
Dipartimento di Informatica - Scienza e Ingegneria
SCUOLA DI SCIENZE

Corso di Laurea in Scienze e Tecnologie Informatiche

Sviluppo di un servizio di gestione
documentale mediante elaborazione

del linguaggio naturale

Relatore:
Prof. Ivan Lanese

Presentata da:

Alex Rossi
0001089916

II Sessione Dicembre 2025

Anno Accademico 2024/2025

««Un sogno non è ciò che vedi nel sonno, è

ciò che ti impedisce di dormire.»» (A.P.J.

Abdul Kalam)

A chi continua a inseguire i propri sogni.

Abstract

Negli ultimi anni, l’evoluzione dei modelli di intelligenza artificiale di tipo Large Language

Model (LLM) ha aperto nuove prospettive per l’automazione dei processi aziendali e la gestio-

ne intelligente delle informazioni. Questa tesi presenta lo sviluppo e l’implementazione di un

gestore documentale intelligente basato sul Model Context Protocol (MCP), un protocollo di

interfaccia che consente l’interazione strutturata tra sistemi AI e risorse esterne. L’obiettivo

del progetto, che trae origine dal lavoro svolto durante il periodo di tirocinio curricolare univer-

sitario, è l’automazione dei processi di memorizzazione, analisi e consultazione di grandi volumi

di documenti eterogenei, sfruttando le capacità dei modelli di AI per estrarre, sintetizzare e

restituire informazioni in linguaggio naturale. L’applicazione, mediante il server MCP, consen-

te quindi di caricare documenti — ad esempio fatture, bilanci o documenti di trasporto — e

successivamente interrogare il sistema (tramite una chat-AI) riguardo informazioni specifiche

sui dati archiviati.

Keywords: Gestore documentale, Model Context Protocol, LLM, server MCP, NLP.

Indice

Elenco delle figure v

Listings vii

1 Introduzione 1

2 Nozioni Preliminari 5

2.1 Model Context Protocol . 5

2.1.1 Architettura MCP . 5

2.1.2 MCP Host . 6

2.1.3 MCP Client . 6

2.1.4 MCP Server . 6

2.2 Transformer . 7

2.2.1 Architettura Transformer . 7

2.2.2 Architettura Encoder-Decoder . 8

2.2.3 Vantaggi dell’Architettura Transformer 8

2.2.4 Principali evoluzioni del concetto di Transformer 8

2.3 Claude AI . 9

2.3.1 Informazioni generali su Claude . 9

2.3.2 Architettura di Claude . 10

2.3.3 Funzionalità utili allo sviluppo del progetto 10

2.4 Python . 10

2.4.1 Origine storica . 10

2.4.2 Caratteristiche rilevanti . 11

2.5 Librerie rilevanti ai fini progettuali . 11

2.6 Vue.js . 14

2.6.1 Origini . 14

i

ii INDICE

2.6.2 Aspetti Tecnici . 14

2.6.3 Librerie rilevanti ai fini progettuali . 15

2.7 Docker . 15

2.7.1 Origini . 15

2.7.2 Aspetti tecnici . 15

2.8 MongoDB . 16

2.8.1 Origini . 16

2.8.2 Aspetti tecnici . 16

3 Guida all’uso del programma 19

3.1 Panoramica del programma . 19

3.2 Prerequisiti . 21

3.3 Setup programma . 21

3.4 Avvio programma . 22

3.4.1 Avvio locale . 23

3.4.2 Avvio tramite Docker . 23

3.5 Uso del programma . 24

3.5.1 Primo avvio . 24

3.5.2 Creare, aggiungere ed eliminare categorie 25

3.5.3 Caricare documenti . 27

3.6 Uso del servizio di assistenza documentale AI 29

3.7 Eliminare documenti . 31

3.8 Terminare il programma . 31

3.8.1 Terminare il programma localmente . 31

3.8.2 Terminare le istanze di Docker . 31

3.8.3 Eliminare i container Docker . 32

4 Implementazione progetto 35

4.1 Architettura progetto . 36

4.2 Flusso operazioni utente . 37

4.2.1 File upload . 37

4.2.2 Richiesta di informazioni, o documenti, tramite chat 45

4.2.3 Operazioni di manipolazione delle categorie documentali 47

4.3 Interazione con i servizi di Claude . 48

INDICE iii

4.3.1 Formulazione del prompt . 48

4.3.2 Implementazione interfacce dei servizi AI 49

4.3.3 Scelta del modello di Claude . 53

4.4 Funzionalità di supporto del programma . 54

5 Conclusioni 59

5.1 Limiti architetturali del progetto . 59

5.1.1 Limiti intrinsechi al progetto e proposte di soluzioni 59

5.2 Lavori simili . 61

5.3 Considerazioni finali e lavori futuri . 62

iv INDICE

Elenco delle figure

2.1 Rappresentazione grafica dell’architettura MCP (adattata da fig.1 in [24]). . . . 6

3.1 Stato dei container Docker in esecuzione. 24

3.2 Schermata iniziale del programma al primo avvio. 25

3.3 Schermata /settings del programma. 26

3.4 Schermata /upload del programma. 27

3.5 Schermata /upload del programma: processing del documento. 28

3.6 Schermata /upload del programma: successo dell’operazione di caricamento. . . 28

3.7 Schermata /Home del programma: richiesta di documenti al servizio di AI. . . . 29

3.8 Schermata /Home del programma: richiesta di informazioni sui documenti caricati. 30

3.9 Rimozione dei container Docker in esecuzione. 32

4.1 Struttura semplificata della gerarchia di progetto. 35

4.2 Architectural design del progetto proposto. 36

4.3 Flowchart: upload file. 38

4.4 Esempio di file tabulare. 40

4.5 Flowchart: richiesta di informazioni, o documenti, tramite chat. 46

v

vi ELENCO DELLE FIGURE

Listings

2.1 Esempio d’uso dell’interfaccia API di Claude (tratto dalla documentazione uffi-

ciale [3]). 12

3.1 Clonazione di un progetto GitHub mediante il comando git clone. 22

3.2 Creazione e setup del file di enviroment. 22

3.3 Download delle dipendenze backend. 22

3.4 Download delle dipendenze frontend. 22

3.5 Inizializzazione locale del backend. 23

3.6 Inizializzazione locale del frontend. 23

3.7 Inizializzazione del progetto tramite Docker. 23

3.8 Terminare le istanze Docker del programma. 31

3.9 Eliminare i container Docker del programma. 32

4.1 Encoding file tabulari: esempio di stringa risultante. 41

4.2 Interfaccia Claude: invio file PDF. 41

4.3 Interfaccia Claude: invio immagini. 42

4.4 Interfaccia Claude: invio file tramite prompt. 42

4.5 Document Model. 43

4.6 Controllo presenza file nel database mediante confronto codice hashing. 45

4.7 Document category Model. 47

4.8 Prompt: esempio di direttive d’esecuzione. 48

4.9 Prompt: esempio di regole d’esecuzione. 49

4.10 Prompt: esempio di regole d’esecuzione. 49

4.11 Processing del file caricato dall’utente. 51

4.12 Esecuzione query elaborata da AI direttamente sul database. 53

4.13 Procedura di calcolo dei token per la richiesta effettuata a Claude. 55

vii

viii LISTINGS

Capitolo 1

Introduzione

Negli ultimi anni gli avanzamenti tecnologici nel campo dell’intelligenza artificiale, e la diffusione

dell’utilizzo su larga scala di strumenti di Large Language Model, hanno permesso la creazione

di un numero sempre maggiore di servizi volti ad automatizzare compiti ripetitivi, facendo di

queste tecnologie il fulcro dei programmi sviluppati.

In questa tesi viene presentata l’implementazione di un progetto che cerca di automatizzare

uno dei compiti che risultano tra i più complicati per la mente umana: la memorizzazione

e l’elaborazione di grandi quantità di dati. Nello specifico si presenta l’implementazione di

un gestore documentale che pone l’uso dei servizi offerti dagli strumenti di AI, ed i protocolli

associati, come fulcro del progetto stesso.

Nello specifico, il progetto presentato si basa sull’utilizzo di un protocollo sviluppato negli

ultimi anni come risultato della ricerca di nuove metodologie di applicazione dell’intelligenza

artificiale: il Model Context Protocol [24].

Come verrà espresso meglio nel capitolo 2, il Model Context Protocol è un protocollo d’in-

terfaccia ideato per avere un’interazione fluida tra AI e risorse esterne, spostando l’attenzione

dalla capacità di reperibilità del messaggio alla sua correttezza.

Spiegazione generale ed esempio d’uso

Il programma presentato in questa tesi è pensato per salvare una grande quantità di documen-

ti (caricati direttamente dall’utente) ed offrire assistenza per quanto concerne le informazioni

contenute. I file caricati possono spaziare senza alcuna restrizione su molteplici argomenti,

nonostante ciò, allo stato di sviluppo attuale, l’utilizzo del programma è particolarmente in-

dicato per documenti che trattano argomenti finanziari o aziendali (e.g. fatture, documenti di

trasporto o bilanci aziendali).

1

2 CAPITOLO 1. INTRODUZIONE

Un esempio d’uso tipico è il seguente: si ponga che un’azienda di logistica voglia sem-

plificare il processo di gestione dei dati riguardanti i propri documenti di trasporto (DDT).

Attraverso l’utilizzo del programma presentato in questo progetto di tesi è possibile quindi pri-

ma salvare grandi quantità di documenti (non limitandosi ai solo file documentali o tabulari,

ma anche file mail o immagini in cui sono presenti dati relativi agli argomenti precedentemen-

te citati), e successivamente, attraverso la funzionalità di chat-AI offerta dal programma, è

possibile richiedere in linguaggio naturale informazioni presenti sui documenti precedentemen-

te salvati (ponendo domande come ’Quale è la media dei costi totali dei documenti che ti ho

caricato nell’ultimo mese?’); oppure richiedere direttamente di scaricare sul proprio sistema

specifici file (scrivendo ad esempio ’Ritornami tutti i file pdf che ti ho caricato.’).

Per maggiori informazioni sull’uso del programma si consiglia di fare riferimento a quanto

scritto nel capitolo 3, Guida all’uso del programma, di questa tesi.

Lavoro pregresso

L’idea del progetto presentato in questa tesi prende origine dal lavoro realizzato durante il

periodo di tirocinio curricolare universitario, nel quale sono state sviluppate parti di codice che

hanno posto le basi concettuali per la creazione del programma per come viene presentato nello

stato attuale.

L’obiettivo originario del tirocinio era lo sviluppo di un servizio in grado di classificare

automaticamente i documenti caricati, sfruttando i servizi di intelligenza artificiale offerti da

Claude AI.

Nel progetto di tesi vengono impiegati i servizi di Claude che necessitano dell’encoding del

contenuto dei file per l’analisi. Di conseguenza, il codice del progetto integra le parti relative

all’encoding già sviluppate durante il tirocinio e adattate ai requisiti specifici di questa tesi.

Nello specifico, facendo riferimento alla struttura di progetto presente nella figura 4.1, nella

cartella di progetto /analyzers sono presenti le parti di codice (in linguaggio Python) sviluppate

durante il tirocinio ed in seguito incluse nel progetto finale.

Per maggiori informazioni sul funzionamento del programma, consultare il capitolo 4.

Struttura della tesi

Di seguito viene presentata la struttura generale della tesi. L’obiettivo è fornire al lettore

una panoramica complessiva del lavoro svolto, guidandolo nella comprensione degli argomenti

trattati: in primo luogo vengono illustrate le conoscenze di base necessarie, successivamente

3

viene esaminata l’implementazione del progetto ed infine, dopo aver discusso i limiti attualmente

presenti nell’implementazione del programma, vengono suggeriti possibili sviluppi futuri del

lavoro.

Dopo questo capitolo introduttivo, sono presenti:

• Capitolo 2, Nozioni preliminari : il capitolo introduce le informazioni necessarie per la

comprensione di questa tesi.

• Capitolo 3, Guida all’uso del programma: il capitolo fornisce una guida completa al

setup, inizializzazione ed uso del programma.

• Capitolo 4, Implementazione progetto: Il capitolo illustra l’implementazione del proget-

to.

• Capitolo 5, Conclusioni : nel capitolo conclusivo si analizzano i limiti attualmente pre-

senti nel programma, si presentano lavori simili e si propongono future estensioni del

lavoro svolto.

4 CAPITOLO 1. INTRODUZIONE

Capitolo 2

Nozioni Preliminari

Nel seguente capitolo verranno introdotte tutte le informazioni necessarie affinché vengano poste

le basi per la comprensione di questa tesi.

2.1 Model Context Protocol

Il Model Context Protocol (MCP) è il fulcro del progetto proposto, quindi è consono iniziare

l’enunciazione delle nozioni tecniche partendo da quest’ultimo: così facendo si crea un filo logico

che permetta al lettore di comprendere meglio l’insieme di argomenti trattati.

Come viene descritto da Hou e colleghi in [24], MCP è un’interfaccia ideata per un’intera-

zione fluida tra modelli di AI (Intelligenza Artificiale) e risorse esterne.

La particolarità del MCP, come evidenzia Patil in [32], è la capacità di colmare il principale

gap presente nei protocolli comuni come TCP/IP : la presenza di un contesto, ovvero la trac-

ciabilità del flusso delle informazioni e delle operazioni eseguite (ad esempio tramite apposite

annotazioni), permette l’elaborazione dei dati in modo efficiente e la riduzione di errori causati

dall’ambiguità della richiesta. Ciò sposta l’attenzione sulla correttezza della richiesta e non

sulla necessità di recapitare la risposta. Generalmente il contesto si può ricavare in molteplici

modi, nel caso di questo progetto di tesi è ricavato attraverso la scrittura su file in locale.

2.1.1 Architettura MCP

L’interfaccia MCP si sviluppa attraverso l’implementazione di tre componenti: MCP Host ,

MCP Client , MCP Server . Grazie alla figura 2.1 è possibile avere un’intuitiva rappresen-

tazione grafica per comprendere meglio il modello descritto.

5

6 CAPITOLO 2. NOZIONI PRELIMINARI

Figura 2.1: Rappresentazione grafica dell’architettura MCP (adattata da fig.1 in [24]).

2.1.2 MCP Host

Il MCP Host è l’applicazione che fornisce l’ambiente per eseguire compiti che coinvolgono l’uso

sia di strumenti di intelligenza artificiale che servizi esterni. Un esempio ne sono IDEs (Ambienti

per lo sviluppo di codice) integrati con AI oppure i recenti strumenti di Large Language Models

(LLMs) integrati nella console del terminale.

2.1.3 MCP Client

Il MCP Client funge da intermediario tra MCP Host ed il MCP Server. Permette all’utente

che usufruisce del servizio di visualizzare il risultato delle operazioni in tempo reale.

2.1.4 MCP Server

Il MCP Server è il sistema centrale ed è responsabile di: gestire la comunicazioni con strumenti

esterni, fornire il giusto contesto ai modelli di intelligenza artificiale e garantire i prompt1

corretti ai servizi di AI.

