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Introduzione

La gestione dei progetti aziendali rappresenta una delle sfide più complesse nel contesto
dell’organizzazione del lavoro, in particolare per aziende operanti nel settore IT, dove la
composizione dei team può incidere in modo significativo sull’esito dei progetti stessi. In
questo contesto si inserisce il progetto sviluppato durante il tirocinio curricolare svolto
presso OT Consulting S.r.l. (Object Technology Consulting), azienda di consulenza
informatica che accompagna le imprese nella trasformazione digitale.

L’obiettivo principale del progetto è stato quello di realizzare un sistema in grado di
suggerire, per ogni nuovo progetto, la composizione ottimale del team di lavoro. Questo
suggerimento si basa sull’analisi di dati aziendali storici, utilizzando modelli di machine
learning (apprendimento automatico) e tecniche avanzate di ricerca semantica su basi di
dati vettoriali.

Il sistema sviluppato utilizza diverse componenti: un insieme di operazioni di estra-
zione e pulizia dei dati aziendali, modelli di classificazione per la predizione del successo
progettuale, un agente AI per l’analisi automatica del project charter, una fase di ricerca
dei progetti simili basata su Vector DB e infine una valutazione delle competenze dei di-
pendenti tramite Skill Matrix. L’insieme di queste converge in un’applicazione web, con
interfaccia utente interattiva, in grado di supportare efficacemente il processo decisionale
nella composizione dei team.

La presente tesi si propone di illustrare nel dettaglio il lavoro svolto, esponendo le
soluzioni tecniche adottate, i risultati ottenuti e le riflessioni critiche emerse nel corso
dello sviluppo. Dopo un primo capitolo introduttivo dedicato al contesto aziendale e agli
obiettivi del progetto, si analizzeranno nel dettaglio le varie componenti del sistema e
i modelli sperimentati. Infine, verranno esposti i risultati raggiunti e le prospettive di
sviluppo futuro.
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Capitolo 1

Contesto e Obiettivi

1.1 Il contesto aziendale

Il progetto è stato realizzato presso OT Consulting S.r.l., azienda con sede a Reggio Emi-
lia attiva nel settore dell’information technology. OT Consulting offre soluzioni software
personalizzate a clienti appartenenti a diversi settori, tra cui fashion e banking.

L’azienda possiede una base di dati storici relativi ai progetti software svolti, com-
prendenti informazioni rilevanti tra cui quelle sui membri dei team, le tecnologie adottate,
le tempistiche e il livello di rischio. In questo scenario, la composizione dei team rappre-
senta un fattore cruciale per il successo dei progetti. Le decisioni in merito sono spesso
complicate e si corre il rischio di optare per soluzioni non ottimali.

Da qui nasce l’idea di realizzare un sistema in grado di supportare tale processo
decisionale, mediante l’analisi automatica dei dati storici aziendali.

1.2 Obiettivi del progetto

L’obiettivo principale del progetto è la realizzazione di un applicazione completa in gra-
do di supportare la composizione dei team aziendali attraverso tecniche di intelligenza
artificiale. In particolare, il sistema è progettato per:

• analizzare automaticamente i documenti di progetto (project charter), attraverso
un agente AI basato su linguaggio naturale;

• identificare progetti passati simili, sfruttando la ricerca semantica su database
vettoriali;

• valorizzare le competenze dei dipendenti tramite una skill matrix strutturata;

• suggerire proposte di composizioni ottimali di team per un nuovo progetto, inte-
grando le informazioni precedenti;
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• predire la probabilità di successo delle composizioni proposte, attraverso modelli
di classificazione binaria e multiclasse;

• offrire un’interfaccia utente semplice, intuitiva e accessibile.

L’applicativo ha come obiettivo finale quello di fornire un valido supporto alle decisio-
ni strategiche in ambito aziendale, fornendo raccomandazioni intelligenti e personalizzate
nella selezione del team.
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Capitolo 2

Architettura del Sistema

Il sistema sviluppato per la composizione dei team aziendali adotta un’architettura mo-
dulare, progettata per integrare diversi componenti indipendenti, ciascuno con respon-
sabilità ben definite. La sezione seguente fornisce una descrizione ad alto livello dei
componenti del sistema, la cui analisi dettagliata è approfondita nei capitoli successivi.

2.1 Panoramica generale

L’architettura è articolata nelle seguenti macro-componenti principali:

1. Estrazione e preparazione dei dati: operazioni per l’importazione, la pulizia e
la strutturazione dei dati storici aziendali;

2. Estrazione semantica dal project charter: agente AI per l’estrazione dei dati
rilevanti del nuovo progetto contenuti nel project charter;

3. Modelli di classificazione: algoritmi di machine learning per la predizione del
successo progettuale;

4. VectorDB e ricerca semantica: sistema per il recupero dei progetti più simili
attraverso rappresentazioni vettoriali;

5. Skill Matrix: meccanismo per la valutazione delle competenze tecniche dei di-
pendenti;

6. Interfaccia utente: applicazione web per l’interazione con l’utente.
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2.2 Estrazione e preparazione dei dati

Il sistema parte dall’acquisizione dei dati grezzi aziendali, provenienti da file CSV. Ta-
li dati contengono informazioni relative a progetti svolti, membri del team, tecnologie
adottate, durata delle attività e indicatori di performance. Le informazioni più rilevanti
contenute nei datasets verranno utilizzate in seguito per l’addrestamento dei modelli di
machine learning.

Le operazioni di preprocessing sono implementate in Python tramite le librerie pandas
e NumPy :

• rimozione di valori nulli, duplicati o incoerenti;

• normalizzazione delle colonne testuali (tecnologie, ruoli, ecc.);

• codifica delle variabili categoriche (one-hot encoding);

• generazione di feature derivate (es. nomi dei mesi lavorati).

2.3 Estrazione semantica dal project charter

Un aspetto importante del sistema è l’integrazione di un agente AI per l’analisi auto-
matica del project charter. Il documento in questione contiene in formato testuale le
informazioni relative al nuovo progetto, di cui si vuole comporre il team.

L’agente, sviluppato con la libreria LangChain, utilizza modelli linguistici pre-addestrati
(GPT) per:

• segmentare il documento;

• identificare campi rilevanti;

• restituire una rappresentazione strutturata in formato JSON.

Questo output viene successivamente integrato grazie al formato che garantisce coe-
renza tra i progetti nuovi e quelli storici.

2.4 Moduli di classificazione

Una volta pre-elaborati i dati, essi vengono utilizzati per addestrare due tipologie di
modelli di machine learning:

• Modello binario: classifica ogni progetto come “successo” o “insuccesso”;
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• Modello multiclasse: assegna un punteggio qualitativo basato su una metrica di
marginalità aziendale.

I modelli sono addestrati con diversi algoritmi supervisionati (Random Forest, XG-
Boost, SVC, KNN, Gradient Boosting, Adaboost), valutati tramite GridSearchCV e
selezionati sulla base delle metriche di performance (accuracy, precision, recall, f1-score).
I modelli migliori sono serializzati con joblib per il riutilizzo in fase di predizione.

2.5 Ricerca semantica su VectorDB

Per generare le proposte di team suggeriti, il sistema utilizza una fase di ricerca seman-
tica dei progetti simili. Ogni progetto, compreso quello nuovo, viene trasformato in un
embedding vettoriale tramite il modello all-MiniLM-L6-v2 di Sentence Transformers.

I vettori ottenuti vengono indicizzati nel database vettoriale Milvus, che consente il
recupero efficiente dei progetti semanticamente più vicini.

La similarità tra progetti è un’informazione fondamentale per suggerire composizioni
di team basate su esperienze pregresse. Il sistema estrae dai progetti più simili i team
corrispondenti e li utilizza per generare le proposte di team.

2.6 Valutazione delle competenze: Skill Matrix

La matrice delle competenze, costruita a partire da un file Excel, associa ogni dipendente
al proprio livello di competenza per ogni tecnologia, assegnando un punteggio da 0 a 4.
Questa valutazione permette di:

• filtrare i membri che non possiedono skill adeguate;

• ordinare i candidati per affinità tecnica rispetto al progetto;

Questa fase permette al sistema di suggerire dipendenti competenti e qualificati nelle
tecnologie necessarie allo sviluppo del nuovo progetto.

2.7 Interfaccia utente

L’interfaccia è realizzata con il framework Gradio, che consente di creare rapidamente
applicazioni web in Python. L’utente è guidato in un flusso operativo a cinque fasi:

1. Caricamento dei datasets;

2. Upload del nuovo project charter;
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3. Ricerca e visualizzazione dei progetti simili;

4. Caricamento della skill matrix;

5. Suggerimento dei team e predizione.
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Capitolo 3

Tecnologie e strumenti utilizzati

Nel corso dello sviluppo dell’applicativo sono state utilizzate numerose tecnologie open
source, selezionate in base all’affidabilità, alle prestazioni e alla loro integrazione con
l’ecosistema Python. Questo capitolo presenta una panoramica degli strumenti impiegati,
suddivisi per categoria funzionale.

3.1 Linguaggi e ambienti di sviluppo

Python

Il progetto è stato interamente sviluppato in Python, linguaggio molto diffuso in ambito
data science e intelligenza artificiale grazie alla sua sintassi chiara e alla disponibilità di
librerie specialistiche. Python è stato utilizzato sia per la logica di preprocessing e
machine learning, sia per la costruzione dell’interfaccia utente.

PyCharm

Come ambiente di sviluppo è stato utilizzato PyCharm, un IDE professionale che ha
facilitato la gestione del progetto, il controllo delle dipendenze, il debug e la navigazione
tra i file. L’integrazione con ambienti virtuali Python ha permesso una gestione ordinata
delle librerie installate.

3.2 Gestione dei dati e preprocessing

Pandas e NumPy

Per l’importazione e la manipolazione dei dati tabellari provenienti da file CSV ed Excel,
sono state impiegate le librerie Pandas e NumPy. Questi strumenti hanno supportato
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operazioni come il trattamento di valori mancanti, l’encoding delle variabili categoriche
e la normalizzazione dei dati.

PyPDF e Openpyxl

La libreria PyPDF è stata utilizzata per il parsing dei project charter in formato PDF,
mentre Openpyxl ha consentito l’accesso e l’elaborazione dei file Excel contenenti la
skill matrix dei dipendenti.

3.3 Machine Learning e analisi del testo

Scikit-learn e XGBoost

Per l’addestramento e la valutazione dei modelli di classificazione sono state utilizzate le
librerie Scikit-learn e XGBoost. La prima ha fornito gli strumenti per le operazioni di
preprocessing e la validazione dei modelli, mentre XGBoost ha migliorato le prestazioni
tramite tecniche di gradient boosting ottimizzato.

SentenceTransformers

La ricerca semantica è stata resa possibile tramite la libreria SentenceTransformers,
che consente di convertire testi in vettori densi. In particolare, è stato utilizzato il modello
preaddestrato all-MiniLM-L6-v2, adatto a task di semantic similarity.

LangChain e OpenAI

Per l’estrazione automatica di informazioni dai documenti testuali, è stato costruito un
agente basato su LangChain, integrato con le API di OpenAI (modelli GPT). Questo
modulo consente di strutturare automaticamente i dati contenuti nei project charter,
convertendoli in JSON pronti per l’analisi.

3.4 Database vettoriale e ricerca semantica

Milvus

Il sistema di ricerca di progetti simili è stato realizzato utilizzando Milvus, un motore
per database vettoriali open source altamente performante. I vettori semantici generati
dalle informazioni dei progetti vengono memorizzati in Milvus e interrogati per similarità
tramite il client Python ufficiale pymilvus.
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3.5 Interfaccia utente

Gradio

L’interfaccia utente è stata realizzata con Gradio, un framework Python che permette
la creazione di interfacce web interattive in pochi passaggi. L’utente è guidato attraverso
un processo strutturato composto da cinque fasi: caricamento dei dati storici, parsing del
project charter, ricerca dei progetti simili, caricamento della skill matrix e suggerimento
del team ottimale. L’intero sistema è stato concepito per funzionare in locale.

