ALMA MATER STUDIORUM - UNIVERSITA DI
BoLOGNA

SCUOLA DI SCIENZE

Corso di Laurea in Informatica per il Management

Applicazione mobile

per l'agricoltura intelligente:
progetto TRACE

Relatore: Presentata da:
Prof. Andrea Caselli
Federico Montori

Correlatore:

Dott.

Ivan Zyrianoff

II Sessione
Anno Accademico 2024/2025

A mia mamma ...

Sommario

L’agricoltura contemporanea, negli ultimi anni, sta affrontando sfide sem-
pre piu critiche legate al cambiamento climatico, alla scarsita delle risorse
idriche e alla necessita di incrementare la produttivita riducendo l'impatto
ambientale. L’Internet of Things (IoT) si posiziona come tecnologia fonda-
mentale per ’evoluzione verso 1’agricoltura di precisione, offrendo strumenti
avanzati per il monitoraggio continuo delle condizioni ambientali e I'ottimiz-
zazione dei processi produttivi.

Questo lavoro di tesi si inserisce nel progetto TRACE (Traceability and
Resources in Agricultural Cultivation with Electronics), focalizzato sull’in-
troduzione dell’Agricoltura 4.0 nel settore delle piante medicinali e aroma-
tiche (MAPs). Nonostante il progetto disponesse di un’infrastruttura IoT
operativa con sensori distribuiti nei campi che trasmettono misurazioni via
protocollo LoRaWAN; la visualizzazione dei dati era affidata a dashboard
web come Grafana, risultando meno immediate per 1'utilizzo sul campo.

L’obiettivo principale e stato progettare, sviluppare e validare un’appli-
cazione mobile completa per il monitoraggio dei dati agricoli raccolti dal
sistema IoT. L’applicazione, sviluppata con Flutter e Dart, fornisce un’inter-
faccia ottimizzata per smartphone che permette agli agricoltori di consultare
i dati dei sensori direttamente sul campo. Le funzionalita principali includo-
no: visualizzazione interattiva dei dati tramite grafici e tabelle, navigazione
di serie temporali con algoritmi di campionamento intelligente per garantire
prestazioni fluide anche con migliaia di punti, configurazione di soglie per-
sonalizzate con monitoraggio automatico in background e invio di notifiche
push al superamento dei valori critici, gestione multi-utente con ruoli diffe-

renziati (Admin, Consorzio, User) e sistema di autenticazione JWT.

Introduzione

L’agricoltura contemporanea si trova ad affrontare sfide senza preceden-
ti: il cambiamento climatico, la crescente scarsita delle risorse idriche e la
necessita di incrementare la produttivita riducendo simultaneamente I'im-
patto ambientale stanno spingendo il settore verso una trasformazione radi-
cale. In questo contesto, I'Internet of Things (IoT) emerge come tecnologia
fondamentale per I’evoluzione verso I'agricoltura di precisione, offrendo agli
operatori del settore strumenti avanzati per il monitoraggio continuo delle
condizioni ambientali e per I'ottimizzazione dei processi produttivi basata su
dati oggettivi.

11 presente lavoro di tesi si inserisce allinterno del progetto TRACE (Tra-
ceability and Resources in Agricultural Cultivation with Electronics), e ha
come obiettivo l'introduzione dell’Agricoltura 4.0 nel settore MAPs (Medical
and Aromatic Plants) attraverso lo sviluppo di un ecosistema digitale com-
pleto, che integra reti di sensori IoT, piattaforme di analisi dei dati, sistemi
di tracciabilita blockchain e strumenti di supporto decisionale.

Nonostante il progetto TRACE disponesse gia di un’infrastruttura IoT
operativa per la raccolta dei dati ambientali e pedologici, con sensori di-
stribuiti nei campi che trasmettono misurazioni via protocollo LoRaWAN,
la visualizzazione e 'analisi di questi dati erano affidate a dashboard web
come Grafana. Sebbene queste piattaforme forniscano funzionalita avanza-
te di visualizzazione, risultano meno immediate per 'utilizzo sul campo da
parte degli operatori agricoli, che necessitano di uno strumento accessibile
rapidamente tramite dispositivo mobile.

L’obiettivo principale di questo lavoro e stato progettare, sviluppare e
validare un’applicazione mobile completa per il monitoraggio dei dati agri-
coli raccolti dal sistema IoT del progetto TRACE. L’applicazione doveva ri-
spondere a requisiti identificati attraverso I'analisi delle esigenze degli utenti
finali: (i) fornire un’interfaccia mobile ottimizzata per 1'utilizzo sul campo,
permettendo agli agricoltori di consultare i dati dei sensori direttamente dallo
smartphone; (ii) implementare dei grafici interattivi, delle tabelle dettaglia-
te e degli strumenti di analisi che permettano di esplorare serie temporali

ii

INTRODUZIONE

anche molto estese, con algoritmi di campionamento intelligente per garan-
tire prestazioni fluide su dispositivi mobili anche con migliaia di punti dati;
(iii) consentire agli utenti di configurare soglie personalizzate per i parame-
tri critici, con invio automatico di notifiche push al superamento dei valori
impostati, anche quando ’applicazione non e attiva.

Il documento e organizzato come segue: il Capitolo 1 presenta lo stato
dell’arte, analizzando il ruolo dell’loT nell’agricoltura di precisione, le ca-
ratteristiche dei time series database e un confronto tra applicazioni mobili
esistenti per il settore agricolo, posizionando TRACE Project app nel pano-
rama delle soluzioni disponibili; il Capitolo 2 introduce il progetto TRACE,
descrivendo 'architettura dell’infrastruttura IoT esistente, i sensori distri-
buiti nei campi (Weather Stations e Soil Moisture Stations), e il contesto del
settore MAPs che ha motivato lo sviluppo del sistema; il Capitolo 3 affronta
la fase di progettazione, illustrando I’architettura dell’applicazione a tre livelli
(presentation layer, business logic layer, data layer), la scelta delle tecnologie
utilizzate (Flutter, Dart, Shelf, PostgreSQL, InfluxDB), il design del data-
base e I'integrazione con Firebase Cloud Messaging; il Capitolo 4 documenta
I'implementazione, analizzando la struttura del backend con la pipeline di
middleware, il sistema di autenticazione JWT, l'integrazione con InfluxDB,
il servizio di monitoraggio delle soglie, e lato frontend analizzando la gestio-
ne dello stato, la comunicazione HT'TP e gli algoritmi di campionamento; il
Capitolo 5 descrive le validazioni effettuate: la migrazione del backend dal-
I’ambiente di sviluppo a quello di produzione, il processo di pubblicazione
su Google Play Store con le diverse fasi di testing, e I’analisi dettagliata dei
risultati del questionario PSSUQ somministrato a 11 utenti durante il clo-
sed testing; infine, le conclusioni sintetizzano i risultati ottenuti, discutono
i limiti del lavoro svolto e propongono direzioni future per 1’evoluzione del
sistema.

Indice

Introduzione

1 Stato dell’arte
1.1 ToT egestionedeidati
1.1.1 IoT nell’agricoltura di precisione e smart irrigation
1.2 Applicazioni mobili per 'agricoltura di precisione

2 Progetto TRACE
2.1 Settore MAPs e applicazione di sistemi IoT
2.2 Architettura del progetto TRACE
2.3 Implementazione del progetto TRACE

3 Progettazione
3.1 Panoramica generale
3.1.1 Frontend Mobile: Presentation Layer
3.1.2 Backend API: Business Logic Layer
3.1.3 Database: Data Layer
3.1.4 Servizio Cloud: Firebase Cloud Messaging
3.2 Workflow e funzionalita dell’applicazione
3.2.1 Autenticazione
3.2.2 Interfaccia Dashboard
3.2.3 Navigazione Temporale
3.2.4 Note di Irrigazione
3.2.5 Soglie personalizzabili

4 Implementazione
4.1 Implementazione del backend
4.1.1 Framework Shelf e architettura modulare
4.1.2 Pipeline middleware e gestione richieste HT'TP

il

ii

10

13
13
15
16
18
22
22
23
24
31
32
33

iv INDICE
4.1.3 Sistema di autenticazione JWT 38
4.1.4 Integrazione InfluxDB e query Flux 39
4.1.5 Servizio di monitoraggio delle soglie 41
4.1.6 Servizio di sincronizzazione dei sensori 44
4.1.7 Routinge APTREST 44

4.2 Implementazione del frontend 47
4.2.1 Architettura e gestione dello stato 47
4.2.2 Comunicazione con il backend 47
4.2.3 Ottimizzazione di performance: algoritmi di sampling . 48
4.2.4 Auto-Refresh intelligente 53
4.2.5 Visualizzazione dei dati con fl_chart e widget

personalizzati 53

4.3 Workflow del backend 56

4.4 Workflow del frontend 60

Validazioni 63

5.1 Migrazione del backend 63

5.2 Pubblicazione su Google Play Store 64

5.3 Validazione dell’'usabilita tramite questionario PSSUQ 65
5.3.1 Metodologia e struttura del questionario 65
5.3.2 Risultati del questionario 66

Conclusioni 73

Elenco delle figure

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11

3.12

5.1

5.2
5.3

Architettura del sistema TRACE. 9
Esempi di visualizzazioni dei dati nella dashboard Grafana . . 12
Diagramma di dominio 20
Da sinistra: Login, Registrazione User, Registrazione Consorzio 24
Schermata Home, 25
Da sinistra: Tabella Temperatura, Grafico WS Temperatura,
Grafico EM Temperatura 26
Da sinistra: Tabella Umidita, Grafico Umidita, Schermata
Umidita con menu chiusi 27
Da sinistra: Tabella Pressione, Grafico Pressione, Schermata
Pressione con menu chiust 28
Da sinistra: Tabella Precipitazioni, Grafico Precipitazioni,
Riepilogo Precipitazioni 29
Da sinistra: Tabella Velocita Vento, Grafico Velocita Vento,
Rosa dei venti 30

Da sinistra: Schermata Impostazioni Consorzio, Schermata
Impostazioni Admin ptl, Schermata Impostazioni Admin pt2 . 31
Da sinistra: Menu navigazione temporale, Menu selezione

range personalizzato 32
Da sinistra: Schermata Note, Aggiunta Nuova Nota, Modifica
Nota FEsistente 33
Da sinistra: Gestione Soglie, Creazione nuova soglia (1),
Creazione nuova soglia (2) 34

Valutazione PSSUQ del Sistema TRACE per Categoria e

Gruppodi Utenti 67
Distribuzione dei Punteggi PSSUQ per Domanda (Q01-Q16) . 68
Distribuzione delle Risposte per Domanda - Scala Likert PSSUQ 70

Elenco delle tabelle

3.1

4.1
4.2
4.3
4.4
4.5
4.6

Descrizione delle tabelle del database PostgreSQL 21
Endpoint di Autenticazione 44
Endpoint dati InfluxDB 0L, 45
Endpoint soglie personalizzate 45
Endpoint sensorio 46
Endpoint note di irrigazioneo L. 46
Endpoint notifiche00 46

vii

Elenco dei Codici

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Esempio query Flux. 39
Esempio risultato CSV annotato delle query Flux 40
Esempio JSON creato dal parsing del CSV 41
Esempio paylod JSON per I'invio di una notifica 43
Algoritmo di sampling uniforme 49
Algoritmo di sampling con preservazione dei picchi 50
Funzione _processWindData() per rose dei venti. 54

X

Capitolo 1

Stato dell’arte

Negli ultimi anni il settore agricolo e stato oggetto di una trasformazione
radicale, tuttora in corso. Come spiegato nell’articolo [4], il surriscaldamento
globale, la continua crescita demografica e ’avvento di periodi sempre pit fre-
quenti di siccita rappresentano un problema reale e improrogabile per quasi la
totalita dei settori, in particolare quello agricolo. E necessario un evoluzione
nella metodologia e nella tecnologia applicata all’agricoltura. L’agricoltura di
precisione rappresenta una soluzione praticabile, promuovendo pratiche so-
stenibili, ottimizzando le risorse e migliorando l'efficienza attraverso 1'utilizzo
di un sistema decisionale basato sull’Internet of Things (IoT).

L’utilizzo dei sistemi IoT sta diventando sempre piu frequente all’interno
del settore agricolo e rappresenta uno degli strumenti principali per affrontare
le sfide poste dai cambiamenti climatici. L’integrazione di sensori intelligen-
ti nei campi, di sistemi di monitoraggio e di piattaforma di analisi di dati
avanzate consente agli agricoltori di avere una visione accurata in tempo
reale delle condizioni dei campi, facilitando decisioni basate su dati reali.
Attraverso delle reti di dispositivi interconnessi, I'loT permette di raccoglie-
re informazioni fondamentali, migliorando cosi la capacita di intervenire in
modo preciso e tempestivo.

Inoltre, come discusso nell’articolo [2], I'ToT si configura come un’architet-
tura scalabile e flessibile, con la capacita di adattarsi alle esigenze di aziende
agricole di ogni dimensione, dai piccoli produttori locali alle realta industria-
li. La possibilita di integrazione di tecniche di analisi dei dati, algoritmi
predittivi e automazione intelligente permette non solo di ottimizzare i pro-
cessi produttivi, ma anche di ridurre sprechi e diminuire significativamente
I'impatto ambientale. Questa evoluzione tecnologica e la possibilita di ap-
plicarla in modo scalabile, rappresenta una condizione fondamentale per lo
sviluppo di sistemi agricoli efficienti e sostenibili nel lungo periodo.

1. Stato dell’arte

1.1 1IoT e gestione dei dati

L’'Internet of Things si fonda sulla connessione e I'interoperabilita tra og-
getti fisici in grado di generare dati in modo continuo. Nell’articolo [2], gli
autori forniscono una definizione fondamentale del modello architetturale dei
sistemi basati sull'ToT, identificando componenti indispensabili quali sensori,
connettivita, cloud computing, elaborazione distribuita e applicazioni finali.
I sensori rappresentano il punto di partenza del sistema, questi leggono e
trasformano in dati i parametri ambientali, e sono progettati per funziona-
re in modo affidabili anche in condizioni climatiche critiche e variabili. La
connettivita garantisce il trasferimento di questi dati verso l'infrastruttura
centrale tramite tecnologie come Wi-Fi o protocolli a basso consumo con
LoRaWAN. Il livello di cloud computing fornisce invece la capacita compu-
tazionale e lo spazio di archiviazione e storage necessari per conservare questi
dati in grandi quantita. Infine, I’elaborazione distribuita permette al sistema
di essere flessibile e scalabile, per ridurre la latenza, mentre le applicazioni
finali rappresentano rappresentano l'interfaccia da cui gli utenti accedono ai
risultati dell’elaborazione dei dati. Questo schema mostra come la raccolta
e la gestione dei dati dei sistemi IoT sia un elemento centrale e significativo.

Con 'aumento esponenziale del numero dei dispositivi IoT, cresce pro-
porzionalmente anche la quantita di dati prodotta, dando origine a flussi di
informazioni continui, tipici delle serie temporali. Gli autori di [7] analizzano
le caratteristiche e le criticita dei time series database (TSDB) in ambito IoT,
evidenziando la necessita di sistemi in grado di sostenere un’acquisizione dei
dati ad alta frequenza, che creano flussi continui in entrata che un database
relazionale faticherebbe a gestire. A questo si affianca la necessita di una
compressione efficiente, necessaria per ottimizzare lo spazio utilizzato nel da-
taset e per garantire allo stesso tempo un accesso rapido ai dati in lettura.
Infine, la scalabilita orizzontale del sistema viene identificata come un requi-
sito indispensabile per distribuire il carico di lavoro su piu nodi, mantenendo
le prestazioni ad un livello elevato. Questi requisiti risultano fondamentali
durante lo sviluppo di dashboard e piattaforme di monitoraggio che integrano
I’elaborazione in tempo reale con la visualizzazione storica dei dati.

Oltre ai TSDB, altre tecniche di data processing risultano centrali nei
sistemi [oT, come lo stream processing, la window aggregation e il down-
sampling. L’analisi continua del flusso dei dati ¢ essenziale, permettendo
di generare notifiche, attivare automatismi o fare previsioni su fenomeni
monitorati.

1.1 IoT e gestione dei dati

1.1.1 IoT nell’agricoltura di precisione e smart
irrigation

Come detto precedentemente, ’agricoltura ¢ uno dei settori che ha tratto
piu beneficio dall’evoluzione e dall’implementazione dei sistemi IoT, soprat-
tutto grazie alla possibilita di ottenere informazioni granulari e aggiornate in
tempo reale sulle condizioni atmosferiche e del terreno. L’agricoltura di pre-
cisione ha come scopo l'ottimizzazione degli input come acqua, fertilizzanti
ed energia sulla base di misurazioni e dati oggettivi, riducendo gli sprechi
ed aumentando parallelamente D'efficienza e la sostenibilita. Come definito
anche dall’articolo [5]: «precision agriculture is the application of techno-
logies and principles to manage spatial and temporal variability associated
with all aspects of agricultural production for the purpose of improving crop
performance and environmental quality.».

Nell’articolo [4], gli autori presentano un’analisi completa dello stato del-
I’arte dei sistemi IoT implementati nell’agricoltura, evidenziando come la
miniaturizzazione dei sensori, l'integrazione con reti wireless a basso consu-
mo e i progressi nell’elaborazione di sistemi distribuiti abbiano reso I'IoT uno
strumento quasi indispensabile per le aziende agricole moderne. Nell’articolo
vengono anche evidenziate diversi problemi legati all’applicazione di questi
sistemi come la sicurezza dei dati, 'interoperabilita tra dispositivi di mar-
che differenti, robustezza in ambienti rurali difficili e la necessita di modelli
standard condivisi.

Tra i molteplici utilizzi dell’loT in ambito agricolo, l'irrigazione intelli-
gente emerge come una delle piu significative dal punto di vista dell’'impatto
ambientale ed economico. Il poter gestire in modo ottimale la risorsa idrica
rappresenta infatti una sfida cruciale nell’agricoltura contemporanea. I siste-
mi di smart irrigation si basano sull’integrazione di sensori distribuiti capaci
di monitorare in modo continuo parametri critici, come 'umidita del suolo
e temperatura ambientale. Questi dati, se acquisiti con frequenza eleveta e
continua, generano flussi informativi che richiedono infrastrutture dedicate
per 'archiviazione, 1’elaborazione e la visualizzazione.

Come detto precedentemente, 'architettura di un sistema di irrigazione
intelligente prevede diversi strati tecnologici interconnessi. Al livello piu bas-
so si collocano i dispositivi sensoriali operanti con protocolli a basso consu-
mo energetico. Questi sensori trasmettono periodicamente misurazioni verso
gateway o piattaforme cloud, dove i dati vengono salvati in database e ot-
timizzati attraverso algoritmi di validazione, che filtrano letture anomale, e
procedure di normalizzazione.