Il principale flusso di lavoro, e ciclo di vita, dei server MCP è:

1. Fase di Creazione: composta a sua volta da tre sotto fasi cruciali:

• Registrazione del Server: viene assegnato al server un nome unico in modo tale

da essere riconosciuto dal Client e dai componenti associati.
1Template predefiniti che permettono di orientare l’AI nell’esecuzione di compiti specifici sui dati forniti.

2.2. TRANSFORMER 7

• Installazione: vengono installate tutte le componentistiche necessarie affinché il

server lavori correttamente.

• Verifica Integrità: vengono controllate tutte le informazioni necessarie affinché il

server possa usufruire degli strumenti esterni. Ad esempio se si usufruisce di un

servizio di AI esterno, si verifica la connessione usando la passkey (metodologia per

autenticazione dell’identità adeguata).

2. Fase Operativa: il server risulta operativo e pronto a soddisfare le richieste che vengono

effettuate. Sono quindi richiamati sia strumenti esterni che il servizio di AI, ciò permette

di creare un ecosistema sandbox2 e garantire lo scambio e l’elaborazione dei dati in modo

sicuro.

3. Fase di Aggiornamento: questa fase permette al server di tenere aggiornato il contesto

delle informazioni che vengono trattate dall’utente attraverso tre attività chiave:

• Gestione delle Autorizzazioni: verifica che l’accesso ai dati rimanga valido anche

dopo una modifica.

• Controllo Versione: permette di mantenere coerenza tra diverse versioni dei dati.

• Gestione Vecchie Versioni: elimina dati deprecati oppure obsoleti.

2.2 Transformer

I Transformer sono un’architettura di rete neurale, introdotti per la prima volta nel 2017 in

[50] da Vaswani e colleghi, che plasmano la base di tutti gli odierni Large Language Models.

2.2.1 Architettura Transformer

Come viene citato in [50] l’architettura si basa sul meccanismo di attention: non si usano

tecniche di apprendimento automatico per sequenze, come Reti Neurali Convoluzionali (CNN)

o Reti Neurali Ricorsive (RNN), bensì sono presenti componenti che interagiscono tra loro.

I componenti principali sono quindi:

• Meccanismo di Self-Attention: permette al modello di riconoscere la rilevanza del-

l’input mediante l’attribuzione di un peso.
2Tipologia di ambiente basato sull’isolamento che garantisce sicurezza attraverso la supervisione delle

operazioni effettuate.

8 CAPITOLO 2. NOZIONI PRELIMINARI

• Meccanismo di Multi-Head Attention: esegue il meccanismo precedentemente ci-

tato su diverse relazioni in modo parallelo, permettendo una comprensione maggiore del

problema al modello stesso.

• Maccanismo di Positional Encoding: a causa dell’assenza di ricorsione, si necessita

di questo meccanismo per fornire informazioni sulla posizione adeguata degli elementi

nella sequenza calcolata.

• Feed-Forward Networks: reti completamente connesse applicate in modo indipendente

ad ogni posizione.

• Strato di Normalizzazione e Connessioni Residue: utili per stabilizzare il modello

durante l’addestramento.

2.2.2 Architettura Encoder-Decoder

L’architettura del transformer si può quindi riassumere secondo lo schema Encoder-Decoder :

L’Encoder, costituito da N strati di meccanismi multi-head secondo la struttura di rete feed-

forward, ed il Decoder, con struttura analoga al precedente che, per evitare che il modello

guardi erroneamente la sequenza (quindi per esempio guardi la sequenza in una posizione più

avanti rispetto a quello che dovrebbe fare a tempo i), analizza l’output dell’Encoder dopo che

quest’ultimo sia passato attravero strati di cross-attention.

2.2.3 Vantaggi dell’Architettura Transformer

I vantaggi introdotti dai Transformer sono svariati: Parallelizzazione nel processare, Long-

range Dependencies (grazie al meccanismo di attention è possibile rilevare dipendenze tra i

dati con un raggio molto ampio) e Scalabilità rispetto alla quantità di dati forniti.

2.2.4 Principali evoluzioni del concetto di Transformer

Attualmente le principali implementazioni del concetto dei Transformer si hanno con:

• BERT (Bidirectional Encoder Representations from Transformers): modello

progettato per il pre-addestramento di rappresentazioni bidirezionali profonde da testo

non etichettato. Come riportato in [16], BERT utilizza la parte encoder dell’architettura

transformer per comprendere informazioni linguistiche semantiche e sintattiche.

2.3. CLAUDE AI 9

• GPT (Generative Pre-trained Transformer): modello autoregressivo (decoder-only)

usato per predire il flusso di parole future data la sequenza passata di parole in dataset

non-etichettati. Dopo il pre-traning è possibile adattare il modello a compiti specifici

fornendo un dataset etichettato ristretto.

2.3 Claude AI

Come viene descritto nella documentazione redatta dall’azienda Anthropic [3], Claude AI, re-

centemente rinominato semplicemente Claude, è uno dei Large Language Model più preformanti

sul mercato attuale.

2.3.1 Informazioni generali su Claude

Secondo la documentazione ufficiale [4], attualmente Anthropic supporta lo sviluppo di sette

modelli, ognuno con i propri punti di forza e debolezza. Generalmente però si possono ridurre

i modelli a tre macro-famiglie:

• Claude Haiku: Haiku è il modello più leggero. Principalmente è pensato per colo-

ro che ricercano performance su compiti specifici piuttosto che ragionamento comples-

so su compiti generali. Questo modello ha il costo di utilizzo minore tra quelli offerti

dall’azienda.

• Claude Sonnet: Sonnet è il modello medio. Offre un giusto compromesso tra perfor-

mance e generalità d’applicazione, oltre che al costo.

• Claude Opus: Opus è il modello più complesso e pesante che offre Anthropic. Ha la

capacità di ragionamento maggiore tra i modelli citati, ha capacità di Agent (modelli di AI

capaci di svolgere autonomamente attività per conto dell’utente) ed eccezionali capacità

di coding. I costi di utilizzo sono i più alti tra i modelli offerti.

Tutti i modelli sono multilingue, hanno la finestra di contesto di 200.000 token (seppure

attualmente sia in beta una finestra di contesto di 1.000.000 di token per il modello Opus),

offfrono capacità di Vision3 ed in base alla complessità possono offrire risposte in output di

lunghezza variabile (da circa 9000 token per Haiku, a circa 64.000 token per Opus).
3Capacità di comprendere ed analizzare immagini.

10 CAPITOLO 2. NOZIONI PRELIMINARI

2.3.2 Architettura di Claude

L’architettura di Claude è basata sui Transformer, nello specifico solo su Decoder, utilizzando

meccanismi di self-attention per processare sequenze di token. Il suo funzionamento è quindi

riconducibile a ciò che è stato precedentemente descritto nella sezione 2.2.1.

2.3.3 Funzionalità utili allo sviluppo del progetto

Nel progetto sviluppato in questa tesi sono risultati particolarmente utili le seguenti funziona-

lità:

• Supporto all’analisi dei documenti: nello specifico, Claude supporta l’analisi diretta,

o tramite encoding, dei file PDF, immagini o file di testo. Per tutte le altre tipologie

di file (come fogli excel) deve esserci necessariamente un encoding in formati supportati

(come indicato in [5]).

• Conteggio dei token usati nella richiesta: come suggerito in [6], questa funzionalità

è particolarmente utile per calcolare una stima dei costi, per operazione, durante l’uso di

AI nelle operazioni del server MCP.

2.4 Python

Come viene citato sulla guida ufficiale dalla Python Software Foundation (Organizzazione non-

profit che detiene il copyright a partire dalla versione 2.1 del linguaggio), Python è un linguaggio

di programmazione interpretato, interattivo e orientato agli oggetti [37].

2.4.1 Origine storica

La prima bozza del linguaggio Python fu creata da Guido van Rossum nel 1989, ma solo nel

20 novembre 1991 si decise di rilasciare la prima versione.

Secondo la documentazione ufficiale, Van Rossum aveva come obiettivo quello di creare

un linguaggio di scripting con sintassi simile ad ABC, con il quale aveva esperienza, ma che

possedeva la capacità di sfruttare le system call di Amoeba (sistema distribuito degli anni ’90 su

cui Van Rossum lavorava.). Accortosi del potenziale, Van Rossum decise di rendere il linguaggio

non specifico per sistema Amoeba, bensì di generalizzarlo, garantendo il successo del progetto.

Il nome del linguaggio deriva dalla volontà di Van Rossum di usare un appellativo corto ed

unico, in questo fu ispirato dal suo gruppo comico britannico preferito: Monty Python.

2.5. LIBRERIE RILEVANTI AI FINI PROGETTUALI 11

2.4.2 Caratteristiche rilevanti

La particolarità di questo linguaggio è che oltre al modello object-oriented, è possibile applica-

re diversi paradigmi di programmazione (come la programmazione procedurale e funzionale),

rendendo il linguaggio facile da usare sia per piccoli script che per codebase più estese.

Nonostante Python sia un linguaggio interpretato, prima che il codice del programma venga

eseguito su Virtual Machine (VM), avviene una sotto fase intermedia dove si compila il codice

e si salva il bytecode nella cartella __pycache__ (per ragioni di efficienza e performance).

Nella cartella citata è quindi presente il codice da eseguire a cui si fa riferimento. Questo viene

aggiornato solo se vi sono modifiche nel codice sorgente e viene infine eseguito tramite VM4.

Quindi riassumendo nell’esecuzione di codice Python si hanno due fasi:

I La compilazione da codice sorgente (.py) a bytecode (.pyc).

II L’esecuzione del bytecode a opera della Python Virtual Machine (PVM).

Altre caratteristiche rilevanti del linguaggio sono: la tipizzazione dinamica, il Duck typing5

e il Garbage Collector basato su Reference Counting (meccanismo automatico di gestione del-

la memoria che, attraverso un contatore, identifica e libera oggetti non più raggiungibili dal

programma, prevenendo memory leaks).

Inoltre, ormai da diversi anni, il linguaggio include il supporto ad una libreria standard

nel quale sono presenti funzionalità molto importanti come interfacce del sistema operativo o

protocolli internet.

2.5 Librerie rilevanti ai fini progettuali

Di seguito viene riportato un elenco di librerie usate per la realizzazione di questa tesi, affiancate

da una breve descrizione:

• anthropic: libreria per l’accesso all’API REST di Anthropic per l’uso di Claude ed i

servizi built-in offerti [2]. Un esempio di accesso all’interfaccia fornita si ha tramite il

seguente codice Python:
4Poiché Python basa la propria esecuzione sulla VM, rende teoricamente il codice compilato portabile tra

sistemi differenti.
5Principio basato sulla citazione "If it walks like a duck and quacks like a duck, then it must be a duck!"

secondo cui linguaggi di programmazione come Python non tengono conto del tipo effettivo di un oggetto per

verificarne la compatibilità. Viene invece determinato dalla presenza di metodi analoghi o proprietà ereditate,

permettendo quindi di ricavare i tipi degli oggetti a runtime.

12 CAPITOLO 2. NOZIONI PRELIMINARI

1 import anthropic

2

3 client = anthropic.Anthropic ()

4

5 message = client.messages.create(

6 model="claude -sonnet -4-5",

7 max_tokens =1000,

8 messages =[

9 {

10 "role": "user",

11 "content": "What should I eat today?"

12 }

13]

14)

15 print(message.content)

Listing 2.1: Esempio d’uso dell’interfaccia API di Claude (tratto dalla documentazione ufficiale

[3]).

• base64: modulo della libreria standard che fornisce funzionalità per la codifica di dati

binari in caratteri ASCII, decodifica e viceversa [33].

• csv: modulo della libreria standard che permette la lettura e scrittura di dati tabulari in

formato CSV [34].

• datetime: modulo della libreria standard che fornisce funzionalità di manipolazione di

data ed ora [35].

• python-docx: libreria per la lettura, la creazione e l’aggiornamento di file di Microsoft

Word 2007 o versioni successive (.docx) [9].

• dotenv: libreria per la lettura di file con estensione .env che, leggendo coppie key=value,

permette di impostare le variabili d’ambiente [25].

• email: modulo della libreria standard che permette la manipolazione ed invio di email

[36].

• extract_msg: libreria per l’estrazione di informazioni, ed attachments, in file Microsoft

Outlook’s (.msg) [15].

• fastapi: web framework moderno e veloce per la creazione di API in Python [48].

2.5. LIBRERIE RILEVANTI AI FINI PROGETTUALI 13

• hashlib: modulo della libreria standard che permette di usufruire di algoritmi di hashing

come SHA256 o MD5 [38].

• io: modulo della libreria standard che permette di lavorare con diversi tipi di I/O come

raw, binario o testo [39].

• json: modulo della libreria standard che permette di lavorare con file JSON (JavaScript

Object Notation) [40].

• mimetypes: modulo della libreria standard che permette di convertire l’URL del file

selezionato nell’associato MIME type [41].

• mongoengine: libreria che funge da Object-Orited Mapper per lavorare con database

MongoDB [27].

• os: modulo della libreria standard che permette di usare varie funzionalità del sistema

operativo [42].

• pandas: libreria che fornisce strutture di dati veloci e flessibili, progettate per rendere

facile e intuitivo il lavoro con dati razionali o labeled [49].

• pathlib: modulo della libreria standard che permette di manipolare i paths secondo una

rappresentazione object-oriented del filesystem [43].

• pillow: libreria che fornisce all’interprete di Python la capacità di processare le immagini

[11].

• pydantic: libreria che permette di validare data tramite typing [12].

• pypdf : libreria per la manipolazione di documenti PDF [20].

• shutil: modulo della libreria standard che permette di svolgere operazioni ad alto livello,

come copy, su singoli o collezioni di file [44].

• sys: modulo della libreria standard che permette l’accesso di variabili, o funzioni built-in,

all’interprete [45].

• time: modulo della libreria standard che fornisce funzioni che tracciano il tempo nel

sistema [46].

• typing: modulo della libreria standard che, supportando a runtime i suggerimenti di

typing, facilita la realizzazione di progetti grandi e strutturati [47].

14 CAPITOLO 2. NOZIONI PRELIMINARI

• uvicorn: libreria che permette di implementare un ASGI (Asynchronous Server Gateway

Interface) web server minimale a basso livello [10].

2.6 Vue.js

Come scritto in [29] Vue.js è un framework per il linguaggio di programmazione javascript che

permette la creazione di interfacce utente ed applicazioni web a pagina singola (applicazione

web che interagisce con l’utente riscrivendo dinamicamente la pagina corrente invece di caricare

intere nuove pagine dal server).

2.6.1 Origini

Vue.js nasce dalla volontà di Evan You di semplificare i framework javascript, quali Angular.js

e React.js, adattando il lavoro di creazione di User Interface (UI) secondo le proprie preferenze.

Il progetto nasce come libreria e viene pubblicata la prima versione nel 2014. Grazie al

forte apprezzamento, attualmente Vue.js è diventato un progetto stabile con il proprio team di

mantenitori [21].

