
SCUOLA DI SCIENZE

Dipartimento di Informatica – Scienza e Ingegneria

Corso di Laurea in Informatica

Progettazione e sviluppo di

un’infrastruttura IaC

per competizioni CTF A/D

Relatore:

Prof. Dr. Marco Prandini

Correlatori:

Prof. Dr. Andrea Melis

Presentata da:

Emanuele Argonni

II Sessione

Anno accademico 2024/2025

Abstract

Negli ultimi anni, la digitalizzazione ha determinato un inevitabile aumen-

to degli attacchi informatici, rendendo la cybersecurity una priorità globale

per la protezione dei dati e dei sistemi digitali. Le competizioni Captu-

re The Flag in modalità Attack and Defense rappresentano uno strumento

formativo efficace per preparare i futuri professionisti della sicurezza infor-

matica. Tuttavia, l’organizzazione di tali eventi presenta una complessità

tecnica intrinseca che ne limita la diffusione.

Il presente lavoro di tesi si propone di rimuovere gli ostacoli tecnici, offren-

do una soluzione per automatizzare la creazione dell’infrastruttura necessaria

a ospitare competizioni A/D. Attraverso l’utilizzo di strumenti Infrastructure

as Code (IaC), il progetto orchestra la creazione e la configurazione di tutti i

componenti necessari per una gara: macchine virtuali per i team, router per

la rete di gioco, server di gioco e connettività VPN per l’accesso remoto dei

partecipanti.

L’architettura sviluppata si distingue dalle soluzioni esistenti per la capa-

cità di distribuire le macchine virtuali su più nodi fisici di un cluster Proxmox,

sfruttando al meglio le risorse computazionali disponibili e migliorando la sca-

labilità. Inoltre, particolare attenzione è stata rivolta alla normalizzazione

del traffico di rete, inclusa la mitigazione del TCP Timestamp fingerprinting,

una vulnerabilità che potrebbe compromettere l’equità della competizione.

Il corretto funzionamento dell’infrastruttura è stato verificato mediante

una sessione di prova con 24 partecipanti, durante la quale il sistema ha dimo-

strato prestazioni adeguate anche con hardware non recente. Questo lavoro

fornisce un contributo concreto alla formazione in cybersecurity, semplifican-

do l’organizzazione di competizioni A/D e promuovendo l’apprendimento di

competenze pratiche in un ambiente controllato.

Indice

Abstract i

Elenco delle Figure v

Elenco dei Codici vii

1 Introduzione 1

2 Scenari applicativi e stato dell’arte 5

2.1 Competizioni Capture The Flag 5

2.1.1 Attack and Defense . 7

2.2 Motivazione del progetto . 9

2.3 DevOps e IaC . 11

2.4 Software Defined Networking 12

2.4.1 VXLAN . 12

2.4.2 Flood and Learn . 15

3 Analisi progettuale 17

3.1 Architettura del sistema . 17

3.2 Requisiti identificati . 20

3.3 Scelta delle tecnologie . 21

3.3.1 Proxmox VE . 21

3.3.2 Terraform . 21

3.3.3 Ansible . 22

3.3.4 WireGuard . 22

iii

iv INDICE

3.3.5 Docker . 23

3.4 Analisi soluzioni esistenti . 23

3.4.1 FAUST Gameserver . 23

3.4.2 saarCTF . 24

3.4.3 CTFBox . 24

4 Implementazione 25

4.1 Setup dell’ambiente Proxmox 25

4.1.1 Template delle macchine virtuali 26

4.2 Creazione delle macchine virtuali con Terraform 26

4.2.1 Configurazione della Rete e SDN 28

4.3 Configurazione software con Ansible 30

4.3.1 Gateway Router . 30

4.3.2 Gameserver . 32

4.3.3 Vulnbox . 33

4.3.4 Router di gioco . 34

4.4 Tecniche di anonimizzazione del traffico di rete 36

4.5 Analisi e mitigazione del TCP Timestamp Fingerprinting . . . 38

4.5.1 nftables . 44

4.5.2 Proxy TCP . 44

5 Risultati 49

5.1 Valutazione delle prestazioni delle soluzioni di mitigazione . . 49

5.2 Sessione di prova dell’infrastruttura 50

6 Conclusioni e sviluppi futuri 53

A Glossario 55

Bibliografia 57

Ringraziamenti 61

Elenco delle Figure

2.1 Confronto tra il numero di competizioni Jeopardy e Attack

and Defense organizzate . 10

2.2 Confronto tra il numero di partecipanti a CTF Jeopardy e

Attack and Defense . 10

2.3 Diagramma VXLAN tra due VTEP Hypervisor 13

2.4 Struttura pacchetto VXLAN [1] 14

2.5 Flood and Learn in VXLAN [2] 16

3.1 Topologia di rete dell’A/D di CyberChallenge.IT [3] 19

4.1 Struttura di un segmento TCP [4] 39

4.2 Euriclea mostra le impronte dei mittenti basate sui TCP Ti-

mestamp . 43

4.3 Confronto dei valori TCP Timestamp in tre scenari di mitiga-

zione . 46

v

Elenco dei Codici

4.1 Definizione delle Vulnbox in Terraform 28

4.2 Configurazione della rete SDN VXLAN in Terraform 29

4.3 Regole nftables per il gateway router 31

4.4 Configurazione dell’interfaccia di rete della vulnbox 33

4.5 Template Wireguard per le configurazioni dei giocatori 35

4.6 Regole di firewall rete di gioco - fase Open Network 36

4.7 Regole di NAT e normalizzazione TTL sul game router 37

4.8 Codice Kernel Linux 6.17.9 per il calcolo del TCP Timestamp 42

4.9 Regola nftables per rimuovere l’opzione TCP Timestamp . . . 44

4.10 Regole di DNAT per reindirizzare il traffico verso HAProxy . . 45

4.11 Esempio di configurazione di HAProxy 46

vii

Capitolo 1

Introduzione

I sistemi digitali e le reti informatiche, nel tempo, sono diventati parte

integrante della società moderna. Oggigiorno siamo costantemente circondati

da dispositivi connessi, dagli smartphone agli oggetti domestici intelligenti,

fino a sistemi complessi che gestiscono servizi essenziali come la sanità, i

trasporti e le banche. La crescente digitalizzazione ha ampliato i vettori di

attacco informatico che minacciano l’integrità, la riservatezza dei dati e la

disponibilità delle infrastrutture critiche.

La cybersecurity rappresenta oggi una delle principali emergenze nel pa-

norama europeo. I risultati nel nostro paese non sono per niente positivi:

l’Italia è al secondo posto tra i paesi più colpiti dell’Unione Europea.

Questo stato di emergenza si traduce in un aumento di cybercrimini, quali

ransomware, phishing che mirano al furto di informazioni sensibili e attac-

chi DDoS che mirano a bloccare l’operatività di aziende e servizi, causando

ingenti danni economici.

Purtroppo, molto spesso, l’anello debole di questi eventi drammatici è l’u-

tente ”medio” che, inconsapevolmente, si lascia adescare dalle vulnerabilità

in rete.

L’unico modo per proteggersi realmente dalle minacce in costante evo-

luzione è accrescere nelle persone la consapevolezza dei rischi legati alla

digitalizzazione.

1

2 1. Introduzione

La sicurezza informatica gioca quindi un ruolo cruciale nella difesa proat-

tiva dei sistemi digitali e richiede figure professionali in grado di identificare

e reagire alle minacce emergenti.

In questo contesto, si inseriscono le Capture The Flag (CTF), competizio-

ni informatiche che, con un approccio ludico, permettono alle nuove genera-

zioni di avvicinarsi ai temi della cybersecurity. In particolare, le competizioni

in modalità Attack and Defense (A/D) non solo mettono alla prova le compe-

tenze tecniche di attacco e difesa dei partecipanti in un ambiente controllato,

ma offrono anche un’esperienza di gara che simula le dinamiche del mondo

reale.

Tuttavia, questa tipologia di eventi non è particolarmente diffusa, in

quanto richiede competenze tecniche specifiche da parte degli organizzatori

e risorse economiche importanti da investire nell’hardware.

Ogni gara richiede infatti la configurazione di decine di macchine virtuali,

la realizzazione di un’architettura di rete articolata con VPN e firewall, oltre

alla creazione di un sistema di gioco adeguato.

Il seguente lavoro di tesi si propone come scopo di ovviare alle problemati-

che suddette, rimuovendo gli ostacoli tecnici che rallentano la diffusione delle

gare A/D e introducendo una soluzione per automatizzare la configurazione

dell’apparato infrastrutturale.

Il progetto adotta il paradigma Infrastructure as Code (IaC), che con-

sente di definire le risorse di un’intera infrastruttura tramite codice testuale.

Questo approccio garantisce, in primis, una significativa riduzione dei tempi

di configurazione dei sistemi, con conseguente diminuzione di eventuali errori

umani, ma anche una maggiore scalabilità e riproducibilità dell’infrastruttura

stessa.

Una peculiarità del progetto, rispetto ad altre soluzioni esistenti, riguarda

la distribuzione delle macchine virtuali su più nodi fisici di un cluster. Grazie

a questa funzionalità, gli organizzatori possono sfruttare al meglio le risorse

computazionali disponibili per gestire competizioni con un maggior numero

di partecipanti.

INTRODUZIONE 3

Inoltre, particolare attenzione è stata dedicata alla normalizzazione del

traffico di rete e all’implementazione delle corrette policy di sicurezza neces-

sarie a garantire l’equità della competizione.

Il capitolo 2 introduce il contesto delle competizioni CTF, con particolare

attenzione alla modalità Attack and Defense. Successivamente si procede con

la descrizione dell’iniziativa CyberChallenge.IT è il principale programma di

formazione in cybersecurity in Italia. Vengono inoltre illustrate le nozioni

tecniche di base relative a DevOps, Infrastructure as Code e Software Defined

Networking.

Il capitolo 3 esamina i requisiti identificati nell’analisi dell’infrastruttura

di riferimento e introduce gli strumenti di virtualizzazione e di automazio-

ne scelti per l’implementazione. Di seguito viene condotta una valutazione

comparativa delle diverse soluzioni esistenti, evidenziando i vantaggi e le

limitazioni di ciascuna.

Il capitolo 4 descrive nel dettaglio l’implementazione del codice, illustran-

do il processo di provisioning e di configurazione delle macchine virtuali,

nonché la topologia della rete di gioco e le misure di sicurezza adottate.

Il capitolo 5 presenta i risultati ottenuti durante la fase di test dell’in-

frastruttura e analizza l’impatto delle varie tecniche di normalizzazione del

traffico sulle prestazioni della rete.

Infine, il capitolo 6 riassume gli obiettivi principali del lavoro svolto e

propone possibili sviluppi futuri per migliorare ulteriormente l’infrastruttura.

Capitolo 2

Scenari applicativi e stato

dell’arte

Il secondo capitolo fornisce il quadro teorico necessario alla comprensione

del progetto di tesi. Nella prima sezione 2.1 si analizza il contesto delle com-

petizioni CTF Attack and Defense descrivendone le modalità di svolgimento

e le dinamiche di gioco. La sezione 2.2 analizza i dati relativi alla diffusione

delle competizioni CTF a livello mondiale, evidenziando la disparità tra le

gare Jeopardy e quelle Attack and Defense. Infine, nelle ultime due sezioni

2.3 e 2.4, vengono introdotti i concetti tecnologici su cui si basa il presente

lavoro di tesi.

2.1 Competizioni Capture The Flag

Le Capture The Flag, note come CTF [5], sono competizioni informati-

che in cui i concorrenti mettono alla prova le proprie abilità di cybersecurity

risolvendo delle sfide proposte dagli organizzatori. Queste competizioni rap-

presentano uno strumento efficace per la formazione in sicurezza informati-

ca, poiché offrono un ambiente sicuro in cui i partecipanti possono acquisire

competenze pratiche e teoriche senza rischi reali.

5

6 2. Scenari applicativi e stato dell’arte

Le sfide, chiamate challenge, sono solitamente classificate in base ai quat-

tro pilastri della sicurezza informatica: Web, Software, Crittografia e Reti.

L’obiettivo dei partecipanti è identificare le vulnerabilità presenti nelle chal-

lenge e trovare un modo per sfruttarle. Come ricompensa, al giocatore viene

fornita una flag (bandiera), una stringa di testo con un determinato pattern

che attesta la risoluzione della sfida. Il nome Capture The Flag, infatti, deri-

va proprio dall’omonimo gioco ”rubabandiera” in cui due squadre si sfidano

per catturare la bandiera e portarla nella propria base.

