ALMA MATER STUDIORUM
UNIVERSITA DI BOLOGNA

SCUOLA DI SCIENZE
Dipartimento di Informatica — Scienza e Ingegneria

Corso di Laurea in Informatica

Progettazione e sviluppo di
un’infrastruttura IaC

per competizioni CTF A /D

Relatore: Presentata da:
Prof. Dr. Marco Prandini Emanuele Argonni
Correlatori:

Prof. Dr. Andrea Melis

IT Sessione
Anno accademico 2024/2025

Abstract

Negli ultimi anni, la digitalizzazione ha determinato un inevitabile aumen-
to degli attacchi informatici, rendendo la cybersecurity una priorita globale
per la protezione dei dati e dei sistemi digitali. Le competizioni Captu-
re The Flag in modalita Attack and Defense rappresentano uno strumento
formativo efficace per preparare i futuri professionisti della sicurezza infor-
matica. Tuttavia, I'organizzazione di tali eventi presenta una complessita
tecnica intrinseca che ne limita la diffusione.

Il presente lavoro di tesi si propone di rimuovere gli ostacoli tecnici, offren-
do una soluzione per automatizzare la creazione dell’infrastruttura necessaria
a ospitare competizioni A/D. Attraverso 'utilizzo di strumenti Infrastructure
as Code (IaC), il progetto orchestra la creazione e la configurazione di tutti i
componenti necessari per una gara: macchine virtuali per i team, router per
la rete di gioco, server di gioco e connettivita VPN per I'accesso remoto dei
partecipanti.

L’architettura sviluppata si distingue dalle soluzioni esistenti per la capa-
cita di distribuire le macchine virtuali su pitt nodi fisici di un cluster Proxmox,
sfruttando al meglio le risorse computazionali disponibili e migliorando la sca-
labilita. Inoltre, particolare attenzione e stata rivolta alla normalizzazione
del traffico di rete, inclusa la mitigazione del TCP Timestamp fingerprinting,
una vulnerabilita che potrebbe compromettere I’'equita della competizione.

Il corretto funzionamento dell’infrastruttura e stato verificato mediante
una sessione di prova con 24 partecipanti, durante la quale il sistema ha dimo-
strato prestazioni adeguate anche con hardware non recente. Questo lavoro
fornisce un contributo concreto alla formazione in cybersecurity, semplifican-
do lorganizzazione di competizioni A/D e promuovendo I'apprendimento di

competenze pratiche in un ambiente controllato.

Indice

[Abstractl

[Elenco delle Figure|

[E] e Codicl

(1 _Introduzionel

2 Scenari applicativi e stato dell’arte]

[2.1 Competizioni Capture The Flagl
211 Attack and Defensel o000
[2.2 Motivazione del progetto|
2.3 DevOpselaC|.
[2.4 Software Defined Networking{.
AT VXLAN o
242 Flood and Learnl

il

vil

11
12
12
15

INDICE

BA43 CIEBoxl oo o

[4 Implementazione|

4.1 Setup dell’ambiente Proxmox|

[4.1.1 Template delle macchine virtuali{

[4.2.1 Configurazione della Rete e SDN|
4.3 Configurazione software con Ansible/.
[4.3.1 Gateway Router|.

[5_Risultatil

[5.1 Valutazione delle prestazioni delle soluzioni di mitigazione

[5.2 Sessione di prova dell'infrastruttural

[6 Conclusioni e sviluppi futuri

[Ringraziamenti|

49
49
50

53

55

57

61

Elenco delle Figure

2.1 ~Confronto tra il numero di competizioni Jeopardy e Attack |
and Defense organizzate] 10

(2.2 Conironto tra il numero di partecipanti a CTFEF Jeopardy e |
Attack and Defensel o000 10

[2.3 Diagramma VXLAN tra due VI'EP Hypervisor| 13
[2.4 Struttura pacchetto VXLAN [I| 14
2.5 Flood and Learn in VXLAN P 16
[3.1 Topologia di rete dell’A/D di CyberChallenge.IT [3] 19
.1 Struttura di un segmento TCP |4 39
[4.2 Euriclea mostra le impronte dei mittenti basate sui TCP 'Ti- |

[mestamp|.o 43
[4.3 Confronto dei valori TCP Timestamp in tre scenari di mitiga- |

[zionel 46

Elenco dei Codici

[4.2 Configurazione della rete SDN VXLAN in Terratorm|
[4.3 Regole nftables per il gateway router|
[4.4 Configurazione dell’intertaccia di rete della vulnbox|
[4.5 Template Wireguard per le configurazioni dei giocatori|
[4.6 Regole di firewall rete di gioco - fase Open Networkl
[4.7 Regole di NAT e normalizzazione T'TL sul game router|
[4.8 Codice Kernel Linux 6.17.9 per il calcolo del TCP Timestamp|
[4.9 Regola nftables per rimuovere ['opzione T'CP Timestamp| . . .

[4.10 Regole di DNATT per reindirizzare il trathco verso HAProxy] . .

[4.11 Esempio di configurazione di HAProxy|

vil

Capitolo 1

Introduzione

I sistemi digitali e le reti informatiche, nel tempo, sono diventati parte
integrante della societa moderna. Oggigiorno siamo costantemente circondati
da dispositivi connessi, dagli smartphone agli oggetti domestici intelligenti,
fino a sistemi complessi che gestiscono servizi essenziali come la sanita, i
trasporti e le banche. La crescente digitalizzazione ha ampliato i vettori di
attacco informatico che minacciano 'integrita, la riservatezza dei dati e la
disponibilita delle infrastrutture critiche.

La cybersecurity rappresenta oggi una delle principali emergenze nel pa-
norama europeo. I risultati nel nostro paese non sono per niente positivi:
I'Italia e al secondo posto tra i paesi piu colpiti dell’'Unione Europea.

Questo stato di emergenza si traduce in un aumento di cybercrimini, quali
ransomware, phishing che mirano al furto di informazioni sensibili e attac-
chi DDoS che mirano a bloccare l'operativita di aziende e servizi, causando
ingenti danni economici.

Purtroppo, molto spesso, 'anello debole di questi eventi drammatici e 1'u-
tente "medio” che, inconsapevolmente, si lascia adescare dalle vulnerabilita
in rete.

L’unico modo per proteggersi realmente dalle minacce in costante evo-
luzione e accrescere nelle persone la consapevolezza dei rischi legati alla

digitalizzazione.

1. Introduzione

La sicurezza informatica gioca quindi un ruolo cruciale nella difesa proat-
tiva dei sistemi digitali e richiede figure professionali in grado di identificare

e reagire alle minacce emergenti.

In questo contesto, si inseriscono le Capture The Flag (CTF), competizio-
ni informatiche che, con un approccio ludico, permettono alle nuove genera-
zioni di avvicinarsi ai temi della cybersecurity. In particolare, le competizioni
in modalita Attack and Defense (A /D) non solo mettono alla prova le compe-
tenze tecniche di attacco e difesa dei partecipanti in un ambiente controllato,
ma offrono anche un’esperienza di gara che simula le dinamiche del mondo

reale.

Tuttavia, questa tipologia di eventi non e particolarmente diffusa, in
quanto richiede competenze tecniche specifiche da parte degli organizzatori

e risorse economiche importanti da investire nell’hardware.

Ogni gara richiede infatti la configurazione di decine di macchine virtuali,
la realizzazione di un’architettura di rete articolata con VPN e firewall, oltre

alla creazione di un sistema di gioco adeguato.

Il seguente lavoro di tesi si propone come scopo di ovviare alle problemati-
che suddette, rimuovendo gli ostacoli tecnici che rallentano la diffusione delle
gare A/D e introducendo una soluzione per automatizzare la configurazione

dell’apparato infrastrutturale.

Il progetto adotta il paradigma Infrastructure as Code (IaC), che con-
sente di definire le risorse di un’intera infrastruttura tramite codice testuale.
Questo approccio garantisce, in primis, una significativa riduzione dei tempi
di configurazione dei sistemi, con conseguente diminuzione di eventuali errori
umani, ma anche una maggiore scalabilita e riproducibilita dell’infrastruttura

stessa.

Una peculiarita del progetto, rispetto ad altre soluzioni esistenti, riguarda
la distribuzione delle macchine virtuali su piu nodi fisici di un cluster. Grazie
a questa funzionalita, gli organizzatori possono sfruttare al meglio le risorse
computazionali disponibili per gestire competizioni con un maggior numero

di partecipanti.

INTRODUZIONE

Inoltre, particolare attenzione e stata dedicata alla normalizzazione del
traffico di rete e all’implementazione delle corrette policy di sicurezza neces-
sarie a garantire ’equita della competizione.

Il capitolo [2| introduce il contesto delle competizioni CTF, con particolare
attenzione alla modalita Attack and Defense. Successivamente si procede con
la descrizione dell’iniziativa CyberChallenge.IT ¢ il principale programma di
formazione in cybersecurity in Italia. Vengono inoltre illustrate le nozioni
tecniche di base relative a DevOps, Infrastructure as Code e Software Defined
Networking.

Il capitolo |3| esamina i requisiti identificati nell’analisi dell’infrastruttura
di riferimento e introduce gli strumenti di virtualizzazione e di automazio-
ne scelti per I'implementazione. Di seguito viene condotta una valutazione
comparativa delle diverse soluzioni esistenti, evidenziando i vantaggi e le
limitazioni di ciascuna.

Il capitolo |4 descrive nel dettaglio 'implementazione del codice, illustran-
do il processo di provisioning e di configurazione delle macchine virtuali,
nonché la topologia della rete di gioco e le misure di sicurezza adottate.

Il capitolo [5| presenta i risultati ottenuti durante la fase di test dell’in-
frastruttura e analizza I'impatto delle varie tecniche di normalizzazione del
traffico sulle prestazioni della rete.

Infine, il capitolo [6] riassume gli obiettivi principali del lavoro svolto e

propone possibili sviluppi futuri per migliorare ulteriormente I'infrastruttura.

Capitolo 2

Scenari applicativi e stato

dell’arte

Il secondo capitolo fornisce il quadro teorico necessario alla comprensione
del progetto di tesi. Nella prima sezione [2.1] si analizza il contesto delle com-
petizioni CTF Attack and Defense descrivendone le modalita di svolgimento
e le dinamiche di gioco. La sezione analizza i dati relativi alla diffusione
delle competizioni CTF a livello mondiale, evidenziando la disparita tra le
gare Jeopardy e quelle Attack and Defense. Infine, nelle ultime due sezioni
e [2.4] vengono introdotti i concetti tecnologici su cui si basa il presente

lavoro di tesi.

2.1 Competizioni Capture The Flag

Le Capture The Flag, note come CTF [5], sono competizioni informati-
che in cui i concorrenti mettono alla prova le proprie abilita di cybersecurity
risolvendo delle sfide proposte dagli organizzatori. Queste competizioni rap-
presentano uno strumento efficace per la formazione in sicurezza informati-
ca, poiché offrono un ambiente sicuro in cui i partecipanti possono acquisire

competenze pratiche e teoriche senza rischi reali.

2. Scenari applicativi e stato dell’arte

Le sfide, chiamate challenge, sono solitamente classificate in base ai quat-
tro pilastri della sicurezza informatica: Web, Software, Crittografia e Reti.
L’obiettivo dei partecipanti e identificare le vulnerabilita presenti nelle chal-
lenge e trovare un modo per sfruttarle. Come ricompensa, al giocatore viene
fornita una flag (bandiera), una stringa di testo con un determinato pattern
che attesta la risoluzione della sfida. Il nome Capture The Flag, infatti, deri-
va proprio dall’omonimo gioco "rubabandiera” in cui due squadre si sfidano

per catturare la bandiera e portarla nella propria base.

L’utilizzo delle CTF in cybersecurity si rivela una scelta particolarmente
efficace, poiché sfrutta la gamification del processo di apprendimento. La
gamification [6] [7] consistenell’applicazionee di meccaniche e dinamiche di
gioco a contesti non ludici, al fine di rendere piu stimolante I'acquisizione
di competenze tecniche. Un esempio significativo dell’efficacia di questo ap-
proccio proviene da uno studio della Vienna University of Technology, in cui
si dimostra che 'approccio competitivo (gamification) non solo & molto ap-
prezzato dagli studenti, ma aumenta anche I'interesse e la motivazione nello

studio della cybersecurity [§].

Le competizioni variano per dimensione e prestigio, spaziando da eventi
locali organizzati presso ule niversita fino a gare internazionali di grande ri-
lievo ,con premi in denaro anche considerevoli. Tra le modalita piu diffuse di
CTF spiccano le Jeopardy e le Attack and Defense. Nelle Jeopardy, indipen-
dentemente dalla partecipazione singola o in team, ogni ”giocatore” trova le
flag individualmente e le inoltra al portale di gara. Il punteggio assegnato
¢ direttamente proporzionale al livello di difficolta della sfida risolta. Nelle
Attack and Defense, invece, i giocatori organizzati in squadre sono coinvolti
simultaneamente in attivita di attacco verso gli altri team e di difesa dei pro-
pri servizi vulnerabili. A ogni team viene fornita una macchina vulnerabile,
comunemente chiamata vulnbox, identica a quelle delle altre squadre. Ogni
squadra ¢ responsabile della gestione della propria vulnbox, in cui si eseguono
un certo numero di servizi che simulano vulnerabilita informatiche del mondo

reale. L’obiettivo di ciascun team ¢ identificare le vulnerabilita, analizzarle,

2.1 Competizioni Capture The Flag

creare exploit per attaccare gli avversari e, al contempo, difendere i propri

servizi implementando contromisure efficaci.