2.6.2 Aspetti Tecnici

Secondo la documentazione ufficiale [51], il framework presenta tre aspetti tecnici caratteristici:

i Sistema di reattività basato sul tracciamento delle dipendenze: il framework

traccia il riferimento di ogni componente nel momento in cui questo viene renderizzato

per la prima volta. Successivamente aggiorna il riferimento, ed il DOM6, solo se viene

effettuata una modifica sul componente stesso.

ii Virtual DOM: il Virtual DOM è una rappresentazione virtuale del DOM che viene man-

tenuta in memoria. Questo componente virtuale, sincronizzato con quello reale, permette

di eseguire il rendering dei componenti prima di aggiornare la finestra del browser. Ciò

permette di calcolare il numero minimo di componenti da aggiornare e di conseguenza

anche di effettuare il numero di manipolazioni minimo nel DOM, rendendo l’applicazione

web altamente reattiva e fluida.

iii Meccanismo di rendering dichiarativo: i template vengono renderizzati con funzioni

che restituiscono piccoli Virtual DOM. L’insieme di questi rendering costituiscono poi
6Document Object Model : rappresenta la struttura secondo cui i dati sono organizzati nelle pagine web.

2.7. DOCKER 15

il DOM per intero. In questo modo, quando avviene una modifica, si agisce solo nel

re-rendering del mini-Virtual DOM appropriato e non sull’intera struttura, rendendo

l’applicazione web più reattiva.

2.6.3 Librerie rilevanti ai fini progettuali

Di seguito viene riportato un elenco delle librerie, comprensivo di breve spiegazione, usate per

la realizzazione del progetto:

• axios: client HTTP, bsato sul sistema di gestione delle richieste asincrone in Javascript

tramite promise (per Node.js e browser), permette all’applicazione web di interagire con

le API REST7 di un server [8].

• vue: libreria standard di Vue.js [51].

2.7 Docker

Docker è una piattaforma open-source, basata su funzionalità del kernel Linux, per la contai-

nerizzazione delle applicazioni che garantisce isolamento, portabilità e stabilità.

Nello specifico i container docker sono unità leggere ed isolate, che eseguono un’applicazione

e tutte le sue dipendenze (come librerie, configurazioni o file di sistema). Queste unità fungono

come mini-macchine virtuali ma con il vantaggio di essere portabili, consumare poco spazio nel

sistema ed avviarsi in pochi secondi (ciò è determinato anche dal fatto che l’isolamento avviene

al livello del kernel e non a livello hardware come per le macchine virtuali).

2.7.1 Origini

Il progetto nasce nel 2010 da Solomon Hykescoem come strumento per gestire l’infrastruttura

della Platform as a service (PaaS) offerta da dotCloud, la sua società co-fondata [52].

Successivamente nel 2013 la società, rinominata Docker Inc, rende la tecnologia usata open-

source. Tale decisione si dimostrò cruciale per il successo di Docker a livello globale.

2.7.2 Aspetti tecnici

Come accennato precedentemente, Docker utilizza tecnologie del Kernel Linux per permettere

di creare ambienti isolati denominati container. Nello specifico usufruisce di:
7Representational state transfer è uno stile architetturale per sistemi distribuiti.

16 CAPITOLO 2. NOZIONI PRELIMINARI

• Namespaces: forniscono un meccanismo per isolare le risorse di sistema, consentendo

ad ogni processo di avere la propria versione del sistema [18].

• Cgroups (Control groups): progettati per controllare l’uso di risorse in un processo.

Nello specifico, in Docker, serve per ridurre il rischio di noisy neighbors, ovvero la presenza

di container ad alto uso di risorse che causano il degrado delle prestazioni di altri container

sullo stesso host [14].

2.8 MongoDB

MongoDB è un servizio di database NoSQL (ovvero è presente la persistenza dei dati garantita

da modelli non relazionali) orientato ai documenti: la memorizzazione dei dati avviene infatti

attraverso il formato BSON (JSON binario) invece che tabelle relazionali.

Poiché non vi è imposto un modello fisso è possibile avere collections (ovvero raccolte di

dati) di documenti con schema (modello secondo cui i dati vengono raccolti ed organizzati)

diversi. Grazie alla flessibilità del modello NoSQL, è possibile impostare campi specifici come

indici (struttura dati realizzata per migliorare i tempi di ricerca dei dati), permettendo la

creazione di query ottimizzate (stringhe per la ricerca di informazioni).

2.8.1 Origini

Nel 2007 viene fondata 10gen (successivamente rinominata MongoDB, Inc.) con l’obiettivo di

creare una PaaS (Platform as a service) composta da componenti open-source.

Poiché i database offerti sul mercato non supportavano le necessità del PaaS dell’azienda,

10gen decise di realizzarne il proprio: MongoDB [13].

Nel 2009 MongoDB, il cui nome deriva da humongous (da intendersi come ’enorme quantità

di dati’), fu rilasciato come progetto open-source. Col passare degli anni il progetto divenne

sempre più supportato e complesso, rendendo MongoDB uno dei database No-SQL più usati

globalmente.

2.8.2 Aspetti tecnici

Seguendo ciò che viene descritto nella documentazione ufficiale [31], attualmente MongoDB

supporta pluggable storage engine consigliando come predefinito WiredTiger.

2.8. MONGODB 17

WiredTiger è basato sul meccanismo di multiversion concurrency control (MVCC):

le read possono operare su snapshot (immagini immutabili del database) coerenti, mentre gli

update (modifica ai dati) possono provocare write conflicts solo se le versioni non corrispondono.

Vengono inoltre adottate meccanismi di optimistic concurrency control (tecnica di ge-

stione della concorrenza basata sul presupposto di rara presenza di conflitti nelle transazioni)

dopo aver effettuato update, prima di attuare la commit (operazione che conferma le modifiche

attuate), si effettua una fase di validazione. Si verifica quindi che nel frattempo nessuno abbia

alterato il dato che si è modificato (ad esempio attraverso l’uso di meccanismi di timestamp,

usato per tracciare temporalmente le modifiche sui dati). Se non ci sono conflitti si effettua la

commit, altrimenti si fa rollback, ovvero porta il database ad uno stato coerente, e solo dopo

permette di rifare l’operazione designata. Altre caratteristiche rilevanti sono:

• Transazioni multi-documento che garantiscono proprietà ACID (Atomicità, Consi-

stenza, Isolamento e Durabilità) delle operazioni sui sui dati.

• Lock a livello di documento: il documento modificato è bloccato fino al commit. Se

un’altra sessione tenta di modificare lo stesso documento, la transazione viene abortita e

ritentata.

• Replica set: insieme di istanze che detengono una copia sincronizzata della stessa base

dati.

• Sharding (Partizionamento orizzontale): permette di distribuire i dati su più server

(shard), ciascuno dei quali è solitamente un replica set (copia dei dati). Questo mecca-

nismo supporta il dimensionamento orizzontale su grandi dataset e alti carichi. Si sceglie

inoltre una shard key (campo del documento) su cui basare la distribuzione: i documenti

vengono spartiti in chunk (porzioni di dati basati sulla shard key) e distribuiti tra gli

shard.

18 CAPITOLO 2. NOZIONI PRELIMINARI

Capitolo 3

Guida all’uso del programma

Nel seguente capitolo viene fornita una guida completa al setup, inizializzazione ed uso del

programma.

3.1 Panoramica del programma

In questa sezione viene presentata al lettore una panoramica generale del programma del

progetto di tesi, evidenziando funzionalità e vantaggi d’uso del programma.

Descrizione del programma

Il programma presentato funge da raccoglitore intelligente di documenti : oltre a consentire

l’aggiunta e la rimozione di file da una determinata repository, come avviene nei comuni sistemi

di archiviazione, permette di ricevere assistenza nella ricerca di informazioni sui file caricati

grazie all’integrazione di servizi di intelligenza artificiale. L’utente può quindi porre domande

in linguaggio naturale riguardanti i file precedentemente salvati e ottenere risposte coerenti con

le proprie richieste.

Il programma è stato sviluppato con l’obiettivo di facilitare e assistere l’utente nel recupero

di informazioni specifiche sui file salvati, offrendo al contempo un’interfaccia minimale, semplice

e intuitiva. Il principio alla base è quello di ridurre i compiti ripetitivi, come la ricerca manuale

dei documenti, e automatizzare i processi tramite strumenti di AI di ultima generazione.

Le tipologie di file supportate dal programma sono molteplici: l’utente può caricare docu-

menti (ad esempio .pdf), immagini (.png, .jpeg, .gif), file testuali (ad esempio .txt), file tabulari

(come .xls, .odt) e messaggi di posta elettronica (.msg, .eml).

19

20 CAPITOLO 3. GUIDA ALL’USO DEL PROGRAMMA

Esempio d’uso del programma

Si consideri, ad esempio, il caso in cui l’utente desideri conoscere la media delle fatture caricate

nel programma nell’ultimo mese. Poiché tale valore non è esplicitamente indicato nei docu-

menti interessati, l’utente dovrebbe procedere manualmente a individuare tutti i documenti

caricati nel mese corrente, annotare l’importo totale riportato in ciascuno di essi e calcolare

successivamente la media.

Con il programma proposto, invece, è sufficiente porre la domanda direttamente nella chat

AI: il sistema elabora la richiesta, genera automaticamente la query per ricavare i documenti

pertinenti, estrae i dati necessari (secondo il modello con cui i documenti vengono memorizzati

nel database) e fornisce all’utente la risposta desiderata. All’occorrenza, se richiesto, rende

inoltre disponibili per il download i documenti coinvolti nella ricerca.

Funzionalità del programma

Il programma permette all’utente di creare categorie personalizzate garantendo l’associazione

di una definizione (mediante una frase di senso compiuto) all’appellativo stabilito.

L’utente può caricare documenti al fine di salvarli in database. Il programma effettua prima

una fase di processing dei dati: tramite servizio di AI vengono estrapolate le informazioni più

rilevanti dal documento e successivamente viene assegnata, dal programma, una categoria di

appartenenza (tra quelle precedentemente definite dall’utente).

L’utente può usufruire di una chat intelligente: ponendo domande in linguaggio naturale,

l’AI risponde fornendo le informazioni richieste e, se necessario, rende disponibile al download

i documenti pertinenti ai quesiti posti.

Vantaggi uso del programma

Usando il programma presentato l’utente può concentrare le sue attenzioni sul formulare cor-

rettamente la domanda in linguaggio naturale da porre all’AI, invece che occuparsi dell’inter-

pretazione diretta dei dati sui file immagazzinati.

Si prenda come esempio un programma generale di salvataggio di file: se l’utente ha caricato

decine (o centinaia) di file, troverà l’azione di ritrovare uno specifico file (oppure la rielaborazione

di dati presenti in molteplici file) molto complicata e dispendiosa. Col programma presentato

in questo progetto di tesi il problema si evita in quanto, come già detto precedentemente, si

delega il problema agli strumenti di AI che garantiscono automazione e rapidità di risposta.

3.2. PREREQUISITI 21

3.2 Prerequisiti

Affinché il programma risulti funzionare correttamente, prima di effettuare l’installazione di

quest’ultimo, è necessario verificare di possedere alcuni requisiti.

Prerequisiti per l’esecuzione in locale

Se si decide di non usare l’installazione Docker, e quindi si effettua l’esecuzione del programma

in locale, si necessita di un sistema con:

• Versione di Python 3.12.8 o successiva (affinché il backend funzioni).

• Versione di Node.js 22.19.0, o successiva, e npm 10.9.2+ (necessario per il funzionamento

del client frontend).

• Connessione a servizi di database Mongo (come il servizio di online database mongo:

MongoDB Atlas [30]).

• Versione di Git 2.34.1+ (necessario per scaricare il progetto dalla repository GitHub [1]).

Prerequisiti per l’esecuzione tramite Docker

Se invece si usano esclusivamente i servizi forniti da Docker, si necessita semplicemente della

versione di quest’ultimo pari a 28.4.0 o successive.

Prerequisiti generali

Per usufruire dei servizi di AI, sia che si decida di effettuare l’installazione in locale o su

Docker, si necessita anche di una API-KEY di Claude ottenibile da [7].

3.3 Setup programma

In questo paragrafo vengono fornite le istruzioni per svolgere il corretto setup del programma,

sia che si voglia fare l’esecuzione in locale o che si esegua tramite Docker.

Accertatisi di possedere i requisiti indicati in sezione 3.2, per effettuare il setup in del

programma è necessario eseguire i seguenti passaggi in ambiente Linux :

1. Download dei file dalla repository GitHub: questo è facilmente ottenibile aprendo

il terminale di sistema e digitando:

22 CAPITOLO 3. GUIDA ALL’USO DEL PROGRAMMA

$ git clone https :// github.com/Axelredx/Bechelor -Thesis -Project.git

$ cd Bechelor -Thesis -Project

Listing 3.1: Clonazione di un progetto GitHub mediante il comando git clone.

2. Creazione ed inizializzazione del file .env : necessario per usufruire dei servizi di AI

(Claude) e database (MongoDB).

$ cd backend

$ touch .env

$ echo ’ANTHROPIC_API_KEY=your_api_key db=your_MONGO_DB host=

your_MONGO_HOST port=your_MONGO_PORT username=your_MONGO_USER

password=your_MONGO_PASS ’ > .env

$ cd ..

Listing 3.2: Creazione e setup del file di enviroment.

Se si sta effettuando un’installazione in locale, in aggiunta ai passaggi sopraindicati bisogna

anche effettuare:

1. Download delle dipendenze di progetto nella cartella /backend .

$ cd backend

$ python -m venv my_project

$ source my_project/bin/activate

$ pip install -r requirements.txt

$ deactivate

$ cd ..

Listing 3.3: Download delle dipendenze backend.

2. Download delle dipendenze di progetto nella cartella /frontend .

$ cd frontend

$ npm i

$ cd ..

Listing 3.4: Download delle dipendenze frontend.

3.4 Avvio programma

Eseguiti i passaggi di setup indicati nella sezione 3.3 il programma ora è pronto all’avvio. I

procedimenti da eseguire differiscono in base alla propria decisione di eseguire il progetto in

locale o tramite installazione Docker.

3.4. AVVIO PROGRAMMA 23

3.4.1 Avvio locale

Se si ha deciso di eseguire il progetto in locale bisogna aprire due terminali di sistema sulla

directory di progetto /Bechelor-Thesis-Project. Sul primo terminale bisogna digitare:

$ cd backend

$ source my_project/bin/activate

$ uvicorn main:app --reload

Listing 3.5: Inizializzazione locale del backend.

Grazie al processo creato da terminale, il server si avvierà su http://localhost:8000/ (nota:

se la porta 8000 non risulta disponibile, chiudere il processo che ne usufruisce e ripetere il

passaggio indicato).

Sul secondo terminale invece basta digitare:

$ cd frontend

$ npm run dev

Listing 3.6: Inizializzazione locale del frontend.

Ora l’applicativo risulta funzionante ed è possibile usufruirne aprendo il browser all’indirizzo

http://localhost:5173/ (la porta potrebbe differire da quella indicata se è già in uso dal sistema,

in tal caso apparirà sul terminale l’indirizzo esatto a cui fare riferimento).

