
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE
Corso di Laurea in Informatica per il management

LLM per estrazione e classificazione
di esercizi scolastici in PDF:

analisi sperimentale ed
integrazione in un’applicazione web

Relatore:
Chiar.mo Prof.
ANGELO DI IORIO

Presentata da:
ALESSIO MANIERI

III Sessione
Anno Accademico 2024/2025

“Diventa più facile.
Ogni giorno diventa un po’ più facile.

Ma devi farlo ogni giorno.
Questa è la parte difficile.

Ma diventa più facile.”

— Jogging baboon, BoJack Horseman

Abstract

Il progetto nasce dall’esigenza di rendere accessibili materiali didattici a bambini
della scuola primaria con difficoltà di apprendimento o disturbi specifici, con l’obiettivo
di favorire una didattica più inclusiva e personalizzata. La tesi ha come obiettivo la
creazione di un sistema in grado di convertire automaticamente file PDF nativi contenenti
esercizi scolastici in pagine HTML coerenti e semanticamente corrette tramite LLM.

Il lavoro proposto si concentra sulla realizzazione di due pipeline. La prima sfrut-
ta direttamente modelli linguistici multimodali, inviando il documento in forma visiva
per ricostruirne struttura, gerarchia e layout, sfruttando librerie di Python per la sola
estrazione delle immagini. La seconda integra una fase preliminare di analisi del PDF,
strutturazione in JSON e invio al modello. Il test di entrambi flussi mira ad un sistema
automatizzato in grado di ricostruire la logica del documento, convertirlo in linguag-
gio HTML mantenendo il più possibile la fedeltà visiva, la leggibilità del contenuto e
riconoscendo e classificando le tipologie di esercizio.

L’approccio sperimentale è basato su tecniche di prompt engineering e rappresenta
un’alternativa moderna ai metodi maggiormente utilizzati ad oggi di conversione, tipica-
mente fondati su coordinate e posizionamenti assoluti. Il progetto, sebbene sia sviluppato
in un contesto specifico, è pensato in modo flessibile e indirizzato verso l’estensione futura
ad altri formati e finalità nel campo della trasformazione semantica di documenti.

iii

Indice

1 Introduzione 1
1.1 Contesto e panoramica del progetto . 1
1.2 Il formato PDF e le sfide legate alla sua interpretazione 2
1.3 Struttura della tesi . 5

2 Stato dell’arte 6
2.1 Approccio classico all’estrazione da PDF 6
2.2 Dall’estrazione al riconoscimento del layout 7
2.3 L’utilizzo degli LLM nell’analisi di PDF 8

3 Obiettivo e casi d’uso 9
3.1 Scopo del progetto . 9
3.2 Casi d’uso e tipologie di esercizi . 10

4 Architettura del progetto 13
4.1 UI e funzionalità dell’applicazione web 13
4.2 Utilizzo mediante CLI . 15
4.3 Le due pipeline: inline e JSON . 16
4.4 Scelte tecnologiche e struttura del progetto 18
4.5 Implementazione e scelta Gemini tramite API 20
4.6 Costruzione del prompt . 21

5 Implementazione del sistema 26
5.1 Pre-processing del PDF . 26
5.2 Upload e gestione dei file PDF . 27
5.3 Estrazione di testo e immagini . 29
5.4 Struttura della richiesta . 33
5.5 La gestione delle immagini . 35
5.6 Editor di testo e revisione manuale lato utente 36

iv

6 Analisi dei risultati e valutazione 37
6.1 Costruzione del dataset . 37
6.2 Metodologia di test e valutazione . 38
6.3 Risultati . 39
6.4 Limiti . 43

7 Conclusioni e sviluppi futuri 46

A Prompt completo utilizzato 48

B Modifica al prompt principale per invio layout JSON 51

Ringraziamenti 55

v

Elenco delle figure

1.1 Esempio di struttura interna di un file PDF. 3

3.1 Esempio di conversione mediante PDeFy 11
3.2 Esempio di conversione mediante PDeFy 12

4.1 Screenshot dell’applicazione web . 14
4.2 Screenshot dell’editor TinyMCE . 15
4.3 Screenshot della schermata di codice sorgente 15
4.4 Diagramma riassuntivo della pipeline INLINE 17
4.5 Diagramma riassuntivo della pipeline JSON 17
4.6 Screenshot di un esercizio . 25

5.1 Workflow di elaborazione sequenziale dei PDF lato frontend. 28

6.1 Confronto tra pipeline INLINE e JSON tramite score medi per file. . . . 41
6.2 Andamento degli score medi per modello Gemini nelle due pipeline (Inline

e JSON). 42

vi

Elenco delle tabelle

6.1 Caratteristiche descrittive dei PDF analizzati: numero di pagine, numero
di esercizi, complessità del layout e presenza di immagini. 37

6.2 Confronto degli score complessivi per file, divisi tra pipeline e modello.
Valori tra 0 e 1: ottenuti come media tra scoreFedeltà, scoreImmagini e
scoreClassificazione . 40

6.3 Confronto dei costi tra i modelli Gemini (livello gratuito e a pagamento). 43

vii

Capitolo 1

Introduzione

1.1 Contesto e panoramica del progetto
Il presente lavoro nasce dall’esigenza di favorire l’accessibilità dei materiali didattici
destinati ai bambini della scuola primaria, in particolare a coloro che presentano difficoltà
di apprendimento o disturbi specifici. In questo contesto, la possibilità di rielaborare i
contenuti dei libri di testo in forma più chiara, leggibile e personalizzabile rappresenta
un passo importante verso una didattica realmente inclusiva.

L’ispirazione proviene da studi recenti nel campo dell’educazione accessibile e del-
l’analisi automatizzata dei contenuti didattici, tra cui il lavoro di Lasheb et al. [8],
presentato alla conferenza IEEE ICALT nel 2025. Tale studio propone un approccio
basato su tecniche di computer vision e deep learning, in particolare modelli YOLOv10x,
per estrarre automaticamente la struttura degli esercizi scolastici. Il sistema raggiunge
prestazioni significative e costituisce uno dei primi tentativi concreti di rendere i materiali
educativi più accessibili tramite lintelligenza artificiale.

Il progetto complessivo che ha guidato questa tesi è articolato in due macrofasi:

• Estrazione, ovvero l’analisi e la comprensione del contenuto originale del PDF.

• Adattamento, ovvero la trasformazione del materiale in una forma più fruibile
dai bambini interessati. Ad esempio la scomposizione di uno stesso esercizi su più
pagine vista la difficoltà di elaborazione di informazioni molto dense.

Il presente elaborato si concentra sulla prima fase, esplorando metodi innovativi per
l’estrazione strutturata di contenuti da PDF nativi con esercizi scolastici. In tale prospet-
tiva, la ricerca si inserisce nel più ampio filone che studia limpiego dei modelli linguistici
di grandi dimensioni (LLM) come strumenti di analisi documentale generativa.

Il formato scelto per l’output è l’HTML, per la sua natura marcata, semantica e
manipolabile. Tra i vantaggi di questo formato:

1

• rappresentazione in modo chiaro di gerarchie, sezioni ed elementi grafici.

• possibilità di mantenere una buona fedeltà visiva rispetto al documento originale.

• facilitazione di successivi adattamenti: modifiche di layout, ridimensionamento di
immagini, personalizzazioni del testo.

• integrazione del contenuto estratto in applicazioni web o sistemi educativi.

Questa scelta rende il sistema non solo adatto al contesto della scuola primaria, ma
facilmente estendibile ad altri domini per quanto riguarda la conversione di documenti
PDF in modo strutturato.

Per valutare le capacità degli LLM nella ricostruzione del layout dei PDF, sono state
progettate due pipeline distinte di interazione con il modello:

• Pipeline Inline, che invia direttamente il PDF in forma visiva al modello LLM
insieme ai metadati delle immagini estratte tramite PyMuPDF [13];

• Pipeline JSON, che introduce una fase preliminare di analisi strutturale tramite
PDFPlumber [15], producendo un file JSON dettagliato contenente testo, immagini
e coordinate.

Il confronto tra i due approcci consente di analizzare la capacità degli LLM di in-
terpretare documenti complessi, ricostruirne la struttura logica e generare un output
HTML coerente, accessibile e il più possibile fedele al layout originale. L’intero studio
ha un carattere sperimentale: pur nascendo in un contesto specifico, il sistema è stato
progettato con un’attenzione particolare alla flessibilità, affinché possa fungere da base
per nuovi scenari applicativi e ricerche future nel campo dell’analisi documentale tramite
i modelli di intelligenza artificiale.

1.2 Il formato PDF e le sfide legate alla sua inter-
pretazione

Con l’obiettivo di condividere documenti digitali nasce negli anni ’90, il più grande
progetto di conversione da carta a digitale "The Camelot Project" da parte di uno dei
co-fondatori di Adobe [1]. Il formato PDF (Portable Document Format) vero e proprio
nacque nel 1993 e, da quel momento, sarebbe cresciuto sempre più fino a diventare il
formato più utilizzato per la diffusione, condivisione e scrittura di documenti digitali. La
volontà di essere estremamente versatile nella visualizzazione perfetta e identica su ogni
tipologia di dispositivo, ha portato il PDF ad essere una tipologia di documento estrema-
mente rigido e non semantico. Ogni testo, immagine e grafiche non è riconosciuto come
tale, bensì come oggetto generico all’interno del documento posizionato mediante delle

2

coordinate assolute. Per questo motivo la ricerca nell’estrazione di contenuto da questo
formato digitale ha costituito un elemento di discussione sempre dibattuto e in evoluzio-
ne in relazione alle tecnologie sviluppatesi in parallelo. Si fa una breve panoramica sulla
struttura interna del PDF per comprenderne la complessità.

%PDF-1.7Header
1 0 obj
«

/Type /Catalog
/Pages 2 0 R

»
endobj
2 0 obj
. . .

endobj

Body

xref
0 10
0000000000 65535 f
0000000016 00000 n
0000000230 00000 n
. . .

Cross reference table

Trailer
« /Size 10 /Root 1 0 R »
startxref
790
%%EOF

Footer

Figura 1.1: Esempio di struttura interna di un file PDF.

• Header, esplicita la versione del formato PDF, per permettere al reader di sapere
quali sintassi e funzionalità aspettarsi.

• Body, contiene tutti gli indirect objects che descrivono struttura, risorse e conte-
nuto del PDF.

– Catalog, è l’oggetto radice dell’intero documento, non ha contenuti veri e
propri e punta a elementi quali: l’albero delle pagine /Pages e il dizionario di
font e annotazioni /Names.

– Pages, struttura ad albero che memorizza la lista delle pagine in modo più
efficiente

3

– Page, che costituisce ogni pagina del PDF e ne descrive contenuto e risorse.
Include la definizione di /Contents, /Resources, /MediaBox che definisco-
no rispettivamente disegno dei contenuti, risorse (font, colori, immagini) e
dimensioni della pagina.

– Font, XObject Image e Streams che definiscono rispettivamente stile dei
caratteri, immagini incapsulate e dati binari ad essi associati.

– Content streams, che contengono drawing commands per il codice grafico
utilizzato per il disegno degli elementi del PDF.

La cross-reference table (xref) elenca la posizione fisica di ogni oggetto nel
PDF tramite gli offset byte. Ogni riga indica:

– l’offset dell’oggetto rispetto all’inizio del file;
– il numero di generazione dell’oggetto;
– lo stato dell’oggetto (n attivo, f libero).

Questa struttura permette un accesso diretto agli oggetti senza scansionare l’intero
file.

• Footer, raggruppa le informazioni minime per permettere al reader di ricostruire
correttamente il PDF.

– /Size, il numero totale di entry nella xref;
– /Root, il riferimento al Catalog;
– startxref, la posizione (offset) a cui inizia la tabella xref;
– EOF, il marcatore di fine file.

