ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

SCUOLA DI SCIENZE

Corso di Laurea in Informatica per il Management

STUDIO, IMPLEMENTAZIONE
E VALUTAZIONE COMPARATIVA
DI ALGORITMI E APPLICAZIONI

COMMERCIALI PER IL
CONTEGGIO DEI PASSI

Relatore: Presentata da:
Prof. FORLANI FRANCESCO
FEDERICO MONTORI

Sessione 11

Anno accademico 2024/2025

Sommario

L’elaborato descrive lo sviluppo e la valutazione di un sistema completo per I’analisi
del passo umano basato su sensori di movimento. Il lavoro nasce dall’esigenza di
disporre di strumenti affidabili per il conteggio dei passi, un’attivita centrale in ambito
fitness, sanitario e di monitoraggio dell’attivita fisica. Tuttavia, la letteratura non offre
metodologie standardizzate per confrontare in modo riproducibile le prestazioni degli
Android in linguaggio Kotlin che integra differenti algoritmi di rilevazione dei passi
e un’infrastruttura di testing automatizzato basata sulla riproduzione controllata
di dati sensoristici. Il sistema permette di ricreare, tramite emulatore, le stesse
condizioni registrate sul campo, consentendo una valutazione comparativa equa e
replicabile. Le prove sperimentali, condotte su differenti tipologie di camminata
e su varie posizioni del dispositivo, hanno consentito di confrontare I'accuratezza
degli algoritmi implementati con quella di applicazioni commerciali, evidenziandone
prestazioni e limiti. Il lavoro fornisce cosi un contributo utile alla comprensione e al

miglioramento dei sistemi di pedometria basati su smartphone.

Introduzione

In un’epoca in cui il movimento naturale e sempre piu sostituito da quello
artificiale, la camminata conserva un valore centrale, non solo come attivita fisica,
ma come misura del benessere e della qualita della vita. Numerosi studi scientifici, a
partire dalle linee guida dell’Organizzazione Mondiale della Sanita, evidenziano come
il mantenimento di un livello regolare dell’attivita fisica riduca il rischio di malattie
e migliori le funzioni cognitive. In tale cornice, I'analisi e lo sviluppo di sistemi in
grado di monitorare e interpretare il movimento umano assumono un’importanza
crescente. Esistono numerosi articoli scientifici riguardanti lo studio di contapassi.
In [13] l'autore li suddivide secondo due modalita, in tempo reale e non in tempo
reale, e crea inoltre un’applicazione Android in linguaggio Java che implementa gli
algoritmi di tipo Real-Time. In [19], invece, vengono descritti ed implementati alcuni
algoritmi Non Real-Time nell’applicazione creata in [13]. L’elaborato in [27] descrive
un sistema per il testing di applicazioni Android sull’emulatore di Android Studio.
Lo scopo di questo elaborato e raffinare ed ampliare gli studi presentati in questi tre

lavori. Il lavoro svolto ¢ stato suddiviso in tre differenti fasi:

1. Raccolta dati, registrazione dei valori dell’accelerometro, magnetometro e

giroscopio durante diversi tipi di camminata

2. Implementazione di una nuova applicazione Android in linguaggio Kotlin che

implementa gli algoritmi descritti in [13] e [19]
3. Confronto dei dati raccolti utilizzando I’architettura proposta in [27]

Nei capitoli successivi verranno descritti nel dettaglio la metodologia adottata, le

implementazioni software e i risultati ottenuti dal confronto sperimentale.

Indice

Introduzione i
1 I Pedometri 1
1.1 Storia e definizione dei pedometrio 1
1.2 Statodell’arte 2
1.2.1 Background e principi fisicio L 3

1.2.2 Algoritmi in letteratura. 3

1.2.3 Lavori comparativi L.)

1.2.4 Motivazioni e obiettivi 6

2 Architettura del progetto 8
2.1 Panoramica dell’architettura 000 9
2.2 Contributi 11
2.3 StepLab 11
2.3.1 Rwolonelsistema 0L 11

2.3.2 Materiali e tecnologie utilizzate 12

2.3.3 Architettura interna 12

2.3.4 Principali funzionalita 13

24 MotionTrackero 13
2.4.1 Ruolonel sistema oL 14

2.4.2 Materiali e tecnologie utilizzate 14

2.4.3 Architettura internao 14

2.4.4 Principali funzionalita 15

2.5 Iniezione deidatio 16
2.5.1 Ruwolo nel sistema L. 16

2.5.2 Materiali e tecnologie utilizzate 16

2.5.3 Flusso di esecuzione 16

ii

Introduzione iii
3 Implementazione di StepLab 18
3.1 UL . 18
3.1.1 Main 18

3.1.2 Configuration 21

3.1.3 Test . . . o 25

3.2 Algoritmi e building blocks del rilevamento passi 31
321 Filtri . . .o 31

3.2.2 Strategie di rilevamento passio L 35

3.2.3 Algoritmi aggiuntivi o000 39

3.3 Algorithms 40
3.3.1 Configurazione e dati dei sensori 40

3.3.2 Calcoli ed algoritmio 41

3.3.3 Processore principale 0L 42

3.4 Data 44
3.5 Utils o 45
3.6 Considerazioni sull'implementazione 46

4 Implementazione del sistema di iniezione dei dati 47
4.1 Registrazione e memorizzazione dei dati 47
4.2 Iniezione dei dati su emulatore 50
4.2.1 Avviodelsistema 50

4.2.2 Automazione dell’interfaccia utente 53

4.2.3 Iniezione dei dati sensoristicio 54

4.2.4 Raccolta e salvataggio dei risultati 55

5 Validazione del sistema 58
5.1 Metodologia 58
5.2 Risultati della validazione 59
5.2.1 Metriche di valutazione 59

5.2.2 Analisi dei risultati 61

5.3 Considerazioni sulla metodologia 63

6 Raccolta dati e risultati 65
6.1 Raccoltadati 65
6.2 Configurazione delle applicazioni 66
6.3 Risultati delle simulazioni 67
6.3.1 Risultati per tipologia di camminata 68

iv Introduzione

6.3.2 Risultati per posizione del dispositivo 83

6.3.3 Analisi complessiva dei risultati 91

Conclusioni 94

Elenco delle figure

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

6.1
6.2

6.3
6.4
6.5
6.6
6.7

6.8

6.9

6.10

Architettura del sistema: diagramma dei componenti e flusso dei dati.

Schermata principale dell’applicazione StepLab.
Schermata di configurazione degli algoritmi in StepLab.
Schermata di confronto delle configurazioni in StepLab.
Schermata di live testing in StepLab.
Schermata di registrazione di un nuovo test in StepLab.
Schermata di esportazione dei test in StepLab.

Schermata di visualizzazione dei salvataggi in StepLab.

Schermata principale di MotionTracker.

Riassunto del flusso dello script di iniezione dei dati sensoristici.

MAE con intervalli di confidenza al 95% per camminata normale.
Box plot dei risultati per camminata normale delle applicazioni com-
merciali.
Box plot dei risultati per camminata normale di StepLab.
MAE con intervalli di confidenza al 95% per la corsa.
Box plot dei risultati per la corsa delle applicazioni commerciali. . . .
Box plot dei risultati per la corsa con le configurazioni di StepLab. . .
MAE con intervalli di confidenza al 95% per la camminata a passi
stretti. L
Box plot dei risultati per camminata a passi stretti delle applicazioni
commerciali.
Box plot dei risultati per camminata a passi stretti delle configurazioni
di StepLab.
MAE con intervalli di confidenza al 95% per la camminata a passi

irregolari. L

27

30

72
73
73

vi

Introduzione

6.11

6.12

6.13
6.14

6.15

6.16
6.17

6.18

6.19
6.20

6.21

6.22
6.23

6.24

6.25
6.26

6.27

6.28

6.29
6.30

Box plot dei risultati per camminata a passi irregolari delle applicazioni
commerciali. L
Box plot dei risultati per camminata a passi irregolari delle configura-
zioni di StepLab.
MAE con intervalli di confidenza al 95% per la camminata in salita. .
Box plot dei risultati per camminata in salita delle applicazioni
commerciali.
Box plot dei risultati per camminata in salita delle configurazioni di
StepLab.
MAE con intervalli di confidenza al 95% per la camminata in discesa.
Box plot dei risultati per camminata in discesa delle applicazioni
commerciali. Lo
Box plot dei risultati per camminata in discesa delle configurazioni di
StepLab.
MAE con intervalli di confidenza al 95% per dispositivo in mano.
Box plot dei risultati con dispositivo in mano delle applicazioni
commerciali.

Box plot dei risultati con dispositivo in mano delle configurazioni di

MAE con intervalli di confidenza al 95% per dispositivo in tasca. . . .
Box plot dei risultati con dispositivo in tasca delle applicazioni com-
merciali. L L
Box plot dei risultati con dispositivo in tasca delle configurazioni di
StepLab.
MAE con intervalli di confidenza al 95% per dispositivo in spalla.
Box plot dei risultati con dispositivo in spalla delle applicazioni
commerciali.
Box plot dei risultati con dispositivo in spalla delle configurazioni di
StepLab.
MAE con intervalli di confidenza al 95% per i risultati complessivi.
Box plot dei risultati complessivi delle applicazioni commerciali.

Box plot dei risultati complessivi delle configurazioni di StepLab.

80

81
82

83

83
85

85

86
87

87

88
89

90

90

92
92

Elenco delle tabelle

2.1 Sintesi dei moduli software del sistema 17
4.1 Intestazione del file CSV generato da MotionTracker. 49
4.2 Variabili di configurazione del server Appium e dell’emulatore. 51
4.3 Percorsi degli APK installati automaticamente sull’emulatore. 51
4.4 Variabili di configurazione relative al parsing e normalizzazione dei
file CSV. 51
4.5 Parametri che controllano il comportamento dell’injection dei dati
sensoristici.o Lo 52
4.6 Variabili di configurazione specifiche per l'automazione dell’app StepLab. 52
4.7 Formato del file CSV per il salvataggio dei risultati. 56
4.8 Formato del file CSV di verifica dei risultati. 56
5.1 Statistiche generali di MAE e SME. 61
5.2 Metriche di errore per tipologia di camminata (c/o = con outliers, s/o
=senza outliers). 62
5.3 Metriche di errore per posizione del dispositivo (c/o = con outliers,
s/o=senza outliers). 62
6.1 Eta, sesso e dispositivo dei partecipanti alle registrazioni. 66
6.2 Metriche di accuratezza per la camminata normale. 69
6.3 Metriche di accuratezza per lacorsa. 71
6.4 Metriche di accuratezza per la camminata a passi stretti. 74
6.5 Metriche di accuratezza per la camminata a passi irregolari. 7
6.6 Metriche di accuratezza per la camminata in salita. 79
6.7 Metriche di accuratezza per la camminata in discesa. 82
6.8 Metriche di accuratezza per dispositivo in mano. 84
6.9 Metriche di accuratezza per dispositivo in tasca. 88
6.10 Metriche di accuratezza per dispositivo in spalla. 89

vii

viii Introduzione

6.11 Metriche di accuratezza complessive. 91

Capitolo 1

I Pedometri

1.1 Storia e definizione dei pedometri

Un pedometro ¢ un dispositivo che conta il numero di passi effettuati da una
persona. Le prime versioni erano di tipo meccanico: un esempio celebre & quello
ideato dall’orologiaio svizzero Abraham-Louis Perrelet, che utilizzava un meccanismo
a leva e sospensione per registrare i passi. Con il progresso tecnologico, i pedometri
sono divenuti dispositivi elettronici, basati su sensori di movimento in grado di
rilevare le oscillazioni del corpo umano durante la camminata. Oggi sono integrati in
sistemi piu complessi, come smartphone e smartwatch, che aggiungono funzionalita
di monitoraggio avanzate, come ad esempio la misura della frequenza cardiaca, delle
calorie bruciate e della distanza percorsa. I sensori impiegati sono generalmente
di tipo MEMS (Micro-Electro-Mechanical Systems), dispositivi miniaturizzati che
combinano componenti meccaniche ed elettroniche su scala micrometrica. Dal punto
di vista fisico, trasformano stimoli meccanici in segnali elettrici digitali. I sensori
MEMS integrati negli smartphone presentano inevitabilmente fenomeni di bias
statico, rumore casuale e deriva termica, che influenzano la stima della velocita o
della posizione ottenuta tramite integrazione numerica dei dati. Nonostante cio, la
loro precisione e generalmente sufficiente per applicazioni come il rilevamento dei
passi. I sensori maggiormente utilizzati nei pedometri moderni appartengono a tre

categorie principali:

1. Accelerometri: misurano ’accelerazione lineare del corpo, ossia la variazione
di velocita nel tempo, lungo uno o piu assi (solitamente x, y, z). In un
accelerometro MEMS, una massa di prova sospesa ¢ collegata al substrato

tramite micro-molle. Quando il dispositivo subisce un’accelerazione, la massa

2 1. I Pedometri

si sposta leggermente, modificando la capacita elettrica tra elettrodi fissi e
mobili. Il circuito integrato converte tale variazione di capacita in un segnale

proporzionale all’accelerazione;

2. Giroscopi: misurano la velocita angolare del dispositivo, cioe quanto rapida-
mente e in quale direzione esso ruota intorno ai propri assi, di solito nelle tre
dimensioni spaziali. Nei MEMS; il principio di funzionamento si basa sull’effet-
to Coriolis: una massa vibrante subisce una forza proporzionale alla velocita
di rotazione, producendo una deviazione misurabile che viene convertita in

segnale elettrico;

3. Magnetometri: misurano l'intensita e la direzione del campo magnetico
terrestre, fornendo informazioni sull’orientamento del dispositivo rispetto al

campo magnetico. Sono anch’essi implementati, in genere, lungo tre assi (x, v,

z).