2.1.1 Attack and Defense

Le competizioni CTF Attack and Defense, abbreviate in A/D, si distin-
guono per la loro natura dinamica e interattiva che richiede un lavoro di squa-
dra costante tra tutti i componenti del team. A differenza delle Jeopardy,
dove i partecipanti gareggiano in modo indipendente, le A /D richiedono una
suddivisione strategica dei ruoli dei giocatori all’interno della squadra: alcuni
si occupano degli attacchi, altri della difesa, mentre altri ancora analizzano
il traffico di rete e gestiscono ’esecuzione degli exploit.

All’inizio della competizione, ogni team riceve ’accesso remoto alla pro-
pria vulnbox che e identica per tutte le squadre partecipanti. Ciascuna vuln-
box contiene un numero prestabilito di servizi vulnerabili. I servizi sono
server che simulano applicazioni reali e permettono ai clienti di interagire
per eseguire determinate operazioni. Ad esempio: un servizio potrebbe esse-
re un sito web che permette la prenotazione di voli aerei. I clienti possono
connettersi al servizio tramite un browser web per cercare e prenotare vo-
li. Ogni servizio ¢ costituito da diversi componenti software e contiene al
suo interno una o piu vulnerabilita intenzionali che costituiscono i vettori di
attacco. Tra le vulnerabilita piu diffuse figurano SQL Injection, Buffer Over-
flow e Cross-Site Scripting (XSS), come descritto nel report OWASP delle
Top 10 vulnerabilita piu critiche [9]. Sfruttando queste falle, gli attaccan-
ti mirano a esfiltrare dati sensibili custoditi dai servizi, tra cui le flag, che
rappresentano 1’obiettivo primario dei giocatori.

Ogni competizione A/D ha una durata prestabilita, che puo variare da
poche ore a piu giorni, ed ¢ suddivisa in round (chiamati tick), intervalli
temporali che costituiscono 'unita di tempo base della gara. La durata di
un tick ¢ tipicamente compresa tra 60 secondi e 5 minuti. Durante ogni
round, il sistema di gioco esegue autonomamente una serie di operazioni in

ordine casuale:

2. Scenari applicativi e stato dell’arte

e Verifica dello stato di funzionamento dei servizi di ogni team
e Inserimento di una nuova flag in ogni servizio di ogni team

e Tentativo di recupero delle flag inserite nelle vulnbox durante i round

precedenti
e Calcolo dei punteggi e aggiornamento della classifica

Le flag nelle A/D sono soggette ad un meccanismo di rotazione continua.
Ogni flag ha un periodo di validita limitato (tipicamente tra 5 e 10 round),
trascorso il quale scade e viene rifiutata dal portale di gioco. Per essere rico-
noscibili, le flag seguono un formato specifico, definito tramite un’espressione
regolare nota a tutti i team.

Il sistema di gioco, chiamato gameserver, si occupa di aggiungere ad ogni
round una nuova flag per ciascun servizio e di verificare la reperibilita delle
flag inserite nei round precedenti. Un altro compito fondamentale del ga-
meserver ¢ l'aggiornamento del Service Level Agreement (SLA) per ciascun
team. Lo SLA & un indicatore che misura la percentuale di disponibilita (up-
time) e di corretto funzionamento di un servizio nel corso della competizione,
rappresentando un fattore determinante per il punteggio finale. Ad ogni tick,
il gameserver interagisce con i servizi di ciascun team tramite una serie di
controlli automatizzati (checker routine) che simulano il comportamento di
un utente legittimo. Il meccanismo di SLA impedisce ai team di adottare
strategie difensive semplicistiche come lo spegnimento completo dei servizi o
il blocco indiscriminato delle connessioni in ingresso. Al contrario, incentiva
i partecipanti a sviluppare e implementare patch mirate in grado di risolvere

le vulnerabilita senza compromettere la funzionalita nominale del servizio.

2.2 Motivazione del progetto

2.2 Motivazione del progetto

L’interesse per le competizioni Capture The Flag, come strumento di for-
mazione nel campo della cybersecurity, ha registrato una crescita significativa
negli ultimi anni. Questa tendenza positiva si riflette anche nel panorama
nazionale. Il principale programma di formazioni in cybersecurity in Italia,
CyberChallenge.IT [10], ha seguito un andamento di espansione progressiva,
coinvolgendo ogni anno un numero sempre maggiore di sedi universitarie e
studenti iscritti [T1].

Analizzando i dati disponibili su CTFtime [12], il principale portale di
riferimento per le CTF pubbliche a livello mondiale, emerge un trend di cre-
scita costante negli ultimi 10 ann,i sia nel numero di competizioni organizzate
annualmente siainlquelloo di partecipanti attivi.

Tuttavia, analizzando attentamente i grafici e realizzati tramite
le API di CTFtime, si nota che, nonostante la crescita complessiva delle
competizioni CTF, le gare in modalita Attack and Defense rappresentano
una percentuale estremamente bassa rispetto a quelle in modalita Jeopardy.

L’organizzazione di una competizione Attack and Defense richiede infat-
ti risorse e competenze tecniche significativamente superiori. E necessario
progettare un’infrastruttura di rete complessa che garantisca l’isolamento
tra i team, gestire la configurazione di decine di macchine virtuali e svilup-
pare un sistema di gioco (gameserver) in grado di gestire in tempo reale la
distribuzione delle flag, la verifica della metrica SLA e il calcolo dei punteggi.

Questa complessita organizzativa limita fortemente la possibilita di or-
ganizzare sessioni di allenamento per i partecipanti. La mia esperienza per-
sonale come concorrente dell’ultima edizione di CyberChallenge.IT 2025 ha
evidenziato questa criticita. Durante la preparazione per la finale nazionale
di Torino, sono state riscontrate notevoli difficolta nel testare gli strumen-
ti e le strategie di gara, a causa delle limitate opportunita di esercitazione
in ambienti che riproducessero fedelmente le condizioni della competizione
reale.

Il presente lavoro di tesi si pone l'obiettivo di affrontare questa sfida,

10

2. Scenari applicativi e stato

dell’arte

Numero di CTF per Tipo (2015-2025)

300 A

250 A

N
=3
1=

Numero di CTF
G
o

100 -

50

mm Jeopardy 322

mmm Attack-Defense
298

253
217
203

176

139

91

67

24
14 14 16 19 21

2016

2017 2018 2019 2020

Anno

2023 2024

15

2025

Figura 2.1: Confronto tra il numero di competizioni Jeopardy e Attack and

Defense organizzate

25,000 1

Numero Totale di Partecipant

5,000 -

20,000 1

15,000 1

10,000

Partecipanti Totali per Tipo di CTF (2015-2025)

W Jeopardy
" Attack-Defense

20,117

18,437

12,905

9,381 9,255

6,652

4,322

2018

2019 2020

Anno

2021 2022 2023 2024

22,770

Figura 2.2: Confronto tra il numero di partecipanti a CTF Jeopardy e Attack

and Defense

2.3 DevOps e IaC

11

proponendo quindi una soluzione per automatizzare il processo di creazione
dell'infrastruttura per competizioni A/D. Lo scopo ¢ progettare e sviluppa-
re un’infrastruttura basata su tecnologie Infrastructure as Code (IaC), in
grado di orchestrare automaticamente il deployment di tutti i componenti
necessari per una gara: la rete di gioco, le vulnbox per ogni team, il game-
server e le configurazioni VPN. Attraverso I'uso di strumenti di automazione
come Terraform e Ansible, si intende rendere il processo di configurazione

dell’infrastruttura riproducibile, scalabile e accessibile a tutti.

2.3 DevOps e 1aC

La crescente complessita nella gestione delle infrastrutture I'T ha incen-
tivato I'adozione di nuove metodologie per 'amministrazione di sistemi. Il
paradigma DevOps [I3] mira a unificare lo sviluppo software e la gestione

delle infrastrutture per migliorare la qualita dei prodotti finali.

Uno dei principi fondamentali del DevOps e 'approccio Infrastructure as
Code (IaC), che consente di automatizzare la gestione dell'infrastruttura di
sistemi tramite codice testuale. L’Infrastructure as Code permette di defi-
nire la configurazione di un’infrastruttura, compresi server, reti, macchine
virtuali, utilizzando file di configurazione in formato testuale, semplificando
notevolmente il lavoro dell’amministratore di sistemi. In particolare, il si-
stemista descrive lo stato desiderato dell’infrastruttura in un file, mentre gli
strumenti [aC si occupano di applicare le modifiche necessarie per raggiungere

tale stato. I vantaggi dell’IaC sono molteplici:

e Riproducibilita: lo stesso codice genera sempre la stessa infrastrut-

tura indipendentemente dall’ambiente in cui viene eseguito;

e Scalabilita: un cambiamento dei requisiti dell’infrastruttura richiede

solamente la modifica di alcune variabili nel file di configurazione;

2. Scenari applicativi e stato dell’arte

e Controllo di versione: il codice dell'infrastruttura puo essere ge-
stito con sistemi di controllo di versione per tracciare lo storico delle

modifiche e ripristinare versioni precedenti in caso di problemi;

e Riduzione degli errori umani: 'automazione riduce al minimo gli
interventi manuali, con conseguente diminuzione del rischio di errori

umani.

Nel panorama degli strumenti IaC, Terraform e Ansible rappresentano due
tecnologie complementari ampiamente utilizzate per la gestione delle infra-

strutture.

2.4 Software Defined Networking

Il paradigma del Software Defined Networking introduce un’architettura
di rete moderna che separa il piano di controllo (control plane) dal piano di
inoltro (data plane). Nelle reti tradizionali, ogni apparato di rete integra sia
la logica di controllo sia la funzionalita di inoltro dei pacchetti. Nelle SDN
il piano di controllo e centralizzato in un componente software, definito con-
troller, che gestisce 'intera infrastruttura di rete. I dispositivi di rete, come
switch e router, si limitano a inoltrare i pacchetti in base alle regole definite
dal controller. In un contesto di datacenter, le tecnologie SDN consentono
di definire reti virtuali (overlay) per creare segmenti di rete isolati, anche tra
macchine virtuali distribuite su nodi fisici diversi. La rete overlay ¢ una rete

virtuale che si appoggia a una rete fisica esistente (underlay).

2.4.1 VXLAN

Uno dei protocolli piu utilizzati per la creazione di reti overlay ¢ il VX-
LAN (Virtual Extensible LAN), descritto nel RFC 7348 [14], che consente di
estendere le capacita delle tradizionali VLAN per segmentare la rete. VX-

LAN incapsula i frame Ethernet di livello 2 all’interno di pacchetti UDP,

2.4 Software Defined Networking

13

creando tunnel che operano sulla rete underlay di livello 3 esistente. In pra-
tica, un frame Ethernet generato da una macchina virtuale viene incapsulato
in un pacchetto UDP e inviato attraverso la rete fisica a un’altra macchina
virtuale in esecuzione su un altro host fisico. L’host di destinazione riceve
il pacchetto UDP, lo decapsula e consegna il frame Ethernet originale alla
macchina virtuale (VM) destinataria. Le VM possono quindi comunicare tra
loro come se fossero collegate a un semplice switch L2, indipendentemente

dalla loro posizione fisica.

/m

Hypervisor LAYER 3 Hypervisor
VNI 10000 VNI 10000

VNI 20000

VNI 20000

VNI 30000 VNI 30000

Host 1 Host 2

Figura 2.3: Diagramma VXLAN tra due VTEP Hypervisor

I dispositivi che implementano VXLAN, chiamati VXLAN Tunnel End-
Points (VTEPs), si occupano dell’incapsulamento e decapsulamento dei pac-
chetti VXLAN. Ciascun host VTEP deve avere un indirizzo IP che viene
utilizzato come indirizzo sorgente dei pacchetti VXLAN. Ogni rete VXLAN
¢ identificata da un VXLAN Network Identifier (VNI) che consente alle mac-
chine virtuali appartenenti allo stesso VNI di comunicare tra loro a livello 2,

anche se distribuite su nodi fisici diversi. Il VNI ¢ un identificativo a 24 bit

14 2. Scenari applicativi e stato dell’arte

che consente di creare fino a 16 milioni di reti logiche isolate, superando il
limite di 4096 VLAN tradizionali.