In sintesi, la struttura interna del PDF, seppur estremamente efficiente per il rendering
fedele dell’impaginato su ogni tipologia di dispositivo , introduce un’elevata comples-
sità nella fase di estrazione, ma soprattutto di interpretazione del contenuto. Questa
caratteristica intrinseca fa sì che l’interpretazione affidabile di testo, immagini e layout
rappresenti ancora oggi una sfida tecnica significativa, al quale si cerca di fornire nuovi
strumenti mediante l’intelligenza artificiale generativa.

4

1.3 Struttura della tesi
La tesi racconta il lavoro svolto analizzandone i suoi aspetti in modo progressivo. Il ca-
pitolo 2 delinea una rassegna dello stato dell’arte per quanto riguarda l’estrazione e la
conversione da PDF, citando progetti e strumenti esistenti di diversa tipologia e comples-
sità. Nel capitolo 3 vengono presentati gli obiettivi che si intendono raggiungere e i casi
d’uso che hanno guidato la realizzazione del progetto. Nel capitolo 4 l’attenzione viene
posta sulla descrizione dell’architettura proposta, la struttura del progetto, le tecnologie
utilizzate e la costruzione del prompt. Il capitolo 5 offre i dettagli implementativi del
sistema, analizzando il flusso di lavoro. L’analisi dei risultati e la definizione dei limiti
risiedono nel capitolo 6. Infine il capitolo 7 che contiene un resoconto del lavoro svolto,
in relazione ai risultati ottenuti e delle indicazioni per quanto riguarda gli sviluppi futuri
in tal ambito.

5

Capitolo 2

Stato dell’arte

Vista la complessa struttura interna del formato PDF, i primi strumenti di estrazione
di contenuto da questo formato restituivano il testo in plain text, non estraendo alcun
tipo di informazione semantica e di layout. Nel 2004, con l’avvento di librerie come PD-
FMiner [14] si sono poste le basi per un’estrazione che introducesse logiche più avanzate
di riconoscimento di colonne, blocchi di testo o tabelle. Successivamente si sviluppa-
rono strumenti sempre più efficienti quali pyMuPDF [13] e PDFPlumber [15]. Questi
strumenti nell’operazione di estrazione di blocchi di testo o immagini, prelevano anche
metadati associati, aprendo le porte a nuove possibilità nel riconoscimento del layout e
nella comprensione dei componenti. Una strada parallela sviluppatasi è l’utilizzo di OCR
(Optical Character Recognition) tramite strumenti come Tesseract. Lo strumento in que-
stione analizza pixel per pixel e, tramite delle tecniche di pattern matching, restituisce
in output un testo modificabile. Tuttavia si tratta di una tecnologia che, nel campo dei
PDF, ha senso utilizzare solo nel caso di PDF scannerizzati e non nativi, per cui non è
nell’interesse dello studio proposto. I PDF nativi non hanno bisogno di OCR poiché il
testo risulta già presente digitalmente nel file, si tratta solo di estrarli in maniera strut-
turata tramite altre librerie sopra citate. Negli ultimi anni, il focus si è spostato dalla
mera estrazione di informazioni dai documenti, ad un problema di comprensione della
struttura semantica e logica di essi. Recentemente sono stati pubblicati diversi progetti
per l’estrazione di contenuto da PDF che hanno contribuito alla ricerca nel settore.

2.1 Approccio classico all’estrazione da PDF
I primi tentativi di creazione di strumenti completi ed utilizzabili per la ricostruzione
di un PDF in HTML miravano al rifacimento in maniera sostanzialmente identica del
documento. Nell’ambito degli strumenti tradizionali di estrazione e conversione classica
da PDF a HTML è rilevante considerare pdf2html, tutt’ora utilizzato da numerosi tools
disponibili in rete. pdf2html si tratta di uno strumento open-source scritto in C++ e

6

basato sulle librerie Poppler per l’estrazione e Cairo per la riproduzione visiva. Il progetto
iniziale appartiene a Yao Wei Tjong [12], ed è stato concepito per la conversione in HTML
di PDF mantenendo il layout visivo originale in sostanzialmente perfetta. Quello che si
ottiene in output è però un HTML in cui ogni elemento ha posizione assoluta, non vi è
alcun tipo di gerarchia nè di comprensione semantica del layout.

2.2 Dall’estrazione al riconoscimento del layout
Parallelamente ai progetti di estrazione e conversione in modo pixel-perfect, si svilup-
pano strumenti che ponevano già l’occhio ad un output più semantico. Librerie come
PyMuPDF e PDFPlumber, basate sulla già nota PDFMiner, sono utilizzate tutt’ora per
ottenere un’estrazione strutturata dei blocchi del file e delle immagini al suo interno.
La strada tracciata per lo sviluppo di questo ambito di document analysis è quella di
ricavare una struttura piuttosto che una riproduzione. Sulla base di ciò cito due progetti
completi particolarmente rilevanti per questo scopo, che utilizzano una combinazione di
strumenti tradizionali e machine learning.

2.2.1 Docling
Docling [5] è un progetto open-source sviluppato dal gruppo AI4K di IBM Research nel
2024, pensato come una pipeline completa per la comprensione strutturale dei documenti
digitali. Si basa su una combinazione di modelli multimodali di visione e linguaggio per
analizzare e ricostruire il contenuto di file PDF, tra cui il modello di analisi del layout
addestrato DocLayNet e il riconoscitore di strutture tabellari TableFormer. A differenza
degli strumenti tradizionali di conversione, Docling mira non solo a preservare la fedeltà
visiva ma anche a restituire una rappresentazione semantica coerente del documento, in
formato JSON o Markdown. La pipeline si articola in varie fasi quali: la segmentazione
del layout, il riconoscimento delle tabelle e la classificazione dei blocchi testuali.

2.2.2 LayoutLMv3
LayoutLMv3 [7] costituisce la terza generazione della famiglia di modelli LayoutLM,
sviluppata da Microsoft Research per il campo del Document AI. Il modello introduce
un’architettura multimodale unificata in grado di elaborare testo, immagini e informa-
zioni geometriche in modo simultaneo. Il progetto prevede una fase di pre-training che
utilizza obiettivi combinati di masked text modeling e masked image modeling, appren-
dendo così relazioni bidirezionali tra il contenuto testuale e la sua rappresentazione visiva.
Utilizza un meccanismo di allineamento tra parole e patch visive (word-patch alignment)
che migliora la comprensione spaziale del documento.

7

2.3 L’utilizzo degli LLM nell’analisi di PDF
Il tema dell’intelligenza artificiale è, senza dubbio, divenuto l’argomento principale quan-
do si parla di nuove tecnologie. Lo Stanford AI index 2025 [11] riporta che sulla sfida
SWE-Bench, che testa la capacità di un modello di risolvere problemi reali su Github,
lo stesso modello di AI ha migliorato del 67% le proprie performance in appena 2 anni.
Per quanto riguarda il benchmark GPQA (domande di livello post-laurea non risolvibili
mediante singola ricerca web) le prestazioni sono passate dal 38.8% all’87.7% tra il 2023
e il 2025, e sono in continua crescita. Alla luce di questi risultati, è naturale ritenere
che l’adozione di questa tecnologia sia destinata ad estendersi ad un numero sempre
crescente di ambiti. Nel settore dell’analisi documentale l’intelligenza artificiale sta as-
sumendo e assumerà sicuramente sempre più rilevanza. Prendiamo in considerazione
qualche progetto che ha fatto uso dell’intelligenza artificiale generativa all’interno dei
propri workflow.

2.3.1 LayoutLLM
LayoutLLM [9] è un progetto basato sul paradigma multimodale introdotto da Layou-
tLM, sviluppato da Microsoft Research Asia nel 2024. Il modello combina le capacità
di ragionamento linguistico degli LLM con una rappresentazione visiva del layout del
documento. LayoutLLM viene addestrato a comprendere istruzioni testuali che descri-
vono la disposizione e le relazioni spaziali degli elementi nel documento, consentendo
una più accurata comprensione semantica e strutturazione visiva. Rispetto ai modelli
precedenti, LayoutLLM ha come obiettivo quello di superare la distinzione tra testo e
layout, fornendo una rappresentazione più coerente e orientata al ragionamento.

2.3.2 BLOCKIE
BLOCKIE [3] è un approccio innovativo proposto da Amazon nel 2025 per l’estrazio-
ne di informazioni da documenti complessi(Visually Rich Documents). Si distingue per
lintroduzione del concetto di semantic blocks, ossia gruppi di testo auto-consistenti che
vengono identificati e analizzati in modo indipendente tramite LLM. Ogni blocco viene
considerato come un’unità semantica indipendente e viene elaborata autonomamente.
Successivamente i blocchi vengono ricombinati in una struttura coerente del documento.
Questo metodo consente una comprensione più approfondita di blocchi presi singolar-
mente, consentendogli di ottenere risultati migliori rispetto ad esempio a LayoutLLM
per benchmark standard(CORD, FUNSD, SROIE).

8

Capitolo 3

Obiettivo e casi d’uso

Alla luce del contesto delineato all’interno del capitolo introduttivo, si definiscono ora
gli obiettivi specifici e i casi d’uso in particolare.

3.1 Scopo del progetto
Le finalità riguardano la prototipazione e la valutazione di un sistema in grado di conver-
tire PDF nativi in HTML strutturato e semantico, sfruttando i Large Language Models.
Ciò che si cerca di ottenere in output è un file HTML che riproponga una ricostruzione
coerente del layout, che non debba essere necessariamente allineata al PDF originale.
La gerarchia e la struttura semantica di HTML sono più importanti della riproduzione
posizionale perfettamente identica. Il sistema consente l’estrazione e l’immissione delle
immagini con formato, risoluzione e bounding box, ovvero il rettangolo che racchiude
completamente l’immagine, preservati. Si precisa che la presente trattazione si concen-
tra esclusivamente sugli aspetti tecnici di estrazione e conversione. Questioni legate al
copyright o alle implicazioni normativa relative al riuso e alla manipolazione dei PDF
non vengono qui analizzate

L’applicazione web sviluppata si chiama PDeFy, nome che gioca sulla sigla PDF uni-
ta al verbo defy che significa "sfidare": il progetto mira a superare i limiti e la rigidità
del formato del PDF, volendolo convertire in qualcosa di strutturato. La volontà di con-
versione del PDF nasce dal fatto che un file HTML, se ben strutturato, permette una
maggiore accessibilità, possibilità di modifica e adattabilità a contesti diversi. Il lavoro
proposto si classifica come un prototipo sperimentale per la valutazione di una piatta-
forma che combina strumenti tradizionali ai più moderni LLM accessibili a chiunque per
la conversione semantica di documenti scolastici.

9

3.2 Casi d’uso e tipologie di esercizi
Il sistema è specializzato e testato per documenti contenenti esercizi per la scuola pri-
maria, pensato in primo luogo per insegnanti che hanno bisogno di una ricostruzione di
proprie schede, parti di libro di testo o test di verifica. Oltre ai docenti, il progetto può
essere di interesse per educatori, case editoriali di libri scolastici, ricercatori nel campo
della didattica digitale e sviluppatori nel campo dell’analisi di documenti. L’obiettivo è
che la piattaforma possa essere utilizzata in piattaforme di e-learning oppure a monte
della produzione di eserciziari o simili.

I test sono avvenuti con le tipologie di layout e di quesiti più disparate, cercando di
coprire quanto possibile tutto il raggio possibile di tipologie di materiale per la scuola
elementare. Sebbene il sistema sia incentrato su questi tipi di PDF, ciò non toglie che
possa essere testato e utilizzato anche con altre tipologie di documenti. Il progetto non
prende in considerazione i PDF scannerizzati come immagini, ma solo i PDF avente una
struttura interna nativa classica.

Gli esercizi sono classificati attraverso specifici nomi di classi definite dal prompt e
assegnate dal modello. L’LLM considera il contesto, la consegna e il contenuto degli
esercizi e etichetta gli esercizi tra le seguenti categorie:

• completamento: esercizi all’interno del quale vi è un lavoro di riempimento di
spazi bianchi all’interno di frasi o di parole.

• scelta-multipla: esercizi che prevedono la scelta corretta tra più risposte propo-
ste.