Va precisato che la qualita dei sensori puo variare sensibilmente da un dispositivo
all’altro, anche quando si tratta dello stesso tipo di sensore. Cio dipende da fattori
come la tecnologia costruttiva, la calibrazione di fabbrica e i filtri applicati dal
sistema operativo. Tuttavia, la combinazione di piu sensori consente di ottenere
una precisione complessiva sufficiente per la maggior parte delle applicazioni. In
ambito pedometrico, 1'obiettivo principale ¢ individuare un modello algoritmico
che garantisca la massima accuratezza possibile, indipendentemente dal dispositivo
utilizzato. Lo scopo di questo elaborato e confrontare diverse implementazioni — sia
commerciali sia open-source — e analizzarne i risultati per trarre conclusioni sulla

loro affidabilita e robustezza.

1.2 Stato dell’arte

Negli ultimi anni, la diffusione capillare di smartphone e dispositivi indos-
sabili dotati di sensori inerziali ha favorito un notevole incremento della ricerca
sui pedometri digitali. In letteratura sono stati proposti numerosi approcci per il
rilevamento automatico dei passi, spesso con l'obiettivo di migliorarne I'accuratezza e
I’affidabilita in condizioni d’uso reali. Nonostante i progressi tecnologici, il problema
della corretta rilevazione del passo umano resta aperto. L’accuratezza dei pedometri
dipende infatti non solo dalla qualita dei sensori, ma anche dall’algoritmo impiegato

per interpretare i segnali. Le differenze tra modelli commerciali e implementazioni

1.2 Stato dell’arte 3

accademiche derivano proprio da questa componente algoritmica, che rappresenta
il cuore del sistema. Le sezioni seguenti presentano un excursus delle principali
tipologie di algoritmi proposti in letteratura e un riepilogo dei lavori comparativi
piu significativi, fino a introdurre 'approccio metodologico adottato in [28], che

costituisce la base sperimentale di questo elaborato.

1.2.1 Background e principi fisici

Secondo [10], un passo ¢ definito come un evento di movimento che produce un
segnale di accelerazione con caratteristiche specifiche di ampiezza e frequenza, ovvero,
un picco positivo ed uno negativo attorno ad un punto di equilibrio. Il pattern che si
forma corrisponde al movimento del piede che si stacca dal suolo, si muove in avanti
e poi ritorna a toccare il terreno. Dal punto di vista fisico, il passo e rilevato quando
la magnitudine dell’accelerazione supera una certa soglia predefinita, che puo variare

in base all’implementazione dell’algoritmo utilizzato per il rilevamento.

1.2.2 Algoritmi in letteratura

In letteratura sono stati proposti numerosi algoritmi per il conteggio dei passi.
Negli studi, i dati rilevati dai sensori dei dispositivi vengono generalmente pre-
elaborati attraverso filtri che hanno 'obiettivo di ridurre il rumore e migliorare la
qualita del segnale. Questo viene poi analizzato per identificare i pattern caratteristici
del passo umano. Gli algoritmi possono venire classificati in base a diversi criteri,
come verra illustrato in seguito. Secondo [19] e [14], una prima distinzione puo essere
fatta tra algoritmi di tipo Real-Time e Non Real-Time. Gli algoritmi Real-Time sono
progettati per elaborare i dati in tempo reale, mentre quelli Non Real-Time richiedono
dati precedenti a quelli attuali per effettuare il calcolo. Di seguito, verranno descritti
i principali approcci utilizzati in letteratura per il conteggio dei passi, in modo da

fornire un quadro generale delle tecniche pit comuni.

Filtri

Lo studio [3] propone un algoritmo di filtraggio basato su un filtro passa-basso.
Lo scopo, in questo caso, € lasciare passare le componenti lente del segnale, che sono
quelle piu rilevanti per il rilevamento dei passi, eliminando le componenti ad alta
frequenza che rappresentano il rumore. La soglia che determina I’attenuazione del

segnale e chiamata frequenza di taglio. Nello studio appena citato, la frequenza di

4 1. I Pedometri

taglio ¢ stata impostata a 20 Hz. Viene inoltre dichiarato che le informazioni sul
movimento umano si verificano sotto la tale soglia. Molti altri studi utilizzano questo
tipo di filtro, come ad esempio [7], [9], [20], [22]. Le differenze nelle implementazioni
risiedono principalmente nelle frequenze di taglio scelte. Relativamente al filtro
passa-basso, una variante comune e il tipo Butterworth che permette di ottenere una
risposta in banda passante piu piatta possibile come descritto in [11]. In particolare,
questo studio propone un filtro con frequenza di taglio adattiva, che varia in base
alla velocita della camminata.

Oltre al filtro passa-basso, e utilizzato in alternativa il filtro passa-alto, come
in [1]. A differenza del primo, questo filtro lascia passare le componenti ad alta
frequenza del segnale, eliminando quelle a bassa frequenza. L’obiettivo € rimuo-
vere le componenti statiche del segnale, come la gravita, che possono influenzare
negativamente il rilevamento dei passi.

Un alternativa ai precedenti, presente frequentemente in letteratura, e il filtro
passa-banda. Questo lascia passare solo le componenti del segnale comprese tra due
frequenze di taglio, eliminando sia le componenti a bassa che ad alta frequenza. Un
esempio di questo approccio ¢ lo studio [21], dove viene usato un filtro passa-banda di
tipo butterworth per rimuovere sia le componenti lente che quelle veloci del segnale.

Un ulteriore approccio, spesso descritto negli articoli analizzati, ¢ I'uso della
matrice di rotazione, come lo studio [29], [8], [26] o [18]. Riguardo al funzionamento
del filtro, questi articoli utilizzano accelerometro, magnetometro e giroscopio in modo
da calcolare una matrice che proietta i dati nel sistema di riferimento del mondo
reale ed ottenere un segnale piu pulito. Un altro studio analizzato [15] propone un
approccio differente, necessita soltanto dei dati dell’accelerometro ed introduce una
trasformazione delle coordinate per rendere il segnale indipendente dall’orientamento
del dispositivo.

L’ultimo tipo di filtro preso in considerazione come tra i pitt comuni in letteratura
¢ il filtro di Kalman, viene utilizzato ad esempio in [25] per ricostruire i passi mancanti
che vengono nascosti a causa dell’oscillazione del braccio. In generale, il filtro di
Kalman e un algoritmo ricorsivo che stima lo stato interno di un sistema dinamico a

partire da una serie di misurazioni rumorose.

Rilevamento dei passi

Si possono classificare diversi approcci per il rilevamento dei passi in base

al dominio di analisi del segnale. Un primo gruppo di metodi analizza il segnale

1.2 Stato dell’arte 5

nel dominio del tempo. Indubbiamente, I'approccio pitt comune in questo caso,
ed in generale per il rilevamento dei passi, ¢ I'individuazione dei picchi nel segnale
dell’accelerometro. Questo metodo si basa sull’osservazione che durante la camminata,
I’accelerazione verticale del corpo umano mostra un pattern caratteristico di picchi
positivi e negativi. La maggioranza degli studi analizzati utilizza questo metodo,
come ad esempio [3], [15] o [1]. Esistono tuttavia diverse varianti di questo approccio.
Ad esempion in [9] viene proposto un algoritmo che utilizza 'intersezione dei picchi
con l'asse delle ascisse, ovvero utilizza il giroscopio per individuare i punti in cui il
segnale angolare cambia segno. Ogni volta che il giroscopio cambia segno si considera
il passo iniziato o terminato.

Un diverso approccio e 'analisi del dominio della frequenza. In questo caso,
il segnale viene di solito trasformato in frequenza utilizzando la Trasformata di
Fourier (FFT). Un esempio di questo approccio lo abbiamo in [21] dove la FFT
viene utilizzata per individuare le frequenze dominanti del passo. Questo articolo
descrive inoltre un algoritmo denominato autocorrelazione, che calcola la correlazione
del segnale con se stesso, ovvero dopo esser filtrato sul segnale viene calcolata una
funzione che misura la somiglianza del segnale con sé stesso nel tempo. I picchi
periodici dell’autocorrelazione corrispondono ai passi.

Gli algoritmi pitt moderni, invece, utilizzano tecniche di machine learning per il
rilevamento dei passi. In questo approccio, non vengono usate soglie o regole fisse, ma
il sistema viene addestrato su un insieme di dati etichettati per imparare a riconoscere
i pattern caratteristici del passo umano. Esistono gia applicazioni commerciali che
utilizzano questo approccio, come Google Fit che rileva automaticamente I'attivita

svolta ed elabora i dati dei sensori tramite modelli di machine learning.

1.2.3 Lavori comparativi

I sensori integrati negli smartphone sono tendenzialmente abbastanza precisi da
permettere il rilevamento dei passi attraverso algoritmi come quelli precedentemente
descritti. Il nodo cruciale risiede pero nella scelta dell’algoritmo piu adatto per
interpretare i dati. A tal proposito, sono stati condotti numerosi studi comparativi
per valutare 'accuratezza di diversi algoritmi di conteggio dei passi, con 1'obiettivo
di identificare le soluzioni piu efficaci e robuste e guidare verso lo sviluppo di metodi
sempre piu performanti. I tipi di confronto presenti negli articoli analizzati sono di
diversi tipi. In [4] viene valutata I'influenza della posizione del dispositivo e della

velocita di camminata sul conteggio dei passi, utilizzando quattro diversi tipi di

6 1. I Pedometri

dispositivi commerciali. Velocita e passo sono regolati con metronomo e cordicella
alle caviglie, I’ambiente e controllato su percorso a terra. I partecipanti vengono
ripresi in modo da poter contare i passi manualmente e confrontarli con quelli
rilevati dai dispositivi. In [24] viene analizzata l'accuratezza del rilevamento dei
passi e del riconoscimento delle attivita di sette monitor di attivita fisica, in vari
contesti di utilizzo, come camminata indoor, outdoor, scale, viene anche cambiata la
velocita di camminata. Lo studio [12] valuta accuratezza di tre app di pedometria su
smartphone Android. I test vengono effettuati su tapis roulant alternando le posizioni
del dispositivo (tasca, fascia alla vita, braccio) e confrontati con i risultati in "free-
living" dei partecipanti. Per il conteggio in laboratorio, € un ricercatore che si occupa
del conteggio manuale dei passi. Le tre app vengono eseguite in contemporanea sullo
stesso dispositivo in modo che il riferimento della camminata sia identico per tutte e
tre. Generalmente, gli studi comprendono un numero limitato alle poche decine di
partecipanti, il pitu solido tra i precedenti rimane quest’ultimo citato con 48 soggetti
coinvolti. Come viene evidenziato infatti in [23], su 25 studi analizzati, la media ¢ di
circa 20 partecipanti per studio. Per quanto riguarda le modalita di confronto fra i
diversi pedometri, 'approccio € simile. Viene effettuato un conteggio manuale dei
passi, che funge da riferimento per valutare ’accuratezza dei dispositivi; le camminate
vengono svolte in ambienti controllati ed i risultati vengono confrontati. Un approccio
alternativo & quello proposto in [28], che costituisce la base sperimentale di questo
elaborato. In questo studio, viene sviluppata un’architettura di testing automatizzato
per il confronto di diverse applicazioni Android di pedometria tramite emulatore, sia
commerciali sia open-source. In [14] viene inoltre effettuato un confronto tra diversi
algoritmi implementati in un’applicazione Android open-source, con la peculiarita
di utilizzare dati registrati in precedenza per il confronto, piuttosto che camminate

effettuate in tempo reale.