L’utilizzo delle CTF in cybersecurity si rivela una scelta particolarmente

efficace, poiché sfrutta la gamification del processo di apprendimento. La

gamification [6] [7] consistenell’applicazionee di meccaniche e dinamiche di

gioco a contesti non ludici, al fine di rendere più stimolante l’acquisizione

di competenze tecniche. Un esempio significativo dell’efficacia di questo ap-

proccio proviene da uno studio della Vienna University of Technology, in cui

si dimostra che l’approccio competitivo (gamification) non solo è molto ap-

prezzato dagli studenti, ma aumenta anche l’interesse e la motivazione nello

studio della cybersecurity [8].

Le competizioni variano per dimensione e prestigio, spaziando da eventi

locali organizzati presso ule niversità fino a gare internazionali di grande ri-

lievo ,con premi in denaro anche considerevoli. Tra le modalità più diffuse di

CTF spiccano le Jeopardy e le Attack and Defense. Nelle Jeopardy, indipen-

dentemente dalla partecipazione singola o in team, ogni ”giocatore” trova le

flag individualmente e le inoltra al portale di gara. Il punteggio assegnato

è direttamente proporzionale al livello di difficoltà della sfida risolta. Nelle

Attack and Defense, invece, i giocatori organizzati in squadre sono coinvolti

simultaneamente in attività di attacco verso gli altri team e di difesa dei pro-

pri servizi vulnerabili. A ogni team viene fornita una macchina vulnerabile,

comunemente chiamata vulnbox, identica a quelle delle altre squadre. Ogni

squadra è responsabile della gestione della propria vulnbox, in cui si eseguono

un certo numero di servizi che simulano vulnerabilità informatiche del mondo

reale. L’obiettivo di ciascun team è identificare le vulnerabilità, analizzarle,

2.1 Competizioni Capture The Flag 7

creare exploit per attaccare gli avversari e, al contempo, difendere i propri

servizi implementando contromisure efficaci.

2.1.1 Attack and Defense

Le competizioni CTF Attack and Defense, abbreviate in A/D, si distin-

guono per la loro natura dinamica e interattiva che richiede un lavoro di squa-

dra costante tra tutti i componenti del team. A differenza delle Jeopardy,

dove i partecipanti gareggiano in modo indipendente, le A/D richiedono una

suddivisione strategica dei ruoli dei giocatori all’interno della squadra: alcuni

si occupano degli attacchi, altri della difesa, mentre altri ancora analizzano

il traffico di rete e gestiscono l’esecuzione degli exploit.

All’inizio della competizione, ogni team riceve l’accesso remoto alla pro-

pria vulnbox che è identica per tutte le squadre partecipanti. Ciascuna vuln-

box contiene un numero prestabilito di servizi vulnerabili. I servizi sono

server che simulano applicazioni reali e permettono ai clienti di interagire

per eseguire determinate operazioni. Ad esempio: un servizio potrebbe esse-

re un sito web che permette la prenotazione di voli aerei. I clienti possono

connettersi al servizio tramite un browser web per cercare e prenotare vo-

li. Ogni servizio è costituito da diversi componenti software e contiene al

suo interno una o più vulnerabilità intenzionali che costituiscono i vettori di

attacco. Tra le vulnerabilità più diffuse figurano SQL Injection, Buffer Over-

flow e Cross-Site Scripting (XSS), come descritto nel report OWASP delle

Top 10 vulnerabilità più critiche [9]. Sfruttando queste falle, gli attaccan-

ti mirano a esfiltrare dati sensibili custoditi dai servizi, tra cui le flag, che

rappresentano l’obiettivo primario dei giocatori.

Ogni competizione A/D ha una durata prestabilita, che può variare da

poche ore a più giorni, ed è suddivisa in round (chiamati tick), intervalli

temporali che costituiscono l’unità di tempo base della gara. La durata di

un tick è tipicamente compresa tra 60 secondi e 5 minuti. Durante ogni

round, il sistema di gioco esegue autonomamente una serie di operazioni in

ordine casuale:

8 2. Scenari applicativi e stato dell’arte

• Verifica dello stato di funzionamento dei servizi di ogni team

• Inserimento di una nuova flag in ogni servizio di ogni team

• Tentativo di recupero delle flag inserite nelle vulnbox durante i round

precedenti

• Calcolo dei punteggi e aggiornamento della classifica

Le flag nelle A/D sono soggette ad un meccanismo di rotazione continua.

Ogni flag ha un periodo di validità limitato (tipicamente tra 5 e 10 round),

trascorso il quale scade e viene rifiutata dal portale di gioco. Per essere rico-

noscibili, le flag seguono un formato specifico, definito tramite un’espressione

regolare nota a tutti i team.

Il sistema di gioco, chiamato gameserver, si occupa di aggiungere ad ogni

round una nuova flag per ciascun servizio e di verificare la reperibilità delle

flag inserite nei round precedenti. Un altro compito fondamentale del ga-

meserver è l’aggiornamento del Service Level Agreement (SLA) per ciascun

team. Lo SLA è un indicatore che misura la percentuale di disponibilità (up-

time) e di corretto funzionamento di un servizio nel corso della competizione,

rappresentando un fattore determinante per il punteggio finale. Ad ogni tick,

il gameserver interagisce con i servizi di ciascun team tramite una serie di

controlli automatizzati (checker routine) che simulano il comportamento di

un utente legittimo. Il meccanismo di SLA impedisce ai team di adottare

strategie difensive semplicistiche come lo spegnimento completo dei servizi o

il blocco indiscriminato delle connessioni in ingresso. Al contrario, incentiva

i partecipanti a sviluppare e implementare patch mirate in grado di risolvere

le vulnerabilità senza compromettere la funzionalità nominale del servizio.

2.2 Motivazione del progetto 9

2.2 Motivazione del progetto

L’interesse per le competizioni Capture The Flag, come strumento di for-

mazione nel campo della cybersecurity, ha registrato una crescita significativa

negli ultimi anni. Questa tendenza positiva si riflette anche nel panorama

nazionale. Il principale programma di formazioni in cybersecurity in Italia,

CyberChallenge.IT [10], ha seguito un andamento di espansione progressiva,

coinvolgendo ogni anno un numero sempre maggiore di sedi universitarie e

studenti iscritti [11].

Analizzando i dati disponibili su CTFtime [12], il principale portale di

riferimento per le CTF pubbliche a livello mondiale, emerge un trend di cre-

scita costante negli ultimi 10 ann,i sia nel numero di competizioni organizzate

annualmente siainlquelloo di partecipanti attivi.

Tuttavia, analizzando attentamente i grafici 2.1 e 2.2 realizzati tramite

le API di CTFtime, si nota che, nonostante la crescita complessiva delle

competizioni CTF, le gare in modalità Attack and Defense rappresentano

una percentuale estremamente bassa rispetto a quelle in modalità Jeopardy.

L’organizzazione di una competizione Attack and Defense richiede infat-

ti risorse e competenze tecniche significativamente superiori. È necessario

progettare un’infrastruttura di rete complessa che garantisca l’isolamento

tra i team, gestire la configurazione di decine di macchine virtuali e svilup-

pare un sistema di gioco (gameserver) in grado di gestire in tempo reale la

distribuzione delle flag, la verifica della metrica SLA e il calcolo dei punteggi.

Questa complessità organizzativa limita fortemente la possibilità di or-

ganizzare sessioni di allenamento per i partecipanti. La mia esperienza per-

sonale come concorrente dell’ultima edizione di CyberChallenge.IT 2025 ha

evidenziato questa criticità. Durante la preparazione per la finale nazionale

di Torino, sono state riscontrate notevoli difficoltà nel testare gli strumen-

ti e le strategie di gara, a causa delle limitate opportunità di esercitazione

in ambienti che riproducessero fedelmente le condizioni della competizione

reale.

Il presente lavoro di tesi si pone l’obiettivo di affrontare questa sfida,

10 2. Scenari applicativi e stato dell’arte

Figura 2.1: Confronto tra il numero di competizioni Jeopardy e Attack and

Defense organizzate

Figura 2.2: Confronto tra il numero di partecipanti a CTF Jeopardy e Attack

and Defense

2.3 DevOps e IaC 11

proponendo quindi una soluzione per automatizzare il processo di creazione

dell’infrastruttura per competizioni A/D. Lo scopo è progettare e sviluppa-

re un’infrastruttura basata su tecnologie Infrastructure as Code (IaC), in

grado di orchestrare automaticamente il deployment di tutti i componenti

necessari per una gara: la rete di gioco, le vulnbox per ogni team, il game-

server e le configurazioni VPN. Attraverso l’uso di strumenti di automazione

come Terraform e Ansible, si intende rendere il processo di configurazione

dell’infrastruttura riproducibile, scalabile e accessibile a tutti.

2.3 DevOps e IaC

La crescente complessità nella gestione delle infrastrutture IT ha incen-

tivato l’adozione di nuove metodologie per l’amministrazione di sistemi. Il

paradigma DevOps [13] mira a unificare lo sviluppo software e la gestione

delle infrastrutture per migliorare la qualità dei prodotti finali.

Uno dei principi fondamentali del DevOps è l’approccio Infrastructure as

Code (IaC), che consente di automatizzare la gestione dell’infrastruttura di

sistemi tramite codice testuale. L’Infrastructure as Code permette di defi-

nire la configurazione di un’infrastruttura, compresi server, reti, macchine

virtuali, utilizzando file di configurazione in formato testuale, semplificando

notevolmente il lavoro dell’amministratore di sistemi. In particolare, il si-

stemista descrive lo stato desiderato dell’infrastruttura in un file, mentre gli

strumenti IaC si occupano di applicare le modifiche necessarie per raggiungere

tale stato. I vantaggi dell’IaC sono molteplici:

• Riproducibilità: lo stesso codice genera sempre la stessa infrastrut-

tura indipendentemente dall’ambiente in cui viene eseguito;

• Scalabilità: un cambiamento dei requisiti dell’infrastruttura richiede

solamente la modifica di alcune variabili nel file di configurazione;

12 2. Scenari applicativi e stato dell’arte

• Controllo di versione: il codice dell’infrastruttura può essere ge-

stito con sistemi di controllo di versione per tracciare lo storico delle

modifiche e ripristinare versioni precedenti in caso di problemi;

• Riduzione degli errori umani: l’automazione riduce al minimo gli

interventi manuali, con conseguente diminuzione del rischio di errori

umani.

Nel panorama degli strumenti IaC, Terraform e Ansible rappresentano due

tecnologie complementari ampiamente utilizzate per la gestione delle infra-

strutture.

2.4 Software Defined Networking

Il paradigma del Software Defined Networking introduce un’architettura

di rete moderna che separa il piano di controllo (control plane) dal piano di

inoltro (data plane). Nelle reti tradizionali, ogni apparato di rete integra sia

la logica di controllo sia la funzionalità di inoltro dei pacchetti. Nelle SDN

il piano di controllo è centralizzato in un componente software, definito con-

troller, che gestisce l’intera infrastruttura di rete. I dispositivi di rete, come

switch e router, si limitano a inoltrare i pacchetti in base alle regole definite

dal controller. In un contesto di datacenter, le tecnologie SDN consentono

di definire reti virtuali (overlay) per creare segmenti di rete isolati, anche tra

macchine virtuali distribuite su nodi fisici diversi. La rete overlay è una rete

virtuale che si appoggia a una rete fisica esistente (underlay).

2.4.1 VXLAN

Uno dei protocolli più utilizzati per la creazione di reti overlay è il VX-

LAN (Virtual Extensible LAN), descritto nel RFC 7348 [14], che consente di

estendere le capacità delle tradizionali VLAN per segmentare la rete. VX-

LAN incapsula i frame Ethernet di livello 2 all’interno di pacchetti UDP,

2.4 Software Defined Networking 13

creando tunnel che operano sulla rete underlay di livello 3 esistente. In pra-

tica, un frame Ethernet generato da una macchina virtuale viene incapsulato

in un pacchetto UDP e inviato attraverso la rete fisica a un’altra macchina

virtuale in esecuzione su un altro host fisico. L’host di destinazione riceve

il pacchetto UDP, lo decapsula e consegna il frame Ethernet originale alla

macchina virtuale (VM) destinataria. Le VM possono quindi comunicare tra

loro come se fossero collegate a un semplice switch L2, indipendentemente

dalla loro posizione fisica.

Figura 2.3: Diagramma VXLAN tra due VTEP Hypervisor

I dispositivi che implementano VXLAN, chiamati VXLAN Tunnel End-

Points (VTEPs), si occupano dell’incapsulamento e decapsulamento dei pac-

chetti VXLAN. Ciascun host VTEP deve avere un indirizzo IP che viene

utilizzato come indirizzo sorgente dei pacchetti VXLAN. Ogni rete VXLAN

è identificata da un VXLAN Network Identifier (VNI) che consente alle mac-

chine virtuali appartenenti allo stesso VNI di comunicare tra loro a livello 2,

anche se distribuite su nodi fisici diversi. Il VNI è un identificativo a 24 bit

14 2. Scenari applicativi e stato dell’arte

che consente di creare fino a 16 milioni di reti logiche isolate, superando il

limite di 4096 VLAN tradizionali.