FastAPI (modulo separato)

Parallelamente, è stato sviluppato un modulo a parte basato su FastAPI, con l’obiet-
tivo di esporre i modelli ML tramite endpoint REST. Questo componente, attualmente
separato dall’interfaccia principale, è stato pubblicato su Render.com.

3.6 Deployment e ambienti di esecuzione

Docker

Il sistema è stato containerizzato tramite Docker, strumento fondamentale per l’esecu-
zione di Milvus e per la creazione di ambienti replicabili in fase di sviluppo.

Render.com (per FastAPI)

Il servizio Render.com è stato utilizzato esclusivamente per il deployment sperimentale
del modulo FastAPI, offrendo una soluzione semplice e scalabile per la pubblicazione di
API su cloud. Tuttavia, l’applicativo principale (interfaccia Gradio) è progettato per
l’esecuzione in locale.
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Capitolo 4

Estrazione e Preprocessing dei Dati
Aziendali

4.1 Origine e struttura dei dati

Il sistema si fonda sull’elaborazione di dati aziendali interni, resi disponibili in formato
CSV ed Excel. Tali file contengono informazioni provenienti da due domini distinti: da un
lato, l’insieme dei progetti software gestiti dall’azienda negli anni precedenti; dall’altro,
la struttura organizzativa e le competenze tecniche del personale (Skill Matrix).

Il dataset relativo ai progetti include variabili quali il codice identificativo del proget-
to, la durata, le stime di effort, le tecnologie adottate, il cliente coinvolto, i mesi lavorati
e il livello di rischio stimato. A ciascun progetto è inoltre associato un team di sviluppo,
con indicazione del ruolo di ogni membro.

Parallelamente, la Skill Matrix è rappresentata da un file Excel che costituisce un
inventario delle competenze tecniche dei dipendenti, espresso in forma tabellare, con un
punteggio da 0 a 4 per ciascuna tecnologia.

Questa struttura eterogenea ha reso necessario lo sviluppo di una pipeline di estra-
zione e pulizia in grado di armonizzare i diversi formati e produrre un dataset coerente,
utilizzabile per l’addestramento dei modelli e per la generazione delle raccomandazioni.

4.2 Preprocessing dei dataset storici

La prima fase ha riguardato l’elaborazione dei file CSV contenenti i dati relativi ai
progetti. Le principali operazioni di preprocessing sono state implementate in linguaggio
Python, con il supporto delle librerie pandas e NumPy. L’obiettivo era ottenere una base
dati coerente, priva di errori e adatta all’addestramento dei modelli di machine learning.

I dati storici sono suddivisi in due dataset: il primo contiene le informazioni sui pro-
getti conclusi, mentre il secondo riporta i dettagli relativi ai membri coinvolti. Entrambi
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i dataset erano originariamente memorizzati dall’azienda in documenti Google e sono
stati esportati in formato CSV per le elaborazioni successive.

Il primo dataset è composto da 357 righe e dalle seguenti colonne:

• codice epic: codice identificativo del progetto, composto dal nome della procedura
e da un numero univoco (stringa);

• livello di rischio: livello di rischio stimato dall’azienda per il progetto (Low,
Medium, High, stringa);

• total worked hours: ore totali di lavoro effettuate (float);

• total worked days: giorni totali di lavoro, ottenuti dividendo le ore totali per 8
(float);

• commercial estimates: stima commerciale da considerarsi in giorni(float);

• delivery estimates: stima di consegna, pari all’80% della stima commerciale,
anch’essa da considerarsi in giorni (float);

• technologies: elenco delle tecnologie impiegate (lista di stringhe);

• assegnatario: nome dell’assegnatario del progetto (stringa);

• customer: nome del cliente (stringa);

• codice offerta OT: identificativo interno aziendale (stringa);

• creati, start date, risolti, end date, data di scadenza: mesi di riferimento
per creazione, avvio, chiusura, termine operativo e scadenza (stringhe);

• success unsuccess: esito del progetto (1 = successo, 0 = insuccesso, boolean);

• marginality: indicatore numerico della marginalità del progetto (float).

Le colonne success unsuccess e marginality sono state create appositamente per
la realizzazione di questo progetto, come descritto nelle sezioni seguenti.

Il secondo dataset contiene invece 2187 righe e le seguenti colonne:

• codice epic: codice del progetto associato, utilizzato per la relazione con l’altro
dataset (stringa);

• usr name: nome e cognome del dipendente che ha lavorato al progetto (stringa);

• role: ruolo ricoperto nel progetto (stringa);

• hours: ore lavorate dal singolo membro (float).
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4.2.1 Definizione delle variabili target

Classificazione binaria

Per valutare l’esito dei progetti aziendali è necessario definire una metrica oggettiva che
distingua i progetti completati con successo da quelli problematici. In questo lavoro, si
è adottato un criterio basato sul confronto tra la durata effettiva del progetto e la stima
di consegna concordata.

Un progetto è considerato di successo se viene completato in un tempo inferiore alla
stima di consegna prevista, dimostrando efficienza operativa e rispetto delle scadenze.
Al contrario, un progetto è classificato come insuccesso se richiede un tempo pari o
superiore alla stima, indicando possibili inefficienze, sottostime iniziali o problematiche
durante l’esecuzione.

Formalmente, la variabile binaria S (success) è definita come:

S =

{
1 se WD < DE (progetto completato in anticipo o nei tempi)

0 se WD ≥ DE (progetto in ritardo rispetto alla stima)
(4.1)

dove:

• S ∈ {0, 1}: esito binario del progetto, con 1 che indica successo e 0 che indica
insuccesso;

• WD (total worked days): numero complessivo di giornate lavorative effettiva-
mente impiegate per completare il progetto. Questo valore è calcolato dividendo
le ore totali lavorate per 8 (giornata lavorativa standard);

• DE (delivery estimates): stima di consegna in giorni, calcolata convenzional-
mente come l’80% della stima commerciale iniziale (CE). Questa riduzione riflette
la prassi aziendale di definire una scadenza operativa più stringente rispetto alla
promessa commerciale, lasciando un margine di sicurezza:

DE = 0,8 · CE

dove CE (commercial estimates) rappresenta la stima commerciale comunicata
al cliente.

Questa formulazione, pur nella sua semplicità, consente di trasformare il problema in
un compito di classificazione binaria supervisionata. La scelta di considerare come soglia
la stima di consegna (DE) anziché la stima commerciale (CE) riflette le aspettative in-
terne dell’azienda: un progetto che termina entroDE è considerato gestito efficacemente,
mentre uno che supera tale soglia segnala criticità operative.
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Classificazione multiclasse

Oltre alla classificazione binaria, è stato sviluppato un sistema di valutazione più artico-
lato basato sulla marginalità economica del progetto, ossia la differenza relativa tra
il tempo stimato e quello effettivamente impiegato. La marginalità M rappresenta una
misura normalizzata dell’efficienza progettuale e viene calcolata come segue:

M =


1− WD

CE
se WD ≤ DE (progetto efficiente)

−
(
WD

CE
− 1

)
se WD > DE (progetto inefficiente)

(4.2)

dove:

• M ∈ R: marginalità economica del progetto, espressa come frazione della stima
commerciale;

• WD (total worked days): giorni effettivamente lavorati;

• CE (commercial estimates): stima commerciale iniziale in giorni;

• DE = 0,8 · CE (delivery estimates): stima di consegna operativa.

Nell’implementazione pratica, il rapporto WD
CE

viene troncato a 2 cifre decimali prima di
essere utilizzato nel calcolo, e il risultato finale M viene anch’esso troncato a 2 decimali
per garantire consistenza numerica.

Interpretazione della formula La formula distingue due modalità di comportamento
progettuale:

1. Caso 1: Progetto completato entro la stima di consegna (WD ≤ DE) In
questo caso, il margine è calcolato come:

M = 1− WD

CE

Esempio: considerando una stima commerciale pari a CE = 100 giorni e un
completamento effettivo in WD = 60 giorni, la marginalità risulta:

M = 1− 60

100
= 0,40

Un valore positivo indica che il progetto è stato eseguito con un consumo di tempo
inferiore rispetto a quanto pianificato, generando un beneficio economico.
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2. Caso 2: Progetto che supera la stima di consegna (WD > DE) In questo
caso, il margine diventa negativo ed è calcolato come:

M = −
(
WD

CE
− 1

)
Esempio: per un progetto con stima commerciale CE = 100 giorni, stima di
delivery DE = 80 giorni e un completamento in WD = 120 giorni, la marginalità
è:

M = −
(
120

100
− 1

)
= −0,20

Un valore negativo rappresenta uno sforamento dei tempi, che si traduce in una
perdita economica.

Sebbene la variabile marginality sia continua, ai fini della classificazione multiclasse
essa è stata discretizzata in quattro categorie ordinali mediante la funzione pd.qcut()

di pandas, che suddivide i valori osservati in quartili:

• Very bad: quartile più basso (peggiori marginalità, forte sforamento);

• Not so good: secondo quartile;

• Good: terzo quartile;

• Very good: quartile più alto (migliori marginalità, massima efficienza).

Questa trasformazione consente di convertire il problema da regressione continua
a classificazione supervisionata, dove ciascun progetto viene assegnato a una classe
qualitativa rappresentativa del suo livello di successo economico.

La distribuzione delle istanze nelle quattro classi è riportata nella Tabella 5.8.

4.2.2 Pulizia-trasformazione dei dati

Sui dati raccolti sono state eseguite diverse operazioni di pulizia e trasformazione, sia
manuali sia automatizzate, tra cui:

• eliminazione di record con valori nulli o incoerenti;

• codifica delle variabili categoriche tramite one-hot encoding;

• costruzione di feature derivate (es. mesi lavorati);

Le operazioni di correzione manuale (ad esempio la rimozione di valori nulli e la nor-
malizzazione dei nomi) sono state effettuate direttamente nei documenti Google, mentre
le procedure di trasformazione e codifica sono state implementate tramite codice Python.
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4.2.3 Importazione-unione dei dataset

Entrambi i dataset sono stati scaricati dai Documenti Google come file CSV e importati
tramite la libreria pandas. L’unione è stata realizzata mediante un’operazione di merge
sulla chiave comune codice epic, corrispondente all’identificativo univoco di ciascun
progetto. Questa operazione ha permesso di accorpare le informazioni relative ai progetti
con quelle dei membri che vi hanno partecipato, mantenendo soltanto i record coerenti
presenti in entrambi i dataset.

4.2.4 Selezione-codifica delle feature

Dal dataset originale sono state rimosse le feature codice offerta OT e role, risultate
debolmente correlate con la variabile target. Le date operative sono state sintetizzate
nella variabile mesi lavorati, contenente tutti i nomi dei mesi posizionati tra la data
di inizio e la data di fine del progetto di riferimento.

Di seguito un riepilogo delle feature utilizzate per l’addestramento dei modelli insieme
alle variabili target:
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Tabella 4.1: Riepilogo delle feature finali utilizzate per l’addestramento dei modelli con
le variabili target

Nome variabile Tipo Descrizione Utilizzo

livello di rischio Categoriale Livello di rischio stimato dall’azienda
(Low, Medium, High).

Feature

commercial estimates Numerica
(float)

Stima commerciale del progetto. Feature

delivery estimates Numerica
(float)

Stima di consegna pari all’80% della
stima commerciale.

Feature

technologies Testuale (li-
sta di strin-
ghe)

Elenco delle tecnologie impiegate nello
sviluppo.

Feature

assegnatario Categoriale Nome del referente o assegnatario del
progetto.

Feature

customer Categoriale Nome del cliente associato al progetto. Feature
mesi lavorati Testuale (li-

sta)
Mesi compresi tra l’inizio e la fine del
progetto.

Feature

usr name Testuale
(stringa)

Nome del membro del team coinvolto. Feature

success unsuccess Binaria
(0/1)

Esito del progetto (1 = successo, 0 =
insuccesso).