1.2.4 Motivazioni e obiettivi

La ricerca e la validazione di algoritmi per il conteggio dei passi rappresentano
un nodo cruciale nello sviluppo di strumenti di monitoraggio dell’attivita fisica affida-
bili. Le procedure sperimentali tradizionali si basano su sessioni ripetute di cammino
in condizioni controllate. Nonostante ’adozione di protocolli rigorosi, ogni prova resta
soggetta a variazioni intrinseche: differenze nella cadenza, nella lunghezza del passo,
nella posizione del dispositivo o nella stabilita del segnale, che introducono rumore

sperimentale e limitano la capacita di isolare il contributo dell’algoritmo rispetto a

1.2 Stato dell’arte 7

quello della variabilita umana. Inoltre, la raccolta di dati reali € onerosa dal punto di
vista temporale e logistico: per testare efficacemente molte configurazioni, parametri
e versioni di algoritmo servirebbero molteplici ripetizioni per ciascuna combinazione,
con costi sperimentali rapidamente insostenibili. Per affrontare queste limitazioni,
il lavoro qui presentato propone e adotta un meccanismo di sensor injection: una
pipeline che registra tracce grezze dei sensori (accelerometro, giroscopio, magne-
tometro e timestamp associati) durante camminate reali e consente di riprodurle
su emulatori Android. Questo approccio trasforma sequenze di movimento reali
in dataset riutilizzabili, somministrabili a molteplici implementazioni di algoritmi
di individuazione dei passi. Riprodurre lo stesso segnale consente di confrontare
algoritmi sulla base di uno stesso input di riferimento, eliminando la componente di
variazione dovuta alla ripetizione delle prove dal vivo e permettendo di attribuire
con maggiore certezza le differenze di output alle scelte progettuali degli algoritmi

stessi. Gli obiettivi principali dell’approccio sono tre:

1. aumentare il rigore metodologico dei confronti: usando dati identici per ogni
test, si migliora la validita interna degli esperimenti e si riduce il rischio che le

conclusioni vengano contaminate da differenze nelle esecuzioni;

2. ampliare la scalabilita sperimentale: l’automazione della riproduzione dei
segnali permette di eseguire rapidamente grandi batterie di test senza la

necessita di riunire soggetti o ripetere camminate reali ogni volta;

3. favorire la riproducibilita: i dataset registrati possono essere documentati, ver-
sionati e condivisi, offrendo alla comunita la possibilita di replicare valutazioni

e confronti con i medesimi input originali.

Implementando questo metodo 1’obiettivo ¢ quindi accelerare e rendere piu
rigorose le valutazioni comparative degli algoritmi contapassi, ridurre il carico spe-
rimentale e aumentare la solidita delle conclusioni ottenute, contribuendo cosi allo

sviluppo di soluzioni piu accurate e affidabili per il monitoraggio dell’attivita fisica.

Capitolo 2
Architettura del progetto

In questo capitolo viene presentata l'architettura generale del sistema svilup-
pato, descrivendone i principali componenti e le loro interazioni ad un livello alto
di astrazione. L’obiettivo e fornire una visione d’insieme dell’ecosistema sperimen-
tale realizzato per l'analisi e la validazione di algoritmi di rilevamento dei passi
pedonali, rimandando ai capitoli successivi la trattazione dettagliata delle singole
implementazioni. L’infrastruttura complessiva ¢ articolata in tre moduli principali,
che cooperano tra loro per consentire la raccolta, la riproduzione e I'analisi dei dati

sensoristici:

1. Applicazione Android StepLab, che integra diversi algoritmi di conteggio

dei passi;

2. Applicazione Android MotionTracker, utilizzata per registrare i segnali
grezzi provenienti dai sensori durante camminate reali e salvarli online per la

successiva elaborazione;

3. Iniezione dei dati, che consente di riprodurre negli emulatori Android i
tracciati registrati, simulando in modo controllato le camminate e permettendo

di confrontare le prestazioni di diverse applicazioni di pedometria.

Ciascun modulo svolge un ruolo distinto ma complementare, contribuendo alla
creazione di un ambiente sperimentale riproducibile per lo studio comparativo de-
gli algoritmi di step detection. Nei paragrafi successivi verra descritto come tali

componenti si integrano e quali tecnologie ne supportano il funzionamento.

2.1 Panoramica dell’architettura 9

2.1 Panoramica dell’architettura

Nel sistema concepito, ogni modulo interagisce con gli altri in maniera com-
plementare per realizzare un flusso di lavoro coerente. Il punto di partenza e
I’applicazione MotionTracker, che viene eseguita su dispositivi reali per registrare
i dati grezzi dei sensori durante camminate effettuate da volontari. Questi hanno
installato ’app sul proprio smartphone personale oppure, nel caso non fossero in
possesso di un dispositivo Android, viene fornito loro uno smartphone dedicato.
I dati raccolti vengono salvati su uno spazio di archiviazione online, accessibile
successivamente per ’elaborazione. Le sessioni di registrazione sono state condotte
su camminate reali in ambienti esterni (parchi, strade cittadine), seguendo un pro-
tocollo controllato per garantire l'uniformita dei dati raccolti. Ogni registrazione
corrisponde a una camminata di 50 passi, conteggiati manualmente per fungere da
riferimento. I dati raccolti vengono poi utilizzati nel modulo di Iniezione dei dati,
che consente di riprodurre le tracce registrate. Viene utilizzato un emulatore Android,
parte integrante di Android Studio, che permette di simulare il funzionamento di
un dispositivo reale. Lo script di iniezione carica i dati dallo spazio di archiviazione
online, Firebase Storage, e li invia all’emulatore, che li interpreta come se fossero
stati acquisiti in tempo reale dai sensori. In questo modo, e possibile testare diverse
applicazioni di pedometria in condizioni identiche, utilizzando gli stessi segnali di
input. Tra le applicazioni testate, vi € StepLab. Questa integra diversi algoritmi di
conteggio dei passi, implementati in linguaggio Kotlin, e consente di visualizzare i
risultati in tempo reale. L’applicazione e stata sviluppata appositamente per questo
progetto, con 'obiettivo di confrontare le prestazioni degli algoritmi open-source con
quelle di applicazioni commerciali, utilizzando i dati iniettati dall’emulatore. Nelle
sezioni successive verranno descritti ad alto livello i singoli moduli che compongono

l’architettura.

10 2. Architettura del progetto

O

?

t/ \'\.
Volontario

Esegue camminate
(50 passi)

Livello 1:
Dispositivi reali

MotionTracker _J Raccolta dati reali
(Android) _"_'l tramite sensori MEMS

Upload tracciati
(CSV sensori)

Livello 2:
Storage remoto

Firebase Storage
.__jfﬂe Ccsv sensgr_il__.

N
Sperimentatore

Configura replay

; . Download tracciati
(selezione traccia)

Livello 3:
Ambiente di test

(Appium + Node.js) | | mei dispasitivi virtuali

Modulo di Injection }‘= i | Iniezione controllata j

Replay controllato
(eventi sensori)

Report finale / grafici Emulatore Android (AVD)

Input sensori simulati

App target:
StepLab & altre

Log risultati / metriche

Livello 4:
Analisi

‘ Analisi dei risultati }<[

_J Fase di validazione
_'| e confronto delle app

Figura 2.1: Architettura del sistema: diagramma dei componenti e flusso dei dati.

2.2 Contributi 11

2.2 Contributi

L’applicazione Android StepLab nasce prendendo come riferimento le imple-
mentazioni in Java presentate in [13, 19|, utilizzate esclusivamente come base di
requisiti e catalogo degli algoritmi da considerare. La versione qui presentata ¢ stata
riscritta da zero in Kotlin e mantenendo le caratteristiche comuni e non funzionali dei
lavori precedenti, ma con un’implementazione nuova e indipendente, introducendo
correzioni, migliorie e funzionalita aggiuntive specifiche per questo progetto. Per
quanto riguarda gli algoritmi, StepLab implementa tutte le famiglie considerate
in [13, 19|, introducendo modifiche e ottimizzazioni ove necessario. In particolare,
invece dell’algoritmo denominato “autocorrelazione” in [19] (implementato in Matlab
e non integrato nell’app), StepLab integra I’algoritmo di autocorrelazione descritto in
[21]. Per quanto riguarda l'applicazione MotionTracker, al momento dell’inizio del
progetto era gia disponibile in [5]. Tuttavia, sono state apportate alcune modifiche
per adattarla alle esigenze specifiche di questo lavoro, come I'integrazione con Firebase
Storage utilizzato per la memorizzazione dei dati e I'ottimizzazione delle funzionalita
di registrazione per garantire la coerenza e l'affidabilita dei dati raccolti, oltre a

correzioni di bug che non permettevano un corretto funzionamento dell’applicazione.

2.3 StepLab

StepLab & un’applicazione Android completa per sperimentare e valutare
algoritmi di rilevamento dei passi pedonali. Consente di registrare dati dei sensori,
eseguire il rilevamento in tempo reale con algoritmi e opzioni di filtraggio configurabili
e confrontare le prestazioni di diverse configurazioni su test registrati in precedenza.
L’applicazione é pensata principalmente per la ricerca e la didattica, permettendo il

confronto tra diversi tipi di configurazioni e visualizzando 'output di queste.

2.3.1 Ruolo nel sistema

Nel contesto dell’architettura complessiva di questo progetto, StepLab svolge

una duplice funzione:

1. Implementazione e confronto di algoritmi open-source: acquisizione di
tracce sensoristiche ed applicazione di algoritmi di step detection che offrono
un’alternativa alle soluzioni commerciali, permettendo il confronto diretto tra

implementazioni open-source e proprietarie;

12 2. Architettura del progetto

2. Strumento di validazione del sistema di iniezione: come sara illustrato
nei capitoli successivi, StepLab offre funzionalita per ’analisi delle registrazioni
di camminate, consentendo di valutare ’accuratezza del sistema di iniezione dei
dati, ovvero verificare le corrispondenze tra i risultati ottenuti con I’architettura

descritta in questo elaborato e quelli che si otterrebbero senza di essa.

2.3.2 Materiali e tecnologie utilizzate

L’applicazione ¢ sviluppata interamente in Kotlin e la build ¢ gestita tramite
Gradle Kotlin DSL, sfruttando un catalogo versioni centralizzato per la gestione

delle dipendenze.

L’interfaccia utente e realizzata con layout XML tradizionali, supportati
da AppCompat e Material Components. Questa scelta, preferita a Jetpack
Compose, assicura maggiore compatibilita con tutte le versioni di Android suppor-
tate e con le librerie preesistenti, mantenendo una netta separazione tra logica e
presentazione e garantendo performance prevedibili nelle sezioni a tempo reale. La
rappresentazione grafica dei dati in tempo reale avviene tramite MPAndroidChart,
una potente libreria open source per grafici interattivi su Android. La persistenza
¢ affidata al framework Room ORM e supporta migrazioni di schema additive,
garantendo 1’evoluzione del database senza perdita di dati utente. L’elaborazione
del segnale utilizza librerie specializzate: JTransforms per la FFT (Fast Fourier
Transformation) necessaria all’algoritmo di autocorrelazione, e iirj per i filtri digitali

IIR (Infinite Impulse Response) di tipo Butterworth.

2.3.3 Architettura interna

L’applicazione e organizzata in quattro package funzionali, ciascuno con una
responsabilita ben definita che contribuisce alla modularita e manutenibilita del

codice:

Package UI Gestisce 'intero livello di presentazione e interazione con 'utente.
Include le schermate per la configurazione degli algoritmi, la registrazione dei test,
I’esecuzione del pedometro in tempo reale e la visualizzazione dei confronti tra
configurazioni. L’interfaccia e realizzata con layout XML tradizionali, garantendo

compatibilita e separazione tra logica e presentazione.

2.4 MotionTracker 13

Package Algorithms Costituisce il nucleo computazionale dell’applicazione. Im-
plementa gli algoritmi di step detection, i filtri digitali per il condizionamento del
segnale e le operazioni matematiche di supporto. Gestisce sia ’elaborazione in tempo

reale che quella batch su tracce registrate.

Package Data Si occupa della persistenza dei dati attraverso il framework Room.
Memorizza i test acquisiti con i relativi metadati (frequenza di campionamento,

durata, passi reali) e gli snapshot delle configurazioni utilizzate nei confronti.

Package Utils Fornisce funzionalita di supporto per la conversione tra formati
(JSON e CSV), permettendo I'import di tracce da fonti esterne e 'export dei dati
registrati per analisi successive. Garantisce la compatibilita con i file generati da
MotionTracker [5].

2.3.4 Principali funzionalita

L’applicazione offre un ambiente per la sperimentazione e la valutazione degli
algoritmi di rilevamento dei passi. Le principali funzionalita possono essere riassunte

come segue:

Raccolta e gestione dei test: acquisizione e archiviazione di tracce sensori-

stiche.

o Configurazione ed esecuzione degli algoritmi: possibilita di selezionare
filtri e strategie di rilevamento, eseguire analisi in tempo reale e visualizzare

graficamente 'andamento dei segnali.

o Confronto e analisi dei risultati: valutazione comparativa delle diverse

configurazioni di algoritmo mediante grafici sovrapposti.

» Interoperabilita: import ed export dei dati in formati standard (JSON, CSV),

garantendo la compatibilita con i tracciati raccolti tramite MotionTracker.

2.4 MotionTracker

MotionTracker [5] & un’applicazione open-source per la registrazione dei dati
di movimento, progettata per funzionare con smartphone Android ma anche con

dispositivi bluetooth.

14 2. Architettura del progetto

2.4.1 Ruolo nel sistema

Nel contesto dell’architettura complessiva di questo progetto, MotionTracker
svolge il ruolo di strumento di acquisizione dati. Viene utilizzata per registrare
i segnali grezzi provenienti dai sensori (in particolare accelerometro, giroscopio e
magnetometro) durante camminate reali. I dati raccolti vengono salvati su Firebase
Storage, accessibile successivamente per la riproduzione tramite il modulo di iniezione
dei dati. In questo modo, MotionTracker fornisce le tracce di movimento necessarie

per testare e confrontare le prestazioni delle diverse applicazioni di pedometria.

