ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

Dipartimento di Informatica — Scienza e Ingegneria
Corso di Laurea Triennale in Informatica

Validazione dei beacon frames per il
rilevamento di attacchi Evil Twin:
progettazione e implementazione di un
sistema basato su nonce

ALLEGATO

Tesi di Laurea in Sicurezza Informatica

Relatore: Presentata da:
Prof. Marco Prandini Samuele Zucchini

Sessione Dicembre 2025
Anno Accademico 2024/2025

Indice

0.1 Script per la generazione dei beacon
0.2 Script per la validazione dei beacon
0.3 Script per la simulazione di attacco evil twin

0.1 Script per la generazione dei beacon

from datetime import datetime
import time, hmac, hashlib
from scapy.all import RadioTap, Dotll, DotllBeacon, DotllElt, sendp

(AR RV [AVE AVEL AV VEAV CIAVELEAVCEAVGIAVIEIVE AVEIAVE AV EL AV AV e R AV e VAN
OUI = b"\x11\x22\x33"

INTERFACE = "wlanlmon™

SSID = "Legit AP"

BSSID = "24:ec:99:bf:cc:0f"

TRUNC = 8

create_nonce(counter, ts_ms):
counterbytes = counter.to_bytes(3, "big")
tsbytes = ts_ms.to_bytes(3, "big")

content = counterbytes + tsbytes

signed = hmac.new(KEY, content, hashlib.sha256).digest()
signed = signed[:TRUNC]

out = OUI + counterbytes + tsbytes + signed

print(OUI.hex(), counterbytes.hex(), tsbytes.hex(), signed.hex())
return out

build_beacon(counter):
ts_ms = time.time_ns() // 1000000 % 1000000
nonce = create_nonce(counter, ts_ms)

header = Dotl1(type=0, subtype=8, addrl="ff:ff:ff:ff:ff:ff", addr2=BSSID, addr3=BSSID)
body = Dot11Beacon(cap="ESS+privacy")
ssid_elt = Dot11E1t(ID=0, info=SSID.encode())
rates_elt = Dot11E1t(ID=1, info=b"\x82\x84\x8b\x96\x0c\x12\x18\x24")
channel_elt = Dotl11E1t(ID=3, info=chr(10))
rsn_elt = Dot11E1t(ID=48, info=(
"\x01\x00"
"\x00\x0f\xac\x04"
"\x01\x00"
"\x00\x0f\xac\x04"
"\x01\x00"
"\x00\x0f\xac\x02"
"\x00\x00"))
nonce_elt = Dot11E1t(ID=221, info=nonce)

beacon = RadioTap()/header/body/ssid_elt/channel_elt/rsn_elt/rates_elt/nonce_elt
return beacon

main():
print("[+] - Beacon generation and transmission started.\nSSID:
counter = 0

try:
while
beacon_packet = build_beacon(counter)

sendp(beacon_packet, iface=INTERFACE)

counter += 1
time.sleep(0.100)

except KeyboardInterrupt:
print(“[+] - Beacon generation interrupted.™)

0.2 Script per la validazione dei beacon

import time, hmac, hashlib
from scapy.all import sniff, Dotll, DotllElt
from collections import deque

" \x10\x10\xaf\x23\x@C\x59\x83 \xbd\xc3\x45\x4e\x19\xaf\xd2\xFF\x12"
"\x11\x22\x33"

INTERFACE = "wlan@mon”

SSID = "Legit AP"

BSSID = "24:ec:99:bf:cc:0f"

TRUNC = 8

ALLOWED_DELAY = 3000

legit_aps = []
recent_nonces = deque(maxlen=30)

f beacon_validator(pkt):
ssid_layer = pkt.getlayer(Dot11Elt, ID=0)
if ssid_layer != None:
ssid = ssid_layer.info.decode()

if ssid != SSID:
if ssid I= "" and ssid not in legit_aps:
print(f"[{datetime.now().strftime("%H:%M:%S.%f")[:-3]}] - Ignoring beacons from legit AP:
legit_aps.append(ssid)
return
elif pkt.getlayer(Dot11).addr2 != BSSID:
print(f"[{datetime.now().strftime("%H:%M:%S.%f")[:-3]}] - Evil twin detected: AP with same SSID and different BSSID. (BSSID: {pkt.getlayer(Dot11).addr2})")
return