Target
(class.
binaria);
Feature
(class.
multiclas-
se)

marginality Numerica
(float)

Marginalità del progetto, misura del
livello di successo.

Target
(class.
multiclas-
se)

Codifica delle variabili categoriche

Le variabili non numeriche sono state convertite in formato numerico tramite one-hot
encoding, applicato alle seguenti colonne:

• technologies;

• mesi lavorati;
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• livello di rischio, assegnatario, customer;

• usr name (membri del team).

La procedura è stata implementata mediante la funzione preprocess data(), che
espande ogni colonna in una serie di feature binarie con la convenzione colonna valore

(es. technologies React, mesi lavorati giugno). In particolare:

• la colonna usr name è stata esplosa in più righe, generando una codifica binaria
per ciascun membro;

• le colonne technologies e mesi lavorati sono state binarizzate riga per riga,
generando indicatori di presenza (1 se presente, 0 altrimenti);

• le variabili categoriali semplici (livello di rischio, assegnatario, customer)
sono state trasformate in insiemi di variabili binarie.

Dopo l’espansione, le istanze multiple relative allo stesso progetto sono state aggregate
tramite la funzione groupby() sulla chiave codice epic, applicando un’aggregazione
logica (max) sulle feature binarie. Questo approccio assicura la compatibilità dei dati con
i modelli di machine learning, pur comportando un aumento significativo del numero di
colonne generate.

4.3 Skill Matrix

Un secondo canale di acquisizione dei dati è rappresentato dalla Skill Matrix. Questa,
fornita dall’azienda in formato Excel, rappresenta il livello di competenza di ciascun
dipendente su un insieme di tecnologie rilevanti, con punteggi da 0 a 4. Dopo essere
stata preprocessata, la matrice viene integrata nel sistema e utilizzata per confrontare le
tecnologie richieste da ciascun progetto con le competenze effettivamente possedute dai
candidati.

La logica di selezione basata sulle competenze sarà approfondita nel capitolo dedicato
alla Skill Matrix.

4.4 Estrazione automatica dal project charter

Per acquisire in modo strutturato le informazioni relative al nuovo progetto, il sistema
utilizza come input un documento PDF denominato project charter. Questo documento,
redatto in linguaggio naturale, riassume le principali caratteristiche del progetto: cliente,
tecnologie previste, valutazioni di rischio, stime di effort e date chiave. Solitamente ha
una lunghezza di circa 5–6 pagine e dovrebbe essere redatto seguendo un template fornito
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dall’azienda, che include sottotitoli esplicativi. Di seguito un esempio della prima pagina
del Project Charter:

Figura 4.1: Indice tipico del Project Charter

Poiché il contenuto è testuale e non normalizzato, è stata sviluppata una componente
intelligente in grado di analizzarne automaticamente il contenuto e restituire un output
strutturato.

La componente in questione è denominata Data Extraction Agent, ed è basata
su un agente LLM (Large Language Model) integrato con una catena di elaborazione
sviluppata tramite la libreria LangChain. L’agente interroga il modello GPT-4 (nella
versione gpt-4o-mini) fornito da OpenAI, seguendo un prompt costruito su misura per
l’analisi semantica del documento.

Il prompt è progettato per guidare il modello nella ricerca e trasformazione di sei
informazioni fondamentali:

• il livello di rischio del progetto, espresso in una delle seguenti categorie: Low,
Medium, High, Critical;

• le stime numeriche relative all’effort: commercial estimates e delivery estimates,
espresse come numeri decimali coerenti;

• la lista delle technologies indicate nel testo;

• il nome del customer o committente del progetto;
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• l’elenco dei mesi lavorati, calcolato a partire dalle date di inizio e fine.

Le istruzioni fornite al modello sono dettagliate e vincolanti, cos̀ı da ridurre l’ambi-
guità interpretativa. Il prompt completo è riportato in Appendice A.

Il risultato dell’elaborazione viene poi processato da un Output Parser basato su
Pydantic, che ne valida la struttura secondo uno schema JSON predefinito. Una volta
validato, l’output viene salvato in formato JSON e utilizzato nelle successive fasi di ricerca
e raccomandazione. Per garantire l’affidabilità dei dati estratti, le risposte generate dal
modello sono state verificate manualmente, confrontandole con le informazioni presenti
nel Project Charter.

L’utilizzo combinato di LLM, prompt engineering e parsing strutturato consente
di automatizzare un’operazione altrimenti manuale e dispendiosa, rendendo il sistema
scalabile e riutilizzabile per progetti futuri.

4.5 Integrazione con il sistema complessivo

Una volta preprocessati, i dati vengono salvati in formato JSON e resi disponibili per le
componenti successive del sistema, che operano in modo coordinato ma indipendente. Il
flusso di utilizzo dei dati avviene secondo la seguente logica:

• i modelli di machine learning vengono addestrati sui dati storici relativi ai progetti
passati;

• la fase di ricerca semantica sfrutta le informazioni estratte dal nuovo project charter
per individuare, all’interno del VectorDB, i progetti più simili; da questi vengono
recuperati i team realmente utilizzati, che saranno proposti come composizioni
iniziali;

• attraverso la Skill Matrix, il sistema individua i dipendenti più competenti nel-
le tecnologie richieste dal nuovo progetto; questi potranno essere suggeriti come
sostituzioni o integrazioni ai team proposti;

• infine, i modelli di classificazione ricevono in input i dati del nuovo progetto abbinati
ai diversi team suggeriti, e stimano per ciascuna configurazione la probabilità di
successo o la marginalità attesa.

Questo flusso permette al sistema di supportare il processo decisionale in modo inte-
grato, con un’interazione continua tra conoscenza storica, analisi semantica e valutazione
predittiva.

L’intero processo è stato progettato per essere modulare, in modo da poter facilmente
adattare o sostituire singole componenti senza compromettere il funzionamento globale
del sistema.
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Capitolo 5

Machine Learning per la Predizione
del Successo Progettuale

Il presente capitolo descrive in dettaglio i modelli di apprendimento automatico sviluppati
per supportare la fase di team composition, attraverso la predizione dell’esito atteso di
un nuovo progetto.

Nel contesto della scienza dei dati e dell’intelligenza artificiale, i modelli di machine
learning rappresentano strumenti fondamentali per la costruzione di sistemi intelligen-
ti in grado di apprendere da dati storici al fine di effettuare previsioni, classificazioni
o prendere decisioni autonome. Questi modelli si dividono in varie categorie, tra cui
l’apprendimento supervisionato, non supervisionato e per rinforzo. In questa tesi ci si
concentra sui modelli supervisionati, i quali apprendono una funzione a partire da un
insieme di esempi etichettati (coppie input-output), con l’obiettivo di generalizzare su
dati mai visti.

I modelli analizzati in questo lavoro appartengono alla categoria della classificazio-
ne e comprendono metodi basati su alberi decisionali, nonché modelli lineari e basati
sulla distanza. Ciascuno di questi modelli presenta vantaggi e limitazioni in termini di
accuratezza, interpretabilità, robustezza e tempo di addestramento.

La classificazione viene affrontata con due strategie distinte:

• Classificazione binaria, che prevede l’etichettamento del progetto come “succes-
so” o “insuccesso”;

• Classificazione multiclasse,che assegna un progetto a una delle classi ordinali
definite a partire dalla marginalità (Very bad, Not so good, Good, Very good),
ottenute dalla discretizzazione in quartili del margine economico dell’iniziativa.

Entrambe le tipologie di classificazione sono state implementate in Python, utilizzan-
do scikit-learn, XGBoost e altre librerie correlate. In questo capitolo si presentano i
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dati utilizzati, le tecniche di preprocessing, la struttura degli algoritmi, la ricerca degli
iperparametri e l’analisi dei risultati.

5.1 Modelli

Nel progetto presentato, i modelli di machine learning predicono l’esito atteso di un
progetto, sulla base di un insieme di dati strutturati e pre-elaborati. L’approccio seguito
è supervisionato: i modelli vengono addestrati a partire da esempi etichettati, ovvero
osservazioni storiche per le quali è noto l’esito (binario o multiclasse), al fine di apprendere
una funzione che generalizzi su dati futuri.

Le tecniche adottate rientrano tutte nella categoria della classificazione, ovvero quelle
in cui il compito consiste nell’assegnare un’osservazione a una tra più categorie discre-
te. Per tale ragione, non si è fatto ricorso a modelli di regressione o ad approcci non
supervisionati.

Gli algoritmi selezionati sono stati scelti in base alla loro affidabilità, flessibilità e
disponibilità nelle principali librerie open source Python, tra cui scikit-learn, XGBoost,
e Imbalanced-learn.

Nello specifico, sono stati impiegati i seguenti algoritmi di classificazione:

• Random Forest;

• XGBoost;

• K-Nearest Neighbors

• Gradient Boosting

• AdaBoost

• Support Vector Classifier (SVC).

Tutti i modelli sono stati utilizzati sia per la classificazione binaria che multiclasse, a
eccezione di KNN, Gradient Boosting e AdaBoost, impiegati solo nella variante binaria
per motivi legati alle performance sperimentali osservate. Le descrizioni che seguono
illustrano il funzionamento teorico di ciascun algoritmo.

5.1.1 Random Forest

Random Forest è un algoritmo di tipo ensemble introdotto per mitigare i limiti degli
alberi decisionali tradizionali, limitati dalla loro tendenza all’overfitting. L’idea di base
è quella di costruire una ”foresta” composta da più alberi decisionali, ciascuno dei quali
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viene addestrato su un sottoinsieme casuale del dataset, selezionato tramite campiona-
mento con rimpiazzo (bootstrap). In aggiunta, a ogni split interno degli alberi, viene
considerato solo un sottoinsieme casuale delle feature disponibili.

Questa doppia casualità (sui dati e sulle feature) permette di ottenere alberi diver-
sificati, i cui errori tendono a compensarsi nel processo decisionale finale, che avviene
tramite votazione di maggioranza nel caso della classificazione. Il modello risultante è
quindi più stabile, meno soggetto a fluttuazioni nei dati e più generalizzabile.

Il modello Random Forest può essere impiegato sia per compiti di classificazione sia
di regressione, e supporta nativamente strategie di bilanciamento classi, gestione dei dati
mancanti e stima dell’importanza delle feature. La classe RandomForestClassifier forni-
sce un’interfaccia completa per l’uso di questo algoritmo, permettendo il controllo fine su
parametri come il numero di alberi (n estimators), la profondità massima (max depth)
e il numero di feature selezionate per split (max features) [7].

5.1.2 XGBoost

XGBoost (Extreme Gradient Boosting) è un potente algoritmo basato sul principio del
boosting graduale, in cui una sequenza di modelli viene costruita in modo incrementale,
con ciascun nuovo modello che cerca di correggere gli errori residui dei precedenti. A
differenza del Random Forest, che lavora in parallelo sugli alberi, XGBoost li costruisce
in maniera sequenziale, ottimizzando a ogni passo una funzione obiettivo che include sia
una componente di perdita (per esempio log-loss) sia un termine di regolarizzazione.

L’algoritmo è progettato per essere estremamente efficiente e scalabile. Integra tec-
niche avanzate come la pruning anticipata (early stopping), regolarizzazione L1 e L2,
gestione dei valori mancanti e ottimizzazione basata su grafi. L’implementazione in
Python tramite la classe XGBClassifier consente l’utilizzo dell’algoritmo in contesti di
classificazione con un controllo granulare sugli iperparametri.

Grazie alla sua struttura modulare, XGBoost può essere impiegato efficacemente in
scenari con molte feature, dati eterogenei o con forte disomogeneità tra classi. Proprio
per questa sua versatilità, è spesso utilizzato in contesti produttivi e in competizioni
internazionali di machine learning [13].