VXLAN Encapsulated Frame (1550 Bytes)
r [— Original Inner Ethernet Frame (1500 Bytes) ———]

(L —

Bytes
Outer out 8 Bytes Frame
Qsr UbP VXLAN Inner Inner Optional Optional Original Check
Header = Header Dest. Source Ether Inner Ethernet Sequence

BT MAC MAC Type 8021Q Payload (FCS)

8 bit 24 bit 24 bit 8 bit
VXLAN
VXLAN Network
Flags Re%e™ed jqentifier Reserved
8 bit 16bit 32bit 32bit (VNI)

Header Outer Outer
Check Source Dest.
sum 1P IP

Header P
Misc. Protocol
Data

16 bit 16 bit 16 bit 16 bit

UDP
uDP UDP
Dest. UDP
Source (VXLA 1 Check
Port nN) L& sum

Pol

48 bit 48 bit 16 bit 16 bit 16 bit

Outer
Outer OQuter VXLAN
Dest. Source Type VLANID Ether

MAC MAC (Optional) (oprnﬁmn Type

Figura 2.4: Struttura pacchetto VXLAN [I]

Il pacchetto VXLAN utilizza un incapsulamento MAC-in-UDP, in cui il
frame Ethernet originale viene inserito all’interno di un pacchetto UDP. La
struttura del pacchetto VXLAN, illustrata in figura ¢ composta da:

e Outer Header Ethernet: L’indirizzo MAC sorgente ¢ quello dell’host
VTEP sorgente, mentre l'indirizzo MAC di destinazione ¢ quello del

router next-hop lungo il percorso verso il VTEP di destinazione.

e Outer Header IP: Contiene gli indirizzi IP di origine e di destinazione
degli host VTEP.

e Outer Header UDP: La porta di destinazione di default ¢ 4789,
mentre la porta di origine e solitamente calcolata dal VTEP tramite

un hash dei campi del frame originale.

2.4 Software Defined Networking

15

e Header VXLAN: Contiene il VNI, I'identificativo a 24 bit della rete

virtuale.

e Original Inner Frame: Contiene il frame Ethernet originale completo

di header e payload.

Come si puo notare dalla figura [2.4] 'incapsulamento VXLAN aggiunge
un overhead di 50 byte (54 se viene usato un tag VLAN nella rete underlay)
che deve essere gestito correttamente. Le reti Ethernet standard, infatti, han-
no un MTU (Maximum Transmission Unit) di 1500 byte, quindi se una VM
invia un frame con 1500 byte di dati, il pacchetto incapsulato diventera di
circa 1554 byte. VXLAN non implementa alcun meccanismo nativo di fram-
mentazione, quindi i pacchetti vengono frammentati a livello IP o scartati
dai dispositivi di rete. Per gestire questo overhead, ¢ necessario aumentare
I'MTU su tutti gli apparati (switch, router) della rete underlay che trasporta
il traffico VXLAN. Questo richiede il controllo completo della configurazione
della rete fisica tra i nodi VTEP. Alternativamente, ¢ possibile abbassare
I’'MTU della rete overlay, quindi le interfacce di rete delle VM devono esse-
re configurate con MTU a 1446/1450 byte. Questa soluzione comporta una
leggera riduzione delle prestazioni perché i frame presentano un rapporto
payload/header meno efficiente, richiedendo 'invio di un numero maggiore

di pacchetti per trasferire la stessa quantita di dati.

2.4.2 Flood and Learn

Consideriamo il caso in cui i VTEP siano hypervisor che ospitano mac-
chine virtuali. Quando un VTEP deve inviare un pacchetto VXLAN verso
una macchina virtuale remota, deve conoscere l'indirizzo IP del VTEP di
destinazione a cui quella VM ¢ connessa. Ogni VTEP mantiene una tabella
di mappatura tra gli indirizzi MAC delle VM e gli indirizzi IP dei VTEP
corrispondenti. Uno dei meccanismi pitt semplici per popolare questa tabella
e il flood and learn. Questo approccio si basa sull’invio di traffico multicast

nella rete underlay, cosi da consentire ai VTEP di apprendere dinamicamente

2. Scenari applicativi e stato dell’arte

la posizione degli endpoint. Ad ogni VNI & associato un indirizzo IP mul-
ticast specifico. I VTEP che partecipano a quel VNI si iscrivono al gruppo
multicast corrispondente per ricevere i pacchetti destinati a quel VNI.

Host A to Host B Communication

VNI: 30001
IP Subnet: 192.168.1.0
Multicast Group: 239.1.1.2

Destination Group
239.1.1.2

Leaf-2
(0100.5E01.0102) VTEP2
0000.3000.1101 3001 Ethernet1/11
.-—‘_—_
Leaf-1 H
IP: 10.200.200.1 |VTEP1 = AN VTEP3 decapsulates VXLAN
: ‘\ packet Layer 2 Learning results
Leaf-3 with the following entry:
ARP Reguest for 192.166.1.102 P:10.200.200.3 | VTEP3 JIGE VN VIER
DMAG: FFFF FFFF FFFF 0000.3000.1102 3001 Ethernet1/8
(/‘_\)—D 0000.3000.1101 3001 10.200.200.1
[—]]
Host A Host B N
MAC: 0000.3000.1101 MAC: 0000.3000.1102
IP: 192.168.1.101 IP: 192.168.1.102

Figura 2.5: Flood and Learn in VXLAN [2]

Quando un VTEP deve inviare un pacchetto a una VM il cui indirizzo
MAC non e presente nella tabella di mapping, invia il pacchetto incapsulato
al gruppo multicast associato al VNI. Tutti i VIEP che partecipano a quel
VNI ricevono il pacchetto multicast, lo decapsulano e memorizzano 1’asso-
ciazione tra lindirizzo MAC della VM sorgente e 'indirizzo 1P del VTEP
sorgente 2.5] II VTEP che possiede la VM di destinazione la consegna alla
VM, che risponde normalmente. Il pacchetto di ritorno consente al VTEP
sorgente di imparare ’associazione tra I'indirizzo MAC della VM e I'indirizzo
IP del VTEP. Tutto il traffico successivo tra le due VM puo essere inviato

direttamente in unicast.

Capitolo 3
Analisi progettuale

Dopo aver delineato nel capitolo precedente le motivazioni alla base del
progetto, in questo capitolo si procede all’analisi dettagliata dei requisiti ne-
cessari alla realizzazione di un ambiente di competizione A/D. Nella prima
sezione [3.1] viene descritta I'architettura di riferimento ispirata all’infrastrut-
tura della finale nazionale di CyberChallenge.IT e da essa si estraggono i
requisiti funzionali e non funzionali che il sistema deve soddisfare (si veda la
sezione . Infine, nella sezione , viene presentata una panoramica del-
le tecnologie chiave utilizzate e viene condotta un’analisi comparativa delle
soluzioni esistenti per evidenziare il valore aggiunto del presente lavoro di

tesi.

3.1 Architettura del sistema

L’obiettivo primario del progetto ¢ la realizzazione di un’infrastruttura
[aC che simuli il pit fedelmente possibile 'ambiente utilizzato nella finale
nazionale di CyberChallenge.IT. Tuttavia, le informazioni pubbliche relative
all'implementazione specifica dell'infrastruttura di CyberChallenge.IT sono
estremamente limitate. Pertanto, ’architettura di riferimento descritta in

questo capitolo si basa sull’esperienza diretta maturata durante la mia par-

17

18

3. Analisi progettuale

tecipazione e sull’analisi del comportamento della rete di gioco durante la

competizione.

Il cuore di una competizione Attack and Defense risiede nella sua archi-
tettura di rete, che deve garantire al contempo l'isolamento tra le squadre e
la connettivita controllata per gli attacchi. L’infrastruttura e orchestrata da
un router centrale che funge da gateway per tutte le comunicazioni all’interno

della rete di gioco. I principali componenti dell’architettura di rete sono:

e Sottoreti Vulnbox: Per ogni squadra partecipante viene creata una
sottorete dedicata e isolata che ospita la vulnbox. L’isolamento vie-
ne gestito tramite VLAN distinte per ogni team. Questo approccio
di segmentazione della rete assicura che le vulnbox di ciascuna squa-
dra non possano comunicare direttamente tra loro in LAN, ma solo
tramite il router centrale di gioco. L’indirizzo IP delle vulnbox e del
tipo ‘10.60.X.1/24, dove ‘X‘ rappresenta I'ID numerico del team (da
0 a N). L’indirizzo '10.60.0.1’ & assegnato al NOP Team (NOn-Playing
team): una vulnbox gestita dagli organizzatori in cui non vengono mai

applicate patch ai servizi e le cui flag non assegnano punti.

e Sottoreti VPIN: L’accesso alla rete di gioco da parte dei partecipan-
ti avviene esclusivamente tramite una connessione VPN WireGuard.
Anche in questo caso, ad ogni squadra viene assegnata una sottorete
VPN distinta, del tipo ‘10.81.X.0/24‘. Questa segmentazione consente
di applicare regole di firewall specifiche e di monitorare con precisione

il traffico generato da ciascun team.

e Sottorete Gameserver: Rete in cui risiede il sistema di gioco con
indirizzo IP ‘10.10.0.1°. Questo indirizzo deve essere raggiungibile da
tutti i giocatori perché il gameserver espone servizi WEB quali la clas-
sifica, I’endpoint per la sottomissione delle flag e quello per ottenere i

flagids.

3.1 Architettura del sistema

19

VMs-NET: 10.60.0.0/16

10.60.0.1 10.60.1.1 10.60.N.1
el Team, Game System
i VM 0/2
VM 1 D.J0.0. Z]

Cloud Router

Local Connection

piflnterhet 10.254.0.1
PROXIES FOR VULNBOX SERVICES
SNAT AND TTL RESET FOR THE OTHER TRAFFIC
The source of the following traffic is rewritten to 10.254.0.1:
VPN-NET: 10.81.0.0/16 ey o Vo VA Syt o
Team 1 Team 2 Team N
PC1| - PC1| .. PCM
11 AM 2.1 2.M
\\ 10.81.1.0/24 10.81.2.0/24 10.81.N.0/24 /

Figura 3.1: Topologia di rete dell’A/D di CyberChallenge.IT [3]

Il flusso di comunicazione ¢ gestito da precise regole di routing e da fi-

rewall. Un giocatore del Team 1, connesso tramite VPN a un IP nella rete
10.81.1.0/24, per attaccare la vulnbox del Team 2 (10.60.2.1) dovra necessa-

riamente attraversare il router centrale. Quest’ultimo si occupera di instra-

dare correttamente il traffico e di applicare le policy di sicurezza necessarie.

Allo stesso modo, il gameserver 10.10.0.1 deve poter raggiungere tutte le

vulnbox in tutte le sottoreti 10.60.X.1 per poter eseguire le checker routine

e depositare le nuove flag. Infine, 'infrastruttura deve garantire I’anonimiz-

zazione del traffico diretto verso le vulnbox: i pacchetti di rete del checker

devono essere indistinguibili da quelli degli exploit dei giocatori.

3. Analisi progettuale

3.2 Requisiti identificati

Dall’analisi dell’architettura di riferimento emerge una serie di requisiti,
sia funzionali sia non funzionali, che il progetto deve soddisfare per offrire un

ambiente di gara realistico.

e Deploy automatico delle VM: L’intero processo di creazione e confi-
gurazione dell’infrastruttura deve essere automatizzato attraverso stru-
menti [aC. Questo include il provisioning automatico di tutte le mac-

chine virtuali, partendo da un’immagine predefinita (template).

e Accesso remoto via VPN: [giocatori devono potersi connettere da
remoto alla rete di gioco tramite una connessione VPN. Il sistema deve
essere in grado di generare automaticamente le configurazioni VPN per

ogni squadra.

e Anonimizzazione del traffico: Tutto il traffico di rete diretto alle
vulnbox deve essere anonimizzato. 1 giocatori, catturando il traffico
sulla propria VPN, non devono riuscire a distinguere la provenienza

delle richieste analizzando gli header dei pacchetti di rete.

e Scalabilita: Il progetto deve supportare un numero variabile di team
e giocatori, semplicemente modificando le variabili di configurazione,

senza richiedere interventi manuali.

e Riproducibilita: L’intera infrastruttura deve poter essere creata, con-
figurata e distrutta in modo completamente automatico. Eseguendo lo
script di deployment in ambienti diversi, si deve ottenere un sistema

identico.

e Modularita: L’architettura deve essere modulare: gli organizzatori
della competizione CTF devono poter integrare i propri servizi vulne-
rabili o modificare alcuni componenti senza dover riprogettare 1'intero

sistema.

3.3 Scelta delle tecnologie

21

e Distribuzione su piu nodi: Il progetto deve consentire di distribuire
le macchine virtuali su piu nodi di un cluster Proxmox. Questo consente
di superare i limiti di un singolo host fisico e di gestire competizioni

con un numero maggiore di partecipanti.

e Isolamento della rete: Le vulnbox di ogni team devono operare
all’interno di una propria sottorete isolata, in modo da imporre che

Iintero traffico passi attraverso il router centrale di gioco.

3.3 Scelta delle tecnologie

La selezione degli strumenti IaC si ¢ orientata a soluzioni prevalentemente
open source, ampiamente adottate nella comunita DevOps, per evitare il

vendor lock-in e garantire la massima flessibilita.