• collegamento: individuabile quando vi è da associare un elemento ad un altro
elemento.

• vero-falso: quando si chiede una risposta secca tra vero o falso.

• ordinamento: ovvero una tipologia di esercizio che prevedere il mettere nel giusto
ordine una lista di parole o elementi.

• domanda-aperta: trattasi di una domanda che non prevede proposte di risposte,
bensì frutto di un lavoro di scrittura.

• individuazione: esercizi in cui occorre sottolineare, evidenziare, cerchiare qual-
cosa.

• scrittura: simile alla domanda aperta, ma che non preveda necessariamente una
domanda, ma anche una consegna con più libertà di scrittura.

• calcolo: esercizi che hanno a che fare con la matematica, ove occorre fare dei
calcoli di qualsiasi natura.

10

• disegno: esercizi in cui occorre utilizzare la comunicazione artistica, tramite
disegno o colori.

Talvolta potrebbero essere associate più classi a determinati esercizi, ciò accade quan-
do si stanno analizzando esercizi che possono effettivamente rientrare in più categorie o ri-
sultano in bilico tra alcune di natura simile. Se nessuna di queste categorie è individuata,
viene assegnata la classe predefinita class="exercise exercise-generico".

Figura 3.1: Esempio di conversione mediante PDeFy

11

Nello snippet sottostante viene riportato un esempio di un’identificazione di un eser-
cizio di collegamento. Non sono riportate tutte le opzioni di collegamento ma vi è una
chiara distinzione tra i connection-item, ovvero gli oggetti da collegare alle loro defini-
zioni, le connection-description. Tramite l’LLM è stata riconosciuta sia la tipologia
di esercizio che gli elementi che lo compongono e il loro ruolo. Nella figura sottostante
riportiamo l’esercizio intero convertito.

1 <section id="exercise-1" class="exercise exercise-collegamento">
2 <div class="connection-container">
3 <div class="left-column">
4 <div class="connection-item">
5 <div class="image-placeholder" style="width: 54.33px; height: 139.77px;"><img

style="width: 54.335999599999994px; height: 139.775999px;" src="blob:http
://localhost:5173/da32ea96-6317-4c79-8f9d-5a673eda2514"></div>

6 <p>RE</p>
7 ...
8

9 <div class="right-column">
10 <div class="connection-description">Coltiva la terra.</div>
11 ...

Figura 3.2: Esempio di conversione mediante PDeFy

12

Capitolo 4

Architettura del progetto

Il progetto prevede due modalità di utilizzo: una mediante CLI (Command Line Inter-
face), e una seconda mediante un’applicazione web appositamente progettata e imple-
mentata. Nel presente capitolo verranno dapprima discusse le due pipeline identificate
da due endpoint separati, poi esplicitate le scelte tecnologiche, la struttura del progetto,
le interfacce di utilizzo. Saranno infine menzionati gli LLM scelti e descritto il processo
di costruzione del prompt.

4.1 UI e funzionalità dell’applicazione web
L’applicativo web è pensato e progettato per essere user-friendly, mirando alla garanzia
di facilità di utilizzo anche per utenti non esperti. L’interfaccia privilegia la chiarezza
puntando a rendere immediatamente comprensibili le funzionalità. Gli obiettivi della
piattaforma emergono anche dagli elementi che compongono il logo visibile in figura:
L’evidenziazione della sigla PDF mediante un colore diverso, la presenza della piega in
cima alla P, simbolo del formato PDF, le parentesi di tag tipici di HTML e la volontà di
porre l’attenzione sulla parola "Defy"

13

Figura 4.1: Screenshot dell’applicazione web

All’interno della sezione a sinistra della schermata sono presenti due radio button che
permettono la selezione della modalità di invio dei dati all’LLM. Dopo aver selezionato
quella che si intende utilizzare, è possibile utilizzare un bottone che inserisce all’interno
della textarea il prompt ottimizzato relativo alla modalità scelta.

Il prompt è quindi modificabile dall’utente a proprio piacimento, tuttavia, ai fini
dell’ottenimento di risultati soddisfacenti, è consigliabile utilizzare quello predefinito.
L’interfaccia permette poi la selezione di uno o più PDF che verranno processati a par-
tire dal click sul comando di invio sottostante. Quando un risultato è pronto, viene
automaticamente effettuato un download del file .html e viene mostrato un alert qualo-
ra il file in questione fosse l’ultimo dell’eventuale coda. Nonostante il file venga scaricato
direttamente, all’interno della pagina comparirà l’editor WYSIWYG tramite il quale ef-
fettuare le eventuali e opportune modifiche, procedendo successivamente ad un nuovo
download.

Tramite il bottone azzurro che raffigura i due tag <>, è possibile aprire una schermata
che mostra il codice HTML modificabile.

14

Figura 4.2: Screenshot dell’editor TinyMCE

Figura 4.3: Screenshot della schermata di codice sorgente

4.2 Utilizzo mediante CLI
Oltre all’esecuzione tramite interfaccia web, il sistema può essere utilizzato anche da da
riga di comando (cli.js). Questo tipo di esecuzione utilizza uno dei due end-point già
esplicitati che ricordiamo effettuare le seguenti operazioni:

• ricezione di uno o più PDF passati come argomento;

• invocazione delle API Gemini con il prompt di generazione HTML;

• estrazione delle immagini tramite lo script Python extract_images.py;

15

• sostituzione dei placeholder [IMAGE_X] con le immagini codificate in Base64;

• esportazione del risultato in un file HTML autonomo.

È inoltre supportata l’elaborazione batch, con un limite configurabile di processi con-
correnti, rendendo lo strumento adatto a scenari di automazione o integrazione in pipeline
di produzione.

Per utilizzarlo occorre posizionarsi nella cartella cli_app, dove al cui interno è presente
lo script cli.js e utilizzare il comando pdefy avente la seguente struttura:
pdefy [--mode <modalità>] [--out <cartella>] <pdf1>

Il comando pdefy costituisce l’interfaccia a riga di comando dell’applicazione che
esegue sostanzialmente tramite node cli.js. Dopo il nome del comando si immettono
uno o più file che si intende analizzare. Il comando completo prevede la presenza di due
configurazioni che si possono opzionalmente specificare:

• –mode, che specifica la modalità di invio dei dati al modello (inline o json). Se
non si specifica di default verrà utilizzata la modalità inline.

• –out, a seguito del quale si definisce la directory in cui si vuole salvare l’output.
Se mancante verrà salvato all’interno della cartella stessa cli_app.

È prevista la possibilità di esecuzione di più documenti direttamente mediante lo
stesso comando
pdefy [--mode <modalità>] [--out <cartella>] <pdf1> <pdf2> ...

4.3 Le due pipeline: inline e JSON
Già menzionate precendentemente, questa suddivisione logica costituirà un punto fonda-
mentale per il lavoro svolto. Nei successivi capitoli sarà presente questa suddivisione del
flusso di lavoro che prevede l’invio del PDF al modello di Gemini in maniere differenti
e utilizzando strumenti differenti. Le due pipeline costituiscono due endpoint separati
risiedenti entrambi nel file server.js nel progetto: /api/generate per il flusso inline
e /api/generate_JSON per il flusso json.

Nel flusso inline il PDF viene passato direttamente all’LLM, assieme ai metadati delle
immagini estratte da uno script Python (extract_images.py) e al prompt. Il layout
viene ricostruito per integrazione tra il backend e la risposta fornita dal modello.

16

Pipeline INLINE

PDF

Estrazione img
con PyMuPDF

Gemini
(PDF inline +

metadati img + prompt)

HTML semantico

API

Figura 4.4: Diagramma riassuntivo della pipeline INLINE

Nel flusso json il file viene dapprima estratto in un formato json tramite uno script
python(extract_layout_JSON), che estrae testo, elementi e immagini. Il JSON com-
pleto verrà inviato all’LLM assieme al prompt e le immagini verranno immesse in modo
deterministico come avviene nell’altra pipeline.

Questa suddivisione è stata introdotta per verificare quale modalità di invio pro-
ducesse risultati migliori. Lo scopo è comprendere in che modo il modello generativo
ricostruisce e interpreta meglio il layout originale. Il dettaglio dei due workflow sarà più
completo all’interno del capitolo 5.

Pipeline JSON

PDF

Estrazione testo, img
e layout con PDFPlumber

Gemini
(JSON strutturato + prompt)

HTML semantico

API

Figura 4.5: Diagramma riassuntivo della pipeline JSON

17

4.4 Scelte tecnologiche e struttura del progetto
L’applicazione web è stata progettata secondo un’architettura di tipo client-server, sud-
divisa in due macro-componenti principali: il frontend e il backend. Il frontend è re-
sponsabile dell’interfaccia utente, della visualizzazione dei risultati e della manipolazione
di questi ultimi, il backend gestisce le pipeline di estrazione, conversione e generazione
dell’output.

4.4.1 Lato server: Node.js, Express e Python
L’ambiente di esecuzione del backend è Node.js, che permette di utilizzare JavaScript
lato server per gestire la logica applicativa, l’invio e la ricezione di richieste HTTP, e
l’interazione con gli script Python dedicati all’estrazione dei contenuti PDF. Il backend
dell’applicazione è strutturato in maniera modulare ed è strutturato nel seguente modo:

backend/
cli_app/

cli.js
node_modules/
uploads/

tmp_layout_inline/
images/
pdf/

tmp_layout_JSON/
images/
layouts/

.env
extract_images.py
extract_layout_JSON.py
html_prompt.js
html_prompt_2.js
package.json
package-lock.json
server.js

• server.js, rappresenta il punto di accesso e lo snodo principale del backend.
Al suo interno è definito il server Express gli endpoint REST /api/generate e
/api/generate_JSON. La separazione dei due endpoint definisce le due pipeline in
maniera netta: nel primo caso all’LLM viene passato in input il PDF inline, i me-
tadati delle immagini ricavati da PyMuPDF e il prompt; nel secondo caso l’LLM

18

riceverà in input un JSON strutturato creato mediante la libreria pdfPlumber, e il
prompt.

• extract_images.py, script Python utilizzato dall’endpoint /api/generate.

• extract_layout_JSON.py, script Python utilizzato dall’endpoint
/api/generate_JSON.

• /uploads, cartella al cui interno vengono salvati temporaneamente le immagini e
i PDF estratti.

• html_prompt e html_prompt_2, contenente i prompt rispettivamente per l’end-
point /api/generate e /api/generate_JSON.

• /cli_app, contenente il file cli.js, all’interno del quale è gestito l’utilizzo me-
diante Command Line interface.

4.4.2 Lato client: React e TinyMCE
Il lato client dell’applicazione è sviluppato in React, framework JavaScript che consente
di creare interfacce dinamiche e modulari, basate su componenti riutilizzabili.

frontend/
node_modules/
public/
src/

assets/
App.css

App.jsx
index.css
main.jsx
WysiwygEditor.css
WysiwygEditor.jsx

.env

.gitignore
eslint.config.js
index.html
package.json
package-lock.json

• App.jsx, rappresenta l’interfaccia principale che permette il caricamento di uno
o più file PDF, la selezione della pipeline desiderata (PDF inline o JSON) e la

19

visualizzazione dell’output generato dal modello linguistico. Il componente gestisce
la comunicazione con il backend attraverso chiamate fetch

• WysiwygEditor.jsx, è il componente React che si occupa della gestione dell’editor
all’interno del quale è possibile manipolare l’output. La scelta dell’editor è ricaduta
su TinyMCE [16] tramite API, scelta motivata dall’elevata personalizzazione of-
ferta. Si tratta di un editor WYSIWYG (What You See Is What You Get), ovvero
un ambiente che permette di visualizzare e modificare un documento in una forma
il più possibile simile al risultato finale. In altre parole, ogni intervento dell’utente
sull’interfaccia produce un effetto visivo immediatamente verificabile dal contenu-
to visualizzato. L’editor consentirà la modifica totale dell’output, la rimozione di
esercizi singoli e il drag & drop per il riordinamento delle immagini, ove necessa-
rio. Inoltre l’editor offre una visualizzazione alternativa contenente direttamente
il codice HTML, le cui modifiche si rifletteranno immediatamente sul documento.
Questa duplice modalità di visualizzazione combina semplicità a controllo tecnico,
migliorando l’accessibilità sia per utenti non esperti che per sviluppatori.