In generale, la smart irrigation richiede strumenti per:

1. Stato dell’arte

e acquisire serie temporali da sensori eterogenei;
o filtrare e normalizzare i dati;
« visualizzare i dati tramite dashboard comprensibili e user-friendly;

o generare notifiche e allarmi in caso di valori critici.

1.2 Applicazioni mobili per l’agricoltura di

precisione

Il panorama delle applicazioni mobile applicate all’agricoltura di precisio-
ne si ¢ notevolmente arricchito negli ultimi anni, con soluzioni che variano
per complessita, target di utenza e funzionalita offerte. Di seguito verra
effettuata un’analisi comparativa tra alcune di queste applicazioni.

SWAMP Farmer App [1] rappresenta un esempio di integrazione tra
sensori [oT e interfaccia mobile per il controllo dell’irrigazione. Il sistema si
distingue per I'implementazione di un loop di controllo che abbina il moni-
toraggio continuo dello stato idrico del suolo all’attuazione automatica degli
interventi di irrigazione. L’architettura proposta dagli autori & divisa in tre
livelli: dispositivi edge per la raccolta dei dati, middleware cloud per l'ela-
borazione e lo storage, e una applicazione mobile come interfaccia utente.
L’applicazione permette agli agricoltori di definire soglie personalizzate per
umidita e temperatura del suolo, ricevere notifiche push al superamento dei
limiti impostati, e attivare remotamente i sistemi di irrigazione. Questo ap-
proccio risulta efficace in contesti di agricoltura intensiva dove il controllo
della risorsa idrica impatta direttamente sulla produzione finale. Tuttavia,
questo livello di automatizzazione puo risultare limitante per le realta agricole
che privilegiano un approccio decisionale piu diretto da parte dell’operatore.

Crop Connect [6] ¢ un’applicazione focalizzata sulla dimensione socia-
le e comunitaria dell’agricoltura digitale. Gli autori evidenziano come la
condivisione di conoscenze ed esperienze tra agricoltori rappresenti un asset
spesso sottovaluto. L’applicazione integra funzionalita di social networking
progettate per il settore agricolo, permettendo agli utenti di pubblicare osser-
vazioni sui propri campi e confrontare strategie agronomiche. Questa dimen-
sione comunitaria risulta rilevante in contesti dove la frammentazione delle

1.2 Applicazioni mobili per ’agricoltura di precisione

aziende agricole rende difficile I'accesso e 'ottenimento di consulenze specia-
lizzate. Tuttavia, 'app presenta limitazioni nell’integrazione dei sistemi [oT,
delegando prevalentemente all’utente I'input manuale delle informazioni.

Farm Management System cloud-based[3] rappresenta un approccio
piu sistemico della gestione aziendale agricola. Gli autori descrivono un’archi-
tettura orientata verso i microservizi, che integra moduli per la pianificazione
colturale, gestione del magazzino, analisi economica e supporto decisionale.
La piattaforma si distingue per l'ampiezza funzionale, proponendosi come
soluzione ERP (Enterprise Resource Planning) per il settore agricolo. L’in-
tegrazione dei sensori [oT rappresenta una delle funzionalita dell’applicazione
ma non costituisce il fulcro del sistema. Questo approccio puo risultare utile
e adeguato per azienda agricole di dimensioni medio-grandi, ma puo risultare
complesso per piccoli produttori o consorzi che necessitano principalmente
di strumenti per il monitoraggio ambientale.

Come verra spiegato e analizzato nei capitoli successivi, 'applicazione
TRACE Project App si inserisce in questo panorama in modo eterogeneo,
proponendo un posizionamento ibrido che integra elementi delle diverse filo-
sofie progettuali elencate sopra. L’applicazione mobile del progetto TRACE
condivide con SWAMP Farmer App l’enfasi sul monitoraggio [oT in tempo
reale e sulla generazione di notifiche di alert basato su delle soglie configu-
rabili, ma si differenza nell’approccio di controllo: mentre SWAMP privi-
legia I'automazione, TRACE mantiene I'agricoltore al centro del processo
decisionale, fornendo degli strumenti di supporto. Le notifiche ricevute dal-
I’applicazione TRACE segnalano anomalie o superamenti delle soglie, ma la
responsabilita di azione resta completamente in mano all’utente.

Della dimensione comunitaria di Crop Connect, TRACE eredita il con-
cetto di consorzio come entita centrale. La gestione multi-utente facilita la
condivisione delle risorse sensoriali e di informazioni tra membri dello stes-
so consorzio. Questa scelta progettuale riflette il contesto operativo italiano
dei consorzi e delle cooperative agricole, dove di norma la collaborazione av-
viene all’interno di strutture formali preesistenti piuttosto che all’interno di
community online.

A differenza dell’approccio ERP, TRACE adotta una strategia di spe-
cializzazione focalizzata. L’applicazione non punta alla gestione dell’intera
filiera operativa, ma si concentra sull’eccellenza nella visualizzazione e analisi
dei dati ambientali. Per questo 'applicazione implementa strumenti utili e
ottimizzati per la navigazione storica di grandi quantita di dati, con confronto
multi-sensore, e algoritmi di campionamento.

1. Stato dell’arte

In sintesi, I'applicazione TRACE si configura come una soluzione che
bilancia la specializzazione funzionale e 'usabilita, privilegiando la visualiz-
zazione analitica dei dati in maniera accurata. Il posizionamento risponde
alle esigenze specifiche del contesto italiano dell’agricoltura consorziale, dove
la condivisione di infrastrutture sensoriali tra aziende rappresenta un modello
organizzativo consolidato e che richiede strumenti digitali adeguati.

Capitolo 2

Progetto TRACE

Un esempio dell’impiego della tecnologia IoT all’interno del settore agri-
colo & quella del progetto TRACE. Come spiega l'articolo [8], TRACE & un
progetto finanziato dalla regione Emilia Romagna all’interno del programma
CoPSR e coinvolge un consorzio di istituzioni accademiche e agricole specia-
lizzate nella coltivazione di Medical and Aromic Plants (MAPs). Lo scopo del
progetto e I'introduzione dell’Agricoltura 4.0 all’interno del settore specializ-
zato, sviluppando un ecosistema digitale avanzato basato sulle infrastrutture
[oT.

2.1 Settore MAPs e applicazione di sistemi
IoT

Il settore MAPs negli ultimi anni ha registrato una crescita significativa,
guidata dall’aumento della domanda di questa tipologia di piante all’interno
del settore medico, farmaceutico, nutraceutico e cosmetico. Le piantagioni
MAPs sono caratterizzate da un elevato contenuto di composti bioattivi,
la cui qualita dipende fortemente dalle condizioni di crescita. A differenza
delle altre colture le MAPs necessitano di condizioni atmosferiche precise
e regolate e richiedono quindi un controllo rigoroso dei paramentri am-
bientali, come temperatura, umidita del suolo e dell’aria e qualita del terreno.

Le caratteristiche e le precise condizioni necessarie per la crescita di una
piantagione MAPs rendono questo settore adatto all’adozione di sistemi
[oT. L’applicazione di sensori distribuiti permette infatti il monitoriaggio
continuo e in tempo reale delle condizioni di crescita della pianta, offrendo

2. Progetto TRACE

agli agricoltori la possibilita di individuare e correggere situazioni critiche.
Grazie alla raccolta sistematica dei dati, 'operatore agricolo puo agire
tempestivamente su eventuali problemi e, ad esempio, regolare 'irrigazione,
prevenire 'incidenza di malattie e molto altro.

Un ulteriore elemento che distingue il settore MAPs dalle altre colture e
la crescente richiesta di tracciabilita, certificazioni biologiche e conformita
agli standard qualitativi sempre piu rigidi richiesti dal settore medico-
farmaceutico. La sensibilita di questa tipologia di piante alle condizioni
di crescita rende necessario la documentazione delle pratiche agronomiche
e la qualita dell’ambiente produttivo. L’integrazione di sistemi IoT, in
parallelo a tecnologie blockchain, consente la registrazione automatica e
verificabile dei dati raccolti dai sensori. Questo approccio garantisce, quindi,
trasparenza e tracciabilita lungo tutta la catena di produzione.

L’utilizzo e I'implementazione di queste tecnologie unisce quindi il moni-
toraggio avanzato, il supporto agli agricoltori nelle decisioni da adottare e la
certificazione digitale tutto in un’unica infrastruttura. Questo rende I'loT un
elemento di innovazione tecnica e un fattore abilitante per la sostenibilita del
settore MAPs, aiutando a migliorare la qualita del prodotto e a soddisfare i
requisiti necessari per la trasparenza.

2.2 Architettura del progetto TRACE

Come spiegato precedentemente, TRACE ¢ un’iniziativa finalizzata
all’innovazione del settore agricolo delle MAPs. In particolare TRACE
mira a conseguire tre principali obiettivi: (i) garantire la qualita delle
coltivazioni attraverso un sistema di monitoraggio in tempo reale, permet-
tendo e abilitando un approccio di agricoltura di precisione; (ii) supportare
la certificazione e la tracciabilita dei prodotti tramite sistemi digitali di
registrazione sicura dei dati; (iii) migliorare la produttivita e la sostenibilita
attraverso decisioni strategiche data-driven, ottenute tramite l'integrazione
dei dati IoT, informazioni agricole gia esistenti e tecniche di elaborazione e
analisi avanzate.

Per soddisfare questi requisiti ¢ stata implementata 1’architettura
illustrata nella Figura 2.1, composta da tre macro-componenti.

2.2 Architettura del progetto TRACE

DATA OUALITV
CERTIFICATION

W@

LoRaWAN' DATA a 2
:“> ANALYTCS r—) °

o
-
=>| - o
* STORAGE

LoRaWAN
Gateway

WEATHER
STATION
(ws)

SOIL
MOISTURE

B B
INTEGRATION LE J

DATA INTEGRATION

_Legacy AND INTELLIGENCE
Field Data

Figura 2.1: Architettura del sistema TRACE.

Sistema IoT di monitoraggio Il primo livello comprende 'infrastrut-
tura di prelievo, comunicazione e gestione dei dati necessaria a raccogliere
misurazioni ambientali e del suolo in modo dettagliato direttamente nelle
zone agricole. Il prelievo dei dati ¢ stato implementato tramite 'impiego di
due tipologie di dispositivi: Weather Station (WS), adibita al prelievo dei
parametri atmosferici, e le Soil Moisture Stations (SMS), specializzate nel
raccoglimento di dati pedologici.

L’implementazione di questo sistema basato sulle tecnologie IoT risponde
a vincoli molto rigidi dello smart farming:

« efficienza energetica, poiché i dispositivi sono installati in ambienti privi
di alimentazione stabile e devono operare lungo periodi estesi di tempo
come le stagioni colturali;

« affidabilita della comunicazione, di cui e necessario il funzionamento
anche in condizioni atmosferiche rigide, in caso di interferenze radio o
di malfunzionamenti locali delle unita;

e robustezza nel lungo periodo, fondamentale per ottenere dataset
completi, robusti e continuativi.

Integrazione dei dati e intelligenza Il secondo livello integra i dati
provenienti dal sistema IoT con altre fonti informative presenti all’interno
delle aziende agricole, come statistiche di resa, analisi del suolo e registri
delle pratiche agronomiche. Questa componente implementa anche 'utilizzo
di strumenti di data analytics e I'utilizzo di intelligenza artificiale volti allo

10

2. Progetto TRACE

studio e alla ricerca di correlazioni tra parametri ambientali e del terreno con
I'output produttivo. Un esempio ¢ la definizione di strategie di irrigazione
ottimizzate che combinano i dati provenienti dal sistema IoT, dati storici e
informazioni agronomiche specifiche.

Tracciabilita e certificazione Il terzo livello riguarda la tracciabilita
lungo tutta la catena di produzione delle MAPs, partendo dalla fase di
coltivazione fino ad arrivare a quella di trasformazione ed elaborazione del
prodotto. In questo contesto , I'implementazione di strumenti come i Digital
Field Notebook (DFN), in alcuni casi gia richiesti da normative nazionali,
rappresentano una delle migliori soluzioni per registrare e consultare tutte
le attivita svolte durante la fase di coltivazione.

TRACE integra il DFN con tecnologie blockchain, con 1'obiettivo di otte-
nere registri immutabili e verificabili delle operazioni agricole, permettendo
una maggiore trasparenza e fiducia tra tutti gli attori della supply chain del
prodotto.

2.3 Implementazione del progetto TRACE

Uno degli elementi centrali del progetto TRACE riguarda I'implemen-
tazione del sistema IoT sviluppato sulla base dell’architettura spiegata
nella sezione 2.0.2. Questa implementazione ¢ stata svolta seguendo i
tre requisiti fondamentali elencati precedentemente. Per soddisfare questi
vincoli sono state adottate alcune scelte progettuali chiave: (i) utilizzo
di dispositivi IoT commerciali; (ii) adozione della tecnologia LoRa per
I'invio e la comunicazione a lungo raggio a basso consumo energetico; (iii)
impiego della infrastruttura LoRaWAN che opera tramite server open-source
ChirpStack; (iv) integrazione di software custom per la gestione dei dati e
della loro visualizzazione.

L’utilizzo delle tecnologie LoRa e LoRaWAN ¢ ormai comune all’interno
dell’ambito agricolo, grazie alle loro capacita di coprire grandi distanze a
basso consumo energetico e di trasmettere a piu gateaway senza ulteriori
procedure di associazione. Un esempio di implementazione di queste
tecnologie ¢ il progetto SWAMP [1]. SWAMP ha dimostrato come l'utilizzo
di messaggi downlink LoRaWAN nella riconfigurazione dinamica della fre-
quenza di campionamento dei sensori possa estendere in modo significativo
la durata delle batterie e diminuire al minimo la necessita di interventi di

2.3 Implementazione del progetto TRACE

11

manutenzione.

Nel contesto TRACE, ogni sensore WS ¢ responsabile della rilevazione di
dati ambientali quali temperatura, umidita, pressione atmosferica, precipi-
tazioni e dati relativi alla direzione e velocita del vento. Nel complesso sono
state installate otto WS, una per ogni azienda agricola aderente al progetto.
Parallelamente sono stati distribuiti venti sensori SMS in aree strategiche
per ottenere una copertura massimale e strategica. I sensori SMS sono
stati installati a circa 30 cm di profondita e vengono utilizzati per il prelie-
vo di parametri del suolo come umidita, temperatura e conducibilita elettrica.

L’area agricola monitorata si estende ad una distanza massima di 10
km tra i punti piu distanti. Per garantire una copertura LoRaWAN piu
adeguata e ottimale e per massimizzare la ridondanza sono stati installati
tre LoRaWAN gateway sui tetti di edifici in posizioni strategiche. Ogni
gateway ¢ connesso alla rete tramite rete 5G o collegamento tramite cavo
ethernet.

Dal punto di vista software e stato utilizzata la piattaforma cloud open-
source ChipStark, utilizzata sia per il Network Server (NS) che per 1’Ap-
plication Server (AS). Viene poi utilizzata un’applicazione personalizzata,
sviluppata all’interno del progetto che si occupa di

recuperare messaggi inviati tramite connessione MQTT;

decodificare i payload;

filtrare campioni errati o rumorosi;

memorizzare i dati validati all’interno di un database InfluxDB !, scelto
per Defficienza nella gestione di serie temporali.

Infine, per consentire agli utenti un accesso semplice e immediato ai dati
¢ stata realizzata una dashboard Grafana. Questa fornisce tre funzionalita
semplici: (i) monitoraggio di dati ambientali e del suolo con la possibilita di
visualizzare dati aggregati come media, minimo e massimo; (ii) monitoraggio
dei dispositivi con informazioni come carica delle batterie dei sensori; (iii)
analisi geospaziale tramite mappe interattive. Le figure 2.2a 2.2b 2.2c
mostrano alcuni esempi delle interfacce implementate su Grafana.

https://www.influxdata.com/

12

2. Progetto TRACE

Nonostante I'efficacia della dashboard, I'utilizzo di Grafana presenta dei
limiti per gli utenti sul campo, in particolare per gli agricoltori che necessita-
no di uno strumento rapido, intuitivo e direttamente accessibile da dispositivo
mobile. Per questo, per rispondere alle esigenze, ¢ stata sviluppata ’appli-
cazione TRACE Project App. L’app fornisce un accesso immediato ai dati
raccolti dai sensori e permette un controllo costante delle condizioni atmosfe-
riche e del suolo, rendendo cosi il sistema [oT del progetto ancora piu efficace
e utilizzabile nelle attivita quotidiane svolte sul campo.

BATTERY

Wws1

WIND - W5

Ws2 WS3

WS4 WS5 Wse
" 100 % .' " 1 .'
WS7
(b)

N
NwW NE
Wind speed (m/s)
N |
w E

i -15-3
.Y B
45-6

6-75

75-9

9-10.5

@ > 105

00 %
WS8

Figura 2.2: Esempi di visualizzazioni dei dati nella dashboard Grafana

Capitolo 3

Progettazione

L’applicazione TRACE ¢ stata creata con lo scopo di fornire agli utenti
finali uno strumento intuitivo e accessibile per il monitoraggio dei dati agri-
coli raccolti dai sensori presenti nei campi. Come detto precedentemente,
la visualizzazione e ’analisi dei dati erano prima affidate a piattaforme web
come Grafana, che, nonostante rispettino tutti i requisiti richiesti, risultano
meno immediate per un utilizzo sul campo. L’applicazione si pone quindi
come alternativa user-friendly e piu facilmente accessibile, offrendo funziona-
lita avanzate come notifiche push-up in tempo reale, gestione multi-utente e
un’interfaccia grafica ottimizzata per dispositivi mobili.

3.1 Panoramica generale

L’applicazione e strutturata secondo un’architettura a tre livelli per ga-
rantire la separazione delle responsabilita, scalabilita e manutenibilita del
sistema. L’architettura dell’app separa la logica di presentazione, la logica di
business e la gestione dei dati in layer distinti e indipendenti I'uno dall’altro,
permettendo lo sviluppo e il testing di ciascun componente in modo isolato.

Il primo livello, il Presentation Layer, ¢ rappresentato dall’applicazione
mobile sviluppata in Flutter !, che fornisce l'interfaccia utente e gestisce
I'interazione con I'utente. Questo layer ha come scopo la visualizzazione dei
dati e la raccolta degli input dell'utente, delegando la logica di business al
livello successivo.

thttps://flutter.dev/

13

14

3. Progettazione

Il secondo livello, il Business Logic Layer, ¢ implementato tramite bac-
kend sviluppato in Dart 2 che espone API REST. Questo layer gestisce e
coordina le operazione tra database e frontend, implementa le regole di bu-
siness, gestisce 'autenticazione degli utenti e i loro permessi, e amministra i
servizi in background.