3.3.1 Proxmox VE

Per la gestione delle macchine virtuali e stato scelto Proxmox Virtual
Environment (Proxmox VE) [I5], una piattaforma open-source per la vir-
tualizzazione che integra ’hypervisor KVM (Kernel-based Virtual Machine).
Innanzitutto, essendo completamente open source e self-hostabile, Proxmox
consente di mantenere il controllo totale sull’infrastruttura senza dipendere
da servizi cloud esterni. Inoltre, fornisce funzionalita native di clustering
che consentono di distribuire le macchine virtuali su pit nodi fisici. L’inter-
faccia web integrata facilita il monitoraggio e la gestione delle VM, mentre
I’API REST esposta da Proxmox consente l'integrazione con strumenti di

automazione.

3.3.2 Terraform

Per l'orchestrazione e il provisioning dell’infrastruttura e stato scelto Ter-

raform [16], uno strumento IaC sviluppato da HashiCorp che permette di

22

3. Analisi progettuale

definire le risorse attraverso file di configurazione scritti in linguaggio di-
chiarativo HCL. Uno dei principali vantaggi di Terraform e il supporto di
centinaia di provider diversi, permettendo di gestire non solo I'infrastruttura
Proxmox, ma potenzialmente anche risorse su cloud provider esterni. In que-
sto progetto e stato utilizzato il provider BPG, mantenuto dalla comunita

open source, che consente di interfacciarsi con ’API REST di Proxmox.

3.3.3 Amnsible

Mentre Terraform si occupa di creare le risorse, Ansible ¢ stato scelto
per la configurazione del software sulle macchine virtuali. Ansible [I7] & uno
strumento open-source che permette di gestire la configurazione di sistemi
utilizzando un approccio agentless: non richiede l'installazione di software
aggiuntivo sulle macchine gestite (managed nodes), ma si connette via SSH
per eseguire le operazioni richieste. La configurazione in Ansible viene defi-
nita attraverso una lista di task scritti in linguaggio YAML che descrivono

lo stato desiderato del sistema.

3.3.4 WireGuard

Per la realizzazione della VPN che consente ai giocatori di accedere da
remoto alla rete di gioco e stato scelto WireGuard, un protocollo VPN mo-
derno e prestante, integrato nel Kernel Linux dalla versione 5.6. Nei test
di throughput [18], WireGuard ha fornito prestazioni superiori rispetto al-
le soluzioni VPN tradizionali come OpenVPN e IPSec, pur mantenendo un
utilizzo della CPU inferiore. Un ulteriore vantaggio e la sua semplicita: la
configurazione, infatti, si basa su semplici file di testo e su coppie di chia-

vi crittografiche pubbliche/private, che ne facilitano I'automazione tramite

Ansible.

3.4 Analisi soluzioni esistenti

23

3.3.5 Docker

Per il deployment dei servizi vulnerabili (challenge) sulle vulnbox si & scel-
to di utilizzare la tecnologia di containerizzazione Docker. Anziché installare
le dipendenze di ogni servizio direttamente sul sistema operativo della Vuln-
box, ogni challenge verra archiviata come immagine Docker e gestita tramite
Docker Compose. Ogni servizio viene eseguito nel proprio container, isolato

dagli altri e dal sistema operativo del host.

3.4 Analisi soluzioni esistenti

Prima di procedere allo sviluppo del progetto, ¢ stata condotta un’analisi
delle principali soluzioni disponibili per ’organizzazione di competizioni CTF
A/D. L’obiettivo e stato identificare i pregi e le limitazioni di ciascun progetto

rispetto ai requisiti definiti.

3.4.1 FAUST Gameserver

FAUST CTF Gameserver [19] ¢ un framework per 'organizzazione di com-
petizioni A/D, sviluppato dal team FAUST e utilizzato per ospitare 1’omo-
nima competizione. Il progetto si caratterizza per un’architettura modulare
in cui i diversi componenti, orchestrati dal controller centrale, comunicano
tramite un database PostgreSQL condiviso. Un aspetto positivo di FAU-
ST Gameserver ¢ la qualita della documentazione tecnica, che descrive nel
dettaglio I'architettura e il funzionamento del sistema di gioco. Tuttavia, co-
me esplicitamente indicato nella documentazione ufficiale, il framework non
include strumenti per la gestione dell’infrastruttura di rete, la configurazio-
ne della VPN né il deploy delle VM, ma si concentra esclusivamente sul

gameserver.

24

3. Analisi progettuale

3.4.2 saarCTF

saarCTF [20] ¢ un’altra soluzione molto conosciuta che fornisce script di
setup per tutti i server necessari all’organizzazione di una competizione A/D,
ma presenta diverse incompatibilita con i requisiti di questo progetto. In
primo luogo, non ¢ presente alcuna integrazione con Proxmox VE: il sistema
¢ progettato per utilizzare immagini in formato OVA tramite Virtualbox.
Inoltre, il processo di deployment non ¢ automatizzato e richiede diversi

passaggi manuali per la creazione e l'installazione delle immagini delle VM.

3.4.3 CTFBox

CTFBOX [21] ¢ un progetto open-source recente che offre un’interfaccia
web e un gameserver con endpoint simili a quelli utilizzati nella competizione
A/D di CyberChallenge. La sua architettura di base, pero, presenta una
limitazione significativa rispetto agli obiettivi di questo progetto: le vulnbox
non sono vere macchine virtuali, ma container Docker eseguiti su un singolo
host. Questa scelta progettuale, se da un lato semplifica il deployment su un
singolo host, dall’altro impedisce la distribuzione del carico su piu nodi fisici
e limita la scalabilita dell’infrastruttura.

L’analisi delle soluzioni esistenti ha evidenziato che nessuna delle piatta-
forme esaminate soddisfi completamente i requisiti identificati. Manca infatti
un progetto che offra un approccio IaC completo per il deployment automa-
tico di un’infrastruttura basata su macchine virtuali, scalabile e distribuita

su piu nodi fisici di un cluster Proxmox.

Capitolo 4
Implementazione

Dopo aver definito ’archittetura di riferimento e i requisiti del progetto, in
questo capitolo viene descritta I'implementazione concreta dell’infrastruttura
[aC. In particolare, vengono analizzate nel dettaglio le scelte implementative
adottate per ciascun componente del sistema, partendo dalla configurazio-
ne dell’ambiente di virtualizzazione Proxmox (sez [£.1), continuando con la
creazione delle macchne virtuali e della rete di gioco (sez , la configura-
zione del software all'interno delle VM (sez [4.3)), fino ad arrivare alle tecniche
di anonimizzazione del traffico di rete (sez [£.4). Infine, la sezione pre-
senta un’analisi della tecnica di fingerprinting del mittente delle connessioni
TCP basata sui timestamp e le contromisure adottate per mitigare questa

vulnerabilita.

4.1 Setup dell’ambiente Proxmox

Prima di procedere con il deployment automatizzato dell’infrastruttura, e
necessario predisporre I'ambiente di virtualizzazione basato su Proxmox VE.
Proxmox VE puo essere installato su hardware fisico oppure eseguito come
macchina virtuale all’interno di un hypervisor esistente. Per I'installazione,
¢ possibile scaricare I'immagine ISO dal sito di Proxmox VE [I5] e seguire

la documentazione ufficiale per l'installazione. Una volta completata l'in-

25

26

4. Implementazione

stallazione, & possibile accedere all’interfaccia web di Proxmox tramite un
browser, utilizzando I'indirizzo IP assegnato al server. E possibile installare
Proxmox VE su pit nodi fisici e unirli in un unico cluster per distribuire le
macchine virtuali su piu host fisici. All’interno del progetto viene fornito un
file README con le istruzioni per la creazione di un API Key con i privilegi

minimi necessari per il provisioning delle risorse con Terraform.

4.1.1 Template delle macchine virtuali

Per consentire a Terraform di creare rapidamente le macchine virtuali
necessarie per la competizione, ¢ stato realizzato uno script bash che auto-
matizza la creazione di una VM template utilizzata come base per tutte le
VM del progetto. Lo script si occupa di scaricare 'immagine cloud di De-
bian 13 in formato QCOW?2, installarci il pacchetto gemu-guest-agent per
permettere a Proxmox di avere informazioni sulle interfacce di rete, e infine
creare una nuova VM template utilizzando I'immagine scaricata come disco

di avvio.

4.2 Creazione delle macchine virtuali con Ter-

raform

Una volta preparato ’ambiente Proxmox, l'intero processo di creazione
delle macchine virtuali e orchestrato da Terraform. Terraform non supporta
nativamente Proxmox, quindi e stato deciso di utilizzare un provider di terze
parti, BPG [22], che permette di interfacciarsi con ’API REST di Proxmox.
L’utilizzatore deve semplicemente modificare il file variables.tf per definire
il numero di team partecipanti, il numero di giocatori per team, l'orario di
inizio e fine della competizione e altri parametri di configurazione.

Tutte le VM sono clonate in modalita linked clone a partire dal template
creato in precedenza, riducendo significativamente il tempo di provisioning e

lo spazio richiesto su disco. La linked clone crea una nuova VM che condivide

gk W =

© 0w N D

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

4.2 Creazione delle macchine virtuali con Terraform

27

i dischi virtuali con il template di origine, memorizzando solo le differenze
rispetto al template. Le interfacce di rete delle VM sono collegate alla re-
te SDN VXLAN con VLAN ID univoci per ogni team per garantire
I'isolamento del traffico. L'MTU e impostato a 1 che indica di utilizzare
I'MTU della rete sottostante (1446 byte come descritto in [2.4.1). Ogni VM
viene configurata con Cloud-Init per automatizzare la creazione dell’utente,
I'installazione delle chiavi SSH e la configurazione dei parametri di rete per
I'interfaccia di Management.

Lo snippet di codice riporta un esempio del file di configurazione Ter-
raform che definisce la risorsa per la creazione delle vulnbox per ogni team
partecipante. La variabile proxmox_node_names contiene la lista dei nomi dei
nodi del cluster Proxmox. Le vulnbox vengono automaticamente distribuite
su piu nodi utilizzando 'operatore modulo per calcolare 'indice del nodo in

base all’'ID del team.

resource "proxmox_virtual_environment_vm" "vulnboxes" {
for_each = local.teams

name = "ctf-vulnbox-team${each.value.id}"
description = "Vulnbox for team ${each.value.id}"
node_name = var.proxmox_node_names [each.value.id /]
< length(var.proxmox_node_names)]
vm_id = each.value.vm_id
started = true
clone {
vm_id = var.template_id
node_name = var.template_node
full = false
3
agent {
enabled = true
I
cpu {
cores = 4
type = "host"
memory {
dedicated = var.vulnbox_memory
b
bios = "ovmf"

scsi_hardware = "virtio-scsi-pci"

28 4. Implementazione

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

Codice 4.1: Definizione delle Vulnbox in Terraform

4.2.1 Configurazione della Rete e SDN

Per soddisfare il requisito di distribuzione delle VM su pit nodi fisici,
¢ stato necessario superare la limitazione dei tradizionali Linux Bridge che

operano a livello di singolo host. La soluzione adottata ¢ stata 1'utilizzo del-

© 0 9 D O kW N

e e
w N = O

4.2 Creazione delle macchine virtuali con Terraform

29

la funzionalita di Software Defined Networking (SDN) integrata in Proxmox
VE. Grazie all’utilizzo del provider terraform BPG ¢ stato possibile configu-
rare una rete VXLAN (Virtual Extensible LAN), che permette di creare una
rete virtuale di livello 2 (overlay) sopra la rete fisica di livello 3 esistente tra
i nodi del cluster. In questo modo, le macchine virtuali possono comunicare
tra loro come se si trovassero sullo stesso segmento di rete, indipendentemen-
te dal nodo fisico del cluster su cui sono in esecuzione. La configurazione di
VXLAN in Proxmox e stata effettuata attraverso l'interfaccia SDN, crean-
do una zona di tipo VXLAN e specificando gli indirizzi IP dei nodi (peers)
che partecipano al tunnel. L'MTU della zona e stata impostata a 1446 byte
per gestire correttamente 'overhead di incapsulamento VXLAN ed evitare
problemi di frammentazione dei pacchetti senza dover modificare 'MTU di
tutti gli apparati fisici della rete underlay (come descritto nella sezione .
Inoltre ¢ stata creata una rete virtuale (VNet) associata alla zona VXLAN
con VNI 20000, che funge da bridge virtuale per le interfacce di rete delle
VM. La VNet e configurata in modalita VLAN-aware per permettere 1’iso-
lamento del traffico tra le diverse sottoreti delle vulnbox usando le VLAN
tradizionali. Questa segmentazione garantisce che tutte le comunicazioni del-
la gara passino attraverso il router centrale dove vengono applicate le regole
di firewall.

resource "proxmox_virtual_environment_sdn_zone_vxlan" "adzone" {

id = "adzone"
peers = var.proxmox_node_ips
mtu = 1446
Iy
resource "proxmox_virtual_environment_sdn_vnet" "adnet" {
id = "adnet"
zone = proxmox_virtual_environment_sdn_zone_vxlan.adzone.id
alias = "CTF AD VNet"
tag = 20000
vlan_aware = true

Codice 4.2: Configurazione della rete SDN VXLAN in Terraform

30

4. Implementazione

E importante notare che se il firewall integrato in Proxmox e abilita-
to, bisogna assicurarsi che la porta UDP 4789 sia aperta per permettere la

comunicazione VXLAN tra i nodi.