4.5 Implementazione e scelta Gemini tramite API
Per la realizzazione del progetto, la scelta è ricaduta sul chatbot di intelligenza artifi-
ciale generativa di Google, Google Gemini. Perchè, a differenza dei propri competitor
(ChatGPT, Claude ecc.), Gemini offre un free tier consistente e con limiti di token e di
chiamate alto e sufficiente per il test di prototipi. Nel mio caso specifico ho usufruito
di limiti più alti e di un accesso leggermente più privilegiato rispetto al piano gratuito
poiché ho inserito la fatturazione. Nonostante ciò tutto l’iter di valutazione e test della
piattaforma è avvenuto in modo gratuito mediante l’utilizzo del credito gratuito messo
a disposizione da Google. Per continuare ad utilizzare in maniera illimitata l’applica-
zione web, ci sarebbero ipoteticamente dei costi aggiuntivi valutati in base all’utilizzo
della stessa. Inoltre ho avuto la possibilità di testare l’applicazione anche utilizzando
il modello in pre-rilascio del nuovo modello di Gemini, uscito a Novembre del 2025. In
particolare le sperimentazioni sono state fatte mediante l’utilizzo di tre modelli [6]:

• Gemini 2.5 Pro

• Gemini 2.5 Flash

• Gemini 3 Pro Preview

All’interno dell’architettura dell’applicazione, il modello di intelligenza artificiale Gemini
viene integrato tramite chiamate API REST fornite da Google. L’interazione con Ge-
mini avviene attraverso l’endpoint ufficiale generateContent, il quale permette l’invio
combinato di testo, metadati e contenuti binari.

20

4.6 Costruzione del prompt
La costruzione del prompt da inviare a Gemini costituisce un passaggio cruciale: esso
stabilisce le regole e i vincoli che guidano il comportamento del modello riflettendosi sulla
qualità del risultato. Prima del prompt principale, invio all’LLM un system prompt, che
definisce il contesto all’interno del quale deve aspettarsi di lavorare il modello. Il "prompt
preliminare" che ho utilizzato è visibile nel corpo della richiesta al Capitolo 5 e fornisce
i primi strumenti per far capire all’LLM il ruolo in cui deve immedesimarsi. Utilizzando
altri LLM la tipologia di prompt in questione è caratterizzato da role:system, ciò non
avviene in Gemini. In Gemini un prompt di questo tipo viene semplicemente definito
come parte dei contents da inviare e all’interno della chiamata alla API: il dettaglio
importante è che si invii come primo contenuto. In questo modo, pur mantenendo un
role:user, il modello comprenderà che quello corrisponde al system prompt, proprio
dall’ordine gerarchico utilizzato.

Prompt preliminare

Restituisci esclusivamente HTML puro.
Non formattare l’ output come blocco di codice .
Non inserire i delimitatori \\\ html o \\\.
Inizia direttamente dal primo tag HTML.
e termina con l’ ultimo .
Se stai per inserire un blocco \\\ html ,
rimuovilo e restituisci solo il contenuto .
Non includere spiegazioni , testo extra
o introduzioni / conclusioni .

In questo prompt si assegna al modello un ruolo specifico, definendo il perimetro del
suo compito. È risultato importante evitare che il modello aggiunga elementi indesiderati,
come testi ausiliari, o delimitatori di codice che compromettono la pulizia del risultato
finale.

Il prompt completo costituisce il vero punto di contatto tra la fase di estrazione e
il modello di Gemini, determinando in modo diretto la qualità e la stabilità dell’output
generato. La progettazione delle istruzioni in input ha costituito delle vere e proprie
fasi di prompt engineering ossia di studio delle tecniche che permettono la comunicazio-
ne efficace con un LLM. Seguendo quanto emerge dalla recente letteratura sul prompt
engineering, in particolare nella review di Chen et al. [4], la creazione di un prompt
ben strutturato è un processo sistematico e richiede uno studio delle tecniche attraverso

21

il quale si riducono le hallucinations e si ottengono risultati più vicini a quelli sperati.
Dopo varie fasi di sviluppo iterativo intervallati da test ripetuti, sperimentazione e raf-
finamento si è giunti alla creazione di un prompt coerente, chiaro e privo di ridondanze.
I prompt relativi alle due pipeline differiscono per qualche dettaglio operativo, ma con-
dividono una struttura comune che sarà analizzata nelle prossime sezioni. Gli snippet di
prompt che verranno mostrati corrispondono a porzioni salienti a cui si vuole dar rilievo.

• Regole di layout

• Posizionamento placeholders immagini

• Riconoscimento e classificazione degli esercizi

Attraverso l’applicazione web, il prompt è modificabile nel caso si voglia fornire istru-
zioni differenti o aggiungerne di nuove. In alcune porzioni il prompt è molto sensibile e
una modifica ad esse potrebbe portare a malfunzionamenti. Ne è un esempio la sezione
che definisce la modalità di immissione dei placeholder, cambiarla potrebbe portare il
backend a non essere più compatibile con ciò che riceve dal modello in fase di rimpiazzo
con le immagini fisiche. Il prompt finale completo, utilizzato per tutte le sperimentazioni,
è riportato in formato integrale in Appendice A (pag. 48). Il prompt per la pipeline
JSON è simile, ma presenta una differenza importante di definizione dell’input, presente
in Appendice B (pag. 51).

4.6.1 Regole di layout
Composta da tre sottosezioni: struttura e semantica, definizione dello stile e individua-
zione esercizi. La prima si tratta di una sezione introduttiva in cui viene specificato
l’utilizzo dei tag corretti HTML per evitare ambiguità, mantenere la corretta gerarchia
di testo del PDF e l’ordine generale del contenuto.

Snippet sezione di struttura e semantica

- Utilizza tag HTML semantici corretti : titoli <h1 >, <h2 >, <
h3 >, ecc .; paragrafi <p>; liste /; tabelle <table
>/<thead >/<tbody >/<tr >/<th >/<td >.

Nella seconda viene esplicitato il fatto di creare un foglio di stile integrato in <head>
in modo che all’interno del file possa esserci tutto il contenuto necessario.

22

Snippet di definizione dello stile

- Includi una sezione <style ></style > all ’ interno di <head >
per definire uno stile gradevole , pulito e coerente .

Nella terza sezione si mira a realizzare una separazione strutturale degli esercizi me-
diante delle section. Viene inoltre specificato di non risolvere gli esercizi in modo tassativo
poiché è un qualcosa che l’LLM è portato a fare. Senza istruzioni specifiche l’invio di un
esercizio che riesce a risolvere lo porta a "pensare" che debba farlo.

Snippet sugli esercizi

- NON risolvere NESSUN esercizio . Riportali fedelmente .
- Ogni esercizio deve essere contenuto in una <section > con

id esatto : id=" exercise -n"

4.6.2 Posizionamento placeholders delle immagini
Per gestire le immagini è stato implementato un meccanismo a due fasi. Una prima
fase di immissione di placeholder da parte di Gemini, che serve per marcare il corretto
posizionamento dell’immagine all’interno del layout. si utilizza il modello per inserire dei
<div> contenenti i suddetti placeholder delle dimensioni corrette. La seconda fase è l’im-
missione delle immagini estratte dagli script python da parte del backend. Quest’ultima
fase verrà esplicata in modo dettagliato nella sezione 5.5.

Snippet di definizione dei placeholder

- NON includere immagini reali: sostituisci ogni immagine
con un placeholder centrato del formato esatto : [IMAGE_X
], dove X è l’ indice progressivo dell ’ immagine nel PDF (
la prima immagine è [IMAGE_1], ecc .).

- Inserisci il placeholder [IMAGE_X] dentro un contenitore <
div class =" image - placeholder "> centrato .

Tra i metadati relativi alle immagini sono presenti: pagina, coordinate x/y e lar-
ghezza/altezza. Il modello userà quei dati per identificare la posizione e l’area occupata,
interpretando il layout nel modo più coerente possibile.

23

Snippet per utilizzo metadati delle immagini

- Usa le coordinate per posizionarle nel punto
corrispondente al layout del pdf.

- Usa width e height per considerarle nel layout di quella
dimensione

4.6.3 Riconoscimento e classificazione degli esercizi
Affido all’LLM i compito di classificazione della tipologia di esercizio mediante la visione
del contesto e soprattutto le parole chiave all’interno della consegna dell’esercizio.

Snippet per classificazione esercizi

- Identifica automaticamente la tipologia dell ’ esercizio
basandoti su parole chiave presenti nel titolo o nell ’
enunciato .

- Aggiungi alla sezione dell ’ esercizio un attributo class
che includa la categoria riconosciuta .

Esempio : <section id=" exercise -1" class =" exercise exercise
- completamento ">.

La scelta del modello è stata accuratamente guidata attraverso una serie di categorie
disponibili, per cui ho indicato delle parole chiave specifiche. Ne riporto un esempio nello
snippet sottostante (L’elenco completo delle categorie si trova alla sezione 3.3 "Casi d’uso
e tipologie di esercizi")

Snippet esempio classificazione

- "scelta - multipla " - se compaiono termini come " scegli ", "
seleziona ", " indica la risposta corretta ", " cerchia ".

L’LLM può associare più classi ad alcuni esercizi, ciò è voluto dato che esistono degli
esercizi che possono appartenere a categorie intermedie, quindi a più tipologie.

24

Un esempio di conversione di un esercizio del file "Aggettivi" dal dataset di analisi
utilizzato nel capitolo 6.

Figura 4.6: Screenshot di un esercizio

1 <section id="exercise-1" class="exercise exercise-scelta-multipla" style="
position: relative;">

2 <div class="exercise-title">1. Indica con
una X tutti gli aggettivi adatti al nome.</div>

3 <div class="ex1-row">
4 <div class="noun-box">pesca</div>
5 <div class="adj-options"><label class="adj-option"> matura</label> <label

class="adj-option"> liscia</label> <label class="adj-option"> serena</
label> <label class="adj-option"> vellutata</label></div>

6 </div>
7 <div class="ex1-row">
8 <div class="noun-box">ramo</div>
9 <div class="adj-options"><label class="adj-option"> fiorito</label> <label

class="adj-option"> morbido</label> <label class="adj-option"> secco</
label> <label class="adj-option"> lungo</label></div>

10 </div>
11 <div class="ex1-row">
12 <div class="noun-box">bambina</div>
13 <div class="adj-options"><label class="adj-option"> affettuosa</label> <label

class="adj-option"> asciutta</label> <label class="adj-option"> gentile</
label> <label class="adj-option"> allegra</label></div>

14 </div>
15 <div class="ex1-row">
16 <div class="noun-box">albero</div>
17 <div class="adj-options"><label class="adj-option"> verde</label> <label class

="adj-option"> alta</label> <label class="adj-option"> ruvida</label> <
label class="adj-option"> secco</label></div>

18 </div>

25

Capitolo 5

Implementazione del sistema

In questo capitolo viene descritta nel dettaglio l’implementazione di PDeFy, illustrando
le componenti operative che entrano in gioco e le modalità attraverso le quali comuni-
cano tra loro. Dopo una fase preliminare di pre-processing, viene presentato il workflow
generale della conversione e, a seguire, l’implementazione delle diverse fasi che com-
pongono le due pipeline (inline e JSON). Si analizzeranno i meccanismi di gestione dei
file, l’estrazione dei contenuti, la costruzione delle richieste verso il modello Gemini e
la sostituzione programmatica delle immagini. Il capitolo si conclude con la descrizione
dell’editor integrato, che permette all’utente la revisione manuale dell’output generato.