Il terzo livello, il Data Layer, & costituito da due database: InfluxDB per
le soglie temporali prelevate dai sensori IoT, e PostgresSQL per la gestione
dei dati strutturati e relazionali come utenti, note di irrigazione e associazioni
dei sensori.

Trasversalmente, il sistema implementa un servizio cloud esterno, Fire-
base Cloud Messaging (FCM)3, per l'invio di notifiche push ai dispositivi.
Questo servizio viene gestito completamente dal backend ma ha un impatto
significativo sull’esperienza dell’'utente, creando un canale di comunicazione
tra il sistema e gli utenti. L’utilizzo di FCM e indispensabile perche i sistemi
operativi mobili (i10S e Android) non permettono ai server backend di invia-
re direttamente le notifiche push. FCM ha la funzione di intermediario che
autentica il mittente, mantiene un canale di comunicazione affidabile anche
quando I'app e in background, e ottimizza la consegna dei messaggi ridu-
cendo il consumo di batteria e dei dati internet. Senza 1'utilizzo del servizio
FCM, non sarebbe possibile garantire che le notifiche raggiungano gli utenti
in modo sicuro, affidabile e scalabile.

I1 flusso di dati tipico attraversa ’architettura secondo questo ciclo: i sen-
sori IoT trasmettono i dati prelevati tramite LoRaWAN ad un gateway cen-
trale che li salva sul database InfluxDB. All’apertura dell’app da parte di un
utente viene mandata una richiesta HT'TP al backend specificando quali dati
si vuole visualizzare. Il backend, dopo aver verificato l’identita e i permessi
dell’utente, interroga InfluxDB per recuperare i dati time-series richiesti e
PostegresSQL per ottenere informazioni sui sensori e sulle configurazioni. I
dati vengono poi aggregati, trasformati in JSON e inviati all’applicazione che
li visualizza tramite grafici e tabelle.

L’applicazione offre una funzionalita che permette agli utenti di creare
delle soglie personalizzabili per tenere traccia dei valori critici prelevati dai
sensori. Questo avviene tramite un servizio in background, gestito dal bac-
kend, monitora in loop i valori dei sensori rispetto alle soglie configurate dagli
utenti. Quando una soglia viene superata e sono trascorsi gli intervalli mi-
nimi configurati, il servizio invia una notifica push all’'utente tramite FCM,
anche se ’applicazione ¢ chiusa.

https://dart.dev/
3https://firebase.google.com/docs/cloud-messaging

3.1 Panoramica generale

15

3.1.1 Frontend Mobile: Presentation Layer

Il frontend dell’applicazione e stato sviluppato utilizzando Flutter, fra-
mework open-source di Google per lo sviluppo di applicazioni mobili cross-
platform. Flutter permette la creazione di applicazioni native per Android e
iOS da un’unica codebase scritta in linguaggio Dart.

La scelta di Flutter come framework per il frontend ¢ motivata da diversi
fattori tecnici:

Cross-Platform Nativo Flutter compila il codice Dart in codice macchi-
na nativo per ciascuna piattaforma, garantendo performance paragonabili ad
applicazioni sviluppate con SDK nativi. A differenza dei framework basati
su WebView, Flutter non soffre di overhead di runtime.

Consistent UI il sistema di rendering di Flutter disegna ogni pixel dello
schermo, garantendo un’interfaccia identica su tutte le piattaforme e ver-
sioni di sistema operativo, eliminando i problemi di inconsistenza visiva e
comportamentale.

Funzione di Hot Reload la funzionalita di hot reload permette di vedere
le modifiche applicate al codice immediatamente nell’app senza perdere lo
stato corrente, accelerando il ciclo di sviluppo e facilitando l'iterazione sul
design dell’interfaccia.

Widget-Based Architecture Flutter adotta un approccio dichiarativo
alla costruzione dell’'UI, dove l'interfaccia ¢ composta da widget riusabili
e componibili, facilitando la manutenzione del codice e la creazione di
componenti personalizzabili.

Il Presentation Level gestisce tutte le interazioni con 'utente e si occupa

di:

« Rendering dell’interfaccia utente: visualizzazione di schermate, widget,
grafici e tabelle. L’interfaccia ¢ ottimizzata per dispositivi di diverse
dimensioni, sia smartphone che tablet;

o Gestione input dell’'utente: cattura le interazioni touch dell’utente (tap,
swipe ecc), input da tastiera, selezioni da dropdown e date picker, con
validazione client-side immediata per migliorare la user-experience;

o Comunicazione con il backend: esecuzione delle chiamate HTTP alle
API REST del backend e gestione dell’autenticazione tramite token

16

3. Progettazione

JWT. Quest’ultimo permette al backend di identificare gli utenti e i
loro permessi, vietando ad utenti non loggati o con ruoli non autorizzati
di effettuare azioni e chiamate al backend non permessi;

« State management locale: gestione dello stato dell’applicazione (dati vi-
sualizzati, configurazioni utente, cache temporanea) utilizzando diversi
pattern. Per lo stato locale delle singole schermate viene utilizzato Sta-
tefulWidget, un tipo di widget in Flutter che mantiene i valori in modo
persistente all’interno della schermata e che aggiorna l'interfaccia ogni
volta che lo stato cambio. Per gli stati condivisi tra piu schermate, o
per servizi globali, viene utilizzato il pattern Singleton, che garantisce
I’esistenza di una solo istanza dell’oggetto condivisa all’interno di tut-
ta 'applicazione, che permette una gestione facilitata delle preferenze
utente e della cache globale;

« Caching e persistenza locale: salvataggio di configurazioni, token di
autenticazione e preferenze dell’utente;

» Notifiche push: integrazione con FCM per ricevere e visualizzare
notifiche push anche quando 'applicazione non e aperta:

Ogni operazione effettuata dal frontend che richiede elaborazione o acces-
so ai dati passa obbligatoriamente attraverso il backend, garantendo sicurezza
e consistenza.

3.1.2 Backend API: Business Logic Layer

Il backend e implementato tramite server API REST sviluppato in Dart
utilizzando il framework Shelf *. Questa scelta tecnologica garantisce coe-
renza linguistica con il frontend e permette di condividere i modelli di dati e
la logica di business tra gli altri due livelli.

Dart, tipicamente utilizzato per lo sviluppo del fronted, si & dimostrato
un linguaggio efficace anche per le applicaziioni server-side:

Type Safety Dart ¢ un linguaggio fortemente tipizzato con type inference
che permette di ridurre gli errori a runtime e facilita 1 refactorin. Il com-
pilatore Dart cattura errori comuni durante la fase di sviluppo anziché in
produzione.

4https://pub.dev/packages/shelf

3.1 Panoramica generale

17

Perfomance la Dart VM (Virtual Machine) e il compilatore AOT (Ahead-
of-time) producono codice ottimizzato. Per applicazione server, Dart of-
fre performance comparabii a Node.js e altri linguaggi come Python per
operazioni intensive.

Asynchronous Programming Dart ha support nativo per la program-
mazione asincrona tramite async/await e Future/Stream, essenziale per la
gestione della concorrenza in applicazioni server che devono gestire richieste
simultanee. Un Future rappresenta un valore che sara disponibile in futuro,
per esempio il risultato di una chiamata al backend o di un operazione 1/0
(Input Output). Le keywors async/await permettono di scrivere codice asin-
cron: dichiarando una funziona async e usando await davanti ad un Future,
il programma attende il completamento dell’operazione senza bloccare il th-
read principale. Gli Stream, invece, rappresenta una sequenza di valori che
arrivano nel tempo, utilizzati per la gestione di eventi multipli o flussi di dati
con aggiornamento in tempo reale.

Condivisione di codice utilizzare Dart sia per il frontend che per il
backend permette di condividere definizioni di modelli di dati, algoritmi di
validazione e logica di business, riducendo la duplicazione di codice.

Ecosistema Server l'ecosistema Dart include package per lo sviluppo
server come Shelf (web server), PostgresSQL (driver del database), JWT
(autenticazione), BCrypt (hashing delle password) e logging.

Il livello di business logic ¢ il cuore del sistema e si occupa di:

o Autenticazione e autorizzazione: gestione dell’intero ciclo di autentica-
zione dell'utente, che comprende registrazione, login, refresh dei token
JWT e logout. Inoltre e stato implementato il Role-Based Access Con-
trol (RBAC) per verificare che ogni utente possa accedere solo alle
risorse autorizzate in base al proprio ruolo;

o Validazione: ogni dato ricevuto dal frontend viene validato per tipo,
formato, range di valori e vincoli di business prima di essere processato
o salvato. Questo per prevenire attacchi di tipo injection e garantire
integrita dei dati all’interno dei database;

o Business logic: implementazione delle regole di business complesse co-
me il workflow di approvazione (consorzio si registra — admin approva
— consorzio operativo), calcolo statistiche aggregate e gestione delle
associazioni sensori-consorzi-utenti;

18

3. Progettazione

o Accesso ai database: il backend e I'unico componente che ha accesso
diretto ai database. Esegue query SQL su PostgresSQL per i dati
relazionali e query temporali su InfluxDB per i dati time-series dei
sensori, aggrega i risultati e restituisce dati strutturati al frontend;

o Servizi background: oltre a gestire richieste HT'TP sincrone, il backend
esegue processi asincroni in background, come il monitoraggio delle
soglie personalizzate degli utenti, I'invio di notifiche quando tali soglie
vengono superate, e la sincronizzazione periodica giornaliera della lista
dei sensori.

Il backend implementa una pipeline di elaborazione delle richieste HT'TP
in middleware che processa sequenzialmente ogni richiesta, separando le
responsabilita come logging, gestione CORS, autenticazione JWT e rate
limiting delle richieste.

3.1.3 Database: Data Layer

L’architettura dell’applicazione utilizza due database specializzati per ri-
spondere a due diverse esigenze: InfluxDB per i dati time-series ad alta fre-
quenza, provenienti dai sensori sul campo, e PostgresSQL per dati relazionali
strutturati.

La scelta dell’utilizzo di due database anziché uno solo e stata dettata
dalle caratteristiche diverse dei dati gestisti dal sistema. I dati provenienti
dai sensori IoT sono serie temporali: sequenze di valori numerici associati a
timestamp precisi. Questi dati hanno pattern di scrittura ad alta frequenza
(migliaia di punti al giorno) e pattern di lettura aggregati (medie orarie,
trend giornalieri). Al contrario, i dati degli utenti e delle associazioni dei
sensori sono relazionali, con pattern di lettura e scrittura bilanciati di cui e
necessario garantirne l'integrita referenziale.

InfluxDB InfluxDB ¢ un database open-source specializzato nella gestione
di dati time-series, progettato per carichi di avoro IoT e monitoring. Influ-
xDB organizza i dati in una gerarchia a quattro livelli. Il livello piu alto e il
bucket, ovvero un contenitore logico per dati correlati. All’interno del buc-
ket i dati sono organizzati in measurements, che rappresentano le tipologie
di misurazioni raccolte dai sensori (temperatura, umidita, pressione, ecc.).
Ogni punto & caratterizzato da un timestamp, da un insieme di tags (coppie
chiave-valore per i metadati indicizzati come device_name o location) e da
un insieme di fields (coppie chiave-valore per i valori numerici effettivi).

I measurements implementati all’interno del sistema TRACE sono otto:

3.1 Panoramica generale

19

Temperature

o Humidity

e Pressure

¢ Rainfall

e Wind_speed

e Wind direction

e Soil moisture

Soil__conductivity

InfluxDB utilizza Flux, un linguaggio di query funzionale e ottimizzato
per la manipolazione di dati time-series. Flux permette operazioni comples-
se come il filtraggio temporale, aggregazione su finestre temporali, calcolo di
derivate e integrali, e join tra measurements diversi. Il backend dell’applica-
zione costruisce dinamicamente query Flux in base ai parametri ricevuti dal
frontend (sensori selezionati, range temporale, ecc.).

PostgresSQL PostgresSQL e un database relazionale open-source, utiliz-
zato per la gestione di tutti i dati strutturati dell’applicazione che richiedo-
no relazione complesse. Il database PostegresSQL implementa uno schema
normalizzato con sette tabelle principali. Le tabelle sono collegate tra loro
tramite chiavi esterne (foreign key) con vincoli di integrita referenziale per
garantire la consistenza dei dati.

11 database implementa vincoli di CHECK per valori ammissibili (es. role
IN ("admin’,’consorzio’, user’)), vincoli UNIQUE per garantire unicita (email,
nome dei sensori), e vincoli di foreign key con azioni CASCADE per mante-
nere consistenza durante ’eliminazione di un record all’interno del database.
Vengono inoltre implementati dei trigger su tutte le tabella per aggiorna-
re automaticamente il campo updated at ogni volta che un record viene
modificato.

20

3. Progettazione

id &

user_id &
mm_irrigated
irrigation_date
created_at

updated_at

int

int >

float
timestamp
timestamp

timestamp

ido int
name varchar(255)
cognome varchar(255)
email varchar(255)
password_hash varchar(255)
role varchar(2e)
is_approved boolean
fcm_device_token text
sampling_preference varchar(20)
auto_refresh_interval int
auto_refresh_enabled boolean
created_at timestamp
updated at timestamp

id&

user_id &
measurement_type
SENSOr_Names
threshold_value
comparison_operator
use_average

is_active

description
created_at
last_triggered_at
check_interval_minutes

notification_interval_minutes

int

int

varchar (50)
text
decimal(1e,2)
varchar(s)
boolean
boolean
text
timestamp
timestamp
int

int

< user_id &
sensore_id

created_at

updated_at

id 2
nome_dispositivo
consorzio_id &
created_at

updated_at

id &
nome

< owner_id &
is_approved
created_at

updated_at

& int >
timestamp

timestamp

int —o
varchar(255)

int >—
timestamp

timestamp

int —o ~

varchar(255)

int
boolean
timestamp

timestamp

consorzio_members

id 2

—= user_id &
consorzio_id &
is_approved
created_at

updated_at

Figura 3.1: Diagramma di dominio

int
int

int >~
boolean
timestamp

timestamp

dbdiagram.io

3.1 Panoramica generale 21

Tabella

Descrizione

users

Contiene 'anagrafica completa degli utenti del siste-
ma: credenziali di autenticazione (email e password
hash), ruolo (admin/consorzio/user), stato di appro-
vazione, token FCM per le notifiche push e preferen-
ze personalizzate come 'intervallo di auto-refresh e la
modalita di campionamento. La password e salvata

esclusivamente come hash BCrypt.

consorzi

Rappresenta i consorzi agricoli registrati nel sistema.
Ogni consorzio ha un proprietario (owner__id), un no-
me descrittivo e uno stato di approvazione. I consorzi
non approvati esistono nel database ma non possono

effettuare il login finché 'admin non li abilita.

consorzio members

Implementa la relazione many-to-many tra utenti e
consorzi. Ogni richiesta di adesione crea un record
con is_approved = false. Il responsabile del con-

sorzio gestisce approvazioni e rifiuti.

sensori

Contiene tutti i dispositivi loT registrati. Ogni sen-
sore ¢ identificato univocamente dal nome disposi-
tivo e puo essere assegnato a un consorzio tramite
consorzio_id. I sensori con consorzio_id = NULL

sono non allocati e visibili solo all’admin.

thresholds

Memorizza le soglie configurate dagli utenti, con tipo
di misurazione, valore critico, operatore matemati-
co, lista di sensori associati e intervalli di controllo/-
notifica. Il campo last_triggered_at implementa
un cooldown per evitare spam di notifiche. Il campo
use_average, di default impostato come false, serve
per decidere se utilizzare la media dei valori o control-

larli singolarmente durante il controllo della soglia.

irrigation_ notes

Storico delle irrigazioni registrate dagli utenti: quan-

tita d’acqua (in mm), data/ora, e timestamp di crea-

zione/modifica e campo di appunti facoltativo.

Tabella 3.1: Descrizione delle tabelle del database PostgreSQL

22

3. Progettazione

3.1.4 Servizio Cloud: Firebase Cloud Messaging

L’applicazione integra FCM, un servizio di Google per I'invio di notifiche
push multipiattaforma, che permette la comunicazione asincrona dal backend
verso i dispositivi mobili degli utenti anche quando 'app non e attiva.

Il sistema FCM segue un flusso di quattro fasi:

Registrazione del dispositivo quando un utente effettua il login per la
prima volta su un dispositivo, 1’applicazione richiede a Firebase un token
FCM univoco per quel dispositivo. Questo token, una stringa alfanumerica,
serve per identificare univocamente l'istanza dell’app su quello specifico di-
spositivo. Il token viene inviato al backend che lo salva nella tabella users
associato all'utente che ha effettuato il login.

Trigger notifica le notifiche possono essere triggerate da due eventi distin-
ti. Il primo ¢ il superamento di una soglia personalizzata: il servizio di moni-
toring in background rileva che un valore del sensore ha superato una soglia,
verifica che sia trascorso il periodo di cooldown dall’ultima notifica inviata
controllando il campo notification_ interval minutes della soglia, e invia la
notifica. Il secondo & una comunicazione broadcast da parte dell’admin a
tutti gli utenti, sia standard che consorzi.

Invio notifica trame FCM il backend costruisce un paylod JSON che
contiene titolo, messaggio, dati aggiuntivi (tipo soglia, valore rilevato, senso-
re, ecc.) e token FCM del destinatario. Firebase riceve la richiesta, valida il
token e inoltra la notifica.

Ricezione e visualizzazione il sistema operativo del dispositivo riceve la
notifica push e risveglia I'applicazione TRACE in background. L’app pro-
cessa il paylod, estrae i dati e visualizza la notifica nel notification tray del
dispositivo. Se I'utente clicca sulla notifica 'applicazione si apre.

3.2 Workflow e funzionalita dell’applicazione

Questa sezione illustra il flusso operativo dell’applicazione attraverso ’a-
nalisi dettagliata delle interfacce utente e delle funzionalita principali. Il
workflow e organizzato seguendo il percorso naturale dell’utente, partendo
dalla fase di autenticazione fino alla gestione delle soglie personalizzate.

3.2 Workflow e funzionalita dell’applicazione

23

3.2.1 Autenticazione

Il sistema di autenticazione gestisce tre ruoli: User, Consorzio e
Admin.

User Registrazione: 'utente User si registra fornendo i propri dati perso-
nali (nome, cognome, email e password) e selezionando il consorzio al quale
desidera iscriversi, tra la lista dei consorzi disponibili. Dovra attendere di
essere approvato all’interno del consorzio selezionato prima di poter eseguire
il login.

Permessi e funzionalita: dopo l'approvazione, 1'utente User puo visualiz-
zare esclusivamente i sensori associati dall’amministratore del consorzio di
appartenenza.