2.4.2 Materiali e tecnologie utilizzate

MotionTracker ¢ sviluppata in Kotlin con build system basato su Gradle
Kotlin DSL. L’interfaccia utente adotta Jetpack Compose per la creazione
dichiarativa delle schermate e i Material 3 Components per garantire coerenza
visiva con le linee guida Android moderne. La navigazione tra le schermate ¢ gestita
tramite Navigation Compose, mentre la gestione dello stato dell’interfaccia si
avvale di ViewModel e LiveData. L’iniezione delle dipendenze ¢ affidata a Dagger
Hilt, che permette una configurazione modulare e testabile dei componenti applicativi.
Per la persistenza remota e la sincronizzazione delle tracce registrate, ’applicazione
si integra con i servizi Firebase Storage (archiviazione file) e Firebase Realtime
Database. L’applicazione supporta inoltre la connessione a dispositivi esterni
tramite Bluetooth Low Energy, utilizzando la libreria RxAndroidBle per la
gestione reattiva delle comunicazioni BLE e la libreria proprietaria mdslib per
I'integrazione con sensori Movesense. Questi ultimi sono dispositivi indossabili,
sviluppati da Suunto, progettati appositamente per la rilevazione accurata dei dati
inerziali. Combina nove assi, tre per ogni sensore: accelerometro, giroscopio e
magnetometro. La piattaforma Movesense ¢ programmabile e include un SDK che
consente di personalizzare il comportamento dei sensori e di accedere ai dati registrati

tramite API dedicate.

2.4.3 Architettura interna

L’applicazione ¢ organizzata in package funzionali che separano le diverse

responsabilita:

2.4 MotionTracker 15

Package screen Contiene le schermate dell’interfaccia utente realizzate con Jetpack
Compose. Include i composable per la registrazione dei dati, la gestione del ciclo di
vita della registrazione e i dialoghi di conferma. Integra la logica di navigazione e la

comunicazione con il servizio di monitoraggio in background.

Package sensor Incapsula lo strato di acquisizione dei segnali. Normalizza le

letture hardware e le consegna al resto del sistema.

Package data Realizza il modello dati dell’applicazione, funge da strato di

astrazione tra ’acquisizione e la persistenza.

Package navigation Definisce le destinazioni di navigazione dell’applicazione e

coordina il flusso tra le diverse schermate attraverso Navigation Compose.

Package bluetooth Implementa lo strato di comunicazione con dispositivi ester-
ni tramite Bluetooth dell’applicazione, responsabile della scoperta e gestione dei

dispositivi esterni.

Package di Definisce i moduli di iniezione delle dipendenze utilizzando Dagger
Hilt, fornisce i contesti e i componenti condivisi tra i diversi layer, mantenendo le

dipendenze disaccopiate e riusabili.

2.4.4 Principali funzionalita

Lato utente, 'applicazione offre principalmente funzionalita relative alla regi-

strazione dei dati di movimento:

o Configurazione camminata: mostra un form per inserire i metadati del-
la camminata (eta, altezza, peso, sesso, posizione del dispositivo, tipo di

camminata) prima di iniziare la registrazione.

» Registrazione dati sensoristici: acquisizione in tempo reale dei dati prove-
nienti dai sensori integrati dello smartphone o da dispositivi esterni collegati
via Bluetooth. Mostra un dialog che invita 'utente a effettuare 50 passi e

permette di terminare la registrazione.

e Associazione Bluetooth: connessione a sensori esterni che permettono di

ampliare le possibilita di raccolta informazioni oltre i sensori integrati.

16 2. Architettura del progetto

2.5 Iniezione dei dati

A differenza delle altre componenti del sistema, il modulo di iniezione dei dati
non e un’applicazione Android, ma uno script javascript che viene eseguito su un

computer host per interagire con I’emulatore Android.

2.5.1 Ruolo nel sistema

Il modulo di iniezione dei dati svolge il ruolo cruciale di ponte tra le tracce
registrate con MotionTracker e le applicazioni di pedometria eseguite nell’emulatore
Android (inclusa StepLab). Pertanto, il suo ruolo nell’architettura complessiva ¢

fondamentale per consentire la riproduzione controllata delle camminate registrate.

2.5.2 Materiali e tecnologie utilizzate

Il modulo di iniezione ¢ sviluppato in Node.js e utilizza il framework Appium
con driver UiAutomator2 per comunicare con gli emulatori Android (AVD) tramite
la console sensori. L’automazione e realizzata con la libreria WebdriverIO, che con-
sente di inviare comandi come sensor set acceleration/gyroscope/magnetic-field
per riprodurre fedelmente le tracce raccolte. L’accesso ai file CSV avviene sia in locale
sia da Firebase Storage, grazie al Firebase Admin SDK, mentre dotenv gestisce
la configurazione tramite variabili d’ambiente e csv-parse si occupa del parsing dei
dati. L’ambiente richiede inoltre un’installazione di Android SDK/Emulator, gli

APK delle app target e 'avvio di Appium con i permessi necessari.

2.5.3 Flusso di esecuzione

Lo script di iniezione esegue in modo automatizzato la riproduzione delle tracce
sensoristiche registrate da MotionTracker sugli emulatori Android. Dopo 'avvio, il
sistema consente di selezionare la sorgente dei dati (file locale o Firebase Storage) e
scarica automaticamente i file CSV necessari. Successivamente, se necessario, Appium
e WebdriverlO gestiscono le interazioni con l'interfaccia dell’app target per prepararla
alla ricezione dei dati. Una volta pronta, lo script legge i dati sensoristici dal file
CSV e li invia all’emulatore. La riproduzione avviene in tempo reale, mantenendo la
stessa temporizzazione dei dati originali. Al termine della riproduzione di un file, lo
script interagisce con 'utente. Viene data la possibilita di salvare i risultati ottenuti

dall’applicazione (ad esempio i conteggi dei passi), procedere con la riproduzione

2.5 Iniezione dei dati 17

di un nuovo file oppure terminare il processo. In questo modo & stato possibile

automatizzare (seppur parzialmente) la pipeline di esecuzione dei test.

Modulo Piattaforma Ruolo principale

StepLab Android (Kotlin) Analisi e confronto di algoritmi di step
detection

MotionTracker ~ Android (Kotlin) Registrazione dei dati sensoristici e sal-

vataggio su Firebase

Iniezione dati Node.js / Appium Riproduzione controllata delle tracce su

emulatore

Tabella 2.1: Sintesi dei moduli software del sistema

Capitolo 3
Implementazione di StepLab

In questo capitolo viene presentata l'implementazione dettagliata dell’applica-
zione Android StepLab, descritta ad alto livello nel Capitolo 2, e resa disponibile
open source in [6]. Vengono illustrati i componenti software, le logiche operative,
i flussi applicativi e le principali scelte progettuali adottate durante lo sviluppo.
L’applicazione e organizzata in quattro package principali, come gia introdotto nel

Capitolo 2. In questa sezione se ne approfondisce la struttura interna.

3.1 UI

Questo package gestisce 'interfaccia utente e l'interazione con I'utente. Con-
tiene le activity e i fragment per le diverse schermate. Questi sono organizzati in
sottopackage, separati in base alle loro responsabilita in modo da rendere il codice il

piu coeso possibile.

3.1.1 Main

Il package main contiene due classi fondamentali per 'avvio e la gestione
dell’applicazione: StepLabApplication e MainActivity.

La prima rappresenta il punto di ingresso dell’intera applicazione. La sua
responsabilita principale e I'inizializzazione e la gestione del database Room.

Nel metodo onCreate(), eseguito una sola volta all’avvio dell’applicazione prima
di qualsiasi activity, viene creata l'istanza del database tests.db utilizzando il

pattern Singleton. Questa scelta architetturale garantisce che:

« il database venga inizializzato una sola volta durante l'intero ciclo di vita

dell’applicazione;

18

3.1 Ul 19

 si evitino istanze multiple e potenziali race condition;

o l'accesso al database sia disponibile da qualsiasi punto dell’applicazione tramite

StepLabApplication.database.

Durante 'inizializzazione vengono registrate le migrazioni del database, per-
mettendo ’evoluzione dello schema senza perdita di dati utente. Questa architettura
separa la logica di inizializzazione globale dalla logica Ul delle activity, migliorando
la manutenibilita e la testabilita del codice.

La MainActivity funge da hub centrale dell’applicazione. All’avvio, verifica
in una coroutine su thread 10 se esistono dati salvati, abilitando o disabilitando
di conseguenza le funzioni che ne dipendono (confronto, export e visualizzazione
salvataggi).

La navigazione ¢ implementata tramite intent espliciti verso le seguenti scher-

mate:
e contapassi live;
e registrazione di un nuovo test;
o confronto configurazioni;
e export dei dati;
« visualizzazione dei salvataggi di confronti.

La funzionalita piu articolata presente in questa activity & I’import di file esterni.
Non dispone di una schermata dedicata, ma viene avviata tramite un pulsante nella

MainActivity. Il flusso operativo e il seguente:

1. Viene lanciato un ActivityResultLauncher che apre il file picker Android,
utilizzando il contratto GetMultipleContents() per permettere la selezione

di piu file contemporaneamente.

2. Un dialog non cancellabile tiene informato I'utente sul progresso dell’importa-

zione.

3. Per ogni file selezionato, I'intero contenuto viene letto come stringa e processato

in base al formato:

« se il file ha estensione .csv, il contenuto viene convertito in formato JSON

tramite la classe di utilita CsvToJsonConverter;

20

3. Implementazione di StepLab

« altrimenti, viene tentato direttamente il parsing del contenuto come JSON.

4. Una copia del JSON viene salvata nello storage interno con un timestamp come

nome del file.
5. I metadati del test vengono inseriti nel database Room.

6. Al termine, il dialog mostra il riepilogo dell’importazione con il numero di file

importati con successo ed eventuali errori.

LIVE TESTING

ENTER CONFIGURATION

OFFLINE TESTING

REGISTER NEW TEST

COMPARE CONFIGURATIONS

IMPORT TEST

SEND TEST

SAVED TESTS

Figura 3.1: Schermata principale dell’applicazione StepLab.

3.1 Ul 21

3.1.2 Configuration

La cartella configuration raccoglie i componenti Ul dedicati alla selezione
degli elementi da utilizzare per il conteggio dei passi. Cio comprende la costruzione
della configurazione, ovvero la combinazione di filtri digitali e algoritmi di ricono-
scimento dei passi, e la scelta dei test pre-registrati da analizzare. A causa della
dipendenza con tutti i file presenti in questo package, € stata qui localizzata anche
I’activity dedicata al confronto delle configurazioni.

Andando nello specifico dell’implementazione, un elemento chiave dell’applica-
zione e EnterSettingsFragment, che e il form centralizzato per tradurre le scelte
dell'utente in una configurazione concreta. Viene riutilizzato sia nella schermata di
live testing sia in quella di confronto configurazioni, offrendo un’interfaccia coerente
per la personalizzazione dell’analisi. Viene passato come argomento, dall’activity
che contiene il fragment, un oggetto algorithms.Configuration che rappresenta la
configurazione corrente. Il riferimento e condiviso tra activity e fragment, permetten-
do a quest’ultimo di modificare direttamente 'oggetto in memoria. Al salvataggio,
I’activity puo recuperare la configurazione aggiornata e procedere con ’esecuzione

del pedometro o del confronto. Il fragment supporta due scenari distinti:

o Live testing: disabilita in UI 'autocorrelazione poiché non compatibile e

mostra la frequenza di campionamento alla quale si vogliono registrare i sensori.

o Comparazione offfine: tutti gli algoritmi sono disponibili ma la frequenza

di campionamento non e modificabile, in quanto dipende dal test selezionato.
I tipo di configurazione creata viene identificata in maniera automatica:

« Non real-time se e selezionata almeno un’opzione fra Autocorrelation,

False step detection, Butterworth filter o Time filtering.
e Real-time in tutti gli altri casi.

L’indicatore di modalita viene aggiornato di conseguenza. L’autocorrelazione e
trattata come modalita speciale ed esclusiva: quando selezionata, azzera tutte le
altre scelte; alla deselezione, ripristina immediatamente la configurazione predefinita
standard. Questa modalita segue una pipeline completamente separata, incompatibile
con gli altri algoritmi. Viene dunque utilizzato il pattern Model View Controller,
scelto per la semplicita del caso. Questa struttura e stata creata per permettere il
riutilizzo del fragment in diverse activity e garantire la solidita e la correttezza degli

algoritmi applicati alle varie modalita.

22 3. Implementazione di StepLab

Enter Configuration

Modality

Not Real-Time
Step Recognition Algorithm
Peak Algorithm
Peak + Intersection Algorithm
Time filtering + Peak

Autocorrelation

Filter

O No Filter O Low-Pass Filter

O Rotation O Bagilevi Butterworth
Matrix Algorithm Filter

Additional Algorithms

None

O False Step Recognition

ADD CONFIGURATION START COMPARISON

Figura 3.2: Schermata di configurazione degli algoritmi in StepLab.