", ssid)

if pkt.getlayer(Dot11Elt, ID=221) ! ne:
nonce = pkt.getlayer(Dot11Elt, ID=221).info
oui = nonce[@:3]
counter = nonce[3:6]
ts = nonce[6:9]
hash_received = nonce[9:18]
hash_computed = hmac.new(KEY, counter+ts, hashlib.sha256).digest()[:TRUNC]

if (hash_received != hash_computed oui != b'\x11\x22\x33"):
print(f"[{datetime.now().strftime("% %S.%f")[:-3]1}] - Evil Twin detected: Forged hash [Received: {hash_received.hex()} - Computed: {hash_computed.hex()} 1")
return

if nonce in recent_nonces:
print(f"[{datetime.now().strftime("%H: %f")[:-31} 1 - Replay attack detected: Duplicate beacon (hash: {hash_received.hex()})")
return

now_ts = time.time_ns() // 1000000 % 1000000
time_delay = abs(now_ts - int.from_bytes(ts, "big"))
if time_delay > ALLOWED_DELAY:

print(f"[{datetime.now().strftime("%H:%M:%S.%f")[:-3]1}] - Replay attack detected: Bacon with old timestamp (delay: {time_delay}ms - hash: {hash_received.hex()})")
return

lse:
‘ gppr‘int(r’”[datetime.now().strftime("%H:%M:%S.%f")[:-3]1}] - Evil Twin detected: Beacons without nonce from AP with the same SSID and BSSID")
return
recent_nonces.append(nonce)
return
f main():

print(f"[{datetime.now().strftime("%H:%M:)[:-31} 1 - Beacon sniffer running on interface {INTERFACE}. Scanning packets...")
sniff(iface=INTERFACE, prn=beacon_validator, filter="type mgt subtype beacon”, store=0)

if __name__ == "_ main_":
main()

0.3 Script per la simulazione di attacco evil twin

from datetime import datetime
import time, hmac, hashlib
from scapy.all import RadioTap, Dotll, DotllBeacon, Dot1lElt, sendp, sniff

INTERFACE “wlanemon"”

SSID = "Legit AP"

BSSID_CLONE = "24:ec:99:bf:cc:0f"
REPLAY_ATTACK_DELAY = @

last_replayed =

build_beacon(bssid, nonce):

dot1l = Dotll(type=e, subtype=8, addril="ff:ff:ff:ff:ff:ff", addr2=bssid, addr3=bssid)
header = Dot11Beacon(cap="ESS+privacy")

ssid_elt = Dot11E1t(ID=0, info=SSID.encode())

rates_elt = Dot11E1t(ID=1, info=b"\x82\x84\x8b\x96\x0c\x12\x18\x24")
channel_elt = Dotl1Elt(ID=3, info=chr(10))

rsn_elt = Dot11E1t(ID=48, info=(

b"\x01\x00"

b"\x@0\x0f\xac\xe4"

b"\x@1\x00"

b"\x00\X0f\xac\xe4"

b"\x@1\x00"

b"\x@0\xef\xac\x02"

b"\x00\x00"))

if nonce == False:
beacon = RadioTap()/dot11/header/ssid_elt/channel_elt/rsn_elt/rates_elt
else:
forged_nonce = b’\x11\x22\x33\x78\x90\x12\x34\x56\x78\x90\x12\x34\x56\x78\x90\x12
nonce_elt = Dot11Elt(ID=221, info=forged_nonce)
beacon = RadioTap()/dotl11/header/ssid_elt/channel_elt/rates_elt/nonce_elt
return beacon

replay_beacon(pkt):
global last_replayed
if pkt.getlayer(Dot11Elt, ID=0).info.decode() != SSID
return
else:
nonce = pkt.getlayer(Dot11Elt, ID=221).info[9:18]
if nonce != last_replayed:
last_replayed = nonce
time.sleep(REPLAY_ATTACK_DELAY)
sendp(pkt, iface=INTERFACE)
print(f"[+] - Replayed beacon with nonce: {nonce.hex()}")
return

main():
while
mode = input(”Select the evil twin emulation option:\n [1] - SSID clone only (same SSID / different BSSID / no nonce) \n [2] - BSSID clone (same SSID / same BSSID / no nonce
\n [3] - Nonce forgery (same SSID / same BSSID / invalid forged nonce) \n [4] - Replay attack\n")
if mode not in range(1,5):
print(“select a valid mode")
else:
print(f"Mode {mode} selected")
print(f"[+] - Evil twin simulation started.\nSSID: {SSID} - BSSID: {BSSID_CLONE}")

counter = @

if mode=="1":
t
while True:
beacon_packet = build_beacon(counter, bssid="99:99:99:99:99:99", nonce=
sendp(beacon_packet, iface=INTERFACE)
counter += 1
time.sleep(0.100)

except KeyboardInterrupt:
print(“[+] - Beacon generation interrupted.")

if mode=="2":
try:
while e
print(BSSID_CLONE)
beacon_packet = build_beacon(counter, bssid=BSSID_CLONE, nonce=Fal
sendp(beacon_packet, iface=INTERFACE)
counter += 1
time.sleep(©.100)

except KeyboardInterrupt:
print("[+] - Beacon generation interrupted.")

if mode=="3":
try:
while True:
beacon_packet = build_beacon(counter, bssid=BSSID_CLONE, nonce=T
sendp(beacon_packet, iface=INTERFACE)
counter += 1
time.sleep(©.100)
except KeyboardInterrupt:
print("[+] - Beacon generation interrupted.")

if mode==
try:
sniff(iface=INTERFACE, prn=replay_beacon, filter="type mgt subtype beacon", store=e)

except KeyboardInterrupt:
print("[+] - Replay attack interrupte.")

if __name__
main()