Consorzio Registrazione: 'utente Consorzio si registra fornendo dati per-
sonali (nome, cognome, email e password) e indicando il nome del consorzio
che si vuole registrare. L’'utente Consorzio dovra poi attendere di essere ac-
cettato dall'utente Admin prima di eseguire il login come amministratore del
CONSOI'Zio.

Permessi e funzionalita: una volta approvato, l'utente Consorzio riceve
dall’ Admin D’associazione dei sensori appartenenti al consorzio. L’ammini-
stratore del consorzio puo (i) assegnare sensori agli utenti iscritti; (ii) accet-
tare o rifiutare richieste di iscrizione; (iii) visualizzare i dati di tutti i sensori
assegnati.

Admin Registrazione: la registrazione dell’Admin non e possibile dall’ap-
plicazione, ma viene eseguita durante il primo avvio del backend, con creden-
ziali modificabili nel file .env.

Permessi e funzionalitad: I'amministratore puo (i) accettare o rifiutare le ri-
chieste di registrazione dei consorzi; (ii) inviare notifiche a tutti gli utenti;
(iii) gestire 1’associazione dei sensori ai consorzi; (iv) visualizzare i dati di
tutti i sensori disponibili.

3. Progettazione

[Android Emulator - Medium_Phone AP 26.:5554 | [Android Emulator - Medium_Phone_APL36.0:5554 | [Android Emulator - Medium_Phone_APL 36.0:5554 1

| 1045 @ *sn 10:49 @ .in
| Login & Registrazione Utente < Registrazione Consorzio

| | |
r E
Creail tuo account Registra il tuo Consorzio
Compila | campl per registrarti come utente La richiesta sara sottoposta ad approvazione
(B 2 Dati del Responsabile
& Nome
\ J ™
2 Nome
Email (B | =)
2 Cognome ‘ - .
p ~
~ 2 Cognome
Password \)]
I B consorzio* - h g
\ J > ~
Seleziona il consorzio a cul richiedere accesso I B Email
Login P .)
| B Email N
MNon hal un account? Registrati L) [@ Password © ‘
/ N & <
| @] Password Q o~ ~
L J & conferma Password o ‘
P N - J
| & Conferma Password ©
\ J
Registrati B Dati del Consorzio
I Ba Nome Consorzio ‘

Figura 3.2: Da sinistra: Login, Registrazione User, Registrazione Consorzio

3.2.2 Interfaccia Dashboard

La dashboard, navigabile attraverso una headbar, permette la
visualizzazione di sette viste principali:

e Schermata Home: vista principale dopo il login; permette I'aggiunta
di note di irrigazione e la visualizzazione delle ultime tre create.

3.2 Workflow e funzionalita dell’applicazione

25

[Android Emulator - Mediom Phone A

|
1054 @ van
Agritech Trace c 9
) Navigazione Temporale v
: L] @ =
Dashboard
Gestione delle note di irrigazione

Note Irrigazione

Note
) N [€l + Aggiungi
Irrigazione

15.0 mm
£ 21/10/2025 10:5¢

100.0 mm
® 005050

10.0mm
® oonomsow

Figura 3.3: Schermata Home

e« Schermata Temperatura: composta da quattro collapsible menu

(Tabella, Grafico Completo, Grafico WS, Grafico EM) per visualizzare
i dati dei sensori EM e WS.

26

3. Progettazione

17:39

Agritech Trace

0ER il G

Home

[Navigazione Temporale

¢ D
Temperat..

c ®

=
=

Sensore Corrent Minimo Minimo Massim Massim

EM-500-10 72°C 7.2°C 11:29

EM-500-12 9.1°C 9.1°C 1256

EM-500-13 89°C 89°C 1358

EM-500-14 87°C 87°C 16350

EM-500-15 -1.0°C -1.0°C 00:04 -1.0°

EM-500-16 73°C 69°C 1130
EM-500-17 83°C 83°C 1547
EM-500-18 68°C 63°C 1049
EM-500-19 88°C 88°C 1414
EM-500-2 89°C 89°C 11559
EM-500-20 66°C 65°C 10553

Ws-1- . .
Ao 36°C 10°C 0003
Ws-2-VIA

Nuova 35°C 07°C 0008

Ws-3- B .
poRTONOY 35°C 157 00:03

50°C

00:27

00:00

00:06

00:08

00:04

02:49

00:05

00:08

00:03

00:08

00:00

1233

12:03

05:15

17:40 00T il GD

c %

Home

Agritech Trace

[Navigazione Temporale v

¢ N -
Temperat..
~ Grafico Stazioni Meteo (WS) A

7 sensori

4. Stazioni Meteo (WS)

Temperatura (°C)

5AM 10AM 3PM
Tempo

Sensori:

WS-1-AGRIBIO

Agritech Trace

17:40 10T il G

Home

c %

[Navigazione Temporale v

¢ = -
Temperat..
Grafico Sensori EM-500 ~
11 sensori
i Sensori EM-500
Temperatura (°C)
12
10
e ———————
———————]
81
. S
&
4
2
0
-2
10 AM
Tempo
Sensori:

EM-500-10

Figura 3.4: Da sinistra: Tabella Temperatura, Grafico WS Temperatura,

fico EM Temperatura

Gra-

« Schermata Umidita: suddivisa in tre sezioni (Umidita dell’aria, Umi-
dita del suolo, Conducibilita del suolo), ciascuna con Tabella e Grafico

EM/WS.

3.2 Workflow e funzionalita dell’applicazione

27

17:40

Agritech Trace

00 il GO

Home

[Navigazione Temporale

Umidita

- Tabella Umidita dell'Aria

7 sensori

Dettagli Sensori Umidita

Nome
Sensore
Ws-1-
AGRIBIO
Ws-2-VIA
NUOVA

Ws-3-
PORTONOV

Ws-5-TRAS
VERSALE

Ws-6-
GAIANA
ws-7-
FIORENTIN

Ws-8-VIA
LARGA

Figura 3.5: Da sinistra: Tabella Umidita, Grafico

Valore
Corrent

99.0%

98.0%

98.5%

99.5%

98.0%

99.0%

99.0%

Valore

Minimo Minimo.

93.0%

91.0%

895%

920%

89.5%

9N5%

90.5%

ora

06:13

02:03

05:15

05:36

05:25

11:35

05:54

Valore

c &

I

ora

Massim Massim

99.0%

98.0%

985 %

99.5%

98.0%

995 %

99.0%

dita con menu chiusi

1653

17:03

17:21

16:31

15552

00:05

16:24

17:40

100 il G

Agritech Trace Home

[Navigazione Temporale

Umidita

86
84

Sensori:

~ Grafico Stazioni Meteo

Stazioni Meteo (WS)

Umidita dell'Aria (%)

10 AM
Tempo

WS-1-AGRIBIO

[Android Emulator - Medium_Phone_API_36.0:5554 W
1055 @ v4n
Agritech Trace Home C £

) Navigazione Temporale v
N K
@® Umidita dell'Aria
— Tabella Umidita dellAria
" sensori e
 Grafico Stazioni Meteo v
3¢ Umidita del Suolo
= Tabella Umidita del Suolo
i v
20 sensor
~ Grafico Sensori EM-500 v
4 Conducibilita del Suolo
== Tabella Conducibilita del Suolo
m A
12 sensorl
~ Grafico Sensori EM-500 v

Umidita, Schermata Umi-

e Schermata Pressione: due collapsible menu per visualizzare Tabella
e Grafico WS della pressione.

28

3. Progettazione

[ndroid Emuistor - Medium Phone A1 3605554
10:55 @

17:40 00T il G2

c u

17:40 00T il G

c &

Home Home

Agritech Trace

Agritech Trace Agritech Trace

Home

[Navigazione Temporale v [Navigazione Temporale v () Navigazione Temporale
(@) o @ . i L)
' ®S i o #oo
Pressione Pressione
= Tabella Pressione) o & Pressione
] o~ ~ Grafico Stazioni Meteo ~
7 sensori
i Tabella Pressione
Dettagli Sensori Pressione . Stazioni Meteo (WS)
Nome Valore Valore Ora Valore Ora Pressione (hPa) ~ Grafico Stazioni Meteo
Sensore Corrent Minimo. Minimo Massim Massim 1016
1014
Ws-1- 1012
10015 10015 17:33 1011.4 00:03
AGRIBIO 010
WSs-2-VIA o
eroue. 10021 10018 17:33 10114 0028 1006
£ 1004
ws-3- 1002
POy 10029 10029 17:39 10134 00:03 1000
998
WS-5-TRAS 996
Veneaie. 10029 10028 17:31 10131 00:01 o
wes 992
GAIANA 1000.3 1000.2 17:28 10105 00:01 10 AM
Tempo
ws-7-
Fonewny 10028 10028 17:35 10132 00:00
Sensori:
WS-8-VIA
LARGA 1001.7 1001.5 17:24 1011.7 00:04
WS-1-AGRIBIO

®an

c 9

%

Figura 3.6: Da sinistra: Tabella Pressione, Grafico Pressione,

Pressione con menu chiusi

Schermata

e Schermata Precipitazioni: tre collapsible menu (Riepilogo precipi-
tazioni, Grafico andamento, Tabella) per visualizzare totale, media e

andamento delle precipitazioni.

3.2 Workflow e funzionalita dell’applicazione

29

17:40 00 il G 17:40 10T il G2 17:40 00T il G

Agritech Trace Home C £ Agritech Trace Home C & Agritech Trace Home C £

[Navigazione Temporale v [Navigazione Temporale v (¥ Navigazione Temporale v

i & o = i & o = i & o =
Precipitazi... Precipitazi.. Precipitazi...
) Andamento Precipitazioni nel o
o Tabella Dettagliata N N oo, ~ @ Precipitazioni
Precipitazioni
DettagliSenzer|Erecipitazion] @ Precipitazioni nel Tempo B Riepilogo Precipitazioni S

3
Nome Valore Valore Ora Valore

ona t il Aty
Sensore Coment Minimo Minimo Massim Massim _ 25 @ Riepilogo Precipitazioni
£
E 2
el 0.0mm 0.0 00:03 1.1mm 17:03 z !
D) mm g Totale Media M
ws-2-via §'e 11533 0.09 2.62
Nuova 1Smm 0.0mm 00:03 1.5mm 17:18 § 1 mm mm mm
[
WS 9 1.9mm 0.0mm 00:03 1.9mm 17:21 s
poRTONOV Picco massimo registrato da: WS-8-VIA LARGA
0
WS-5-TRAS 10 AM
Ae® 15mm 0.0mm 0001 15mm 17:11
Tempo
Wb tmm 0omm ov0r 21mm 1725 = WS-1-AGRIBIO== WS-2-VIA NUOVA Andamento Precipitazioni nel o
== WS-3-PORTONOVO Tempc
ws-7-
FoReRTy 17 00mm 00:00 17mm 17:15
WS-8-VIA § "
SOV 26mm 00mm 0004 26mm 1724 = Tabella Dettagliata

v

— Tabella Dettagliata o Preciiitazioni

Figura 3.7: Da sinistra: Tabella Precipitazioni, Grafico Precipitazioni, Rie-

pilogo Precipitazioni

e Schermata Vento: cinque collapsible menu per visualizzare Tabella
e Grafico di velocita e direzione vento, oltre alla Rosa dei venti.

30 3. Progettazione

17:41 00 il G2

17:40 00T il G 17:41 10U il G

Agritech Trace Home C &

Agritech Trace Home C & Agritech Trace Home C £

[Navigazione Temporale v (%) Navigazione Temporale v
i & o = i & o = v i & & = -~
Vento Vento Vento
7] abella Velocita del Vento A ~ Grafico Staz Meteo S @ Rose deiVenti N
7 sensori Visualizzazione polare del vento

. " Fra #_ Stazioni Meteo (WS)
Dettagli Sensori Velocita Vento LALOL U RLED

WS-1-AGRIBIO
Velocita del Vento (m/s)
Nome Valore Valore Ora Valore ora
Sensore Corrent Minimo Minimo Massim Massim 6
WSl 3imis 01mis 0323 46mis 1623 g
AGRigio 31 ™/s 0.1 m/s i Velocita
4 Vento (m/
WS-2-VIA . . - s)
et 1emis 00mis 0123 33mis 1703 @,
=]
ws-3- 1
poRToNoy 23M/s 0.1m/s 0309 49mis 1539 2
WS-5-TRAS 14
N naS 17mis 00mis 0336 40mis 1516)
0
Ws-6-
e 12mis 0l mis 0116 Almis 1637

ws-7-
FroTe 0AM/s 00m/s 0120 1.4mis 0815

Sensori:
WS-8-VIA
et 21mis 00mis 0248 49mis 1534

WS-1-AGRIBIO

< @] O & N

Figura 3.8: Da sinistra: Tabella Velocita Vento, Grafico Velocita Vento, Rosa

dei venti

e Schermata Impostazioni: vista con opzioni avanzate variabili in
base al ruolo dell'utente.

3.2 Workflow e funzionalita dell’applicazione

31

[Android Emulator - Medium_Phone APl 36.0:5554. | [Ancroid Emulator - Medium_Phone APl 36.0:5554 |

[Android Emulator - Medium Phone API 3

1058 @ w4 1057 @ *Aan 1057 @ w4
€ Impostazioni € Impostazioni € Impostazioni
Gestione Soglie Invia a tutti gli utenti
. . Configura notifiche per valori > e ! [J
C Aggiornamento Automatico critici dei sensori
Abilita Aggiornamento
: Gestione Note Irrigazione
Automatico () O) e e rem . S Messaggio notifica
I dat i agglomeranno isualizza, modifica ed elimina le tue
note
automaticamente ogni § minuti
Max 200 carattert 07200

Intervallo di Aggiornamento @ Pannello Amministratore m

o 0gni § minuti
Valore Unita
5 ‘ {mlnuli

Gestione Completa
'a Associazioni Sensori >

Visualizza e gestisel tutt | sensort
(assegnati e non assegnatl)

@ Richieste Consorzi C
@ 4

Sensori Non Assegnati

@ Tipo di Sampling Dati
egli come elaborare | dati per | grafici Nessuna richiesta In attesa Ll (Becessolnapicol c
e Tutt ri sonc
utte fe richieste sono state gestite P
Tutti i sensori sono assegnati
sampling Avanzato . . . asseg
@ e w: Invia Notifica Push

Esci
>

Disconnetti Il tuo account

Invia a tutti gli utenti Y o
Consorzi e utenti normali

Gestione Soglie

Figura 3.9: Da sinistra: Schermata Impostazioni Consorzio, Schermata Im-

postazioni Admin pt1, Schermata Impostazioni Admin pt2

3.2.3 Navigazione Temporale

L’applicazione implementa un collapsible menu, visibile in tutte le viste,
che permette la visualizzazione dei dati di un range temporale diverso
da quello di default (dalla mezzanotte del giorno corrente). Il menu
presenta diverse opzioni di default, ma ¢ possibile selezionare un range
personalizzato, con un massimo di 90 giorni consecutivi selezionabili
per evitare un sovraccarico di dati.

32 3. Progettazione

| Android Emulator - Medium_Phone_AP|_36.0:5554 | Android Emulator - Medium_Phone_AP|_36.0:5554
324 a0 |
Agritech Trace c o X Salva
Seleziona intervallo
»
[Navigazione Temporale ~ 5 nov - 5nov 7z
[Periodo Dati 05/11/2025 N M M N M s b
Ultima settimana Ultimo mese 1 2
£ Personalizzato s o ° 3
Ottimizzazione Performance
) L]] =
Dashhboard

Gestione delle note di irrigazione

Note Irrigazione

Note
6 (Gl + Aggiungi
Irrigazione

15.0 mm
& 21/10/2025 10:50

100 O mm

Figura 3.10: Da sinistra: Menu navigazione temporale, Menu selezione range

personalizzato

3.2.4 Note di Irrigazione

L’applicazione implementa la possibilita di aggiungere note di irrigazio-
ne. E possibile creare delle nuove note dall’apposito ment accessibile
dalla schermata delle impostazioni, dove si puo modificare o eliminare
note gia esistenti, o dalla schermata Home tramite ’apposito bottone.
Le note sono composte da data e ora di irrigazione e millimetri di acqua
irrigata (con un massimo di 100 mm).

3.2 Workflow e funzionalita dell’applicazione

Android Emulator - Medium_Phone_API_36.0:5554 Android Emulator - Medium_Phone_API_36.0:5554 Android Emulator - Medium_Phone_API_36.0:5554
1140 @ a1
& Gestione Note Irrigazione @
& 150mm P .

3 Imigazione: 21/10/2025 10:50
a 025 10:5

& 100.0mm
9 Imigazione: 21/10/2025 10:50
- 5

& Aggiungi Nota Irrigazi...

Le note di rgarione alutano atenere Modifica Nota Irrigazione

& 100mm 7 i @ Moo dellacqua fornita alle piante e a
2 Irrigazione: 07/10/2025 10:47 correlare i dati con le misurazioni dei

d 0/2025 10 sensori 10.0 mm

Millimetri irrigati

\ @ Quantita Acqua (mm): ‘ Data irrigazione)

07/10/2025 10:47

Data & Ora Irrigazione:
{m 05/11/202511:41 >

| Annulla Salva

Annulla Aggiungi

+ Aggiungi Nota

Figura 3.11: Da sinistra: Schermata Note, Aggiunta Nuova Nota, Modifica
Nota Esistente

3.2.5 Soglie personalizzabili

L’applicazione permette di controllare e tenere sotto osservazione possibili
valori critici prelevati dai sensori. Questo & possibile tramite la creazione
di thresholds personalizzabili, tramite i quali I'utente puo selezionare uno
o piu sensori target (se sono selezionati piu sensori ¢ possibile scegliere se
controllare i singoli valori o controllare la media) e impostare un valore critico,
un range di check time e uno di notifica.

In base al valore di check impostato, il backend effettua chiamate al da-
tabase InflurDB e controlla se il valore corrente del sensore o della media dei
sensori risulta critico. Se il backend trova che una soglia ¢ stata superata,
viene mandata una notifica push all’'utente, in base al time range di notifica
selezionato durante la creazione della soglia.

La creazione delle soglie e la gestione di quelle gia esistenti ¢ possibile
dall’apposita sezione all’interno delle impostazioni.

34

3. Progettazione

Android Emulator - Medium_Phone_API_36.0:5554

Velocita Vento

o Velocita Vento (WS-7- .

FIORENTINA) > 10.0

7/ Modifica # Elimina

Android Emulator - Medium_Phone_API_36.0:5554

£ Nuova Soglia

Tipo di Misurazione
§ Velocita Vento S

Seleziona Sensori (Vvelocita Vento)

WS-1-AGRIBIO

WS-2-VIA NUOVA

WS-3-PORTONQVO

WS-5-TRASVERSALE

WS-6-GAIANA

WS-7-FIORENTINA

WS-8-VIA LARGA

1 sensore(i) selezionato(i)

Annulla

Android Emulator - Medium_Phone_API_36.0:5554

£ Nuova Soglia

l ~* Valore Soglia

Operatore di Canfronta
{-o" Maggiore di (>)

E Descrizione (opzionale)

Intervallo Controllo

{@ 1 minuti

Minime 1 minuto - Frequenza di verifica dei se..

intervallo Natifiche
{"‘ 30 minuti

Minimo 1 minuto - Cooldown tra una notifica e ..