Il package contiene anche due activity utilizzate soltanto per la costruzione

della comparazione nel caso in cui si voglia confrontare in modalita non live:

e SelectConfigurationsToCompare funge da contenitore per il fragment di con-
figurazione e gestisce la memorizzazione delle configurazioni create dall’utente.
Dopo aver creato un oggetto Configuration che viene modificato dal frag-
ment, permette tramite un pulsante di aggiungerlo ad una lista interna. Viene
istanziato poi un nuovo fragment con una configurazione vuota per permettere

la creazione di una nuova configurazione. Possono esserne aggiunte fino a sei in

3.1 Ul 23

totale. Al termine, viene avviata ’activity di selezione del test da utilizzare per

il confronto passando come extra nell’intent la lista delle configurazioni create.

o SelectTest ¢ una Activity intermedia che permette all’'utente di selezionare il
test registrato su cui effettuare il confronto delle configurazioni appena create.
Carica i test salvati utilizzando una coroutine su thread IO e li mostra in una
RecyclerView. A tal proposito, viene utilizzato un AdapterForTestCard per
popolare la lista. Al click su un elemento, viene avviata I’activity di confronto

passando come extra nell’intent il test selezionato e la lista delle configurazioni.

ConfigurationsComparison ¢ I’Activity finale del workflow di confronto con-

figurazioni. Nel suo flusso di esecuzione, le prime operazioni che svolge sono:
1. caricare il test dal database cercandolo tramite I'ID passato
2. inizializzare le view e il grafico per la visualizzazione dei dati della libreria [16]

In seguito viene disegnata sul grafico, in rosso e sull’asse delle ordinate, la magnitudi-
ne dell’accelerazione indicata nel test registrato, effettuando un ciclo su tutte le entry
ordinate nel file JSON del test. In questo modo & dunque possibile visualizzare i dati
grezzi registrati dai sensori sul grafico. Il passo successivo che I’ Activity svolge e prepa-
rare la lista delle Clard che saranno inserite per mostrare i risultati delle configurazioni
processate. Viene istanziato un AdapterForConfigurationsCard e viene associato
alla RecyclerView dedicata. Arriva poi la core logic di ConfigurationsComparison.
Esegue un thread in background che si occupa di processare tutte le configurazioni.
Mentre 'operazione ¢ in svolgimento nasconde la RecyclerView e mostra una barra di
progresso. Ad ogni configurazione viene assegnato un colore e ognuna di queste viene
incapsulata in un’istanza della classe interna ConfigurationContext. Quest’ultima
utilizza il pattern GOF Facade per semplificare 1'utilizzo degli algoritmi, delegando
le operazioni da svolgere alla classe StepDetectionProcessor, di cui discuteremo
piu avanti, ed esponendo al resto dell’activity i metodi semplificati. Il flusso subisce

poi una biforcazione:

o utilizza context.processAutocorrelationAlgorithm() se algoritmo di autocorrela-

zione € attivo;
« negli altri casi utilizza context.myOnSensorChanged).

In entrambe le opzioni, viene effettuata una delega al processore che restituisce i

passi individuati. La scelta di dividere il flusso in un blocco condizionale ¢ dovuta

24 3. Implementazione di StepLab

dal fatto che, come accennato in precedenza, ’algoritmo di autocorrelazione segue
una pipeline separata ed e stato dunque necessario separarlo da tutte le altre opzioni.
Nel primo caso viene passato il file JSON completo del test al processore, mentre nel
secondo caso vengono simulati i sensori passando i valori letti dal file uno ad uno.
Una volta che le configurazioni sono state processate, viene aggiornata l'interfaccia
utente. Per ogni configurazione processata, sul grafico vengono disegnati e collegati
con una linea i punti in cui i passi sono stati rilevati. Infine la RecyclerView viene
resa visibile e vengono aggiunte le Cards che indicano la configurazione processata
ed il relativo colore sul grafico. Il disegno dei punti e linee sul grafico avviene
aggiungendo a questo degli oggetti di tipo Entry, specifici della libreria [16]. Per la
magnitudine grezza, vengono creati dinamicamente per ogni campione del file JSON,
mentre per i passi rilevanti vengono creati e memorizzati dal processore algoritmico
centrale e recupearti dal contesto di configurazione. Un’ulteriore funzionalita resa
disponibile in ConfigurationsComparison e il salvataggio della comparazione che
si sta visualizzando. Viene richiesto un nome univoco tramite un dialog, dopodiche
su una coroutine serializza le configurazioni e le memorizza nella entity dedicata nel

database.

3.1 Ul 25

B Magnitude of Acceleration B 1 2 W 3

Modality: Not Real-Time

Step Recognition Algorithm: Peak Algorithm
Filter: Butterworth Filter

Cutoff Frequency: Dynamic (Adaptive)

Modality: Not Real-Time

Step Recognition Algorithm: Autocorrelation
Algorithm

Filter: Butterworth Band Pass Filter

Modality: Real-Time

Step Recognition Algorithm: Peak +
Intersection Algorithm

Filter: Low-Pass Filter

Cutoff Frequency: 10 Hz

START NEW SELECT SAVE
COMPARISON ANOTHER TEST

Figura 3.3: Schermata di confronto delle configurazioni in StepLab.

3.1.3 Test

Questo sottopackage contiene i componenti Ul dedicati alla registrazione dei
test ed alla gestione di questi. Qui viene definita anche la schermata per la visua-
lizzazione live del pedometro, 'activity LiveTesting. Questa utilizza il fragment
di configurazione descritto in precedenza per permettere la selezione degli algo-
ritmi. La creazione della configurazione avviene nello stesso modo descritto per
la modalita non live. Tuttavia, viene esposto all’'utente soltanto un pulsante per

avviare il pedometro che, quando premuto, sostituisce il fragment corrente con un

26 3. Implementazione di StepLab

PedometerRunningFragment che mostra il numero di passi individuati ed un grafico
per la visualizzazione della magnitudo dell’accelerazione. Anche il pulsante viene
sostituito con un pulsante di stop che interrompe il pedometro e ripristina la Ul
precedente. Dunque viene implementato in questa activty una sorta di State Pattern
nella quale lo stato e rappresentato dalla modalita di visualizzazione (configurazione
o pedometro in esecuzione). Il fragment di esecuzione del pedometro si occupa di
registrare i sensori alla frequenza di campionamento specificata dall’'utente e de-
registrarli. Quando rilevano un nuovo campione, delegano al processore algoritmico
centrale la gestione del dato, in maniera analoga alla pipeline di confronto delle
configurazioni. Vengono ritornate varie informazioni, tra cui se e stato rilevato un
passo e se il dato passato € un evento accelerometrico. Se il primo caso ¢ affermativo,
il contatore dei passi viene incrementato e la Ul aggiornata. Se il secondo caso e
affermativo, viene aggiunto un nuovo punto al grafico per la visualizzazione della

magnitudo dell’accelerazione filtrata in base alla configurazione utilizzata.

3.1 Ul 27

M Acceleration - Low Pass Filter

Steps:

Figura 3.4: Schermata di live testing in StepLab.

Un ulteriore funzionalita inclusa in questa cartella ¢ la registrazione di un
nuovo test. Viene utilizzata 'activity NewTest che registra i sensori e aggiorna,
analogamente a cio che succede in live testing, un grafico quando vengono rilevati
eventi accelerometrici. I sensori sono registrati con SENSOR DELAY GAME,
poiche si tratta di un buon compromesso tra consumo energetico, frequenza di
campionamento e fedelta del segnale. Per ogni evento rilevato dai sensori, costruisce
un json object e lo inserisce in una mappa indicizzata da time stamp. I sensori
utilizzati sono 'accelerometro, il magnetometro, il sensore di rotazione e di gravita.

Se l'evento ¢ accelerometrico, viene anche calcolata ed inserita nella mappa anche

28 3. Implementazione di StepLab

la magnitudo dell’accelerazione, utilizzata anche per il disegno del grafico. Quando
si ferma la registrazione, si apre un dialog e vengono richiesti alcuni metadati
opzionali (numero di passi e note aggiuntive) all’'utente. Questo mostra un pulsante
di salvataggio, che quando premuto effettua le operazioni di salvataggio necessarie:
salva il file nello storage interno con un nome basato sul timestamp e crea una

EntityTest con i metadati e I'ID del file salvato e la inserisce nel database Room.

56 4 W92%

How many steps did you count?

0

Additional Notes

SAVE TEST

Figura 3.5: Schermata di registrazione di un nuovo test in StepLab.

Nella cartella corrente sono presenti anche i componenti dedicati all’esportazio-
ne dei test registrati. L’activity SendTest al momento dell’avvio legge il contenuto

del database locale e popola una lista di elementi che rappresentano ciascun test,

3.1 Ul 29

mostrando per ognuno le informazioni principali (numero di passi, note e nome del
file). Cio avviene utilizzando una RecyclerView e un AdapterForSendTestCard per
la gestione degli elementi. L’utente puo selezionare uno o piu test tramite la Recy-
clerView e, con un semplice pulsante, aprire una finestra di dialogo in cui scegliere
il formato di esportazione preferito, JSON o CSV. Una volta confermata la scelta,

I’applicazione recupera i file da esportare. Se il formato scelto ¢ CSV, applica prima

Send Test

imported_test_1753092459205.json
Steps: 20

2025-07-21_14:49:18.txt
Steps: 4

2025-07-22_10:11:26.txt
Steps: 30

test confronto 2

2025-07-23_16:44:32.txt
Steps: 50
1

2025-07-24_09:13:26.txt
Steps: 0
10

2025-07-24_10:01:51.txt
Steps: 0

2025-07-24_16:02:38.txt

Figura 3.6: Schermata di esportazione dei test in StepLab.

una conversione tramite la classe JsonToCsvConverter, in quanto i test utilizzabili
dall’applicazione vengono sempre salvati in JSON e percio quando recuperati possie-

dono questo formato. Infine, utilizza FileProvider per generare gli URI e raccgolierli

30 3. Implementazione di StepLab

in un lista, poi utilizza un Intent implicito di tipo ACTION_SEND_ MULTIPLE per inviare
i file.

L’ultima funzionalita presente in questa sezione ¢ la visualizzazione dei salva-
taggi delle comparazioni effettuate. L’activity SavedTests ¢ la schermata principale
per la visualizzazione dei test salvati. Carica ’elenco delle comparazioni salvate,
ognuna contiene il nome assegnato, la data di creazione e le configurazioni utilizzate

durante I’esperimento.

Saved Tests

Test 3
20/10/2025 16:34

Test: 2025-10-20_10:46:55.json
Configurations:

Peak Only Algorithm

Mode: Non Real-time, Filter: Butterworth

Autocorrelation Algorithm
Mode: Non Real-time, Filter: Butterworth band-pass

Peak + Intersection Algorithm
Mode: Real-time, Filter: Low-pass (10Hz)

Test 2
20/10/202516:34

Test 1
20/10/2025 16:34

Figura 3.7: Schermata di visualizzazione dei salvataggi in StepLab.

I dati vengono quindi mostrati in una lista interattiva, tramite RecyclerView.

Utilizza un SavedTestsAdapter per popolare la lista che nasconde pero le confi-

3.2 Algoritmi e building blocks del rilevamento passi 31

gurazioni utilizzate. Queste diventano visibili quando 'utente espande la scheda
del test, permettendo di esplorare i dettagli. A tal proposito, ogni card della lista
quando espansa, annida dentro di se una seconda RecyclerView, popolata da un
SavedConfigurationAdapter che mostra le singole configurazioni utilizzate nel test
salvato. L’utente puo interagire con ogni scheda in due modi principali: toccando la
scheda stessa per aprire il test in modalita di sola visualizzazione, avviando I’ activity
di confronto configurazioni con i dati del test selezionato, oppure premendo 1’icona
di eliminazione per rimuovere il test. Questa architettura e stata scelta in modo da
permettere all’applicazione di offrire una memoria storica strutturata delle prove

effettuate e mantenere la tracciabilita delle esperienze di test.

3.2 Algoritmi e building blocks del rilevamento

passi

Prima di presentare I'implementazione degli algoritmi nel codice, ¢ utile fornire
una tassonomia dei principali blocchi che compongono la pipeline di rilevamento
passi. Ogni configurazione creabile nell’applicazione ¢ composta da una serie di
moduli che operano in sequenza per elaborare i dati grezzi provenienti dai sensori,

questi vengono di seguito descritti.

3.2.1 Filtri

I filtri digitali sono componenti essenziali per la pulizia del segnale prima
dell’analisi. Rimuovono il rumore e permettono di isolare le caratteristiche rilevanti
per il riconoscimento dei passi, rappresentando di fatto il primo passo per il conteggio.

Di seguito vengono spiegati i filtri implementati nell’applicazione.