4.3 Configurazione software con Ansible

L’intera infrastruttura e organizzata in 4 categorie di macchine virtuali,
ognuna con un ruolo specifico all’interno della competizione A/D: il router di
gioco, il gateway router, il gameserver e le vulnbox. Una volta che le VM so-
no avviate e raggiungibili in rete, Ansible si occupa di configurare il software
all’interno di ciascuna VM, installando i pacchetti necessari, configurando i
servizi di rete e applicando le policy di sicurezza richieste. Terraform, una
volta terminato il provisioning delle risorse, si occupa di generare dinami-
camente il file di inventario di Ansible, elencando tutte le VM create con i
relativi indirizzi IP di management ed eventuali jump host ssh necessari per
raggiungerle. L’architettura implementata prevede una separazione netta tra
la rete di gioco e la rete di management. Ogni macchina virtuale dell’infra-
struttura dispone di due interfacce di rete: I'interfaccia di gioco con indirizzo
nella sottorete 10.60.X.0/24, attraverso cui passa tutto il traffico della compe-
tizione gestito dal router centrale e 'interfaccia di management con indirizzo
nella rete 172.16.0.0/16, utilizzata dagli organizzatori per la gestione del si-
stema. Questa doppia interfaccia garantisce che eventuali malfunzionamenti
sulla rete di gioco non impediscano agli amministratori di accedere alle VM
per interventi di manutenzione. Il playbook Ansible e organizzato in ruoli:
ogni categoria di VM (router, vulnbox, gameserver) ha il proprio set di task

che descrivono la configurazione desiderata.

4.3.1 Gateway Router

Il gateway router e la prima macchina virtuale ad essere configurata da
Ansible, perché svolge due funzioni necessarie per il deployment del resto

dellinfrastruttura. In primo luogo, fornisce accesso a Internet a tutte le

© 0 N O U s W N =

NON N NN NN R e R e s e e e
S A W RN = O © W N oA W N R O

4.3 Configurazione software con Ansible 31

VM attraverso SNAT masquerading implementato con nftables. Il playbook
Ansible abilita I'IP forwarding sul gateway router e crea una regola di po-
strouting che modifica I'indirizzo IP sorgente dei pacchetti provenienti dalle
VM sostituendolo con I'TP dell’interfaccia esterna del gateway router. In se-
condo luogo, il gateway router funge da jump host SSH per permettere ad
Ansible di connettersi alle altre VM dell’infrastruttura che non dispongono
di un indirizzo IP pubblico. Ansible infatti, necessita di collegarsi ad ogni
VM per eseguire i task di configurazione, ma le VM sono raggiungibili solo
attraverso la rete di management privata che non ¢ accessibile dalla macchina

su cui viene eseguito Ansible.

table ip filter {
chain forward {
type filter hook forward priority O; policy drop;
Allow established and related connections
ct state { established, related } accept
Allow ssh
tcp dport 22 accept
Allow beszel agent (monitoring software) port
tcp dport 45876 accept
Allow traffic to internet
oifname "{{ outbound_interface }}" accept
}
}

table ip nat {
chain postrouting {
type nat hook postrouting priority 100;

Masquerade traffic for the external interface
oifname "{{ outbound_interface }}" masquerade

Codice 4.3: Regole nftables per il gateway router

32

4. Implementazione

4.3.2 Gameserver

Il gameserver ¢ il cuore di una competizione CTEF A/D e ospita i compo-
nenti del sistema di gioco: il database per lo stato della partita, il checker
che verifica la disponibilita dei servizi e deposita le flag, 'interfaccia web per
la visualizzazione della classifica e ’endpoint per la sottomissione delle flag.
Dopo aver analizzato le soluzioni esistenti, e stato scelto di utilizzare CTFBox
come base per il sistema di gioco, apportando alcune modifiche per adattarlo
alle esigenze specifiche del progetto. In particolare, sono stati rimossi tutti
i componenti relativi all’infrastruttura e sono stati mantenuti solo i servizi

relativi al gameserver necessari per la gestione della competizione:

e Database PostgreSQL: Utilizzato per memorizzare lo stato della

partita, le informazioni sui team, le flag e i punteggi.

e Checker: Un programma che si occupa di eseguire ad ogni round gli
script Python per la routine di controllo dei servizi vulnerabili delle

vulnbox.

e Interfaccia Web: Un’applicazione web che fornisce una dashboard

per visualizzare la classifica in tempo reale.

e Endpoint di sottomissione delle flag: Un endpoint API sulla porta
8080 che permette ai giocatori di inviare le flag raccolte durante la
competizione. Ogni giocatore puo sottomettere le flag tramite richieste

HTTP PUT inserendo come header il Team Token assegnato.

¢ Endpoint di richiesta flagID: Un endpoint API GET porta 8081 che
permette ai giocatori di richiedere la lista delle flagID. Le flagID sono
dei suggerimenti che il gameserver fornisce ai giocatori per facilitare la

ricerca delle flag all’interno dei servizi vulnerabili.

© 0 N O Uk W N

4.3 Configurazione software con Ansible

33

4.3.3 Vulnbox

Il playbook Ansible si occupa di installare Docker e Docker Compose, co-
piare le cartelle delle challenge e avviare ogni servizio con lo script di deploy.
L’utilizzatore deve copiare all’interno della cartella files del ruolo vulnbox le
cartelle delle challenge della competizione. La scelta di utilizzare Docker per-
mette agli organizzatori di distribuire facilmente i propri servizi vulnerabili
fornendo semplicemente un file docker-compose.yml e uno script di deploy.
Per il test del progetto sono state utilizzate le 4 challenge sviluppate per la
finale nazionale di CyberChallenge.IT 2024.

L’interfaccia della rete di gioco viene configurata con systemd-networkd
usando un template Ansible Jinja2 che imposta lindirizzo IP statico
10.60.X.1 in base all’ID del team e assegna una rotta statica per l'indirizzo IP
del router centrale con cui vengono instradate tutte le comunicazioni verso
le vulnbox. Inoltre, viene installato e configurato il software di monitorag-
gio Beszel Agent [23], che invia metriche di utilizzo delle risorse del sistema

(CPU, memoria, spazio su disco, rete) al server di monitoraggio.

[Match]
Name=game

[Network]
Address={{ team_network_prefix }}.{{ team_id }}.1/24

[Route]
Destination=10.254.0.1
Gateway={{ team_network_prefix }}.{{ team_id }}.254

Codice 4.4: Configurazione dell’interfaccia di rete della vulnbox

Terminata la configurazione, Ansible, usando le API di Proxmox, crea uno
snapshot di tutte le vulnbox della gara. Lo snapshot cattura lo stato attuale
della VM, permettendo agli organizzatori di ripristinare rapidamente la vuln-
box ad uno stato pulito. I team, infatti, durante la gara possono richiedere
agli organizzatori il reset della propria vulnbox in caso di malfunzionamenti

durante la competizione.

34

4. Implementazione

4.3.4 Router di gioco

Il router di gioco si occupa di instradare tutto il traffico tra le diverse sot-
toreti delle vulnbox, la rete VPN dei giocatori e il gameserver applicando le
policy di firewall necessarie. Il router centrale ¢ I'unica VM con 3 interfacce
di rete: una per la rete di management, una per la rete di gioco e una con
indirizzo IP pubblico, attraverso cui i giocatori si connettono tramite VPN.
L’interfaccia di gioco e collegata alla rete SDN VXLAN in modalita trunk,
permettendo al router di gestire il traffico di tutte le sottoreti delle vulnbox
attraverso la creazione di subinterfacce VLAN. Il playbook Ansible si occupa
di creare le subinterfacce VLAN per ogni team, assegnando a ciascuna di esse
un indirizzo IP in formato 10.60.X.254, oltre all’interfaccia principale con in-
dirizzo 10.254.0.1 che funge da gateway predefinito per tutte le comunicazioni
nella rete di gioco.

Per la gestione del traffico VPN, viene installato Wireguard e vengono
generate le configurazioni per tutti i giocatori, creando una chiave privata e
pubblica per ogni utente e assegnando un indirizzo IP nel formato 10.81.X.Y,
dove X ¢ il numero del team e Y ¢ I'ID del giocatore. Le configurazioni Wire-
guard vengono generate con Ansible a partire dal seguente template Jinja2.
La PrivateKey ¢ la chiave privata che identifica il giocatore, mentre la Pu-
blicKey e la chiave pubblica del router. Ad ogni giocatore viene assegnato
un indirizzo IP nel formato 10.81.X.Y, dove X & I'ID del team e Y il numero
del giocatore. L’Endpoint specifica I'indirizzo IP pubblico e la porta del ser-
ver VPN a cui il client deve connettersi. La direttiva AllowedIPs definisce
gli indirizzi IP che devono essere instradati attraverso la VPN, ovvero tutte
le sottoreti delle vulnbox e l'indirizzo del gameserver. Inoltre, viene instal-
lata WGDashboard, un’applicazione web che consente agli organizzatori di

visualizzare lo stato delle connessioni VPN in modo semplice e intuitivo.

=W N =

© o N O O«

4.3 Configurazione software con Ansible

[Interfacel
PrivateKey = {{ client_private_key }}
Address = {{ client_ip }}/32

[Peer]

PublicKey = {{ server_public_key }}

Endpoint = {{ VPN_endpoint }}:51820

AllowedIPs = 10.81.0.0/16, 10.60.0.0/16, 10.10.0.1/32
PersistentKeepalive = 25

Codice 4.5: Template Wireguard per le configurazioni dei giocatori

Infine, viene installato e configurato nftables per implementare le regole
di firewall necessarie a garantire la sicurezza della rete di gioco. In particola-
re, vengono generati 3 file nftables: uno per ogni fase di gioco (grace period,
open network, closed game). Durante il grace period, ogni giocatore puo ac-
cedere solamente al gameserver e alla propria vulnbox, mentre tutto il resto
del traffico viene bloccato. Nella fase di open network, i giocatori possono
eseguire gli attacchi verso tutte le vulnbox avversarie. Infine, nella fase di
closed game, tutto il traffico viene bloccato eccetto quello verso il gameserver
per poter vedere la classifica finale. Vengono anche creati dei timer di siste-
ma (systemd timers) che impostano automaticamente le regole di firewall
appropriate in base alla fase di gioco corrente, in modo da non richiedere
interventi manuali da parte degli organizzatori durante la competizione.

Lo snippet di codice riporta un esempio delle regole di firewall utilizzate
durante la fase di open network. In questa fase, viene permesso tutto il
traffico proveniente dal gameserver verso le vulnbox, il traffico proveniente
dalla rete VPN dei giocatori verso le vulnbox e verso i servizi del gameserver.
Inoltre viene consentito il traffico VPN tra i giocatori della stessa squadra,

mentre tutto il resto del traffico viene bloccato (policy default drop).

36

4. Implementazione

oo ~N 3 ot = W [SR

©

10
11
12

13
14

16
17
18
19

20
21
22
23
24
25
26

table inet ctf_firewall {
chain forward {
type filter hook forward priority O; policy drop;

Allow established and related connections
ct state { established, related } accept

Allow all traffic from the game server to the vulnboxes
iifname "ens19.1000" ip saddr 10.10.0.1 ip daddr
< 10.60.0.0/16 accept

Allow VPN players to communicate with all vulnboxes
iifname "wg0" ip saddr 10.81.0.0/16 ip daddr 10.60.0.0/16
< accept

Allow VPN players to communicate with the game server

— services

iifname "wgO" ip saddr 10.81.0.0/16 ip daddr 10.10.0.1 tcp
— dport { 80, 8080, 8081 } accept

Allow player VPN communication within the same team
{/, for team_id in range(l, teams|length + 1) %}
iifname "wg0" oifname "wg0O" ip saddr 10.81.{{ team_id
< 1}}.0/24 ip daddr 10.81.{{ team_id }}.0/24 accept
{% endfor %}

Block all other communication between team VPN networks
iifname "wgO" oifname "wgO" drop

Codice 4.6: Regole di firewall rete di gioco - fase Open Network

4.4 Tecniche di anonimizzazione del traffico

di rete

Uno dei requisiti fondamentali dell’infrastruttura ¢ che i giocatori non
devono poter distinguere il traffico proveniente dal checker da quello degli

exploit degli altri team analizzando i pacchetti di rete catturati sulla propria

4.4 Tecniche di anonimizzazione del traffico di rete

37

vulnbox. Le prime tecniche di anonimizzazione adottate sono state 1'uti-
lizzo del SNAT (Source Network Address Translation) e la normalizzazione
del TTL (Time To Live) per tutti i pacchetti in uscita dal router centrale.
Il SNAT viene implementato con una regola di postrouting in nftables che
modifica l'indirizzo IP sorgente di tutti i pacchetti destinati alle vulnbox,
sostituendolo con l'indirizzo IP dell’interfaccia di gioco del router centrale
10.254.0.1. I TTL & un campo dell’header IP che viene decrementato ad
ogni hop e potrebbe essere utilizzato per inferire informazioni sulla distanza
tra il mittente e il destinatario del pacchetto. In questo modo, tutti i pac-
chetti diretti alle vulnbox appaiono come provenire dallo stesso indirizzo IP
(quello del router) e con lo stesso valore di TTL, rendendo difficile ai gio-
catori distinguere tra traffico legittimo del checker e traffico malevolo degli

exploit.

table inet ctf_nat {
chain snat_to_vulnboxes {
type nat hook postrouting priority srcnat;

SNAT traffic to vulnboxes
ip daddr 10.60.0.0/16 snat 10.254.0.1
b
I;
table inet ctf_mangle {
chain postrouting {
type filter hook postrouting priority mangle;

TTL normalization for traffic to vulnboxes
ip daddr 10.60.0.0/16 ip ttl set 64;

Codice 4.7: Regole di NAT e normalizzazione TTL sul game router

38

4. Implementazione

4.5 Analisi e mitigazione del TCP Timestamp

Fingerprinting

Nel contesto delle competizioni CTF Attack/Defense, l'identificazione del
mittente di un pacchetto di rete costituisce una vulnerabilita critica che puo
compromettere I'equita della competizione. In particolare, la possibilita di
distinguere i pacchetti provenienti dal gameserver (checker) da quelli inviati
dai team avversari rappresenta un vantaggio significativo. L’obiettivo della
normalizzazione del traffico, o ”scrubbing”, € modificare i pacchetti in entrata
per conformarli a un’unica ”impronta”. Questo processo rimuove le caratte-
ristiche uniche dello stack TCP/IP del mittente originale, facendo apparire
tutti i pacchetti come se provenissero dalla stessa fonte. Durante le prime
prove sull’infrastruttura, e emerso che le tecniche di anonimizzazione di base
non fossero sufficienti a prevenire un’analisi piu sofisticata. Nonostante tutti
i pacchetti catturati sulle vulnbox abbiano lo stesso indirizzo IP di origine,
e stato identificato un possibile vettore di fingerprinting passivo basato sul
campo TCP Timestamp dell’header TCP.