5.1 Pre-processing del PDF
Un’operazione importante da svolgere per riuscire ad usufruire di PDeFy è la Rimozione
di immagini di sfondo ove presenti. Il flusso di estrazione non prevede l’estrazione di
immagini al di sotto di testo: mantenere le immagini solo se non prevedono testo al di
sopra di esse. Ulteriori accorgimenti per il miglioramento dei risultati:

• Rimozione di immagini non utili agli esercizi, ovvero di immagini di contor-
no, che non apportano informazioni utili e possono influenzare la percezione del
layout da parte del modello.

• Snellimento di elementi grafici, piccole icone, ornamenti o figure astratte pos-
sono essere estratte come immagini vere e proprie creando rumore all’interno del
risultato finale, soprattutto se interferiscono con il contenuto.

• Riduzione di timbri o immagini sovrapposte, in quanto il processo di con-
versione presuppone che ogni immagine sia collocata all’interno di div strutturati
e non interferisca con il testo. Elementi sovrapposti possono essere estratti in mo-
do ambiguo e, successivamente, reinseriti in posizioni errate all’interno dell’HTML
generato dal modello.

26

Determinate operazioni non sono necessarie e costituiscono solo un mezzo attraverso il
quale ottenere risultati migliori: un layout più pulito in input garantirà risultati più
soddisfacenti in output. La diminuzione del rumore in ingresso ove possibile fa si che la
comprensione del layout da parte del modello sia più corretta e lineare.

Il processo di estrazione e conversione da PDF ad HTML è reso possibile da una con-
catenazione di diverse operazioni che trasformano il documento in un output semantico
e leggibile. Il workflow è stato progettato per essere adattabile, modulare e scalabile.
Testare il sistema con altri modelli di intelligenza artificiale risulta semplice poiché è suffi-
ciente modificare le costanti dichiarate nel server ed andare a modificare, eventualmente,
la chiamata API nella configurazione prevista dal modello scelto.

1 const LLM_API_BASE = "https://generativelanguage.googleapis.com/v1beta/models"
;

2

3 const LLM_MODEL_PRO = "gemini-2.5-pro:generateContent";
4 const LLM_MODEL_FLASH = "gemini-2.5-flash:generateContent";
5 const LLM_MODEL_3PRO = "gemini-3-pro-preview:generateContent";
6

7 const LLM_SELECTED_MODEL = LLM_MODEL_PRO;
8 const LLM_MODEL_URL = ‘${LLM_API_BASE}/${LLM_SELECTED_MODEL}‘;

Nell’esposizione delle varie fasi del lavoro, il dettaglio verrà suddiviso ove necessario tra
le due pipeline, andando successivamente a confluire nella gestione dell’output.

5.2 Upload e gestione dei file PDF
La gestione del caricamento dei file PDF avviene all’interno di App.jsx. I file PDF
caricati verranno salvati in primis in uno State Hook (files, setFiles), che converte
la lista di file ottenuta dallevento onChange in un array JavaScript standard. In questo
modo il sistema è in grado di mantenere e visualizzare in modo dinamico i file selezionati
prima dell’elaborazione. I file selezionati non verranno processati in parallelo, bensì in
modo sequenziale. il metodo processQueue implementa una queue frontend, iterando su
tutti i file. Ad ogni iterazione il file corrente viene caricato in un FormData e inviato al
server tramite una chiamata fetch. La chiamata, in particolare, riguarderà uno dei due
endpoint lato server, a seconda della scelta dell’utente per la modalità di conversione.

27

La scelta di gestione della coda lato frontend è stata effettuata per 2 motivazioni
principali:

• riduzione concorrenza lato server, in modo che riceva direttamente una coda
ordinata.

• gestione errori più accurata per singolo file, con gestione degli errori più chiara.

Selezione PDF

Queue frontend

Creazione FormData

Invio al backend (fetch)

Ricezione risultato LLM

Iterazione sul file successivo

Figura 5.1: Workflow di elaborazione sequenziale dei PDF lato frontend.

28

5.3 Estrazione di testo e immagini

5.3.1 Pipeline /api/generate

Il PDF viene inviato inline al modello di intelligenza artificiale, per cui non vi è vera
e propria estrazione del testo o dei contenuti a partire dal PDF. L’elemento su cui si
concentra l’estrazione manuale da PDF sono le immagini. Vengono estratte mediante lo
script extract_images.py che utilizza la libreria PyMuPDF. Si riporta uno snippet di
extract_images.py

1 for page_index, page in enumerate(pdf, start=1):
2 image_list = page.get_images(full=True)
3 for img_index, img in enumerate(image_list, start=1):
4 xref = img[0]
5 base_image = pdf.extract_image(xref)
6 image_bytes = base_image["image"]
7 ext = base_image["ext"].lower()
8

9 img = Image.open(io.BytesIO(image_bytes))
10 path = f"{output_dir}/page{page_index}_img{img_index}.png"
11 img.save(path, "PNG")
12

13 rects = []
14 for inst in page.get_image_info(xrefs=True):
15 if inst["xref"] == xref:
16 rects.append(inst["bbox"])

Lo snippet mostra il funzionamento centrale dello script di estrazione delle immagini. Per
ogni pagina del PDF, la funzione get_images(full=True) individua tutte le immagini
incorporate nel documento, restituendo una lista di riferimenti interni (xref). Ogni xref
viene utilizzato per estrarre il contenuto binario dell’immagine tramite extract_image,
successivamente decodificato in memoria e salvato in formato PNG nella directory tem-
poranea appositamente creata. Il metodo get_image_info(xrefs=True) consente di
recuperare tutte le istanze grafiche delle immagini presenti nella pagina, incluse le rela-
tive bounding box. Poiché un’immagine può comparire più volte nella stessa pagina, il
codice confronta l’xref corrente con le istanze rilevate, associando ad ogni occorrenza la
sua posizione geometrica.

29

Per ogni rect vengono memorizzate le informazioni finali, che verranno consolidate
in una struttura JSON e integrate nella richiesta da inviare al modello. Se ne riporta un
esempio:

1 {
2 "page": 1,
3 "path": "uploads/tmp_layout_inline/images/page1_img1.png",
4 "ext": "png",
5 "bbox": [72.0, 155.2, 352.0, 295.2],
6 "x": 72.0,
7 "y": 155.2,
8 "width": 280.0,
9 "height": 140.0

10 }

• page: il numero di pagina da cui l’immagine è stata estratta.

• path: il percorso del file immagine generato durante l’elaborazione. Tale file rap-
presenta la versione rasterizzata dell’immagine così come appare nel PDF, utile
per l’inserimento successivo all’interno dell’HTML.

• ext: l’estensione del formato immagine utilizzato in output. Questo campo speci-
fica il tipo di codifica adottato per la rappresentazione raster.

• bbox: il riquadro di delimitazione (bounding box) dell’immagine all’interno della
pagina PDF, espresso nel formato [x0, y0, x1, y1]. Il valore x0 rappresenta la
coordinata orizzontale del margine sinistro, y0 quella del margine superiore, x1 e
y1 indicano rispettivamente i margini destro e inferiore. Questo riquadro consente
di determinare la posizione esatta e lo spazio occupato nel layout.

• x e y: le coordinate dell’angolo superiore sinistro della bounding box. Sono equiva-
lenti a x0 e y0, ma vengono fornite separatamente per semplificare l’accesso diretto
alle coordinate principali.

• width e height: la larghezza e l’altezza dell’immagine, calcolate rispettivamente
come x1 - x0 e y1 - y0. Questi valori descrivono l’estensione delle immagini,
valori poi utilizzati nella ricostruzione dell’output.

È opportuno osservare che la libreria PyMuPDF estrae le immagini nella loro forma
interna così come sono codificate nel PDF, ciò porta a vedere l’immagine estratta talvolta

30

con colori alterati o invertiti. Questo avviene poiché alcuni documenti PDF potrebbero
utilizzare in alcune immagini al suo interno spazi di colore non standard (ad esempio
CMYK) , maschere di trasparenza o filtri di compressione complessi. Il comportamento
in questione non dipende quindi da PDeFy bensì accade poiché si riflette fedelmente la
rappresentazione strutturale dell’immagine all’interno del file PDF.

5.3.2 Pipeline /api/generate_JSON

Il PDF viene inviato sotto forma di JSON strutturato all’LLM, per cui viene effettuata
un’estrazione completa del testo, delle tabelle e delle immagini contenute nel file. Si
utilizza la libreria PDFPlumber all’interno dello script extract_layout_JSON di cui se
ne riporta uno snippet:

1 with pdfplumber.open(pdf_path) as pdf:
2 for page_index, page in enumerate(pdf.pages, start=1):
3 full_text = page.extract_text() or ""
4 words = page.extract_words() or []
5 tables = page.extract_tables() or []
6 images_info = []
7 for img_index, img in enumerate(page.images, start=1):
8 # Bounding box
9 x0, y0, x1, y1 = img["x0"], img["top"], img["x1"], img["bottom"]

10

11 cropped = page.within_bbox((x0, y0, x1, y1)).to_image(resolution
=300)

12 img_path = f"{output_dir}/page{page_index}_img{img_index}.png"
13 cropped.save(img_path, format="PNG")

Lo snippet mostra la logica centrale dello script di estrazione che prepara il layout del
PDF in formato JSON. Per ogni pagina del documento, tramite la libreria PDFPlumber
vengono ottenuti tre insiemi di informazioni: il testo completo (extract_text), per una
comprensione semantica globale del contenuto, la lista delle singole parole con le relative
coordinate (extract_words) e le eventuali tabelle (extract_tables).

La sezione successiva del codice gestisce l’estrazione delle immagini. L’oggetto page.images
fornisce infatti una lista di immagini individuate nella pagina, ciascuna accompagnata
dalle proprie coordinate geometriche consentendone la memorizzazione della sua boun-
ding box. Ciò definisce l’area da ritagliare e verrà convertita in immagine raster tramite il
metodo within_bbox. L’immagine estratta viene infine salvata in formato PNG e il per-
corso risultante viene associato alla struttura JSON finale, insieme ai metadati necessari
per la ricostruzione del layout nel passaggio all’LLM.

31

Si riporta un esempio di memorizzazione di metadati relativi ad una parola:

1 {
2 "text": "colore",
3 "x0": 175.14380000000003,
4 "x1": 208.85150000000004,
5 "top": 255.69700000000012,
6 "doctop": 2805.3190000000004,
7 "bottom": 268.6970000000001,
8 "upright": true,
9 "height": 13,

10 "width": 33.70770000000002,
11 "direction": "ltr"
12 }

• text: il contenuto testuale della parola così come riconosciuto dal motore di
estrazione.

• x0 e x1: le coordinate orizzontali del riquadro che racchiude la parola. Il valore x0
rappresenta il margine sinistro della bounding box, mentre x1 ne indica il margine
destro. Questi parametri consentono di disporre il termine lungo l’asse orizzontale.

• top e bottom: le coordinate verticali superiori e inferiori della bounding box della
parola. Il valore top identifica la distanza dal margine superiore, mentre bottom
la distanza tra il margine superiore e il margine inferiore del riquadro.

• doctop: la coordinata verticale della parola rispetto all’intero documento, non
soltanto alla singola pagina. il valore risulta utile per garantire un ordinamento
globale degli elementi in PDF composti da più pagine.

• upright: un valore booleano che indica se la parola è orientata correttamente
(true) oppure se è ruotata o disposta secondo altre direzioni.

• height e width: altezza e larghezza, espresse in punti PDF, della bounding box
che contiene la parola. Tali misure permettono di inferire informazioni indirette
come la dimensione del font o l’allineamento tipografico.

• direction: la direzione del testo, generalmente ltr (left-to-right). In presenza di
scritture verticali o orientamenti differenti, il campo può assumere valori differenti
quali ttb (top-to-bottom).

32

5.4 Struttura della richiesta

5.4.1 Pipeline /api/generate

La requestBody in input prevede l’articolazione in 4 componenti:

• Blocco system-like, ovvero un blocco di istruzioni regolative iniziali che pongono
le basi per la gestione del prompt completo vero e proprio.