Soglia Attiva
Riceveral notifiche quando @
viene superata

Figura 3.12: Da sinistra: Gestione Soglie, Creazione nuova soglia (1), Crea-

zione nuova soglia (2)

Capitolo 4

Implementazione

L’analisi dell’'implementazione dell’applicazione procede dal backend ver-
so il frontend, concentrandosi sui meccanismi chiave che permettono il
corretto funzionamento del sistema: ['autenticazione JW'T, il monitorag-
gio delle soglie, l'integrazione del servizio cloud FCM e gli algoritmi di
campionamento.

4.1 Implementazione del backend

Il backend costituisce il cuore dell’applicazione, implementando tutta la
logica di business, la gestione della sicurezza e i servizi in background che
operano indipendentemente dalle richieste degli utenti. La scelta di Dart
come linguaggio si ¢ rivelata strategica per mantenere coerenza tecnologica
con il frontend.

4.1.1 Framework Shelf e architettura modulare

Il backend utilizza Shelf, un framework web per Dart che implementa il
pattern middleware/handler. A differenza dei framework come Express.js o
Spring Boot, Shelf adotta un sistema dove ogni funzionalita ¢ un middleware
indipendente che puo essere assemblato in una pipeline.

La struttura del progetto riflette questa filosofia modulare:

backend/
|- bin/

| |- server.dart # Entry point principale

35

36

4. Implementazione

I |- init_admin.dart # Script inizializzazione admin

I |- healthcheck.dart # Health check per container orchestration
|- 1ib/

| |- middleware/ # Componenti pipeline HTTP

I | |- auth middleware.dart

I | |- logging middleware.dart

I | |- rate 1limit middleware.dart

| |- routes/ # Handler endpoint REST
I | |- auth_routes.dart

I | |- influx_routes.dart

I | |- threshold routes.dart

I | |- sensor routes.dart

I | |- irrigation_note_routes.dart

I | |- notification_routes.dart

I |- services/ # Logica business e servizi background
I | |- jwt_service.dart

I | |- sql_service.dart

I | |- influxdb_service.dart

I | |- threshold monitoring service.dart

I | |- fcm_service.dart

I | |- sensor_sync_service.dart

I |- models/ # Rappresentazioni dati
I |- user.dart

I |- threshold.dart

I |- sensor.dart

I |- irrigation_note.dart

|- Dockerfile # Containerizzazione multi-stage

| - pubspec.yaml # Dependency management

Questa organizzazione permette di mantenere un’alta coesione (ogni mo-
dulo ha una responsabilitd ben definita) e basso 1'accoppiamento (i moduli
comunicano attraverso delle interfacce chiare)

4.1 Implementazione del backend

37

4.1.2 Pipeline middleware e gestione richieste HT'TP

Quando arriva una richiesta HTTP al server, questa attraversa una pipe-
line di middleware che implementano cross-cutting-concerns (preoccupazioni
trasversali che riguardono tutte le richieste). La pipeline viene costruita
all’interno di server.dart seguendo un ordine preciso:

o CORS Middleware: gestisce le politiche di Cross-Origin Resource Sha-
ring, indispensabile per permettere al frontend di comunicare con il
backend anche quando eseguito su domini o porte differenti.

o Logging Middleware: registra ogni richiesta con timestamp, metodo
HTTP, endpoint, IP sorgente, durata dell’elaborazione e status code
della risposta. I log vengono scritti sulla console.

o Rate Limiting Middleware: implementa la protezione contro attacchi
DDoS e abuso dell’API limitando il numero di richieste per IP/Token
in una finestra temporale (di default impostato a 200 richieste ogni 15
minuti). Utilizza una mappa con timestamp con scadenza automatica.

o FError Handler Middleware: cattura tutte le eccezioni non gestite dai
middleware successivi e all’'interno degli handler, restituendo risposte
JSON strutturate. Previene crash del server.

o Auth Middleware: valida i token JW'T per gli endpoint protetti. Opera
in due modalita: requireAuth(), che blocca le richieste che non possie-
dono un token valido, e optionalAuth(), che processa il token se pre-
sente ma permette ’accesso anche senza. Dopo la validazione estrae
dal paylod le informazioni utente e le inserisce all’interno del contesto
della richiesta, rendendole accessibili agli handler successivi senza dover
ricodificare il token.

o Router: direziona le richieste agli handler specifici in base al metodo
HTTP e al percorso URL. Utilizza shelf router che supporta i path
parameters (/users/:id) e query parameters. Il router ¢ organizzato in
una struttura gerarchica con mount points per ogni dominio funzionale

(/api/vl/auth, /api/v1l/influx, /api/v1/thresholds, ecc.)

Questa architettura a pipeline garantisce separation of concerns, testa-
bilita (ogni middleware puo essere testato isolatamente) e flessibilita (pos-
sono essere aggiunti nuovi middleware senza dover modificare il codice gia
esistente).

38

4. Implementazione

4.1.3 Sistema di autenticazione JWT

Il sistema di autenticazione € implementato con JSON Web Tokens, una
modalita standard per l'autenticazione stateless in architetture distribuite.
Il sistema genera due tipi di token:

Access Token : token a breve scadenza (1 ora) che I'utente include al-
Iinterno degli header Authorization: Bearer <token> di ogni richiesta API
protetta. All’interno del paylod JSON contiene:

sub (subject): id univoco dell’utente

« role: ruolo per RBAC (per determinare i permessi)
o email, firstName, lastName: informazioni dell’utente
e iat (issued at): timestamp di emissione del token
 exp (expiration): timestamp di scadenza del token

o type: "access', per distinguerlo dal refresh token

I1 token e firmato utilizzando una chiave segreta condivisa. La firma permette
e garantisce integrita (il paylod non puo essere modificato senza invalidare
la firma) e autenticita (solo chi possiede la chiave segreta puo generare dei
token validi)

Refresh Token : token a lunga scadenza (7 giorni) usato per ottenere
nuovi access token senza dover richiedere nuovamente le credenziali. Contiene
paylod minimale (sub, email, type:'refresh"). Quando I’access token scade,
il frontend puo fare richiesta all’endpoint /api/v1/auth/refresh inviando il
refresh token e ottenere una nuova coppia di token.

Questo schema a doppio token serve per bilanciare la sicurezza e I'usabili-
ta dell’applicazione: access token brevi limitano la finestra di vulnerabilita se
rubati; refresh token lunghi evitano login ripetuti per migliorare I’esperienza
utente; in caso di compromissione, 'invalidazione dei refresh token forza ad
effettuare nuovamente il login globale.

La validazione del token all’interno del AuthMiddleware esegue tre con-
trolli: (i) verifica la firma, (ii) verifica la scadenza controllando che il
timestamp corrente sia minore dell’exp del paylod, (iii) parsa il paylod
decodificandolo in Base64URL.

4.1 Implementazione del backend

39

Se la validazione fallisce (firma invalida o token scaduto), la richiesta viene
respinta con 401 Unauthorized. Se ha successo tutte le informazioni prece-
dentemente elencate vengono iniettate nel context della richiesta e I’handler
puo accedervi tramite request.context| userld’] e request.context|'role’].

4.1.4 Integrazione InfluxDB e query Flux

Come spiegato nel capitolo precedente, InfluxDB e un database specializ-
zato per i dati time-series, ottimizzato per query temporali complesse. Il bac-
kend funge da proxy intelligente tra il frontend e InfluxDB, implementando
due responabilita critiche:

1. Security Layer : InfluxDB non possiede un sistema di autenticazione
granulare per gli utenti. Il backend traduce l'autenticazione JWT in query
Flux che filtrano i dati in base ai sensori autorizzati per 1'utente che sta
effettuando la richiesta. Questo garantisce che utenti non autorizzati non
possano accedere a dati di sensori di altri consorzi anche se riuscissero a
bypassare il frontend.

2. Data Trasformation : InfluxDN restituisce dati in formato CSV an-
notato. Il backend parsa questo file, lo converte in formato JSON leggibile
dal frontend e arricchisce i dati (aggiungendo per esempio: nome del sensore,
unita di misura, statistiche aggregate, ecc.).

Le query Flux utilizzano un modello funzionale a pipeline. Esempio di

query:

Codice 4.1: Esempio query Flux
from(bucket:)
| >range (start: 2025-11-24T00:00:00Z, stop: 2025-11-25T14:30:00Z)
[>filter(fn: (r) => r._measurement ==
and r. field ==)

[>filter(fn: (r) => contains(value: r.device_name, set: [

,) 1)
[>filter(fn: (r) => r._value > -40.0 and r._value < 80.0 and r.
_value !'= -0.100)
| >keep(columns: [, , D

Analisi della pipeline della query Flux:

4. Implementazione

1. from(bucket: "trace project'): seleziona il bucket InfluxDB contenente
i dati. E I'equivalente di un database nei sistemi SQL

2. range(start:..., stop: ...): filtra temporalmente i dati. I timestamp
sono in formato UTC, vengono convertiti dal backend nella timezone
italiana corrente. Il backend costruisce questi valori dinamicamente,
convertendo i dati temporali ricevuti dal frontend.

3. filter(fn: (r) => r._measurement == "devi-
ce_frmpayload__data_temperature" and r._field == "value"): doppio
filtro che seleziona:

o _measurement: equivale al nome della tabella in SQL. Influ-
xDb organizza i dati per tipologia di misurazione (temperature,
humidity, pressure, ecc.)

o _field == "value": ogni measurement puo avere diversi field (es:
value, quality, status) e nella richiesta viene selezionato quello che
si vuole ricevere, in questo caso solo il valore numero effettivo.

4. filter(fn: (r) => contains(value: r.device name, set: |...])): rappresen-
ta il filtro di sicurezza critico. La funzionalita contains() verifica che il
device name sia presente nella lista dei sensori autorizzati per I'uten-
te. Il backend costruisce questo array in modo dinamico, interrogando
PostgresSQL. Questo impedisce data leakage.

5. filter(fn: (r) => r._value > -40.0 and r._value < 80.0 and r._value
= -0.100): rappresenta il filtro per la qualita dei dati. Elimina valo-
ri outlier non plausibili: temperature sotto i -40°C o sopra i 80°C. Il
valore -0.1°C ¢ un error code documentato dal produttore che indica
un malfunzionamento temporaneo del sensore. Questi filtri prevengo-
no che errori di lettura o malfunzionamenti corrompano le statistiche
aggregate (media, min, max).

6. keep(columns: ['_time", " value', "device name']): proiezione finale
che mantiene solo le colonne necessarie, riducendo il peso e la dimen-
sione del CSV restituito. InfluxDB di default include metadati inutili
al frontend.

Risultato della query in CSV annotato:

Codice 4.2: Esempio risultato CSV annotato delle query Flux

#group,false,false,true,true

4.1 Implementazione del backend 41

#datatype,string,long,dateTime:RFC3339,string,double
#default, _result,,,
,result,table,_time,device_name,_value
,_result,0,2025-11-24T06:15:00.000Z,EM-500-1,18.5
,_result,0,2025-11-24T06:20:00.000Z,EM-500-1,18.7
,_result,1,2025-11-24T06:15:00.000Z,EM-500-2,18.2
,_result,1,2025-11-24T06:20:00.000Z,EM-500-2,18.4

Le prime righe (quelle con #) contengono i metadati del formato. Il
backend parsa le righe dei dati, converte i timestamp da UTC alla timezone
italiana e trasforma il CSV in array JSON utilizzati poi dal frontend per la
costruzione delle tabelle e dei grafici:

Codice 4.3: Esempio JSON creato dal parsing del CSV

[
{ 5 5
18.5},
{ . 5
18.7%,
{ 5 s
18.2},
{ . 5
18.4}
]

4.1.5 Servizio di monitoraggio delle soglie

Il ThresholdMonitoringService € uno dei componenti piu critici del bac-
kend e implenta un sistema di alerting che opera in background 24/7 in-
dipendentemente dall’interazione utente. Il servizio si avvia in automatico
all’inizializzazione del server e continua a funzionare fino all’arresto.

Architettura del servizio : il servizio utilizza un Timer.periodic di Dart
per eseguire controlli a cadenza regolare (1 minuto). A ogni tick del timer,
il servizio:

4. Implementazione

1. Recupera le soglie attive: esegue una query PostgresSQL che selezio-
na tutte le soglie con valore is_active = true all’interno della tabella
thresholds;

2. Filtra per l'intervallo di controllo: per ogni soglia verifica se e tra-
scorso il tempo minimo necessario dall’ultimo controllo, confron-
tando il timestamp corrente con il parametro lastTriggeredAt +
checkIntervalMinutes;

3. Query InfluxDB: per ogni soglia da controllare esegue una query Flux
per ottenere gli ultimi valori dei sensori specificati nella soglia in
questione;

4. Calcolo dei valori da confrontare: se la soglia ha come attributo
use_average = true, calcola la media dei valori ricevuti; altrimenti
utilizza i singoli valori;

5. Valutazione della condizione: confronta il valore calcolato nel punto
precedente con il threshold value usando I'operatore specificato nella
soglia;

6. Invio della notifica: se la condizione ¢ soddisfatta, il servizio verifi-
ca se e trascorso abbastanza tempo dall’ultima notifica confrontan-
do lastTriggeredAt + notificationIntervalMinutes con il time-
stamp corrente. Se il cooldown e scaduto, il servizio invia la notifica;
altrimenti viene soppressa per evitare spam;

7. Aggiornamento dei timestamp: aggiorna i timestamp la-
st_ triggered _at e notification_interval minute con i valori
aggiornati.

Gestione degli intervalli Il sistema implementa due intervalli indipen-
denti per ottimizzare le risorse e I'esperienza utente:

e check interval minutes: determina ogni quanto interrogare il databa-
se InfluxDB. Questo valore ¢ personalizzabile durante la creazione della
soglia ed & necessario perché ogni tipologia di dato (temperatura, umi-
dita, pioggia, ecc.) ha valori critici differenti e richiede un diverso livello
di rapidita nella rilevazione e nella risposta agli eventuali superamenti
della soglia.

o notification_interval minutes: implementa il cooldown tra notifiche
successive di una stessa soglia. E necessario per evitare lo spam di

4.1 Implementazione del backend

43

notifiche, permettendo pero al sistema di tenere traccia comunque della
condizione in modo regolare.

Integrazione FCM L’invio delle notifiche push utilizza FCM V1 API con
sistema di autenticazione OAuth2. Il processo di invio si divide in quat-
tro fasi: (i) il backend carica il file firebase-service-account.json, che contie-
ne le credenziali del service account Google; (ii) genera un OAuth2 access
token temporaneo usando le credenziali del service account; (iii) recupe-
ra dalla tabella users il fem_device token dell’utente target; (iv) costrui-
sce il paylod JSON della notifica; (v) invia una richiesta POST HTTPS
a https://fcm.googleapis.com/v1/projects/project_id/messages:send con
I’access token all’interno dell’header Authorization: Bearer.

Esempio di paylod JSON per l'invio della notifica:

Codice 4.4: Esempio paylod JSON per I'invio di una notifica

La sezione notification crea ’alert visivo che comparira sul dispositivo, mentre
data contiene il paylod personalizzato che sara processato dall’applicazione
(es: aprire direttamente il grafico della temperatura quando l'utente clicca
sulla notifica).

44

4. Implementazione

4.1.6 Servizio di sincronizzazione dei sensori

Il SensorSyncService risolve il problema di coerenza dei dati: i sensori
IoT sono configurati in InfluxDB (che riceve i dati) ma devono essere regi-
strati anche in PostgresSQL per ’assegnazione ai consorzi. Senza sincroniz-
zazione automatica, i nuovi sensori dovrebbero essere aggiunti manualmente
dall’admin o risulterebbero non esistenti al sistema.

Il servizio esegue una sincronizzazione periodica, ogni 24 ore, con il
seguente workflow:

1. Query InfluxDB: esegue una query FLux per estrarre ’elenco di tutti i
device name unici presenti all’interno del bucket;

2. Query PostgreSQL: esegue una query SQL per estrarre tutti i
nome__dispositivo presenti all’interno della tabella sensori;

3. Controllo differenze: calcola la differenza insiemistica confrontando i
sensori presenti in InfuxDB ma assenti in PostgreSQL;

4. Inserimento batch:

inserisce i nuovi sensori in PostgreSQL con

parametro consorzio_id = NULL (non assegnato ancora a nessun
CoNsorzio);

5. Logging: registra il numero di sensori sincronizzati.

4.1.7 Routing e API REST
Il backend esone un’API RESTful:

Endpoint di Autenticazione (/api/v1/auth)

Tabella 4.1: Endpoint di Autenticazione

Metodo | Endpoint Descrizione
POST | /login Autentica 'utente e restituisce la coppia di token
(access + refresh).
POST | /register Registra un nuovo utente (user o consorzio).
POST | /refresh Rinnova l'access token usando il refresh token.
GET | /me Ottiene il profilo dell’'utente corrente (protetto).
PUT /update-fcm-token | Aggiorna il token FCM del dispositivo (protetto).

4.1 Implementazione del backend 45

Endpoint dati InfluxDB (/api/v1/influx) — Protetti

Tabella 4.2: Endpoint dati InfluxDB

Metodo | Endpoint Descrizione
POST | /temperature/table Ottiene dati di temperatura per range temporale.
POST | /air-humidity/table | Ottiene dati di umidita dell’aria.
POST | /pressure/table Ottiene dati di pressione atmosferica.
POST | /rainfall/table Ottiene dati di precipitazioni.
POST | /soil-moisture/table | Ottiene dati di umidita del suolo.
POST | /wind-speed/table Ottiene dati di velocita del vento.
POST | /wind-direction/table | Ottiene dati di direzione del vento.

Endpoint soglie personalizzate (/api/v1/thresholds) — Protetti

Tabella 4.3: Endpoint soglie personalizzate

Metodo | Endpoint | Descrizione
GET / Lista tutte le soglie dell'utente corrente.
GET /active Lista solo le soglie attive.
POST |/ Crea una nuova soglia.
PUT /:id Aggiorna una soglia esistente.
DELETE | /:id Elimina una soglia.
POST | /:id/toggle | Attiva o disattiva rapidamente una soglia.

46

4. Implementazione

Endpoint sensori (/api/v1/sensori) — Protetti

Tabella 4.4: Endpoint sensori

Metodo | Endpoint | Descrizione
GET /available | Lista i sensori disponibili per I'utente corrente.
GET | /all Lista tutti i sensori (solo admin).
POST | /:id/assign | Assegna un sensore a un consorzio (solo admin).

