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Sommario

Questo progetto mira a continuare lo studio della distribuzione di ricchezza nella bloc-
kchain di Ethereum cominciato da Francesco Santilli[1]. Dato che lo studio precedente
ha individuato che la distribuzione di ricchezza sulla rete è molto eterogenea, con una
piccola percentuale di indirizzi che detiene la maggior parte della ricchezza totale, l’o-
biettivo principale di questo progetto è individuare tipici parametri delle strategie che
questi indirizzi utilizzano per arricchirsi. Per fare ciò, abbiamo analizzato esclusivamente
i dati pubblici della blockchain utilizzando l’Intelligenza Artificiale per riconoscere sche-
mi di comportamento complessi. I risultati hanno mostrato che le strategie di accumulo
passivo sono predominanti tra gli indirizzi profittevoli. Inoltre, si è scoperto che i piccoli
investitori riescono ad avere ritorni superiori rispetto alle grandi entità sulle strategie
con un basso numero di transazioni giornaliere. Tuttavia, questa profittabilità maggiore
è compensata dalla netta superiorità delle istituzioni nella probabilità di avere profitti
anche se di dimensioni relativamente inferiori.
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Capitolo 1

Introduzione

Il panorama delle transazioni mondiali si sta evolvendo rendendo i trasferimenti di valori
sempre più veloci ed economici. Questa evoluzione è portata avanti dalle blockchain,
applicazioni web che permettono di condividere token in modo anonimo, veloce ed eco-
nomico. Queste sono interamente gestite, in principio, in modo completamente decen-
tralizzato e dunque dovrebbero permettere a qualunque utente di trasferire e detenere
in sicurezza i propri token in modo indipendente dagli altri utenti. Le blockchain fun-
zionano grazie a dei token accumulabili spesso convertibili in valute FIAT[2] attraverso
Centralized Cryptocurrency Exchanges, piattaforme Peer-to-Peer, ATMs o altre piatta-
forme che accettano pagamenti in criptovalute[3]. La possibilità di convertire facilmente
in valute di corso legale i token, ha iniziato una corsa nell’accumulare più token per poi
utilizzarli per le spese ordinarie o come investimento sulla blockchain stessa[4]. Proprio
per questa ragione gli hedge fund e i fondi d’investimento hanno cominciato a dedicare
sempre più attenzione a questo mondo[5] rendendo estremamente efficienti anche questi
mercati[6] una volta trascurati rispetto ai mercati finanziari tradizionali.
Questa tesi ha lo scopo di individuare se esistono cluster di strategie che sono riuscite
ad accumulare Ether sulla blockchain di Ethereum e le principali caratteristiche di que-
ste strategie. In particolare la ricerca si concentrerà sul cercare peculiarità comuni che
raggruppano queste strategie attraverso l’utilizzo dell’intelligenza artificiale.
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Capitolo 2

Cos’è una blockchain

La blockchain è un registro digitale condiviso e sicuro, in cui le informazioni vengono
raccolte in blocchi collegati tra loro in ordine cronologico. Una volta aggiunto, un blocco
non può essere modificato senza alterare tutti quelli successivi, il che rende il sistema
molto resistente alle manomissioni. Questo registro non è controllato da un’unica entità,
ma è mantenuto da una rete di computer che collaborano per verificarne e garantirne
l’affidabilità, eliminando la necessità di intermediari di fiducia e inserendo il concetto di
decentralizzazione nel mondo delle transazioni contemporanee.
La prima blockchain che ha fatto sapere dell’esistenza di questa tecnologia, e tuttora
detentrice della più grande capitalizzazione di mercato, è Bitcoin[7]. Bitcoin è una block-
chain basata sul sistema di sicurezza Proof of Work[8], sistema estremamente dispendioso
e lento se confrontato ai nuovi algoritmi di consensus moderni[9].

2.1 Perché sono nate le blockchain

In un mondo sempre più interconnesso, scambiare denaro tramite il sistema bancario
tradizionale può portare diversi svantaggi come commissioni elevate, tempo necessario e
soprattutto limiti imposti su importi, orari, zone geografiche... Ad esempio i costi medi
per una transazione Retail B2B sono dell’1.5% mentre per le transazioni P2P sono del
2.5%[10]. La situazione peggiora se si studiano i paesi in via di sviluppo come la regione
dell’Africa subsahariana o dell’America Latina dove i costi si alzano fino ad una media
del 3.9% di commissione per transazione[10]. Le blockchain sono nate per risolvere tutti
i problemi di questo tipo: decentralizzare il potere per rendere i trasferimenti sempre a
disposizione di tutti senza oligopoli. In particolare le blockchain permettono di inviare
token in modo sicuro, efficiente, decentralizzato, economico e anonimo a chiunque abbia
accesso alla rete. Ad esempio, il costo medio di transazione sulla blockchain di Bitcoin
è sceso fino ad arrivare a $1.24[11]. Con 120 bilioni di Dollari Statunitensi processati
tramite SWIFT[12] e una media di 44.8 milioni di transazioni al giorno[13] si ottiene una
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media di oltre $7000 scambiati per transazione con una commissione media di oltre i $105.
Di conseguenza, Bitcoin, con un algoritmo di validazione comunque costoso rispetto ai
nuovi standard, ha un costo che è pari all’1% rispetto ai costi applicati dalle banche
tradizionali per trasferimenti internazionali.

2.2 Algoritmi di consenso

2.2.1 Proof of Work

Ma perché gli utenti delle blockchain dovrebbero fidarsi che la transazione vada a buon
termine? E soprattutto, chi garantisce che i loro token siano al sicuro? Le blockchain
funzionano attraverso Algoritmi di Validazione, ovvero algoritmi di consenso che garan-
tiscono l’integrità, la trasparenza e l’immutabilità delle transazioni senza la necessità di
un’autorità centrale[14].
Il Proof of Work è un tipo di Algoritmo di Consenso che richiede ai partecipanti della re-
te, chiamati miner, di risolvere problemi matematici complessi per validare le transazioni
e aggiungere nuovi blocchi alla catena. Ad esempio, nella sua applicazione più famosa,
Bitcoin, la Proof of Work consiste nel trovare una stringa che, se unita con i dettagli delle
precedenti transazioni, produca un hash SHA-256 specifico. Se un miner trova la stringa
richiesta, questo la invia al resto della rete che una volta accertato sia la parola corretta,
aggiunge il blocco di transazioni alla catena. Questo procedimento rende sicura la rete
in quanto per modificare la storia delle transazioni un attaccante dovrebbe ricalcolare
l’hash della transazione già confermata e gli hash di tutte le transazioni precedenti a quel-
la in quanto l’hash della transazione stessa dipende da quelli precedenti. Il ricalcolo di
tutti questi codici è computazionalmente elevato e dunque disincentivante per eventuali
attaccanti. Al contrario i miner, seppur debbano compiere loro stessi molti calcoli per
trovare la stringa corretta, sono incentivati a rendere sicura la rete e verificare le transa-
zioni in quanto per ogni transazione verificata, il miner vincitore, riceve una ricompensa.
La ricompensa che riceve il miner deriva direttamente da parte delle commissioni che
l’utente della rete deve pagare per inviare una transazione.[8] Altro fattore che rende il
Proof of Work un algoritmo di consenso estremamente robusto è la decentralizzazione;
anche se uno o più miner si accordassero per cambiare la storia della rete questa, essendo
distribuita, non è controllabile da singoli individui e serve la maggioranza della potenza
di calcolo dei miner per rimuovere o modificare una transazione, ovvero il 50%+1 di tutti
i miner della blockchain. La rete di Bitcoin ha raggiunto i 949 EH/s[15] e servirebbero
dunque più di 474.5 EH/s per riscrivere la storia delle transazioni della sua blockchain.
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2.2.2 Proof of Stake