I1 Transmission Control Protocol (TCP) ¢ un protocollo di livello traspor-
tato che garantisce I'affidabilita del trasferimento dati mediante la ritrasmis-
sione dei pacchetti persi, I'ordinamento dei segmenti e il controllo del flusso.
Quasi tutte le challenge delle competizioni CTF A /D utilizzano servizi basati
su TCP o su protocolli applicativi che si appoggiano a TCP, come HTTP.
Per comprendere il meccanismo di fingerprinting, ovvero di identificazione
di un’impronta basata sui timestamp, e necessario analizzare la struttura
dell’header TCP. L’intestazione (header) di un segmento TCP ha una di-
mensione minima di 20 byte, ma puo estendersi fino a 60 byte grazie all’uso

del campo Options.

Il campo Options ha una lunghezza variabile fino a 40 byte e serve a
permettere I'aggiunta di estensioni future al protocollo TCP. A ogni opzione
¢ associato un identificatore univoco (Kind) e una lunghezza (Length) che

specifica la dimensione dell’opzione in byte. Il formato standard dell’header

4.5 Analisi e mitigazione del TCP Timestamp Fingerprinting

39

20-60 bytes

Figura 4.1: Struttura di un segmento TCP [4]

include campi essenziali come Porta Sorgente, Porta Destinazione, Numero
di Sequenza, Numero di Acknowledgment, Flag di Controllo e Checksum.

Per adattare il protocollo TCP all’evoluzione delle reti ad alta velocita,
con 'RFC 1323 e successivamente con il 7323 (TCP Extensions for High
Performance [24]) sono state introdotte diverse estensioni, tra cui 'opzione
TCP Timestamp. Questa opzione e identificata dal valore Kind 8 e ha una
lunghezza fissa di 10 byte.

Il Timestamp viene utilizzato per due scopi principali:

e Misurazione del Round-Trip Time (RTTM): Il protocollo TCP
deve conoscere il Round Trip Time della connessione per calcolare cor-
rettamente il Retransmission Timeout (RTO), ovvero il tempo dopo il

quale un pacchetto che non ¢ ancora stato riconosciuto (con ACK) deve

40

4. Implementazione

essere ritrasmesso.

e Protection Against Wrapped Sequences (PAWS): Il campo del
Numero di Sequenza in TCP ¢ un contatore a 32 bit che in reti multi-
gigabit puo esaurirsi in pochi secondi e ricominciare da zero (wrap
around). Senza il timestamp, il ricevente potrebbe non essere in grado
di distinguere se un segmento con un numero di sequenza gia visto
¢ un vecchio duplicato o un nuovo segmento con numero di sequenza

avvolto.

L’opzione TCP Timestamp include due campi principali: il Timestamp
Value (TSval) e il Timestamp Echo Reply (TSecr), entrambi di 4 byte. Il
valore T'Sval rappresenta il timestamp corrente del mittente, mentre TSecr e
utilizzato nei segmenti di acknowledgment per riportare il valore T'Sval rice-
vuto in precedenza. Il mittente include il TSval nel segmento TCP inviato.
Quando il destinatario manda il pacchetto di Acknowledgment, copia il va-
lore TSval nel campo TSecr del segmento ACK. In questo modo, il mittente,
quando riceve ’ACK, puo calcolare I'RTT sottraendo il valore TSecr dal suo
valore corrente del timestamp.

Il valore del Timestamp Value (T'Sval) non ¢ un orario assoluto, ma un
contatore monotono crescente (timestamp clock) che come definito dal RFC
7323 [24] alla sezione 4.1, Values of this clock MUST be at least approximately
proportional to real time. Quindi ogni sistema ha un proprio timestamp clock
differente dagli altri. Solitamente nei sistemi operativi moderni, il timestamp
viene incrementato con una frequenza di 1000Hz (una volta al millisecondo)
e inizializzato a partire da un valore casuale al boot del sistema.

Per verificare la possibilita di fingerprinting basato sui TCP Timestamp,
e stato utilizzato Euriclea [25], un tool open-source sviluppato specificamente
per l'identificazione delle impronte dei mittenti nelle competizioni CTF A /D.
Euriclea analizza passivamente i segmenti TCP usando una coda nfqueue di
Netfilter e ne estrae il valore TSval e il tempo di ricezione del pacchetto.
Utilizzando questi dati, Euriclea calcola la differenza tra il tempo di ricezione

(unix timestamp in millisecondi) e il valore TSval del pacchetto. Questa

4.5 Analisi e mitigazione del TCP Timestamp Fingerprinting

41

differenza rimane costante per tutte le connessioni TCP provenienti dallo
stesso mittente, permettendo a Euriclea di associare un’impronta univoca
(haiku) a ciascun mittente.

Durante la fase di testing, Euriclea e Wireshark hanno permesso di evi-
denziare differenze sostanziali nel modo in cui i diversi sistemi operativi

gestiscono 'opzione Timestamp, influenzando la possibilita di fingerprinting;:

e Windows 11: Non invia l'opzione TCP Timestamp (Kind 8) di de-

fault, rendendo impossibile il fingerprinting basato su questo campo.

e macOS: Randomizza il valore iniziale (offset) del timestamp per ogni
nuova connessione TCP (sessione TCP definita dal 3-way handshake,
scambio di dati e terminazione). Quindi ogni volta che viene stabilita
una nuova connessione TCP (anche verso lo stesso indirizzo IP e porta),
il valore iniziale del timestamp e casuale. Questo comportamento impe-
disce di correlare due connessioni diverse alla stessa macchina sorgente,

poiché non esiste un offset comune che le leghi.

e Linux: Il comportamento del timestamp in Linux ¢ regolato dal pa-
rametro di sistema net.ipv4.tcp_timestamps. Il valore predefinito
(1), come definito nella documentazione del kernel Linux [26], abili-
ta i timestamp TCP randomizzando 'offset iniziale del timestamp per
ogni connessione. Tuttavia, durante i test, catturando i pacchetti con
Wireshark su una vulnbox, e stato osservato che un mittente specifico
aveva sempre lo stesso offset iniziale del timestamp. Quando invece i
pacchetti venivano catturati su un’altra vulnbox, lo stesso mittente pre-
sentava un offset iniziale diverso. Approfondendo I’analisi e analizzando
il codice sorgente del kernel Linux [4.8] ¢ stato possibile comprendere il
motivo di questo comportamento. L’algoritmo di generazione dell’off-
set iniziale del timestamp utilizza una funzione di hash che prende in
input solamente la coppia di indirizzi IP sorgente e destinazione, ma
ignora le porte TCP. Questo comportamento consente ai giocatori di

fingerprintare il mittente in modo affidabile, poiché tutte le connessioni

42

4. Implementazione

© 0w N O U s W N

e
N = O

13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36
37
38

di uno specifico mittente verso la vulnbox avranno la stessa differenza

tra il tempo di ricezione e il valore TSval.

u32 secure_tcp_ts_off(const struct net *net be32 saddr, __be32

< daddr)
{

b —_——

if (READ_ONCE(net->ipv4.sysctl_tcp_timestamps) != 1)
return O;

ts_secret_init();
return siphash_2u32((__force u32)saddr, (__force u32)daddr,
&ts_secret);

}

/* This will <nittate an outgoing connection. */
int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int
< addr_len)

{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_sock *inet = inet_sk(sk);
WRITE_ONCE(tp->tsoffset,
secure_tcp_ts_off (net, inet->inet_saddr,
inet->inet_daddr)) ;
}

/* Compute TCP options for SYN packets. This is not the final
network wire format yet. */
static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff
— *skb,
struct tcp_out_options *opts,
struct tcp_key *key)

{
struct tcp_sock *tp = tcp_sk(sk);
if (likely(timestamps)) {
opts—>options |[= OPTION_TS;
opts—>tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts,
— skb) + tp->tsoffset;
opts—>tsecr = tp->rx_opt.ts_recent;
remaining -= TCPOLEN_TSTAMP_ALIGNED;
}
}

Codice 4.8: Codice Kernel Linux 6.17.9 per il calcolo del TCP Timestamp

4.5 Analisi e mitigazione del TCP Timestamp Fingerprinting

43

Nello snippet di codice vengono mostrate le tre funzioni del kernel
Linux coinvolte nel calcolo del TCP Timestamp TSval per il pacchetto SYN
iniziale di una connessione TCP. La funzione tcp_v4_connect viene chia-
mata quando viene stabilita una nuova connessione TCP e imposta ['off-
set del timestamp chiamando la funzione secure_tcp_ts_off. La funzione
secure_tcp_ts_off calcola l'offset del timestamp utilizzando una funzione
di hash (siphash) che prende in input solamente gli indirizzi IP sorgente e
destinazione, ignorando le porte TCP. Infine, la funzione tcp_syn_options
costruisce 'header TCP del pacchetto SYN, includendo il campo TSval cal-

colato sommando il timestamp clock corrente con l'offset della connessione.

Nella figura [4.2] ¢ mostrato un esempio di output di Euriclea in esecuzione
su una vulnbox durante la fase di testing dell’infrastruttura. La vulnbox rice-
ve pacchetti TCP sulla porta 3000 da due diversi mittenti: un sistema macOS
e un sistema Linux. Tutti i pacchetti hanno come indirizzo IP sorgente quel-
lo del router centrale (10.254.0.1) a causa del SNAT. I primi due pacchetti
provengono da un sistema Linux, ma da due connessioni TCP distinte (una
generata con curl e l'altra con nc). Nonostante cio, Euriclea riesce a identi-
ficare che entrambi i pacchetti provengono dallo stesso mittente e associare
I’haiku hot-ugly a quel sistema Linux. I successivi due pacchetti provengono
da un sistema macOS, anch’essi da due connessioni TCP distinte. In que-
sto caso, Euriclea non riesce a correlare i due pacchetti allo stesso mittente,
generando due haiku differenti: late-foolish e soft-blue.
rootectf-vulnbax-teand:~/euriclea/chd/nfqueues . /nfqueve —queue 0

-> 172.18.0.2 83838): GET / HTTP/1.1..Host: 10.60@.1.1:3000..User-Agent: curl/8.14.1..Accept: */*....
-> 172.18.0.2 83838): test da linux.

-> 172.18.0.2 1sh:16157): GET / HTTP/1.1..Host: 10.60.1.1:3000..User-Agent: curl/8.7.1..Accept: */*,...
soft-| :66582): test da macos.

Figura 4.2: Euriclea mostra le impronte dei mittenti basate sui TCP Time-

stamp

Per mitigare la vulnerabilita del TCP Timestamp Fingerprinting, sono
state analizzate due soluzioni distinte, valutandone I'efficacia e I'impatto sulle

prestazioni della rete.

44

4. Implementazione

[

4.5.1 nftables

La soluzione pit immediata consiste nel rimuovere completamente 1'op-
zione TCP Timestamp dai pacchetti in transito verso le vulnbox utilizza-
no nftables sul router di gioco. La regola mostrata nello snippet di codice
intercetta tutti i pacchetti TCP con il flag SYN e li modifica rimuovendo
I'opzione TCP Timestamp. Impedendo l'invio dell’opzione Timestamp nel
3-way handshake, il mittente non inviera mai il campo TSval nei pacchetti

successivi della connessione.

table inet ctf_mangle {
chain strip_tcp_timestamps {
type filter hook forward priority mangle; policy accept;
Remove TCP timestamps
ip daddr 10.60.0.0/16 tcp flags syn reset tcp option
— timestamp
b
3

Codice 4.9: Regola nftables per rimuovere 'opzione TCP Timestamp

Questa tecnica ¢ efficace nel prevenire il fingerprinting basato sui ti-
mestamp, poiché elimina completamente il campo che viene utilizzato per

I'identificazione del mittente.