5.1.3 K-Nearest Neighbor

Il K-Nearest Neighbors è un algoritmo intuitivo che appartiene alla categoria dei clas-
sificatori ”lazy”, ovvero che non costruiscono un modello esplicito durante la fase di
addestramento. Il principio di base è che un’istanza viene classificata sulla base delle
classi osservate tra i k esempi più vicini, individuati tramite una metrica di distanza
predefinita.
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Il modello KNeighborsClassifier può impiegare diverse metriche di distanza (come
Euclidea, Manhattan, Chebyshev) ed è particolarmente sensibile alla scala delle feature,
motivo per cui è spesso abbinato a tecniche di normalizzazione o standardizzazione.

Il KNN si presta bene a problemi in cui le classi presentano confini non lineari, ma può
risultare computazionalmente oneroso all’aumentare del numero di osservazioni. Inoltre,
la scelta del parametro k ha un impatto diretto sulla capacità del modello di generalizzare
correttamente [10].

5.1.4 Gradient Boosting

Il Gradient Boosting è una tecnica ensemble basata sull’addestramento progressivo di
modelli deboli, generalmente alberi decisionali a bassa profondità. A ogni iterazione,
l’algoritmo costruisce un nuovo albero che cerca di correggere gli errori residui accumulati
dal modello corrente, minimizzando la funzione di perdita tramite discesa del gradiente.

La classe GradientBoostingClassifier implementa questo approccio in modo efficiente,
consentendo di specificare parametri fondamentali come il numero di stadi (n estimators),
il learning rate (learning rate) e la profondità massima degli alberi (max depth).

Una delle principali caratteristiche del Gradient Boosting è la sua capacità di cattu-
rare relazioni non lineari tra le feature, pur mantenendo un alto grado di controllo sul
rischio di overfitting grazie a meccanismi di regolarizzazione e subsampling [6].

5.1.5 AdaBoost

AdaBoost (Adaptive Boosting) è uno degli algoritmi di boosting più noti e sempli-
ci da implementare. Il suo funzionamento si basa sull’addestramento sequenziale di
una serie di modelli deboli, spesso alberi decisionali molto semplici (depth=1, chia-
mati ”stumps”), dove ogni nuovo modello cerca di correggere gli errori del precedente
attribuendo maggiore peso agli esempi più difficili.

L’algoritmo è disponibile tramite la classe AdaBoostClassifier, che consente di speci-
ficare il numero di modelli (n estimators), il tasso di apprendimento (learning rate) e il
tipo di classificatore base utilizzato.

AdaBoost è particolarmente efficace in presenza di dati semplici e ben separabili, ma
può soffrire in contesti molto rumorosi, dove tende a sovra-adattarsi agli outlier. Nono-
stante ciò, rappresenta una soluzione leggera e facilmente interpretabile per problemi di
classificazione supervisionata [5].

5.1.6 Support Vector Classifier (SVC)

Il Support Vector Classifier, basato sulla teoria delle macchine a vettori di supporto
(SVM), mira a trovare un confine decisionale ottimale tra le classi, massimizzando il
margine tra gli esempi più vicini ai bordi del separatore. In scenari non linearmente
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separabili, l’algoritmo può impiegare funzioni kernel per proiettare i dati in spazi di
dimensione superiore dove la separazione è possibile.

SVC supporta diversi tipi di kernel (lineare, polinomiale, RBF) e offre una gestione
flessibile della regolarizzazione attraverso il parametro C, che controlla il compromesso
tra ampiezza del margine e correttezza della classificazione.

L’uso del kernel trick rende il modello particolarmente potente, ma anche più sensibile
alla scelta dei parametri, richiedendo quindi attenzione in fase di tuning. SVC è noto per
le sue prestazioni eccellenti su dataset di piccole o medie dimensioni, soprattutto quando
le feature sono ben scalate e il numero di dimensioni non è eccessivo [11].

5.2 Metriche di valutazione

Per valutare le prestazioni dei modelli di classificazione sviluppati, sono state utilizzate
le metriche standard fornite da scikit-learn [8, 9].

• Accuracy: misura la proporzione di osservazioni classificate correttamente rispet-
to al totale. È definita come:

Accuracy =
TP + TN

TP + TN + FP + FN

Dove:

– TP (True Positive): numero di istanze positive classificate correttamente;

– TN (True Negative): numero di istanze negative classificate correttamente;

– FP (False Positive): numero di istanze negative classificate erroneamente
come positive;

– FN (False Negative): numero di istanze positive classificate erroneamente
come negative.

• Precision: indica la percentuale di predizioni positive corrette, e si calcola come:

Precision =
TP

TP + FP

Un valore elevato di precision indica che il modello commette pochi falsi positivi.

• Recall (Sensibilità): rappresenta la capacità del modello di identificare corret-
tamente le istanze positive:

Recall =
TP

TP + FN

Un valore elevato di recall implica che il modello commette pochi falsi negativi.
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• F1-score: è la media armonica tra precision e recall, utile per bilanciare le due
metriche:

F1-score = 2 · Precision · Recall
Precision + Recall

Questa metrica è particolarmente indicata in caso di dataset sbilanciati, in quanto
combina in un singolo valore la capacità del modello di evitare sia falsi positivi sia
falsi negativi.

• Support: indica il numero di campioni appartenenti a ciascuna classe nel da-
taset di test. È utilizzato per calcolare le medie ponderate delle metriche e per
interpretare la distribuzione delle classi.

Il classification report di scikit-learn riporta queste metriche per ciascuna classe pre-
sente nel dataset. Ogni classe, anche nel caso della classificazione binaria, viene con-
siderata a turno come positiva, cos̀ı da calcolare precision, recall e F1-score in modo
specifico per tutte le categorie. Questa scelta permette di valutare con maggiore detta-
glio il comportamento del modello sulle singole classi, evidenziando eventuali differenze
nella capacità di riconoscere correttamente successi e insuccessi. L’inclusione del sup-
port facilita inoltre l’interpretazione dei risultati, indicando la distribuzione reale delle
osservazioni in ciascuna classe.

5.3 Classificazione Binaria

5.3.1 Definizione del target

L’obiettivo della classificazione binaria è predire se un progetto avrà successo, secondo
la seguente regola:

S =

{
1 se WD < DE

0 se WD ≥ DE
(5.1)

Dove WD rappresenta i giorni lavorati e DE la stima di consegna.
Per la classificazione binaria vengono utilizzati tutti i modelli precedentemente ana-

lizzati.

5.3.2 Suddivisione del training e test set

Per valutare correttamente le prestazioni dei modelli di machine learning è fondamentale
separare i dati disponibili in due sottoinsiemi distinti:

• Training set: utilizzato per addestrare i modelli, ovvero per far apprendere i
pattern e le relazioni tra le feature e la variabile target;
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• Test set: mantenuto completamente separato durante l’addestramento e utilizzato
esclusivamente per valutare le prestazioni del modello su dati mai visti, simulando
l’applicazione reale su nuovi progetti.

Questa separazione è cruciale per evitare il fenomeno dell’overfitting, in cui un modello
memorizza i dati di training anziché apprendere regole generalizzabili, risultando poi
inefficace su nuove istanze.

La suddivisione del dataset in training e test set è stata effettuata mediante una
funzione dedicata, riportata di seguito:

1 def prepare_data(df):

2 X = df.drop(columns=['success_unsuccess'], errors='ignore')

3 y = df['success_unsuccess']

4 return train_test_split(

5 X, y, test_size=0.3, random_state=42, shuffle=True, stratify=y

6 )

La funzione prepare data() riceve in input il DataFrame pre-processato e separa le
variabili indipendenti (X) dalla variabile target (y), identificata come success unsuccess.
Successivamente, il dataset viene suddiviso in due sottoinsiemi: il training set (70% dei
dati) e il test set (30%). Il parametro random state=42 garantisce la riproducibilità dei
risultati, mentre l’opzione stratify=y assicura che la distribuzione delle classi rimanga
proporzionale in entrambe le partizioni. L’opzione shuffle=True consente inoltre di me-
scolare casualmente i campioni prima della suddivisione, riducendo possibili bias legati
all’ordine dei dati.

5.3.3 Singoli Modelli

Per la classificazione binaria sono stati utilizzati utilizzati tutti i modelli precedentemente
analizzati. Di seguito si riportano l’analisi degli iperparametri selezionati per ciascun
modello e la relativa valutazione delle prestazioni.

Random Forest

L’intero modello è stato ottimizzato tramite RandomizedSearchCV, una strategia di
ricerca casuale nello spazio degli iperparametri, più efficiente della grid search in presenza
di un numero elevato di combinazioni. Per la validazione è stato impiegato uno schema
StratifiedKFold con 5 suddivisioni, che assicura la conservazione del bilanciamento tra
classi in ciascun fold.

Di seguito si riportano gli iperparametri ottimizzati e la loro funzione:

• clf n estimators: numero di alberi nella foresta. Valori testati: 100, 200, 300,
500. Un numero maggiore di alberi tende a migliorare l’accuratezza e la stabilità
del modello, al costo di un maggiore tempo computazionale.
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• clf max depth: profondità massima degli alberi. Valori: None (illimitata), 10, 20,
30. Serve a limitare l’overfitting controllando la complessità degli alberi.

• clf min samples split: numero minimo di campioni richiesti per suddividere un
nodo. Valori: 2, 5, 10. Impedisce la creazione di nodi troppo piccoli e instabili.

• clf min samples leaf: numero minimo di campioni richiesti per un nodo foglia.
Valori: 1, 2, 4. Parametri più alti portano a modelli più semplici e generalizzabili.

• clf max features: numero massimo di feature da considerare per la suddivisione
a ogni nodo. Valori: ‘auto’, ‘sqrt’, ‘log2’, 0.2, 0.5. Influenza la diversità tra
gli alberi: valori più bassi aumentano la varietà, contribuendo all’effetto ensemble.

• clf bootstrap: specifica se utilizzare il campionamento con rimpiazzamento (boo-
tstrap). Valori: True, False. Il bootstrap incrementa la diversità degli alberi, ma
in certi casi l’uso senza rimpiazzamento può dare risultati migliori.

• clf criterion: funzione utilizzata per misurare la qualità della suddivisione.
Valori: ‘gini’ e ‘entropy’. Entrambe sono misure dell’impurità: gini è più
veloce, mentre entropy è più informativa in certe situazioni.

Nel complesso, questa architettura combinata ha permesso di costruire un classifica-
tore robusto, capace di affrontare sia lo squilibrio tra le classi, sia l’elevata dimensionalità
del dataset.

Di seguito viene presentata la valutazione del modello, tenendo presente che i risultati
ottenuti possono mostrare delle variazioni tra differenti esecuzioni.

Classe Precision Recall F1-score Support
Insuccesso (0) 0.70 0.68 0.69 56
Successo (1) 0.62 0.64 0.63 45
Accuracy 0.66

Tabella 5.1: Valutazione del modello Random Forest (una singola esecuzione)
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Figura 5.1: Matrice di confusione — Random Forest (una singola esecuzione)

XGBoost

Nel contesto di questo progetto, XGBoost è stato combinato con SMOTE all’interno di
una pipeline (ImbPipeline) per affrontare lo squilibrio tra le classi. Il dataset è stato
prima bilanciato artificialmente tramite la generazione sintetica di campioni minoritari,
e successivamente utilizzato per l’addestramento del classificatore.

La fase di ottimizzazione degli iperparametri è stata condotta tramite RandomizedSearchCV,
con validazione stratificata a 5 fold. Di seguito vengono descritti gli iperparametri
utilizzati:

• clf n estimators: numero di alberi da costruire. Valori testati: 100, 200, 300,
500. Un numero maggiore può aumentare la capacità predittiva, ma anche il rischio
di overfitting.

• clf max depth: profondità massima degli alberi. Valori: 3, 6, 9, 12. Profondità
maggiori permettono di modellare interazioni complesse, ma aumentano il rischio
di overfitting.

• clf learning rate: tasso di apprendimento. Valori: 0.01, 0.05, 0.1, 0.2. Riduce
l’impatto di ogni albero successivo, rallentando l’apprendimento ma migliorando
la generalizzazione.

