
I'INFN, equipaggiata con il filesystem distribuito enterprise GPFS (IBM Spectrum
Scale).

E importante notare che, in una fase preliminare, si & tentato di eseguire dei
micro-benchmark interni per misurare puntualmente la durata delle singole fun-
zioni parallelizzate tramite std: :execution: : par. Tuttavia, I'efficace meccani-
smo di caching implementato da GPFS ha reso i tempi di esecuzione delle system
call estremamente volatili e difficili da isolare, invalidando di fatto misurazioni su
scala microscopica.

31
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Per tale motivo sono state tenute disabilitate le modifiche fatte alle funzioni
sopracitate e la validazione é stata condotta esclusivamente tramite lo strumento
di benchmarking esterno basato su Locust (descritto nei capitoli precedenti), che
misura le prestazioni end-to-end dal punto di vista del client.

Protocollo di Test

Ogni sessione di test segue un protocollo incrementale standardizzato, diviso in 4

fasi da 10 secondi ciascuna, in cui varia il carico di lavoro per richiesta:

¢ 4 Fasi da 10s: Il numero di files per richiesta varia da 10, 50, 100 e 200 file a
seconda della fase.

e Utenti Concorrenti: Il numero di utenti virtuali concorrenti varia tra 1, 2, 4,

8 e 16 a seconda dello scenario.
Sono state confrontate 4 configurazioni principali del servizio:

1. Sequenziale (Stato dell’arte): La versione originale di StoRM Tape con
modalita WAL disattivata, operante in modalita sequenziale su 1 thread
dedicato.

2. Sequenziale (Originale modificata): La versione originale di StoRM Tape,
ma con modalita WAL attivata, sempre operante in modalita sequenziale su
1 thread dedicato.

3. Parallelo (Single-threaded): La nuova versione con modalita WAL attiva e
connection pool di accessi al database SQLite, limitata a 1 thread dedicato.

4. Parallelo (Multi-threaded): La nuova versione configurata per utilizzare
3 thread dedicati (sui 4 disponibili, riservandone uno al framework web

Crow).

5.1.2 Analisi del Caso Base: StoRM Tape Sequenziale

Per stabilire una baseline, analizziamo il comportamento della versione originale
con un singolo utente concorrente. Il resoconto seguente rappresenta 1'output
generato alla fine di ogni sessione di test.

Come evidenziato in Tabella 5.1 e nelle Figure 5.1 e 5.3, all’aumentare del nu-
mero di file per richiesta, il throughput (RPS) diminuisce drasticamente, passando
da 12.36 a 5.81 req/s. Parallelamente, la latenza media dell’operazione di Stage

(scrittura su DB e fs) cresce in modo lineare, indicando che il tempo di elaborazione
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Tabella 5.1: Metriche prestazionali: StoRM Tape Sequenziale, 1 Utente Concorrente

Files/ RPS  Fail Stage Avg Stage Stage Status1 Status1 Status1 Status2 Status2 Status2
Req (ms) P95 Min Avg (ms) P95 Min  Avg (ms) P95 Min
10 12.36 0.00 93.87 100.00 85.46 80.38 85.00 71.88 67.72 74.00 62.81
50 11.53 0.00 101.05 140.00 85.78 86.66 91.00 55.43 71.13 76.00 67.41
100 9.53 0.00 179.75 230.00 141.28 67.28 95.00 43.18 66.66 74.00 27.86

200 5.81 0.00 357.90 540.00 289.33 75.00 100.00 56.71 70.42 74.00 47.11

e direttamente proporzionale al numero di file, un comportamento tipico dell’e-
secuzione sequenziale. Le operazioni di Status (lettura), invece, mantengono

latenze relativamente stabili (Figura 5.2).

—e— Siage Avg
600 § Stage Min-Pg5

500

&
S

Latenza Media (ms)
<]
(=]

5]
=}

100

25 50 75 100 125 150 175 200
Numero di File per Richiesta

Figura 5.1: Latenza Stage (Sequenziale, 1 Utente)

5.1.3 Impatto della Parallelizzazione

Per valutare 'efficacia del refactoring, confrontiamo le prestazioni fissando un sin-
golo utente concorrente nelle tre configurazioni, sia per la latenza dell’operazione
Stage che per il numero di richieste al secondo totali (Figura 5.4 e Figura 5.5).
Nel caso della latenza dell’operazione Stage, il grafico non mostra apparenti
cambiamenti delle performance, al contrario del grafico delle Richieste al secondo,
che invece fa vedere un netto miglioramento delle prestazioni nella versione pa-
rallela rispetto a quella sequenziale. Tuttavia, in entrambi si osserva un fenomeno
interessante: il miglioramento ottenuto passando dalla versione parallela single-

threaded a quella multi-threaded (3 server threads) e marginale. Questo suggerisce
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Figura 5.2: Latenza Status (Sequenziale, 1 Utente)
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Figura 5.3: Variazione RPS al variare del carico (Sequenziale, 1 Utente)
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Figura 5.4: Confronto Latenza Stage: Sequenziale vs Parallelo (1 e 3 server threads)
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Figura 5.5: Confronto RPS: Sequenziale vs Parallelo (1 e 3 server threads)
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che, per un singolo utente, il collo di bottiglia potrebbe essersi spostato dalla CPU
all'l/O del file system o ai lock di sincronizzazione necessari per 1’aggiornamento
del database.