Figura 2.4: Struttura pacchetto VXLAN [1]

Il pacchetto VXLAN utilizza un incapsulamento MAC-in-UDP, in cui il

frame Ethernet originale viene inserito all’interno di un pacchetto UDP. La

struttura del pacchetto VXLAN, illustrata in figura 2.4, è composta da:

• Outer Header Ethernet: L’indirizzo MAC sorgente è quello dell’host

VTEP sorgente, mentre l’indirizzo MAC di destinazione è quello del

router next-hop lungo il percorso verso il VTEP di destinazione.

• Outer Header IP: Contiene gli indirizzi IP di origine e di destinazione

degli host VTEP.

• Outer Header UDP: La porta di destinazione di default è 4789,

mentre la porta di origine è solitamente calcolata dal VTEP tramite

un hash dei campi del frame originale.

2.4 Software Defined Networking 15

• Header VXLAN: Contiene il VNI, l’identificativo a 24 bit della rete

virtuale.

• Original Inner Frame: Contiene il frame Ethernet originale completo

di header e payload.

Come si può notare dalla figura 2.4, l’incapsulamento VXLAN aggiunge

un overhead di 50 byte (54 se viene usato un tag VLAN nella rete underlay)

che deve essere gestito correttamente. Le reti Ethernet standard, infatti, han-

no un MTU (Maximum Transmission Unit) di 1500 byte, quindi se una VM

invia un frame con 1500 byte di dati, il pacchetto incapsulato diventerà di

circa 1554 byte. VXLAN non implementa alcun meccanismo nativo di fram-

mentazione, quindi i pacchetti vengono frammentati a livello IP o scartati

dai dispositivi di rete. Per gestire questo overhead, è necessario aumentare

l’MTU su tutti gli apparati (switch, router) della rete underlay che trasporta

il traffico VXLAN. Questo richiede il controllo completo della configurazione

della rete fisica tra i nodi VTEP. Alternativamente, è possibile abbassare

l’MTU della rete overlay, quindi le interfacce di rete delle VM devono esse-

re configurate con MTU a 1446/1450 byte. Questa soluzione comporta una

leggera riduzione delle prestazioni perché i frame presentano un rapporto

payload/header meno efficiente, richiedendo l’invio di un numero maggiore

di pacchetti per trasferire la stessa quantità di dati.

2.4.2 Flood and Learn

Consideriamo il caso in cui i VTEP siano hypervisor che ospitano mac-

chine virtuali. Quando un VTEP deve inviare un pacchetto VXLAN verso

una macchina virtuale remota, deve conoscere l’indirizzo IP del VTEP di

destinazione a cui quella VM è connessa. Ogni VTEP mantiene una tabella

di mappatura tra gli indirizzi MAC delle VM e gli indirizzi IP dei VTEP

corrispondenti. Uno dei meccanismi più semplici per popolare questa tabella

è il flood and learn. Questo approccio si basa sull’invio di traffico multicast

nella rete underlay, cos̀ı da consentire ai VTEP di apprendere dinamicamente

16 2. Scenari applicativi e stato dell’arte

la posizione degli endpoint. Ad ogni VNI è associato un indirizzo IP mul-

ticast specifico. I VTEP che partecipano a quel VNI si iscrivono al gruppo

multicast corrispondente per ricevere i pacchetti destinati a quel VNI.

Figura 2.5: Flood and Learn in VXLAN [2]

Quando un VTEP deve inviare un pacchetto a una VM il cui indirizzo

MAC non è presente nella tabella di mapping, invia il pacchetto incapsulato

al gruppo multicast associato al VNI. Tutti i VTEP che partecipano a quel

VNI ricevono il pacchetto multicast, lo decapsulano e memorizzano l’asso-

ciazione tra l’indirizzo MAC della VM sorgente e l’indirizzo IP del VTEP

sorgente 2.5. Il VTEP che possiede la VM di destinazione la consegna alla

VM, che risponde normalmente. Il pacchetto di ritorno consente al VTEP

sorgente di imparare l’associazione tra l’indirizzo MAC della VM e l’indirizzo

IP del VTEP. Tutto il traffico successivo tra le due VM può essere inviato

direttamente in unicast.

Capitolo 3

Analisi progettuale

Dopo aver delineato nel capitolo precedente le motivazioni alla base del

progetto, in questo capitolo si procede all’analisi dettagliata dei requisiti ne-

cessari alla realizzazione di un ambiente di competizione A/D. Nella prima

sezione 3.1 viene descritta l’architettura di riferimento ispirata all’infrastrut-

tura della finale nazionale di CyberChallenge.IT e da essa si estraggono i

requisiti funzionali e non funzionali che il sistema deve soddisfare (si veda la

sezione 3.2). Infine, nella sezione 3.3, viene presentata una panoramica del-

le tecnologie chiave utilizzate e viene condotta un’analisi comparativa delle

soluzioni esistenti per evidenziare il valore aggiunto del presente lavoro di

tesi.

3.1 Architettura del sistema

L’obiettivo primario del progetto è la realizzazione di un’infrastruttura

IaC che simuli il più fedelmente possibile l’ambiente utilizzato nella finale

nazionale di CyberChallenge.IT. Tuttavia, le informazioni pubbliche relative

all’implementazione specifica dell’infrastruttura di CyberChallenge.IT sono

estremamente limitate. Pertanto, l’architettura di riferimento descritta in

questo capitolo si basa sull’esperienza diretta maturata durante la mia par-

17

18 3. Analisi progettuale

tecipazione e sull’analisi del comportamento della rete di gioco durante la

competizione.

Il cuore di una competizione Attack and Defense risiede nella sua archi-

tettura di rete, che deve garantire al contempo l’isolamento tra le squadre e

la connettività controllata per gli attacchi. L’infrastruttura è orchestrata da

un router centrale che funge da gateway per tutte le comunicazioni all’interno

della rete di gioco. I principali componenti dell’architettura di rete sono:

• Sottoreti Vulnbox: Per ogni squadra partecipante viene creata una

sottorete dedicata e isolata che ospita la vulnbox. L’isolamento vie-

ne gestito tramite VLAN distinte per ogni team. Questo approccio

di segmentazione della rete assicura che le vulnbox di ciascuna squa-

dra non possano comunicare direttamente tra loro in LAN, ma solo

tramite il router centrale di gioco. L’indirizzo IP delle vulnbox è del

tipo ‘10.60.X.1/24‘, dove ‘X‘ rappresenta l’ID numerico del team (da

0 a N). L’indirizzo ’10.60.0.1’ è assegnato al NOP Team (NOn-Playing

team): una vulnbox gestita dagli organizzatori in cui non vengono mai

applicate patch ai servizi e le cui flag non assegnano punti.

• Sottoreti VPN: L’accesso alla rete di gioco da parte dei partecipan-

ti avviene esclusivamente tramite una connessione VPN WireGuard.

Anche in questo caso, ad ogni squadra viene assegnata una sottorete

VPN distinta, del tipo ‘10.81.X.0/24‘. Questa segmentazione consente

di applicare regole di firewall specifiche e di monitorare con precisione

il traffico generato da ciascun team.

• Sottorete Gameserver: Rete in cui risiede il sistema di gioco con

indirizzo IP ‘10.10.0.1‘. Questo indirizzo deve essere raggiungibile da

tutti i giocatori perché il gameserver espone servizi WEB quali la clas-

sifica, l’endpoint per la sottomissione delle flag e quello per ottenere i

flagids.

3.1 Architettura del sistema 19

Figura 3.1: Topologia di rete dell’A/D di CyberChallenge.IT [3]

Il flusso di comunicazione è gestito da precise regole di routing e da fi-

rewall. Un giocatore del Team 1, connesso tramite VPN a un IP nella rete

10.81.1.0/24, per attaccare la vulnbox del Team 2 (10.60.2.1) dovrà necessa-

riamente attraversare il router centrale. Quest’ultimo si occuperà di instra-

dare correttamente il traffico e di applicare le policy di sicurezza necessarie.

Allo stesso modo, il gameserver 10.10.0.1 deve poter raggiungere tutte le

vulnbox in tutte le sottoreti 10.60.X.1 per poter eseguire le checker routine

e depositare le nuove flag. Infine, l’infrastruttura deve garantire l’anonimiz-

zazione del traffico diretto verso le vulnbox: i pacchetti di rete del checker

devono essere indistinguibili da quelli degli exploit dei giocatori.

20 3. Analisi progettuale

3.2 Requisiti identificati

Dall’analisi dell’architettura di riferimento emerge una serie di requisiti,

sia funzionali sia non funzionali, che il progetto deve soddisfare per offrire un

ambiente di gara realistico.

• Deploy automatico delle VM: L’intero processo di creazione e confi-

gurazione dell’infrastruttura deve essere automatizzato attraverso stru-

menti IaC. Questo include il provisioning automatico di tutte le mac-

chine virtuali, partendo da un’immagine predefinita (template).

• Accesso remoto via VPN: I giocatori devono potersi connettere da

remoto alla rete di gioco tramite una connessione VPN. Il sistema deve

essere in grado di generare automaticamente le configurazioni VPN per

ogni squadra.

• Anonimizzazione del traffico: Tutto il traffico di rete diretto alle

vulnbox deve essere anonimizzato. I giocatori, catturando il traffico

sulla propria VPN, non devono riuscire a distinguere la provenienza

delle richieste analizzando gli header dei pacchetti di rete.

• Scalabilità: Il progetto deve supportare un numero variabile di team

e giocatori, semplicemente modificando le variabili di configurazione,

senza richiedere interventi manuali.

• Riproducibilità: L’intera infrastruttura deve poter essere creata, con-

figurata e distrutta in modo completamente automatico. Eseguendo lo

script di deployment in ambienti diversi, si deve ottenere un sistema

identico.

• Modularità: L’architettura deve essere modulare: gli organizzatori

della competizione CTF devono poter integrare i propri servizi vulne-

rabili o modificare alcuni componenti senza dover riprogettare l’intero

sistema.

3.3 Scelta delle tecnologie 21

• Distribuzione su più nodi: Il progetto deve consentire di distribuire

le macchine virtuali su più nodi di un cluster Proxmox. Questo consente

di superare i limiti di un singolo host fisico e di gestire competizioni

con un numero maggiore di partecipanti.

• Isolamento della rete: Le vulnbox di ogni team devono operare

all’interno di una propria sottorete isolata, in modo da imporre che

l’intero traffico passi attraverso il router centrale di gioco.

3.3 Scelta delle tecnologie

La selezione degli strumenti IaC si è orientata a soluzioni prevalentemente

open source, ampiamente adottate nella comunità DevOps, per evitare il

vendor lock-in e garantire la massima flessibilità.

3.3.1 Proxmox VE

Per la gestione delle macchine virtuali è stato scelto Proxmox Virtual

Environment (Proxmox VE) [15], una piattaforma open-source per la vir-

tualizzazione che integra l’hypervisor KVM (Kernel-based Virtual Machine).

Innanzitutto, essendo completamente open source e self-hostabile, Proxmox

consente di mantenere il controllo totale sull’infrastruttura senza dipendere

da servizi cloud esterni. Inoltre, fornisce funzionalità native di clustering

che consentono di distribuire le macchine virtuali su più nodi fisici. L’inter-

faccia web integrata facilita il monitoraggio e la gestione delle VM, mentre

l’API REST esposta da Proxmox consente l’integrazione con strumenti di

automazione.

3.3.2 Terraform

Per l’orchestrazione e il provisioning dell’infrastruttura è stato scelto Ter-

raform [16], uno strumento IaC sviluppato da HashiCorp che permette di

22 3. Analisi progettuale

definire le risorse attraverso file di configurazione scritti in linguaggio di-

chiarativo HCL. Uno dei principali vantaggi di Terraform è il supporto di

centinaia di provider diversi, permettendo di gestire non solo l’infrastruttura

Proxmox, ma potenzialmente anche risorse su cloud provider esterni. In que-

sto progetto è stato utilizzato il provider BPG, mantenuto dalla comunità

open source, che consente di interfacciarsi con l’API REST di Proxmox.

3.3.3 Ansible

Mentre Terraform si occupa di creare le risorse, Ansible è stato scelto

per la configurazione del software sulle macchine virtuali. Ansible [17] è uno

strumento open-source che permette di gestire la configurazione di sistemi

utilizzando un approccio agentless : non richiede l’installazione di software

aggiuntivo sulle macchine gestite (managed nodes), ma si connette via SSH

per eseguire le operazioni richieste. La configurazione in Ansible viene defi-

nita attraverso una lista di task scritti in linguaggio YAML che descrivono

lo stato desiderato del sistema.