Come il Proof of Work, anche la Proof of Stake (PoS)[16] è un algoritmo di consenso la
cui base è la decentralizzazione e distribuzione. Questo algoritmo è stato introdotto con
l’obiettivo di abbassare gli esorbitanti costi del PoW portando un consumo energetico
inferiore e introducendo il concetto di scalabilità delle blockchain. Come detto nella
sezione sopra, i miner sono in competizione tra loro per indovinare il prima possibile
la stringa corretta per ottenere la ricompensa, nella Proof of Stake, questo concetto di
competizione tra miner non esiste. Si ridefinisce l’entità che convalida un blocco di tran-
sazioni non parlando più di miner ma di Validatori. I nuovi blocchi vengono confermati
selezionando un validatore il quale, confermando il blocco, riceve una ricompensa. La
scelta del validatore è però determinata da una componente stocastica influenzata dal
numero di criptovaluta che il candidato ha “bloccato” (messo in stake) nella blockchain
come collaterale[16]. Questo collaterale funge sia da investimento che da deterrente: se
il validatore si comporta onestamente validando transazioni corrette allora questo viene
ricompensato con degli interessi sullo stake (e quindi un stake più grande implica un
guadagno assoluto maggiore) e delle commissioni; se però il validatore non agisce corret-
tamente, validando transazioni fraudolente, attaccando la rete cercando di cambiarne la
storia o semplicemente non convalida più blocchi mentre è ancora un validatore, allora
gli vengono imposte delle sanzioni sul capitale che ha bloccato nel protocollo. Que-
ste penalità consistono nel rimuovere una parte o il totale dei token depositati come
garanzia[17].

2.2.3 Differenze tra PoW e PoS

Le differenze tra Proof of Work e Proof of Stake sono molte ma quelle più significative
risiedono nell’efficienza energetica e nel modo in cui la sicurezza è garantita. Se nella
Proof of Work la sicurezza viene garantita tramite il costo computazionale ed energeti-
co elevato, la Proof of Stake è basata sul capitale bloccato da ogni validatore. Questo
rende la Proof of Stake estremamente più efficiente in quanto per convalidare un blocco
di transazioni non è necessario consumare una grande quantità d’energia. Questa diffe-
renza emerge chiaramente analizzando la blockchain di Ethereum2.3, la quale è nata con
una tecnologia Proof of Work ma che poi ha cambiato verso l’algoritmo più efficiente.
Questo cambio ha ridotto il consumo energetico totale della propria blockchain di oltre il
99.95%[18]. Oltre a differire da un punto di vista della validazione, queste due tecnologie
differiscono anche dal punto di vista degli attacchi possibili; se per prendere il controllo
di una blockchain basata sul sistema Proof of Work bisogna controllare almeno il 50%+1
della potenza, per attaccare con successo una blockchain che utilizza Proof of Stake si
dovrebbe acquistare la maggioranza dei token emessi che, in caso di successo, porterebbe
ad una svalutazione di questi e quindi un danno economico per l’attaccante.
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2.3 Ethereum

Ethereum è un’applicazione decentralizzata open-source basata sulla tecnologia block-
chain che permette la creazione e l’esecuzione di smart contracts e applicazioni decentralizzate[19].
Mentre Bitcoin utilizza un linguaggio progettato per garantire la sicurezza delle tran-
sazioni, Ethereum permette l’utilizzo di una macchina virtuale, la Ethereum Virtual
Machine (EVM)[20] la quale permette di creare applicazioni eseguibili sulla rete.

2.3.1 Modello account-based

Altra differenza fondamentale che separa Ethereum da Bitcoin è la gestione dello sta-
to. Bitcoin utilizza il modello UTXO (Unspent Transaction Output)[21] dove il saldo è
calcolato dalla somma delle transazioni in entrata non ancora spese; Ethereum utilizza
invece il modello basato sugli account[19].
Esistono due tipi di account in Ethereum[20]:

• Externally Owned Accounts: accounts controllati da chiavi custodite da utenti.

• Contract Accounts: accounts controllati da codici ad essi associati (smart con-
tracts) i quali possono interagire con il resto della rete solamente in risposta ad
una transazione.

2.3.2 Smart contracts

Ethereum ha introdotto molte innovazioni tra cui l’implementazione degli smart contracts[22].
L’obiettivo di uno smart contract è quello di soddisfare le condizioni imposte nel momen-
to della scrittura dello stesso, eliminando la necessità di un intermediario. Nell’imple-
mentazione utilizzata da Ethereum, questi sono script autonomi possedenti un indirizzo
specifico ed eseguiti in automatico dalla Ethereum Virtual Machine quando necessa-
rio. In particolare, questi sono caricati su un nodo della rete e poi distribuiti all’intera
blockchain che dovrà salvarne il codice per poi eseguirlo. Data l’immutabilità della bloc-
kchain questi contratti, una volta descritti non possono essere più cambiati garantendone
i termini per tutte le parti coinvolte.

2.3.3 Ether e gas

Come descritto in precedenza, sia le blockchain che utilizzano Proof of Work sia quelle che
utilizzano Proof of Stake, hanno dei token utilizzati come ricompensa ai miner-validatori
per il lavoro svolto nel garantire il corretto funzionamento della rete. Nella blockchain
di Ethereum, la criptovaluta nativa è Ether (ETH)[19]. Questa è la valuta necessaria per
eseguire una transazione e/o interagire con gli smart contracts, questa commissione si
chiama “Gas” ed andrà come ricompensa al validatore (prima del cambio di tecnologia al

12



miner) che convalida il blocco contentente la transazione. Data la Turing-Completezza
della Ethereum Virtual Machine, esiste il rischio che lo smart contract con cui si intera-
gisce entri in un ciclo infinito e dunque, per prevenire ciò, ogni operazione eseguita dalla
EVM ha un costo fisso in unità di Gas. Quando l’utente vuole interagire con un’ap-
plicazione, specifica il numero massimo di Gas che intende spendere e se l’esecuzione
non termina entro questo limite la transazione viene annullata ma la commissione viene
comunque pagata ai validatori i quali hanno dovuto comunque eseguire il programma e
quindi eseguire un lavoro[20].

2.3.4 The Merge

Come già citato, Ethereum è nata basandosi sulla tecnologia Proof of Work passando
poi alla Proof of Stake. Questo passaggio ha preso il nome di “The Merge”, riducendo
drasticamente il consumo di energia[18] e sostituendo i miner con i validatori.
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Capitolo 3

Dati e metodologie

I dati delle transazioni utilizzati sono gli stessi dati impiegati nella ricerca “WEALTH
DISTRIBUTION ON ETHEREUM BLOCKCHAIN” di Francesco Santilli[1]. Di seguito
viene riportata la metodologia di acquisizione dei dati adottata nel precedente progetto.
Le transazioni e i dettagli di queste sono state estratte dal nodo pubblico Ethereum
fornito dalla piattaforma “Alchemy”. Dato l’elevato numero di blocchi si è deciso di
dividere questi ultimi in batch da 100.000 blocchi, ognuno salvato in un file .json. Le
transazioni che avvengono tra due nodi pubblici non sono incluse in quanto computa-
zionalmente esigenti. Queste transazioni non sono standard ma sono interazioni avviate
da uno smart contract come destinatario un altro smart contract. L’omissione di questi
dati potrebbe generare lievi discrepanze nei saldi calcolati rispetto ai saldi reali presenti
sulla Blockchain.
Per la presente tesi, si è utilizzata l’infrastruttura High Performance Computing (HPC)
dell’università di Bologna sulla quale sono state eseguite sia la fase di pre-elaborazione dei
dati5.3 sia le fasi di pre-training e clustering del modello Deep Embedded Clustering5.4.
È stata utilizzata una sola GPU NVIDIA L40 per tutti i job anche in caso di interruzione
e creazione di un nuovo job. Il workload manager implementato è SLURM con un limite
di esecuzione per job pari a 5 giorni consecutivi. Il linguaggio di riferimento per l’intero
progetto è stato Python con anche l’utilizzo di SQLite per la gestione efficiente dei dati
durante la fase di pre-elaborazione dei dati.
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Tabella 3.1: Struttura delle transazioni sulla blockchain di Ethereum
Transaction Hash l’hash della transazione (es.