4.5.2 Proxy TCP

La scelta definitiva ¢ ricaduta sull’installazione di un proxy TCP layer 4
(HAProxy) sul router centrale, che funge da intermediario tra i giocatori e
le vulnbox. HAProxy riceve le connessioni TCP dai giocatori e dal gameser-
ver, stabilisce una nuova connessione verso la vulnbox e inoltra i dati tra i
due endpoint. Poiché la connessione verso la vulnbox ¢ generata interamente
dallo stack TCP/IP del router centrale, tutti i parametri del protocollo TCP
dipendono esclusivamente dal router centrale su cui e in esecuzione HAProxy.
Questa soluzione piu sofisticata garantisce ’anonimato completo del mitten-

te, eliminando qualsiasi possibilita di fingerprinting basata anche su altre ca-

=W N =

4.5 Analisi e mitigazione del TCP Timestamp Fingerprinting

45

ratteristiche dello stack TCP/IP originale. I giocatori non sono consapevoli
della presenza del proxy, dato che inviano i pacchetti direttamente all’indiriz-
zo IP della vulnbox (10.60.X.1). Il router centrale utilizzando la funzionalita
di Destination NAT (DNAT) di nftables reindirizza il traffico destinato al-
le vulnbox verso il proxy HAProxy in esecuzione sulla stessa macchina. Il
DNAT permette di modificare I'indirizzo IP di destinazione dei pacchetti in
transito. Lo snippet di codice mostra I’esempio di una regola DNAT che
reindirizza tutto il traffico TCP dei servizi di gioco di due vulnbox verso HA-
Proxy. Quando un pacchetto TCP destinato ai servizi di gioco (porte 1337,
3000, 3001, 8000, 8443) arriva al router centrale con destinazione 10.60.X.1,
la regola di DNAT modifica 'indirizzo IP di destinazione con 10.60.X.254

(indirizzo del router nella sottorete della vulnbox).

table inet ctf_nat {

chain dnat_to_haproxy {

type nat hook prerouting priority dstnat; policy accept ;
ip daddr 10.60.0.1 tcp dport { 1337,3000,3001,8000,8443 }
< dnat to 10.60.0.254
ip daddr 10.60.1.1 tcp dport { 1337,3000,3001,8000,8443 }
— dnat to 10.60.1.254

}

i)

Codice 4.10: Regole di DNAT per reindirizzare il traffico verso HAProxy

HAProxy e configurato per ascoltare sulle interfacce di rete del router
centrale e inoltrare le connessioni verso le rispettive vulnbox (10.60.X.1) in
base alla porta di destinazione. Lo snippet di codice mostra un esempio
di configurazione di HAProxy che definisce i backend e frontend per due
servizi di gioco esposti dalle vulnbox. Con la direttiva frontend si specifica
I'indirizzo IP e la porta su cui HAProxy deve ascoltare le connessioni in
ingresso, mentre con la direttiva backend si definisce I'indirizzo IP e la porta

della vulnbox verso cui inoltrare il traffico.

46

4. Implementazione

© 0 N O U W N

e
w N = O

frontend f_teamO_p3000
bind 10.60.0.254:3000
default_backend b_team0_p3000

backend b_team0_p3000
server s_team0_3000 10.60.0.1:3000

frontend f_teaml_p3000
bind 10.60.1.254:3000
default_backend b_teaml_p3000

backend b_teaml_p3000
server s_teaml1_3000 10.60.1.1:3000

Codice 4.11: Esempio di configurazione di HAProxy

|Time |Suurce |Destination |Prc|tc|c:ul|Timestamp value |Infu

Figura 4.3: Confronto dei valori TCP Timestamp in tre scenari di mitigazione

La figura[4.3 mostra il confronto dei valori TCP Timestamp nei pacchetti
SYN catturati con Wireshark in tre scenari distinti: senza alcuna mitigazione,
con la rimozione dell’opzione TCP Timestamp tramite nftables e utilizzando
HAProxy come proxy TCP. Per ogni scenario, sono stati inviati pacchetti
TCP da due host distinti verso la vulnbox in esame. Nello scenario senza
mitigazione (colore blu), i pacchetti SYN provenienti dai due host mostrano
valori TSval differenti, permettendo di distinguere le due fonti. Nello scena-
rio con la rimozione dell’opzione TCP Timestamp tramite nftables (colore
rosso), i pacchetti SYN non contengono piu 'opzione Timestamp, rendendo
impossibile il fingerprinting basato su questo campo. Infine, nello scenario
con HAProxy (colore verde), i pacchetti SYN ricevuti dalla vulnbox presenta-

no lo stesso offset TSval, poiché entrambi i pacchetti sono stati generati dallo

4.5 Analisi e mitigazione del TCP Timestamp Fingerprinting

47

stack TCP/IP del router centrale su cui & in esecuzione HAProxy. Questo
dimostra D'efficacia della soluzione basata su proxy nel garantire ’anonimato

completo del mittente.

Capitolo 5

Risultati

5.1 Valutazione delle prestazioni delle solu-
zioni di mitigazione

Per valutare 'impatto delle soluzioni di anonimizzazione del traffico sul-
le prestazioni della rete, sono stati condotti dei test utilizzando iperf3 per
misurare la velocita di trasferimento dati tra due VM ubicate sullo stesso
nodo Proxmox (con CPU Intel i5-8400). Per assicurarsi che il test misurasse
le prestazioni del router centrale, le VM client e server di iperf3 sono state
collocate in due sottoreti VLAN differenti, costringendo il traffico a passare
attraverso il router di gioco per I'instradamento.

I test sono stati eseguiti in tre scenari distinti: normalizzazione di base con
SNAT e TTL reset, con la rimozione dell’opzione TCP Timestamp tramite
nftables e utilizzando HAProxy come proxy TCP. Ogni test e stato eseguito
tre volte per garantire ’affidabilita dei risultati e sono stati misurati sia il
throughput in Gbps che 'utilizzo di un singolo core della CPU del router
centrale. I risultati ottenuti sono riassunti nella tabella seguente:

I risultati indicano che la rimozione dell’opzione TCP Timestamp tramite
nftables non ha avuto alcun impatto significativo sul throughput della rete,
mantenendo una velocita di trasferimento di 16.3 Gbps, identica a quella

ottenuta senza alcuna mitigazione. Al contrario, 'utilizzo di HAProxy come

49

50

5. Risultati

Scenario Throughput | Uso CPU 1 core
Solo SNAT e TTL Reset 16.3 Gbps 25%
Rimozione Timestamp (nftables) 16.3 Gbps 25%
Proxy TCP (HAProxy) 10.4 Gbps 99%

Tabella 5.1: Risultati dei test di throughput nei diversi scenari di mitigazione

proxy TCP ha comportato una riduzione del throughput a 10.4 Gbps e un
elevato utilizzo di un singolo core della CPU, ma offre una protezione comple-
ta contro ogni forma di fingerprinting basata sullo stack TCP/IP originale.
Questo overhead ¢ dovuto al fatto che HAProxy agisce come intermediario,
gestendo due connessioni TCP distinte per ogni flusso di dati (client-proxy e
proxy-server) anziché limitarsi a modificare i pacchetti in transito come av-
viene con nftables. Considerando che le vulnbox sono distribuite su piu nodi
Proxmox, dove la velocita della rete fisica tra i nodi potrebbe rappresentare
un collo di bottiglia maggiore, la soluzione basata su HAProxy risulta comun-
que adeguata per garantire I’anonimato senza compromettere le prestazioni

della competizione.

5.2 Sessione di prova dell’infrastruttura

Per verificare il corretto funzionamento del progetto e stata organizzata
una sessione di prova durante un incontro di Ulisse Lab, presso i laboratori
di Ingegneria. L’obiettivo principale era verificare la stabilita del sistema in
uno scenario reale, replicando le condizioni di una vera competizione CTF
Attack and Defense. Hanno partecipato alla simulazione 24 studenti, sud-
divisi in 4 team da 6 persone ciascuno, piu il NOP Team. L’infrastruttura
e stata distribuita interamente sul cluster Proxmox di Ulisse Lab, utilizzan-
do 3 nodi fisici connessi tramite una rete Gigabit Ethernet. Ogni nodo era
equipaggiato con hardware piuttosto datato, con CPU Intel i5-2400, 16GB
di RAM e dischi HDD in rete. Si tratta di specifiche hardware di livello

medio-basso che permettono di verificare I'efficienza dell’infrastruttura an-

5.2 Sessione di prova dell’infrastruttura

51

che in presenza di risorse limitate. La creazione delle VM con Terraform e
stata istantanea, grazie all’utilizzo del linked clone, mentre il provisioning
con Ansible ha impiegato circa 45 minuti a causa delle prestazioni limita-
te dei dischi HDD. A ogni macchina virtuale sono stati allocati 2 core di
CPU e 3GB di RAM, risorse minime sufficienti per eseguire i servizi senza
compromettere le prestazioni.

La prova ha avuto una durata di 2 ore, durante le quali non si sono ve-
rificati rallentamenti o interruzioni del servizio. Tutti i partecipanti sono
riusciti a connettersi alla rete di gioco usando i profili VPN generati automa-
ticamente e a interagire con le proprie vulnbox senza problemi. Tutti i servizi
vulnerabili sono rimasti disponibili per I'intera durata della competizione e
il gameserver ha gestito correttamente la checker routine e I’aggiornamento
della classifica in tempo reale. Durante la prova e stato anche verificato il
corretto funzionamento delle tecniche di anonimizzazione del traffico di re-
te. L’analisi del traffico catturato sulle vulnbox ha confermato che tutte le
comunicazioni provenienti dal router centrale apparivano con lo stesso indi-
rizzo IP sorgente e che l'offset del TCP Timestamp era identico per tutte
le connessioni. Questo ha reso impossibile il fingerprinting dei mittenti, ga-
rantendo 'equita della competizione. Il risultato della prova dimostra come
I'utilizzo di un’infrastruttura IaC distribuita su pitt nodi permetta di ottenere
un sistema scalabile e affidabile, anche utilizzando hardware non di ultima

generazione.

Capitolo 6
Conclusioni e sviluppi futuri

Il presente lavoro di tesi si € concluso con la progettazione e lo sviluppo
di un’infrastruttura scalabile e automatizzata per competizioni CTF Attack
and Defense, utilizzando strumenti di Infrastructure as Code quali Terraform
e Ansible. La soluzione proposta si distingue da quelle esistenti per la sua
completezza: questo sistema gestisce a 360 gradi l'intero ciclo di vita della
competizione, dalla creazione delle macchine virtuali alla configurazione della
rete, includendo la gestione del gameserver e le tecniche di anonimizzazione
del traffico. Inoltre, I'utilizzo della connettivita VPN consente ai partecipanti
di accedere alla rete di gioco ovunque si trovino e di organizzare eventi sia

in presenza sia online.

I risultati presentati nel capitolo precedente dimostrano che tutti gli obiet-
tivi prefissati sono stati raggiunti. La sessione di prova condotta presso i
laboratori ha confermato l'efficacia delle politiche di sicurezza adottate e la
stabilita dell’infrastruttura anche in presenza di hardware non di ultima ge-
nerazione. Inoltre, la funzionalita di distribuzione del carico su piu nodi fisici
assicura la scalabilita necessaria per organizzare eventi con un numero eleva-
to di partecipanti. Dal punto di vista educativo, questo progetto contribuisce
in modo concreto alla formazione di nuovi professionisti della cybersecurity,
offrendo un ambiente realistico in cui sviluppare competenze pratiche in ma-

teria di sicurezza informatica. L’infrastruttura, infatti, oltre a poter essere

53

54

6. Conclusioni e sviluppi futuri

utilizzata per reali competizioni, e stata ideata proprio con I'obiettivo di mi-
gliorare la fase di preparazione dei nuovi partecipanti di CyberChallenge.I'T
presso ’Universita di Bologna.

Nonostante i risultati positivi, sono stati individuati alcuni possibili svi-
luppi futuri. In primo luogo, si potrebbe migliorare la resilienza dell’infra-
struttura nei confronti dei malfunzionamenti. Attualmente, il gamerouter
rappresenta un Single Point of Failure: in caso di blocco della VM del rou-
ter, 'intera rete di gioco diventerebbe inaccessibile. Una soluzione potrebbe
consistere nell'introduzione di un meccanismo di High Awvailability (HA) che
configuri un router di backup, pronto a intervenire tramite un sistema di
failover automatico.

Un secondo sviluppo potrebbe riguardare 'inclusione di un Intrusion De-
tection System (IDS), uno strumento che consente di analizzare il traffico di
rete in tempo reale e di generare alert in caso di comportamenti anomali,
come scansioni di porte o attacchi DDoS, spesso vietati nelle competizioni.