3.3.4 WireGuard

Per la realizzazione della VPN che consente ai giocatori di accedere da

remoto alla rete di gioco è stato scelto WireGuard, un protocollo VPN mo-

derno e prestante, integrato nel Kernel Linux dalla versione 5.6. Nei test

di throughput [18], WireGuard ha fornito prestazioni superiori rispetto al-

le soluzioni VPN tradizionali come OpenVPN e IPSec, pur mantenendo un

utilizzo della CPU inferiore. Un ulteriore vantaggio è la sua semplicità: la

configurazione, infatti, si basa su semplici file di testo e su coppie di chia-

vi crittografiche pubbliche/private, che ne facilitano l’automazione tramite

Ansible.

3.4 Analisi soluzioni esistenti 23

3.3.5 Docker

Per il deployment dei servizi vulnerabili (challenge) sulle vulnbox si è scel-

to di utilizzare la tecnologia di containerizzazione Docker. Anziché installare

le dipendenze di ogni servizio direttamente sul sistema operativo della Vuln-

box, ogni challenge verrà archiviata come immagine Docker e gestita tramite

Docker Compose. Ogni servizio viene eseguito nel proprio container, isolato

dagli altri e dal sistema operativo del host.

3.4 Analisi soluzioni esistenti

Prima di procedere allo sviluppo del progetto, è stata condotta un’analisi

delle principali soluzioni disponibili per l’organizzazione di competizioni CTF

A/D. L’obiettivo è stato identificare i pregi e le limitazioni di ciascun progetto

rispetto ai requisiti definiti.

3.4.1 FAUST Gameserver

FAUST CTF Gameserver [19] è un framework per l’organizzazione di com-

petizioni A/D, sviluppato dal team FAUST e utilizzato per ospitare l’omo-

nima competizione. Il progetto si caratterizza per un’architettura modulare

in cui i diversi componenti, orchestrati dal controller centrale, comunicano

tramite un database PostgreSQL condiviso. Un aspetto positivo di FAU-

ST Gameserver è la qualità della documentazione tecnica, che descrive nel

dettaglio l’architettura e il funzionamento del sistema di gioco. Tuttavia, co-

me esplicitamente indicato nella documentazione ufficiale, il framework non

include strumenti per la gestione dell’infrastruttura di rete, la configurazio-

ne della VPN né il deploy delle VM, ma si concentra esclusivamente sul

gameserver.

24 3. Analisi progettuale

3.4.2 saarCTF

saarCTF [20] è un’altra soluzione molto conosciuta che fornisce script di

setup per tutti i server necessari all’organizzazione di una competizione A/D,

ma presenta diverse incompatibilità con i requisiti di questo progetto. In

primo luogo, non è presente alcuna integrazione con Proxmox VE: il sistema

è progettato per utilizzare immagini in formato OVA tramite Virtualbox.

Inoltre, il processo di deployment non è automatizzato e richiede diversi

passaggi manuali per la creazione e l’installazione delle immagini delle VM.

3.4.3 CTFBox

CTFBOX [21] è un progetto open-source recente che offre un’interfaccia

web e un gameserver con endpoint simili a quelli utilizzati nella competizione

A/D di CyberChallenge. La sua architettura di base, però, presenta una

limitazione significativa rispetto agli obiettivi di questo progetto: le vulnbox

non sono vere macchine virtuali, ma container Docker eseguiti su un singolo

host. Questa scelta progettuale, se da un lato semplifica il deployment su un

singolo host, dall’altro impedisce la distribuzione del carico su più nodi fisici

e limita la scalabilità dell’infrastruttura.

L’analisi delle soluzioni esistenti ha evidenziato che nessuna delle piatta-

forme esaminate soddisfi completamente i requisiti identificati. Manca infatti

un progetto che offra un approccio IaC completo per il deployment automa-

tico di un’infrastruttura basata su macchine virtuali, scalabile e distribuita

su più nodi fisici di un cluster Proxmox.

Capitolo 4

Implementazione

Dopo aver definito l’archittetura di riferimento e i requisiti del progetto, in

questo capitolo viene descritta l’implementazione concreta dell’infrastruttura

IaC. In particolare, vengono analizzate nel dettaglio le scelte implementative

adottate per ciascun componente del sistema, partendo dalla configurazio-

ne dell’ambiente di virtualizzazione Proxmox (sez 4.1), continuando con la

creazione delle macchne virtuali e della rete di gioco (sez 4.2), la configura-

zione del software all’interno delle VM (sez 4.3), fino ad arrivare alle tecniche

di anonimizzazione del traffico di rete (sez 4.4). Infine, la sezione 4.5 pre-

senta un’analisi della tecnica di fingerprinting del mittente delle connessioni

TCP basata sui timestamp e le contromisure adottate per mitigare questa

vulnerabilità.

4.1 Setup dell’ambiente Proxmox

Prima di procedere con il deployment automatizzato dell’infrastruttura, è

necessario predisporre l’ambiente di virtualizzazione basato su Proxmox VE.

Proxmox VE può essere installato su hardware fisico oppure eseguito come

macchina virtuale all’interno di un hypervisor esistente. Per l’installazione,

è possibile scaricare l’immagine ISO dal sito di Proxmox VE [15] e seguire

la documentazione ufficiale per l’installazione. Una volta completata l’in-

25

26 4. Implementazione

stallazione, è possibile accedere all’interfaccia web di Proxmox tramite un

browser, utilizzando l’indirizzo IP assegnato al server. È possibile installare

Proxmox VE su più nodi fisici e unirli in un unico cluster per distribuire le

macchine virtuali su più host fisici. All’interno del progetto viene fornito un

file README con le istruzioni per la creazione di un API Key con i privilegi

minimi necessari per il provisioning delle risorse con Terraform.

4.1.1 Template delle macchine virtuali

Per consentire a Terraform di creare rapidamente le macchine virtuali

necessarie per la competizione, è stato realizzato uno script bash che auto-

matizza la creazione di una VM template utilizzata come base per tutte le

VM del progetto. Lo script si occupa di scaricare l’immagine cloud di De-

bian 13 in formato QCOW2, installarci il pacchetto qemu-guest-agent per

permettere a Proxmox di avere informazioni sulle interfacce di rete, e infine

creare una nuova VM template utilizzando l’immagine scaricata come disco

di avvio.

4.2 Creazione delle macchine virtuali con Ter-

raform

Una volta preparato l’ambiente Proxmox, l’intero processo di creazione

delle macchine virtuali è orchestrato da Terraform. Terraform non supporta

nativamente Proxmox, quindi è stato deciso di utilizzare un provider di terze

parti, BPG [22], che permette di interfacciarsi con l’API REST di Proxmox.

L’utilizzatore deve semplicemente modificare il file variables.tf per definire

il numero di team partecipanti, il numero di giocatori per team, l’orario di

inizio e fine della competizione e altri parametri di configurazione.

Tutte le VM sono clonate in modalità linked clone a partire dal template

creato in precedenza, riducendo significativamente il tempo di provisioning e

lo spazio richiesto su disco. La linked clone crea una nuova VM che condivide

4.2 Creazione delle macchine virtuali con Terraform 27

i dischi virtuali con il template di origine, memorizzando solo le differenze

rispetto al template. Le interfacce di rete delle VM sono collegate alla re-

te SDN VXLAN 4.2.1, con VLAN ID univoci per ogni team per garantire

l’isolamento del traffico. L’MTU è impostato a 1 che indica di utilizzare

l’MTU della rete sottostante (1446 byte come descritto in 2.4.1). Ogni VM

viene configurata con Cloud-Init per automatizzare la creazione dell’utente,

l’installazione delle chiavi SSH e la configurazione dei parametri di rete per

l’interfaccia di Management.

Lo snippet di codice riporta un esempio del file di configurazione Ter-

raform che definisce la risorsa per la creazione delle vulnbox per ogni team

partecipante. La variabile proxmox node names contiene la lista dei nomi dei

nodi del cluster Proxmox. Le vulnbox vengono automaticamente distribuite

su più nodi utilizzando l’operatore modulo per calcolare l’indice del nodo in

base all’ID del team.

1 resource "proxmox_virtual_environment_vm" "vulnboxes" {
2 for_each = local.teams
3 name = "ctf-vulnbox-team${each.value.id}"
4 description = "Vulnbox for team ${each.value.id}"
5 node_name = var.proxmox_node_names[each.value.id %

length(var.proxmox_node_names)]↪→

6 vm_id = each.value.vm_id
7 started = true
8

9 clone {
10 vm_id = var.template_id
11 node_name = var.template_node
12 full = false
13 }
14 agent {
15 enabled = true
16 }
17 cpu {
18 cores = 4
19 type = "host"
20 }
21 memory {
22 dedicated = var.vulnbox_memory
23 }
24 bios = "ovmf"
25 scsi_hardware = "virtio-scsi-pci"

28 4. Implementazione

26

27 # Management interface
28 network_device {
29 bridge = "adnet"
30 model = "virtio"
31 vlan_id = each.value.vlan_id
32 mtu = 1
33 }
34 # Game interface
35 network_device {
36 bridge = "adnet"
37 model = "virtio"
38 vlan_id = each.value.vlan_id
39 mtu = 1
40 }
41

42 disk {
43 datastore_id = var.proxmox_storage_name
44 interface = "scsi0"
45 size = 15
46 }
47

48 initialization {
49 datastore_id = var.proxmox_storage_name
50 user_account {
51 username = var.cloud_init_user
52 password = var.cloud_init_password
53 keys = var.ssh_keys
54 }
55 ip_config {
56 ipv4 {
57 address = "172.16.${each.value.id}.1/24"
58 gateway = "172.16.${each.value.id}.254"
59 }
60 }
61 }
62 }

Codice 4.1: Definizione delle Vulnbox in Terraform

4.2.1 Configurazione della Rete e SDN

Per soddisfare il requisito di distribuzione delle VM su più nodi fisici,

è stato necessario superare la limitazione dei tradizionali Linux Bridge che

operano a livello di singolo host. La soluzione adottata è stata l’utilizzo del-

4.2 Creazione delle macchine virtuali con Terraform 29

la funzionalità di Software Defined Networking (SDN) integrata in Proxmox

VE. Grazie all’utilizzo del provider terraform BPG è stato possibile configu-

rare una rete VXLAN (Virtual Extensible LAN), che permette di creare una

rete virtuale di livello 2 (overlay) sopra la rete fisica di livello 3 esistente tra

i nodi del cluster. In questo modo, le macchine virtuali possono comunicare

tra loro come se si trovassero sullo stesso segmento di rete, indipendentemen-

te dal nodo fisico del cluster su cui sono in esecuzione. La configurazione di

VXLAN in Proxmox è stata effettuata attraverso l’interfaccia SDN, crean-

do una zona di tipo VXLAN e specificando gli indirizzi IP dei nodi (peers)

che partecipano al tunnel. L’MTU della zona è stata impostata a 1446 byte

per gestire correttamente l’overhead di incapsulamento VXLAN ed evitare

problemi di frammentazione dei pacchetti senza dover modificare l’MTU di

tutti gli apparati fisici della rete underlay (come descritto nella sezione 2.4.1).

Inoltre è stata creata una rete virtuale (VNet) associata alla zona VXLAN

con VNI 20000, che funge da bridge virtuale per le interfacce di rete delle

VM. La VNet è configurata in modalità VLAN-aware per permettere l’iso-

lamento del traffico tra le diverse sottoreti delle vulnbox usando le VLAN

tradizionali. Questa segmentazione garantisce che tutte le comunicazioni del-

la gara passino attraverso il router centrale dove vengono applicate le regole

di firewall.

1 resource "proxmox_virtual_environment_sdn_zone_vxlan" "adzone" {
2 id = "adzone"
3 peers = var.proxmox_node_ips
4 mtu = 1446
5 }
6

7 resource "proxmox_virtual_environment_sdn_vnet" "adnet" {
8 id = "adnet"
9 zone = proxmox_virtual_environment_sdn_zone_vxlan.adzone.id

10 alias = "CTF AD VNet"
11 tag = 20000
12 vlan_aware = true
13 }

Codice 4.2: Configurazione della rete SDN VXLAN in Terraform

30 4. Implementazione

È importante notare che se il firewall integrato in Proxmox è abilita-

to, bisogna assicurarsi che la porta UDP 4789 sia aperta per permettere la

comunicazione VXLAN tra i nodi.

4.3 Configurazione software con Ansible

L’intera infrastruttura è organizzata in 4 categorie di macchine virtuali,

ognuna con un ruolo specifico all’interno della competizione A/D: il router di

gioco, il gateway router, il gameserver e le vulnbox. Una volta che le VM so-

no avviate e raggiungibili in rete, Ansible si occupa di configurare il software

all’interno di ciascuna VM, installando i pacchetti necessari, configurando i

servizi di rete e applicando le policy di sicurezza richieste. Terraform, una

volta terminato il provisioning delle risorse, si occupa di generare dinami-

camente il file di inventario di Ansible, elencando tutte le VM create con i

relativi indirizzi IP di management ed eventuali jump host ssh necessari per

raggiungerle. L’architettura implementata prevede una separazione netta tra

la rete di gioco e la rete di management. Ogni macchina virtuale dell’infra-

struttura dispone di due interfacce di rete: l’interfaccia di gioco con indirizzo

nella sottorete 10.60.X.0/24, attraverso cui passa tutto il traffico della compe-

tizione gestito dal router centrale e l’interfaccia di management con indirizzo

nella rete 172.16.0.0/16, utilizzata dagli organizzatori per la gestione del si-

stema. Questa doppia interfaccia garantisce che eventuali malfunzionamenti

sulla rete di gioco non impediscano agli amministratori di accedere alle VM

per interventi di manutenzione. Il playbook Ansible è organizzato in ruoli:

ogni categoria di VM (router, vulnbox, gameserver) ha il proprio set di task

che descrivono la configurazione desiderata.