0x10ad32079f4bda63f45650b8f402fb9fd4576ce5077a9926b7495e18eff6d3c9).

Status lo stato della transazione, in-
dica se la transazione è avve-
nuta con successo o meno

(es. Success).

Block numero identificativo del
blocco in cui è contenuta la
transazione

(es. 23.757.981).

Timestamp la data precisa di quando la
transazione è stata prodotta

(es. 1.698.315.000).

From l’indirizzo mittente della
transazione

(es.
0x885869d5f33fc84962bf87a0CD092814935df46d).

Interacted With
(To)

l’indirizzo destinatario della
transazione

(es.
0xdAC17F958D2ee523a2206206994597C13D831ec7).

ERC-20 Tokens
Transferred

la lista dei token ERC-20 tra-
sferiti nella transazione

(es.
0xdAC17F958D2ee523a2206206994597C13D831ec7).

Value il valore scambiato in Ether (es. 0.5).

Transaction Fee La commissione in Ether pa-
gata per effettuare la transa-
zione

(es. 0.00000382131877842).

Gas Price è il prezzo per unità di lavo-
ro necessaria a convalidare la
transazione

(es. 0.06541002 Gwei).
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Capitolo 4

Stato dell’arte

L’analisi delle transazioni che avvengono sulle blockchain è un campo di ricerca in rapida
espansione dopo che le più grandi criptovalute hanno raggiunto elevate capitalizzazioni
superando molti altri asset come l’argento[24]. In questo caso, l’analisi si suddivide in
due parti, la prima dedicata all’analisi dei dati on-chain e la seconda dedicata all’utilizzo
dell’intelligenza artificiale per studiare proprio questi dati.

4.1 Analisi dei dati on-chain

L’analisi delle transazioni su blockchain è iniziata fin dai primi anni d’utilizzo di Bitcoin
con i primi obiettivi posti nel cercare di de-anonimizzare alcuni utenti possessori di quan-
tità particolarmente elevate di Bitcoin. Sebbene si pensi spesso che questo tipo di analisi
sia inutile data l’anonimizzazione tramite indirizzo, questo non ha impedito l’analisi at-
traverso euristiche. Ad esempio, Reid e Harrigan[25] sono stati fra i primi a dimostrare
ciò proprio attraverso un’analisi del grafo delle transazioni e euristiche di clustering; in
particolare, queste tecniche sono state utili nell’identificare gli indirizzi appartenenti a
servizi di wallet custodial o exchange centralizzati. Questo tipo di analisi è più com-
plicata su Ethereum dato l’utilizzo del modello account-based2.3.1 e l’introduzione degli
smart contract2.3.2. Anche in questo caso però, seppur con un costo computazionale più
elevato, ricercatori come Friedhelm Victor[26] sono riusciti a sviluppare euristiche per il
clustering degli indirizzi appartenenti a singole entità come gli exchange.

Oltre all’analisi dei dati per la de-anonimizzazione degli utenti la ricerca si è con-
centrata anche sul capire quali pattern di transazioni permettessero ad un indirizzo di
trarre un profitto. Queste ricerche hanno individuato che i profitti più costanti, derivanti
dal trading algoritmico, si ottengono quando in uno dei campi delle transazioni è pre-
sente un exchange decentralizzato. Philip Daian in “Flash Boys 2.0”[27] ha introdotto il
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concetto di Miner Extractable Value, mostrando come i bot di arbitraggio ottengono un
guadagno utilizzando pratiche come il front-running e il back-running. Sebbene queste
tecniche siano consentite, utilizzate e profittevoli, spesso vanno a discapito dell’utente
che inizializza la transazione anche se non impattano in modo sensibile[28]. A differenza
di questi studi, la presente tesi mira a identificare gruppi di strategie profittevoli più
ampie ed etiche utilizzando tecniche di apprendimento non supervisionato.

4.2 Utilizzo dell’intelligenza artificiale su blockchain

Data l’elevata quantità di dati e la loro difficile comprensione, l’utilizzo di tecniche ba-
sate sul Machine Learning è diventato sempre più lo strumento necessario per svolgere
una qualsiasi analisi sulle blockchain contemporanee. La maggior parte della letteratura
esistente si avvale di approcci che implementano modelli ad apprendimento supervisiona-
to [29]. Le tecniche di apprendimento supervisionato permettono di classificare gli indirizzi
date delle etichette note; ad esempio Weili Chen[30] ha utilizzato tali algoritmi per iden-
tificare schemi Ponzi sulla blockchain di Ethereum.
Tuttavia, in questa tesi non erano disponibili le etichette per ogni account e di conseguen-
za si è dovuto ricorrere al metodo di apprendimento non supervisionato [31]. In particolare,
il modello implementato in questa tesi appartiene alla famiglia dei Deep Clustering [32].
Tra questi algoritmi è presente anche il Deep Embedded Clustering [33] proposto con l’o-
biettivo di aiutare nel clustering di dataset con relazioni non lineari; questo modello
utilizza reti neurali profonde (autoencoder[34]) per imparare rappresentazioni latenti dei
dati. Questa tesi applica proprio questo modello sulle transazioni della blockchain di
Ethereum per identificare e raggruppare le caratteristiche delle strategie utilizzate dagli
indirizzi profittevoli.
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Capitolo 5

Analisi sui cluster di strategie
profittevoli

Questo capitolo si concentrerà sull’individuazione e analisi dei cluster di strategie pro-
fittevoli sulla blockchain di Ethereum attraverso l’utilizzo di modelli Deep Learning[35].
Nello studio è stato utilizzato il modello del Deep Embedded Clustering[33] implementato
attraverso tecniche di regolarizzazione per evitare il problema del collasso su un singolo
cluster.

5.1 Classici cluster di strategie profittevoli

Nel mondo della finanza classica esistono molti tipi di strategie utilizzate da diversi hed-
ge fund e fondi d’investimento che, seppur radicalmente differenti per quanto concerne i
ritorni, hanno tutte caratteristiche comuni. Ad esempio, molti hedge fund utilizzano il
Market Making, una strategia che consiste nel fornire liquidità al mercato senza accumu-
lare una grande posizione netta scambiando un gran volume di posizioni.[36] Al contrario,
i fondi d’investimento sono solitamente molto più “lenti” nelle scelte operative e preferi-
scono ridefinire il proprio portafoglio con una frequenza nettamente inferiore rispetto ai
precedenti e con una direzionalità molto più decisa.
Si sono dunque identificate le caratteristiche principali di queste strategie affinchè si pos-
sano individuare gruppi corrispondenti sulla blockchain di Ethereum. Per identificare
queste peculiarità si individuano i cluster di queste strategie nel mondo della finanza
classica ed infine se ne estraggono le qualità che li distinguono:

• Market Making: Come scritto precedentemente, questa è una strategia che per-
mette di avere bassa esposizione sul sottostante in quanto la posizione netta non è
mai elevata. Il guadagno deriva dalla differenza che il Market Maker impone tra i
suoi ordini di vendita e quelli di acquisto, ovvero lo spread.
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• Arbitraggio: Strategia che sfrutta le inefficienze di mercato e consiste nel compra-
re e vendere contemporaneamente lo stesso asset (o asset perfettamente correlati)
quotato su mercati differenti con una differenza di prezzo. Questo permette di
ottenere un guadagno quasi privo di rischio ma solitamente non molto elevato data
la grande efficienza dei mercati contemporanei.

• Hedging: Strategia che mira a ridurre al minimo le perdite piuttosto che massimiz-
zare i profitti. Questa tecnica consiste nel comprare/vendere prodotti derivati[37]

per ridurre il rischio di movimenti di prezzo che potrebbero far incorrere il porta-
foglio in perdite di denaro.