• clf subsample: percentuale di campioni da utilizzare per ciascun albero. Valori:
0.6, 0.8, 1.0. Aiuta a prevenire overfitting introducendo casualità nel training.
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• clf colsample bytree: percentuale di feature da considerare per ogni albero.
Valori: 0.6, 0.8, 1.0. Migliora la diversità degli alberi e la generalizzazione.

• clf gamma: soglia minima di gain per consentire una divisione. Valori: 0, 0.1,
0.2, 0.3. Valori maggiori rendono il modello più conservativo, evitando split poco
informativi.

• clf min child weight: peso minimo richiesto in un nodo foglia. Valori: 1, 3, 5.
Valori più alti evitano la creazione di foglie con pochi campioni.

• clf reg alpha: termine di regolarizzazione L1 (lasso). Valori: 0, 0.01, 0.1.
Penalizza le caratteristiche meno rilevanti, favorendo la sparsità del modello.

• clf reg lambda: termine di regolarizzazione L2 (ridge). Valori: 1, 1.5, 2.0.
Stabilizza l’ottimizzazione penalizzando grandi coefficienti.

Infine, il parametro eval metric è stato impostato su logloss, metrica standard
per i problemi di classificazione binaria, coerente con la funzione di perdita ottimizzata
internamente dal modello.

Di seguito viene presentata la valutazione del modello, tenendo presente che i risultati
ottenuti possono mostrare delle variazioni tra differenti esecuzioni.

Classe Precision Recall F1-score Support
Insuccesso (0) 0.67 0.59 0.63 56
Successo (1) 0.56 0.64 0.60 45
Accuracy 0.61

Tabella 5.2: Valutazione del modello XGBoost (una singola esecuzione)
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Figura 5.2: Matrice di confusione — XGBoost (una singola esecuzione)

K-Nearest Neighbors

La selezione degli iperparametri è stata effettuata tramite RandomizedSearchCV, con
validazione stratificata 5-fold. I parametri esplorati sono stati:

• knn n neighbors: rappresenta il numero k di vicini da considerare. Sono stati
testati valori da 3 a 40. Un valore basso rende il modello più sensibile al rumore,
mentre un valore elevato fornisce maggiore stabilità ma può offuscare strutture
locali.

• knn weights: determina il peso assegnato a ciascun vicino durante la predizione.
Le modalità valutate includono:

– uniform: tutti i vicini contribuiscono in egual misura;

– distance: i vicini più vicini contribuiscono maggiormente.

• knn metric: specifica la metrica di distanza. Le metriche testate includono:

– euclidean (distanza L2),

– manhattan (distanza L1),

– chebyshev (massima distanza lungo una singola dimensione).

• knn p: parametro della distanza di Minkowski. p=1 corrisponde alla distanza
Manhattan, mentre p=2 alla distanza Euclidea. È rilevante solo quando si utilizza
la metrica minkowski.

34



Nel complesso, l’approccio basato su KNN si è dimostrato utile per esplorare strutture
locali nei dati.

Di seguito viene presentata la valutazione del modello, tenendo presente che i risultati
ottenuti possono mostrare delle variazioni tra differenti esecuzioni.

Classe Precision Recall F1-score Support
Insuccesso (0) 0.69 0.59 0.63 56
Successo (1) 0.57 0.67 0.61 45
Accuracy 0.62

Tabella 5.3: Valutazione del modello KNN (una singola esecuzione)

Figura 5.3: Matrice di confusione — KNN (una singola esecuzione)

Gradient Boosting Classifier

Il classificatore GradientBoostingClassifier di scikit-learn è stato utilizzato senza
preprocessing tramite SMOTE o PCA. L’ottimizzazione degli iperparametri è stata effet-
tuata con RandomizedSearchCV e validazione incrociata stratificata (5 fold). I principali
iperparametri considerati sono:

• n estimators: numero totale di alberi da costruire. Maggiore è il numero, mag-
giore la complessità del modello, ma anche il rischio di overfitting.

• learning rate: coefficiente moltiplicativo che regola l’influenza di ciascun albero
sulla predizione finale. Un valore basso (es. 0.01–0.1) migliora la generalizzazione,
ma richiede più alberi.
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• max depth: profondità massima degli alberi base. Alberi più profondi catturano
meglio interazioni complesse ma aumentano il rischio di overfitting.

• subsample: frazione del dataset usata per addestrare ciascun albero. Valori minori
di 1 introducono casualità nel training (stochastic gradient boosting), utile per
ridurre la varianza.

• min samples split e min samples leaf: controllano rispettivamente il numero
minimo di campioni per dividere un nodo e per formare una foglia. Parametri
elevati forniscono regolarizzazione e riducono l’overfitting.

• max features: numero massimo di feature da considerare per ogni split. Valori
come ‘sqrt’ o ‘log2’ possono migliorare la generalizzazione.

Questa architettura è particolarmente adatta in scenari in cui la relazione tra le
feature e la variabile target è complessa e non lineare.

Di seguito viene presentata la valutazione del modello, tenendo presente che i risultati
ottenuti possono mostrare delle variazioni tra differenti esecuzioni.

Classe Precision Recall F1-score Support
Insuccesso (0) 0.65 0.70 0.67 56
Successo (1) 0.59 0.53 0.56 45
Accuracy 0.62

Tabella 5.4: Valutazione del modello Gradient Boosting Classifier (una singola esecuzio-
ne)
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Figura 5.4: Matrice di confusione — Gradient Boosting Classifier (una singola esecuzio-
ne)

AdaBoost Classifier

La ricerca degli iperparametri è stata effettuata tramite GridSearchCV con validazione
incrociata stratificata a 5 fold. I parametri ottimizzati sono:

• clf n estimators: numero di stimatori base (alberi). Valori testati: 50, 100, 300,
500, 1000. Un numero maggiore può migliorare la capacità predittiva, ma aumenta
il rischio di overfitting e il costo computazionale.

• clf learning rate: fattore di riduzione del contributo di ogni albero aggiunto.
Valori considerati: 0.001, 0.01, 0.05, 0.1, 0.5, 1.0. Un learning rate basso può
migliorare la generalizzazione ma richiede un numero maggiore di stimatori.

• clf estimator max depth: profondità massima degli alberi base. Valori: 1, 2,
3. Alberi poco profondi sono preferibili per ridurre l’overfitting, mantenendo la
natura di classificatori deboli dell’algoritmo AdaBoost.

Questa combinazione di tecniche consente di affrontare efficacemente problemi di
classificazione con classi sbilanciate, sfruttando il potere del boosting e la robustezza
della normalizzazione e del bilanciamento dati.

Di seguito viene presentata la valutazione del modello, tenendo presente che i risultati
ottenuti possono mostrare delle variazioni tra differenti esecuzioni.
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Classe Precision Recall F1-score Support
Insuccesso (0) 0.76 0.62 0.69 56
Successo (1) 0.62 0.76 0.68 45
Accuracy 0.68

Tabella 5.5: Valutazione del modello AdaBoost (una singola esecuzione)

Figura 5.5: Matrice di confusione — AdaBoost (una singola esecuzione)

Support Vector Classifier (SVC)

La ricerca degli iperparametri è stata eseguita tramite GridSearchCV con validazione
incrociata stratificata a 5 fold. I parametri ottimizzati sono:

• clf C: parametro di regolarizzazione che controlla il compromesso tra massimiz-
zazione del margine e minimizzazione dell’errore di classificazione. Valori testati:
0.1, 1, 10, 100. Valori più alti riducono la regolarizzazione, cercando di classificare
correttamente tutti i punti di training.

• clf kernel: funzione kernel usata per trasformare lo spazio delle feature. Sono
stati testati i kernel lineare, RBF (Radial Basis Function) e polinomiale.

• clf gamma: parametro del kernel RBF e polinomiale che definisce l’influenza di
singoli esempi. Valori: ’scale’ (default, scala con varianza delle feature) e ’auto’
(inverso del numero di feature).
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• clf degree: grado del polinomio nel kernel polinomiale, testato per valori 2 e 3.
Rilevante solo quando kernel=’poly’.

L’utilizzo di SVC con questi parametri permette di modellare efficacemente sia pro-
blemi linearmente separabili sia situazioni più complesse con confini non lineari, con un
controllo fine del bilanciamento bias-varianza tramite i parametri di regolarizzazione e
kernel.

Di seguito viene presentata la valutazione del modello, tenendo presente che i risultati
ottenuti possono mostrare delle variazioni tra differenti esecuzioni.

Classe Precision Recall F1-score Support
Insuccesso (0) 0.70 0.84 0.76 56
Successo (1) 0.74 0.56 0.63 45
Accuracy 0.71

Tabella 5.6: Valutazione del modello SVC (una singola esecuzione)

Figura 5.6: Matrice di confusione — SVC (una singola esecuzione)

5.3.4 Predizione aggregata

Tutti i modelli di classificazione descritti nelle sezioni precedenti hanno mostrato buone
capacità predittive, sebbene con risultati soggetti a una certa variabilità tra le diverse
esecuzioni. Per ridurre tale instabilità e ottenere una stima più robusta delle predizioni,
è stata adottata una strategia di ensemble learning basata sul voto di maggioranza.
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In particolare, una volta addestrati, tutti i modelli selezionati sono stati utilizzati
congiuntamente per generare una singola predizione finale per ciascun nuovo progetto.
Il meccanismo di aggregazione segue la logica riportata di seguito:

1. Ogni classificatore produce una predizione binaria (1 = successo, 0 = insuccesso);

2. Le predizioni dei modelli vengono sommate (votes);

3. Se la somma dei voti è superiore a 3 (ossia, più della metà dei sei modelli predice
1), il risultato aggregato è 1 (successo); altrimenti è 0 (insuccesso).

In caso di parità esatta (3 voti per ciascuna classe), viene assegnata la classe 0
(insuccesso), adottando un approccio conservativo.

5.3.5 Risultati e valutazione

La valutazione del modello ensemble è stata condotta tramite le metriche standard di
accuracy, precision, recall e f1-score. Sebbene le prestazioni possano variare leg-
germente tra le diverse esecuzioni, l’accuratezza complessiva tende a collocarsi in un
intervallo compreso tra il 64% e il 78%.

Per la stima finale è stato quindi impiegato un ensemble classifier basato sul mec-
canismo di majority voting: ciascun classificatore (Random Forest, XGBoost, KNN,
Gradient Boosting, AdaBoost e SVC) ha generato le proprie predizioni sui dati di test,
e la decisione finale per ogni istanza è stata determinata combinando le risposte secondo
la regola sopra descritta.

La Tabella seguente riporta i risultati ottenuti in una singola esecuzione del sistema
ensemble. Le due classi risultano complessivamente bilanciate in termini di prestazioni.

Classe Precision Recall F1-score Support
Insuccesso (0) 0.74 0.71 0.73 56
Successo (1) 0.66 0.69 0.67 45
Accuracy 0.703

Tabella 5.7: Valutazione dell’ensemble classifier tramite majority voting (una singola
esecuzione)
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Figura 5.7: Matrice di confusione — Ensemble classifier (una singola esecuzione)

5.4 Classificazione Multiclasse

5.4.1 Definizione del target

Nella classificazione multiclasse, l’obiettivo è predire una classe qualitativa associata alla
marginalità attesa del progetto. La variabile continua marginality è stata discretizzata
in quartili utilizzando la funzione qcut() di Pandas, generando quattro classi ordinali:

• Very bad: quartile più basso di marginalità;

• Not so good;

• Good;

• Very good: quartile più alto di marginalità.

La marginalità era stata precedentemente calcolata attraverso la seguente formula:

M =


1− WD

CE
se WD ≤ DE

−
(
WD

CE
− 1

)
se WD > DE

(5.2)

con:
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• M ∈ R: marginalità economica del progetto;

• WD (total worked days): giorni effettivamente lavorati;

• CE (commercial estimates): stima commerciale iniziale in giorni;

• DE = 0,8 · CE (delivery estimates): stima di consegna operativa.