4.3.1 Gateway Router

Il gateway router è la prima macchina virtuale ad essere configurata da

Ansible, perché svolge due funzioni necessarie per il deployment del resto

dell’infrastruttura. In primo luogo, fornisce accesso a Internet a tutte le

4.3 Configurazione software con Ansible 31

VM attraverso SNAT masquerading implementato con nftables. Il playbook

Ansible abilita l’IP forwarding sul gateway router e crea una regola di po-

strouting che modifica l’indirizzo IP sorgente dei pacchetti provenienti dalle

VM sostituendolo con l’IP dell’interfaccia esterna del gateway router. In se-

condo luogo, il gateway router funge da jump host SSH per permettere ad

Ansible di connettersi alle altre VM dell’infrastruttura che non dispongono

di un indirizzo IP pubblico. Ansible infatti, necessita di collegarsi ad ogni

VM per eseguire i task di configurazione, ma le VM sono raggiungibili solo

attraverso la rete di management privata che non è accessibile dalla macchina

su cui viene eseguito Ansible.

1 table ip filter {
2 chain forward {
3 type filter hook forward priority 0; policy drop;
4

5 # Allow established and related connections
6 ct state { established, related } accept
7

8 # Allow ssh
9 tcp dport 22 accept

10

11 # Allow beszel agent (monitoring software) port
12 tcp dport 45876 accept
13

14 # Allow traffic to internet
15 oifname "{{ outbound_interface }}" accept
16 }
17 }
18

19 table ip nat {
20 chain postrouting {
21 type nat hook postrouting priority 100;
22

23 # Masquerade traffic for the external interface
24 oifname "{{ outbound_interface }}" masquerade
25 }
26 }

Codice 4.3: Regole nftables per il gateway router

32 4. Implementazione

4.3.2 Gameserver

Il gameserver è il cuore di una competizione CTF A/D e ospita i compo-

nenti del sistema di gioco: il database per lo stato della partita, il checker

che verifica la disponibilità dei servizi e deposita le flag, l’interfaccia web per

la visualizzazione della classifica e l’endpoint per la sottomissione delle flag.

Dopo aver analizzato le soluzioni esistenti, è stato scelto di utilizzare CTFBox

come base per il sistema di gioco, apportando alcune modifiche per adattarlo

alle esigenze specifiche del progetto. In particolare, sono stati rimossi tutti

i componenti relativi all’infrastruttura e sono stati mantenuti solo i servizi

relativi al gameserver necessari per la gestione della competizione:

• Database PostgreSQL: Utilizzato per memorizzare lo stato della

partita, le informazioni sui team, le flag e i punteggi.

• Checker: Un programma che si occupa di eseguire ad ogni round gli

script Python per la routine di controllo dei servizi vulnerabili delle

vulnbox.

• Interfaccia Web: Un’applicazione web che fornisce una dashboard

per visualizzare la classifica in tempo reale.

• Endpoint di sottomissione delle flag: Un endpoint API sulla porta

8080 che permette ai giocatori di inviare le flag raccolte durante la

competizione. Ogni giocatore può sottomettere le flag tramite richieste

HTTP PUT inserendo come header il Team Token assegnato.

• Endpoint di richiesta flagID: Un endpoint API GET porta 8081 che

permette ai giocatori di richiedere la lista delle flagID. Le flagID sono

dei suggerimenti che il gameserver fornisce ai giocatori per facilitare la

ricerca delle flag all’interno dei servizi vulnerabili.

4.3 Configurazione software con Ansible 33

4.3.3 Vulnbox

Il playbook Ansible si occupa di installare Docker e Docker Compose, co-

piare le cartelle delle challenge e avviare ogni servizio con lo script di deploy.

L’utilizzatore deve copiare all’interno della cartella files del ruolo vulnbox le

cartelle delle challenge della competizione. La scelta di utilizzare Docker per-

mette agli organizzatori di distribuire facilmente i propri servizi vulnerabili

fornendo semplicemente un file docker-compose.yml e uno script di deploy.

Per il test del progetto sono state utilizzate le 4 challenge sviluppate per la

finale nazionale di CyberChallenge.IT 2024.

L’interfaccia della rete di gioco viene configurata con systemd-networkd

usando un template Ansible Jinja2 che imposta l’indirizzo IP statico

10.60.X.1 in base all’ID del team e assegna una rotta statica per l’indirizzo IP

del router centrale con cui vengono instradate tutte le comunicazioni verso

le vulnbox. Inoltre, viene installato e configurato il software di monitorag-

gio Beszel Agent [23], che invia metriche di utilizzo delle risorse del sistema

(CPU, memoria, spazio su disco, rete) al server di monitoraggio.

1 [Match]
2 Name=game
3

4 [Network]
5 Address={{ team_network_prefix }}.{{ team_id }}.1/24
6

7 [Route]
8 Destination=10.254.0.1
9 Gateway={{ team_network_prefix }}.{{ team_id }}.254

Codice 4.4: Configurazione dell’interfaccia di rete della vulnbox

Terminata la configurazione, Ansible, usando le API di Proxmox, crea uno

snapshot di tutte le vulnbox della gara. Lo snapshot cattura lo stato attuale

della VM, permettendo agli organizzatori di ripristinare rapidamente la vuln-

box ad uno stato pulito. I team, infatti, durante la gara possono richiedere

agli organizzatori il reset della propria vulnbox in caso di malfunzionamenti

durante la competizione.

34 4. Implementazione

4.3.4 Router di gioco

Il router di gioco si occupa di instradare tutto il traffico tra le diverse sot-

toreti delle vulnbox, la rete VPN dei giocatori e il gameserver applicando le

policy di firewall necessarie. Il router centrale è l’unica VM con 3 interfacce

di rete: una per la rete di management, una per la rete di gioco e una con

indirizzo IP pubblico, attraverso cui i giocatori si connettono tramite VPN.

L’interfaccia di gioco è collegata alla rete SDN VXLAN in modalità trunk,

permettendo al router di gestire il traffico di tutte le sottoreti delle vulnbox

attraverso la creazione di subinterfacce VLAN. Il playbook Ansible si occupa

di creare le subinterfacce VLAN per ogni team, assegnando a ciascuna di esse

un indirizzo IP in formato 10.60.X.254, oltre all’interfaccia principale con in-

dirizzo 10.254.0.1 che funge da gateway predefinito per tutte le comunicazioni

nella rete di gioco.

Per la gestione del traffico VPN, viene installato Wireguard e vengono

generate le configurazioni per tutti i giocatori, creando una chiave privata e

pubblica per ogni utente e assegnando un indirizzo IP nel formato 10.81.X.Y,

dove X è il numero del team e Y è l’ID del giocatore. Le configurazioni Wire-

guard vengono generate con Ansible a partire dal seguente template Jinja2.

La PrivateKey è la chiave privata che identifica il giocatore, mentre la Pu-

blicKey è la chiave pubblica del router. Ad ogni giocatore viene assegnato

un indirizzo IP nel formato 10.81.X.Y, dove X è l’ID del team e Y il numero

del giocatore. L’Endpoint specifica l’indirizzo IP pubblico e la porta del ser-

ver VPN a cui il client deve connettersi. La direttiva AllowedIPs definisce

gli indirizzi IP che devono essere instradati attraverso la VPN, ovvero tutte

le sottoreti delle vulnbox e l’indirizzo del gameserver. Inoltre, viene instal-

lata WGDashboard, un’applicazione web che consente agli organizzatori di

visualizzare lo stato delle connessioni VPN in modo semplice e intuitivo.

4.3 Configurazione software con Ansible 35

1 [Interface]
2 PrivateKey = {{ client_private_key }}
3 Address = {{ client_ip }}/32
4

5 [Peer]
6 PublicKey = {{ server_public_key }}
7 Endpoint = {{ VPN_endpoint }}:51820
8 AllowedIPs = 10.81.0.0/16, 10.60.0.0/16, 10.10.0.1/32
9 PersistentKeepalive = 25

Codice 4.5: Template Wireguard per le configurazioni dei giocatori

Infine, viene installato e configurato nftables per implementare le regole

di firewall necessarie a garantire la sicurezza della rete di gioco. In particola-

re, vengono generati 3 file nftables: uno per ogni fase di gioco (grace period,

open network, closed game). Durante il grace period, ogni giocatore può ac-

cedere solamente al gameserver e alla propria vulnbox, mentre tutto il resto

del traffico viene bloccato. Nella fase di open network, i giocatori possono

eseguire gli attacchi verso tutte le vulnbox avversarie. Infine, nella fase di

closed game, tutto il traffico viene bloccato eccetto quello verso il gameserver

per poter vedere la classifica finale. Vengono anche creati dei timer di siste-

ma (systemd timers) che impostano automaticamente le regole di firewall

appropriate in base alla fase di gioco corrente, in modo da non richiedere

interventi manuali da parte degli organizzatori durante la competizione.

Lo snippet di codice riporta un esempio delle regole di firewall utilizzate

durante la fase di open network. In questa fase, viene permesso tutto il

traffico proveniente dal gameserver verso le vulnbox, il traffico proveniente

dalla rete VPN dei giocatori verso le vulnbox e verso i servizi del gameserver.

Inoltre viene consentito il traffico VPN tra i giocatori della stessa squadra,

mentre tutto il resto del traffico viene bloccato (policy default drop).

36 4. Implementazione

1 table inet ctf_firewall {
2 chain forward {
3 type filter hook forward priority 0; policy drop;
4

5 # Allow established and related connections
6 ct state { established, related } accept
7

8 # Allow all traffic from the game server to the vulnboxes
9 iifname "ens19.1000" ip saddr 10.10.0.1 ip daddr

10.60.0.0/16 accept↪→

10

11 # Allow VPN players to communicate with all vulnboxes
12 iifname "wg0" ip saddr 10.81.0.0/16 ip daddr 10.60.0.0/16

accept↪→

13

14 # Allow VPN players to communicate with the game server
services↪→

15 iifname "wg0" ip saddr 10.81.0.0/16 ip daddr 10.10.0.1 tcp
dport { 80, 8080, 8081 } accept↪→

16

17 # Allow player VPN communication within the same team
18 {% for team_id in range(1, teams|length + 1) %}
19 iifname "wg0" oifname "wg0" ip saddr 10.81.{{ team_id

}}.0/24 ip daddr 10.81.{{ team_id }}.0/24 accept↪→

20 {% endfor %}
21

22 # Block all other communication between team VPN networks
23 iifname "wg0" oifname "wg0" drop
24 }
25 }
26

Codice 4.6: Regole di firewall rete di gioco - fase Open Network

4.4 Tecniche di anonimizzazione del traffico

di rete

Uno dei requisiti fondamentali dell’infrastruttura è che i giocatori non

devono poter distinguere il traffico proveniente dal checker da quello degli

exploit degli altri team analizzando i pacchetti di rete catturati sulla propria

4.4 Tecniche di anonimizzazione del traffico di rete 37

vulnbox. Le prime tecniche di anonimizzazione adottate sono state l’uti-

lizzo del SNAT (Source Network Address Translation) e la normalizzazione

del TTL (Time To Live) per tutti i pacchetti in uscita dal router centrale.

Il SNAT viene implementato con una regola di postrouting in nftables che

modifica l’indirizzo IP sorgente di tutti i pacchetti destinati alle vulnbox,

sostituendolo con l’indirizzo IP dell’interfaccia di gioco del router centrale

10.254.0.1. Il TTL è un campo dell’header IP che viene decrementato ad

ogni hop e potrebbe essere utilizzato per inferire informazioni sulla distanza

tra il mittente e il destinatario del pacchetto. In questo modo, tutti i pac-

chetti diretti alle vulnbox appaiono come provenire dallo stesso indirizzo IP

(quello del router) e con lo stesso valore di TTL, rendendo difficile ai gio-

catori distinguere tra traffico legittimo del checker e traffico malevolo degli

exploit.