POST

/sync

Forza la sincronizzazione da InfluxDB (solo ad-

min).

Endpoint note di irrigazione (/api/v1l/irrigation-notes) — Protetti

Tabella 4.5: Endpoint note di irrigazione

Metodo | Endpoint | Descrizione
GET / Lista tutte le note dell’utente.
GET /range Filtra le note in base a un range temporale.
POST |/ Crea una nuova nota.
PUT /:id Aggiorna una nota esistente.
DELETE | /:id Elimina una nota.

Endpoint notifiche (/api/v1/influx) — Solo admin

Tabella 4.6: Endpoint notifiche

Metodo | Endpoint | Descrizione
POST | /broadcast | Invia una notifica push a tutti gli utenti.
POST | /send Invia una notifica push a un utente specifico.

Le risposte seguono il formato JSON con gestione degli errori standar-
dizzata. FErrori 4xx indicano problemi dal lato client e errori 5xx dal lato

server.

4.2 Implementazione del frontend

47

4.2 Implementazione del frontend

4.2.1 Architettura e gestione dello stato

Flutter utilizza il pattern Widget Tree dove ogni elemento dell’interfaccia
¢ un widget immutabile. L’applicazione e basata principalmente su Stateful-
Widget per schermate con stato mutabile (schermate dei grafici, schermata
delle impostazioni) e StatelessWidget per i componenti puri (card, dialog).
La gestione dello stato avviene in modo ibrido:

o Stato locale: i widget con State object preservano lo stato locale (es:
_isLoading, _selectedDateRange). Quando lo stato cambia, il metodo
setState() chiama la ricostruzione del widget.

« Stato globale attraverso Singleton Services: i dati condivisi all’interno
di pit schermate (token di autenticazione, preferenze dell’utente) sono
gestiti tramite servizi Singleton che permettono ai dati di persistere
oltre il lifecycle dei widget. AuthService,SamplingPreferenceService,
AutoRefreshService sono tutte istanze globali accessibili da ovunque
all’interno dell’app.

o Persistenza con SharedPreferences: tuttii dati che devono sopravvivere
alla chiusura o al restart dell’applicazione (token JWT, ruolo utente,
preferenze) vengono salvati all'interno di SharedPreferences. Lettura
asincrona all’avvio e scrittura asincrona ad ogni modifica apportata.

4.2.2 Comunicazione con il backend

BackendService ¢ 'unico punto di accesso per tutte le chiamata HTTP.
Questa centralizzazione ha diversi vantaggi.

Gestione dei token automatica : ogni richiesta effettuata verso un end-
point protetto include automaticamente il token JWT nell’header, evitando
la duplicazione in ogni schermata.

Timeout differenziati : le chiamate agli endpoint di InfluxDB, che uti-
lizzano query pesanti, hanno un timeout maggiore rispetto alle chiamate
standard.

48

4. Implementazione

Retry logic : tutti gli errori transienti (problemi temporanei causati da
condizioni ambientali 0 momentanee che si risolvono da soli), come timeout
network, 502/503 temporary unavailable, attivano un processo di retry auto-
matico, con exponential backoff (strategia di gestione degli errori in informa-
tica in cui un client ritenta una richiesta non riuscita dopo un intervallo di
tempo che aumenta esponenzialmente con ogni tentativo successivo) prima
di mostrare ’errore all’'utente.

Error handling centralizzato : gestione di tutte le risposte HTTP
provenienti dal backend. Le eccezioni principali e piu frequenti vengono
trasformate in formato user-friendly e piu leggibile dall’utente.

4.2.3 Ottimizzazione di performance: algoritmi di
sampling

Il rendering di grafici con migliaia di punti su dispositivi mobili potrebbe
causare diversi problemi, i principali sono:

o Frame drop e lag dell’interfaccia durante 'utilizzo dell’applicazione;

o Sovraccarico della memoria che potrebbe causare crash dell’app su
alcuni dispositivi:

o Trasferimento di dati eccessivo su connessioni cellulari.

Gli algoritmi di campionamento implementati all’interno dell’applicazione
risolvono questi problemi, riducendo le dimensioni del dataset visualizzato
mantenendo comunque alta la qualita dei dati. All’interno del progetto sono
stati implementati due algoritmi di sampling:

Campionamento uniforme : approccio basico che, dato un dataset con
N punti e un target di T punti da ottenere, calcola degli step = N /T e selezio-
na un punto ogni step posizioni. Per mantenere l'intero range temporale, il
primo e I'ultimo punto del dataset vengono sempre inclusi. Questo algoritmo
garantisce una distribuzione temporale uniforme. Se il dataset contiene i da-
ti delle ultime 72 ore, i punti campionati saranno uniformemente distribuiti
all’interno di questa finestra temporale. Lo svantaggio principale di questo
algoritmo e la possibilita di perdita di eventi critici se posizionati tra due
step, come uno sbalzo di temperatura per un periodo di tempo molto breve.
Questo algoritmo ha complessita O(T).

4.2 Implementazione del frontend

49

Codice 4.5: Algoritmo di sampling uniforme

// ***% Sampling untiforme semplice ***x
static List<SensorData> _sampleUniform(List<SensorData> data, int
targetPoints) {
final step = data.length / targetPoints;

final sampledData = <SensorData>[];

// Mantient sempre il primo punto

sampledData.add(data.first);

// Campiona uniformemente
for (int i = 1; i < targetPoints - 1; i++) {
final index = (i * step).round();
if (index < data.length) {
sampledData.add(datal[index]) ;

// Mantieni sempre l’ultimo punto
if (data.length > 1) {
sampledData.add(data.last) ;

return sampledData;

Campionamento con preservazione dei picchi : algoritmo sofisticato
che assegna degli score di importanza ad ogni punto basato sulla curvatura
locale (seconda derivata discreta). I punti dove la pendenza della curva
cambia bruscamente ricevono uno score alto. Il processo di questo algoritmo
e il seguente:

1. Per ogni punto i, estremi esclusi, viene calcolato lo slope pri-
ma del punto(pendenza, varazione tra due punti consecutivi).
slope prima=valueli]-valueli-1]

50

4. Implementazione

2. Per ogni punto i, estremi esclusi, viene calcolato slope dopo del punto.
slope_dopo=valueli+1]-valuel[i];

3. Per ogni punto i, estremi esclusi, viene calcolato lo score di curvatura
in valore assoluto. score[i]= | slope_dopo - slope_prima |;

4. Assegna score infinito al primo e all’ultimo punto del dataset, per
mantenerli sempre;

5. Ordina i punti per score decrescente;
6. Seleziona i migliori T punti in base allo score;

7. Riordina i punti cronologicamente per mantenere la sequenza
temporale.

Questo algoritmo ha complessita O(N log(N)), & piu costoso del sampling
uniforme ma permette di preservare picchi e anomalie anche con una ridu-
zione del numero di punti elevata. E adatto per dati con variabilita alta e
per eventi rari critici (allerte meteo).

Il sampling si attiva solo quando il numero dei punti ricevuti da InfluxDB
e maggiore di 3000 e il numero di punti target e fissato a 500 per garantire un
rendering fluido su tutti i dispostivi. L’utente puo selezionare quale algoritmo
di sampling utilizzare tramite la schermata delle impostazioni e la preferenza
viene salvata in SharedPreferences e applicata globalmente a tutti i grafici. E
possibile anche disabilitare il sampling tramite I'apposito bottone all’interno
del menu collapsible di navigazione temporale.

Codice 4.6: Algoritmo di sampling con preservazione dei picchi

/// ***x Sampling avanzato con preservazione det picchi ****
static List<SensorData> _sampleWithPeakPreservation(List<SensorData
> data, int targetPoints) {
// Non campionare se sotto la soglia minima (3000 punti)

if (data.length <= minPointsForSampling) return data;

// Non campionare se gia sotto il target

if (data.length <= targetPoints) return data;

// Ordina per timestamp

final sortedData = List<SensorData>.from(data);

4.2 Implementazione del frontend

sortedData.sort((a, b) =>a.timestamp.compareTo(b.timestamp));

// Calcola importanza di ogni punto

final importanceScores = _calculateImportanceScores(sortedData);

// Crea lista di punti con % loro score di importanza
final pointsWithScores = <MapEntry<SensorData, double>>[];
for (int i = 0; i < sortedData.length; i++) {
pointsWithScores.add (MapEntry(sortedDatal[i], importanceScores[i]
)5

// Ordina per importanza (maggiore = piu importante)

pointsWithScores.sort((a, b) =>b.value.compareTo(a.value));

// Prendi © punti piu importantt

final selectedPoints = pointsWithScores
.take (targetPoints)
.map((entry) =>entry.key)
.toList();

// Riordina per timestamp

selectedPoints.sort((a, b) =>a.timestamp.compareTo(b.timestamp)) ;
return selectedPoints;
/// **%* Calcola score di importanza per ogni punto ****
static List<double> _calculateImportanceScores(List<SensorData>
data) {

final scores = List<double>.filled(data.length, 0.0);

// Primi e ultimi punti sono sempre importants

4. Implementazione

if (data.isNotEmpty) {
scores[0] = 100.0;
if (data.length > 1) {
scores[data.length - 1] = 100.0;

// Calcola importanza basata su variazione locale
for (int i = 1; i < data.length - 1; i++) {

final prev = datali - 1];

final current = datalil;

final next = datali + 1];

// Calcola wvariazione (derivata seconda approssimata — curvatura
)

final leftSlope = current.value - prev.value;

final rightSlope = next.value - current.value;

final curvature = (rightSlope - leftSlope).abs();

// Calcola distanza temporale (punti piu distanziati sono piu
importanti)

final timeSpan = next.timestamp.difference(prev.timestamp) .
inMilliseconds;

final timeWeight = timeSpan / 1000.0;

// Score finale combina curvatura e peso temporale

scores[i] = curvature * 10 + timeWeight * 0.1;

return scores;

4.2 Implementazione del frontend

53

4.2.4 Auto-Refresh intelligente

Il sistema di aggiornamento automatico implementa una logica context-
aware. Un timer periodico, configurabile attraverso la schermata delle
impostazioni, ricarica i dati, verificando pero prima il contesto temporale:

» Se l'utente sta visualizzando i dati nel range temporale di default (dati
a partire dalla mezzanotte del giorno corrente) il refresh avviene in
automartico;

e Se l'utente sta visualizzando i dati di un range temporale diverso da
quello di default viene mostrato un dialog. Questo pop-up avvisa 'u-
tente che in quel momento dovrebbe avvenire un refresh dei dati ma
questo comporterebbe il reset del range temporale in visualizzazione.
L’utente, tramite due bottoni, puo decidere se procedere con il refresh
dei dati o saltare questo ciclo e aspettare il prossimo.

4.2.5 Visualizzazione dei dati con fl__chart e widget
personalizzati

I grafici all’interno dell’applicazione utilizzano principalmente la libreria
fl__chart per il rendering, integrata con widget personalizzati dove necessa-
rio. Questa libreria permette di creare grafici LineChart multi-serie (una
linea per sensore) per dati come temperatura, umidita e pressione e Bar-
Chart con aggregazone automatica oraria e giornaliera per i dati relativi alle
precipitazioni.

Tuttavia la libreria non fornisce supporto nativo per diagrammi polari e
quindi ¢ stato implementato un widget personalizzato WindRoseChart che
utilizza syncfusion_flutter_ charts per il rendering dei grafici radiali e Cu-
stomPainter per la griglia di sfondo. Il widget implementa una rosa dei venti
completa con: (i) griglia radiale con cerchi concentrici e 36 linee radiali da
10° 'una; (ii) RadialBarSeries per visualizzare la frequenza e l'intensita del
vento in ogni direzione; (iii) elaborazione dei dati complessa che combina i
dati della velocita con quelli della direzione, matchando i timestamp, calcola
la media per ognuno dei 36 settori e genera barre colorate in base all’intensi-
ta; (iv) legenda custom con 8 fasce di velocita ((0-1.5 m/s fino a >10.5 m/s)
mappate su scala colori dal blu (calma) al rosso (tempesta)); (v) etichette
dei gradi posizionate radialmente ogni 45° per 'orientamento cardinale.

L’algoritmo di processing del widget custom ¢ particolarmente sofisticato:

1. Crea una map timestamp-indexed per velocita e direzione;

54

4. Implementazione

2. Per ogni timestamp in comune normalizza la direzione in gradi e la
raggruppa in uno dei 36 settori;

3. Calcola la frequenza (numero di occorrenze) e velocita media per ogni
settore;

4. Genera WindRoseData solo per i settori con dei dati (i settori che non
presentano dati non vengono visualizzati);

5. Colora dinamicamente le barre usando pointColorMapper, per
applicare il gradiante basato sulla velocita media del settore.

Codice 4.7: Funzione _processWindData() per rose dei venti

List<WindRoseData> _processWindData() {
// Usa direttamente le liste invece di combinare sensori multiple
List<SensorData> allSpeedData = windSpeedData;

List<SensorData> allDirectionData = windDirectionData;

// Crea mappa per combinare velocita e direzione per timestamp
Map<DateTime, double> speedMap = {};
Map<DateTime, double> directionMap = {};

for (var speed in allSpeedData) {

speedMap [speed.timestamp] = speed.value;

for (var direction in allDirectionData) {

directionMap[direction.timestamp] = direction.value;

// Crea 36 settori per i gradi (ogni 10 gradti: Odeg, 10deg, 20deg,
., 350deg)
List<String> directions = [];
for (int i = 0; i < 36; i++) {
directions.add(’ ${ });

4.2 Implementazione del frontend

55

Map<String, List<double>> directionBins = {};
for (String dir in directions) {

directionBins[dir] = [];

// Raggruppa % dati per direzione (ogni 10 gradi)
speedMap. forEach((timestamp, speed) {
if (directionMap.containsKey(timestamp)) {
double directionDegrees = directionMap[timestamp]!;
// Normalizza la direzione e raggruppala in settort di 10
gradi
int sectorIndex = (directionDegrees / 10).round() % 36;
String direction = ’${ s
directionBins[direction]!.add(speed);
}
1)

// Crea datt per la rosa dei wventi — SOLO settorti com wvento

List<WindRoseData> windRoseData = [];

for (String direction in directiomns) {
List<double> speeds = directionBins[direction]!;
if (speeds.isNotEmpty) {
double avgSpeed = speeds.reduce((a, b) =>a + b) / speeds.
length;
double frequency = speeds.length.toDouble();

windRoseData.add (WindRoseData(
direction: direction,
frequency: frequency,
avgSpeed: avgSpeed,

)5

56 4. Implementazione
b
// Non aggiungere settori vuoti - RadialBarSeries gestira
automaticamente
b
return windRoseData;
b

4.3 Workflow del backend

Il backend dell’applicazione e un server implementato in Dart utilizzando
il framework Shelf. All’avvio, il sistema carica il file .env per accedere alle
variabili di configurazione, come le chiavi API di Firebase e le credenziali
dei database. Subito dopo il caricamento delle variabili d’ambiente vengo-
no inizializzati i service core dell’applicazione. SqlService viene istanziato
come Singleton e crea e gestisce la connessione al database PostgreSQL. Pa-
rallelamente viene inizializzato InfluxDbService, sempre come Singleton, che
configura la connessione al database InfluxDB. Entrambe le connessioni ai
database richiedono parametri privati e sensibili che vengono prelevati dal
file .env del backend.

Una volta che le connessioni ai database sono state stabilite, viene inizia-
lizzato il FirebaseAdminService, che carica il file firebase-service-account.json
contenente tutte le credenziali del service account Firebase. Questo servizio
viene utilizzato per l'invio di notifiche push tramite FCM e per verificare i
token FCM.

Dopo l'inizializzazione dei servizi di base, il server procede con la con-
figurazione della pipeline HTTP. Viene creata una pipeline che concatena
una serie di middleware eseguiti in sequenza per ogni richiesta che il backend
riceve dal frontend. In ordine:

o logRequests(): registra ogni richiesta HTTP con timestamp, path,
status code della risposta e metodo.

« createCorsHeadersMiddleware(): aggiunge gli header necessari per per-
mettere al frontend, in esecuzione su origini diverse, di effettuare
richieste al backend.

o jwt_middleware.dart: intercetta ogni richiesta proveniente dal fron-
tend e verifica la presenza dell’header Authorization. Se & pre-

4.3 Workflow del backend

57

sente, estrae il token JWT e lo decodifica utilizzando la chiave
JWT SECRET presente all'interno del .env, estraendo userld, role
e email.

Una volta completata la configurazione della pipeline, vengono registrate
le routes dell’applicazione. Ogni area funzionale dell’app ha la propria classe
di routes:

AuthRoutes: autenticazione e registrazione.

SensorRoutes: gestione dei sensori e recupero dei dati.

ThresholdsRoutes: gestione delle soglie personalizzabili.

ConsorzioRoutes: gestione dei consorzi.

IrrigationNoteRoutes: gestione delle note di irrigazione.

Nel momento in cui tutte le routes vengono registrate, il server si avvia e
rimane in ascolto sulla porta 3000 (o quella specificata all’interno del .env)
per tutte le richieste TCP in entrata. Quando una richiesta HT'TP arriva
da un client, come una chiamata POST alla route /auth/login con allegato
un file JSON contenente le informazioni dell’utente, la richiesta attraversa
la pipeline dei middleware. II middleware di logging registra la richiesta,
quello di CORS aggiunge gli header necessari e il middleware JWT verifica
se 'endpoint richiede 'autenticazione. In questo caso, 'endpoint di login ¢
pubblico, quindi il middleware JWT lo lascia passare senza verificare il token
e la richiesta viene passata alla route della classe AuthRoutes, che invoca il
metodo _ login().

Il metodo _login() legge il body della richiesta estraendo email e pas-
sword, e invoca lo SqlService per controllare il database PostgreSQL. Se
I'utente esiste all’interno del database, viene recuperato 1’hash berypt della
password e confrontato con la password fornita nella richiesta di login. Se i
due hash coincidono, viene generato un token JWT, firmato con la chiave se-
greta JWT _SECRET, e inserito, insieme alle altre informazioni sull’utente,
in un oggetto JSON che viene restituito al frontend come Response.ok().

Per richieste ad endpoint protetti, come /sensor-data, il flusso varia leg-
germente. Quando arriva al backend una richiesta GET per /sensor-data,
la richiesta attraversa la pipeline, ma invece di continuare normalmente, il
middleware JW'T ferma il flusso e verifica il token. Se il token della richiesta
risulta valido, vengono estratti userld e role dell’utente e inseriti nel context
della richiesta, che viene poi inoltrata a SensorRoutes per 1'esecuzione del
metodo _getSensorData().