• High Frequency Trading: Questa strategia ha la peculiarità di essere accessi-
bile ad un numero ristretto di enti; infatti questa tecnica consiste nell’eseguire un
elevatissimo numero di scambi sfruttando algoritmi complessi e tecnologie il più
ottimizzate possibile. Questa strategia è anche la più costosa anche da un punto di
vista hardware in quanto ogni centimetro di cablaggio tra l’elaboratore e il centro
di scambio di dati del mercato di riferimento potrebbe creare latenze importanti.

• Trend Following: Strategia estremamente semplice e molto utilizzata, consiste
nel seguire il trend principale del prezzo, sia al rialzo che al ribasso, entrando su
ritracciamenti, rotture di livelli importanti o altri segnali tecnici.

• Mean Reversion: Al contrario della precedente, questa strategia, anch’essa sem-
plice, mira ad entrare nel verso contrario del trend principale assumendo che prima
o poi il prezzo torni alla media da cui ha deviato soltanto temporaneamente.

• Pairs Trading: Similmente all’arbitraggio anche in questo caso si aprono due
posizioni opposte su due asset correlati; tuttavia la relazione tra i due asset non è di
equivalenza bens̀ı una relazione statistica. Nell’arbitraggio ad essere coinvolti sono
o lo stesso sottostante su due mercati differenti o due sottostanti perfettamente
equivalenti (ad esempio il titolo azionario Apple quotato sia sul Nasdaq che sul
DAX); nel Pairs Trading invece i sottostanti sono sempre differenti ma con un tasso
di correlazione statistica molto elevato (ad esempio due titoli azionari bancari dello
stesso paese, settore, dimensione...).

• Buy and Hold: Molto probabilmente la strategia d’investimento più comune
tra le famiglie e investitori retail ed anche la più semplice tra tutte. La strategia
consiste nel comprare uno o più sottostanti con la convinzione che nel lungo periodo
il valore di questi aumenterà grazie alla crescita economica generale e/o crescita
del valore intrinseco del sottostante.
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5.2 Caratteristiche delle strategie

Attraverso lo studio delle strategie sopra riportate con l’utilizzo dei dati a disposizione
sulla blockchain di Ethereum si è dunque deciso di utilizzare le seguenti variabili per il
raggruppamento dei vari cluster. Per ogni indirizzo presente sulla rete di Ethereum si è
dunque calcolata Xi la i-esima transazione, dove i valori in uscita (incluse le fees) sono
indicati con segno negativo, mentre i valori in entrata sono indicati con segno positivo.
Con i = 0, . . . , n, si definiscono le seguenti grandezze:

• Outgoing Value (valore totale in uscita)

OutgoingValue = −
n∑

i=0

min{Xi, 0}

oppure, equivalentemente,

OutgoingValue =
n∑

i=0

−min{Xi, 0}.

• Incoming Value (valore totale in entrata)

IncomingValue =
n∑

i=0

max{Xi, 0}.

• Daily Transaction Frequency (frequenza giornaliera delle transazioni) Sia ti la
data della transazione Xi e D l’insieme dei giorni nel periodo considerato calcolato
come la data dell’ultima transazione a cui si sottrae la data della prima transazione.
Allora:

Freq(d) =
n∑

i=0

1{ti=d},

dove 1{ti=d} vale 1 se la transazione i appartiene al giorno d, altrimenti 0. La
frequenza media giornaliera risulta:

Freq =
1

|D|
∑
d∈D

Freq(d) =
1

|D|

n∑
i=0

1 =
N

|D|
,

dove N = n+ 1 è il numero totale di transazioni.

• Net Balance (saldo netto)

NetBalance =
n∑

i=0

Xi.

Equivalentemente:

NetBalance = IncomingValue−OutgoingValue.
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• Total Volume (volume totale)

TotalVolume =
n∑

i=0

|Xi| =
n∑

i=0

(max{Xi, 0}−min{Xi, 0}) = IncomingValue+OutgoingValue.

• Total Number of Transactions (numero totale di transazioni)

TotalNumberOfTransaction = N =
n∑

i=0

1 = n+ 1.

Queste variabili riescono a raccogliere in modo esaustivo tutte le strategie sopra ripor-
tate, ad esempio chi sarà un High Frequency Trader avrà un numero molto elevato di
Daily Transaction Frequency o al contrario i Buy and Holder avranno questo valore
estremamente basso e un Net Balance elevato.

5.3 Pre-elaborazione dei dati

Data la breve finestra temporale imposta dalle regole dell’HPC in utilizzo l’elaborazione
è stata suddivisa in più job sequenziali, capaci di riprendere l’esecuzione dal punto di
interruzione del job precedente. Questo è stato realizzato tramite un ingest in strea-
ming: i file JSON sono stati scorsi riga per riga con parser incrementali in modo da
non dover mai tenere in memoria l’intero dataset e poter ripartire velocemente esat-
tamente da dove si è interrotta una precedente esecuzione. Durante questa scansione,
ogni transazione viene canonicalizzata ovvero tutte le chiavi che le varie fonti adottano
(ad esempio from”, “fromAddress” o “sender”) sono mappate in un vocabolario unico
mentre gli importi sono convertiti in ETH e privati della stringa di unità. Questa cano-
nicalizzazione evita di dover gestire a mano i numerosi alias che popolano i dati grezzi
e consente in modo uniforme di calcolare il valore trasferito, le gas fee e i timestamp.
Per ogni transazione quindi si producono due delta: uno relativo all’indirizzo mittente e
uno per quello destinatario in modo da aggiornare separatamente entrambi i bilanci di
uscita e di entrata. I delta vengono accumulati all’interno di un unico store SQLite[23]

in modo tale che sia in un formato facilmente trasferibile, versionabile e utilizzabile in
ambiente HPC. Lo schema SQL è formato da: il saldo netto, il numero di transazioni,
i volumi in entrata e in uscita e i timestamp (primo ed ultimo utilizzo oltre al primo
deposito); queste sono tutte le statistiche necessarie per calcolare i valori descritti nella
sezione precedente. Con un’unica query “INSERT ... ON CONFLICT” i valori vengono
aggregati atomicamente senza dover necessariamente effettuare prima una lettura. So-
no poi abilitati il journal WAL e un set di pragmi per rendere più veloce l’esecuzione:
durante la fase di ingest la sincronizzazione su disco viene allentata in modo da accele-
rare la scrittura pur continuando a effettuare checkpoint frequenti con il conteggio delle
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transazioni elaborate e del più recente hash elaborato. Per ridurre la latenza verso il
database i delta vengono inviati a blocchi: il buffer di inserimento (con ampiezza di al-
meno 5.000 elementi e comunque proporzionale al numero di transazioni processate per
job) consente di bilanciare l’uso di memoria e il throughput. Ogni commit, realizzato
dopo circa 20.000 transazioni, salva in tabella “meta” lo stato del job cos̀ı da facilitare
la ripresa del lavoro nel batch successivo senza doppioni. Al termine della fase di ingest
gli indirizzi interessati vengono filtrati direttamente utilizzando SQL andando a creare
il database sul quale verrà poi eseguito il training del modello. Una volta consolidati
i saldi per ogni indirizzo, le features (ad esempio valore totale in ingresso, valore tota-
le in uscita, saldo netto, volume totale e frequenza media giornaliera) vengono scritte
in un file memmap features memmap.dat per evitare di saturare la RAM e permette
di trattare milioni di indirizzi scorrendo il disco in modo sequenziale. Per calcolare i
parametri di normalizzazione senza scorrere l’intero dataset in memoria (data l’enorme
mole di dati) si è adottato il campionamento del reservoir: su un campione di 2 × 106

esempi si estraggono la mediana e l’Intervallo Interquartile (IQR), statistiche più robuste
della media e la deviazione standard nell’ambito di distribuzioni a code pesanti. Queste
statistiche vengono poi salvate in normalization params.npz e utilizzate per scalare le
caratteristiche; i valori eccedenti il 25 × IQR sono infine limitati a ±25 in modo da evi-
tare che rarità estreme distorcano il clustering, ovvero si eliminano gli outliers. Questa
implementazione permette di utilizzare lo stesso database SQLite in esecuzioni successive
(magari senza ri-eseguire l’ingestione) in caso di interruzione, ricominciare da punti di
controllo e convertire i dati in una forma compatta in modo tale che sia possibile finire la
pre-elaborazione dei dati anche in caso di interruzione per limitazioni derivanti dall’HPC.