3.4.2 Avvio tramite Docker

Se invece si è optato di usufruire del programma tramite installazione Docker basta sempli-

cemente aprire il terminale di sistema (sempre sulla directory del progetto /Bechelor-Thesis-

Project) ed eseguire i comandi:

$ chmod +x ./start.sh ./stop.sh ./ clean.sh

$ sudo systemctl start docker # Oppure aprire Docker Desktop

$./ start.sh

Listing 3.7: Inizializzazione del progetto tramite Docker.

Il processo di inizializzazione tramite Docker richiede svariati minuti poiché, oltre a creare i vari

ambienti sandbox, deve anche scaricare le immagini d’ambiente (con le conseguenti dipendenze)

dal sito ufficiale.

Se tutto si è svolto correttamente senza la presenza di errori ora, nel terminale, si ottene

una schermata simile a quella riportata nella figura 3.1.

24 CAPITOLO 3. GUIDA ALL’USO DEL PROGRAMMA

Figura 3.1: Stato dei container Docker in esecuzione.

Ora è possibile usufruire correttamente del programma accedendo al browser digitando

l’indirizzo http://localhost:8080/ nella barra di ricerca.

3.5 Uso del programma

Nella seguente sezione si fornisce una guida all’utente su come utilizzare correttamente il pro-

gramma. Per facilitarne la comprensione si accompagnano al testo esempi ed immagini sul

flusso di lavoro.

3.5.1 Primo avvio

Durante il primo avvio l’utente, accedendo al programma tramite browser come indicato nella

sezione 3.4, si troverà davanti alla schermata riportata nella figura 3.2.

La pagina iniziale presenta in alto una barra di navigazione con le voci ’Home’, ’Upload

File’ e ’Settings’ :

• Home riporta alla pagina corrente. Questa è la pagina principale ed integra una chat

diretta coi servizi di AI. Le richieste che possono essere effettuate possono comprendere sia

la restituzione di file specifici, che la rielaborazione di informazioni di carattere generale

sui file caricati dall’utente.

• Upload File è la pagina responsabile per il caricamento dei file dell’utente nel database.

• Settings è la pagina dedicata alla modifica delle impostazioni secondo indicazioni del-

l’utente. Qui possono essere definite, aggiunte o eliminate le categorie di file che devono

essere riconosciute dal servizio di AI. Inoltre è possibile eliminare documenti secondo

richiesta specifica dell’utente.

In basso della pagina iniziale si trova lo spazio dedicato alla chat con l’AI. Come si può

notare dalla scritta ’Definisci la categoria dei documenti nella sezione /settings per abilitare

3.5. USO DEL PROGRAMMA 25

Figura 3.2: Schermata iniziale del programma al primo avvio.

l’assistente’ la chat attualmente è disattivata. Infatti per evitare un uso improprio del pro-

gramma da parte dell’utente, la chat rimane disattivata fino a quando si svolgono le seguenti

azioni nell’ordine proposto:

1. Si definiscono le categorie apposite nella sezione /settings.

2. Si effettua l’upload di almeno un file nella sezione /upload.

3.5.2 Creare, aggiungere ed eliminare categorie

Per categoria si intende un sostantivo seguito da una descrizione di quest’ultimo. La definizione

delle categorie è un’azione fondamentale: senza categorie dell’utente, il servizio di AI non

riuscirebbe a classificare (ed estrarre informazioni) in modo corretto dai documenti caricati

nella sezione upload.

Poiché il servizio è stato sviluppato con l’obiettivo di lasciare più libertà possibile all’utente,

potenzialmente si possono definire delle categorie con dei sostantivi incongruenti a patto che sia-

no accompagnati da una descrizione dettagliata (Esempio generale: ’AGR: tutti i documenti

che riguardano fatture agricole’).

Per definire le categorie bisogna quindi cliccare sulla voce ’Settings ’ della barra di navigazio-

ne. Se è la prima volta che si definisce una categoria, l’utente si troverà davanti alla schermata

riportata nella figura 3.3.

26 CAPITOLO 3. GUIDA ALL’USO DEL PROGRAMMA

Figura 3.3: Schermata /settings del programma.

Creare ed aggiungere categorie

Se nel database non sono presenti categorie, in alto apparirà la frase ’Nessuna categoria ancora

definita’, l’utente dovrà quindi crearne di nuove nella sezione sottostante: seguendo gli esempi

che sono riportati nel template di scrittura, si definiscono quindi una o più categorie nella forma

’CATEGORIA: descrizione della categoria, ...’.

Se è la prima volta che si definiscono categorie, cliccare sul pulsante ’Crea Categoria’,

altrimenti usare il pulsante ’Aggiungi categoria’ per aggiungere una o più categorie a quelle già

presenti nel database.

Ora le categorie definite appariranno nella sezione in alto nella forma ’CATEGORIA1,

CATEGORIA2, ...’.

Eliminare categorie

Se non si è soddisfatti delle categorie definite, si può cliccare sul bottone ’Elimina tutte le

categorie’. Questa azione cancella tutte le informazioni relative alle categorie nel database

riportando il programma allo stato descritto nella ad inizio di questa sottosezione.

3.5. USO DEL PROGRAMMA 27

Figura 3.4: Schermata /upload del programma.

3.5.3 Caricare documenti

Per caricare documenti bisogna andare sulla pagina /upload cliccando sulla voce ’Upload File’

della barra di navigazione situata in alto a sinistra.

Eseguita questa azione, presupponendo che sono presenti nel database delle categorie cor-

rettamente definite, l’utente si troverà nella schermata riportata nella figura 3.4.

Per caricare un file basterà quindi cliccare nel riquadro apposito: ora è possibile scegliere

il file da caricare navigando nel filesystem del proprio dispositivo. Successivamente basterà

cliccare sul pulsante ’Carica’ per iniziare il processo di caricamento del file nel database.

Si giunge quindi allo stato indicato nella figura 3.5: è presente una barra di caricamento

di colore azzurro. Fino a quando la barra di caricamento rimane a schermo vuol dire che il

documento sta venendo processato dal servizio di AI, il quale categorizza ed estrae informazioni

rilevanti dal documento, prima di essere caricato nel database.

Se tutto si è svolto correttamente senza l’insorgere di errori, dopo che il documento viene

effettivamente caricato nel database, scomparirà la barra di caricamento e si presenterà a scher-

mo (per qualche secondo) un messaggio che indica il successo dell’operazione (come riportato

nella figura 3.6).

28 CAPITOLO 3. GUIDA ALL’USO DEL PROGRAMMA

Figura 3.5: Schermata /upload del programma: processing del documento.

Figura 3.6: Schermata /upload del programma: successo dell’operazione di caricamento.

3.6. USO DEL SERVIZIO DI ASSISTENZA DOCUMENTALE AI 29

Figura 3.7: Schermata /Home del programma: richiesta di documenti al servizio di AI.

Formati documenti supportati

Come si può notare dal riquadro nella figura 3.4, i formati dei documenti caricabili nel pro-

gramma sono: .pdf, .msg, .eml, .xls, .xlsx, .xlsm, .xlsb, .odf, .ods, .odt, .jpg, .jpeg, .png, .gif,

.docx, .csv, .txt, .text. Se l’utente carica un documento diverso da uno dei formati sopraindicati,

viene inibita automaticamente la possibilità di caricare il documento nel programma ed insorge

a schermo un messaggio di errore di colore rosso.

3.6 Uso del servizio di assistenza documentale AI

Dopo avere definito le categorie e caricato documenti nelle sezioni apposite, è ora possibile

usufruire della funzione di chat-AI nella pagina principale. Alcune esempi di richieste sono ora

visibili sopra la sezione dedicata alla chat.

Le richieste effettuabili dall’utente si possono dividere in due macro famiglie:

I Le richieste di documenti: l’utente chiede al servizio di AI di restituirgli documenti

secondo quanto richiesto. Un esempio d’interazione di questo tipologia si può osservare

nella figura 3.7.

30 CAPITOLO 3. GUIDA ALL’USO DEL PROGRAMMA

Figura 3.8: Schermata /Home del programma: richiesta di informazioni sui documenti caricati.

II Le richieste di informazioni sui documenti: l’utente chiede al servizio di AI informa-

zioni specifiche sui documenti che ha caricato. La richiesta può inoltre comprendere una

rielaborazione, da parte dell’AI, delle informazioni riguardanti più documenti immagazzi-

nati nel database. Nella figura 3.8 è riportato un esempio di questa tipologia interazione.

Forma del messaggio di risposta

Di seguito viene fornita una descrizione esaustiva del messaggio del servizio di AI come risposta

della richiesta inviata dall’utente.

Facendo riferimento a quanto descritto nella sezione 3.6, i messaggi risposta possono essere:

• Tipologia I : il messaggio risponde quindi alla richiesta dell’utente di tipologia I. Vengono

forniti la lista dei file richiesti, compresi nome e dimensione del file, con la possibilità di

scaricarli sul proprio sistema tramite click del bottone ’Scarica File’ (figura 3.7).

• Tipologia II : il messaggio di risposta soddisfa le richieste dell’utente di tipologia II.

Viene fornita una spiegazione in linguaggio naturale delle informazioni richieste dall’utente

(figura 3.8).

In entrambe le tipologie di risposte sono inoltre presenti, in fondo al messaggio, le query (di-

rettamente formulate dal servizio di AI) per ricavare le informazioni effettuate nel database.

3.7. ELIMINARE DOCUMENTI 31

Ciò risulta particolarmente utile per verificare se il servizio formula richieste sufficientemente

precise da soddisfare le necessità dell’utente.

3.7 Eliminare documenti

Per eliminare documenti è necessario:

1. Cliccare nella sezione Settings della barra di navigazione.

2. Scrivere in linguaggio naturale quali documenti si vuole eliminare (anche tutti).

3. Cliccare il bottone ’Elimina documenti ’.

3.8 Terminare il programma

Facendo riferimento alla sezione 3.4, la metodologia per terminare il programma differiscono in

base al metodo di avvio che si è deciso di usare.

3.8.1 Terminare il programma localmente

Se si ha avviato il programma localmente basterà terminare i processi creati sui rispettivi

terminali:

• sul primo terminale (su cui è avviato il processo del server) con directory /Bechelor-

Thesis-Project/backend, premere contemporaneamente i tasti CTRL e C.

• sul secondo terminale (su cui è avviato il processo del client) con directory /Bechelor-

Thesis-Project/frontend, premere contemporaneamente i tasti CTRL e C.

3.8.2 Terminare le istanze di Docker

Se invece si ha avviato il progetto tramite installazione Docker basterà eseguire sul terminale

di sistema, nella directory /Bechelor-Thesis-Project, il comando:

$./stop.sh

Listing 3.8: Terminare le istanze Docker del programma.

Il risultato di questa operazione da output simile a quello che viene riportato nella figura 3.9.

32 CAPITOLO 3. GUIDA ALL’USO DEL PROGRAMMA

Figura 3.9: Rimozione dei container Docker in esecuzione.

Nonostante l’operazione, è garantita la persistenza dei dati: i file salvati non vengono quindi

persi alla terminazione delle istanze Docker.

3.8.3 Eliminare i container Docker

Se si vuole eliminare i container creati da Docker, ed effettuare quindi una pulizia totale, si può

eseguire sul terminale anche il comando:

$./ clean.sh

Listing 3.9: Eliminare i container Docker del programma.

Eseguire il comando sopracitato con attenzione: infatti così facendo verranno eliminati tutti

i container che riguardano il progetto compresi tutti i dati salvati al loro interno (Documenti,

categorie, etc.).

3.8. TERMINARE IL PROGRAMMA 33

34 CAPITOLO 3. GUIDA ALL’USO DEL PROGRAMMA

Capitolo 4

Implementazione progetto

In questo capitolo si discutono la struttura, le funzioni e le scelte architetturali di questo

progetto di tesi. Per una migliore comprensione si accompagna il testo di esempi, riflessioni e

parti di codice direttamente estratte del programma stesso.

Il codice completo (avente dimensione totale di circa 3000/3500 righe) a cui si fa riferimento

in questo capitolo è disponibile sotto licenza Creative Commons Attribution-NonCommercial

4.0 International License (CC BY-NC 4.0) su GitHub [1] e segue la struttura riportata nella

figura 4.1.

Bechelor-Thesis-Project/
backend/

ai_microservices/
analyzers/
controllers/
DUMP/
LOGFILE/
models/
routers/
utility/
main.py
...

frontend/
doker-compose.yml
LICENSE
...

Figura 4.1: Struttura semplificata della gerarchia di progetto.

35

36 CAPITOLO 4. IMPLEMENTAZIONE PROGETTO

4.1 Architettura progetto

Il progetto è stato sviluppato secondo la filosofia Model-View-Controller. Questo pattern è

basato sulla separazione dei compiti fra i componenti citati:

• Model: fornisce i modelli secondo cui i dati vengono salvati nel database.

• View: visualizza i dati contenuti nel model e reagisce reattivamente alle azione eseguite

dagli utenti.

• Controller: fornisce i metodi per permettere di modificare i dati forniti dal model.

Grazie alla filosofia MVC, ed il paradigma Model Context Protocol, il programma interagisce

secondo quanto riportato nella figura 4.2.

Figura 4.2: Architectural design del progetto proposto.

Le richieste effettuate dall’utente passano quindi prima dal client MCP (ovvero attraverso

la View), che tiene traccia delle operazioni eseguite dell’utente, e successivamente vengono

inoltrate al server MCP (che opera sui dati attraverso il Controller) per soddisfarle.

A supportare il server è inoltre presente:

• Un servizio esterno di AI (Claude): il servizio viene chiamato dal server per eseguire

molteplici compiti di analisi e valutazione.

• Un database NoSQL (MongoDB): il servizio è necessario per garantire la persistenza

di dati salvati dall’utente (che salva i dati seguendo i Models definiti).

4.2. FLUSSO OPERAZIONI UTENTE 37

Framework e linguaggi di sviluppo

Facendo riferimento alla struttura di progetto presentata nella figura 4.1, il server MCP, il

cui codice di progetto è presente nella cartella /backend, è stato sviluppato interamente in

linguaggio Python. Nello specifico si è usato il framework FastAPI per la creazione del servizio

di API.

Nella cartella /frontend è presente la parte di progetto dedicata allo sviluppo del client

MCP tramite Single Page Application. Per lo sviluppo di questa porzione di codice è stato

utilizzato il framework Javascript Vue.js.

Paradigma di sviluppo API

Le API, che permettono di interagire con i servizi offerti dal server, sono state sviluppate

seguendo lo standard REST (REpresentational State Transfer) e la filosofia CRUD: si effettua

la chiamata post per rappresentare create, la chiamata get per rappresentare read, la chiamata

put per rappresentare update e la chiamata delete per rappresentare delete.

L’implementazione delle API è presente nella cartella /routers dove sono disponibili i tre

file: asker.py (che include tutte le routes che riguardano le interazioni dell’utente con la chat-

AI, oltre ad offrire controlli sui documenti presenti nel database), classifier.py (che include la

route che gestisce il caricamento di un file nel programma) e type_descriptor.py (che include

tutte le routes che riguardano la manipolazione ed il salvataggio delle categorie nel database).