Per migliorare ulteriormente la scalabilita dell’infrastruttura, si potreb-
be valutare I'integrazione di provider di servizi di cloud computing tramite
Terraform. Questo permetterebbe agli organizzatori di ridurre i costi legati
all’acquisto di hardware fisico, noleggiando solo le risorse necessarie in base
al numero di partecipanti.

Infine, si potrebbe realizzare una piattaforma web che permetta di ge-
stire l'iscrizione dei team, la distribuzione delle credenziali delle vulnbox e
delle configurazioni VPN ai partecipanti. Con quest’ultima aggiunta, 1'in-
tero processo di organizzazione di una competizione CTF Attack and De-
fense verrebbe automatizzato, semplificando ulteriormente il lavoro degli

organizzatori.

Appendice A
(GGlossario

VM Virtual Machine (Macchina Virtuale) ¢ un ambiente virtuale che simula

il funzionamento di un computer fisico.

VXLAN Virtual Extensible LAN e una tecnologia di virtualizzazione di
rete che consente di creare reti virtuali (overlay) sopra una rete fisica

esistente (underlay).

VTEP VXLAN Tunnel Endpoint & un dispositivo che incapsula e decapsula
i pacchetti VXLAN.

VPN Virtual Private Network permette di creare una connessione privata

e sicura tra dispositivi attraverso Internet.

MTU Maximum Transmission Unit ¢ la dimensione massima in byte di un

pacchetto dati che puo essere inviato su una rete.

SNAT Source Network Address Translation e una tecnica di rete che per-

mette di modificare I'indirizzo IP sorgente dei pacchetti.

DNAT Destination Network Address Translation € una tecnica di rete che

permette di modificare I'indirizzo IP di destinazione dei pacchetti.

Indirizzo MAC Media Access Control ¢ un identificativo a 48 bit associato

a un’interfaccia di rete.

95

56

Glossario

TCP Transmission Control Protocol & un protocollo di rete di livello tra-

sporto che rende affidabile la comunicazione tra mittente e destinatario.

TTL Time To Live ¢ un campo dell’header IP che indica il numero massimo

di hop che un pacchetto puo attraversare prima di essere scartato.

IDS Intrusion Detection System e un sistema di sicurezza che monitora il

traffico di rete per rilevare attivita sospette.

SDN Software Defined Networking e un approccio alla gestione delle reti che
separa il piano di controllo dal piano dati, permettendo una gestione

centralizzata e programmabile della rete.

Jinja2 motore di template per Python che consente di generare file di con-

figurazione dinamici con Ansible.

Header parte iniziale di un pacchetto di rete che contiene informazioni di

controllo.
Payload parte di un pacchetto di rete che contiene i dati.

Provisioning processo di creazione e configurazione delle risorse di un’in-
frastruttura IT.

IaC Infrastructure as Code e una pratica di gestione di infrastrutture I'T che

permette di definire le risorse tramite codice.

QCOW2 QEMU Copy On Write e un formato di file immagine per macchine

virtuali.

High Availability caratteristica di un sistema che mira a garantire un

elevato livello di operativita.

Bibliografia

1]

2]

3]

“Vxlan packet format figure,” accesso: 07-11-2025. [Online]. Available:
https://www.analysisman.com/2018/05/vxlan-how-it-works.html

I. Cisco Systems, “Introduction to vxlan,” accesso: 09-11-2025. [Online].

Available: https://www.ciscolive.com/c/dam /r/ciscolive/global-event /

docs/2024 /pdf/BRKDCN-1621.pdf

CyberChallenge.IT, “Regolamento finale nazionale cyberchallen-
ge.it,” 2025, accesso: 01-11-2025. [Online]. Available: https:
//ad.cyberchallenge.it /

“Tep segment structure,” accesso: 16-11-2025. [Onli-
ne|. Available: https://www.geeksforgeeks.org/computer-networks/

services-and-segment-structure-in-tcp/

E. U. A. for Cybersecurity (ENISA), “Enisa report - ctf events,” ENISA,
Tech. Rep., 2021.

K. M. Kapp, The Gamification of Learning and Instruction: Game-based
Methods and Strategies for Training and FEducation, 1st ed. Pfeiffer &
Company, 2012.

A. Marczewski, Gamification: A Simple Introduction. Andrzej
Marczewski, 2013. [Online]. Available: https://books.google.it/books?
id=I0u9kPjlndYC

57

https://www.analysisman.com/2018/05/vxlan-how-it-works.html
https://www.ciscolive.com/c/dam/r/ciscolive/global-event/docs/2024/pdf/BRKDCN-1621.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/global-event/docs/2024/pdf/BRKDCN-1621.pdf
https://ad.cyberchallenge.it/
https://ad.cyberchallenge.it/
https://www.geeksforgeeks.org/computer-networks/services-and-segment-structure-in-tcp/
https://www.geeksforgeeks.org/computer-networks/services-and-segment-structure-in-tcp/
https://books.google.it/books?id=IOu9kPjlndYC
https://books.google.it/books?id=IOu9kPjlndYC

58

Bibliografia

8]

[10]

[11]

[12]

[14]

[15]

A. Dabrowski, M. Kammerstetter, E. Thamm, E. Weippl, and
W. Kastner, “Leveraging competitive gamification for sustainable
fun and profit in security education,” in 2015 USENIX Summat
on Gaming, Games, and Gamification in Security FEducation
(3GSE 15). Washington, D.C.: USENIX Association, Aug.
2015. [Online]. Available: https://www.usenix.org/conference/3gsel5/

summit-program /presentation /dabrowski

OWASP, “Owasp top 10,” accesso: 05-11-2025. [Online]. Available:
https://owasp.org/www-project-top-ten/

CyberChallenge.IT, “Regolamento cyberchallenge.it,” 2025, accesso:
26-10-2025. [Online]. Available: https://cyberchallenge.it/rules/

——, “Cyberchallenge.it - statistiche ed edizioni,” 2025, accesso:
26-10-2025. [Online]. Available: https://cyberchallenge.it/stats/

CTFtime.org, “Ctftime - portale competizioni capture the flag,” 2025,
accesso: 10-11-2025. [Online]. Available: https://ctftime.org/

A. Saxena, S. Singh, S. Prakash, T. Yang, and R. S. Rathore,
“Devops automation pipeline deployment with iac (infrastructure
as code),” in 2024 IEEE Silchar Subsection Conference (SILCON
2024). 1EEE, Nov. 2024, p. 1-6. [Online]. Available: http:
//dx.doi.org/10.1109 /SILCON63976.2024.10910699

M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, “Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks,” RFC 7348, Aug. 2014. [Online|. Available:
https:/ /www.rfc-editor.org/info /rfc7348

P. S. S. GmbH, “Proxmox ve documentation,” accesso: 12-11-2025.

[Online]. Available: https://pve.proxmox.com/wiki/Main_Page

https://www.usenix.org/conference/3gse15/summit-program/presentation/dabrowski
https://www.usenix.org/conference/3gse15/summit-program/presentation/dabrowski
https://owasp.org/www-project-top-ten/
https://cyberchallenge.it/rules/
https://cyberchallenge.it/stats/
https://ctftime.org/
http://dx.doi.org/10.1109/SILCON63976.2024.10910699
http://dx.doi.org/10.1109/SILCON63976.2024.10910699
https://www.rfc-editor.org/info/rfc7348
https://pve.proxmox.com/wiki/Main_Page

Bibliografia 59

[16] HashiCorp, “Terraform,” accesso: 12-11-2025. [Online]. Available:
https://developer.hashicorp.com /terraform

[17] I. Red Hat, “Ansible documentation,” accesso: 12-11-2025. [Online].
Available: https://docs.ansible.com/

[18] J. A. Donenfeld, “Wireguard: Next generation kernel network tunnel,”
in Network and Distributed System Security Symposium, 2017. [Online].
Available: https://api.semanticscholar.org/CorpusID:2590070

[19] F. Team, “Faust ctf platform,” accesso: 10-11-2025. [Online]. Available:
https://ctf-gameserver.org/

[20] M. Bauer, “saarctf - ctf game server,” accesso: 10-11-2025. [Online].
Available: https://github.com/MarkusBauer /saarctf-servers

[21] Domysh, “Ctfbox,” accesso: 10-11-2025. [Online]. Available: https:
//github.com/domysh /ctfbox

[22] bpg, “Terraform proxmox provider.” [Online]. Available: https:
//github.com /bpg/terraform-provider-proxmox

[23] “Beszel monitoring software.” [Online]. Available: https://beszel.dev/

[24] D. Borman, R. T. Braden, V. Jacobson, and R. Scheffenegger, “TCP
Extensions for High Performance,” RFC 7323, Sep. 2014. [Online].
Available: https://www.rfc-editor.org/info/rfc7323

[25] drank40, “Euriclea - tcp timestamp fingerprinting.” [Online]. Available:
https://github.com/drank40/euriclea

[26] T. L. K. Organization, “Linux kernel documentation,” accesso:
18-11-2025. [Online]. Available: https://docs.kernel.org/networking/
ip-sysctl.html

https://developer.hashicorp.com/terraform
https://docs.ansible.com/
https://api.semanticscholar.org/CorpusID:2590070
https://ctf-gameserver.org/
https://github.com/MarkusBauer/saarctf-servers
https://github.com/domysh/ctfbox
https://github.com/domysh/ctfbox
https://github.com/bpg/terraform-provider-proxmox
https://github.com/bpg/terraform-provider-proxmox
https://beszel.dev/
https://www.rfc-editor.org/info/rfc7323
https://github.com/drank40/euriclea
https://docs.kernel.org/networking/ip-sysctl.html
https://docs.kernel.org/networking/ip-sysctl.html

Ringraziamenti

Al termine di questo percorso di studi, desidero esprimere la mia gratitu-
dine a tutte le persone che hanno contribuito alla mia crescita accademica e

umana rendendo possibile la realizzazione di questa tesi.

In primo luogo, un sentito ringraziamento va al mio relatore, Prof. Marco
Prandini e al correlatore, Prof. Andrea Melis, per la loro disponibilita e il
supporto durante lo sviluppo di questo progetto. Un ringraziamento parti-
colare va a Eyad Issa per avermi fornito ’accesso alle risorse del cluster e a
tutto il gruppo di Ulisse Lab per 'opportunita che mi ha permesso di crescere

professionalmente.

Un pensiero speciale va all’esperienza di CyberChallenge.IT 2025, che ha
segnato indubbiamente una tappa fondamentale nel mio percorso accademi-
co. Grazie ai tutor che mi hanno formato e soprattutto ai miei compagni di
squadra per I'impegno e i risultati ottenuti alla finale nazionale. E grazie a
voi se mi sono avvicinato al mondo della cybersecurity e delle CTF, rendendo
di fatto possibile la realizzazione di questo progetto di tesi. Mi auguro che
i futuri partecipanti che rappresenteranno la nostra sede possano continuare

a portare in alto il nome dell’Universita di Bologna.

Non posso dimenticare i miei compagni di universita: Samu, Lollo, Omar,
Alice, Greg e Diego. Grazie per le risate che hanno alleggerito i momenti
di stress e per tutte le giornate trascorse insieme in laboratorio tra studio,
esperimenti e progetti di ogni genere. La vostra amicizia ha reso questo

viaggio molto piu piacevole e indimenticabile.

Ringrazio di cuore la mia famiglia per il sostegno costante, per la pazienza

61

62

Ringraziamenti

dimostrata nelle inevitabili giornate di tensione e per avermi dato la possi-
bilita e i mezzi di intraprendere questo percorso di studi credendo sempre in
me anche quando io stesso facevo fatica a farlo.

Infine, voglio ringraziare tutte le persone che mi sono state vicine in questi
anni, ma in particolare Laura che mi ha sempre supportato e incoraggiato
a dare il massimo. Grazie per essere stata al mio fianco, per aver condiviso
con me sia le soddisfazioni sia le difficolta e per avermi sostenuto in ogni

momento di incertezza.

	Abstract
	Elenco delle Figure
	Elenco dei Codici
	Introduzione
	Scenari applicativi e stato dell'arte
	Competizioni Capture The Flag
	Attack and Defense

	Motivazione del progetto
	DevOps e IaC
	Software Defined Networking
	VXLAN
	Flood and Learn

	Analisi progettuale
	Architettura del sistema
	Requisiti identificati
	Scelta delle tecnologie
	Proxmox VE
	Terraform
	Ansible
	WireGuard
	Docker

	Analisi soluzioni esistenti
	FAUST Gameserver
	saarCTF
	CTFBox

	Implementazione
	Setup dell'ambiente Proxmox
	Template delle macchine virtuali

	Creazione delle macchine virtuali con Terraform
	Configurazione della Rete e SDN

	Configurazione software con Ansible
	Gateway Router
	Gameserver
	Vulnbox
	Router di gioco

	Tecniche di anonimizzazione del traffico di rete
	Analisi e mitigazione del TCP Timestamp Fingerprinting
	nftables
	Proxy TCP

	Risultati
	Valutazione delle prestazioni delle soluzioni di mitigazione
	Sessione di prova dell'infrastruttura

	Conclusioni e sviluppi futuri
	Glossario
	Bibliografia
	Ringraziamenti