5.4 Deep Embedded Clustering su Ethereum

5.4.1 Il modello DEC

Il Deep Embedded Clustering (DEC)[33] è un modello di apprendimento non supervisio-
nato progettato per individuare gruppi di dati con caratteristiche simili grazie all’acqui-
sizione della rappresentazione latente dei dati stessi.
L’obiettivo è trasformare il dataset in ingresso in uno spazio di feature più piccolo,
preservando esclusivamente le caratteristiche più significative rendendo più semplice
l’individuazione di pattern ricorrenti. Questo processo avviene in due fasi distinte:

• Inizializzazione dei parametri con autoencoder: in questa fase il dataset
viene elaborato tramite un autoencoder[34], il quale apprende le informazioni es-
senziali necessarie per la ricostruzione dei dati originali. Ciò consente alla rete
neurale di calibrare i pesi in modo da ottenere una rappresentazione robusta delle
caratteristiche salienti.

22



• Ottimizzazione del clustering: dall’autoencoder addestrato viene rimossa la
componente di ricostruzione (decoder); successivamente, si affina l’addestramento
della parte preposta alla codifica (encoder) minimizzando una funzione di costo ba-
sata sulla divergenza di Kullback-Leibler (approfondita nella sezione successiva5.4.2).

In termini intuitivi, il DEC proietta i punti (rappresentanti i singoli indirizzi Ethereum)
in un nuovo spazio dove questi tendono ad aggregarsi attorno a dei centroidi, rendendo
i cluster progressivamente più definiti e separati.

5.4.2 Implementazione tecnica con regolarizzazioni

Dopo aver concluso la fase di pre-elaborazione dei dati e aver ottenuto il dataset con
solamente gli indirizzi che presentano un bilancio netto positivo si è cominciato con la
fase di clustering di questi in base alle caratteristiche riportate nella sezione 5.2.
Data l’assenza di etichette, si è dovuto ricorrere a modelli non supervisionati e data
la non linearità delle features, nemmeno una normale analisi regressiva lineare sarebbe
stata possibile. Per risolvere questi due problemi e avere comunque un metodo effi-
ciente, si è utilizzato il modello Deep Embedded Clustering (DEC)[33] il quale, grazie
all’autoencoder[34], consente di individuare le strategie profittevoli grazie alla struttura
latente dell’autoencoder, il quale elimina i rumori. Come input del modello, si sono uti-
lizzate le caratteristiche precedentemente specificate in forma vettoriale per avere una
gestione più semplice. Per avere una clusterizzazione corretta, si è resa necessaria la
normalizzazione dei vettori; questa è avvenuta tramite mediana e intervallo interquar-
tile calcolati su un campione casuale. Si sono preferite queste due metriche in quanto
i dati on-chain presentano spesso code pesanti e dunque una standardizzazione classica
non è robusta. Inoltre, dato che l’obiettivo della ricerca è quello di individuare cluster
di strategie, sono stati troncati gli outlier a ±25 × IQR per evitare che dominassero la
dinamica dell’ottimizzazione.
L’encoder[34] restituisce embedding normalizzati a norma unitaria affinchè l’informazione
sia concentrata sulle direzioni dei parametri piuttosto che sulle loro grandezze. Questo
permette di rendere l’aggiornamento dei centroidi durante la fase di training più efficiente.

Il pre-training del modello è stato effettuato seguendo quanto descritto nelle note de-
scrittive del DEC[33] ovvero utilizzando una funzione di loss che corrisponde allo scarto
quadratico medio tra input e la ricostruzione proveniente dell’autoencoder stesso. Du-
rante la fase di pre-training si è utilizzato un Dropout del 5% e un gradient clipping
i quali mantengono la fase iniziale stabile. Rimanendo nella fase d’apprendimento, si
è utilizzata una riduzione del learning rate una volta che si raggiungeva un plateau,
permettendo un pre-training più fine in prossimità della convergenza. In questa fase
il modello ha dunque ottenuto i vari pesi necessari sui neuroni affinchè possa imparare
come classificare le transazioni nella fase di training vera e propria.
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Mantenendo il decoder attivo con un peso ridotto sulla loss, si è dunque passati alla fase
di training o clustering. I centroidi sono stati inizializzati tramite Mini-Batch K-Means
sugli embedding[38] cos̀ı da poter evitare di caricare in memoria l’intero dataset ma cari-
care campioni (fino ad un milione di indirizzi) senza saturare la memoria a disposizione.
Nel caso in cui almeno uno dei cluster risultasse troppo popolato (oltre al 92% del cam-
pione presente in un cluster) alla fine del clustering, si riesegue un nuovo K-Means sugli
embedding per riallineare i centroidi.
Durante la fase di training vera e propria, il cuore della funzione di loss corrisponde alla
divergenza Kullback-Leibler[39], questa metrica è particolarmente adatta per l’analisi in
questione dato che restituisce un numero sempre maggiore o uguale a 0 dove 0 indica
due distribuzioni identiche. Infatti questa misura quantifica quanto sono simili due di-
stribuzioni di probabilità; la distribuzione bersaglio viene ottenuta elevando q (dove q
rappresenta la distribuzione di probabilità per ogni indirizzo di appartenere ad un de-
terminato cluster) alla potenza γ e normalizzando per le frequenze di cluster, in questo
modo gli indirizzi assegnati con maggiore confidenza influenzano di più l’aggiornamento.
Anche se è la principale metrica che il modello punta a minimizzare durante il training,
questa non è la sola in quanto viene affiancata anche dai parametri di regolarizzazione
descritti in seguito.
Il parametro γ, che controlla l’affinamento dei pesi, è stato reso dipendente dall’epoca
di training in cui ci si trova, passando da 1.0 a 1.6 per evitare aggiornamenti troppo
aggressivi nelle prime fasi. In particolare, γ controlla quanto “raggruppare” un deter-
minato cluster, ovvero avvicinare gli indirizzi associati ad un centroide affinchè questo
risulti più sharp. Il passaggio da un γ di 1.0 a 1.6 permette di ottenere una distribuzio-
ne il più simile possibile all’inizio del training, ovvero nella fase dove il campione è più
rumoroso, e man mano che le epoche avanzano si comincia ad aumentare il parametro
per effettivamente rendere i cluster più separati tra loro e associare con più sicurezza un
indirizzo ad un cluster specifico.

La divergenza Kullback-Leibler, il controllo graduale di γ e il K-Means dovrebbero
permettere un clustering che eviti il collasso su un solo gruppo (centroide), tuttavia, per
migliorare ulteriormente la stabilità si è deciso di applicare un insieme di regolarizzazioni
ispirate ai lavori su DeepCluster[40] le quali completano la funzione di loss del training:

• Penalizzazione dell’entropia negativa di q per favorire assegnazioni meno concen-
trate nella fase iniziale di training.

• Vincolo sulla dimensione media dei singoli cluster. All’inizio della fase di training
il modello imposta questo vincolo in modo “debole” permettendo a questo di esplo-
rare anche configurazioni sbilanciate ma, con il passare delle epoche, questo vincolo
diventa sempre più forte imponendo un bilanciamento più stretto; questo permette
che i cluster non muoiano o dominino.
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• Applicazione di una softmax sulle distanze normalizzate tra i punti (indirizzi) e i
centroidi rendendo più uniforme la distribuzione di probabilità dei punti sui centroi-
di cosicchè ognuno riceva probabilità comparabili e nessuno viene sovraccaricato.

• Penalizzazione sull’inverso delle distanze tra i vari centroidi per definire ancora di
più la differenza e ridurre sovrapposizioni.