• Metadati relativi alle immagini

• File PDF inline

• Prompt con le istruzioni specifiche

1 const requestBody = {
2 contents: [
3 {
4 role: "user",
5 parts: [{
6 text: "Restituisci esclusivamente HTML puro.
7 Non formattare l’output come blocco di codice.
8 Non inserire i delimitatori \‘\‘\‘html o \‘\‘\‘.
9 Inizia direttamente dal primo tag HTML

10 e termina con l’ultimo.
11 Se stai per inserire un blocco \‘\‘\‘html,
12 rimuovilo e restituisci solo il contenuto.
13 Non includere spiegazioni, testo extra o
14 introduzioni/conclusioni."
15 }]
16 },
17 {
18 role: "user",
19 parts: [
20 { text: "Metadata immagini estratte:\n"
21 + JSON.stringify(images) },
22

23 { inlineData: { data: base64File,
24 mimeType: "application/pdf" } },
25

26 { text: prompt }
27],
28 },
29],
30 };

33

5.4.2 Pipeline /api/generate_JSON

La requestBody in input prevede l’articolazione in 3 componenti:

• Blocco system-like, ovvero un blocco di istruzioni regolative iniziali che pongono
le basi per la gestione del prompt completo vero e proprio.

• Struttura in JSON del PDF

• Prompt con le istruzioni specifiche

1 const requestBody = {
2 contents: [
3 {
4 role: "user",
5 parts: [{
6 text: "Restituisci esclusivamente HTML puro.
7 Non formattare l’output come blocco di codice.
8 Non inserire i delimitatori \‘\‘\‘html o \‘\‘\‘.
9 Inizia direttamente dal primo tag HTML

10 e termina con l’ultimo.
11 Se stai per inserire un blocco \‘\‘\‘html,
12 rimuovilo e restituisci solo il contenuto.
13 Non includere spiegazioni, testo extra o
14 introduzioni/conclusioni."
15 }]
16 },
17 {
18 role: "user",
19 parts: [
20 {text: "Struttura estratta del PDF:\n" +
21 JSON.stringify(structuredJson)},
22

23 {text:prompt}
24]
25 }
26]
27 };

34

5.5 La gestione delle immagini
Avendo adesso le immagini estratte, e la risposta di Gemini, la fase successiva è la
sostituzione programmatica dei placeholder immessi dall’LLM. Entrambe le pipeline di
PDeFy: la pipeline inline e la pipeline JSON, convergono in questa stessa fase finale
di ricostruzione del documento. Nel caso della pipeline inline, il modello dove visualizza
delle immagini, posiziona un placeholder come [IMAGE_1], [IMAGE_2] e così via. L’LLM
li posiziona e lascia il compito al backend di rimpiazzo con le immagini estratte tramite lo
script Python. Ogni immagine estratta è già accompagnata dai dati geometrici (larghezza
e altezza) calcolati dallo script Python, che vengono incorporati nellattributo style
dell’HTML finale per una resa il più fedele possibile al layout originale. Nella pipeline
denominata JSON, le immagini non sono concretamente visibili dal modello, ma sono
contenute all’interno del file estratto contenente l’intera struttura della pagina. Il backend
ricostruisce la mappatura tra il JSON e le immagini fisiche e procede mediante lo stesso
algoritmo di sostituzione.

Il metodo che permette ciò è replacePlaceholders di cui si riporta uno snippet. La
function in questione prende come parametro l’html e le immagini e per ogni immagi-
ne effettua un’operazione di sostituzione hard-coded costruendo dinamicamente dei tag
 contenente:

• L’immagine fisica incorporata in base 64 direttamente nell’attributo src del
tag creato

• Il MIME type corretto a seconda dell’estensione dell’immagine in questione

• Le dimensioni espresse in pixel calcolate durante l’estrazione dal PDF

Viene ritornato il risultato con i placeholder sostituiti.
1 function replacePlaceholders(html, images) {
2 images.forEach((img, i) => {
3 const placeholder = ‘[IMAGE_${i + 1}]‘;
4 const base64 = fs.readFileSync(img.path).toString("base64");
5 const imgTag =
6 ‘<img src="data:image/${img.ext};base64,${base64}" style="width:${

img.width}px;height:${img.height}px;" />‘;
7 html = html.replaceAll(placeholder, imgTag);
8 });
9 return html;

10 }

L’inclusione delle immagini in formato Base64 direttamente nell’HTML produce un
file completamente autosufficiente. Questo approccio:

• elimina il rischio di immagini mancanti o percorsi non risolti;

35

• garantisce la portabilità del documento e la visualizzazione offline

• consente di utilizzare il file HTML come asset unico, semplificando l’integrazione
in applicazioni didattiche o ambienti web.

5.6 Editor di testo e revisione manuale lato utente
L’applicativo prevede una fase di post-processing eventuale da parte dell’utente per effet-
tuare eventuali correzioni o modifiche prima dell’esportazione finale. Tale fase avviene
tramite un editor progettato per coprire due esigenze distinte: un’interfaccia semplice e
accessibile per tutti gli utenti e un’altra che mostri il codice per consentire agli utenti
più esperti di avere un maggiore controllo.

5.6.1 Le due visuali dell’editor
La visuale WYSIWYG (What You See Is What You Get) permette di modificare il
documento HTML come se fosse un normale editor di testo, senza necessità di conoscere
la struttura interna del markup.

L’editor utilizzato è TinyMCE che consente una sincronizzazione immediata e paral-
lela tra le due tipologie di visualizzazioni. Sono presenti strumenti di formattazione
(grassetto, corsivo, liste, tabelle) e fornisce un’anteprima molto simile a quello che sarà
il risultato finale. Sono inoltre state aggiunte funzionalità personalizzate, assenti nel
componente standard:

• pulsante di eliminazione della sezione per ogni esercizio, generato automati-
camente nel DOM dell’editor.

• gestione del drag & drop delle immagini, che consente il riordino fluido degli
elementi mantenendone la struttura originale.

Per gli utenti più avanzati è possibile utilizzare direttamente la modalità di editing in
linguaggio HTML. Ciò consente il controllo e la modifica totale dei contenuti che si
rifletteranno sull’editor e quindi sul risultato finale.

Al termine della revisione, l’utente può esportare il documento come file HTML.
Prima del download viene applicato un filtro utile per:

• rimozione elementi ausiliari dell’editor (ad esempio i pulsanti di eliminazione).

• unione struttura HTML e foglio di stile estratto.

36

Capitolo 6

Analisi dei risultati e valutazione

6.1 Costruzione del dataset
Per effettuare un’analisi dei risultati sono stati presi in esame 10 PDF aventi caratteri-
stiche eterogenee per test ripetuti e valutazione delle performance. Il dataset in esame
comprende un bacino di file che possano rappresentare in maniera sufficientemente am-
pia la variabilità dei materiali didattici della scuola primaria. I PDF in questione sono
nativi e rispettano le richieste di pre-processing esplicitate nel capitolo 5.

File analizzati N. pagine N. esercizi Tipo layout Img
Calcolo 3 3 Complesso Si
Aggettivi 1 4 Semplice No
Grammatica 5 13 Intermedio Sì
Doppie 2 8 Semplice Sì
Numeri relativi 4 11 Intermedio Si
Significato parole 4 4 Semplice Sì
Sillabe 7 7 Complesso Si
Storia 3 5 Intermedio Si
Tecnologia 2 8 Intermedio Si
Vero/Falso 10 40 Intermedio Si

Tabella 6.1: Caratteristiche descrittive dei PDF analizzati: numero di pagine, numero
di esercizi, complessità del layout e presenza di immagini.

37

6.2 Metodologia di test e valutazione
Sulla base del dataset di riferimento, si analizzano adesso i risultati ottenuti facendo una
prima distinzione tra la modalità inline e la modalità layout JSON, e poi una seconda
distinzione tra i tre modelli di Gemini utilizzati per le sperimentazioni: 2.5 flash, 2.5 pro
e 3 pro. La fase di collaudo è stata svolta testando il sistema manualmente e valutando
quindi il risultato per ognuno dei 10 file, nelle 2 modalità di invio e per ognuno dei
3 modelli di Gemini .Per ogni casistica assegno un punteggio dato dalla media della
valutazione di 3 macro-categorie scelte:

• Fedeltà visiva

• Immagini

• Classificazione esercizi

6.2.1 Fedeltà visiva
Si intende valutare la similarità di layout e la correttezza strutturale dell’output ottenuto.
Per effettuare la valutazione ho considerato 5 caratteristiche a cui assegnare {0,1} in
modo binario.

• Ordine dei blocchi: Si vuole valutare l’ordine coerente di blocchi di contenuto
ben separati.

• Separazione degli esercizi: Si valuta se la separazione tra i vari esercizi all’in-
terno dei file PDF è chiara e corretta.

• Gerarchie testuali: Si valuta se è stata correttamente assegnata la rilevanza del
testo all’interno del file. Ad esempio la corretta individuazione di titolo e sottotitoli,
e la relativa corretta assegnazione gerarchica espressa mediante stile e dimensione
del font.

• Correttezza liste e tabelle: si intende osservare se le liste e le tabelle presenti nel
file in input siano correttamente riportate nel risultato e se ciò accade nel formato
corretto.

• Allineamento grafico, si fa una valutazione dell’interpretazione grafica svol-
ta. Si osserva se è stata fatta un’interpretazione complessivamente adeguata del
contenuto.

Lo score complessivo è definito come:

ScoreFedeltà =
Ncriteri soddisfatti

Ncriteri totali

38

6.2.2 Immagini
La corretta collocazione delle immagini all’interno del risultato costituisce un punto
molto critico a cui attribuisco un punteggio:

ScoreImmagini = Nimg corrette

Nimg totali

Con immagini corrette non prendo in considerazione solo il fatto che ci siano nel
risultato finale, ma che siano correttamente inserite e contestualizzate in modo coerente.

6.2.3 Classificazione esercizi
Ad ogni esercizio vengono associate una o più classi HTML che identificano la sua
tipologia. La misura per il calcolo dell’accuratezza è misurata come:

ScoreClassificazione =
Nclassificati correttamente

Ntotale esercizi

6.3 Risultati
I PDF sono stati testati prendendo in considerazione ogni combinazione possibile tra le
modalità di invio e i modelli di Gemini. Ciò è stato fatto poiché si ritiene importante
non solo la combinazione che crei i migliori risultati, ma anche in che modo la grandezza
e la qualità del modello impatti sulla realtà che si sta analizzando.

Il valore ottenuto su ogni cella della tabella è ottenuto calcolando la media dei
punteggi, tra 0 e 1, attribuiti per ogni score esplicitato precendentemente.

39

File analizzati INLINE JSON
2.5 Flash 2.5 Pro 3 Pro 2.5 Flash 2.5 Pro 3 Pro

Calcolo 0.83 0.75 0.89 0.33 0.75 0.77
Aggettivi 0.90 1.00 1.00 0.90 1.00 1.00
Grammatica 0.55 0.97 1.00 0.85 0.81 0.93
Doppie 0.83 0.94 1.00 0.84 1.00 1.00
Numeri relativi 0.87 1.00 1.00 0.87 1.00 1.00
Significato parole 0.93 1.00 1.00 0.82 0.83 1.00
Sillabe 0.60 0.91 1.00 0.30 0.50 0.70
Storia 0.69 0.91 0.91 0.89 0.91 0.91
Tecnologia 0.86 0.92 1.00 0.81 0.95 0.97
Vero/Falso 1.00 1.00 1.00 0.96 1.00 1.00

Tabella 6.2: Confronto degli score complessivi per file, divisi tra pipeline e modello. Va-
lori tra 0 e 1: ottenuti come media tra scoreFedeltà, scoreImmagini e scoreClassificazione

6.3.1 Confronto tra PDF inline e JSON
Si vuole comprendere se sia possibile stabilire, in linea generale, una modalità di invio di
dati inerenti al PDF migliore tra le due proposte. Sulla base dei dati raccolti, si calcola
una media generale trascendendo il modello utilizzato, e si confrontano i dati ottenuti.