1 table inet ctf_nat {
2 chain snat_to_vulnboxes {
3 type nat hook postrouting priority srcnat;
4

5 # SNAT traffic to vulnboxes
6 ip daddr 10.60.0.0/16 snat 10.254.0.1
7 }
8 }
9 table inet ctf_mangle {

10 chain postrouting {
11 type filter hook postrouting priority mangle;
12

13 # TTL normalization for traffic to vulnboxes
14 ip daddr 10.60.0.0/16 ip ttl set 64;
15 }
16 }

Codice 4.7: Regole di NAT e normalizzazione TTL sul game router

38 4. Implementazione

4.5 Analisi e mitigazione del TCP Timestamp

Fingerprinting

Nel contesto delle competizioni CTF Attack/Defense, l’identificazione del

mittente di un pacchetto di rete costituisce una vulnerabilità critica che può

compromettere l’equità della competizione. In particolare, la possibilità di

distinguere i pacchetti provenienti dal gameserver (checker) da quelli inviati

dai team avversari rappresenta un vantaggio significativo. L’obiettivo della

normalizzazione del traffico, o ”scrubbing”, è modificare i pacchetti in entrata

per conformarli a un’unica ”impronta”. Questo processo rimuove le caratte-

ristiche uniche dello stack TCP/IP del mittente originale, facendo apparire

tutti i pacchetti come se provenissero dalla stessa fonte. Durante le prime

prove sull’infrastruttura, è emerso che le tecniche di anonimizzazione di base

non fossero sufficienti a prevenire un’analisi più sofisticata. Nonostante tutti

i pacchetti catturati sulle vulnbox abbiano lo stesso indirizzo IP di origine,

è stato identificato un possibile vettore di fingerprinting passivo basato sul

campo TCP Timestamp dell’header TCP.

Il Transmission Control Protocol (TCP) è un protocollo di livello traspor-

tato che garantisce l’affidabilità del trasferimento dati mediante la ritrasmis-

sione dei pacchetti persi, l’ordinamento dei segmenti e il controllo del flusso.

Quasi tutte le challenge delle competizioni CTF A/D utilizzano servizi basati

su TCP o su protocolli applicativi che si appoggiano a TCP, come HTTP.

Per comprendere il meccanismo di fingerprinting, ovvero di identificazione

di un’impronta basata sui timestamp, è necessario analizzare la struttura

dell’header TCP. L’intestazione (header) di un segmento TCP ha una di-

mensione minima di 20 byte, ma può estendersi fino a 60 byte grazie all’uso

del campo Options.

Il campo Options ha una lunghezza variabile fino a 40 byte e serve a

permettere l’aggiunta di estensioni future al protocollo TCP. A ogni opzione

è associato un identificatore univoco (Kind) e una lunghezza (Length) che

specifica la dimensione dell’opzione in byte. Il formato standard dell’header

4.5 Analisi e mitigazione del TCP Timestamp Fingerprinting 39

Figura 4.1: Struttura di un segmento TCP [4]

include campi essenziali come Porta Sorgente, Porta Destinazione, Numero

di Sequenza, Numero di Acknowledgment, Flag di Controllo e Checksum.

Per adattare il protocollo TCP all’evoluzione delle reti ad alta velocità,

con l’RFC 1323 e successivamente con il 7323 (TCP Extensions for High

Performance [24]) sono state introdotte diverse estensioni, tra cui l’opzione

TCP Timestamp. Questa opzione è identificata dal valore Kind 8 e ha una

lunghezza fissa di 10 byte.

Il Timestamp viene utilizzato per due scopi principali:

• Misurazione del Round-Trip Time (RTTM): Il protocollo TCP

deve conoscere il Round Trip Time della connessione per calcolare cor-

rettamente il Retransmission Timeout (RTO), ovvero il tempo dopo il

quale un pacchetto che non è ancora stato riconosciuto (con ACK) deve

40 4. Implementazione

essere ritrasmesso.

• Protection Against Wrapped Sequences (PAWS): Il campo del

Numero di Sequenza in TCP è un contatore a 32 bit che in reti multi-

gigabit può esaurirsi in pochi secondi e ricominciare da zero (wrap

around). Senza il timestamp, il ricevente potrebbe non essere in grado

di distinguere se un segmento con un numero di sequenza già visto

è un vecchio duplicato o un nuovo segmento con numero di sequenza

avvolto.

L’opzione TCP Timestamp include due campi principali: il Timestamp

Value (TSval) e il Timestamp Echo Reply (TSecr), entrambi di 4 byte. Il

valore TSval rappresenta il timestamp corrente del mittente, mentre TSecr è

utilizzato nei segmenti di acknowledgment per riportare il valore TSval rice-

vuto in precedenza. Il mittente include il TSval nel segmento TCP inviato.

Quando il destinatario manda il pacchetto di Acknowledgment, copia il va-

lore TSval nel campo TSecr del segmento ACK. In questo modo, il mittente,

quando riceve l’ACK, può calcolare l’RTT sottraendo il valore TSecr dal suo

valore corrente del timestamp.

Il valore del Timestamp Value (TSval) non è un orario assoluto, ma un

contatore monotono crescente (timestamp clock) che come definito dal RFC

7323 [24] alla sezione 4.1, Values of this clock MUST be at least approximately

proportional to real time. Quindi ogni sistema ha un proprio timestamp clock

differente dagli altri. Solitamente nei sistemi operativi moderni, il timestamp

viene incrementato con una frequenza di 1000Hz (una volta al millisecondo)

e inizializzato a partire da un valore casuale al boot del sistema.

Per verificare la possibilità di fingerprinting basato sui TCP Timestamp,

è stato utilizzato Euriclea [25], un tool open-source sviluppato specificamente

per l’identificazione delle impronte dei mittenti nelle competizioni CTF A/D.

Euriclea analizza passivamente i segmenti TCP usando una coda nfqueue di

Netfilter e ne estrae il valore TSval e il tempo di ricezione del pacchetto.

Utilizzando questi dati, Euriclea calcola la differenza tra il tempo di ricezione

(unix timestamp in millisecondi) e il valore TSval del pacchetto. Questa

4.5 Analisi e mitigazione del TCP Timestamp Fingerprinting 41

differenza rimane costante per tutte le connessioni TCP provenienti dallo

stesso mittente, permettendo a Euriclea di associare un’impronta univoca

(haiku) a ciascun mittente.

Durante la fase di testing, Euriclea e Wireshark hanno permesso di evi-

denziare differenze sostanziali nel modo in cui i diversi sistemi operativi

gestiscono l’opzione Timestamp, influenzando la possibilità di fingerprinting:

• Windows 11: Non invia l’opzione TCP Timestamp (Kind 8) di de-

fault, rendendo impossibile il fingerprinting basato su questo campo.

• macOS: Randomizza il valore iniziale (offset) del timestamp per ogni

nuova connessione TCP (sessione TCP definita dal 3-way handshake,

scambio di dati e terminazione). Quindi ogni volta che viene stabilita

una nuova connessione TCP (anche verso lo stesso indirizzo IP e porta),

il valore iniziale del timestamp è casuale. Questo comportamento impe-

disce di correlare due connessioni diverse alla stessa macchina sorgente,

poiché non esiste un offset comune che le leghi.

• Linux: Il comportamento del timestamp in Linux è regolato dal pa-

rametro di sistema net.ipv4.tcp timestamps. Il valore predefinito

(1), come definito nella documentazione del kernel Linux [26], abili-

ta i timestamp TCP randomizzando l’offset iniziale del timestamp per

ogni connessione. Tuttavia, durante i test, catturando i pacchetti con

Wireshark su una vulnbox, è stato osservato che un mittente specifico

aveva sempre lo stesso offset iniziale del timestamp. Quando invece i

pacchetti venivano catturati su un’altra vulnbox, lo stesso mittente pre-

sentava un offset iniziale diverso. Approfondendo l’analisi e analizzando

il codice sorgente del kernel Linux 4.8, è stato possibile comprendere il

motivo di questo comportamento. L’algoritmo di generazione dell’off-

set iniziale del timestamp utilizza una funzione di hash che prende in

input solamente la coppia di indirizzi IP sorgente e destinazione, ma

ignora le porte TCP. Questo comportamento consente ai giocatori di

fingerprintare il mittente in modo affidabile, poiché tutte le connessioni

42 4. Implementazione

di uno specifico mittente verso la vulnbox avranno la stessa differenza

tra il tempo di ricezione e il valore TSval.

1 u32 secure_tcp_ts_off(const struct net *net, __be32 saddr, __be32
daddr)↪→

2 {
3 if (READ_ONCE(net->ipv4.sysctl_tcp_timestamps) != 1)
4 return 0;
5

6 ts_secret_init();
7 return siphash_2u32((__force u32)saddr, (__force u32)daddr,
8 &ts_secret);
9 }

10

11 /* This will initiate an outgoing connection. */
12 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int

addr_len)↪→

13 {
14 struct tcp_sock *tp = tcp_sk(sk);
15 struct inet_sock *inet = inet_sk(sk);
16 ...
17 WRITE_ONCE(tp->tsoffset,
18 secure_tcp_ts_off(net, inet->inet_saddr,
19 inet->inet_daddr));
20 ...
21 }
22

23 /* Compute TCP options for SYN packets. This is not the final
24 network wire format yet. */
25 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff

*skb,↪→

26 struct tcp_out_options *opts,
27 struct tcp_key *key)
28 {
29 struct tcp_sock *tp = tcp_sk(sk);
30 ...
31 if (likely(timestamps)) {
32 opts->options |= OPTION_TS;
33 opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts,

skb) + tp->tsoffset;↪→

34 opts->tsecr = tp->rx_opt.ts_recent;
35 remaining -= TCPOLEN_TSTAMP_ALIGNED;
36 }
37 ...
38 }

Codice 4.8: Codice Kernel Linux 6.17.9 per il calcolo del TCP Timestamp

4.5 Analisi e mitigazione del TCP Timestamp Fingerprinting 43

Nello snippet di codice 4.8 vengono mostrate le tre funzioni del kernel

Linux coinvolte nel calcolo del TCP Timestamp TSval per il pacchetto SYN

iniziale di una connessione TCP. La funzione tcp v4 connect viene chia-

mata quando viene stabilita una nuova connessione TCP e imposta l’off-

set del timestamp chiamando la funzione secure tcp ts off. La funzione

secure tcp ts off calcola l’offset del timestamp utilizzando una funzione

di hash (siphash) che prende in input solamente gli indirizzi IP sorgente e

destinazione, ignorando le porte TCP. Infine, la funzione tcp syn options

costruisce l’header TCP del pacchetto SYN, includendo il campo TSval cal-

colato sommando il timestamp clock corrente con l’offset della connessione.

Nella figura 4.2 è mostrato un esempio di output di Euriclea in esecuzione

su una vulnbox durante la fase di testing dell’infrastruttura. La vulnbox rice-

ve pacchetti TCP sulla porta 3000 da due diversi mittenti: un sistema macOS

e un sistema Linux. Tutti i pacchetti hanno come indirizzo IP sorgente quel-

lo del router centrale (10.254.0.1) a causa del SNAT. I primi due pacchetti

provengono da un sistema Linux, ma da due connessioni TCP distinte (una

generata con curl e l’altra con nc). Nonostante ciò, Euriclea riesce a identi-

ficare che entrambi i pacchetti provengono dallo stesso mittente e associare

l’haiku hot-ugly a quel sistema Linux. I successivi due pacchetti provengono

da un sistema macOS, anch’essi da due connessioni TCP distinte. In que-

sto caso, Euriclea non riesce a correlare i due pacchetti allo stesso mittente,

generando due haiku differenti: late-foolish e soft-blue.

Figura 4.2: Euriclea mostra le impronte dei mittenti basate sui TCP Time-

stamp

Per mitigare la vulnerabilità del TCP Timestamp Fingerprinting, sono

state analizzate due soluzioni distinte, valutandone l’efficacia e l’impatto sulle

prestazioni della rete.

44 4. Implementazione

4.5.1 nftables

La soluzione più immediata consiste nel rimuovere completamente l’op-

zione TCP Timestamp dai pacchetti in transito verso le vulnbox utilizza-

no nftables sul router di gioco. La regola mostrata nello snippet di codice

intercetta tutti i pacchetti TCP con il flag SYN e li modifica rimuovendo

l’opzione TCP Timestamp. Impedendo l’invio dell’opzione Timestamp nel

3-way handshake, il mittente non invierà mai il campo TSval nei pacchetti

successivi della connessione.

1 table inet ctf_mangle {
2 chain strip_tcp_timestamps {
3 type filter hook forward priority mangle; policy accept;
4

5 # Remove TCP timestamps
6 ip daddr 10.60.0.0/16 tcp flags syn reset tcp option

timestamp↪→

7 }
8 }

Codice 4.9: Regola nftables per rimuovere l’opzione TCP Timestamp

Questa tecnica è efficace nel prevenire il fingerprinting basato sui ti-

mestamp, poiché elimina completamente il campo che viene utilizzato per

l’identificazione del mittente.