5.1.4 Scalabilita con Utenti Concorrenti

Aumentando il numero di utenti concorrenti (Figura 5.6), il sistema dimostra
una buona capacita di scaling. Il throughput complessivo aumenta all’aumentare
della concorrenza, indicando che il server riesce a gestire efficientemente richieste

multiple parallele, saturando al meglio le risorse disponibili.

Solo 1 Server Thread Attivo

—8— Sequenziale - 1 Utente
Parallelo - 1 Utente
Parallelo - 2 Utenti

—&— Parallelo - 4 Utenti

140 - —e— Parallelo - 8 Utenti

—8— Parallelo - 16 Utenti

160 +

120 4

100

80

Richieste al secondo

60

40

204

—r

25 50 75 100 125 150 175 200
Numero di File per Richiesta

Figura 5.6: Scaling RPS al variare del carico per diversi utenti concorrenti

5.1.5 Stress Test Complessivo (200 Files/Request)

L'analisi finale si concentra sullo scenario pit1 gravoso: richieste contenenti 200 file
ciascuna. La Figura 5.7 riassume 1'andamento del throughput per 4 categorie di
esperimenti al variare degli utenti concorrenti. In questo confronto ¢ stata tenuta
in conto anche la configurazione del server con la versione sequenziale, ma con
la modalita WAL attivata. Cosi facendo, abbiamo potuto avere una panoramica
completa sull'impatto che ha sulle perfomance la connection pool per gli accessi al

database, non implementata nelle configurazioni sequenziali.
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Figura 5.7: RPS Totali per categoria (Carico: 200 file/richiesta)

Sinota chiaramente il salto prestazionale delle due categorie parallele rispetto a
quelle sequenziali. Tuttavia, superata la soglia degli 8 utenti concorrenti, si registra
una flessione del throughput in tutte le configurazioni. Questo comportamento
indica il raggiungimento di un punto di saturazione del sistema, probabilmente
dovuto alla congestione del database. Inoltre, persiste il trend osservato preceden-
temente: lo scarto tra parallelo single-threaded e multi-threaded rimane contenuto,
confermando che I'overhead di gestione dei thread o l’attesa su risorse condivise
(mutex) limita il guadagno teorico del calcolo parallelo puro in questo specifico

scenario.

Ad ogni modo, la Figura 5.8, anch’essa includendo la configurazione sequen-
ziale con modalita WAL attiva, conferma il miglioramento dal punto di vista della
latenza: la versione parallela mantiene tempi di risposta significativamente piti

bassi rispetto a quelle sequenziali anche sotto forte carico.

Questi ultimi confronti fanno capire che I'attivazione della modalita WAL in
SQLite da sola non comporta un miglioramento sicuro delle perfomance, difatti le
due configurazioni sequenziali differiscono di molto poco nei grafici. La scelta piu
conveniente, dunque, sembra essere sfruttarla al meglio, introducendo logiche di

concorrenza negli accessi al database per trarne il piti possibile i benefici.
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Fissati 200 Files per richiesta
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Figura 5.8: Confronto Latenza Media Stage al variare degli utenti (Sequenziale vs
Parallelo)

5.2 Efficacia: Valutazione Qualitativa

Al di 1a delle metriche puramente numeriche, il lavoro svolto ha portato migliora-

menti significativi nella qualita del software e nella sua manutenibilita.

* Flessibilita: L'architettura del software e ora ancor piu predisposta al paral-
lelismo essendo il passaggio da un’esecuzione sequenziale a una parallela

finalmente implementato in maniera vera e propria.

¢ Usabilita: Dal punto di vista dell’utente finale (il client REST), I'aggiorna-
mento & completamente trasparente. Le funzionalita e le interfacce API sono
rimaste invariate, garantendo la totale retrocompatibilita, ma offrendo tempi
di risposta ridotti per batch di grandi dimensioni.

* Manutenzione: La rimozione del lock globale sul database in favore di un
connection pool rende il sistema piti robusto e meno propenso a deadlock
o colli di bottiglia artificiali, facilitando future espansioni o modifiche alla

concorrenza.