5.5 Metodi per l’analisi dei cluster

Terminata la fase di addestramento del DEC, i pesi vengono congelati e con questi pesi,
per ciascun indirizzo, il modello attribuisce a ogni indirizzo una distribuzione di cluster
di appartenenza. Una volta ottenuta questa distribuzione (ovvero il vettore q), si iden-
tifica il valore massimo e si assegna a quello specifico indirizzo il cluster corrispondente
a quel valore. In particolare, ogni campo di q è formato dalla distribuzione t di Student
con moda corrispondente ai centroidi. In base alla dimensione del campione, vengono
assegnati i cluster di appartenenza per ogni indirizzo in blocchi variabili da 50 a 200
mini-batch in modo tale da utilizzare la potenza della Scheda Grafica NVIDIA L40 a
disposizione. Date le 10 strategie individuate nella sezione 5.1 si è deciso di inserire un
massimo di 15 cluster per avere un margine del 50% in caso il modello avesse individuato
più di 10 strategie con metriche che indicavano i centroidi di queste molto distanti e le
loro distribuzioni poco sovrapposte. Questo numero è stato successivamente portato a
10 date le scarse performance nell’individuare molte strategie; queste sono state rilevate
attraverso calcoli descritti successivamente in questa sezione.

Nella fase di valutazione del campione, se al termine delle epoche di clustering viene
rilevato che si ha un cluster che raggruppa almeno il 92% di tutti gli indirizzi allora gli
embedding congelati vengono riallenati con un nuovo Mini-Batch K-Means su 1 milione
di indirizzi; si è scelto 1 milione di indirizzi come campione il quale corrisponde a circa
16 GB di spazio occupato, abbondantemente al di sotto dei 48 GB disponibili durante
l’analisi. Ulteriore fattore che aiuta a prevenire il collasso su un singolo cluster sono le
già citate regolarizzazioni utilizzate nella fase di Training dell’autoencoder.

Terminata la fase di assegnamento degli indirizzi si calcolano le metriche quantitative
utilizzate per verificare la qualità globale dei cluster presenti. In particolare, vengono
calcolate le seguenti misure:

• Entropia

• Numero effettivo di cluster

• Coefficiente di Gini
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Grazie al Numero effettivo di cluster, si riesce a capire quanti cluster effettivamente il
modello è riuscito a trovare negli indirizzi dati in input. Le altre due metriche aiutano
invece a capire se i vincoli mutuati da Caron[40] sono in grado di produrre delle partizioni
equilibrate o meno; un’entropia vicina a ln(10) ≈ 2.302 indica che i cluster sono quasi
uniformi (ovvero gli indirizzi sono distribuiti equamente tra i vari cluster) e un coefficiente
di Gini vicino a 0 indica che nessun comportamento domina. Per invece fare inferenza
statistica sui cluster si utilizza un campione di 500.000 indirizzi per contenere i tempi
d’esecuzione mantenendo comunque un numero statisticamente più che adeguato dato il
campione di 7.700.724. Su questo campione vengono calcolate le seguenti misure:

• Silhouette: la Silhouette è una misura che può assumere valori compresi tra -1 e
+1, questa viene calcolata per tutti i punti del campione e indica quanto il punto
è vicino al proprio centroide. In particolare, un valore vicino a 1 indica che gli
indirizzi appartenenti ad un determinato cluster, sono più vicini al centroide del
proprio cluster piuttosto che ad un altro cluster, ovvero il cluster non si sovrappone
con gli altri gruppi. Più questa misura decresce più gli indirizzi presenti nell’insieme
sono vicini ai centroidi di altri cluster.

• Calinski-Harabasz[41]

• Davies-Bouldin[42]

Queste misure vengono calcolate sugli embedding normalizzati del DEC.

Per avere un’interpretazione economica dei cluster, i cluster sono stati de-normalizzati
utilizzando le mediane e gli IQR, salvati durante la fase di pre-elaborazione dei dati,
calcolando per ogni cluster la sua media, deviazione standard, minimo e massimo. Grazie
a questi risultati è ora possibile studiare i comportamenti degli indirizzi nei vari cluster.

5.6 Significato dei cluster

I cluster ottenuti come output dal modello rappresentano dei sottoinsiemi degli indirizzi
del campione sottoposto al DEC5.4. Ogni gruppo contiene al suo interno gli indirizzi che
condividono delle caratteristiche5.2 simili nelle loro transazioni. Questi cluster vengono
creati scegliendo, per ogni indirizzo, il centroide più vicino come descritto nella sezione
precedente5.5. Quindi, ogni cluster rappresenta l’insieme di indirizzi aventi le caratteristi-
che che il modello ha identificato come più simili al centroide corrispondente del gruppo.

Si noti che non esiste un cluster le cui specifiche portino ad una perdita di Ether in
quanto il campione in ingresso al modello contiene solamente gli indirizzi profittevoli,
ovvero con un Net Balance positivo. Questi indirizzi sono ottenuti grazie alla fase di
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pre-elaborazione5.3 delle transazioni e filtrati grazie a SQLite.
In generale, ogni indirizzo di ogni cluster ha generato un profitto, l’obiettivo di questa
ricerca era individuare, se possibile, le caratteristiche più comuni di questi gruppi.
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Capitolo 6

Risultati dell’analisi

6.1 Metriche globali

Il modello, su 7.700.724 di indirizzi che hanno presentato un bilancio finale maggiore
del valore della prima transazione in entrata, ha individuato 10 cluster distinti. La
Silhouette globale di 0.397 indica dei cluster mediamente moderatamente definiti e
infatti, come descritto in seguito, solamente 3 cluster hanno una Silhouette abbastanza
elevata da poter confermare la presenza di un gruppo ben definito. L’entropia ottenuta
è pari a 1.754, al di sotto dell’entropia massima teorica di ln(10) ≈ 2.302 indicando che
la distribuzione degli indirizzi non è uniforme tra i vari cluster. Questa disuguaglianza
tra i gruppi non indica obbligatoriamente un assegnamento scorretto degli indirizzi ma
solamente che sono presenti caratteristiche comuni a più indirizzi (e dunque gruppi più
grandi) mentre caratteristiche più rare raggruppano meno portafogli. Questa eteroge-
neità della distribuzione degli indirizzi è confermata anche dal coefficiente di Gini il
quale si attesta a 0.776, molto vicino a 1. Un valore vicino a 1 indica che pochi grup-
pi contengono la maggior parte degli indirizzi mentre i restanti ne contengono meno.
Queste ultime due metriche già mostrano come è presente una forte preferenza per de-
terminati tipi di comportamenti simili tra loro, come mostrato dal Cluster 5 il quale da
solo raccoglie circa il 40% del campione.

6.2 Analisi intra-cluster

L’analisi dei dati per i cluster singoli ha mostrato subito come 3 cluster (5, 6 e 9) raccol-
gono più del 68% degli indirizzi profittevoli su Ethereum i quali presentano inoltre una
Silhouette significativamente più alta della media indicando delle strategie ben definite
e distinte dalle altre.
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Tabella 6.1: Riepilogo di tutti i cluster
Cluster Count Silhouette In (ETH) Out (ETH) Net (ETH) Freq/Day Tot Tx

0 1,734 -0.506 0.41 0.07 0.31 1.35 6.0
1 101,929 -0.470 1.66 0.00 1.66 0.11 9.2
2 539,064 0.088 2.32 0.01 2.12 17.84 8.0
3 815,776 -0.123 7.00 0.02 6.98 0.21 10.6
4 570,829 -0.240 0.62 0.00 0.60 1.31 17.4
5 3,069,814 0.755 0.26 0.00 0.25 0.16 4.0
6 1,245,766 0.353 13.12 0.20 6.71 0.14 19.5
7 589 -0.199 3.58 0.10 3.46 0.15 10.2
8 429,292 -0.019 16.73 0.17 4.46 2.91 29.6
9 925,931 0.590 0.73 0.02 0.56 29.59 3.0