4.2 Flusso operazioni utente

In questa sezione viene fornita una visione generale, attraverso l’uso di diagrammi flowchart,

delle operazioni eseguibili dall’utente riguardanti le funzionalità principali del programma. Nello

specifico si analizzano le operazioni di file upload (figura 4.3) e di richiesta di informazioni

(figura 4.5).

4.2.1 File upload

Nella figura 4.3 è riportato il flusso di operazioni che avvengono ogni qualvolta l’utente carica

un documento per essere salvato nel database:

38 CAPITOLO 4. IMPLEMENTAZIONE PROGETTO

Figura 4.3: Flowchart: upload file.

I. Caricamento del documento nel programma

L’utente effettua la richiesta di upload file tramite User Interface. Viene quindi richiamata

l’API @router.post("/upload-file/") per gestisce l’intero processo di caricamento del file in

database. Nello specifico, tra le varie operazioni eseguite sul file prima che venga salvato nel da-

tabase, si effettua l’estrazione delle informazioni rilevanti e la classificazione (per la spiegazione

completa delle operazioni elencate consultare la sottosezione 4.3.2).

II. Salvataggio del file in locale, encoding ed invio a Claude

Il documento viene ora salvato in locale su /DUMP . Prima di inviare file a Claude, è ne-

cessario però effettuare l’encoding dei file attraverso i moduli presenti nella cartella /analyzers.

4.2. FLUSSO OPERAZIONI UTENTE 39

Attualmente Claude consente il caricamento diretto, tramite interfaccia e apposita elabora-

zione dei dati, solo di file in formato .pdf e di immagini. Negli altri casi, come verrà illustrato

in seguito, è necessario adottare una soluzione alternativa per consentire l’analisi dei dati con-

tenuti nei file: il metodo utilizzato consiste nell’effettuare l’encoding dei file in stringa, così da

inserire le informazioni direttamente nel prompt passato all’AI.

Nello specifico le estensioni dei file supportate per l’encoding sono: .csv, .docx, .eml, .gif,

.jpeg, .jpg, .msg, .odf, .odt, .pdf, .png, .text, .txt, .xls, .xlsb, .xlsm e .xlsx.

Generalmente è possibile quindi riassumere l’encoding dei file in:

• Encoding dei file pdf : Tramite la funzione analyze_pdf() (in pdf_analyzer.py), è

possibile effettuare l’encoding in stringhe di file pdf: per questioni di performance, se il

file risulta avere più di 10 pagine (attraverso la funzione __check_pdf_pages_number())

si crea una copia con un numero ridotto di pagine secondo i limiti indicati (attraverso

__chop_pdf_pages() si ottiene la copia con presenti solo le prime 10 pagine, ovvero le

pagine in cui si presuppone la presenza di dati rilevanti). Successivamente si applica

l’encoding della copia creata (il chopped_file): questo sarà il file che viene inviato a

Claude per l’analisi. Nonostante ciò il file che viene salvato in database rimane quello

originale presente nella cartella /DUMP.

• Encoding dei file documentali e testuali: Tramite funzioni apposite (presenti nei file

csv_analyzer.py, docx_analyzer.py e txt_analyzer.py) è possibile effettuare l’encoding, a

stringa singola, del contenuto dei file. Per ragioni di performance, e per ragioni legate

al numero massimo di token che è possibile usufruire durante una richiesta a Claude,

la stringa ritornata contiene al massimo 10000 caratteri. Se sono presenti un numero

maggiore di caratteri la stringa viene troncata secondo i limiti indicati.

• Encoding delle immagini: L’encoding delle immagini (ovvero i file con estensioni .gif,

.jpeg, .jpg e .png) in stringhe, è eseguibile tramite la funzione analyze_img() presente

nel file img_analyzer.py. Se durante il processing l’immagine risulta avere dimensione

del file maggiore rispetto ai limiti consentiti da Claude (la quale dimensione massima

attuale è 5mb) viene richiamata la funzione __compress_image() per comprimere l’im-

magine. La compressione eseguita (ovvero la compressione Lossy) diminuisce quindi la

qualità dell’immagine da 1.00 a 0.85. Il processo iterativo viene ripetuto fino a quando la

dimensione dell’immagine è inferiore o uguale ai limiti consentiti.

40 CAPITOLO 4. IMPLEMENTAZIONE PROGETTO

• Encoding delle email: Tramite funzioni apposite è possibile effettuare l’encoding in

stringhe dei file in formato .eml e .msg. Nello specifico si estraggono informazioni (come

mittente, destinatario, data, oggetto ed allegati presenti) prima aprendo il file in binario

e poi eseguendo le operazioni di estrazione tramite libreria apposita. Inoltre, per i file in

formato .msg, vengono salvati anche gli attachments tramite metadata.

• Encoding dei file tabulari: Tramite l’apposita funzione, presente in xls_analyzer.py,

è possibile effettuare l’encoding dei file tabulari (con ad esempio estensione .odt o .xls) in

stringhe. Nello specifico vengono salvati, tramite libreria apposita, i metadati e le infor-

mazioni presenti sui fogli presenti nel file caricato. Per ragioni di performance vengono

considerati solo i primi 3 fogli tabulari: in questi vengono considerati solo i dati presenti

nelle prime 15 colonne e le prime 30 righe. Inoltre, per permettere una migliore compren-

sione dei dati a Claude, per le celle con valori NaN (Not a Number) oppure risultanti vuote,

si inserisce invece il valore ’[EMPTY]’ nella corrispondente stringa finale. Si consideri, ad

esempio, un foglio tabellare utilizzato per tenere traccia delle fatture giornaliere: dispo-

nendo i giorni sulle righe e i mesi sulle colonne, è possibile inserire nelle rispettive celle

gli importi delle fatture emesse, lasciando vuote (oppure segnando 0,00) quelle relative ai

giorni in cui non ne sono state registrate (come rappresentato nella figura 4.4). Nel listing

4.1 viene mostrato l’encoding, in formato stringa, dell’esempio illustrato in precedenza.

Figura 4.4: Esempio di file tabulare.

4.2. FLUSSO OPERAZIONI UTENTE 41

1 info_encoded = ’’’{’file_info ’: {’name’: ’fatture.xlsx’, ’company ’:

’Test_Company ’, ’sheets ’: [’fatture_mensili (1)’], ’total_sheets

’: 1}, ’sheets_data ’: [{’sheet_name ’: ’fatture_mensili (1)’, ’

rows’: 31, ’columns ’: 14, ’column_names ’: [’Giorno ’, ’Gennaio ’,

’Febbraio ’, ’Marzo’, ’Aprile ’, ’Maggio ’, ’Giugno ’, ’Luglio ’, ’

Agosto ’, ’Settembre ’, ’Ottobre ’, ’Novembre ’, ’Dicembre ’, ’TOTALE

’], ’sample_data ’: [{’Giorno ’: 1, ’Gennaio ’: 250.5 , ’Febbraio ’:

’[EMPTY]’, ’Marzo’: 180.0, ’Aprile ’: 0.0, ’Maggio ’: 420.75 , ’

Giugno ’: 0.0, ’Luglio ’: 0.0, ’Agosto ’: 310.2 , ’Settembre ’: 0.0,

’Ottobre ’: 275.0, ’Novembre ’: 0.0, ’Dicembre ’: 195.5, ’TOTALE ’:

1631.95} , {’Giorno ’: 2, ’Gennaio ’: ’[EMPTY]’, ’Febbraio ’: 315.8 ,

’Marzo ’: 0.0, ’Aprile ’: 0.0, ’Maggio ’: 0.0, , ’

column_types ’: {’Giorno ’: ’object ’, ’Gennaio ’: ’float64 ’, ’

Febbraio ’: ’float64 ’, ’Marzo’: ’float64 ’, , ’Settembre ’:

{’min’: 0.0, ’max’: 1896.4 , ’non_null_count ’: 29}, ’Ottobre ’: {

’min’: 0.0, ’max’: 2290.5 , ’non_null_count ’: 31}, ’Novembre ’: {’

min’: 0.0, ’max’: 2372.3 , ’non_null_count ’: 31}, ’Dicembre ’: {’

min’: 0.0, ’max’: 2226.5 , ’non_null_count ’: 26}, ’TOTALE ’: {’min

’: 285.5 , ’max’: 24868.1 , ’non_null_count ’: 31}}}]} ’’’

Listing 4.1: Encoding file tabulari: esempio di stringa risultante.

Effettuato l’encoding, è ora possibile inviare a Claude i file:

• File in formato PDF: come presentato nel listing 4.2.

1 response = self.client.messages.create(

2 model = self.claude_model ,

3 system = prompt_info ,

4 messages = [{

5 "role": "user",

6 "content": [

7 {

8 "type": "document",

9 "source": {

10 "type": "base64",

11 "media_type": "application/pdf",

12 "data": file_encoded

13 }

14 },

15 {

16 "type": "text",

42 CAPITOLO 4. IMPLEMENTAZIONE PROGETTO

17 "text": prompt_info

18 }

19]

20 }],

21 max_tokens = 20,

22)

Listing 4.2: Interfaccia Claude: invio file PDF.

• Immagini: come presentato nel listing 4.3, file nel formato jpeg, png e gif (il listing

presentato è analogo a 4.2, tranne per la parte riportata).

1 response = self.client.messages.create(

2 ...

3 {

4 "type": "image",

5 "source": {

6 "type": "base64",

7 "media_type": image_media_type ,

8 "data": file_encoded ,

9 },

10 ...

11)

Listing 4.3: Interfaccia Claude: invio immagini.

Tutti gli altri formati di file devono essere inviati tramite input prompt: ovvero effettua-

re l’encoding dei file in formato stringa ed inserire il tutto nel prompt passato all’AI (come

riportato nel listing 4.4).

1 response = self.client.messages.create(

2 model = self.claude_model ,

3 system = prompt_info ,

4 messages = [{

5 "role": "user",

6 "content": prompt_info

7 }],

8 max_tokens =20,

9)

Listing 4.4: Interfaccia Claude: invio file tramite prompt.

4.2. FLUSSO OPERAZIONI UTENTE 43

III. Classificazione documento ed estrazione informazioni

Claude analizza i documenti ricevuti: assegna la categoria di appartenenza al documento

caricato (tra quelle definite dall’utente) ed estrae le informazioni necessarie per salvare i file

secondo il Models definito nel listing 4.5.

Facendo riferimento al listing precedentemente enunciato, alcuni dei campi più rilevanti del

Model sono: binary_file_content a riga 5 (che permette di salavare il file sotto forma di binario

nel database), file_hash a riga 8 (necessario per controllare il possibile caricamento nel database

di file duplicati), mime_type a riga 9 (necessario per permettere il download del file attraverso

il client) e upload_date a riga 11 (data di caricamento del file nel database).

1 class DocumentModel(Document):

2 # required document fields

3 filename = StringField(required=True , max_length =255)

4 file_extension = StringField(required=True , max_length =10)

5 binary_file_content = BinaryField(required=True)

6 file_size = IntField(required=True)

7 # to prevent duplicate uploads

8 file_hash = StringField(required=True , unique=True)

9 mime_type = StringField(required=True)

10 file_category = StringField(required=True)

11 upload_date = StringField(required=True)

12

13 # other optional document fields

14 sender = StringField ()

15 receiver = StringField ()

16 subject = StringField ()

17 total_cost = FloatField ()

18 document_date = StringField ()

19

20 meta = {

21 # collection name in MongoDB

22 ’collection ’: ’documents ’,

23 # internal indexing based on...

24 ’indexes ’: [’filename ’, ’upload_date ’, ’file_hash ’]

25 }

Listing 4.5: Document Model.

44 CAPITOLO 4. IMPLEMENTAZIONE PROGETTO

IV. Elaborazione della query ed aggiornamento del database context

Poiché il servizio sviluppato si basa sul Model Context Protocol, per la creazione delle query

(che permettono di salvare i documenti secondo i model enunciati precedentemente), l’AI ne-

cessita del contesto del database. Nel progetto sviluppato il contesto è presente nella cartella

/LOGFILE presente in locale.

La cartella /LOGFILE è designata ai logs di progetto. Nello specifico esistono tre tipologie

di logs salvati in questa cartella:

• Info logs : questo file è dedicato al tracciamento delle operazioni, interne ed esterne,

eseguite dal server.

• Error/Warning logs : in questo file vengono segnati tutti gli errori critici che avvengono

durante lo svolgimento delle varie operazioni.

• Schema logs : questo file tiene traccia del contesto da fornire a Claude, ovvero lo schema

interno al database (questo file viene aggiornato ogni qualvolta si eseguono operazioni che

cambiano la struttura delle collezioni interne al database come aggiungere o rimuovere

un file).

Sia nel file di Info che in quello di Error/Warning, i logs presenti sono accompagnati dal

timestamp nella forma ’YYYY-mm-dd H:M:S - explaination’ : questo risulta particolarmente

utile in un contesto production aziendale. Permette infatti di risolvere un possibile errore

comprendendo quando temporalmente (ed in che punto del codice) è sorto il problema.

V. Salvataggio dei documenti nel database

Per il salvataggio e la manipolazione dei file documentali, si usufruisce delle funzioni presenti

in doc_category_operations.py e utils.py.

Le funzioni presenti nel primo file sono state implementate segendo la filosofia CRUD: la fun-

zione upload_to_db() crea l’istanza del documento nel database, la funzione execute_query()

permette l’esecuzione della query creata dall’AI in formato __raw__ (query ricavata attraverso

create_db_query() presente nel file claude_query_creator.py del modulo /ai_microservices).

Infine attraverso la funzione delete_documents() è possibile eliminare documenti secondo la

query definita da AI tramite create_db_query().

Sono inoltre presenti due funzioni di supporto: count_documents(), per il conteggio dei

documenti presenti nel database, e __safe_query_parse() per il parsing delle stringhe a for-

4.2. FLUSSO OPERAZIONI UTENTE 45

mato JSON. Poiché l’AI restituisce le query in formato string, l’azione di parsing risulta essere

necessaria per poter eseguire le query in formato __raw__ su MongoDB).

In utils.py è presente la funzione di supporto check_file_in_db(): la funzione verifica la

presenza del documento nel database, attraverso il confronto tra il codice hash del documento

caricato nel programma e quello dei documenti già presenti nel database (listing 4.6).

1 def check_file_in_db(self , file_path: Path) -> bool:

2 try:

3 with open(file_path , ’rb’) as f:

4 binary_file_content = f.read()

5 file_hash = hashlib.md5(binary_file_content).hexdigest ()

6 if DocumentModel.objects(file_hash=file_hash).first():

7 self.logger.write_info_in_log_file(f"(WARNING) File already

exists in DB: {file_path.name}")

8 return True

9 return False

10 except Exception as e:

11 self.logger.write_error_in_log_file(f"Error checking file in DB: {e}

")

12 return False

Listing 4.6: Controllo presenza file nel database mediante confronto codice hashing.

Questa funzione risulta particolarmente utile per evitare che l’utente carichi nel database

copie dello stesso file, prevenendo il degrado delle performance nel lungo termine.