4.5.2 Proxy TCP

La scelta definitiva è ricaduta sull’installazione di un proxy TCP layer 4

(HAProxy) sul router centrale, che funge da intermediario tra i giocatori e

le vulnbox. HAProxy riceve le connessioni TCP dai giocatori e dal gameser-

ver, stabilisce una nuova connessione verso la vulnbox e inoltra i dati tra i

due endpoint. Poiché la connessione verso la vulnbox è generata interamente

dallo stack TCP/IP del router centrale, tutti i parametri del protocollo TCP

dipendono esclusivamente dal router centrale su cui è in esecuzione HAProxy.

Questa soluzione più sofisticata garantisce l’anonimato completo del mitten-

te, eliminando qualsiasi possibilità di fingerprinting basata anche su altre ca-

4.5 Analisi e mitigazione del TCP Timestamp Fingerprinting 45

ratteristiche dello stack TCP/IP originale. I giocatori non sono consapevoli

della presenza del proxy, dato che inviano i pacchetti direttamente all’indiriz-

zo IP della vulnbox (10.60.X.1). Il router centrale utilizzando la funzionalità

di Destination NAT (DNAT) di nftables reindirizza il traffico destinato al-

le vulnbox verso il proxy HAProxy in esecuzione sulla stessa macchina. Il

DNAT permette di modificare l’indirizzo IP di destinazione dei pacchetti in

transito. Lo snippet di codice 4.10 mostra l’esempio di una regola DNAT che

reindirizza tutto il traffico TCP dei servizi di gioco di due vulnbox verso HA-

Proxy. Quando un pacchetto TCP destinato ai servizi di gioco (porte 1337,

3000, 3001, 8000, 8443) arriva al router centrale con destinazione 10.60.X.1,

la regola di DNAT modifica l’indirizzo IP di destinazione con 10.60.X.254

(indirizzo del router nella sottorete della vulnbox).

1 table inet ctf_nat {
2 chain dnat_to_haproxy {
3 type nat hook prerouting priority dstnat; policy accept ;
4 ip daddr 10.60.0.1 tcp dport { 1337,3000,3001,8000,8443 }

dnat to 10.60.0.254↪→

5 ip daddr 10.60.1.1 tcp dport { 1337,3000,3001,8000,8443 }
dnat to 10.60.1.254↪→

6 }
7 }

Codice 4.10: Regole di DNAT per reindirizzare il traffico verso HAProxy

HAProxy è configurato per ascoltare sulle interfacce di rete del router

centrale e inoltrare le connessioni verso le rispettive vulnbox (10.60.X.1) in

base alla porta di destinazione. Lo snippet di codice 4.11 mostra un esempio

di configurazione di HAProxy che definisce i backend e frontend per due

servizi di gioco esposti dalle vulnbox. Con la direttiva frontend si specifica

l’indirizzo IP e la porta su cui HAProxy deve ascoltare le connessioni in

ingresso, mentre con la direttiva backend si definisce l’indirizzo IP e la porta

della vulnbox verso cui inoltrare il traffico.

46 4. Implementazione

1 frontend f_team0_p3000
2 bind 10.60.0.254:3000
3 default_backend b_team0_p3000
4

5 backend b_team0_p3000
6 server s_team0_3000 10.60.0.1:3000
7

8 frontend f_team1_p3000
9 bind 10.60.1.254:3000

10 default_backend b_team1_p3000
11

12 backend b_team1_p3000
13 server s_team1_3000 10.60.1.1:3000

Codice 4.11: Esempio di configurazione di HAProxy

Figura 4.3: Confronto dei valori TCP Timestamp in tre scenari di mitigazione

La figura 4.3 mostra il confronto dei valori TCP Timestamp nei pacchetti

SYN catturati conWireshark in tre scenari distinti: senza alcuna mitigazione,

con la rimozione dell’opzione TCP Timestamp tramite nftables e utilizzando

HAProxy come proxy TCP. Per ogni scenario, sono stati inviati pacchetti

TCP da due host distinti verso la vulnbox in esame. Nello scenario senza

mitigazione (colore blu), i pacchetti SYN provenienti dai due host mostrano

valori TSval differenti, permettendo di distinguere le due fonti. Nello scena-

rio con la rimozione dell’opzione TCP Timestamp tramite nftables (colore

rosso), i pacchetti SYN non contengono più l’opzione Timestamp, rendendo

impossibile il fingerprinting basato su questo campo. Infine, nello scenario

con HAProxy (colore verde), i pacchetti SYN ricevuti dalla vulnbox presenta-

no lo stesso offset TSval, poiché entrambi i pacchetti sono stati generati dallo

4.5 Analisi e mitigazione del TCP Timestamp Fingerprinting 47

stack TCP/IP del router centrale su cui è in esecuzione HAProxy. Questo

dimostra l’efficacia della soluzione basata su proxy nel garantire l’anonimato

completo del mittente.

Capitolo 5

Risultati

5.1 Valutazione delle prestazioni delle solu-

zioni di mitigazione

Per valutare l’impatto delle soluzioni di anonimizzazione del traffico sul-

le prestazioni della rete, sono stati condotti dei test utilizzando iperf3 per

misurare la velocità di trasferimento dati tra due VM ubicate sullo stesso

nodo Proxmox (con CPU Intel i5-8400). Per assicurarsi che il test misurasse

le prestazioni del router centrale, le VM client e server di iperf3 sono state

collocate in due sottoreti VLAN differenti, costringendo il traffico a passare

attraverso il router di gioco per l’instradamento.

I test sono stati eseguiti in tre scenari distinti: normalizzazione di base con

SNAT e TTL reset, con la rimozione dell’opzione TCP Timestamp tramite

nftables e utilizzando HAProxy come proxy TCP. Ogni test è stato eseguito

tre volte per garantire l’affidabilità dei risultati e sono stati misurati sia il

throughput in Gbps che l’utilizzo di un singolo core della CPU del router

centrale. I risultati ottenuti sono riassunti nella tabella seguente:

I risultati indicano che la rimozione dell’opzione TCP Timestamp tramite

nftables non ha avuto alcun impatto significativo sul throughput della rete,

mantenendo una velocità di trasferimento di 16.3 Gbps, identica a quella

ottenuta senza alcuna mitigazione. Al contrario, l’utilizzo di HAProxy come

49

50 5. Risultati

Scenario Throughput Uso CPU 1 core

Solo SNAT e TTL Reset 16.3 Gbps 25%

Rimozione Timestamp (nftables) 16.3 Gbps 25%

Proxy TCP (HAProxy) 10.4 Gbps 99%

Tabella 5.1: Risultati dei test di throughput nei diversi scenari di mitigazione

proxy TCP ha comportato una riduzione del throughput a 10.4 Gbps e un

elevato utilizzo di un singolo core della CPU, ma offre una protezione comple-

ta contro ogni forma di fingerprinting basata sullo stack TCP/IP originale.

Questo overhead è dovuto al fatto che HAProxy agisce come intermediario,

gestendo due connessioni TCP distinte per ogni flusso di dati (client-proxy e

proxy-server) anziché limitarsi a modificare i pacchetti in transito come av-

viene con nftables. Considerando che le vulnbox sono distribuite su più nodi

Proxmox, dove la velocità della rete fisica tra i nodi potrebbe rappresentare

un collo di bottiglia maggiore, la soluzione basata su HAProxy risulta comun-

que adeguata per garantire l’anonimato senza compromettere le prestazioni

della competizione.

5.2 Sessione di prova dell’infrastruttura

Per verificare il corretto funzionamento del progetto è stata organizzata

una sessione di prova durante un incontro di Ulisse Lab, presso i laboratori

di Ingegneria. L’obiettivo principale era verificare la stabilità del sistema in

uno scenario reale, replicando le condizioni di una vera competizione CTF

Attack and Defense. Hanno partecipato alla simulazione 24 studenti, sud-

divisi in 4 team da 6 persone ciascuno, più il NOP Team. L’infrastruttura

è stata distribuita interamente sul cluster Proxmox di Ulisse Lab, utilizzan-

do 3 nodi fisici connessi tramite una rete Gigabit Ethernet. Ogni nodo era

equipaggiato con hardware piuttosto datato, con CPU Intel i5-2400, 16GB

di RAM e dischi HDD in rete. Si tratta di specifiche hardware di livello

medio-basso che permettono di verificare l’efficienza dell’infrastruttura an-

5.2 Sessione di prova dell’infrastruttura 51

che in presenza di risorse limitate. La creazione delle VM con Terraform è

stata istantanea, grazie all’utilizzo del linked clone, mentre il provisioning

con Ansible ha impiegato circa 45 minuti a causa delle prestazioni limita-

te dei dischi HDD. A ogni macchina virtuale sono stati allocati 2 core di

CPU e 3GB di RAM, risorse minime sufficienti per eseguire i servizi senza

compromettere le prestazioni.

La prova ha avuto una durata di 2 ore, durante le quali non si sono ve-

rificati rallentamenti o interruzioni del servizio. Tutti i partecipanti sono

riusciti a connettersi alla rete di gioco usando i profili VPN generati automa-

ticamente e a interagire con le proprie vulnbox senza problemi. Tutti i servizi

vulnerabili sono rimasti disponibili per l’intera durata della competizione e

il gameserver ha gestito correttamente la checker routine e l’aggiornamento

della classifica in tempo reale. Durante la prova è stato anche verificato il

corretto funzionamento delle tecniche di anonimizzazione del traffico di re-

te. L’analisi del traffico catturato sulle vulnbox ha confermato che tutte le

comunicazioni provenienti dal router centrale apparivano con lo stesso indi-

rizzo IP sorgente e che l’offset del TCP Timestamp era identico per tutte

le connessioni. Questo ha reso impossibile il fingerprinting dei mittenti, ga-

rantendo l’equità della competizione. Il risultato della prova dimostra come

l’utilizzo di un’infrastruttura IaC distribuita su più nodi permetta di ottenere

un sistema scalabile e affidabile, anche utilizzando hardware non di ultima

generazione.

Capitolo 6

Conclusioni e sviluppi futuri

Il presente lavoro di tesi si è concluso con la progettazione e lo sviluppo

di un’infrastruttura scalabile e automatizzata per competizioni CTF Attack

and Defense, utilizzando strumenti di Infrastructure as Code quali Terraform

e Ansible. La soluzione proposta si distingue da quelle esistenti per la sua

completezza: questo sistema gestisce a 360 gradi l’intero ciclo di vita della

competizione, dalla creazione delle macchine virtuali alla configurazione della

rete, includendo la gestione del gameserver e le tecniche di anonimizzazione

del traffico. Inoltre, l’utilizzo della connettività VPN consente ai partecipanti

di accedere alla rete di gioco ovunque si trovino e di organizzare eventi sia

in presenza sia online.

I risultati presentati nel capitolo precedente dimostrano che tutti gli obiet-

tivi prefissati sono stati raggiunti. La sessione di prova condotta presso i

laboratori ha confermato l’efficacia delle politiche di sicurezza adottate e la

stabilità dell’infrastruttura anche in presenza di hardware non di ultima ge-

nerazione. Inoltre, la funzionalità di distribuzione del carico su più nodi fisici

assicura la scalabilità necessaria per organizzare eventi con un numero eleva-

to di partecipanti. Dal punto di vista educativo, questo progetto contribuisce

in modo concreto alla formazione di nuovi professionisti della cybersecurity,

offrendo un ambiente realistico in cui sviluppare competenze pratiche in ma-

teria di sicurezza informatica. L’infrastruttura, infatti, oltre a poter essere

53

54 6. Conclusioni e sviluppi futuri

utilizzata per reali competizioni, è stata ideata proprio con l’obiettivo di mi-

gliorare la fase di preparazione dei nuovi partecipanti di CyberChallenge.IT

presso l’Università di Bologna.

Nonostante i risultati positivi, sono stati individuati alcuni possibili svi-

luppi futuri. In primo luogo, si potrebbe migliorare la resilienza dell’infra-

struttura nei confronti dei malfunzionamenti. Attualmente, il gamerouter

rappresenta un Single Point of Failure: in caso di blocco della VM del rou-

ter, l’intera rete di gioco diventerebbe inaccessibile. Una soluzione potrebbe

consistere nell’introduzione di un meccanismo di High Availability (HA) che

configuri un router di backup, pronto a intervenire tramite un sistema di

failover automatico.

Un secondo sviluppo potrebbe riguardare l’inclusione di un Intrusion De-

tection System (IDS), uno strumento che consente di analizzare il traffico di

rete in tempo reale e di generare alert in caso di comportamenti anomali,

come scansioni di porte o attacchi DDoS, spesso vietati nelle competizioni.

Per migliorare ulteriormente la scalabilità dell’infrastruttura, si potreb-

be valutare l’integrazione di provider di servizi di cloud computing tramite

Terraform. Questo permetterebbe agli organizzatori di ridurre i costi legati

all’acquisto di hardware fisico, noleggiando solo le risorse necessarie in base

al numero di partecipanti.