Filtro passa-basso

Il filtro passa-basso implementato € un filtro digitale applicato separatamente
ai tre assi dell’accelerometro. Il suo obiettivo ¢ attenuare le componenti ad alta
frequenza del segnale, tipicamente dovute al rumore dei sensori e alle oscillazioni
rapide del dispositivo che non sono correlate al passo. Il filtro e definito dalla seguente

equazione ricorsiva:

Yr = Y1 + (T — Y1),

32 3. Implementazione di StepLab

dove z; & il valore grezzo del sensore, y; & il valore filtrato e « € (0,1) & un
coefficiente che controlla la reattivita del filtro. Valori piccoli di a rendono il filtraggio
piu aggressivo, mentre valori piu grandi avvicinano il filtro al segnale originale. Il
valore 1,1 rappresenta lo stato interno del filtro, ovvero I'ultimo valore filtrato, che
viene aggiornato ad ogni nuovo campione. Il parametro a e calcolato in funzione
della frequenza di campionamento f, e della frequenza di taglio f. desiderata, secondo

la formula:

At
“T ROt A

dove At = 1/f; ¢ il periodo di campionamento e RC' = 1/(2~ f.) rappresenta
la costante di tempo del filtro, che indica quanto rapidamente il filtro risponde
ai cambiamenti del segnale. Una frequenza di taglio alta corrisponde a un valore
RC piccolo, rendendo il filtro piu reattivo; viceversa, una frequenza di taglio bassa
produce un valore RC piu grande, rallentando la risposta del filtro. Il valore di
« viene inoltre limitato nell’intervallo [0, 1] per garantire la stabilitd numerica del
filtro. La frequenza di taglio f. rappresenta la frequenza oltre la quale il filtro
inizia ad attenuare significativamente le componenti del segnale. La scelta di questo
parametro ha un impatto determinante sul comportamento del filtro: piu e alta,
minore sara ’attenuamento e piu il segnale filtrato rimarra vicino a quello originale.
Viceversa, frequenze di taglio basse comportano un filtraggio piu aggressivo, che

rimuove efficacemente il rumore ma puo anche attenuare i picchi associati ai passi.

Matrice di rotazione

Questo filtro non agisce sul segnale tramite attenuazione selettiva delle frequenze,
ma tramite una trasformazione di coordinate. Il suo obiettivo e rendere il segnale
dell’accelerometro invariabile rispetto all’orientamento del dispositivo, in modo da
stabilizzare il riconoscimento dei passi. 1l filtro utilizza la matrice di rotazione fornita
dall’API SensorManager. Questa stima l’orientamento del dispositivo rispetto al
sistema di riferimento del mondo attraverso la gravita e il nord magnetico. Una volta
calcolata la matrice, il vettore di accelerazione viene trasformato nel sistema mondo

tramite:

o™ = Ra@

dove a@ ¢ il vettore dell’accelerazione nel sistema del dispositivo e a(®) & quello

nel sistema di riferimento globale, mentre R ¢ la matrice di rotazione calcolata. Questo

3.2 Algoritmi e building blocks del rilevamento passi 33

filtro si limita a una trasformazione lineare per campione e risulta particolarmente

utile quando 'orientamento del dispositivo é variabile.

Filtro passa-basso Butterworth

Il filtro Butterworth implementato in StepLab ¢ un filtro digitale di tipo IIR
(Infinite Impulse Response), ovvero un filtro che utilizza non soltanto il campione
di ingresso corrente, ma anche i valori filtrati delle iterazioni precedenti. Questa
caratteristica consente una risposta piu selettiva rispetto al passa-basso semplice, a
costo di dover mantenere uno stato interno che evolve nel tempo. Il filtro e applicato
separatamente ai tre assi dell’accelerometro ed e configurato come passa-basso del

secondo ordine. La forma ricorsiva di un tale filtro ¢:

Yt = boxy + b1y—1 + boxy_o — a1y—1 — Q2yi—o2,

dove i coefficienti b; controllano il contributo dei nuovi campioni mentre i
coefficienti a; rappresentano l'influenza delle uscite precedenti. Tali coefficienti sono
calcolati a partire dalla frequenza di taglio f. e dalla frequenza di campionamento fi,
ma in StepLab non vengono calcolati manualmente, si appoggia invece alla libreria
open source [17]. Un aspetto distintivo di questa implementazione ¢ la frequenza di
taglio dinamica. L’applicazione parte da un valore iniziale di 3 Hz, ma puo modificarlo
automaticamente durante I’elaborazione in risposta al comportamento del segnale.

La regolazione tiene conto di:
o variazioni della magnitudine tra passi consecutivi,
« differenze temporali tra le durate dei passi,
o frequenza di campionamento stimata dinamicamente.

Se tali indicatori suggeriscono un andamento anomalo, la frequenza di taglio viene
adattata entro un intervallo sicuro [2Hz, fs/3]. Questo comportamento rende il
filtro piu robusto ma richiede una situazione di campionamento relativamente stabile,
poiché l'adattamento continuo dipende dalla memoria interna del filtro e dalla

coerenza del segnale in ingresso.

Filtro passa-banda Butterworth

Questo filtro non viene reso disponibile direttamente nell’applicazione, ma viene

implementato unicamente per supportare l'algoritmo di autocorrelazione. Quando

34 3. Implementazione di StepLab

quest’ultimo & utilizzato, viene applicato il filtro descritto in questa sezione. A
differenza del filtro passa-basso, che attenua solo le frequenze alte, il filtro passa-
banda Butterworth isola un intervallo specifico di frequenze, attenuando sia le
componenti troppo basse che quelle troppo alte. 1l filtro e configurato specificando

due parametri di frequenza:

e frequenza inferiore fiow: limite inferiore della banda passante, al di sotto del

quale il segnale viene attenuato;

o frequenza superiore fyign: limite superiore della banda passante, al di sopra del

quale il segnale viene attenuato.

La banda passante Af = fyigh — fiow determina I'ampiezza dell’intervallo di frequenze
conservato, mentre la frequenza centrale f. = (frow + i high)/ 2 indica il punto medio
della banda. Matematicamente, il filtro & descritto da un’equazione ricorsiva simile a
quella del passa-basso, ma con coefficienti che dipendono da entrambe le frequenze

di taglio:

Yy = bol’t + blxt—l + -+ bnxt—n —A1Yi—1 — - — QplYt—n,

dove l'ordine n del filtro (in questo caso 6) determina la selettivita della risposta
in frequenza. Il filtro viene applicato al segnale di magnitudine dell’accelerazione
producendo un segnale che enfatizza le oscillazioni periodiche tipiche del cammino,
facilitando cosi I'analisi di autocorrelazione per il riconoscimento dei passi. Anche

questo filtro si appoggia alla libreria [17] per I'implementazione dei coefficienti.

Filtro Bagilevi

Il filtro Bagilevi non ¢ un filtro digitale nel senso tradizionale, ma una trasfor-
mazione euristica applicata ai tre assi del magnetometro. Il suo scopo e produrre un
segnale scalare piu stabile e pit sensibile alle variazioni utili per il riconoscimento dei
picchi. I filtro sfrutta il valore massimo atteso del campo magnetico terrestre B
(fornito dalla costante di sistema MAGNETIC_FIELD_EARTH_MAX) e combina i tre assi

del magnetometro secondo la seguente formula:

y=- Z 4 - (Bmax — m;).

3 i::r)yrz
Questa operazione amplifica le deviazioni del segnale rispetto al valore teorico

del campo geomagnetico e ne calcola la media sui tre assi, riducendo l'effetto di

3.2 Algoritmi e building blocks del rilevamento passi 35

anomalie localizzate su un singolo asse. Il filtro Bagilevi fa parte di una pipeline
dedicata: quando selezionato, attiva un algoritmo di riconoscimento specifico che

sostituisce quello standard per l'individuazione dei picchi.

3.2.2 Strategie di rilevamento passi

Il secondo blocco fondamentale della pipeline di conteggio dei passi e rap-
presentato dalle strategie di rilevamento. Questi algoritmi analizzano il segnale
pre-elaborato dai filtri per identificare i momenti in cui I'utente compie un passo. Di

seguito vengono descritte le strategie implementate.

Rilevamento dei picchi

Questa strategia identifica i passi analizzando 'andamento del segnale filtrato.
L’algoritmo rileva un picco quando la magnitudine dell’accelerazione smette di
crescere (my < my_; dopo una fase crescente), mentre una valle viene rilevata quando
il segnale smette di decrescere dopo un picco. Durante I’'esecuzione vengono mantenuti
il massimo locale M.y, il minimo locale M, e i relativi timestamp. Una volta

identificata una coppia picco-valle, si calcola la differenza
Aext — |Mmax - Mmin‘-

Per ridurre i falsi positivi, 1'algoritmo rileva un nuovo passo solo se le condizioni

seguenti sono soddisfatte:
« il massimo locale supera un valore minimo fisso (10.5m/s?);

o la differenza tra gli estremi supera una soglia dinamica ridotta:

3
Aoyt > = 0.

La soglia 6 viene aggiornata secondo una media mobile pesata:

n en + Aext

Opi1 =
1 n—+1

)

che rende l'algoritmo adattativo all’intensita del movimento dell’'utente. Questo
metodo ¢ leggero dal punto di vista computazionale e funziona bene quando il segnale

presenta picchi regolari e ben separati.

36 3. Implementazione di StepLab

Rilevamento dei picchi con filtraggio temporale

Questa strategia estende il rilevamento dei picchi introducendo vincoli temporali
adattativi, in modo da migliorare la robustezza in presenza di oscillazioni irregolari
o rumore. L’algoritmo mantiene due serie distinte di timestamp: una per i picchi
(massimi locali) e una per le valli (minimi locali). Per ciascun tipo di estremo vengono
conservati i due timestamp piu recenti, T,,_1 e T}, o, utilizzati per definire soglie
temporali che verificano la regolarita della cadenza. Per ogni coppia di estremi dello
stesso tipo vengono calcolate due soglie:

e soglia di inizio
0s =0.35|T,—1 — Thsl,

che verifica la coerenza dell’intervallo corrente con quelli precedenti;

o soglia di fine
eE = 0.20 (tcurr - Tn—l)y

che richiede un’adeguata separazione temporale tra candidati successivi.

Richiede dunque almeno due cicli precedenti per attivare la logica. Quando un nuovo
estremo candidato viene rilevato, I'algoritmo verifica che I'intervallo corrente § =
teurr — Tp—1 rispetti & > #g. Se un secondo candidato appare prima del completamento
del ciclo, viene accettato solo se soddisfa d,e = 0. Un passo viene confermato solo
al termine di un’intera sequenza picco-valle che rispetta i vincoli temporali. Questo

permette di filtrare oscillazioni che non seguono la cadenza naturale del cammino.

Rilevamento tramite intersezione con 1’asse

Questa strategia non sostituisce il rilevamento dei picchi, ma ne costituisce
una verifica aggiuntiva. Il normale algoritmo picco-valle individua un massimo
locale T},.¢ € un minimo locale T,.;,, questi valori definiscono un ciclo candidato al
riconoscimento del passo. Parallelamente, questo algoritmo registra il timestamp
dell'ultimo attraversamento del segnale rispetto all’asse di riferimento, ovvero il

momento in cui la magnitudine cambia segno. Tale istante viene memorizzato come
Teross = lastXAxisIntersectionTime.

Il passo viene confermato solo se l'intersezione avviene all’interno del ciclo
picco-valle. In altre parole, 'algoritmo verifica se I'asse & stato attraversato tra i due
estremi:

Tmax < Tcross < Tmin-

3.2 Algoritmi e building blocks del rilevamento passi 37

Questa condizione funge da guardia aggiuntiva, un passo viene riconosciuto
solo se il ciclo picco-valle attraversa effettivamente ’asse, riducendo i falsi positivi in
tutti quei casi in cui il segnale presenta oscillazioni che non superano lo zero o non

rappresentano un vero movimento ciclico del passo.

Algoritmo Bagilevi

Questa strategia e progettata per funzionare esclusivamente in combinazione
con il filtro Bagilevi e sostituisce il rilevamento dei picchi standard. A differenza degli
altri metodi, che identificano direttamente picchi e valli, questo algoritmo analizza la
variazione direzionale del segnale filtrato per individuare le inversioni di andamento,
che interpretate come estremi locali. L’algoritmo osserva il segno della derivata
discreta:

dir, = sign(m; — my_1),

dove m; é il valore corrente del segnale filtrato. Una variazione del segno indica

un’inversione di pendenza:
 da negativa a positiva = minimo locale (valle);
« da positiva a negativa = massimo locale (picco).
Quando viene rilevato un estremo, la magnitudine corrispondente viene salvata come
M in = lastLocalMinAccel, M .x = lastLocalMaxAccel,
, mentre i tempi di rilevamento vengono memorizzati in
Thin = lastStepFirstPhaseTime, Thax = lastStepSecondPhaseTime.

La decisione finale sul riconoscimento di un passo utilizza una logica di coerenza
basata sulla differenza di ampiezza tra gli estremi locali.
At = Mmax,t - Mmin,t

La quantita A; rappresenta ’ampiezza del movimento verticale associato a un
potenziale passo; valori troppo piccoli suggeriscono rumorosita o falsi estremi. Nel

codice, la decisione utilizza tre criteri:

1. Ampiezza minima del movimento:

A; > 10.