ScorePDF_inline = 0.9087

ScorePDF_json = 0.8533

Dai risultati ottenuti si può constatare come l’invio del PDF inline all’LLM consenta
ad esso di comprendere in maniera più affidabile il layout, specialmente in presenza di
disposizioni molto complesse contenenti molte immagini. La relazione spaziale tra testo
e immagini è maggiormente rispettata diminuendo la perdita di informazione strutturale.
Con l’invio in JSON, vi è una fase di scomposizione in elementi atomici che, seppur con
metadati allegati, pone un livello di astrazione intermedio che diminuisce notevolmente
la comprensione della struttura in determinati casi. È giusto mettere in luce come in
certi casi, i modelli si comportino particolarmente bene a prescindere dalla modalità di
invio, facendo così della complessità del documento una variabile molto impattante.

40

Calc
olo

Agg
ett

ivi

Gram
mati

ca

Dop
pie

Num
eri

rel
.

Sig
nifi

cat
i

Sil
lab

e
Sto

ria

Tecn
olo

gia

Vero
/F

als
o

0.4

0.6

0.8

1

Metodo

Sc
or

e
m

ed
io

Inline JSON

Figura 6.1: Confronto tra pipeline INLINE e JSON tramite score medi per file.

6.3.2 Confronto tra modelli di Gemini
Un’analisi della valutazione delle performance in relazione al modello utilizzato risulta
essere utile per comprendere lo stato e l’evoluzione dei modelli che abbiamo a nostra
disposizione. Comprendere quanto la grandezza e la potenza del modello impatti su
una specifica realtà di riferimento permette di capirne le probabili evoluzioni future e le
differenze tra l’utilizzo di modelli aventi costi differenti.

In modo sorprendente l’andamento dei punteggi medi dei metodi in relazione ai mo-
delli di Gemini risulta sostanzialmente uguale, con la linea del metodo inline traslato
del 5/6 % verso l’alto. L’analisi in questione mostra come la differenza tra i 3 modelli
sia particolarmente rilevante ai fini dei risultati, ma anche di come i modelli inferiori
testati offrano comunque discreti risultati seppur non ottimali in ottica di automazione.
Possiamo considerare il modello 3 pro-preview molto vicino a poter essere utilizzato in
una pipeline automatica, che può spesso fare a meno di interventi successivi. Non è, a
mio parere, possibile dire lo stesso per gli altri due modelli che non offrono questo tipo
di garanzie.

41

2.5 Flash 2.5 Pro 3 Pro
0.7

0.8

0.9

1

Modello Gemini

Sc
or

e
m

ed
io

Pipeline INLINE Pipeline JSON

Figura 6.2: Andamento degli score medi per modello Gemini nelle due pipeline (Inline e
JSON).

6.3.3 Peso relativo del modello e della pipeline
Un confronto complessivo tra le due variabili in gioco, modalità di invio e modello
utilizzato, mostra come entrambi i fattori incidano sul risultato finale, ma con pesi diversi.

Il passaggio da json a inline comporta un miglioramento medio di circa il 6.5%,
segno che preservare la struttura originaria del documento facilita in modo misurabile la
ricostruzione del layout da parte del modello.

Il salto tra i tre modelli di Gemini, tuttavia, risulta ancor più determinante: tra
2.5 Flash e 3 Pro si osserva un incremento medio complessivo nell’ordine del 20−25%.
Ciò indica che, nei casi più complessi, la capacità intrinseca del modello gioca un ruolo
predominante rispetto alla modalità di rappresentazione del PDF.

In sintesi, il modello influenza maggiormente la qualità finale, ma la pipeline Inline
garantisce comunque un miglioramento consistente e sistematico, risultando la scelta
preferibile in tutti gli scenari analizzati. Dai risultati, è naturale dire che la combinazione
tra invio del PDF inline e modello di Gemini 3 pro ha offerto i migliori risultati osservabili
dal questo lavoro.

42

6.4 Limiti
Il progetto prevede delle limitazioni che dipendono sia dalla tipologia di input, sia dal
non determinismo offerto dagli LLM e sia dalle risorse limitate

6.4.1 Dipendenza da Gemini
La connessione all’API di Gemini risulta fondamentale nel flusso di lavoro del documento
implicandone la dipendenza assoluta. Il mancato funzionamento del servizio di fruizione
dei modelli generativi messi a disposizione da Google compromette il funzionamento di
PDeFy. Talvolta i modelli di Gemini (soprattutto il modello 2.5-pro e il modello 3-pro-
preview) risultano in uno stato di sovraccarico (overload), ciò non consentirà l’invio di
richieste. Nell’idea di una piattaforma condivisa e mantenuta attiva, i costi alle chiamate
API sono considerevoli e variabili a seconda del modello che si intende utilizzare.

I modelli 2.5 flash e pro sono utilizzabili anche senza impostare la fatturazione, ma con
minore priorità e con limiti nettamente più stringenti di richieste al minuto (RPM), token
in input al minuto (TPM) e richieste al giorno (RPD). Il flusso di richieste di Gemini
impatta notevolmente anche sui tempi di elaborazione della richiesta: le misurazioni
effettuate sul tempo impiegato dai modelli sono indicativi e non deterministici.

Modello Livello gratuito Livello a pagamento (per 1M token)

Gemini 3
Pro Preview Non disponibile

Input: $2 (prompt ≤ 200K token)
Input: $4 (prompt > 200K token)

Output: $12 (prompt ≤ 200K token)
Output: $18 (prompt > 200K token)

Gemini 2.5
Pro Senza costi

Input: $1.25 (prompt ≤ 200K token)
Input: $2.50 (prompt > 200K token)
Output: $10 (prompt ≤ 200K token)
Output: $15 (prompt > 200K token)

Gemini 2.5
Flash Senza costi

Input: $0.30 (testo / immagine / video)
Input: $1.00 (audio)

Output: $2.50

Tabella 6.3: Confronto dei costi tra i modelli Gemini (livello gratuito e a pagamento).

6.4.2 Il non determinismo dei Large Language Model
Il comportamento degli LLM non è completamente deterministico, anche fornendo lo
stesso input, i modelli possono restituire risposte sensibilmente differenti. Sull’argomento
è importante considerare un parametro di configurazione dei modelli, la temperatura. La

43

temperatura controlla la creatività del modello, nello specifico di Gemini si assegna un
valore tra 0 e 2.

• 0-0.5, per maggiore determinismo

• 0.7-1, per un equilibrio tra coerenza e creatività

• 1.1-2, per risposte più originali e fantasiose

I test all’interno di questo lavoro sono svolti con una temperatura di 1, ovvero quella
di default di Gemini tramite API. É rilevante notare come, solitamente, la temperatura
per operazioni di questo tipo possa dover essere più vicina allo 0. Sulla base dei test
effettuati è stato provato il fatto che utilizzando un prompt strutturalmente solido, una
temperatura intermedia non incide sulla qualità dei risultati, e può, anzi, essere utile in
certi casi di interpretazione del layout. Astekin et al. hanno condotto nel 2024 un’analisi
sistematica di questo fenomeno in relazione al log parsing (trasformazione di dati grezzi
in dati in una forma strutturata) utilizzando diversi LLM[2]. Alla luce di questo studio,
anche nel caso di PDeFy i risultati non saranno perfettamente riproducibili e affidabili.
Tramite istruzioni specifiche, prompt engineering e pipeline solida si cerca di limitare
questa caratteristica, cercando di ottenere degli output sempre il più coerenti possibili.
In definitiva, pur adottando strategie mirate alla stabilità del processo, risulta fisiologico
che in determinati casi la risposta non sia ottimale e possano essere necessari degli
interventi umani per correggere delle imperfezioni.

6.4.3 Lunghezza dei PDF e tempistiche
Il numero delle pagine che vengono caricate per una singola richiesta sono un fattore
determinante per la qualità dell’output. È stato testato come un file con un minor
numero di pagine fornisca risultati visibilmente più soddisfacenti rispetto ad un file più
corposo. Sia per quanto riguarda l’invio di JSON che di file, gli LLM tendono a degradare
la qualità della propria risposta in modo direttamente proporzionale alla quantità di
materiale in ingresso. Nel caso dell’invio di JSON questo fenomeno è chiamato attention
decay, che può essere tramutato nel caso di invio di PDF e file in generale in perdita di
precisione visiva.

Dai test emerge che la lunghezza in termini di pagine dei PDF in input fa crescere
proporzionalmente le tempistiche di elaborazione: Per file tra le 15 e le 25 pagine il tempo
di risposta supera spesso i 3 minuti. Si considera quindi PDeFy ottimizzato per PDF in
input che non superino le 10 pagine. Questo è vero specialmente nei casi di massiccia
presenza di immagini: la qualità dell’output non cala in modo particolare se non vi sono
immagini al suo interno.

44

Le tempistiche di esecuzione di conversioni mediante PDeFy dipendono da diversi
fattori quali:

• Il modello di intelligenza artificiale utilizzato: modelli più grandi tendono a
aumentare progressivamente il tempo necessario per l’analisi

• Il file in input, la sua dimensione in termini di pagine e la sua complessità può
condizionare la durata

• La coda interna a Gemini, che varia a seconda del traffico di chiamate tramite
API

45

Capitolo 7

Conclusioni e sviluppi futuri

Il lavoro presentato ha esplorato una nuova frontiera per quanto riguarda l’analisi e la
conversione documentale, mostrando come gli strumenti di intelligenza artificiale se cor-
rettamente guidati e incastonati in una pipeline strutturata ed efficace possano, in linea
con il progresso dei modelli, offrire buoni risultati. La qualità dell’output sarà sempre
fortemente influenzata dalle istruzioni fornite all’LLM, dalla qualità dell’input e dalla
coerenza dell’intero flusso di lavoro. La conversione tramite questi strumenti non può
ancora definirsi deterministica: variabilità, errori di interpretazione o ricostruzioni errate
sono ancora fenomeni possibili. Tuttavia i test effettuati con il modello più performante,
ovvero Gemini 3 pro, sono molto promettenti e hanno evidenziato degli ottimi risultati
sotto ogni punto di vista analizzato.

Questo porta ad una riflessione generale più ampia: Gli LLM sono uno strumento
molto potente e prenderne atto cercando di sfruttarne le peculiarità e integrandoli in
modo complementare a strumenti tradizionali può rappresentare un ottimo compromes-
so. Un approccio ibrido di questo tipo può concretamente portare a fare passi in avanti
enormi, certamente nell’ambito della Document analysis, ma anche in ogni altro settore
di ricerca. Il valore principale di questo lavoro risiede nell’aver implementato e testato
una vera e propria un’unione tra questi due mondi in modo da contribuire alla creazio-
ne di nuovi spazi di innovazione. La progettazione e l’implementazione dello strumento
e dell’applicazione web non è solo una soluzione operativa, ma è un esempio di inge-
gnerizzazione degli approcci basati su LLM. Il contributo è anche quello di cercare di
comprendere a che punto ci si potesse spingere nella realizzazione di strumenti di questo
tipo mediante modelli generativi a disposizione di tutti. Ho dimostrato come questo tipo
di conversione strutturata sia ottenibile con buona qualità, specialmente con l’invio del
PDF inline. Una parte dei limiti individuati nel capitolo precedente, come la variabilità
dei modelli generativi, la difficoltà nella gestione di layout particolarmente complessi e i
tempi di esecuzione su documenti lunghi, resta inevitabilmente legata allo stato attuale
degli LLM. Per ulteriori approfondimenti tecnici e per l’accesso al codice sorgente, è
disponibile in bibliografia il riferimento alla repository GitHub del progetto [10].

46

Alla luce dei risultati ottenuti, il progetto presenta dei margini di miglioramento e
nuove possibili direzioni di ricerca.

• Estensione a nuovi ambiti, Verificare la robustezza del sistema provandolo per
altre tipologie di documenti, estendendolo eventualmente affinché diventi versatile
e adattabile.

• Test con altri LLM, Il sistema può essere testato con altri modelli (ChatGPT,
Claude, Perplexity, Llama ecc.) e aggiornato in relazione ai nuovi LLM che
usciranno in futuro, garantendo la longevità del sistema.