VI. Feedback verso l’utente

Infine viene fornito all’utente un messaggio di feedback: viene restituito un messaggio di suc-

cesso in caso di operazione conseguita correttamente, altrimenti viene ritornato un messaggio

di errore.

4.2.2 Richiesta di informazioni, o documenti, tramite chat

Nella figura 4.5 viene riportato, tramite diagramma flowchart, il flusso di operazioni che vengono

effettuate ogni qualvolta l’utente richiede, attraverso la chat-AI, delle informazioni presenti sui

file precedentemente salvati nel database oppure la restituzione di documenti specifici.

46 CAPITOLO 4. IMPLEMENTAZIONE PROGETTO

Figura 4.5: Flowchart: richiesta di informazioni, o documenti, tramite chat.

I. L’utente effettua la richiesta

L’utente, tramite chat-AI, effettua la richiesta di informazioni (o documenti) in linguaggio na-

turale. Si richiama quindi l’API @router.get("/ask-docs-info") per soddisfare la richiesta.

II. Elaborazione della query di ricerca

Analogamente a quanto espresso nel punto IV della sottosezione precedente, l’AI elabora la

query tramite lo schema log_file al fine di trovare i file con le informazioni richieste dall’utente.

III. Raccolta file ed elaborazione risposta

Mediante l’uso delle funzioni apposite (spiegate nella sottosezione 4.3.2), viene elaborata la

risposta da ritornare all’utente in linguaggio naturale.

4.2. FLUSSO OPERAZIONI UTENTE 47

IV. Restituzione risposta NLP e dei file richiesti

Infine viene ritornata, tramite chat, la risposta elaborata dall’AI. Inoltre, attraverso l’API

@router.get("/download-file/file_id") (che permette di scaricare il file, dato il suo file_id,

tramite codifica binaria), vengono forniti per il download i documenti ricavati tramite la query

elaborata da Claude.

4.2.3 Operazioni di manipolazione delle categorie documentali

Oltre a poter caricare e chiedere informazioni al programma (espresse nella sezione precedente

mediante flowcharts), attraverso la sezione /settings del Client, l’utente può salvare, aggiungere

od eliminare le categorie dei documenti.

Creare nuove categorie

Attraverso l’API @router.post("/create-category") è possibile creare nuove categorie nel

database.

Prima di creare una o più categorie viene controllato, attraverso str_exists_in_db() (pre-

sente nel file doc_category_operations.py nella cartella /controllers), se i dati riguardanti le

categorie siano presenti o meno nel database.

Se già sono presenti dei dati si nega l’operazione per evitare conflitti interni, altrimenti si

salva la stringa contenente le categorie secondo il Model espresso nel listing 4.7.

1 class FileCategory(Document):

2 file_category_string = StringField(required=True)

3 full_file_category_and_descr_string = StringField(required=True)

4

5 meta = {

6 ’collection ’: ’file_categories ’,

7 ’indexes ’: [’full_file_category_and_descr_string ’]

8 }

Listing 4.7: Document category Model.

Aggiungere categorie a quelle già esistenti

Per aggiungere nuove categorie a quelle già presenti nel database, è possibile usufruire dell’API

@router.put("/update-category") (che richiama update_file_category_str()).

48 CAPITOLO 4. IMPLEMENTAZIONE PROGETTO

Nello specifico prima si ottiene la stringa con la lista completa delle categorie salvate, si

elimina e successivamente si salva una nuova lista dove sono presenti anche le nuove categorie

aggiunte dall’utente.

Eliminare le categorie

Mediante apposita interfaccia, è possibile eliminare tutte le categorie presenti nel database

richiamando l’API @router.delete("/delete-all-categories").

4.3 Interazione con i servizi di Claude

Nel progetto di tesi proposto, parte fondamentale è il modulo dedicato alle interazioni con i

servizi offerti da Claude.

In questa sezione si analizza nello specifico la parte di progetto che implementa le interfacce

di interazione con Claude, evidenziandone l’utilità ed analizzando l’implementazione.

4.3.1 Formulazione del prompt

Prima di analizzare dal punto di vista implementativo le interfacce usate, è necessario esaminare

l’elemento che permette di guidare l’AI nello svolgimento dei compiti assegnati: il prompt.

I prompt sono istruzioni che, assegnato un determinato compito, vengono fornite all’AI per

comprendere il contesto specifico in cui operare.

Attualmente, nel progetto presentato, i prompt forniti all’AI sono stati redatti ad hoc in

base al contesto d’utilizzo degli strumenti di analisi automatizzata. In particolare, sono stati

definiti prompt specifici per i seguenti compiti: analisi dei dati, estrazione delle informa-

zioni rilevanti dai file analizzati, classificazione dei documenti, creazione delle query

(eseguibili sul database) e aggiornamento del contesto locale (ossia dello schema inter-

no del database), oltre che per l’interpretazione delle richieste in linguaggio naturale

dell’utente e la formulazione di risposte testuali da restituire tramite chat.

Nonostante i prompt forniti all’AI siano stati scritti in modo specifico in funzione del compito

da eseguire, seguono generalmente la seguente struttura:

• Direttive d’esecuzione: vengono inserite l’insieme delle informazioni necessarie affinché

l’AI capisca quale è il compito assegnato (un esempio è presente nel listing 4.8).

4.3. INTERAZIONE CON I SERVIZI DI CLAUDE 49

1 prompt_info = "Sei un assistente AI che aiuta a tenere traccia delle

informazioni che sono archiviate in un database non relazionale

(MongoDB). ..."

Listing 4.8: Prompt: esempio di direttive d’esecuzione.

• Oggetto di lavoro: vengono fornite all’AI le informazioni su cui deve eseguire il compito

assegnato (come nel listing 4.9).

1 prompt_info = prompt_info + f"... Le informazioni che devi

interpretare sono le seguenti: {info}, e la richiesta dell’

utente e’: {user_request} ..."

Listing 4.9: Prompt: esempio di regole d’esecuzione.

• Regole d’esecuzione: ovvero tutte le regole che l’AI deve rispettare durante l’esecuzione

del compito assegnato (come listing 4.10).

1 prompt_info = prompt_info + "... aggiorna la struttura del database.

NON ritornare MAI una spegazione."

Listing 4.10: Prompt: esempio di regole d’esecuzione.

Nella scrittura del prompt bisogna trovare un equilibrio tra specificità e generalità di lin-

guaggio: si riscontra infatti dai vari test che sia un prompt troppo generale, che uno troppo

verboso, causino un perdita di performance da parte dell’AI nella comprensione del prompt

stesso. Ciò comporta la generazione di risposte indesiderate che non rispecchiano le direttive

indicate nel prompt e che quindi non soddisfano a pieno le richieste dell’utente.

4.3.2 Implementazione interfacce dei servizi AI

Nella cartella /ai_microservices sono presenti tutti i file che permettono di interfacciarsi con i

servizi offerti da Claude AI.

La struttura delle funzioni, che usano l’interfaccia di accesso all’API di Claude, seguono la

forma:

I Operazioni pre-interfaccia di Claude: comprendono tutte le operazioni (come aper-

tura ed encoding di file) svolte prima di usufruire dell’interfaccia di accesso ai servizi di

Claude.

II Definizione del prompt: si forniscono le direttive sulle operazioni che l’AI deve eseguire.

50 CAPITOLO 4. IMPLEMENTAZIONE PROGETTO

III Accesso all’interfaccia di Claude: sul modello definito nel listing 2.1.

IV Restituzione risposta di Claude: viene restituita la risposta di Claude, riguardante

il compito assegnato, attraverso stringhe in linguaggio naturale.

Di seguito vengono riportate le principali funzionalità presenti nelle interfacce dei file con-

tenuti nella cartella /ai_microservices.

Interfaccia per l’elaborazione del database context

Attraverso il file claude_db_contexter.py, il programma tiene traccia del contesto del database:

nello specifico tiene annotato lo schema interno al database, aggiornando localmente lo schema

logfile presente nella cartella /LOGFILE durante le operazioni che riguardano l’aggiunta, o la

rimozione, di file da MongoDB (rispettivamente tramite le funzioni create_db_context() e

delete_in_db_context()).

Interfaccia per il processing e salvataggio del file nel database

Nel file claude_doc_classificator.py, sono presenti funzioni che processano i documenti cari-

cati dall’utente prima che vengano salvati nel database. Nello specifico tramite la funzione

preprocess_file(), si processa il file come indicato dal listing 4.11:

1. Si controlla se il file da analizzare sia già presente in database attraverso il confronto

tra hashing del file caricato e quello dei file presenti nel database (in tal caso si salta

l’intero passaggio di analisi, e salvataggio, del file come mostrato a righe 8-9 del listing).

2. Si ottiene nome ed estensione del file, necessario per capire quale tipologia di encoding

effettuare (riga 12).

3. Si effettua l’apposito encoding e si fa processare il file a Claude. In specifico si

eseguono le operazioni di: classificazione del documento (riga 17 del listing), estrazione

dei dati rilevanti (riga 20 del listing), scrittura dello schema log e creazione della query

da eseguire sul database (riga 22 del listing).

4. Si crea una copia del file e si salva nel database (riga 25).

5. Si elimina la copia del file presente in locale sulla cartella /DUMP.

4.3. INTERAZIONE CON I SERVIZI DI CLAUDE 51

1 def preprocess_file(self) -> None:

2 # start timer estimation (benchmark uses)

3 self.time_estimator.start_counting_time ()

4

5 for item in self.path_DUMP.iterdir ():

6 if self.__is_file_considerable(item):

7 # skip analysis if already in db

8 if self.utils.check_file_in_db(item):

9 continue

10

11 #1st obtain file extension type

12 file_name , file_extension = os.path.splitext(item.name)

13 self.logger.write_info_in_log_file(f"(at func: preprocess_file)

Processing file: {file_name} with extension {file_extension}"

)

14

15 #2nd get classification from claude based on its extension

16 company_name = "company_name"

17 claude_classification_response , file_encoded = self.

__analyze_file(item , file_extension , company_name)

18 self.logger.write_info_in_log_file(f"(at func: preprocess_file)

Claude ’s response about {company_name} document: {

claude_classification_response}")

19

20 claude_info_extracted , exact_time = self.claude_extractor.

claude_extract_info(item , file_encoded ,

claude_classification_response)

21 # create/update the db context with the new info extracted

22 self.db_context_creator.create_db_context(claude_info_extracted)

23

24 #3rd upload file to DB

25 upload_code = self.file_ops.upload_to_db(item ,

claude_classification_response , claude_info_extracted ,

exact_time)

26

27 #4th delete file in DUMP folder

28 if upload_code == 1:

29 item.unlink(missing_ok=True)

30 self.logger.write_info_in_log_file(f"(at func:

preprocess_file) Deleted file {item.name} from DUMP

52 CAPITOLO 4. IMPLEMENTAZIONE PROGETTO

folder after successful upload.")

31 else:

32 self.logger.write_warning_in_log_file(f"(at func:

preprocess_file) File {item.name} not deleted from DUMP

folder due to upload error.")

33

34 # update total operations counter (benchmark uses)

35 self.time_estimator.total_operations += 1

36

37

38 # stop timer estimation (benchmark uses)

39 elapsed_time , avg_time_per_op = self.time_estimator.

estimate_total_time_and_op ()

40 self.logger.write_info_in_log_file(f"(at func: preprocess_file)

Total elapsed time: {elapsed_time}, Average time per operation: {

avg_time_per_op}")

Listing 4.11: Processing del file caricato dall’utente.

Interfaccia per l’estrazione delle informazioni rilevanti dai file caricati

Nel file claude_info_extractor.py sono presenti le funzioni necessarie all’estrazione dei dati

rilevanti dai file caricati dell’utente. Nello specifico, seguendo il modello secondo cui vengono

salvati i documenti nel database, si estraggono: mittente documento, destinatario documento,

oggetto documento, costo totale riportato nel documento (parametro pensato specialmente in

ottica di caricamento di documenti aziendali e finanziari) e data documento (e.g. data di invio

di una email).

Inoltre è presente anche la funzione post_process_extraction() che permette il corretto

svolgimento dell’operazione di aggiornamento dello schema log controllando la coerenza tra lo

schema generato dai dati estratti dal documento caricato e lo schema interno al database.

Interfaccia per l’elaborazione del linguaggio naturale

Nel file claude_interpreter.py sono presenti le funzioni, che tramite accesso all’interfaccia di

Claude, forniscono supporto all’interpretazione delle richieste dell’utente (effettuate in linguag-

gio naturale) espresse nella chat-AI.

La funzione wants_file() permette di comprendere se l’utente ha espressamente richiesto di

ritornargli documenti presenti nel database, oppure se ha semplicemente espresso una richiesta

di informazioni sui documenti che ha precedentemente salvato.

4.3. INTERAZIONE CON I SERVIZI DI CLAUDE 53

La funzione interpret_response() permette la formulazione di risposte in linguaggio na-

turale per le richieste espresse dall’utente: forniti i dati, ricavati dal database attraverso query

elaborate da Claude, viene creata una risposta coerente secondo quanto richiesto da ritornare

all’utente tramite chat-AI.

Infine le funzioni interpret_file_categories() e interpret_file_descr() forniscono

rispettivamente: supporto alla comprensione dell’appellativo della categoria ed assistenza alla

comprensione della descrizione della categoria, (ogni qualvolta vengono definite dall’utente,

tramite interfaccia apposita, delle nuove categorie documentali).

Interfaccia per la creazione di query

Attravreso la funzione create_db_query() (presente in claude_query_creator.py) è possibile,

dato lo schema del database (ricavato dal file di log in locale) e data la richiesta dell’utente in

linguaggio naturale, creare le query da eseguire sul database; permettendo quindi di ricavare i

documenti da cui vengono estratte le informazioni richieste dall’utente.

L’esecuzione diretta della query è possibile grazie alla libreria mongoengine: garantisce

infatti di eseguire le query sotto forma di stringa (elaborate dall’AI) direttamente sul’engine

del database tramite il comando riportato nel listing 4.12.

1 documents = DocumentModel.objects(__raw__=query)

Listing 4.12: Esecuzione query elaborata da AI direttamente sul database.

4.3.3 Scelta del modello di Claude

Facendo riferimento ai modelli offerti da Anthropic in [4], il programma presentato in questo

progetto di tesi utilizza il modello denominato Haiku (questo modello è pensato principalmente

per compiti ripetitivi e specifici, dove si predilige la velocità rispetto alla correttezza assoluta

della risposta).

Nonostante si possano ritenere soddisfacenti i risultati ottenuti mediante l’uso di Haiku

come modello di AI, il modello riscontra difficoltà nell’interpretare correttamente frasi formulate

con un linguaggio naturale complesso: ciò causa la formulazione di query che portano risultati

inconsistenti nella ricerca dei dati nel database (nonostante la presenza effettiva dei dati richiesti

nel database). Un esempio ricorrente, in cui l’AI crea query inconsistenti per la ricerca, è il

caso in cui l’utente richieda documenti, o informazioni, esplicitando nella richiesta determinati

intervalli di tempo.