6.2.1 Cluster 5: Utenti retail

Il cluster 5 è verosimilmente il più “importante” dei 10 individuati, questo gruppo ha una
Silhouette di 0.755, la più alta tra tutti, la quale indica una forte coesione e definizione
della distribuzione. Questo insieme raccoglie 3.069.814 indirizzi ovvero quasi il 40% di
tutto il campione.
Guardando ai dati presenti nella tabella 6.2 si notano subito le due feature con il rappor-
to FeatureMean

FeatureV ariance
più alto sono Outgoing Value e Tx Frequency (per day). Queste

due caratteristiche sono infatti quelle che caratterizzano questo cluster indicando poche
transazioni e soprattutto pochi Ether in uscita dal portafoglio. Il Net Value positivo e
quasi identico all’Incoming Value indica che questi indirizzi hanno ricevuto una piccola
somma di Ether (Incoming Value medio di 0.258) e che hanno preferito mantenere il
proprio saldo invariato oppure sono account abbandonati. Questa tipologia di utilizzo è
facilmente riconducibile ad una strategia di tipo Buy and Hold per piccoli investitori
o di utenti che hanno voluto utilizzare la blockchain abbandonandone l’uso dopo poche
transazioni. In caso fosse corretta l’ipotesi dell’utilizzo della strategia Buy and Hold
allora gli utenti riescono ad arricchirsi con l’aumento di prezzo di Ether nel tempo. In
particolare, nei mercati finanziari tradizionali i prezzi dei maggiori indici globali tendono
a crescere esponenzialmente[43], peculiarità che si è notata anche con i token delle bloc-
kchain maggiori[44]. Questo tipo di crescita implica che più tempo si detiene un asset e
più questo porta guadagni sempre maggiori. Questo è confermato dallo studio condotto
da Lukáš Pichl e Taisei Kaizoji[45] i quali hanno stimato un ritorno giornaliero di Bitcoin
(contro dollari statunitensi) dello 0,328%. Un utente che detiene 1 Bitcoin avrebbe dun-
que guadagnato dopo un anno circa il 230,44% in dollari mentre se avesse tenuto quel
singolo token per 5 anni avrebbe avuto un rendimento del 39.294%. Quindi il fattore
dominante di questa strategia risiede nel tempo di detenzione del token piuttosto che
nella precisione degli ingressi.
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Tabella 6.2: Statistiche del cluster 5
Feature Valore medio Varianza
Outgoing Value (ETH) 0.0012 0.000027
Incoming Value (ETH) 0.258 0.228
Tx Frequency (per day) 0.157 0.064
Net Value (ETH) 0.254 0.229
Total Transactions 4.00 4.79

6.2.2 Cluster 6: Whales

Il Cluster 6 raggruppa il 16.17% degli indirizzi (1.245.766) del campione rendendolo cos̀ı
il gruppo più grande dopo il Cluster 5. La sua Silhouette di 0.353, sebbene considerata
non ottimale, conferma la struttura della distribuzione.
I dati mostrano che questo è un gruppo estremamente eterogeneo, date le grandi va-
rianze che dominano tutte le features ad eccezione dell’Outgoing Value, ma che mostra
comunque una netta superiorità rispetto agli altri gruppi quando si analizza il Net Value.
In particolare, il Cluster 6 ha il secondo valore più grande di Net Value secondo solo al
Cluster 3 con un distacco di 0.27 ETH e davanti al cluster 8 di 2.25 ETH. Come descritto
in seguito, il Cluster 3 fa parte dei cluster individuati con Silhouette negativa e quindi
senza una struttura ben identificata, il che mette ulteriormente in risalto il Cluster 6.
Alti volumi di Ether in ingresso 13.12 ETH sono accompagnati da una varianza di queste
features estremamente elevata pari a 331.98 ETH. Statisticamente, una media elevata,
una varianza molto elevata e un limite inferiore (in questo caso limite imposto a 0 dato
che l’indirizzo per essere profittevole deve avere un Incoming Value ¿ 0) portano ad una
distribuzione asimmetrica positiva. Questo significa che la gran parte dei portafogli si
trova al di sotto della media ma questa è spinta al rialzo dalla presenza di entità con
valori d’ingresso estremamente elevati. Questi grandi volumi in ingresso, assieme ad una
Tx Frequency (per day) bassa (considerando anche gli estremi suggeriti dalla varianza) e
un Outgoing Value decisamente inferiore rispetto all’Incoming Value sono tipiche carat-
teristiche delle cosiddette Whales[46]. Date le grandi varianze il gruppo è decisamente
molto eterogeneo ma ciò che accomuna gli indirizzi di cui ne fanno parte non è l’entità
dei volumi ma l’accumulo lento e costante a lungo termine. Anche questo comportamen-
to è tipico delle strategie Buy and Hold dove però, a differenza del Cluster 56.2.1, ad
effettuare le transazioni in questo gruppo sono entità che generalmente detengono molti
più Ether. Anche in questo cluster, come in quello precedente6.2.1, poichè la strategia
utilizzata è verosimilmente la stessa, questa ha le stesse caratteristiche descritte prece-
dentemente ovvero guadagni contenuti (relativamente al capitale investito) nelle prime
fasi dell’investimento ma crescenti con l’avanzare del tempo. Una differenza tra questo
cluster e quello precedente risiede nei guadagni assoluti in quanto anche una piccola
variazione di prezzo di Ether può portare grandi profitti per questi investitori.
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Tabella 6.3: Statistiche del cluster 6
extbfFeature Valore medio Varianza
Outgoing Value (ETH) 0.203 0.0089
Incoming Value (ETH) 13.12 331.98
Tx Frequency (per day) 0.141 0.207
Net Value (ETH) 6.707 109.08
Total Transactions 19.52 611.99

6.2.3 Cluster 9: Utenti “flash”

Il Cluster 9 è il terzo insieme più popoloso e rappresenta il 12.02% del campione (925.931
indirizzi). La Silhouette di 0.59 indica una buona separazione dagli altri gruppi e una
struttura ben definita.
La caratteristica più interessante di questo gruppo si trova nell’elevato numero di tran-
sazioni rapportato ad una varianza decisamente più bassa. I valori in ingresso sono
mediamente bassi ma in questo caso si ha una varianza estremamente elevata come per
il numero totale di transazioni e per il Net Value. Questi dati indicano che questi sono
indirizzi che utilizzano lo stesso pattern: grande numero di transazioni in brevissimo
tempo e non utilizzare più l’indirizzo. Questo comportamento può essere ricondotto a
svariati motivi:

• Indirizzi “Usa e Getta”

• Cacciatori di Airdrop[47]

• Trader

Il terzo metodo d’utilizzo raccoglie moltissime opzioni e dunque si elencano tutte quelle
possibili in seguito. Ciò che accomuna tutte queste strategie risiede nella loro velocità,
non sono riconducibili a strategie Buy and Hold o High Frequency Trading in quanto
la prima ha una frequenza di transazioni nettamente inferiore mentre la seconda netta-
mente superiore. Altro fattore da tenere in considerazione è il numero ridotto di Total
Transactions se confrontato con la media di Tx Frequency (per day), questo potrebbe
indicare che i Trader in questione si sono accontentati di molti profitti (i valori in ingresso
sono mediamente quasi 43 volte più elevati dei valori in uscita) in breve tempo per poi
non utilizzare più il portafoglio. Questo rapporto tra valori in ingresso e valori in uscita
è cruciale per capire quanto un trader è profittevole; nelle piattaforme decentralizzate,
per poter aprire una posizione speculativa bisogna depositare un collaterale che viene poi
restituito una volta chiusa la posizione (se la posizione viene liquidata il collaterale viene
trattenuto dalla piattaforma)[48]. I valori uscenti (contenuti) se confrontati ai valori in
ingresso (molto più elevati) fanno pensare proprio ad un comportamento di questo tipo:
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il trader deposita il collaterale che viene utilizzato come garanzia per il margine di una
posizione speculativa che viene poi chiusa in positivo. Notare come il Net Value è di
0.563, più del 20% inferiore rispetto alla differenza tra Incoming Value e Outgoing Value
indicando che la percentuale di posizioni vincenti è l’80% anche considerando solamente
gli indirizzi con Net Value positivo. Questo sottolinea la difficoltà nell’avere una strategia
di trading profittevole per un periodo prolungato. Di seguito le strategie di Day-Trading
compatibili con i dati del Cluster:

• Arbitraggio

• Trend Following

• Mean Reversion

• Pairs Trading

Il profilo dei guadagni in questo cluster è opposto a quello dei precedenti6.2.16.2.2: i guada-
gni sono moderati ma si ottengono subito. Il profitto non deriva dall’interesse composto,
come nel caso del Buy and Hold, bens̀ı dallo sfruttamento di opportunità che esistono
solo per un periodo limitato di tempo. Una volta individuato un possibile ingresso nel
mercato, questo viene preso e chiuso il prima possibile per non aumentare troppo la
propria esposizione al sottostante. Con tale attività i guadagni possono essere elevati sin
da subito ma battere l’indice di riferimento è molto difficile nel lungo periodo e quindi
anche i guadagni sono inferiori rispetto ad un Buy and Hold [49].