In conclusione, sebbene i test di efficienza mostrino margini di miglioramento
nell’utilizzo delle risorse multi-core, 1'efficacia dell'intervento ha posto basi solide
per I'evoluzione futura di StoRM Tape verso carichi di lavoro High-Throughput.
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Conclusioni

6.1 Analisi critica del lavoro svolto

I1 percorso di sviluppo descritto in questa tesi ha portato alla realizzazione di un
sistema che, pur nelle sue evoluzioni e ripensamenti, ha raggiunto gli obiettivi
prefissati di stabilita e performance. L'analisi finale del progetto ci permette di
identificare chiaramente i punti di forza della soluzione e le aree in cui I'approccio

teorico ha dovuto cedere il passo alla realta empirica.

6.1.1 Motivi di orgoglio

Il principale motivo di orgoglio risiede nella robustezza architetturale raggiunta.
Il sistema e in grado di gestire carichi di lavoro significativi mantenendo una
reattivita dell’interfaccia utente fluida, un risultato non scontato in applicazioni
che interagiscono pesantemente con il disco.

In particolare, 'adozione di un design pattern che disaccoppia nettamente la
logica di presentazione dalla logica di business e dall’accesso ai dati ha pagato
dividendi in termini di manutenibilita. La scelta di utilizzare tecnologie moderne
(C++ standard recente) ha garantito un codice pulito, espressivo e Type-Safe, ridu-
cendo drasticamente la categoria di bug legati alla gestione della memoria, come
suggerito dalle best practices del C++ moderno [11, 15].

Un altro punto di eccellenza e stata la capacita di diagnosi e ottimizzazione
delle performance. L’aver identificato nella modalita WAL (Write-Ahead Logging)
di SQLite il vero “game changer” per le prestazioni dimostra una comprensione
profonda non solo del codice scritto, ma dell'intero stack tecnologico su cui l'ap-
plicazione poggia. Questo ha permesso di ottenere accelerazioni nell’ordine di

grandezza, superiori a qualsiasi micro-ottimizzazione algoritmica.

39
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6.1.2 Considerazioni di modestia: il caso della parallelizzazione

La “modestia” tecnica di questo progetto emerge principalmente dall’analisi critica
delle metodologie di ottimizzazione. Come descritto nel Capitolo 4, I'implementa-
zione iniziale prevedeva l'uso di std: :execution: :par per parallelizzare le
operazioni di elaborazione dati.

Tuttavia, i test empirici condotti sull’infrastruttura di destinazione hanno
con il filesystem GPFS, in particolare a causa dei suoi complessi meccanismi di
caching distribuito. Queste interazioni introducevano un livello di aleatorieta e
rumore nelle misurazioni tale da rendere inaffidabili i benchmark, rischiando
di confondere i risultati o falsare la valutazione delle altre ottimizzazioni (come
l’adozione del WAL).

La decisione finale di disattivare tali ottimizzazioni parallele durante i test non
e stata quindi dovuta a un limite intrinseco dell’algoritmo, ma a una scelta di
rigore metodologico: era prioritario garantire la stabilita e la riproducibilita delle
misurazioni in un ambiente di storage complesso. Riconoscere che la pulizia del
dato sperimentale valeva piu dell’applicazione cieca di pattern di concorrenza &

stato un passo fondamentale verso la maturita ingegneristica del progetto.

6.2 Sviluppi futuri

Nonostante il sistema sia funzionale, lo sviluppo del software € un processo
continuo e gia nel breve termine si puo individuare il punto principale su cui
lavorare: 'effettiva inclusione delle ottimizzazioni con std: :execution: :par.

Sebbene siano state disattivate per le criticita sopra esposte, & fondamentale
che si trovi un metodo per riuscire a misurare precisamente quelle singole funzioni
aggirando il caching del file system. Cosi facendo, in caso di esiti positivi sul mi-
glioramento delle performance, queste funzioni parallelizzate si potranno andare
ad abilitare realmente nel codice di produzione, contribuendo all’ottimizzazione

del servizio.



Bibliografia

8]

[9]

[10]
[11]
[12]

[13]

CERN. High-Luminosity LHC. CERN. 2025. URL: https://home.cern/

science/accelerators/high-luminosity-1lhc.

CppReference. std::execution::par. 2025. URL: https://en.cppreference.
com/w/cpp/algorithm/execution_policy_tag_t.

CrowCpp. Crow: A Fast and Easy to use microframework for the Web. 2025. URL:
https://crowcpp.org/.

John D. Hunter. Matplotlib: Visualization with Python. 2025. URL: https :
//matplotlib.org/.

IBM. IBM Spectrum Scale (GPFS). Filesystem parallelo ad alte prestazioni.
2024. URL: https://www.ibm.com/products/spectrum-scale.