54 CAPITOLO 4. IMPLEMENTAZIONE PROGETTO

Per i test eseguiti durante la fase di sviluppo si riscontra che la creazione approssimativa di

query, da parte del servizio di AI, accade all’incirca il 20/30% delle volte.

Per linguaggio naturale complesso, dove spesso si può esprimere lo stesso concetto compli-

cando inutilmente il quesito (come può avvenire con la lingua italiana), è consigliabile, in un

contesto aziendale, l’uso di un modello che permette un ragionamento sulle informazioni più

prolungato e dettagliato (come avviene per i modelli Sonnet e Opus).

In conclusione, come anche descritto nella sezione 2.3.1, l’uso del modello Sonnet (dove si

ha un giusto compromesso tra complessità ragionamento, velocità di risposta e costi di utilizzo)

si presuppone essere particolarmente indicato per questa tipologia di progetto.

4.4 Funzionalità di supporto del programma

Nella cartella /utils sono presenti i file che supportano il programma nello svolgimento di

compiti secondari ma necessari. Un esempio è il conteggio dei token nelle richieste a Claude

oppure il sistema di logging delle operazioni.

Di seguito si riporta la lista esaustiva delle funzionalità di supporto presenti che assisto il

programma nelle operazioni principali.

Benchmarker delle prestazioni di caricamento file

Il file benchmarker.py è dedicato alle operazioni di benchmarking delle procedure di caricamento

dei file nel database. Nello specifico, attraverso le relative funzioni, calcola il tempo medio di

caricamento di un file, includendo anche il tempo necessario per la sua elaborazione da parte

dell’AI (ovvvero includendo il tempo trascorso per le operazioni di estrazione di dati rilevanti

e classificazione documento).

Pulitore cartella /DUMP

Il file cleaner_tool.py è un semplice script che serve a pulire la directory /DUMP dai vari

documenti presenti al suo interno.

Risulta particolarmente utile in contesto di sviluppo: se avviene un errore critico durante

il processo di caricamento del file, prima che questo venga salvato nel database, è possibile

ripulire la directory evitando la nascita di incongruenze tra servizio di AI (per quanto riguarda

lo schema di contesto per l’AI) e lo stato interno al database.

4.4. FUNZIONALITÀ DI SUPPORTO DEL PROGRAMMA 55

Sistema personalizzato di logging

In error_logger.py sono presenti tutte le funzioni relative alla creazione, manipolazione e

scrittura dei file di log (schema_log, info_log e error_log) nella cartella /LOGFILE.

Per evitare di appesantire il servizio con file di log di dimensioni eccessive, attraverso le

apposite funzioni, viene effettuato un controllo automatico sugli info_log ed error_log : i file

vengono eliminati se risultano più vecchi di 2 giorni o se risultano di dimensioni maggiore o

uguale a 1 Mb.

Calcolatore di token

Il file ocr.py, attraverso la funzione anthropic_token_estimator(), permette di calcolare

in modo preciso il numero di token presenti nella richiesta rivolta a Claude, attraverso l’uso

dell’interfaccia apposita (secondo quanto indicato nella documentazione ufficiale [6]).

Questa funzionalità risulta particolarmente utile in un contesto aziendale per il calcolo delle

spese sostenute dal programma durante il processing dei documenti caricati dall’utente.

Seguendo quanto riportato nella sottosezione 4.2.1, il calcolo dei token è specifico per singola

tipologia di file caricato (come riportato nel listing 4.13).

1 def anthropic_token_estimator(self , api_client: any , file_name: str ,

encoded_file: str , claude_model: str , prompt: str) -> None:

2 try:

3 if file_name.endswith(’.pdf’):

4 response = api_client.messages.count_tokens(

5 model=claude_model ,

6 messages =[{

7 "role": "user",

8 "content": [

9 {

10 "type": "document",

11 "source": {

12 "type": "base64",

13 "media_type": "application/pdf",

14 "data": encoded_file

15 }

16 },

17 {

18 "type": "text",

19 "text": prompt

20 }

56 CAPITOLO 4. IMPLEMENTAZIONE PROGETTO

21]

22 }]

23)

24

25 elif file_name.endswith(’.jpg’) or file_name.endswith(’.jpeg’) or

file_name.endswith(’.png’) or file_name.endswith(’.gif’):

26

27 if file_name.endswith(’.jpg’):

28 image_media_type = ’image/jpeg’

29 elif file_name.endswith(’.jpeg’):

30 image_media_type = ’image/jpeg’

31 elif file_name.endswith(’.png’):

32 image_media_type = ’image/png’

33 elif file_name.endswith(’.gif’):

34 image_media_type = ’image/gif’

35

36 response = api_client.messages.count_tokens(

37 model=claude_model ,

38 messages =[{

39 "role": "user",

40 "content": [

41 {

42 "type": "image",

43 "source": {

44 "type": "base64",

45 "media_type": image_media_type ,

46 "data": encoded_file

47 }

48 },

49 {

50 "type": "text",

51 "text": prompt

52 }

53]

54 }]

55)

56

57 # all tokens are in prompt! (in :str format)

58 else:

59 response = api_client.messages.count_tokens(

4.4. FUNZIONALITÀ DI SUPPORTO DEL PROGRAMMA 57

60 model=claude_model ,

61 messages =[{

62 "role": "user",

63 "content": prompt

64 }]

65)

66

67 self.logger.write_info_in_log_file(f"Estimated tokens by Anthropic

API: {response.input_tokens}")

68 except Exception as e:

69 self.logger.write_warning_in_log_file(f"(at func:

anthropic_token_estimator) Error estimating tokens with Anthropic

API: {e}")

Listing 4.13: Procedura di calcolo dei token per la richiesta effettuata a Claude.

Nel calcolo dei costi d’utilizzo, oltre al numero complessivo di token utilizzati nella richiesta,

è importante segnalare che assume rilievo anche il modello di Claude impiegato: il costo dell’uso

del modello più complesso può infatti risultare in una spesa fino a venti volte superiore rispetto

a quella legata all’uso del modello base.

58 CAPITOLO 4. IMPLEMENTAZIONE PROGETTO

Capitolo 5

Conclusioni

Nel seguente capitolo si riassume il contenuto esposto in questa tesi, evidenziando gli attuali

limiti architetturali e possibili sviluppi del progetto presentato.

5.1 Limiti architetturali del progetto

In questa sezione si discutono gli attuali limiti architetturali e vengono proposte soluzioni

attuabili al fine di arginare i problemi evidenziati.

5.1.1 Limiti intrinsechi al progetto e proposte di soluzioni

Il progetto presentato in questa tesi non presenta dei veri e propri limiti che generano problemi

nell’esecuzione delle operazioni.

Nonostante ciò di seguito vengono riportati problematiche, che sono attualmente presenti nel

codice di progetto, che impediscono di considerare programma (da un punto di vista aziendale)

pronto per il rilascio come servizio usufruibile da una vastità di utenti differenti.

Modello documentale

Il primo limite architetturale che viene discusso è il modello secondo cui vengono salvati i file

caricati dall’utente nel database.

Facendo riferimento al listing 4.5, i dati che vengono estratti (e salvati) dai documenti sono

solo: sender (mittente), receiver (destinatario), subject (oggetto), total_cost (costo totale ripor-

tanto nel documento) e document_date (data segnata all’interno del documento). Ciò implica

che, pur essendo il sistema orientato al salvataggio di file con contenuto eterogeneo (grazie alla

capacità di lasciare la completa libertà all’utente sulla tipologia di documenti che possono essere

59

60 CAPITOLO 5. CONCLUSIONI

riconosciuti, tramite definizione della file_category in forma ’NOME:definizione’), attualmente

è presente un vincolo strutturale sulla tipologia di documenti salvabili nel database, renden-

do consigliabile il caricamento solo di documenti aziendali e finanziari (come fatture, bolle o

documenti di trasporto).

Un altro problema che sorge, come diretta conseguenza del limite esposto, è l’assenza di

generalità assoluta sulle informazioni che è possibile chiedere a Claude. Si prenda come esem-

pio la domanda dell’utente ’Indicami tutti i nomi propri scritti sull’ultima fattura che ti ho

caricato’ : il servizio di AI non riesce a soddisfare la richiesta perché sullo schema log_file non è

presente alcun campo (e quindi neanche nei modelli interni al database) che riesce a soddisfare

la domanda posta.

Una possibile soluzione per arginare il problema consiste nell’aggiunta di un campo

generico: l’idea è quella di introdurre un campo (ad esempio ’relevant_info’) in cui venga

salvata, sotto forma di stringa, la raccolta delle informazioni che l’AI ritiene rilevanti rispetto

al documento analizzato.

Inconsistenza generazione automatizzata delle query

Il secondo limite che viene analizzato è l’inconsistenza nelle risposte restituite dell’AI, ovvero

la restituzione di una risposta non coerente o non pertinente rispetto al compito assegnato al

servizio di intelligenza artificiale. Ciò è principalmente causato dal fraintendimento, da parte

dell’AI, della richiesta ricevuta, basando l’intero ragionamento su premesse errate e quindi

causando la generazione di una risposta inattesa.

Come già accennato nella sezione 4.3.3, in questo progetto di tesi la possibilità di ottenere

risposte inconsistenti da parte dell’AI è riscontrabile nella porzione di servizio che gestisce la

creazione di query per la ricerca dei documenti presenti nel database. Se infatti l’utente pone,

nella sezione dedicata alla chat-AI, domande in linguaggio naturale complesso (ad esempio

domande lunghe, verbose o tramite termini generali che presentano molteplici significati) può

capitare che il servizio di query_generator elabori una risposta che non riesca a individuare, nel

database, i file necessari al fine di soddisfare la richiesta stessa (nonostante ci siano le premesse

per trovare i file target e soddisfare quindi le richieste dell’utente).

Per cercare di arginare il problema, si propone come soluzione l’uso di un modello con

capacità di ragionamento maggiori: l’idea è quindi usare modelli di AI, come Claude

Sonnet o Claude Opus, come base per la porzione di programma che usufruisce dei servizi di

AI; oppure usare come sistema di AI un modello in locale specificamente allenato sul riconoscere

5.2. LAVORI SIMILI 61

le informazioni rilevanti dai documenti presentati e sulla formulazione di query che selezionano

in modo accurato le informazioni da estrarre dal database.

Sia la soluzione proposta ora, che la soluzione relativa ai limiti dell’attuale Model, necessi-

tano di testing per verificare l’effettivo miglioramento delle prestazioni (per quanto concerne la

creazione delle query target) e sulla migliore generalità d’applicazione del servizio sviluppato.

5.2 Lavori simili

Grazie al crescente interesse per lo sviluppo di strumenti di AI, l’ambito della gestione docu-

mentale automatizzata risulta sempre più appetibile per aziende e privati. Come conseguenza di

ciò, negli ultimi anni, vengono sviluppati sempre più servizi per la gestione di file che integrano

l’intelligenza artificiale al fine di rendere le operazioni di ricerca più semplici ed efficienti.

Alcuni esempi di noti servizi per la gestione documentale, che integrano l’AI, sono:

• M-Files : sistema di gestione documentale che automatizza i processi utilizzando l’AI,

e i metadata dei file, per trovare facilmente le informazioni richieste, memorizzando

nativamente i contenuti all’interno della piattaforma Microsoft 365 [26].

• Google Document AI : elaboratore di documenti che automatizza l’estrazione delle infor-

mazioni dai documenti strutturati [23].

• DocuWare IDP : sistema di gestione documentale con capacità di riconoscimento automa-

tico del testo da documenti strutturati. Offre inoltre la possibilità di eseguire operazioni

di splitting, cropping e classificazione direttamente sui documenti [19].

Il Model Context Protocol rappresenta un ambito di ricerca ancora recente e in larga parte

da esplorare. Nonostante l’interesse crescente da parte del mondo accademico e delle grandi

aziende, sono tuttora limitati i lavori che affrontano tematiche strettamente analoghe a quelle

sviluppate nel progetto di tesi presentato.

Si osserva tuttavia un progressivo aumento di pubblicazioni che ne favoriscono l’integrazione

in un numero sempre maggiore di contesti applicativi. Alcuni tra gli esempi di implementazione

di server MCP attualmente presenti sul mercato sono:

• Il server MCP per il controllo del workflow in GitHub ([22]): connette strumenti AI

direttamente alla piattaforma GitHub, fornendo ad agenti AI la possibilità di analizzare

ed automatizzare il processo di repository management.

62 CAPITOLO 5. CONCLUSIONI

• Il server MCP per il controllo della containerizzazione in Docker ([17]): il server MCP,

che si interfaccia con le API di Docker Hub, rende accessibili agli LLM le repository di

Docker, facilitando i processi di creazione dei container.

• Il server MCP per la gestione dei file in database in Azure ([28]): permette ad applica-

zioni e modelli AI di comunicare con i dati ospitati in Azure (per il database relazionale

PostgreSQL), permettendo ai modelli di AI l’accesso e l’elaborazione dei dati presenti

nelle tabelle.

5.3 Considerazioni finali e lavori futuri

Il progetto presentato in questa tesi presenta basi solide per la creazione di un applicativo

complesso, con la possibilità di applicazione (aziendale e non) per casi di necessità reale.

Nonostante ciò, il programma sviluppato risulta ancora grezzo e quindi necessita ancora di

lavoro prima di renderlo presentabile come servizio offerto ad un pubblico vasto, in primo luogo

risolvendo i problemi esposti nella sezione 5.1.

Inoltre, ulteriori margini di miglioramento riguardano sia la User Interface che la gestione

interna degli utenti. Al momento, il servizio è progettato per un’installazione in self-hosting

destinata all’uso di un singolo utente; tuttavia, in una prospettiva aziendale orientata all’ero-

gazione come servizio SaaS, risulterebbe più appropriato l’hosting su un’infrastruttura centra-

lizzata (ad esempio su AWS), che consenta l’accesso a più utenti contemporaneamente. Tale

miglioria del programma richiede l’implementazione di un sistema di gestione multi-utente.

5.3. CONSIDERAZIONI FINALI E LAVORI FUTURI 63

Bibliografia

[1] Alex Rossi (Axelredx). Bechelor Thesis Project. https : / / github . com / Axelredx /

Bechelor-Thesis-Project. Accessed: 2025-10-09. 2025.

[2] Anthropic. Anthropic Python API library. https://pypi.org/project/anthropic/.

Accessed: 2025-10-03. 2025.

[3] Anthropic. Claude API Documentation. Accessed: 2025-10-01. 2025. url: https://docs.

claude.com.

[4] Anthropic. Claude Models Documentation. Accessed: 2025-10-02. 2025. url: https://

docs.claude.com/en/docs/about-claude/models/overview.

[5] Anthropic. Claude Support Documentation. Accessed: 2025-10-02. 2025. url: https :

//docs.claude.com/en/docs/build-with-claude/pdf-support.

[6] Anthropic. Claude Token-Counting Documentation. Accessed: 2025-10-02. 2025. url:

https://docs.claude.com/en/docs/build-with-claude/token-counting.