Nell’implementazione pratica, il rapporto WD
CE

viene troncato a 2 cifre decimali prima di
essere utilizzato nel calcolo, e il risultato finale M viene anch’esso troncato a 2 decimali.
In particolare, la distribuzione delle classi finale risulta composta in questo modo:

Classe Numero di istanze
Very bad 81
Good 71
Very good 71
Not so good 45
Totale 268

Tabella 5.8: Distribuzione delle classi del target marginality

5.4.2 Suddivisione del training e test set

La suddivisione del dataset in training e test set per la classificazione multiclasse è stata
realizzata mediante una funzione dedicata, riportata di seguito:

1 def prepare_data(df):

2 X = df.drop(columns=['marginality'], errors='ignore')

3 y = df['marginality']

4

5 labels = ['Very bad', 'Not so good', 'Good', 'Very good'] # 4 classi

6 y_class = pd.qcut(y, q=4, labels=labels)

7

8 return train_test_split(X, y_class, test_size=0.2, shuffle=True)

La funzione prepare data() riceve in input il DataFrame pre-processato e separa
le variabili indipendenti (X) dalla variabile target (y), identificata come marginality.
Poiché la marginalità è una variabile continua, essa viene discretizzata in quattro interval-
li mediante la funzione qcut() della libreria pandas, che suddivide i valori in quartili con
l’obiettivo di distribuire equamente le osservazioni tra le classi (circa il 25% per classe).
Tuttavia, a causa della presenza di valori duplicati nella distribuzione della marginalità,
la suddivisione non risulta perfettamente bilanciata, generando classi con un numero va-
riabile di osservazioni. Le classi risultanti sono etichettate come Very bad, Not so good,
Good e Very good, rappresentando rispettivamente livelli crescenti di marginalità.
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Successivamente, il dataset viene suddiviso in due sottoinsiemi: il training set (80%
dei dati) e il test set (20%). L’opzione shuffle=True consente di mescolare casualmente
i campioni prima della suddivisione, riducendo eventuali bias legati all’ordine dei dati.
Questa procedura garantisce una ripartizione bilanciata delle classi e consente di valutare
in modo più affidabile le prestazioni dei modelli multiclasse.

5.4.3 Singoli Modelli

Per la classificazione multiclasse sono stati utilizzati i seguenti modelli: XGBoost Clas-
sifier, Random Forest Classifier e SVC. Il classificatore KNN è stato testato, ma poi
escluso dalla predizione finale per prestazioni inferiori.

Di seguito si riportano l’analisi degli iperparametri selezionati per ciascun modello e
la relativa valutazione delle prestazioni.

XGBoost Classifier

Nel contesto della classificazione multiclasse, XGBoost è stato addestrato utilizzando
pesi di classe calcolati con compute class weight. L’ottimizzazione degli iperparametri
è avvenuta con GridSearchCV, considerando:

• n estimators: numero di alberi (100, 500, 1000);

• learning rate: tasso di apprendimento, che regola l’impatto di ogni albero (0.01,
0.1, 0.2);

• max depth: profondità massima degli alberi (3, 5, 7), per controllare la complessità.

L’algoritmo ha dimostrato buone capacità predittive, in particolare sulle classi più
sbilanciate.

Di seguito viene presentata la valutazione del modello, tenendo presente che i risultati
ottenuti possono mostrare delle variazioni tra differenti esecuzioni.

Classe Precision Recall F1-score Support
Good 0.56 0.42 0.48 12
Not so good 0.36 0.21 0.27 19
Very bad 0.52 0.71 0.60 24
Very good 0.60 0.69 0.64 13
Accuracy 0.51

Tabella 5.9: Valutazione del modello XGBoost Classifier (una singola esecuzione)
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Figura 5.8: Matrice di confusione — XGBoost Classifier (una singola esecuzione)

Random Forest Classifier

Per la classificazione multiclasse, è stata utilizzata l’opzione class weight=’balanced’

per gestire classi squilibrate.
Gli iperparametri esplorati tramite GridSearchCV sono:

• n estimators: numero di alberi (100, 200, 300);

• max depth: profondità massima degli alberi (10, 20, None);

• min samples split: minimo numero di campioni per suddividere un nodo (2, 5);

• min samples leaf: campioni minimi in una foglia (1, 2);

• bootstrap: uso del campionamento con rimpiazzo (True, False).

Il modello ha prodotto risultati bilanciati e accurati, con buone performance sulle
classi centrali.

Di seguito viene presentata la valutazione del modello, tenendo presente che i risultati
ottenuti possono mostrare delle variazioni tra differenti esecuzioni.
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Classe Precision Recall F1-score Support
Good 0.75 0.25 0.38 12
Not so good 0.71 0.26 0.38 19
Very bad 0.59 0.92 0.72 24
Very good 0.60 0.92 0.73 13
Accuracy 0.62

Tabella 5.10: Valutazione del modello Random Forest (una singola esecuzione)

Figura 5.9: Matrice di confusione — Random Forest (una singola esecuzione)

Support Vector Classifier (SVC)

Gli iperparametri esplorati per il modello SVC sono:

• C: parametro di regolarizzazione (0.1, 1, 10, 100);

• kernel: funzione kernel (linear, rbf, poly);

• gamma: controllo dell’influenza di ogni punto (scale, auto);

• degree: grado del polinomio (2, 3) nel caso di kernel=’poly’.

SVC ha mostrato stabilità nelle predizioni e una buona sensibilità nei confronti delle
classi intermedie.

Di seguito viene presentata la valutazione del modello, tenendo presente che i risultati
ottenuti possono mostrare delle variazioni tra differenti esecuzioni.
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Classe Precision Recall F1-score Support
Good 0.42 0.42 0.42 12
Not so good 0.56 0.26 0.36 19
Very bad 0.56 0.79 0.66 24
Very good 0.69 0.69 0.69 13
Accuracy 0.56

Tabella 5.11: Valutazione del modello SVC (una singola esecuzione)

Figura 5.10: Matrice di confusione — SVC (una singola esecuzione)

K-Nearest Neighbors

Gli iperparametri esplorati per il modello K-Nearest Neighbors (KNN) sono:

• n neighbors: numero di vicini considerati per la classificazione (1,2,3,4,5,10,12,15,
17,18,20,25,30,40,55,70);

• weights: schema di ponderazione dei vicini, che determina l’influenza dei punti
più prossimi (uniform, distance, inverse distance);

• metric: metrica utilizzata per il calcolo della distanza tra i punti (cosine, euclidean,

manhattan, chebyshev).

Di seguito viene presentata la valutazione del modello, tenendo presente che i risultati
ottenuti possono mostrare delle variazioni tra differenti esecuzioni.
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Classe Precision Recall F1-score Support
Good 0.23 0.25 0.24 12
Not so good 1.00 0.05 0.10 19
Very bad 0.51 0.75 0.61 24
Very good 0.37 0.54 0.44 13
Accuracy 0.43

Tabella 5.12: Valutazione del modello KNN (una singola esecuzione)

Figura 5.11: Matrice di confusione — KNN (una singola esecuzione)

Considerati i risultati meno soddisfacenti ottenuti da tale modello, si è scelto di
escluderlo dalla fase di predizione aggregata.

5.4.4 Predizione aggregata

Per migliorare la robustezza delle predizioni, i tre modelli finali (XGBoost, Random
Forest, SVC) sono stati combinati in un ensemble basato sulla media delle probabilità.
Ogni modello ha restituito un vettore di probabilità per ciascuna classe, e la predizione
finale è ottenuta scegliendo la classe con probabilità media massima.

Dato un insieme di modelli classificatori M = {M1,M2,M3}, ciascun modello Mi

restituisce per un’istanza x un vettore di probabilità p(i) = [p
(i)
1 , p

(i)
2 , p

(i)
3 ], dove p

(i)
j

rappresenta la probabilità assegnata da Mi alla classe j-esima.
La probabilità aggregata per ciascuna classe j è ottenuta come:

p̄j =
1

|M |

|M |∑
i=1

p
(i)
j (5.3)
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La classe predetta ŷ è infine:

ŷ = arg max
j∈{1,2,3,4}

p̄j (5.4)

5.4.5 Risultati e valutazione

La valutazione è stata effettuata su un test set, utilizzando le metriche di accuracy,
precision, recall e f1-score. Sebbene le prestazioni possano variare leg- germente
tra le diverse esecuzioni, l’accuratezza complessiva tende a collocarsi in un intervallo
compreso tra il 56% e il 70%. Nella tabella seguente sono riportati i risultati ottenuti in
una singola esecuzione:

Classe Precision Recall F1-score Support
Good 0.55 0.43 0.48 14
Not so good 0.71 0.45 0.56 11
Very bad 0.79 0.90 0.84 29
Very good 0.59 0.71 0.65 14
Accuracy 0.69

Tabella 5.13: Valutazione dell’ensemble multiclasse (una singola esecuzione)

Figura 5.12: Matrice di confusione — Classificazione multiclasse (una singola esecuzione)
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Capitolo 6

Ricerca Semantica con VectorDB

6.1 Obiettivo e motivazione

Nel contesto del sistema di supporto alla team composition, è stato integrato un mecca-
nismo di ricerca semantica basato su VectorDB per recuperare progetti simili a uno
nuovo in fase di proposta. Lo scopo è fornire un ulteriore supporto decisionale, consen-
tendo di confrontare il progetto in esame con progetti storici simili in termini semantici,
e osservare i relativi esiti (marginalità, successo, team impiegato).

Un elemento distintivo dell’applicativo finale consiste nell’utilizzo diretto dei progetti
più simili per supportare la composizione automatica del team: i membri del team
associato al progetto con embedding più vicino vengono proposti come base per il nuo-
vo progetto, rendendo il sistema non solo predittivo, ma anche generativo rispetto alla
composizione progettuale. Questo approccio si basa sull’assunzione che progetti seman-
ticamente simili presentino caratteristiche organizzative compatibili, e sfrutta in modo
efficace la conoscenza implicita contenuta nello storico.

Il sistema di ricerca è stato costruito utilizzando Milvus, una soluzione specializzata
per la gestione di database vettoriali su larga scala [14], progettata per supportare ricer-
che approssimate di similarità con efficienza e scalabilità. La ricerca semantica consente
di superare i limiti della ricerca tradizionale basata su keyword o matching esatto, of-
frendo risultati più pertinenti anche in presenza di variazioni lessicali o strutturali nelle
descrizioni.

6.2 Architettura e tecnologia utilizzata

La soluzione implementata sfrutta:

• Milvus , un sistema di vector database ad alte prestazioni progettato per archiviare
e cercare efficientemente vettori ad alta dimensione;
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• Sentence Transformers, una libreria basata su BERT per la generazione di
embedding semantici a partire da testi in linguaggio naturale;

• pymilvus, client Python per interagire con Milvus;

• modello paraphrase-MiniLM-L3-v2, un modello di Sentence-BERT preadde-
strato adatto alla generazione di embedding compatti (384 dimensioni).

Ogni progetto viene rappresentato da un embedding numerico generato a partire
da una descrizione sintetica contenente le informazioni chiave del progetto (procedura,
stima commerciale, livello di rischio). I vettori risultanti sono indicizzati in Milvus per
effettuare ricerche per similarità (similarità coseno o distanza euclidea normalizzata).

6.3 Generazione delle descrizioni ed embedding

Per ogni progetto storico, viene costruita una descrizione testuale nella forma:

‘‘procedure: X, stima commerciale: Y, livello di rischio: Z ’’

Questa frase sintetizza in linguaggio naturale le caratteristiche salienti del progetto. Il
campo procedure è estratto dal codice progetto (rimuovendo eventuali numeri), mentre
stima commerciale e livello di rischio sono attributi originari.