58

4. Implementazione

Il metodo _getSensorData() estrae i parametri richiesti dalla query, come
sensor, start e end (che indicano rispettivamente il sensore da cui prelevare i
dati, la data di partenza e quella di fine) e, prima di procedere, verifica che
I'utente che ha effettuato la richiesta possieda l'accesso al sensore richiesto
interrogando la tabella user sensors di PostgreSQL. Se 'utente ha accesso,
il flusso procede interrogando InfluxDB. InfluxDB elabora la query, recupera
i dati e li restituisce in formato CSV annotato. I1 CSV contiene header con
metadati e righe con i dati effettivi. Il file viene poi parsato da InfluxDbSer-
vice riga per riga, estraendo i campi _time, _value, field e altri metadati
utili. Per ogni riga viene creato un oggetto Map con le chiavi timestamp, va-
lue, sensorName, measurementType, che vengono aggiunte a una lista. Una
volta ottenuta la lista, il metodo applica eventuali filtri aggiuntivi e, se il
frontend ha richiesto un campionamento tramite il parametro sample=true,
viene applicato I'algoritmo di sampling.

I dati processati vengono quindi serializzati in un oggetto JSON e inviati
al frontend passando per la pipeline in ordine inverso, dove il middleware di
logging registra la risposta con status code 200, che viene infine inviata al
client attraverso una connessione TCP.

Parallelamente ai processi delle richieste HT'TP, il backend esegue ser-
vizi in background. Il piu importante e il ThresholdMonitoringService, che
viene avviato in modo isolato tramite una richiesta utente oppure come ti-
mer periodico nel file server.dart. Questo servizio esegue un ciclo infinito
con intervalli configurabili (impostato a 60 secondi) in cui, a ogni iterazione,
interroga il database PostgreSQL per recuperare tutte le soglie della tabella
thresholds dove is_ active=true. Per ogni soglia, il servizio legge i parametri
e verifica se ¢ il momento di controllarla confrontando il timestamp corrente
con il parametro lastTriggeredAt + checkIntervalMinutes. Se non ¢ ancora
il momento, passa alla soglia successiva, altrimenti procede con la verifica.

Durante la verifica, il servizio interroga InfluxDB per ottenere gli ulti-
mi valori dei sensori specificati nel parametro sensorNames e, se useAvera-
ge=true, calcola la media aritmetica tra i valori recuperati; altrimenti con-
trolla i valori singolarmente. Il valore ottenuto (singolo o medio) viene con-
frontato con il thresholdValue utilizzando I'operatore aritmetico specificato
nella soglia. Se la condizione e soddisfatta, il servizio verifica se e trascorso
abbastanza tempo dall’ultima notifica confrontando lastTriggered At + noti-
ficationIntervalMinutes con il timestamp corrente. Se il cooldown e scaduto,
il servizio invia la notifica; altrimenti viene soppressa per evitare spam.

Il messaggio FCM viene inviato attraverso FirebaseAdminService.send-
Notification(), che effettua una richiesta POST all’API di FCM utilizzando
il service account per il login. Firebase riceve la richiesta, verifica le creden-
ziali e invia la notifica al dispositivo identificato dal token FCM registrato

4.3 Workflow del backend

59

nella tabella users. Dopo l'invio, il servizio aggiorna lastTriggeredAt con il
timestamp corrente e procede con la soglia successiva. Una volta che il servi-
zio ha processato tutte le soglie, rimane in attesa dell’intervallo configurato
e, allo scadere, ricomincia il ciclo.

Un altro componente del backend e la gestione delle associazioni tra
sensori, consorzi e utenti. Quando I'admin effettua una richiesta POST
per assegnare un sensore a un consorzio all’endpoint /sensors/assign, la ri-
chiesta, contenente sensor id e consorzio id, viene inviata a SensorRou-
tes.assignSensorToConsorzio(). Questo metodo verifica che ["utente che ha
effettuato la richiesta abbia il ruolo di admin e, se confermato, aggiorna il
database PostgreSQL eseguendo una query UPDATE sulla tabella sensors,
aggiornando il campo consorzio id con quello contenuto nella richiesta.

Il flusso per I'associazione di un sensore a un utente da parte di un con-
sorzio e simile. L’utente consorzio effettua una richiesta POST all’endpoint
/sensors/user-associations, contenente user_id e un array di sensor_ids. La
richiesta viene poi inviata a SensorRoutes.saveSensorAssociation(). Questo
metodo verifica se I'utente ha il ruolo di amministratore e I’accesso ai sensori
indicati. Se tutte le verifiche passano, il metodo esegue prima un’operazione
DELETE sulla tabella associazione_sensori per rimuovere le associazioni pre-
cedenti relative all’userld indicato, e poi un’operazione INSERT per inserire
tutte le nuove associazioni.

Il backend gestisce anche i processi di registrazione di nuovi utenti tramite
gli endpoint /auth/register/user e /auth/register/consorzio. Quando arriva
una richiesta POST a /auth/register/user contenente nome, cognome, email,
password e consorzio_id, il metodo AuthRoutes._registerUser() verifica che
I’email non sia gia presente all’interno della tabella users, e che il consorzio
indicato esista e sia approvato. Se le validazioni passano, il metodo esegue
I’hashing della password e inserisce nella tabella users un nuovo record che
avra di default il campo is approved=false, poiché deve essere approvato
dall’amministratore del consorzio.

Per la registrazione di un consorzio, il flusso e simile ma coinvolge due
tabelle. Il metodo AuthRoutes._registerConsorzio() riceve nome, cognome,
email, password e il nome del consorzio, crea un record nella tabella consorzi
con il campo is approved=false e crea un altro record nella tabella users
con campo consorziold (intero incrementale) che punta al campo consorziold
della tabella consorzi.

Il backend implementa anche gli endpoint per la gestione delle note di
irrigazione. Quando un utente effettua una richiesta POST all’endpoint
/irrigation-notes, contenente tutti i dati inseriti nel form, il metodo Irri-
gationNoteRoutes.createNote() estrae lo userld dal context, verifica e valida
i dati e inserisce un nuovo record nella tabella irrigation notes del database

60

4. Implementazione

PostgreSQL. La nota viene associata all'utente tramite lo userld e puo essere
recuperata, eliminata o modificata da quest’ultimo.

L’intero flusso del backend ruota attorno alle richieste e risposte HTTP
con processi asincroni, all’esecuzione di query sui database, alla trasforma-
zione e all’elaborazione dei dati e alla restituzione di risposte sotto forma
di oggetti strutturati di tipo JSON, il tutto gestito da middleware e servi-
zi background che eseguono task periodici indipendentemente dalle richieste
HTTP in entrata.

4.4 Workflow del frontend

L’applicazione inizia ’esecuzione dal file main.dart. Al momento del-
I’avvio viene caricato il file .env per accedere alle variabili di configurazione
come URL del backend e credenziali per I'inizializzazione del servizio Fireba-
se. L’applicazione costruisce poi il widget principale MyApp e inizializza gli
screens. L’app determina dinamicamente quale vista mostrare: se 1'utente
ha gia effettuato il login e il token JW'T, carica la MainDashboard, altrimenti
viene renderizzata la LoginScreen.

Quando 'utente tenta di effettuare 1’accesso per la prima volta la scher-
mata LoginScreen gestisce il processo di autenticazione. L'utente compila il
form con email e password e al momento del submit viene chiamato il metodo
_login() che inizializza il BackendService. Questo metodo estrae la configu-
razione dell’URL del backend da ApiConfig. Dopo aver determinato 'URL
appropriato in base alla piattaforma, il BackendService effettua una richiesta
POST all’endpoint /auth/login inviando le credenziali. Se 'autenticazione
ha successo, il backend invia in risposta un oggetto JSON contenente il token
JWT e le informazioni sull'utente che ha appena effettuato il login. Alla ri-
cezione del JSON la LoginScreen estrae questi dati e li passa all’AuthService
che salva il token, il ruolo e I’email dell'utente nelle SharedPreferences per
avere persistenza all’interno di tutta la sessione.

Dopo il salvataggio dei dati di autenticazione viene inizializzato il Fire-
baseService che richiede il token FCM al sistema Firebase, gestisce i permes-
si di notifica e invia il token al backend utilizzando 'endpoint /users/fcm-
token. Il backend salva il token nel database PostgreSQL nella tabella users,
associandolo all'utente corrente.

Completata 'autenticazione e l'inizializzazione, I'applicazione carica la
MainDashboard utilizzando Navigator.pushAndRemoveUntil() che rimuove
tutte le schermate precedenti dallo stack di navigazione, impedendo all’utente
di tornare alla schermata di login utilizzando il pulsante back. La MainDa-

4.4 Workflow del frontend

61

shboard implementa una navigazione a tab, permettendo di navigare tra le
diverse viste principali dell’applicazione.

All'utente, una volta loggato, verra mostrata la HomeScreen. All’inizia-
lizzazione, la HomeScreen carica i sensori associati all’'utente tramite una
richiesta GET al backend passando il token JW'T nell’header. 1l backend ve-
rifica il token tramite il middleware JW'T e, tramite I’ID univoco dell’utente,
interroga il database PostgreSQL per recuperare tutti i sensori associati a
quell’utente all’interno della tabella user sensors.

Alla ricezione della lista dei sensori viene invocato il metodo loadSensor-
Data() che effettua una richiesta GET all’endpoint del backend /sensor-data
passando come parametri i nomi dei sensori, data di inizio e di fine del range
temporale. Il backend, alla ricezione della richiesta, interroga InfluxDB per
recuperare i dati dei sensori specificati nella richiesta. I dati restituiti da
InfluxDB sono in formato CSV annotato, che viene parsato dal backend e
trasformato in JSON. Il frontend riceve questo JSON e lo deserializza creando
oggetti SensorData.

La visualizzazione dei dati avviene tramite i widget. Il widget Sensor-
Chart riceve in input una lista di oggetti SensorData e SensorsVisibility-
Controller che gestisce la visibilita delle serie nel grafico attraverso il Single-
ton. L’utente puo cosl interagire con la legenda dei grafici e lo stato viene
mantenuto all’interno del controller.

L’applicazione implementa anche un sistema di aggiornamento automati-
co dei dati tramite I’AutoRefreshService, un timer che esegue un refresh dei
dati a intervalli regolari configurabili dall’utente all’interno della schermata
delle impostazioni. Quando il timer scatta, I’applicazione esegue un callback
che ricarica i dati dei sensori aggiornando i grafici e le tabelle.

Un aspetto fondamentale dell’app ¢ la possibilita di creare delle soglie di
monitoraggio. Lutente puo accedere all’apposita sezione cliccando il pulsan-
te “Gestione Soglie” all’interno delle impostazioni. All’apertura della vista
viene effettuata una richiesta GET al backend che interroga PostgreSQL per
individuare nella tabella thresholds le soglie appartenenti a quel user_id. Le
soglie ricevute in risposta dal backend vengono poi visualizzate sotto forma
di card contenenti informazioni sul tipo di misurazione, quali sensori sono
monitorati, valore della soglia e stato di attivazione. L’utente puo modificare
soglie esistenti o crearne di nuove attraverso il pulsante “Nuova Soglia”. Que-
sto apre il ThresholdDialog che permette all'utente di creare una nuova soglia
inserendo tutte le informazioni necessarie. Al salvataggio della nuova soglia,
il ThresholdDialog crea un oggetto Threshold e lo invia tramite Threshold-
Service.createThreshold() o ThresholdService.updateThreshold() a seconda
dell’azione effettuata dall'utente. Il backend salva la soglia nel database Post-

62

4. Implementazione

greSQL e il ThresholdMonitoringService inizia il ciclo di controllo periodico
secondo l'intervallo inserito dall'utente.

In base al ruolo dell'utente che ha effettuato il login, le viste all’interno
della schermata delle impostazioni variano. Per gli utenti Consorzio sara mo-
strata una tab aggiuntiva “Gestione Consorzi”. Questa schermata permette
di gestire gli utenti, accettare o rifiutare users che effettuano richiesta per
entrare nel consorzio, e gestire I’associazione dei sensori appartenenti al pro-
prio consorzio. Per gli utenti Admin invece, sono presenti viste simili a quelle
dell’'utente Consorzio, solo a un livello superiore. L’Admin puo accettare o
rifiutare nuovi consorzi che hanno fatto richiesta e gestire I'associazione dei
sensori ai consorzi. L’Admin visualizza inoltre un widget di input text che
gli permette di mandare una notifica push a tutti gli utenti.

L’applicazione gestisce anche le note di irrigazione tramite la Irriga-
tionNotesManagementScreen. Gli utenti possono registrare eventi di irri-
gazione manuale inserendo data di irrigazione e quantita d’acqua utilizza-
ta. Al salvataggio, queste informazioni vengono inviate al backend tra-
mite IrrigationNoteService.createNote() e salvate allinterno della tabella
irrigation_ notes.

L’intero flusso dell’applicazione ruota attorno a un ciclo di autenticazio-
ne-autorizzazione-richiesta-risposta. Ogni azione dell’'utente invoca metodi
dei services, che effettuano richieste HI'TP al backend, ricevono risposte
JSON e le passano ai widget per la visualizzazione.

Capitolo 5

Validazioni

Dopo una fase iniziale di sviluppo e progettazione svolta in locale, ¢ stato
necessario effettuare la migrazione ad un infrastruttura di produzione stabi-
le, sicura e accessibile 24 ore su 24. Parallelamente, I'applicazione ¢ stata
preparata per la pubblicazione sul Google Play Store, passando attraverso le
diverse fasi di testing. Inoltre, I sistema e stato sottoposto ad una validazione
dell’esperienza utente tramite un questionario Post-Study System Usability
Questionnaire (PSSUQ), mirato a valutare la percezione degli utenti nelle
tre dimensioni chiave dell’esperienza utente: utilita del sistema, qualita delle
informazioni e qualita dell’interfaccia.

5.1 Migrazione del backend

La migrazione del backend dall’ambiente di sviluppo in locale ad un’in-
frastruttura di produzione rappresenta una delle fasi piu importanti e signi-
ficative dell’intero progetto, poiché ha permesso di trasformare un prototipo
funzionante in un servizio stabile e continuamente operativo. Durante la
fase di sviluppo, l'intero sistema era eseguito su un’architettura Docker !
locale, composta da tre elementi principali: un container dedicato al bac-
kend API, un’istanza PostgreSQL e un collegamente esterno all’InfluxDB
gia attivo all’interno del progetto TRACE.

Tuttavia, quest’approccio non era sufficiente per supportare le esigenze
del progetto, che richiedeva un backend costantemente online per gestire le
normali task degli utenti e gli eventi background dell’applicazione. Per questo
motivo ¢ stato necessario migrare ’ambiente di sviluppo in un ambiente di

thttps://www.docker.com/

63

5. Validazioni

produzione con requisiti specifici: disponibilita 24 /7, scalabilita per sostenere
un carico crescente e configurazioni di sicurezza rafforzate.
La migrazione e avvenuta attraverso un processo strutturato:

1. Predisposizione dell’ambiente di produzione: e stato predisposto l’am-
biente di produzione, basato su un server dedicato con Docker Engine e
Docker Compose. Sono stati configurati i parametri di rete, il firewall e
i certificati SSL necessari per la comunicazione sicura tra client e server.

2. Hardening dell’infrastruttura: e stata effettuata un’operazione di mi-
glioramento e hardening dell’infrastruttura riconfigurando PostgreSQL
seguendo parametri ottimizzati per la produzione, sono state rimosse
quasi tutte le parti di codice relative al debug con print a console, uti-
lizzati per il testing durante lo sviluppo dell’applicazione e sono stati
configurati i volumi persistenti per garantire la conservazione dei dati
durante gli aggiornamenti.

3. Deploy: e stata migrata 'intera infrastruttura ed il sistema é stato di-
stribuito adottando una procedura a basso downtime. Sono inoltre stati
eseguiti test end-to-end per verificare la piena operativita dello stack:
connettivita tra backend e database, accessibilita dell’API dall’esterno
e funzionamento dell’app in ambiente reale.

5.2 Pubblicazione su Google Play Store

Parallelamente alla migrazione del backend, 'applicazione ¢ stata prepa-
rata per la distribuzione attraverso il Google Play Store. Questo processo ha
richiesto una serie di configurazione tecniche, come la generazione della build
di produzione tramite Flutter e la pulizia degli asset non necessari.

Una volta ottenuto il bundle di produzione (.aab), ¢ stata configurata la
Google Play Console, inserendo le informazioni richieste per la pubblicazione:
la scheda descrittiva, gli screenshot dell’app in esecuzione su diversi dispositi-
vi di varie dimensioni, I’icona, la classificazione dei contenuti e la definizione
delle autorizzazioni richieste. Particolare attenzione e stata posta alla sezio-
ne di "Data Safety", che richiede una descrizione dettagliata e precisa delle
modalita di raccolta, gestione e trattamento di tutti i dati dell’utente.

Il percorso di pubblicazione prevede diverse fasi di testing progressive:

1. Fase di internal testing: questa fase ha coinvolto un gruppo ristretto di
persone, composto principalmente dagli sviluppatori e dai responsabili

5.3 Validazione dell’usabilita tramite questionario PSSUQ

65

del progetto. Ha permesso di individuare bug relativi alla visualizza-
zione dei grafici, alla gestione delle notifiche e alla compatibilita tra i
dispositivi, che sono stati corretti rapidamente prima di passare alla
fase di testing successiva.

2. Fase di closed testing: questa e la fase tuttora attiva, che coinvolge
un gruppo piu ampio di utenti tester, coinvolgendo gli agricoltori e il
consorzio associati al progetto TRACE. Questa fase sta permettendo
di osservare il comportamento dell’applicazione applicata nei contesti
reali: utilizzo nei campi, connessioni instabili o deboli, modelli diffe-
renti di smartphone e interazione quotidiane. Queste prove stanno for-
nendo feedback utile per il miglioramento futuro della stabilita, delle
prestazione e della chiarezza dell’interfaccia dell’applicazione.

3. Fase di open testing: rappresentera un test pubblico con un numero
di utenti molto piu ampio rispetto alle precedenti, finalizzato a valu-
tare la scalabilita, del carico di rete, della compatibilita e delle qualita
complessive del sistema prima della pubblicazione definitiva.

5.3 Validazione dell’usabilita tramite que-

stionario PSSUQ

5.3.1 Metodologia e struttura del questionario

La valutazione dell’esperienza utente ¢ stata condotta coinvolgendo il
gruppo di utenti partecipanti alla fase di closed testing. Questi si divido-
no in tre macro-categorie: agricoltori, programmatori o sviluppatori e tester
con nessuna conoscenza nell’ambito dell’agricoltura o della programmazione.
Ogni partecipante, durante il testing dell’applicazione, ha dovuto svolgere
due task: (i) controllare la temperatura di una WS relativa a 7 giorni fa; (ii)
impostare un allarme che si attivi quando la velocita del vento di una WS
supera un valore a tua scelta. Al completamento delle task e stato sommini-
strato il questionario Post-Study System Usability Questionnaire (PSSUQ) 2
, uno strumento standardizzato che consente di misurare in modo oggettivo
la percezione di usabilita del sistema.