[7] Inc. Anthropic. Anthropic Console — Login. https://console.anthropic.com/login.

Accessed: 2025-10-09.

[8] Axios. Getting Started | Axios Docs. Accessed: 2025-10-04. 2025. url: https://axios-

http.com/docs/intro.

[9] Steve Canny. Create, read, and update Microsoft Word .docx files. https://pypi.org/

project/python-docx/. Accessed: 2025-10-03. 2025.

[10] Tom Christie. The lightning-fast ASGI server. https://pypi.org/project/uvicorn/.

Accessed: 2025-10-03. 2025.

[11] Jeffrey A. Clark. Python Imaging Library. https : / / pypi . org / project / pillow/.

Accessed: 2025-10-03. 2025.

[12] Samuel Colvin. Data validation using Python type hints. https://pypi.org/project/

pydantic/. Accessed: 2025-10-03. 2025.

65

https://github.com/Axelredx/Bechelor-Thesis-Project
https://github.com/Axelredx/Bechelor-Thesis-Project
https://pypi.org/project/anthropic/
https://docs.claude.com
https://docs.claude.com
https://docs.claude.com/en/docs/about-claude/models/overview
https://docs.claude.com/en/docs/about-claude/models/overview
https://docs.claude.com/en/docs/build-with-claude/pdf-support
https://docs.claude.com/en/docs/build-with-claude/pdf-support
https://docs.claude.com/en/docs/build-with-claude/token-counting
https://console.anthropic.com/login
https://axios-http.com/docs/intro
https://axios-http.com/docs/intro
https://pypi.org/project/python-docx/
https://pypi.org/project/python-docx/
https://pypi.org/project/uvicorn/
https://pypi.org/project/pillow/
https://pypi.org/project/pydantic/
https://pypi.org/project/pydantic/

[13] Wikipedia contributors. MongoDB — Wikipedia. https://en.wikipedia.org/wiki/

MongoDB. Last modified: 2015-07-17; Accessed: 2025-10-08. 2025.

[14] Datadog Security Labs. Container security fundamentals part 2: Isolation & namespaces.

Accessed: 2025-10-04. 2023. url: https://securitylabs.datadoghq.com/articles/

container-security-fundamentals-part-2/.

[15] Matthew Walker Destiny Peterson. Extracts emails and attachments saved in Microsoft

Outlook’s .msg files. https://pypi.org/project/extract-msg/. Accessed: 2025-10-03.

2025.

[16] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding. 2019. arXiv: 1810.04805 [cs.CL]. url: https://arxiv.org/abs/1810.

04805.

[17] Docker Inc. «Introducing Docker Hub MCP Server». In: Docker Blog (2025). Accessed:

2025-10-23. url: https://www.docker.com/blog/introducing-docker-hub-mcp-

server/.

[18] Docker Inc. Security. Docker Documentation. Accessed: 2025-10-04. 2025. url: https:

//docs.docker.com/engine/security/.

[19] DocuWare GmbH. DocuWare Introduces Intelligent Document Processing (DocuWare

IDP). Press Release. Accessed: 2025-11-04. Dic. 2024. url: https://start.docuware.

com/press- center/docuware- introduces- intelligent- document- processing-

docuware-idp.

[20] Mathieu Fenniak. A pure-python PDF library capable of splitting, merging, cropping, and

transforming PDF files. https://pypi.org/project/pypdf/. Accessed: 2025-10-03.

2025.

[21] GitHub. Evan You - README Stories. Accessed: 2025-10-03. 2024. url: https://

github.com/readme/stories/evan-you.

[22] GitHub Inc. GitHub MCP Server - Official Implementation. https://github.com/

github/github-mcp-server. Accessed: 2025-10-23. 2025.

[23] Google Cloud. Document AI | Google Cloud. Accessed: 2025-11-04. 2025. url: https:

//cloud.google.com/document-ai.

[24] Xinyi Hou et al. «Model Context Protocol (MCP): Landscape, Security Threats, and

Future Research Directions». In: ArXiv abs/2503.23278 (2025). doi: 10.48550/arXiv.

2503.23278.

https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/MongoDB
https://securitylabs.datadoghq.com/articles/container-security-fundamentals-part-2/
https://securitylabs.datadoghq.com/articles/container-security-fundamentals-part-2/
https://pypi.org/project/extract-msg/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://www.docker.com/blog/introducing-docker-hub-mcp-server/
https://www.docker.com/blog/introducing-docker-hub-mcp-server/
https://docs.docker.com/engine/security/
https://docs.docker.com/engine/security/
https://start.docuware.com/press-center/docuware-introduces-intelligent-document-processing-docuware-idp
https://start.docuware.com/press-center/docuware-introduces-intelligent-document-processing-docuware-idp
https://start.docuware.com/press-center/docuware-introduces-intelligent-document-processing-docuware-idp
https://pypi.org/project/pypdf/
https://github.com/readme/stories/evan-you
https://github.com/readme/stories/evan-you
https://github.com/github/github-mcp-server
https://github.com/github/github-mcp-server
https://cloud.google.com/document-ai
https://cloud.google.com/document-ai
https://doi.org/10.48550/arXiv.2503.23278
https://doi.org/10.48550/arXiv.2503.23278

[25] Saurabh Kumar. Read key-value pairs from a .env file and set them as environment

variables. https://pypi.org/project/python-dotenv/. Accessed: 2025-10-03. 2025.

[26] M-Files Corporation. M-Files - Document Management System (DMS) with Workflow

Automation. Accessed: 2025-11-04. 2024. url: https://www.m-files.com/.

[27] Harry Marr. MongoEngine is a Python Object-Document Mapper for working with Mon-

goDB. https://pypi.org/project/mongoengine/. Accessed: 2025-10-03. 2024.

[28] Microsoft Azure. «Introducing Model Context Protocol (MCP) Server for Azure Database

for PostgreSQL (Preview)». In: Microsoft Community Hub (2025). Accessed: 2025-10-23.

url: https://techcommunity.microsoft.com/blog/adforpostgresql/introducing-

model- context- protocol- mcp- server- for- azure- database- for- postgresql-

/4404360.

[29] Microsoft Learn. Vue su Windows. Accessed: 2025-10-03. 2025. url: https://learn.

microsoft.com/it-it/windows/dev-environment/javascript/vue-overview.

[30] Inc. MongoDB. MongoDB Atlas: Piattaforma dati multi-cloud per sviluppatori. https:

//www.mongodb.com/it-it/products/platform. Accessed: 2025-10-09. 2025.

[31] Inc. MongoDB. MongoDB Documentation. https://www.mongodb.com/docs/. Accessed:

2025-10-08.

[32] Manas Patil e Virag Lokhande. «Model Context Protocol (MCP): Enabling Scalable AI

Data Integration». In: International Journal For Multidisciplinary Research (2025). doi:

10.36948/ijfmr.2025.v07i02.43583.

[33] Python Software Foundation. base64 — Base16, Base32, Base64, Base85 Data Enco-

dings. Python Standard Library Documentation, Accessed: 2025-10-03. Python Software

Foundation. 2025. url: https://docs.python.org/3/library/base64.html.

[34] Python Software Foundation. csv — CSV File Reading and Writing. Python Standard

Library Documentation, Accessed: 2025-10-03. 2025. url: https://docs.python.org/

3/library/csv.html.

[35] Python Software Foundation. datetime — Basic date and time types. Python Standard

Library Documentation, Accessed: 2025-10-03. 2025. url: https://docs.python.org/

3/library/datetime.html.

[36] Python Software Foundation. email — An email and MIME handling package. Python

Standard Library Documentation, Accessed: 2025-10-03. 2025. url: https://docs.

python.org/3/library/email.html.

https://pypi.org/project/python-dotenv/
https://www.m-files.com/
https://pypi.org/project/mongoengine/
https://techcommunity.microsoft.com/blog/adforpostgresql/introducing-model-context-protocol-mcp-server-for-azure-database-for-postgresql-/4404360
https://techcommunity.microsoft.com/blog/adforpostgresql/introducing-model-context-protocol-mcp-server-for-azure-database-for-postgresql-/4404360
https://techcommunity.microsoft.com/blog/adforpostgresql/introducing-model-context-protocol-mcp-server-for-azure-database-for-postgresql-/4404360
https://learn.microsoft.com/it-it/windows/dev-environment/javascript/vue-overview
https://learn.microsoft.com/it-it/windows/dev-environment/javascript/vue-overview
https://www.mongodb.com/it-it/products/platform
https://www.mongodb.com/it-it/products/platform
https://www.mongodb.com/docs/
https://doi.org/10.36948/ijfmr.2025.v07i02.43583
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/email.html
https://docs.python.org/3/library/email.html

[37] Python Software Foundation. General Python FAQ. Accessed: 2025-10-02. Python Soft-

ware Foundation. 2025. url: https://docs.python.org/3/faq/general.html.

[38] Python Software Foundation. hashlib — Secure hashes and message digests. Python Stan-

dard Library Documentation, Accessed: 2025-10-03. 2025. url: https://docs.python.

org/3/library/hashlib.html.

[39] Python Software Foundation. io — Core tools for working with streams. Python Standard

Library Documentation, Accessed: 2025-10-03. 2025. url: https://docs.python.org/

3/library/io.html.

[40] Python Software Foundation. json — JSON encoder and decoder. Python Standard Li-

brary Documentation, Accessed: 2025-10-03. 2025. url: https://docs.python.org/3/

library/json.html.

[41] Python Software Foundation. mimetypes — Map filenames to MIME types. Python Stan-

dard Library Documentation, Accessed: 2025-10-03. 2025. url: https://docs.python.

org/3/library/mimetypes.html.

[42] Python Software Foundation. os — Miscellaneous operating system interfaces. Python

Standard Library Documentation, Accessed: 2025-10-03. 2025. url: https://docs.

python.org/3/library/os.html.

[43] Python Software Foundation. pathlib — Object-oriented filesystem paths. Python Stan-

dard Library Documentation, Accessed: 2025-10-03. 2025. url: https://docs.python.

org/3/library/pathlib.html.

[44] Python Software Foundation. shutil — High-level file operations. Python Standard Li-

brary Documentation, Accessed: 2025-10-03. 2025. url: https://docs.python.org/3/

library/shutil.html.

[45] Python Software Foundation. sys — System-specific parameters and functions. Python

Standard Library Documentation, Accessed: 2025-10-03. 2025. url: https://docs.

python.org/3.13/library/sys.html.

[46] Python Software Foundation. time — Time access and conversions. Python Standard

Library Documentation, Accessed: 2025-10-03. 2025. url: https://docs.python.org/

3.13/library/time.html.

[47] Python Software Foundation. typing — Support for type hints. Python Standard Library

Documentation, Accessed: 2025-10-03. 2025. url: https://docs.python.org/3.13/

library/typing.html.

https://docs.python.org/3/faq/general.html
https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/io.html
https://docs.python.org/3/library/io.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/mimetypes.html
https://docs.python.org/3/library/mimetypes.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/shutil.html
https://docs.python.org/3/library/shutil.html
https://docs.python.org/3.13/library/sys.html
https://docs.python.org/3.13/library/sys.html
https://docs.python.org/3.13/library/time.html
https://docs.python.org/3.13/library/time.html
https://docs.python.org/3.13/library/typing.html
https://docs.python.org/3.13/library/typing.html

[48] Sebastián Ramírez. FastAPI framework, high performance, easy to learn, fast to code,

ready for production. https://pypi.org/project/fastapi/. Accessed: 2025-10-03.

2025.

[49] The Pandas Development Team. Powerful data structures for data analysis, time series,

and statistics. https://pypi.org/project/pandas/. Accessed: 2025-10-03. 2025.

[50] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL]. url:

https://arxiv.org/abs/1706.03762.

[51] Vue.js Team. Vue.js - The Progressive JavaScript Framework. Accessed: 2025-10-04. 2025.

url: https://it.vuejs.org/.

[52] Wikipedia contributors. Docker (software). Accessed: 2025-10-04. 2025. url: https://

en.wikipedia.org/wiki/Docker_(software).

https://pypi.org/project/fastapi/
https://pypi.org/project/pandas/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://it.vuejs.org/
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Docker_(software)

Ringraziamenti

Dedico questo spazio della tesi a tutte le persone che hanno reso possibile la realizzazione di

questo lavoro e la conclusione del mio percorso universitario.

Un ringraziamento particolare va al Prof. Ivan Lanese, che mi ha seguito con competenza

e disponibilità durante la redazione dell’intera tesi, e a Luca, CEO di CodeBaker, che mi ha

supervisionato durante lo sviluppo del progetto di tesi.

Desidero inoltre ringraziare gli amici che hanno fatto parte della mia vita in questi anni e

che continueranno a farne parte anche in futuro.

Un ringraziamento speciale va a tutta la mia famiglia, che mi ha sostenuto durante l’intera

durata di questo percorso accademico. In particolare, ci tengo a ringraziare mia madre Piera,

per la gentilezza e il costante supporto emotivo durante le fasi più cruciali del mio sviluppo;

mio padre Paolo, per l’affetto e le risate che ha saputo regalarmi nei momenti di incertezza;

e mia nonna Federica, per essere stata come una seconda madre.

Infine, ringrazio me stesso per la perseveranza dimostrata in questo percorso e mi auguro

di trovare la strada giusta per la mia vita.

	Elenco delle figure
	Listings
	Introduzione
	Nozioni Preliminari
	Model Context Protocol
	Architettura MCP
	MCP Host
	MCP Client
	MCP Server

	Transformer
	Architettura Transformer
	Architettura Encoder-Decoder
	Vantaggi dell'Architettura Transformer
	Principali evoluzioni del concetto di Transformer

	Claude AI
	Informazioni generali su Claude
	Architettura di Claude
	Funzionalità utili allo sviluppo del progetto

	Python
	Origine storica
	Caratteristiche rilevanti

	Librerie rilevanti ai fini progettuali
	Vue.js
	Origini
	Aspetti Tecnici
	Librerie rilevanti ai fini progettuali

	Docker
	Origini
	Aspetti tecnici

	MongoDB
	Origini
	Aspetti tecnici

	Guida all'uso del programma
	Panoramica del programma
	Prerequisiti
	Setup programma
	Avvio programma
	Avvio locale
	Avvio tramite Docker

	Uso del programma
	Primo avvio
	Creare, aggiungere ed eliminare categorie
	Caricare documenti

	Uso del servizio di assistenza documentale AI
	Eliminare documenti
	Terminare il programma
	Terminare il programma localmente
	Terminare le istanze di Docker
	Eliminare i container Docker

	Implementazione progetto
	Architettura progetto
	Flusso operazioni utente
	File upload
	Richiesta di informazioni, o documenti, tramite chat
	Operazioni di manipolazione delle categorie documentali

	Interazione con i servizi di Claude
	Formulazione del prompt
	Implementazione interfacce dei servizi AI
	Scelta del modello di Claude

	Funzionalità di supporto del programma

	Conclusioni
	Limiti architetturali del progetto
	Limiti intrinsechi al progetto e proposte di soluzioni

	Lavori simili
	Considerazioni finali e lavori futuri