La descrizione viene poi embeddizzata tramite il modello paraphrase-MiniLM-L3-v2:

6.4 Struttura della collezione in Milvus

La collezione principale, denominata demo collection, contiene campi strutturati (nu-
merici e categoriali) e un campo vector di tipo FLOAT VECTOR con dimensione 384. Ogni
entry rappresenta un progetto e include, oltre al vettore, metadati rilevanti:

• codice progetto (codice epic),

• assegnatario, customer, tecnologie, membri,

• success/unsuccess, marginalità,

• descrizione testuale (description),

• vettore semantico (vector).

L’inserimento nella collezione avviene tramite API insert di MilvusClient, dopo
creazione dello schema e verifica di validità.
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6.5 Ricerca semantica

La ricerca di progetti simili avviene come segue:

1. Viene generata una descrizione testuale del nuovo progetto secondo la stessa logica
(procedure, stima commerciale, livello di rischio);

2. Tale descrizione viene trasformata in un vettore tramite SentenceTransformer;

3. Viene effettuata una ricerca approssimata nel database vettoriale Milvus, utiliz-
zando la funzione search();

4. I risultati vengono filtrati sulla base di una soglia di distanza (distance threshold),
calcolata mediante la metrica di Cosine Similarity, per garantire pertinenza
semantica;

5. Per ogni progetto simile trovato, vengono restituite tutte le informazioni rilevanti
(membri, tecnologie, marginalità, outcome).

Il codice di ricerca utilizza la seguente logica:

1 results = client.search(

2 collection_name='demo_collection',

3 data=query_vector,

4 limit=3,

5 output_fields=[...]

6 )

7 filtered = [r for r in results[0] if r['distance'] >= 0.6]

La soglia di similarità (0.6) è stata scelta empiricamente per bilanciare precisione e
varietà nei risultati.
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Figura 6.1: Schema illustrativo del funzionamento della ricerca semantica con VectorDB

6.6 Output e utilizzo applicativo

L’output della ricerca viene salvato in formato JSON ed utilizzato all’interno del sistema
per mostrare all’utente i progetti storici più simili. Per ogni progetto simile, vengono
mostrate:

• Informazioni strutturate (cliente, team, tecnologie, outcome),

• La descrizione testuale,

• La distanza semantica rispetto al progetto in analisi.

La ricerca semantica basata su VectorDB ha rappresentato un importante comple-
mento ai modelli predittivi sviluppati nella presente tesi. In particolare, l’integrazione
di Milvus come motore vettoriale ha consentito di arricchire il sistema decisionale con
una componente di similarità semantica tra progetti, utile per individuare esperienze
pregresse con caratteristiche affini al nuovo progetto in fase di pianificazione.

Nell’applicativo finale, i team suggeriti per i nuovi progetti non vengono generati ex
novo, ma derivano dalla composizione dei team impiegati nei progetti più simili indivi-
duati dal motore vettoriale. Questa strategia sfrutta la conoscenza storica e promuove la
riutilizzabilità delle configurazioni organizzative che si sono dimostrate efficaci in contesti
analoghi.
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Capitolo 7

Analisi della Skill Matrix

La Skill Matrix è un documento, fornito in formato Excel, che contiene informazioni
strutturate sulle competenze dei dipendenti aziendali, suddivise per tecnologia, settore
di appartenenza e ruolo. In questo lavoro, la matrice viene utilizzata per selezionare
automaticamente i candidati più adatti a partecipare ad un nuovo progetto, sulla base
delle tecnologie richieste e del settore di appartenenza del cliente.

7.1 Formato e struttura della Skill Matrix

Ciascun file Excel analizzato contiene una tabella in cui ogni riga rappresenta un dipen-
dente, e le colonne forniscono:

• usr name: nome del dipendente;

• role: ruolo ricoperto;

• industry: settore aziendale di riferimento;

• Tecnologie: ciascuna tecnologia ha una colonna dedicata, contenente il livello di
competenza della risorsa.

I livelli di competenza sono codificati come segue:

Valore Descrizione
0 Non applicabile
1 Livello Base: conoscenza elementare, non autonoma
2 Livello Avanzato: attività completate in autonomia con buona qualità
3 Livello Esperto: autonomia + capacità di formare altri
4 Livello Specialista: autonomia, ottimizzazione e implementazione soluzioni

Tabella 7.1: Legenda dei livelli di competenza nella Skill Matrix
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7.2 Estrazione e pre-elaborazione dei dati

Durante il caricamento del file Excel nell’applicazione, questo viene convertito in formato
JSON tramite un agente automatico. I dati vengono unificati in una lista di dizionari
Python, normalizzando i nomi delle tecnologie e filtrando eventuali duplicati.

Successivamente, viene applicato un primo filtro basato sul settore (industry) del
cliente del progetto.

7.3 Selezione dei dipendenti più esperti

Una volta filtrati i dipendenti per settore, si procede con la selezione delle tecnologie
comuni tra quelle richieste dal nuovo progetto e quelle presenti nella skill matrix. Queste
tecnologie sono poi utilizzate per determinare la rilevanza di ciascun dipendente.

Un dipendente viene considerato idoneo se possiede un livello di competenza almeno
pari a 2 (cioè “Livello Avanzato”) in tutte le tecnologie comuni richieste.

Formalmente, dato un insieme di tecnologie comuni T = {t1, t2, ..., tk} e un dipendente
di con livelli li(tj), di viene selezionato se:

∀tj ∈ T, li(tj) ≥ 2

Questa soglia consente di selezionare solo risorse in grado di completare le attività
assegnate in autonomia, garantendo al contempo un buon livello di competenza.

7.4 Output e utilizzo applicativo

Al termine del processo, l’applicazione restituisce un elenco interattivo dei dipendenti
selezionati, comprensivo di:

• Nome, ruolo e settore;

• Tecnologie possedute con livello ≥ 2;

La Skill Matrix rappresenta un elemento importante del sistema di supporto alla com-
posizione del team, in quanto consente di integrare informazioni aggiornate e strutturate
sulle competenze tecniche dei dipendenti.

Dopo l’individuazione automatica dei progetti simili tramite ricerca semantica, l’ap-
plicazione propone delle ipotesi di team composte dai membri storicamente coinvolti
nei progetti più affini. Questa proposte iniziali possono essere integrate o modificate
attraverso l’analisi della matrice delle competenze.
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In particolare, il sistema filtra automaticamente i profili dei dipendenti selezionando
quelli con un livello di competenza pari o superiore a “Avanzato” (livello 2) nelle tec-
nologie richieste dal nuovo progetto. Questo consente all’utente di aggiungere ai team
ulteriori risorse qualificate, mantenendo un elevato grado di flessibilità e controllo umano.

L’integrazione tra memoria storica (via progetti simili) e competenza attuale (via
Skill Matrix) rende la composizione finale del team bilanciata, coerente con il contesto
operativo e orientata al successo progettuale.
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Capitolo 8

Interfaccia Utente e Deployment

8.1 Interfaccia utente

Dopo aver completato l’implementazione dei singoli componenti logici del sistema, è
stato necessario integrare tutte le funzionalità in un unico flusso applicativo coerente.
Il risultato finale è un’applicazione web interattiva, che guida l’utente attraverso una
sequenza strutturata di operazioni, ciascuna finalizzata alla composizione di un team
ottimale per un nuovo progetto aziendale.

Per lo sviluppo dell’interfaccia grafica è stata utilizzata la libreria Gradio, un fra-
mework open source in Python che permette di realizzare rapidamente interfacce web .
Gradio consente di definire funzioni Python e associarle a componenti visuali interattivi,
come bottoni, campi di upload, slider o tabelle, generando automaticamente l’interfaccia
corrispondente.

L’applicativo finale è organizzato in cinque step sequenziali, ciascuno rappresentante
una fase logica del processo. Ogni fase è accessibile all’utente tramite un layout chiaro e
guidato, con la possibilità di visualizzare o modificare i dati a ogni passaggio. Di seguito
viene descritto il funzionamento di ciascuna sezione.

1. Datasets In questa fase iniziale, l’utente può caricare o sostituire i file di input. I
principali dataset richiesti includono:

• Storico progetti: contiene i dati dei progetti passati, utilizzati per addestrare i
modelli di machine learning.

• Organigramma: include le informazioni sui dipendenti attivi, specificando ruolo
e settore di appartenenza (es. Banking, Fashion).

Questi file costituiscono la base informativa su cui si fonda l’intero sistema e condi-
zionano le analisi e le predizioni successive.
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2. Project Charter L’utente può caricare un documento .pdf contenente il project
charter del nuovo progetto da avviare. Questo documento, che non include ancora un
team, viene elaborato automaticamente tramite un agente AI che ne estrae le informazio-
ni salienti (es. titolo, obiettivi, tecnologie richieste). I dati estratti vengono visualizzati
a schermo per consentire una rapida verifica da parte dell’utente.

3. Similar Projects In questa fase, l’applicativo interroga il database aziendale per
individuare i progetti storici più simili al nuovo progetto caricato. La similarità si basa
sulle caratteristiche descritte nel capitolo dedicato. I team utilizzati nei progetti simili
vengono proposti come possibili configurazioni iniziali per il nuovo progetto. Questo
approccio consente di partire da soluzioni già collaudate in passato.

4. Skill Matrix All’utente viene richiesto di caricare un file .xlsx contenente la
skill matrix aziendale, ovvero una matrice che associa a ogni dipendente il livello di
competenza (da 0 a 4) in una serie di tecnologie e strumenti. L’applicativo analizza la
matrice per identificare i profili più adatti alle tecnologie richieste dal nuovo progetto.
Nella fase finale l’utente avrà la possibilità di modificare manualmente le proposte di
team, aggiungendo o rimuovendo membri suggeriti dalla Skill Matrix.

5. Prediction Infine, vengono applicati i modelli di machine learning addestrati per
stimare la probabilità di successo di ciascuna proposta di team. In particolare, vengono
utilizzate due tipologie di classificazione:

• Classificazione binaria: restituisce un esito di successo (1) o insuccesso (0) del
progetto.

• Classificazione multiclasse: assegna un livello qualitativo al potenziale successo:
Very Bad, Not So Good, Good, Very Good.

I risultati ottenuti, visualizzati in modo interattivo, forniscono all’utente informazioni
utili per scegliere in modo consapevole la configurazione finale del team. All’utente viene
anche data la possibilità di modificare i team proposti dall’applicativo aggiungendo o
rimuovendo i membri consigliati dall’analisi della Skill Matrix.

Di seguito immagini esemplificative del funzionamento dell’applicativo finale, i dati
personali e sensibili sono stati censurati per privacy.
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Figura 8.1: Schermata del primo step

Figura 8.2: Schermata del secondo step
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Figura 8.3: Schermata del terzo step

Figura 8.4: Schermata del quarto step
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Figura 8.5: Schermata del quinto step - prima parte

Figura 8.6: Schermata del quinto step - seconda parte
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Figura 8.7: Schermata del quinto step - terza parte, le previsioni ottenute sono solo
esemplificative

8.2 Deployment

Parallelamente allo sviluppo dell’interfaccia, è stato implementato un modulo separato
per l’esposizione dei modelli tramite API REST, utilizzando il framework FastAPI.
Tale modulo consente il caricamento e la messa a disposizione dei modelli addestrati
attraverso endpoint dedicati, in grado di ricevere dati in input e restituire predizioni in
formato JSON.

Questo sistema di deployment è stato progettato come componente standalone e non
è attualmente integrato nell’interfaccia realizzata con Gradio.

Per pubblicare il servizio è stata utilizzata la piattaforma Render, che consente di
effettuare il deploy automatico di applicazioni web o API a partire da repository Git.
Render gestisce l’esecuzione del server FastAPI, l’assegnazione di un endpoint pubblico
e il ciclo di aggiornamento continuo a ogni modifica del codice sorgente.

Il deployment con FastAPI su Render include:

• Caricamento dei modelli salvati (tramite joblib).

• Definizione di endpoint REST per la classificazione binaria e multiclasse.

• Validazione dei dati in input e gestione degli errori.
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• Risposte in formato JSON contenenti le probabilità associate a ciascuna classe e
la previsione finale.