I1 PSSUQ si compone di 16 domande suddivise in tre dimensioni principa-
li: System Usefulness (SU, domande 1-6), Information Quality (IQ, domande
7-12) e Interface Quality (IQ, domande 13-16). I partecipanti hanno risposto

2https://uiuxtrend.com/pssuq-post-study-system-usability-questionnaire/

66

5. Validazioni

esprimendo il loro grado di accordo con ciascuna affermazione su una scala
da 1 a 5, dove il punteggio 1 corrisponde a "Completamente d’accordo" e il 5
corrisponde a "Completamente in disaccordo”.

5.3.2 Risultati del questionario

La valutazione e stata condotta somministrando il questionario ad un
totale di 11 tester, che si dividono in un tre macro-categorie: agricoltori,
informatici e nessuna delle due. Di seguito verranno analizzati, tramite tre
grafici, i risultati del questionario.

Valutazione PSSUQ per categoria di domanda e gruppo di utenti

Il grafico nella Fig. 5.1 presenta un confronto sistematico dei punteg-
gi medi all’interno delle quattro dimensioni fondamentali del questionario
PSSUQ. La visualizzazione € organizzata in modo da evidenziare le diffe-
renze di percezione tra i diversi gruppi di utenti che hanno partecipato alla
valutazione.

L’asse x del grafico identifica le categorie elencate precedentemente (Sy-
stem Usefulness, Information Quality , Interface Quality) e in aggiunta anche
la categoria Overall che rappresenta la media complessiva di tutte le 16 do-
mande del questionario. L’asse y, invece, riporta il punteggio medio secondo
la scala Likert utilizzata nel PSSUQ), che va da 1 a 5, dove 1 corrisponde a
"completamente d’accordo” (massima soddisfazione), mentre il valore 5 indica
"completamente in disaccordo" (minima soddisfazione).

5.3 Validazione dell’usabilita tramite questionario PSSUQ

67

w »

Punteggio medio
N

Gruppo Utenti
[Agricoltore
I Computer Science
I Nessuno dei due
I Overall (All Users)

2.61 2.56

System Usefulness Information Quality Interface Quality Overall
Categoria

Figura 5.1: Valutazione PSSUQ del Sistema TRACE per Categoria e Gruppo
di Utenti

Analisi dei risultati

o System Usefulness: gli agricoltori hanno espresso un punteggio medio

di 1.33, indicando un grado di soddisfazione elevato. Analogamente gli
utenti con background in Computer Science hanno attribuito un pun-
teggio medio di 1.31. Questa vicinanza tra le due categorie suggerisce
che il sistema risponde in modo efficace alle esigenze pratiche degli agri-
coltori ma anche ai criteri di valutazione standard degli utenti esperti
nella programmazione. Gli utenti classificati come "Nessuno dei due'
hanno assegnato un punteggio medio di 2.61, che, nonostante sia nella
zona positiva della scala di valutazione, evidenzia una minore imme-
diatezza nell’apprezzamento dell’utilita del sistema. La media overall
ha un punteggio medio di 1.75, confermando un giudizio favorevole
sull'utilita generale dell’applicazione;

Information Quality: gli agricoltori hanno valutato questa dimensio-
ne con un punteggio medio di 1.50, gli utenti Computer Science con
un punteggio di 1.86, il terzo gruppo con un punteggio di 2.56. La
media overall di 1.97 indica che, nonostante la qualita delle informa-
zioni fornite dall’applicazione sia apprezzata, esistono margini di mi-
glioramento. Migliori messaggi di errori, maggiore documentazione e

68

5. Validazioni

informazioni testuali potrebbero aiutare a migliorare I’aspetto generale
dell’applicazione;

o Interface Quality: gli agricoltori hanno attribuito un punteggio medio
di 1.00, indicando una soddisfazione unanime rispetto all’interfaccia
utente. Gli utenti Computer Science hanno assegnato un punteggio
medio di 1.21, mentre il terzo gruppo ha espresso un giudizio di 2.08.
La media complessiva risulta 1.43 e posiziona questa categoria come la
migliore tra le tre.

e Overall: gli agricoltori hanno valutato complessivamente 1’applicazione
con un punteggio di 1.31, gli utenti Computer Science con un punteggio
di 1.49, e il gruppo "Nessuno dei due" conferma il pattern osservato
assegnando un punteggio piu elevato rispetto agli altri gruppi con un
valore di 2.46. La media generale ¢ di 1.75 e conferma che ’applicazione
rispecchia i criteri standard del questionario PSSUQ, specialmente per
il pubblico target primario dell’app.

Distribuzione dei Punteggi PSSUQ per Domanda

Descrizione del grafico 11 grafico nella Fig. 5.2 rappresenta uno
strumento statistico per la visualizzazione della distribuzione delle risposte
per ciascuna delle domande.

Punteggio Medio
w Sy

N

T
|HO0AHETOO0ARLEHE

Q01 Q02 Q03 Q04 Q05 Q06 QO7 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 AQlé6

Figura 5.2: Distribuzione dei Punteggi PSSUQ per Domanda (Q01-Q16)

5.3 Validazione dell’usabilita tramite questionario PSSUQ

69

Analisi dei risultati

o System Usefulness: queste domande presentano una distribuzione ge-
neralmente compatta e centrata nella zona bassa della scala, indicando
un livello elevato di soddisfazione. La domanda Q01 ha ottenuto una
media di 1.73 con un box stretto posizionato tra i valori 1 e 2; la Q02
ha ottenuto una media di 1.82; Q03 ha ottenuto una media leggermen-
te superiore di 2.00 con valori outliers che raggiungono il punteggio di
4.00; la Q04 ha ottenuto il risultato migliore dell’intera sezione con una
media di 1.36; le domande Q05 e Q06 hanno ottenuto entrambe una
media di 1.55. Questi valori confermano che la curva di apprendimento
del sistema ¢ percepita come ragionevole.

o Information Quality: queste domande hanno ottenuto una maggiore
variabilita nelle risposte e punteggi mediamente piu elevati rispetto
alle altre due sezioni. La domanda Q07 rappresenta il punteggio piu
critico della sezione con una media di 2.64, con una distribuzione ampia
dal valore 1 fino al 5 e con una mediana posizionata sul 3; le domande
QO08, Q09 e Q10 presentano una media di 2.00 e una distribuzione
piu ampia rispetto alle domande della categoria precedente; le ultime
due domande della categoria, Q11 e Q12, hanno ottenuto una media
di 1.73. Questi valori indicano che, nonostante la media generale delle
valutazioni di questa sezione siano positive, ¢’é possibilita di un margine
di miglioramento.

o Interface Quality: questa sezione di domande rappresenta il punto di
forza dell’applicazione. La domanda Q13 ha ottenuto il risultato miglio-
re dell'intero questionario con una media di 1.18 e un box praticamente
collassato sul valore 1, questo vuol dire che sul totale degli utenti che
hanno votato a questionario, solo uno non ha assegnato il punteggio
massimo, assegnando 3; la Q14 conferma il trend positivo con un pun-
teggio medio di 1.64; la Q15 ha ottenuto una media di 1.45; la Q16 ha
ottenuto un punteggio medio di 1.45. Questi valori confermano la valu-
tazione positiva dell’intera applicazione insieme alle precedenti sezioni,
confermando anche la sezione sulla qualita dell’interfaccia come punto
di forza ottenendo i punteggi piu elevati.

L’analisi della larghezza dei box e della posizione dei whiskers permette di
individuare le domande che hanno generato maggiore o minore consenso tra
gli utenti. Le domande Q04 e Q13 si distinguono per box estremamente
stressi, indicando che quasi la totalita degli utenti hanno espresso valutazio-
ni molto simili e, in questo caso, positive. Al contrario, la Q07 mostra la

70

5. Validazioni

distribuzione piu ampia, segnalando delle esperienze molto differenziate tra
i partecipanti al questionario. Gli outliers presenti nel grafico non devono
essere interpretati come problematici o punti critici dell’applicazione, ma ri-
chiedono un’analisi qualitativa piu approfondita per comprendere se derivino
da casi d’uso particolari, aspettative iniziali diverse dell'utente o da lacune
del sistema che si sono manifestate in condizioni specifiche.

Distribuzione delle Risposte per Domanda

Descrizione del grafico 1l grafico nella Fig. 5.3 fornisce una rappresenta-
zione immediata e dettagliata della composizione esatta delle risposte su scala
Likert per ciascuna delle domande. A differenza del boxplot, che sintetizza
la distribuzione tramite indicatori statistici, questa visualizzazione mostra
il numero di utenti che hanno scelto ciascun livello della scala, permetto di
cogliere pattern e tendenze.

La scelta cromatica effettuata all’interno del grafico, con transizione da
colori caldi a colori freddi, facilita I'identificazione delle domande che han-
no ricevuto valutazioni positive (dominanza di rosso e arancione) rispetto a
quelle pit problematiche (presenza significativa di giallo, azzurro o blu).

12

Punteggio
11 I l mmm 1 = Completamente d'accordo
10 2 = D'accordo
3 = Neutrale

o 9 4 = In disaccordo
a';; B 5 = Completamente in disaccordo
o 8
Qo
v 7
=
T 6
(<]
1
GE’ 5
2 4

3

2

1

> I OO X O O A DO 0O DDA D N
ST LS FLP TP P
Domande

Figura 5.3: Distribuzione delle Risposte per Domanda - Scala Likert PSSUQ

Analisi dei risultati

o System Usefulness: si puo osservare una composizione cromatica ge-
neralmente favorevole, con una predominanza di risposte nei livelli 1

5.3 Validazione dell’usabilita tramite questionario PSSUQ

71

e 2 (colori rosso e arancione). Le risposte neutrali (giallo) e negative
(azzurro) sono presenti ma in quantita contenute.

o Information Quality: come evidenziato anche dai grafici precedenti que-
sta categoria di domande presenta una composizione cromatica piu va-
riegata e meno uniforme. Questo indica che una porzione di utenti ha
espresso valutazione neutre o tendenti al negativo rispetto alla qualita,
accessibilita e chiarezza delle informazioni fornite dal sistema. Tutta-
via, & possibile notare che le ultime due domande della sezione, Q11 e
Q12, hanno un pattern cromatico piu simile a quello osservato nella pri-
ma categoria. Questo suggerisce che il problema principale riscontrato
dagli utenti non risiede tanto nel contenuto informativo in sé, quan-
to piuttosto nella modalita in cui le informazioni vengono comunicate,
specialmente durante errori nell’applicazione.

o Interface Quality: conferma il ruolo di punto di forza del sistema, at-
traverso una composizione cromatica orientata verso i colori caldi. La
domanda Q13, come evidenziato nell’analisi degli altri grafici, si con-
figura come la domanda con il piu alto livello di consenso dell’intero
questionario, con una quasi totalita di risposte rosse. Le altre domande
della sezione mantengono tutte una forte predominanza di colori caldi.

Analisi finale dei risultati

In sintesi, I’applicazione dimostra un livello di usabilita complessivamente
elevato secondo i criteri standardizzati del questionario PSSUQ, con una me-
dia generale di 1.75 su una scala dove valori inferiori di 2.0 sono considerati
indicatori di buona usabilita. L’interfaccia grafica emerge come il punto di
eccellenza, con punteggi che rasentano la perfezione, specialmente da parte
del pubblico target. L’utilita del sistema ¢ ampiamente riconosciuta, con gli
utenti che apprezzano la facilita d’uso e la rapidita con cui possono diventare
produttivi. L’area che invece presenta maggiori margini di miglioramento
riguarda la qualita delle informazioni, in particolare la chiarezza dei mes-
saggi di errore a schermo e dell’help contestuale, aspetti che se migliorati
potrebbero elevare ulteriormente la valutazione complessiva del sistema.

Conclusioni

Il presente lavoro di tesi ha affrontato la progettazione, lo sviluppo e la va-
lidazione di un’applicazione mobile completa per il monitoraggio e la gestione
dei dati agricoli provenienti dal sistema IoT del progetto TRACE. L’obietti-
vo principale era fornire agli operatori agricoli, in particolare agli agricoltori
specializzati nella coltivazione di piante officinali e aromatiche, uno strumen-
to pratico, accessibile e utilizzabile sul campo per la consultazione dei dati
ambientali raccolti dai sensori.

Un contributo significativo del lavoro riguarda l'implementazione degli
algoritmi di campionamento intelligente dei dati. La possibilita di ridurre
dataset da migliaia di punti a 500 punti strategicamente selezionati, mante-
nendo i picchi e le anomalie rilevanti, ha permesso di garantire prestazioni
ottimali anche su dispositivi mobili di fascia media, senza compromettere la
qualita delle informazioni visualizzate.

Il sistema di notifiche push basato su soglie personalizzabili rappresen-
ta un altro elemento distintivo dell’applicazione. Gli utenti possono defi-
nire valori critici per ciascun parametro ambientale monitorato, selezionare
i sensori da controllare, specificare 'intervallo di controllo e configurare la
frequenza delle notifiche. 11 servizio backend opera in background 24/7, in-
terrogando periodicamente InfluxDB e inviando notifiche tramite Firebase
Cloud Messaging quando le soglie vengono superate, permettendo agli agri-
coltori di intervenire tempestivamente anche quando non stanno utilizzando
I’applicazione.

L’applicazione sviluppata ha raggiunto gli obiettivi prefissati, come dimo-
strato dai risultati della validazione con utenti reali attraverso il questionario
PSSUQ. Con un punteggio medio complessivo di 1.75 su una scala dove valo-
ri inferiori a 2.0 indicano buona usabilita, il sistema ha ottenuto valutazioni
particolarmente positive nelle tre dimensioni chiave analizzate, con margine
di miglioramento specialmente nella sezione delle qualita delle informazioni
fornite dal sistema.

Nonostante i risultati positivi, il lavoro presenta alcune limitazioni: (i) la
valutazione di usabilita ha coinvolto 11 utenti, un numero relativamente li-

73

74

CONCLUSIONI

mitato che, sebbene sufficiente per identificare problemi di usabilita maggiori
secondo le linee guida standard, potrebbe non catturare problematiche che
emergerebbero con una base utenti pitt ampia e diversificata; (ii) attualmente
I’applicazione ¢ disponibile solo per dispositivi Android attraverso il Google
Play Store, escludendo gli utenti iOS. Sebbene 'architettura Flutter consenta
la compilazione anche per iOS con modifiche minime, le limitazioni temporali
del progetto hanno impedito di completare il processo di pubblicazione sul-
I’Apple App Store; (iii) sebbene I'applicazione memorizzi localmente alcune
informazioni (token di autenticazione, preferenze utente), la maggior parte
delle funzionalita richiede una connessione attiva al backend, e in contesti
rurali con copertura cellulare limitata o assente, questo puod rappresentare
un ostacolo significativo all’utilizzo dell’applicazione; (iv) nonostante I'inter-
faccia sia stata valutata positivamente, ’applicazione offre opzioni limitate di
personalizzazione dell’esperienza utente. Gli utenti non possono, per esem-
pio, riorganizzare ’'ordine delle sezioni nella dashboard, nascondere parametri
non rilevanti o salvare configurazioni preferite di visualizzazione dei grafici.

Sulla base dell’esperienza maturata durante lo sviluppo e dei feedback rac-
colti durante la fase di testing, ¢ possibile identificare diverse direzioni per
I'evoluzione dell’applicazione: (i) la pubblicazione dell’applicazione anche su
iOS rappresenta la priorita immediata per garantire la massima accessibilita;
(ii) L’arricchimento dell’applicazione con modelli di machine learning adde-
strati sui dati storici potrebbe fornire previsioni sulle condizioni atmosferiche
future e alert proattivi su potenziali situazioni critiche prima che queste si
verifichino effettivamente; (iii) I'introduzione di strumenti di comunicazione
tra membri dello stesso consorzio potrebbe trasformare I’applicazione da stru-
mento di monitoraggio individuale a piattaforma collaborativa per la gestione
condivisa delle risorse agricole.

Bibliografia

1]

Ramide Augusto Sales Dantas, Milton Vasconcelos da Gama Neto,
Ivan Dimitry Zyrianoff, and Carlos Alberto Kamienski. The swamp far-
mer app for iot-based smart water status monitoring and irrigation con-
trol. In 2020 IEEE International Workshop on Metrology for Agriculture
and Forestry (MetroAgriFor), pages 109-113. IEEE, 2020.

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (iot): A vision, architectural elements,
and future directions. Future generation computer systems, 29(7):1645—
1660, 2013.

Alexandros Kaloxylos, Aggelos Groumas, Vassilis Sarris, Lampros Katsi-
kas, Panagis Magdalinos, Eleni Antoniou, Zoi Politopoulou, Sjaak Wol-
fert, Christopher Brewster, Robert Eigenmann, et al. A cloud-based farm
management system: Architecture and implementation. Computers and
electronics in agriculture, 100:168-179, 2014.

Sheikh Mansoor, Shahzad Igbal, Simona M Popescu, Song Lim Kim,
Yong Suk Chung, and Jeong-Ho Baek. Integration of smart sensors and
iot in precision agriculture: trends, challenges and future prospectives.
Frontiers in Plant Science, 16:1587869, 2025.

Francis J Pierce and Peter Nowak. Aspects of precision agriculture.
Advances in agronomy, 67:1-85, 1999.

KP Vyshali Rao, EK Trisha Morey, Vanipenta Bhanuprakash Reddy, and
M Vamshi. Crop connect: Empowering farmers through digital commu-
nity. In International Conference on Emerging Research in Computing,

Information, Communication and Applications, pages 151-168. Springer,
2024.

Chen Wang, Jialin Qiao, Xiangdong Huang, Shaoxu Song, Haonan Hou,
Tian Jiang, Lei Rui, Jianmin Wang, and Jiaguang Sun. Apache iotdb:

76

CONCLUSIONI

77

A time series database for iot applications. Proceedings of the ACM on
Management of Data, 1(2):1-27, 2023.

Ivan Zyrianoff, Andrea Iannoli, Federico Montori, Luca Sciullo, Luciano
Bononi, Alice Baldissara, Beatrice Brintazzoli, Enrico Dall’Olio, Mat-
tia Alpi, Rocco Enrico Sferrazza, Giovanni Dinelli, Ilaria Marotti, and
Marco Di Felice. Traceability and research in the agricultural chain of
medicinal and aromatic plants (maps): An iot-based approach. In 2025
IEEE International Workshop on Metrology for Agriculture and Forestry
(MetroAgriFor), 2025. Proceedings not yet published.