38 3. Implementazione di StepLab

2. Coerenza con il ciclo precedente:

At > %At,1 e At,1 > %At

3. Alternanza corretta del tipo di estremo, ovvero, I'algoritmo richiede che il tipo
di estremo corrente (picco/minimo) alterni rispetto al precedente. Cio evita di

contare due picchi o due valli consecutivi come passi distinti.

Solo quando tutte e tre le condizioni sono soddisfatte, il passo viene confermato.
Questo rende l'algoritmo particolarmente adatto a contesti in cui il segnale sia

rumoroso o presenti variazioni irregolari di ampiezza.

Algoritmo di autocorrelazione

L’algoritmo di autocorrelazione rappresenta un approccio diverso rispetto ai
metodi basati sui picchi. Invece di analizzare il segnale campione per campione, esso
considera porzioni piu ampie del segnale e ne studia la periodicita, che nel cammino

umano tende ad essere costante. Dal vettore tridimensionale dell’accelerazione viene

my = \/x%+y7f2+zt2-

Per stabilizzare 'analisi viene rimossa la componente continua (media del segnale):

calcolata la magnitudine:

1 N
/
mt:mt——g m;.
N =

Se la frequenza di campionamento € molto elevata, il segnale viene decimato verso
50-60 Hz per ridurre la complessita computazionale senza perdere informazioni utili
alla camminata. Per determinare la frequenza caratteristica del passo (fp), il segnale
viene trasformato nel dominio della frequenza tramite FFT (Fast Fourier Transform).
La ricerca del picco viene limitata al range plausibile per 'andatura umana (1-3.5 Hz).
Utilizzando la stima di fj, il segnale viene filtrato tramite un Butterworth passa-
banda (vedi 3.2.1), cosi da isolare le oscillazioni tipiche del passo ed eliminare sia
movimenti troppo lenti sia vibrazioni ad alta frequenza. Per rilevare gli intervalli in
cui e effettivamente presente la camminata si calcola la deviazione standard mobile
(MSD):

1 < _
MSD; = J — > (v 9>
i=t—w+1
Dove indichiamo con ¥, il segnale filtrato, con y la media del segnale nella finestra

mobile, mentre w indica 'ampiezza della finestra stessa (in numero di campioni). I

3.2 Algoritmi e building blocks del rilevamento passi 39

campioni per cui MSD; supera una soglia dinamica vengono raggruppati in segmenti
continui, successivamente fusi e filtrati in modo da mantenere solo intervalli compa-
tibili con almeno un ciclo completo di camminata. Su ogni segmento valido viene

calcolata 'autocorrelazione normalizzata:

N—k—1
plh) = SR p0) =1
Il primo picco significativo di p(k) fornisce il lag k*, ossia il numero di campioni
corrispondenti a due passi successivi. Il numero di passi stimato nel segmento e
quindi:
§= L.
k*
dove L ¢ la lunghezza del segmento. Poiché la cadenza del cammino non puo variare
arbitrariamente, la stima viene vincolata entro un intervallo coerente con la frequenza

fondamentale globale:

N L L
Smin S S S Smaxu Smin ~ 077, Smax ~13—.
Jo Jo

In sintesi, ’algoritmo di autocorrelazione non cerca picchi locali, ma individua
la periodicita del movimento. Risulta essere molto robusto anche in presenza di
rumore, richiede tuttavia segmenti di camminata sufficientemente lunghi per produrre
stime affidabili.

3.2.3 Algoritmi aggiuntivi

Oltre ai filtri e alle strategie di rilevamento, nella pipeline sono includibili anche
eventuali algoritmi aggiuntivi per manipolare ulteriormente il segnale. Nel caso
di questa implementazione, tra questi rientra soltanto una guardia utilizzata per

riconoscere e scartare i passi falsi.

Algoritmo dei passi falsi

L’idea alla base del metodo € che ogni passo reale produce un andamento
del campo magnetico relativamente stabile da un ciclo all’altro, mentre oscillazioni
casuali generano deviazioni anomale. Ad ogni passo individuato dagli algoritmi
principali viene raccolta la magnitudine del magnetometro per 'intera durata del
passo:

m:(lk)7 mék)7 R 7m7('1,k;)7

40 3. Implementazione di StepLab

, e si calcola la media del passo k:

Per i primi quattro passi rilevati, il sistema costruisce una finestra contenente:
{mh m?a m37 m4}

Prima che la finestra sia piena, il controllo di falsi passi ¢ molto semplice: se la

differenza tra la media corrente e quella immediatamente precedente e eccessiva,
|’ﬁlk — T_nk_1| > 3.6,

il passo viene marcato come falso. Una volta popolata la finestra con quattro valori,
il riconoscimento dei falsi passi utilizza un criterio piu robusto. Siano:
1 1 (&
ms =7 > i, ms = ¢ (Z Mg—i + mk) :
i=1 =1

Il passo corrente viene considerato un falso positivo se:
|my —ms| > 7, T=0.8.

Questa misura confronta la stabilita dei passi precedenti con 'effetto dell’inseri-
mento del nuovo valore: se 'aggiunta della media del passo corrente modifica troppo
la media mobile, il passo ¢ considerato anomalo. Dopo ogni verifica, la finestra dei
quattro passi piu recenti viene aggiornata in modo scorrevole, mantenendo sempre

memoria delle ultime quattro medie valide.

3.3 Algorithms

Questo package contiene la logica centrale dell’applicazione, ovvero I'implemen-
tazione degli algoritmi di step detection e dei filtri digitali. Vengono quindi descritte

le classi necessarie e il loro utilizzo.

3.3.1 Configurazione e dati dei sensori

La classe Configuration ¢ una semplice data class, inizializzata nella parte Ul
e modificata e letta dagli algoritmi durante la pipeline di rilevamento passi, fungendo
da contenitore unico di stato e parametri. Questa e la spina dorsale del contesto:

non solo memorizza i tipi di algoritmi da applicare indicati durante la creazione

3.3 Algorithms 41

da parte dell'utente, ma memorizza anche alcuni valori numerici utilizzati dagli
algoritmi e modificati da questi. Un esempio sono i timestamp dei picchi rilevati
che vengono utilizzati per calibrare il filtraggio temporale. Cio permette a tutta la
pipeline di operare in modo adattivo, coerente e robusto. Un ruolo simile lo svolge
la classe SensorData la quale funge da contenitore dei dati provenienti dai vari
sensori, mantenendo distinti i valori grezzi e quelli filtrati o trasformati durante la
pipeline. Per ogni sensore memorizza il vettore tridimensionale, le versioni filtrate , le
eventuali componenti nel sistema di riferimento del mondo e le relative magnitudini.
Ogni istanza dispone inoltre di un flag di validita per evitare elaborazioni su dati
non inizializzati. Nel processore principale, che sara descritto in questa sezione,
piu oggetti SensorData lavorano in parallelo per separare i diversi flussi di segnale,

garantendo ordine, isolamento dello stato e coerenza tra le varie fasi di elaborazione.

3.3.2 Calcoli ed algoritmi

Gli algoritmi sono incapsulati in diverse classi, ognuna di queste con una propria
responsabilita. Sono “attrezzi” utilizzati dal processore principale per elaborare i
dati. Di seguito si fornisce una panoramica di queste specificando la rispettiva

responsabilita di ognuna:

e Calculations: fornisce un insieme di funzioni matematiche e supporto numeri-
co utilizzate da tutti i moduli della pipeline, ad esempio, contiene il metodo per
calcolare la magnitudine, ampliamente utilizzato dalle altre classi come messo
in evidenza precedentemente. Non si occupa direttamente della classificazione
dei passi ma rappresenta la base numerica sulla quale i moduli di filtraggio e

rilevamento si fondano.

o Filters: incapsula le operazioni di filtraggio del segnale necessarie per eli-
minare rumore prima dell’individuazione del passo. Mantiene diversi tipi di
filtro e gli stati di questi, ove necessario. Inoltre, nella Ul viene rese disponibile
come filtro anche la matrice di rotazione, che effettua una trasformazione
di coordinate per rendere il segnale invariabile rispetto all’orientamento del
dispositivo. Tuttavia, non e presente in questa classe in quanto viene calcolata

direttamente nel processore principale.

o KeyValueRecognition: si occupa dell’analisi dei valori chiave dei segnali dei

sensori, ovvero del riconoscimento dei picchi e delle valli che caratterizzano

42 3. Implementazione di StepLab

il passo umano. Offre anche altre funzioni: espone un algoritmo di riconosci-
mento dei picchi utilizzato solo nel caso in cui si sia prima applicato un filtro
bagilevi e permette di applicare ulteriori correzioni al segnale. Una di filtraggio
temporale sui picchi rilevati e un’altra di filtraggio in base all’attraversamento
dell’accelerazione dello zero. L’individuamento dei valori chiave dipende dai
valori precedentemente rilevati, che vengono memorizzati come stato interno in
un’istanza della classe Configuration ed alla quale questa classe fa riferimento.
In ogni caso, i metodi esposti restituiscono un valore booleano che indica se
il valore passato e un massimo locale. Su cido viene basata poi la logica di

rilevamento del passo.

o StepDetection: rappresenta il nucleo logico della rilevazione dei passi. Imple-
menta diverse strategie di riconoscimento: differenza dei picchi, intersezione
con l'asse delle ascisse, autocorrelazione. Il funzionamento generale e simile a
quello della classe precedentemente illustrata: ogni metodo espone un algoritmo
di rilevamento dei passi che restituisce un valore booleano che indica se il cam-
pione passato corrisponde ad un passo. Anche in questo caso, il riconoscimento
dipende da valori precedentemente rilevati e memorizzati come stato interno

nell’istanza di Configuration.

3.3.3 Processore principale

La classe StepDetectionProcessor funge da facade per orchestrare I'intera
pipeline di elaborazione dei dati sensoristici e I’applicazione degli algoritmi di step
detection, nascondendo la complessita dell’implementazione.

Riceve la dipendenza da Configuration al costruttore, assicurando che tutti
i collaboratori ricevano gli stessi dati e garantendo coerenza nella pipeline di ela-
borazione. A questa classe viene delegato il lavoro che sarebbe altrimenti svolto
direttamente nelle modalita di live testing e confronto configurazioni.

Poiché vi e differenza nel processare dati in live rispetto all’elaborazione in
batch, StepDetectionProcessor presenta una biforcazione principale, definendo due

metodi distinti per le due modalita operative.

ProcessRealTimeSensorData() Questo metodo viene invocato dal Pedometer
RunningFragment ogni volta che arrivano nuovi campioni dai sensori. Riceve in

ingresso il tipo di sensore, il vettore dei valori e il timestamp del campione.

3.3 Algorithms 43

In base al tipo di sensore, distingue tra accelerometro, magnetometro, gravita
e rotazione. Per contenere le allocazioni ed evitare pressione sul Garbage Collector,
utilizza un piccolo pool di array pre-allocati (uno per ciascun sensore gestito) su
cui copia i valori prima di convertirli in BigDecimal: questo approccio riduce
sensibilmente le nuove istanze per secondo rispetto a una conversione naive.

Quando 'evento e accelerometrico, attiva la pipeline:
1. applica il filtro scelto in configurazione;

2. eventualmente esegue la correzione di intersezione se ’algoritmo di riconosci-

mento selezionato lo richiede;
3. convalida i falsi positivi;
4. aggiorna il contapassi.

L’esito viene restituito come un oggetto ProcessingResult, che riporta se ¢
stato rilevato un passo, il valore filtrato utile alla visualizzazione e l'etichetta da

mostrare sul grafico.

ProcessBatchSensorData() Questo metodo ¢ utilizzato durante il confronto di
configurazioni per riprodurre test registrati in precedenza, processando una alla volta
le entry del file JSON.

In ingresso riceve listante (in millisecondi) e 'oggetto JSON dell’evento. Il
parsing € flessibile: puo leggere file che contengono solo accelerometro oppure piu
sensori nello stesso record (diversamente dal live, dove gli eventi arrivono separati).

In questo contesto non real-time privilegia la semplicita: crea i BigDecimal
direttamente dalle stringhe del JSON senza object pooling, scelta accettabile perché
I’elaborazione non deve rispettare vincoli di latenza. La frequenza di campionamento
viene stimata dinamicamente dai timestamp tramite updateFsFromMillis().

Quando ¢ attiva la raccolta per i grafici, aggiunge automaticamente le entry
utili alla visualizzazione finale. Dopo il parsing, la pipeline € la stessa della modalita
live: filtri, riconoscimento e gestione dei falsi passi. Il metodo restituisce un booleano

che indica se in quel frame e stato rilevato un passo.

ProcessAutocorrelationAlgorithm() Vi ¢ inoltre un’ulteriore pipeline dedicata
all’autocorrelazione, che richiede un file completo e non funziona frame-by-frame
come quelle precedenti. Le operazioni qui effettuate sono indipendenti e diverse da

quelle disponibili negli altri due metodi.

44 3. Implementazione di StepLab

Il metodo riceve in ingresso l'intero oggetto JSON contenente tutti gli eventi
registrati. Inizialmente, le chiavi vengono ordinate cronologicamente e per ciascun
evento viene estratta la magnitudine dell’accelerazione, costruendo una lista di
campioni con i relativi timestamp.