Pur non essendo utilizzato attivamente nell’applicativo finale, questo modulo rappre-
senta una base solida per eventuali estensioni future che prevedano il disaccoppiamento
tra frontend e backend.

Figura 8.8: Input richiesto dal metodo POST della fastApi dei modelli di ML
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Capitolo 9

Approcci Alternativi e Prospettive
di Sviluppo Futuro

Il sistema sviluppato nella presente tesi si basa su algoritmi di machine learning classici
per la predizione del successo progettuale e su tecniche di ricerca semantica tramite
VectorDB per l’identificazione di progetti simili. Sebbene l’approccio adottato abbia
dimostrato risultati promettenti, esistono diverse metodologie alternative che potrebbero
essere esplorate per migliorare le prestazioni del sistema.

Questo capitolo presenta quattro approcci complementari: le reti neurali, la program-
mazione a vincoli, l’ottimizzazione combinatoria e i problemi di assegnazione.

9.1 Reti Neurali per la Predizione della Performance

di Team

Le reti neurali artificiali (ANN) rappresentano una classe di modelli di machine lear-
ning capaci di apprendere relazioni complesse tra le variabili in modo automatico. A
differenza dei modelli classici utilizzati in questo lavoro, le reti neurali possono scoprire
autonomamente pattern nascosti nei dati senza richiedere un’elaborazione manuale delle
caratteristiche.

[2] Uno studio condotto presso il Project Management Institute ha dimostrato che
l’utilizzo di modelli ANN permette di predire il 74,3% della performance dei team. La
ricerca ha evidenziato come le reti neurali siano in grado di catturare relazioni derivanti
dalle performance individuali passate e dalle loro interazioni, risultando particolarmente
efficaci quando i dati presentano interdipendenze complesse.

Un’estensione interessante è rappresentata dalleGraph Neural Networks (GNNs),
che permettono di rappresentare i dipendenti come nodi di un grafo e le loro collabora-
zioni passate come collegamenti tra nodi. [4] Il framework MENTOR utilizza questa tec-
nica per modellare tre aspetti fondamentali: la struttura delle relazioni nel team (aspetto
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topologico), l’importanza di ciascun membro (aspetto di centralità) e il contesto organiz-
zativo (aspetto contestuale). Questo approccio permette al modello di apprendere quali
configurazioni di collaborazione sono più efficaci.

9.2 Constraint Programming per la Composizione di

Team

La programmazione a vincoli (Constraint Programming, CP) è un approccio che permet-
te di specificare esplicitamente le condizioni che una soluzione deve soddisfare, lasciando
poi al sistema il compito di trovare combinazioni valide. A differenza dei modelli predit-
tivi che suggeriscono soluzioni senza garantirne la fattibilità, il CP assicura che tutte le
proposte rispettino i vincoli definiti.

[3] IBM Global Services ha sviluppato un sistema basato su constraint programming
per assegnare lavoratori altamente qualificati a progetti complessi. Il sistema gestisce
centinaia di posizioni e risorse considerando vincoli come: competenze richieste, posizio-
ne geografica, lingua, disponibilità temporale e possibilità di formazione. Il vantaggio
principale è che tutte le soluzioni proposte sono garantite essere realizzabili.

In un sistema CP, si definiscono:

• Le variabili: ad esempio, quale dipendente assegnare a quale progetto

• I domini: i valori possibili per ciascuna variabile (quali dipendenti sono disponibili)

• I vincoli: le regole da rispettare (ad esempio: “ogni progetto deve avere almeno
un membro con competenza Java di livello 3 o superiore”, “nessun dipendente può
lavorare su più di 3 progetti contemporaneamente”)

Il sistema esplora automaticamente le possibili combinazioni, scartando quelle che
violano i vincoli, fino a trovare soluzioni ammissibili. Il constraint programming potrebbe
essere integrato come componente di validazione nel sistema esistente. Il flusso di lavoro
diventerebbe:

9.3 Ottimizzazione Combinatoria per la Selezione Ot-

timale

L’ottimizzazione combinatoria affronta il problema di trovare la migliore soluzione pos-
sibile tra un numero finito (ma spesso molto grande) di alternative. Nel contesto della
composizione di team, l’obiettivo è selezionare il gruppo di persone che massimizza la
probabilità di successo del progetto, rispettando vincoli come disponibilità, competenze
e budget.
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[1] Il Multiple Team Formation Problem (MTFP) è un esempio di problema di otti-
mizzazione combinatoria applicato alla formazione di team. Permette di gestire situazioni
complesse dove:

• Servono team multipli per progetti diversi

• Ogni progetto richiede competenze specifiche in quantità diverse

• Ciascun dipendente può dedicare frazioni del proprio tempo a progetti diversi

• Esistono vincoli sul numero minimo e massimo di membri per team

Il problema viene formulato matematicamente specificando cosa si vuole massimiz-
zare (ad esempio, la somma delle probabilità di successo di tutti i progetti) e quali
vincoli devono essere rispettati. Strumenti specializzati (solver) esplorano lo spazio delle
soluzioni per trovare quella ottimale.

9.4 Problemi di Assegnazione e Algoritmo Unghere-

se

Il problema di assegnazione è un caso particolare di ottimizzazione dove si deve stabilire
una corrispondenza uno-a-uno tra due insiemi: ad esempio, assegnare dipendenti a ruoli
o progetti a team leader. L’obiettivo è minimizzare il costo totale (o massimizzare il
beneficio totale) di tutte le assegnazioni considerate insieme.

[12] L’Algoritmo Ungherese, sviluppato da Harold Kuhn nel 1955, risolve questo
problema in modo efficiente. L’algoritmo lavora su una matrice di costi dove ogni cella
indica quanto ’costa’ assegnare una persona a un determinato compito. Attraverso una
serie di trasformazioni matematiche della matrice, l’algoritmo identifica l’assegnazione
ottimale che minimizza il costo totale.

L’algoritmo è particolarmente efficiente: anche per problemi di dimensioni medie
(ad esempio, 100 persone da assegnare a 100 compiti) trova la soluzione ottimale in
tempi rapidi. L’algoritmo ungherese sarebbe utile in scenari dove l’azienda deve prendere
decisioni di assegnazione su scala più ampia. Ad esempio:

Una limitazione importante è che l’algoritmo richiede un numero uguale di persone e
compiti. Se ci sono più persone che ruoli (o viceversa), è necessario aggiungere elementi
’fittizi’ per bilanciare la matrice.

L’esplorazione di questi approcci alternativi rappresenta uno spunto per ricerche fu-
ture, con il potenziale di trasformare il sistema da strumento di supporto decisionale a
sistema di ottimizzazione automatica della composizione dei team aziendali.
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Capitolo 10

Conclusioni

L’obiettivo principale di questa tesi è stato lo sviluppo di un sistema intelligente a suppor-
to della composizione di team aziendali, basato su dati reali e tecniche di apprendimento
automatico. Il lavoro svolto ha portato alla realizzazione di un’applicazione web interat-
tiva, strutturata in più fasi consecutive, ognuna delle quali contribuisce alla definizione
della migliore configurazione possibile per affrontare un nuovo progetto.

L’intero processo è stato pensato per offrire all’utente un’esperienza guidata: dalla
selezione dei dati di partenza, all’estrazione automatica delle informazioni contenute
nel project charter, fino alla ricerca dei progetti più simili nel database storico, alla
selezione dei membri più competenti tramite skill matrix e, infine, alla predizione del
potenziale successo delle varie proposte di team. Questo approccio modulare ha permesso
di integrare differenti componenti tecniche e logiche, in un sistema coerente e utilizzabile
anche da figure non tecniche.

Il sistema si dimostra utile non solo nella fase di composizione del team, ma anche
come strumento di analisi preventiva del progetto stesso, offrendo un primo livello di
valutazione che mira a prevedere l’esito progettuale attraverso la classificazione preditti-
va. L’adozione congiunta di classificazione binaria e multiclasse consente di ottenere sia
una valutazione netta (successo/insuccesso), sia un’indicazione qualitativa più sfumata
sull’esito atteso.

Durante lo sviluppo sono emerse alcune criticità significative. La più rilevante riguar-
da la qualità dei dati aziendali storici: numerosi valori risultavano mancanti, parziali o
non aggiornati. Questo ha reso necessario un intenso lavoro di pulizia e bilanciamento,
con inevitabili compromessi. Tuttavia, è ragionevole supporre che un’organizzazione fu-
tura più rigorosa nella raccolta e gestione dei dati, ad esempio tramite sistemi gestionali
integrati o strumenti similari, possa aumentare notevolmente la precisione dei modelli
predittivi.

Un’ulteriore osservazione riguarda la sensibilità dei modelli rispetto alla composizione
del team: in alcuni casi, anche modificando i membri proposti, la previsione finale restava
invariata. Questo indica che non sempre la composizione del team è un fattore dominante
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nel determinare l’esito previsto, o che i dati disponibili non catturano in modo sufficiente
le variabili rilevanti. Ciononostante, il sistema oltre a fornire una predizione dell’esito
progettuale, anche se non sempre legata al team, si rivela comunque uno strumento di
supporto valido per supportare la creazione di un team, fornendo indicazioni oggettive
su cui basare decisioni strategiche.

In prospettiva futura, il sistema potrà essere esteso e potenziato in diverse direzioni
come esposto nel capitolo dedicato.

Nel complesso, l’applicativo sviluppato rappresenta un esempio concreto di come i
dati e l’intelligenza artificiale possano essere utilizzati per supportare scelte complesse nel
contesto aziendale, con benefici potenziali in termini di efficienza, qualità delle decisioni
e gestione strategica delle risorse umane.
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Appendice A
Prompt per l’estrazione automatica
dei dati dal Project Charter

Prompt per l’estrazione automatica dei dati dal Pro-

ject Charter

Nel presente allegato si riporta il prompt testuale utilizzato dal componente di estra-
zione automatica dei dati (Data Extraction Agent) per l’analisi dei project charter. Il
prompt è stato progettato per guidare il modello linguistico (GPT) nella comprensione
del documento in formato PDF e nella restituzione delle informazioni chiave in formato
strutturato.

Il testo seguente viene dinamicamente compilato e fornito come input al modello,
insieme al contenuto testuale estratto dal PDF:

You are a contract analysis expert. Your task is to extract the following

information from the provided project charter (which is a PDF):

• "livello di rischio" is a string that can only be: "Low", "Medium",

"High", or "Critical".

• For the numbers, avoid any thousands separators: use 100000 instead of

100,000. Decimal values should use a dot (e.g., 24.56).

• The value of commercial estimates must always be greater than

delivery estimates. If this is not the case, invert them.

• If commercial estimates is missing, assume it is 0.0. Then calculate

delivery estimates as: commercial estimates * 0.8.

• Extract the list of technologies mentioned in the document.

• Extract the customer.
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• Extract the list mesi lavorati by identifying start date and end date (in

month format), and reconstruct the ordered list as per the following

logic:

OrdineMesi = ["gennaio","febbraio","marzo","aprile","maggio","giugno",

"luglio","agosto","settembre","ottobre","novembre","dicembre"]

indice_inizio = OrdineMesi.index(start_mese)

indice_fine = OrdineMesi.index(end_mese)

if indice_fine < indice_inizio:

elencoMesi = OrdineMesi[indice_inizio:] + OrdineMesi[:indice_fine + 1]

else:

elencoMesi = OrdineMesi[indice_inizio:indice_fine + 1]

• Translate any roles from Italian to English.

Return your answer as a JSON object with the following structure:

{

"livello_di_rischio" : "string",

"commercial_estimates": float,

"delivery_estimates": float,

"technologies": [string],

"customer": "string",

"mesi_lavorati": [string]

}

Il prompt è stato progettato per essere robusto rispetto a differenze lessicali e strut-
turali nei documenti PDF. Il modello impiegato (GPT-4o-mini) è in grado di seguire
istruzioni complesse e produrre una risposta coerente con lo schema JSON atteso.
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