Infine, si potrebbe realizzare una piattaforma web che permetta di ge-

stire l’iscrizione dei team, la distribuzione delle credenziali delle vulnbox e

delle configurazioni VPN ai partecipanti. Con quest’ultima aggiunta, l’in-

tero processo di organizzazione di una competizione CTF Attack and De-

fense verrebbe automatizzato, semplificando ulteriormente il lavoro degli

organizzatori.

Appendice A

Glossario

VM Virtual Machine (Macchina Virtuale) è un ambiente virtuale che simula

il funzionamento di un computer fisico.

VXLAN Virtual Extensible LAN è una tecnologia di virtualizzazione di

rete che consente di creare reti virtuali (overlay) sopra una rete fisica

esistente (underlay).

VTEP VXLAN Tunnel Endpoint è un dispositivo che incapsula e decapsula

i pacchetti VXLAN.

VPN Virtual Private Network permette di creare una connessione privata

e sicura tra dispositivi attraverso Internet.

MTU Maximum Transmission Unit è la dimensione massima in byte di un

pacchetto dati che può essere inviato su una rete.

SNAT Source Network Address Translation è una tecnica di rete che per-

mette di modificare l’indirizzo IP sorgente dei pacchetti.

DNAT Destination Network Address Translation è una tecnica di rete che

permette di modificare l’indirizzo IP di destinazione dei pacchetti.

Indirizzo MAC Media Access Control è un identificativo a 48 bit associato

a un’interfaccia di rete.

55

56 Glossario

TCP Transmission Control Protocol è un protocollo di rete di livello tra-

sporto che rende affidabile la comunicazione tra mittente e destinatario.

TTL Time To Live è un campo dell’header IP che indica il numero massimo

di hop che un pacchetto può attraversare prima di essere scartato.

IDS Intrusion Detection System è un sistema di sicurezza che monitora il

traffico di rete per rilevare attività sospette.

SDN Software Defined Networking è un approccio alla gestione delle reti che

separa il piano di controllo dal piano dati, permettendo una gestione

centralizzata e programmabile della rete.

Jinja2 motore di template per Python che consente di generare file di con-

figurazione dinamici con Ansible.

Header parte iniziale di un pacchetto di rete che contiene informazioni di

controllo.

Payload parte di un pacchetto di rete che contiene i dati.

Provisioning processo di creazione e configurazione delle risorse di un’in-

frastruttura IT.

IaC Infrastructure as Code è una pratica di gestione di infrastrutture IT che

permette di definire le risorse tramite codice.

QCOW2 QEMUCopy OnWrite è un formato di file immagine per macchine

virtuali.

High Availability caratteristica di un sistema che mira a garantire un

elevato livello di operatività.

Bibliografia

[1] “Vxlan packet format figure,” accesso: 07-11-2025. [Online]. Available:

https://www.analysisman.com/2018/05/vxlan-how-it-works.html

[2] I. Cisco Systems, “Introduction to vxlan,” accesso: 09-11-2025. [Online].

Available: https://www.ciscolive.com/c/dam/r/ciscolive/global-event/

docs/2024/pdf/BRKDCN-1621.pdf

[3] CyberChallenge.IT, “Regolamento finale nazionale cyberchallen-

ge.it,” 2025, accesso: 01-11-2025. [Online]. Available: https:

//ad.cyberchallenge.it/

[4] “Tcp segment structure,” accesso: 16-11-2025. [Onli-

ne]. Available: https://www.geeksforgeeks.org/computer-networks/

services-and-segment-structure-in-tcp/

[5] E. U. A. for Cybersecurity (ENISA), “Enisa report - ctf events,” ENISA,

Tech. Rep., 2021.

[6] K. M. Kapp, The Gamification of Learning and Instruction: Game-based

Methods and Strategies for Training and Education, 1st ed. Pfeiffer &

Company, 2012.

[7] A. Marczewski, Gamification: A Simple Introduction. Andrzej

Marczewski, 2013. [Online]. Available: https://books.google.it/books?

id=IOu9kPjlndYC

57

https://www.analysisman.com/2018/05/vxlan-how-it-works.html
https://www.ciscolive.com/c/dam/r/ciscolive/global-event/docs/2024/pdf/BRKDCN-1621.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/global-event/docs/2024/pdf/BRKDCN-1621.pdf
https://ad.cyberchallenge.it/
https://ad.cyberchallenge.it/
https://www.geeksforgeeks.org/computer-networks/services-and-segment-structure-in-tcp/
https://www.geeksforgeeks.org/computer-networks/services-and-segment-structure-in-tcp/
https://books.google.it/books?id=IOu9kPjlndYC
https://books.google.it/books?id=IOu9kPjlndYC

58 Bibliografia

[8] A. Dabrowski, M. Kammerstetter, E. Thamm, E. Weippl, and

W. Kastner, “Leveraging competitive gamification for sustainable

fun and profit in security education,” in 2015 USENIX Summit

on Gaming, Games, and Gamification in Security Education

(3GSE 15). Washington, D.C.: USENIX Association, Aug.

2015. [Online]. Available: https://www.usenix.org/conference/3gse15/

summit-program/presentation/dabrowski

[9] OWASP, “Owasp top 10,” accesso: 05-11-2025. [Online]. Available:

https://owasp.org/www-project-top-ten/

[10] CyberChallenge.IT, “Regolamento cyberchallenge.it,” 2025, accesso:

26-10-2025. [Online]. Available: https://cyberchallenge.it/rules/

[11] ——, “Cyberchallenge.it - statistiche ed edizioni,” 2025, accesso:

26-10-2025. [Online]. Available: https://cyberchallenge.it/stats/

[12] CTFtime.org, “Ctftime - portale competizioni capture the flag,” 2025,

accesso: 10-11-2025. [Online]. Available: https://ctftime.org/

[13] A. Saxena, S. Singh, S. Prakash, T. Yang, and R. S. Rathore,

“Devops automation pipeline deployment with iac (infrastructure

as code),” in 2024 IEEE Silchar Subsection Conference (SILCON

2024). IEEE, Nov. 2024, p. 1–6. [Online]. Available: http:

//dx.doi.org/10.1109/SILCON63976.2024.10910699

[14] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,

M. Bursell, and C. Wright, “Virtual eXtensible Local Area Network

(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks

over Layer 3 Networks,” RFC 7348, Aug. 2014. [Online]. Available:

https://www.rfc-editor.org/info/rfc7348

[15] P. S. S. GmbH, “Proxmox ve documentation,” accesso: 12-11-2025.

[Online]. Available: https://pve.proxmox.com/wiki/Main Page

https://www.usenix.org/conference/3gse15/summit-program/presentation/dabrowski
https://www.usenix.org/conference/3gse15/summit-program/presentation/dabrowski
https://owasp.org/www-project-top-ten/
https://cyberchallenge.it/rules/
https://cyberchallenge.it/stats/
https://ctftime.org/
http://dx.doi.org/10.1109/SILCON63976.2024.10910699
http://dx.doi.org/10.1109/SILCON63976.2024.10910699
https://www.rfc-editor.org/info/rfc7348
https://pve.proxmox.com/wiki/Main_Page

Bibliografia 59

[16] HashiCorp, “Terraform,” accesso: 12-11-2025. [Online]. Available:

https://developer.hashicorp.com/terraform

[17] I. Red Hat, “Ansible documentation,” accesso: 12-11-2025. [Online].

Available: https://docs.ansible.com/

[18] J. A. Donenfeld, “Wireguard: Next generation kernel network tunnel,”

in Network and Distributed System Security Symposium, 2017. [Online].

Available: https://api.semanticscholar.org/CorpusID:2590070

[19] F. Team, “Faust ctf platform,” accesso: 10-11-2025. [Online]. Available:

https://ctf-gameserver.org/

[20] M. Bauer, “saarctf - ctf game server,” accesso: 10-11-2025. [Online].

Available: https://github.com/MarkusBauer/saarctf-servers

[21] Domysh, “Ctfbox,” accesso: 10-11-2025. [Online]. Available: https:

//github.com/domysh/ctfbox

[22] bpg, “Terraform proxmox provider.” [Online]. Available: https:

//github.com/bpg/terraform-provider-proxmox

[23] “Beszel monitoring software.” [Online]. Available: https://beszel.dev/

[24] D. Borman, R. T. Braden, V. Jacobson, and R. Scheffenegger, “TCP

Extensions for High Performance,” RFC 7323, Sep. 2014. [Online].

Available: https://www.rfc-editor.org/info/rfc7323

[25] drank40, “Euriclea - tcp timestamp fingerprinting.” [Online]. Available:

https://github.com/drank40/euriclea

[26] T. L. K. Organization, “Linux kernel documentation,” accesso:

18-11-2025. [Online]. Available: https://docs.kernel.org/networking/

ip-sysctl.html

https://developer.hashicorp.com/terraform
https://docs.ansible.com/
https://api.semanticscholar.org/CorpusID:2590070
https://ctf-gameserver.org/
https://github.com/MarkusBauer/saarctf-servers
https://github.com/domysh/ctfbox
https://github.com/domysh/ctfbox
https://github.com/bpg/terraform-provider-proxmox
https://github.com/bpg/terraform-provider-proxmox
https://beszel.dev/
https://www.rfc-editor.org/info/rfc7323
https://github.com/drank40/euriclea
https://docs.kernel.org/networking/ip-sysctl.html
https://docs.kernel.org/networking/ip-sysctl.html

Ringraziamenti

Al termine di questo percorso di studi, desidero esprimere la mia gratitu-

dine a tutte le persone che hanno contribuito alla mia crescita accademica e

umana rendendo possibile la realizzazione di questa tesi.

In primo luogo, un sentito ringraziamento va al mio relatore, Prof. Marco

Prandini e al correlatore, Prof. Andrea Melis, per la loro disponibilità e il

supporto durante lo sviluppo di questo progetto. Un ringraziamento parti-

colare va a Eyad Issa per avermi fornito l’accesso alle risorse del cluster e a

tutto il gruppo di Ulisse Lab per l’opportunità che mi ha permesso di crescere

professionalmente.

Un pensiero speciale va all’esperienza di CyberChallenge.IT 2025, che ha

segnato indubbiamente una tappa fondamentale nel mio percorso accademi-

co. Grazie ai tutor che mi hanno formato e soprattutto ai miei compagni di

squadra per l’impegno e i risultati ottenuti alla finale nazionale. È grazie a

voi se mi sono avvicinato al mondo della cybersecurity e delle CTF, rendendo

di fatto possibile la realizzazione di questo progetto di tesi. Mi auguro che

i futuri partecipanti che rappresenteranno la nostra sede possano continuare

a portare in alto il nome dell’Università di Bologna.

Non posso dimenticare i miei compagni di università: Samu, Lollo, Omar,

Alice, Greg e Diego. Grazie per le risate che hanno alleggerito i momenti

di stress e per tutte le giornate trascorse insieme in laboratorio tra studio,

esperimenti e progetti di ogni genere. La vostra amicizia ha reso questo

viaggio molto più piacevole e indimenticabile.

Ringrazio di cuore la mia famiglia per il sostegno costante, per la pazienza

61

62 Ringraziamenti

dimostrata nelle inevitabili giornate di tensione e per avermi dato la possi-

bilità e i mezzi di intraprendere questo percorso di studi credendo sempre in

me anche quando io stesso facevo fatica a farlo.

Infine, voglio ringraziare tutte le persone che mi sono state vicine in questi

anni, ma in particolare Laura che mi ha sempre supportato e incoraggiato

a dare il massimo. Grazie per essere stata al mio fianco, per aver condiviso

con me sia le soddisfazioni sia le difficoltà e per avermi sostenuto in ogni

momento di incertezza.

	Abstract
	Elenco delle Figure
	Elenco dei Codici
	Introduzione
	Scenari applicativi e stato dell'arte
	Competizioni Capture The Flag
	Attack and Defense

	Motivazione del progetto
	DevOps e IaC
	Software Defined Networking
	VXLAN
	Flood and Learn

	Analisi progettuale
	Architettura del sistema
	Requisiti identificati
	Scelta delle tecnologie
	Proxmox VE
	Terraform
	Ansible
	WireGuard
	Docker

	Analisi soluzioni esistenti
	FAUST Gameserver
	saarCTF
	CTFBox

	Implementazione
	Setup dell'ambiente Proxmox
	Template delle macchine virtuali

	Creazione delle macchine virtuali con Terraform
	Configurazione della Rete e SDN

	Configurazione software con Ansible
	Gateway Router
	Gameserver
	Vulnbox
	Router di gioco

	Tecniche di anonimizzazione del traffico di rete
	Analisi e mitigazione del TCP Timestamp Fingerprinting
	nftables
	Proxy TCP

	Risultati
	Valutazione delle prestazioni delle soluzioni di mitigazione
	Sessione di prova dell'infrastruttura

	Conclusioni e sviluppi futuri
	Glossario
	Bibliografia
	Ringraziamenti