• Ottimizzazione del pre-processing, automazione delle fasi di pre-processing
ove necessarie, riducendo il più possibile il lavoro manuale da parte dell’utente.

• Gestione di file più grandi, mediante l’impiego di modelli più grandi permet-
tendo la conversione in tempi ragionevoli di PDF particolarmente lunghi, come
libri di testo interi.

• Aggiornamento applicazione web, con l’integrazione di nuove funzionalità
quali editing collaborativo e correzione assistita degli errori.

• Test del sistema in altre lingue, valutare il comportamento del sistema con
PDF redatti in altre lingue, confrontando la capacità dei modelli di interpreta-
re layout, classificare esercizi e generare HTML semantico in contesti linguistici
diversi.

• Supporto a PDF non nativi tramite OCR, estendere la pipeline alla gestio-
ne di PDF acquisiti tramite scansione, integrando un modulo OCR che consenta
l’estrazione e la conversione di PDF con immagini, senza che gli script Python
estraggano le pagine intere come immagini.

47

Appendice A

Prompt completo utilizzato

Prompt utilizzato

Istruzioni e Formato di Output :

Struttura e Semantica :
- Utilizza tag HTML semantici corretti : titoli <h1 >, <h2 >, <

h3 >, ecc .; paragrafi <p>; liste /; tabelle <table
>/<thead >/<tbody >/<tr >/<th >/<td >.

- Mantieni la gerarchia dei titoli originale del PDF.
- Mantieni l’ ordine originale del contenuto .

Layout e Stile :
- Assegna classi CSS significative (es. class ="nome - sezione

") a sezioni ed elementi per facilitare la stilizzazione .
- Includi una sezione <style ></style > all ’ interno di <head >

per definire uno stile gradevole , pulito e coerente .
- Il file HTML prodotto deve essere autosufficiente (CSS

inline in <head >).

Esercizi :
- NON risolvere NESSUN esercizio . Riportali fedelmente .
- Ogni esercizio deve essere contenuto in una <section > con

id esatto : id=" exercise -n", dove n è il numero
progressivo dell ’ esercizio nel documento (1 ,2 ,3 ,...).

- Mantieni i testi originali .

48

Prompt utilizzato

Immagini :
- NON includere immagini reali: sostituisci ogni immagine

con un placeholder centrato del formato esatto : [IMAGE_X
], dove X è l’ indice progressivo dell ’ immagine nel PDF (
la prima immagine è [IMAGE_1], ecc .).

- Inserisci il placeholder [IMAGE_X] dentro un contenitore <
div class =" image - placeholder "> centrato .

- Fai il div della dimensione adeguata in modo da contenere
tutta l’ immagine e non coprire altre parti del layout .

Metadati delle immagini che ti fornirò :
- page: numero della pagina
- x, y: coordinate del punto superiore sinistro dell ’

immagine nel PDF
- width , height : dimensioni effettive dell ’ immagine

Uso dei metadati :
- Le immagini devono essere inserite nellHTML come

placeholder [IMAGE_X] nello stesso punto logico dedotto
dal layout originale .

- Usa le coordinate per posizionarle nel punto
corrispondente al layout del PDF.

-Usa width e height per considerarle nel layout di quella
dimensione .

Riconoscimento della tipologia di esercizio :
- Identifica automaticamente la tipologia dell ’ esercizio

basandoti su parole chiave presenti nel titolo o nell ’
enunciato .

- Aggiungi alla sezione dell ’ esercizio un attributo class
che includa la categoria riconosciuta .

Esempio : <section id=" exercise -1" class =" exercise exercise
- completamento ">.

- Le categorie principali da riconoscere sono:
- " completamento " - se compaiono termini come " completa ",
" riempi ", " inserisci ", " scrivi ", " determina "," sostituisci
".

- "scelta - multipla " - se compaiono termini come " scegli ",
" seleziona ", " indica la risposta corretta ", " cerchia ".

- " collegamento " - se compaiono termini come " abbina ", "
collega ", " unisci ", "metti in relazione ".

49

Prompt utilizzato

- "vero -falso " - se compaiono termini come "vero o falso",
"V/F", "se è vero segna ".

- " ordinamento " - se compaiono termini come "metti in
ordine ", " ordina ", " riordina ".

- "domanda - aperta " - se compaiono parole come " spiega ", "
descrivi ", " rispondi ", " argomenta ".

- " individuazione " - se compaiono parole come " individua ",
" sottolinea ".

- " scrittura " - se compaiono parole come " scrivi ", "
scrivere ".

- " calcolo " - se compaiono parole come " calcolo ", "
addizione ", " sottrazione ", " moltiplicazione ", " divisione
".

- " disegno " - se compaiono parole come " disegno ", "
rappresentazione ", " costruisci ", " modella ", "crea ".

Se nessuna categoria è riconosciuta , assegna class ="
exercise exercise - generico ".

Marca le opzioni o sottosezioni di un esercizio facendo
capire che fanno riferimento a quel numero di esercizio .

Nel caso di un esercizio identificato come di " completamento
" o di " scrittura " o di "domanda - aperta "

- Per ogni immagine ([IMAGE_X]) presente all ’ interno dell ’
esercizio di completamento , <input type =" text" class ="
image -input "/> se c’è un campo di completamento in input.

- Se c’è uno spazio per il completamento anche senza
immagine inserisci sempre : <input type =" text "/>.

Fine delle istruzioni .
Genera il file HTML seguendo esattamente queste regole .

50

Appendice B

Modifica al prompt principale per
invio layout JSON

Blocco da aggiungere al prompt

Formato dell ’input (JSON di layout):
- Ti verrà fornito un JSON che rappresenta il contenuto di

un PDF scolastico .
- Il JSON conterrà elementi testuali e immagini già in

ordine logico di lettura .
- Per ogni immagine saranno forniti almeno i seguenti

metadati :
- page: numero di pagina
- x, y: coordinate del punto superiore sinistro dell ’

immagine nel PDF
- width , height : dimensioni effettive dell ’ immagine

- Utilizza questi dati solo per rispettare la posizione
logica e la dimensione relativa delle immagini nel layout

HTML.

51

Bibliografia

[1] Adobe Systems. «History of the PDF Timeline». In: (2023). Ultimo accesso: novem-
bre 2025. url: https://www.adobe.com/acrobat/resources/pdf-timeline.
html.

[2] Astekin, Merve, Hort, Max e Moonen, Leon. «An Exploratory Study on How Non-
Determinism in Large Language Models Affects Log Parsing». In: (2024). doi:
10.1145/3643661.3643952 (cs.SE). url: https://doi.org/10.1145/3643661.
3643952.

[3] Bhattacharyya, Aniket et al. «Information Extraction from Visually Rich Docu-
ments using LLM-based Organization of Documents into Independent Textual Seg-
ments». In: (2025). arXiv: 2505.13535 [cs.IR]. url: https://arxiv.org/abs/
2505.13535.

[4] Chen, Banghao et al. «Unleashing the potential of prompt engineering for large
language models». In: Patterns 6.6 (2025). doi: 10.1016/j.patter.2025.101260
(cs.AI). url: https://doi.org/10.1016/j.patter.2025.101260.

[5] Deep Search Team. «Docling Technical Report». Ver. 1.0.0. In: (ago. 2024). doi:
10.48550/arXiv.2408.09869. eprint: 2408.09869. url: https://arxiv.org/
abs/2408.09869.

[6] Google DeepMind. «Gemini Model Overview». In: (2025). Ultimo accesso: novem-
bre 2025. url: https://ai.google.dev/models/gemini.

[7] Huang, Yupan et al. «LayoutLMv3: Pre-training for Document AI with Unified
Text and Image Masking». In: (2022). arXiv: 2204.08387 [cs.CL]. url: https:
//arxiv.org/abs/2204.08387.

[8] Lasheb, Mohamed Amine et al. «Extracting and Structuring Textbooks for Inclusi-
ve Education: A Computer Vision Approach». In: Proceedings of the 25th IEEE In-
ternational Conference on Advanced Learning Technologies (ICALT 2025) (2025).
url: https://hal.science/hal-05206586.

[9] Luo, Chuwei et al. «LayoutLLM: Layout Instruction Tuning with Large Language
Models for Document Understanding». In: (2024). arXiv: 2404.05225 [cs.CV].
url: https://arxiv.org/abs/2404.05225.

52

[10] Manieri, Alessio. «PDeFy». In: (2025). url: https://github.com/Manieri03/
PDeFy_Tesi.

[11] Maslej, Nestor et al. «Artificial Intelligence Index Report 2025». In: arXiv preprint
arXiv:2504.07139 (2025). Ultimo accesso: novembre 2025. url: https://arxiv.
org/abs/2504.07139.

[12] pdf2htmlEX Community. «pdf2htmlEX — Convert PDF to HTML while retaining
text, format and vector graphics». In: (2025). Ultimo accesso: novembre 2025. url:
https://github.com/pdf2htmlEX/pdf2htmlEX.

[13] PyMuPDF Community. «Extracting Images from PDFs — PyMuPDF Documen-
tation». In: (2025). Ultimo accesso: novembre 2025. url: https : / / pymupdf .
readthedocs.io/en/latest/recipes-images.html.

[14] Shinyama, Yusuke. «PDFMiner — Python PDF Parser and Analyzer». In: (2025).
Ultimo accesso: dicembre 2025. url: https://pdfminer-docs.readthedocs.io/.

[15] Singer-Vine, Jeremy. «pdfplumber — Tools for Extraction and Parsing of PDF
Documents». In: (2025). Ultimo accesso: novembre 2025. url: https : / / www .
pdfplumber.com/.

[16] Tiny Technologies Inc. «TinyMCE — Rich Text Editor». In: (2025). Ultimo ac-
cesso: novembre 2025. url: https://www.tiny.cloud/.

53

Ringraziamenti

Desidero rigraziare il professor Angelo Di Iorio per la sua disponibilità e per il prezioso
supporto ricevuto in questi mesi. La sua guida è stata di fondamentale importanza per
la realizzazione di questo progetto.

Ringrazio mia madre e mio padre, Nadia e Fabrizio per il sostegno morale ed econo-
mico. Grazie per la fiducia che mi avete sempre dimostrato e per avermi dato la libertà di
costruirmi il mio percorso senza pressioni, lo avete reso più sereno con la vostra presenza,
discreta ma fondamentale.

Ringrazio mio fratello Riccardo, per avermi insegnato ad apprezzare fino in fondo i
momenti da studente. Grazie per aver dato un valore enorme e significativo alle poche
giornate che siamo riusciti a passare insieme in questi anni.

Ringrazio i miei nonni, Marisa, Renato e Gabriella, per l’affetto e i valori che hanno
saputo trasmettermi e i miei zii, Silvia, Antonio insieme a mia cugina Adele, per i
momenti sereni passati insieme.

Ringrazio i miei amici di vecchia data, perchè nonostante passino gli anni il nostro
legame rimane saldo, e anche quando ci sentiamo meno, sappiamo che , se serve, ci
saremo sempre l’uno per l’altro.

Ringrazio i miei amici di corso Alessandro e Daniele per tutto il tempo passato insieme
tra lezioni, progetti, pause pranzo ed esami. Avete contribuito a rendere questo periodo
universitario davvero speciale.

Ringrazio gli amici di "Rassmuss" perchè mi hanno accolto nel loro gruppo già consoli-
dato sin dal primo giorno ponendo le basi per la nascita di amicizie destinate a durare nel
tempo. Grazie per le risate e per la leggerezza che mi avete portato anche nei momenti
più difficili.

Ed infine ringrazio Ilaria, che più di tutti si è sorbita i miei momenti no, che ha saputo
ascoltarmi e darmi forza quando non ne avevo. Lei che, allo stesso tempo, ha saputo
donarmi tutto il suo entusiasmo nei momenti felici, trasmettendomi tutto il suo appoggio
e la sua stima nei miei confronti. Grazie per aver creduto in me più di quanto io stesso
riuscissi a fare. Grazie di esserci stata in questo viaggio e di continuare ad esserci.

Grazie a tutti.

55