Tabella 6.4: Statistiche del cluster 9
extbfFeature Valore medio Varianza
Outgoing Value (ETH) 0.017 0.0034
Incoming Value (ETH) 0.728 8.68
Tx Frequency (per day) 29.59 6.26
Net Value (ETH) 0.563 6.84
Total Transactions 2.97 18.38

6.2.4 Altri cluster

I cluster rimanenti mostrano valori di Silhouette molto vicini allo 0 o negativi, indicando
che gli indirizzi campionati per i cluster sono mediamente più vicini ai centroidi di altri
gruppi rispetto al proprio. Questo implica una separazione tra i cluster meno netta e più
incerta.

• Cluster 2: Con una frequenza media di 17.8 transazioni al giorno e un volume
totale di circa 2.3 Ether questo cluster raccoglie il 7% del campione e potrebbe
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rappresentare bot di trading a bassa frequenza. Tuttavia la Silhouette bassa (0.088)
indica che non è possibile eseguire un’analisi certa data la grande sovrapposizione
con altri gruppi.

• Cluster 8: Con una frequenza di transazioni non elevata di 2.91 e un volume in
ingresso di quasi 17 Ether questo gruppo potrebbe rappresentare wallet di exchange.
La Silhouette negativa rende però tale analisi poco sicura.

• Cluster 0, 1, 3, 4, 7: Questi cluster mostrano tutti Silhouette fortemente negativa
indicando che sono probabilmente rumore di fondo.
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Capitolo 7

Conclusioni

L’utilizzo del Deep Embedded Clustering per il raggruppamento di indirizzi profittevoli
con comportamenti simili ha evidenziato dinamiche che divergono parzialmente dai ri-
sultati dello studio precedente[1]. Tale ricerca evidenziava una forte concentrazione di
ricchezza in pochi indirizzi mentre la grande maggioranza dei portafogli deteneva una
piccola somma di Ether. Al contrario, l’analisi eseguita attraverso il clustering delle
strategie mostra come gli indirizzi di utenti retail profittevoli siano significativamente
più redditizi di quelli istituzionali. In particolare, il cluster 56.2.1 (identificato come l’in-
sieme degli utenti retail i quali applicano strategia Buy and Hold) presenta un rapporto
medio tra i valori in ingresso e valori in uscita di Ether di oltre 215,43; al contrario,
gli indirizzi appartenenti al cluster 66.2.2, pur muovendo volumi di ordini di grandezza
superiori, hanno un rapporto di profittabilità di circa 64,78. Questa differenza è elevata
seppur entrambi i gruppi sembrino utilizzare la stessa strategia del Buy and Hold, pro-
babilmente dovuto a maggiore flessibilità nelle decisioni dei punti e tempi d’ingresso.

L’analisi non rivela solamente che gli utenti retail profittevoli sono più efficienti rispet-
to alle grandi entità ma anche una grande disparità all’interno dei retail stessi. Infatti,
se unissimo gli indirizzi presenti sia nel cluster 5 che nel cluster 9 otterremmo circa il
52% di tutto il campione. Secondo un recente studio, gli indirizzi totali utilizzati da
utenti retail sarebbero circa il 95%[50] di tutti gli indirizzi presenti sull’intera blockchain
di Ethereum per un totale di circa 331.500.000 account retail. La somma di tutti gli
account presenti nei due cluster precedentemente menzionati è di 3.995.745 ovvero sola-
mente l’1,27% dell’intera popolazione retail. Anche considerando lo scenario migliore e
assumendo che l’interezza dei cluster 0, 1, 2, 3, 4 e 7 sia popolata da soli utenti retail, la
popolazione totale salirebbe a 6.025.666 ovvero circa l’1.82%.
Al contrario, le whales, che rappresentano circa il 5%[50] di tutti gli utenti della block-
chain, popolano verosimilmente l’interezza dei cluster 6 e 8 con un totale di 1.675.058
ovvero circa lo 0.48%.
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Di conseguenza, circa il 9,6% dei grandi indirizzi è profittevole mentre la percentuale si
riduce a solamente il 1.92% per quanto riguarda gli utenti retail.
In conclusione, sebbene i retail profittevoli abbiano mediamente un fattore di profitto
oltre 3 volte maggiore rispetto agli account istituzionali, questi ultimi hanno una proba-
bilità mediamente 5 volte maggiore nell’essere profittevoli.

Confrontando ora i due cluster maggiori, questi racchiudono i due tipi di utenti: retail
e istituzionali. Entrambi i gruppi sono caratterizzati da una bassa frequenza di transa-
zioni giornaliere, tipica caratteristica di strategie passive come il Buy and Hold. Questo
conferma che, come nel mondo della finanza tradizionale, anche nelle criptovalute, un’ec-
cessiva attività di trading è causa di performance inferiori[51]. Ciò emerge chiaramente
confrontando il cluster 5 col cluster 9: entrambi hanno un volume di scambi limitato ma
gli indirizzi contenuti all’interno del primo gruppo sono circa 3,32 volte quelli contenuti
nel secondo. Ciò implica che gli utenti con bassa frequenza hanno una probabilità più
elevata di essere profittevoli rispetto a quelli che operano più spesso, anche con capitali
simili. Inoltre, anche il coefficiente di redditività tra questi due gruppi è molto differen-
te in quanto il cluster 5 ha un coefficiente di circa 215,43 mentre il cluster 9 di circa
43,65, quasi 5 volte più piccolo. Questa grande disparità è credibilmente ampliata dalle
commissioni presenti su Ethereum, queste infatti, pur essendo contenute, riducono signi-
ficativamente profitti in caso di operatività frequente come nel cluster 9.

Infine, in questo studio la definizione di “profitto” si riferisce all’accumulo di Ether e
non all’accumulo di Ether convertiti in valute FIAT[2]. L’elevata percentuale che le stra-
tegie passive occupano nell’insieme degli indirizzi profittevoli (solamente il cluster 5 e il
cluster 6 sommati raccolgono oltre il 56% di tutto il campione) conferma che tra questi
attori Ether è considerato una riserva di valore o asset d’investimento con un orizzonte
di lungo periodo piuttosto che come asset speculativo. Ciò suggerisce una certa parità di
opportunità nell’accumulazione di questo token in quanto dimostra come i retail siano
più efficienti nell’accumulare con bassa operatività rispetto a grandi operatori, scenario
completamente differente rispetto alla finanza tradizionale dove i grandi gestori di fondi
e hedge fund dominano la scena dei mercati mondiali[52].

In sintesi, l’analisi conferma che la maggior parte degli indirizzi profittevoli utilizza
strategie basate sulla pazienza (dove il guadagno dipende da quanto tempo si detiene il
token) rispetto ad un’operatività più attiva come il trading, che pur essendo presente,
rappresenta una minoranza con un coefficiente di profitto inferiore.
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