ISO/IEC 14882:2017 Programming languages — C++. International Organiza-
tion for Standardization. 2017. URL: https://www.iso.org/standard/
68564 .html.

ISO/IEC 14882:2020 Programming languages — C++. International Organiza-
tion for Standardization. 2020.

M. Jones, J. Bradley e N. Sakimura. JSON Web Token (JWT). REC 7519. Mag.
2015. URL: https://tools.ietf.org/html/rfc75109.

Christopher M. Kohlhoff. Boost.Asio. Libreria C++ per 1/O asincrono e net-
working. 2025. URL: https://www.boost .org/doc/libs/release/
doc/html/boost_asio.html.

Locust - An open source load testing tool. 2025. URL: https://locust.io/.
Scott Meyers. Effective Modern C++. O’Reilly Media, 2014.

Repository ufficiale con documentazione interna del progetto. Materiale interno
pubblicato. 2025. URL: https://github.com/glxcee/Stormtape -

Optimization.

SQLite Database Engine. 2025. URL: https://www.sglite.org/.

41


https://home.cern/science/accelerators/high-luminosity-lhc
https://home.cern/science/accelerators/high-luminosity-lhc
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
https://en.cppreference.com/w/cpp/algorithm/execution_policy_tag_t
https://crowcpp.org/
https://matplotlib.org/
https://matplotlib.org/
https://www.ibm.com/products/spectrum-scale
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
https://tools.ietf.org/html/rfc7519
https://www.boost.org/doc/libs/release/doc/html/boost_asio.html
https://www.boost.org/doc/libs/release/doc/html/boost_asio.html
https://locust.io/
https://github.com/glxcee/Stormtape-Optimization
https://github.com/glxcee/Stormtape-Optimization
https://www.sqlite.org/

42

Bibliografia

[14]

[16]

[17]

[18]

SQLite Development Team. Write-Ahead Logging. Documentazione ufficiale
SQLite. 2025. URL: https://www.sglite.org/wal.html.

Bjarne Stroustrup. The C++ Programming Language. 4th. Addison-Wesley,
2013.

The pandas development team. pandas - Python Data Analysis Library. 2025.
URL: https://pandas.pydata.org/.

WLCG. WLCG Data Challenge 2024. Zenodo Record. 2024. URL: https :
//zenodo.org/records/11444180.

Worldwide LHC Computing Grid. WLCG Tape REST API Specification. Re-
pository ufficiale. 2023. URL: https://github.com/wlcg-storage/

wlcg-tape-rest—-api.


https://www.sqlite.org/wal.html
https://pandas.pydata.org/
https://zenodo.org/records/11444180
https://zenodo.org/records/11444180
https://github.com/wlcg-storage/wlcg-tape-rest-api
https://github.com/wlcg-storage/wlcg-tape-rest-api

	Introduzione
	Panoramica sul servizio di data management StoRM Tape
	Lo Storage Tiering nel WLCG
	La transizione a HTTP/REST

	Limiti degli approcci tradizionali
	Paradigmi e Tecnologie Abilitanti
	Modern C++ e Parallel Algorithms
	Crow: Microframework C++ per il Web
	SQLite e il Write-Ahead Logging (WAL)

	Metodologia di Validazione: Il Load Testing
	Il limite dei Benchmark "Stateless"
	Testing Comportamentale con Locust


	Parallelizzazione di StoRM Tape e configurazione dei test di carico
	Evoluzione del Core Engine di StoRM Tape
	Da Modello Sequenziale a Parallelo
	Riprogettazione dell'Accesso al Database

	Analisi delle Funzionalità Ottimizzate
	UC1: Stage (Recall Massivo)
	UC2: Monitoraggio (Status Polling)

	Il Framework di Validazione e Benchmark
	Il Client Simulato (Locustfile)
	L'Orchestratore di Benchmark (Benchmark Suite)


	Dettagli implementativi
	Reingegnerizzazione di StoRM Tape (C++)
	Database Connection Pooling con SOCI
	Algoritmi Paralleli in Tape Service

	La Suite di Load Testing (Python)
	Il Client Simulato: locustfile.py
	L'Orchestratore: benchmark.py


	Valutazione tramite uno strumento creato ad-hoc
	Efficienza: Valutazione Quantitativa
	Ambiente e Metodologia di Test
	Analisi del Caso Base: StoRM Tape Sequenziale
	Impatto della Parallelizzazione
	Scalabilità con Utenti Concorrenti
	Stress Test Complessivo (200 Files/Request)

	Efficacia: Valutazione Qualitativa

	Conclusioni
	Analisi critica del lavoro svolto
	Motivi di orgoglio
	Considerazioni di modestia: il caso della parallelizzazione

	Sviluppi futuri

	Bibliografia