La frequenza di campionamento viene stimata analizzando I'intervallo temporale
totale e il numero di campioni disponibili. Successivamente, viene invocato il metodo

countStepsAutocorrelation(), che applica:
o rimozione della componente continua dal segnale;

o filtraggio band-pass Butterworth sulla banda di frequenza identificata come

ottimale per il riconoscimento dei passi;
» segmentazione del segnale e calcolo dell’autocorrelazione su ciascun segmento;
 individuazione dei picchi periodici, che corrispondono ai passi rilevati.

Questa modalita e particolarmente efficace per I’analisi offline di camminate

regolari, dove la periodicita del passo € ben definita.

3.4 Data

Questo package ha la responsabilita di gestire la persistenza locale attraverso
entita Room, DAO e la configurazione del database.

La persistenza utilizza Room con due entita principali: EntityTest memorizza i
test acquisiti, mentre EntitySavedConfigurationComparison conserva gli snapshot
delle configurazioni scelte dall’'utente per confronti ripetibili. Questa separazione
riflette due casi d’uso distinti: i test sono dati di misura, le configurazioni sono
insiemi di parametri. Tutto ¢ esposto tramite un DAO (DatabaseDao) con metodi
suspend: le query sono naturalmente integrabili con le coroutine, evitando blocchi
dell’UI e rendendo evidente che ogni accesso al disco avviene off-main-thread.

Per i test, la scelta architetturale adottata prevede il salvataggio dei dati
sensoristici come file JSON separati nello storage interno, referenziati tramite il
campo fileName nell’entita. Questa soluzione evita di memorizzare grandi payload
direttamente nel database, mantenendo Room snello e performante. I campioni
sono eterogenei e la loro struttura puo evolvere nel tempo: preservare fedelmente
il tracciato completo in file JSON consente di evitare migrazioni frequenti dello

schema solo per aggiungere colonne. Il caricamento dei dati avviene tramite i metodi

3.5 Utils 15

loadTestData() e loadTestValues(), che leggono il file dal filesystem solo quando
necessario all’elaborazione algoritmica.

Il contro di questa scelta e rinunciare a query SQL sui singoli campi dei campioni,
ma qui non servono: ’analisi avviene nella pipeline algoritmica in memoria, non nel
database. Per i metadati effettivamente utili alla Ul (numero passi, note, nome file,
data di registrazione) sono invece presenti colonne dedicate, che rendono snella la
schermata di elenco senza dover aprire i file.

Per i confronti di configurazione (EntitySavedConfigurationComparison) &
stato adottato un modello testa e corpo: alcuni campi atomici (nome, riferimento
al test, timestamp) e un campo configurationsJson che contiene l’elenco delle
configurazioni serializzate. La motivazione ¢ la stabilita: la classe Configuration
evolve con 'algoritmica, e serializzarla in JSON evita di rendere rigido Room con
decine di colonne sensibili a modifiche. Gli snapshot possono essere riaperti su versioni
successive dell’applicazione, e dove un campo nuovo manca, la deserializzazione puo
assegnare un valore predefinito senza compromettere i dati storici.

La serializzazione/deserializzazione ¢ incapsulata in ConfigurationSerializer,
un oggetto stateless che costruisce e ricostruisce Configuration da e verso JSON.

I1 DAO ¢ minimale e leggibile: metodi per ottenere ed eliminare test, cercare
per ID o nome file, e le equivalenti operazioni per i confronti salvati. Per ’evoluzione
dello schema ¢ presente una migrazione esplicita che introduce la tabella dei confronti
senza distruggere dati, testimoniando l'orientamento a migrazioni additive e non
distruttive.

Il database aggrega le due entitd necessarie al dominio. E presente una foreign
key da EntitySavedConfigurationComparison verso EntityTest, la quale garanti-
sce che I'eliminazione di un test rimuova automaticamente anche i confronti associati,
mantenendo la coerenza referenziale.

In sintesi, I’architettura locale privilegia robustezza all’evoluzione e semplicita
operativa: Room per i metadati stabili, file JSON per i payload complessi e le
configurazioni versionabili, DAO sospensivi per threading corretto, migrazioni additive
per non perdere dati. Il risultato ¢ un sottosistema che non intralcia la ricerca

algoritmica, ma la supporta.

3.5 Utils

Il package utils raccoglie le componenti di supporto dedicate alla conver-

sione dei formati dati utilizzati dal sistema. Le classi, CsvToJsonConverter e

46 3. Implementazione di StepLab

JsonToCsvConverter, consentono rispettivamente di importare test esterni in forma-
to CSV e di esportarli nel medesimo formato. Entrambe gestiscono in modo flessibile
diversi schemi di file, riconoscendoli automaticamente tramite analisi dell’intestazione.
L’applicazione e resa compatibile anche con i file CSV registrati tramite I’applicazione
MotionTracker [5], in modo da poter riutilizzarli in StepLab. Vengono convertiti
in un formato conforme allo standard di quest’ultima, consentendo I'importazione

senza perdita di dati e 1'utilizzo in modalita di comparazione.

3.6 Considerazioni sull’implementazione

L’implementazione di StepLab presentata in questo capitolo riflette un approc-
cio ingegneristico orientato alla modularita, alla manutenibilita e all’estensibilita.
L’architettura a package separati consente di isolare le responsabilita: l'interfaccia
utente gestisce la presentazione e l'interazione, gli algoritmi incapsulano la logica
di elaborazione, la persistenza garantisce la conservazione dei dati e le utilita forni-
scono l'interoperabilita con sistemi esterni. Il risultato & un’applicazione funzionale
allo scopo di questo progetto, in linea con quanto descritto riguardo al suo ruolo

nell’architettura generale (Sezione 2.3).

Capitolo 4

Implementazione del sistema di

iniezione del dati

In questo capitolo si illustra I'implementazione del sistema di iniezione dei dati
sensoristici nella sua completezza. Si descrive come avviene la registrazione dei dati,

la loro memorizzazione e lo script di iniezione utilizzato per riprodurli.

4.1 Registrazione e memorizzazione dei dati

Come anticipato nel Capitolo 2, la registrazione dei dati sensoristici avviene
tramite ’applicazione MotionTracker. Per gli esperimenti di questo elaborato non
sono state utilizzate le funzionalita Bluetooth né sensori esterni, ma esclusivamente i
sensori interni del dispositivo Android (accelerometro, giroscopio e magnetometro).
Dal punto di vista implementativo, la responsabilita principale della raccolta dei dati
¢ delegata ad un foreground service, MonitoringService, avviato dalla schermata
principale (HomeScreen). Quando 'utente avvia una nuova registrazione, la Home-
Screen genera (o recupera) un identificativo univoco e un timestamp di sessione, che

vengono passati al servizio insieme ai metadati inseriti dall’utente.

47

48 4. Implementazione del sistema di iniezione dei dati

4 W74%

Motion Tracker 0O A 2\

Altezza in cm

Peso in kg

Sesso

MALE

Posizione del telefono

POCKET

Tipo di attivita
PLAIN_WALKING

Figura 4.1: Schermata principale di MotionTracker.

I sensori sono gestiti tramite la classe astratta AndroidSensor, che incapsula
la logica di interazione con il SensorManager. Nel codice originale, i sensori venivano
campionati con SENSOR_DELAY_NORMAL (~ 5 Hz), producendo tracce molto povere e

non utilizzabili ai fini della tesi: una camminata di 50 passi generava soltanto 150-200

4.1 Registrazione e memorizzazione dei dati 49

campioni complessivi. Tale densita era insufficiente per qualsiasi analisi temporale
e, soprattutto, i tre sensori aggiornando i valori in momenti diversi causavano un
marcato disallineamento temporale tra accelerometro, giroscopio e magnetometro,
rendendo il file incompatibile con il sistema di iniezione. Per risolvere questi problemi,
la frequenza di campionamento e stata aumentata utilizzando SENSOR_DELAY_ GAME,
che porta la frequenza a circa 50 Hz, e la logica di raccolta ¢ stata completamente
ristrutturata. In MonitoringService, ogni listener aggiorna solo 'ultimo valore noto
del rispettivo sensore, memorizzato in variabili condivise. La costruzione del campione
da salvare ¢ demandata a una funzione centrale (checkAndStoreSampleImproved()),
che produce un nuovo record completo (accelerometro + giroscopio + magnetometro)
ogni ~ 20 ms, utilizzando i valori pit recenti disponibili. Questo meccanismo elimina i
problemi di disallineamento e produce tracce con timestamp regolari e densita elevata
(1500-2000 campioni per 50 passi), massimizzando 'utilizzabilita del tracciato. Alla
conclusione della registrazione, MonitoringService scrive i dati raccolti su un file
CSV, che contiene sia i valori sensoristici sia i metadati della sessione. La tabella

seguente mostra l'intestazione del file prodotto:

Colonna Descrizione

Timestamp Millisecondi dal sistema
AccelerometerX/Y/Z Componenti dell’accelerazione (m/s?)
GyroscopeX/Y/Z Velocita angolare (rad/s)
MagnetometerX /Y /Z Componenti del campo magnetico (uT)

Sex Sesso dell'utente

Age Eta

Height Altezza (cm)

Weight Peso (kg)

Position Posizione del telefono durante la registrazione
Activity Tipo di attivita svolta

Tabella 4.1: Intestazione del file CSV generato da MotionTracker.

Il file risultante viene quindi passato a WorkManager, che ne gestisce l'upload
asincrono verso Firebase Storage, collocandolo in una cartella organizzata per data.
11 worker dedicato (SendToFirebaseWorker) utilizza un’API sospensiva per attendere
il completamento effettivo dell’'upload. Nel complesso, le modifiche introdotte hanno

reso i dati registrati effettivamente utilizzabili: la pipeline garantisce una frequenza

50 4. Implementazione del sistema di iniezione dei dati

adeguata alla registrazione di camminate e una corretta sincronizzazione tra sensori,

permettendo I'iniezione descritta nella sezione successiva.

4.2 Iniezione dei dati su emulatore

Lo script per l'iniezione dei dati ¢ stato implementato in modo da poter
interfacciarsi con 'emulatore Android e simulare i sensori interni. Qui i file registrati
con MotionTracker vengono scaricati da Firebase Storage e riprodotti in modo da
simulare una camminata reale, creando una pipeline semi-automatica per la raccolta

dei risultati.

4.2.1 Avvio del sistema
Il prerequisito fondamentale per il corretto funzionamento del sistema e aver

installato le tecnologie necessarie che vengono elencate nella Sezione 2.5.2. Il primo
passo per 1'utilizzo dello script € 'avvio dell’emulatore Android. Per questo progetto,
e stato utilizzato ’emulatore fornito con Android Studio. Si rende poi necessario

avviare il server Appium in modo che resti in ascolto per i comandi da eseguire:

appium --allow-insecure "chromedriver_autodownload:

emulator_console"

Il flag —allow-insecure ¢ necessario per abilitare funzionalita considerate
potenzialmente rischiose da Appium. Nello specifico, emulator_console permette
di accedere alla console dell’emulatore Android per inviare comandi diretti ai sensori
virtuali. Senza questo parametro, Appium bloccherebbe 'accesso alla console per
motivi di sicurezza, impedendo l'iniezione dei dati sensoristici. Questa configurazione
e essenziale per simulare gli eventi dei sensori nell’emulatore durante la riproduzione
delle tracce registrate. Al fine di rendere lo script flessibile e configurabile, & possibile
modificare alcune variabili d’ambiente. Cio modifica il comportamento dell’iniezione
ma soprattutto si rende necessario per installare sull’emulatore le applicazioni coinvol-
te. Infatti, & necessario specificare i percorsi ai file APK di queste, che devono dunque
essere scaricati preventivamente; l'installazione viene poi gestita automaticamente da
Appium. Di seguito sono riportate le tabelle con le variabili d’ambiente disponibili e

1 loro valori di default.

4.2 Iniezione dei dati su emulatore 51

Variabile Descrizione Valore di de-
fault
APPIUM__HOST Host del server Appium 127.0.0.1
APPIUM__PORT Porta del server Appium 4723
APPIUM_BASE_ PATH Path base API Appium /
DEVICE_NAME Nome dispositivo/emulatore Android Emu-
lator
AUTOMATION NAME Motore di automazione UiAutomator2
NEW_COMMAND_TIMEOUT Timeout comandi Appium 600 s
AUTO_GRANT_PERMISSIONS Permessi auto-grant true
NO_RESET Mantiene stato delle app true

Tabella 4.2: Variabili di configurazione del server Appium e dell’emulatore.

Variabile Descrizione Valore di de-
fault

APP FORLANI APK Percorso locale del’APK StepLab -

APP TAYUTAU APK Percorso APK Tayutau -

APP RUN APK Percorso APK Runtastic -

APP ACCUPEDO APK Percorso APK Accupedo -

APP_WALKLOGGER_APK Percorso APK Walklogger -

Tabella 4.3: Percorsi degli APK installati automaticamente sull’emulatore.

Variabile Descrizione Valore di de-
fault
CSV_HAS HEADER I1 CSV contiene 'intestazione true
CSV_TIMES ARE MS Timestamp in millisecondi true
CSV_UNITS Unita accelerometro (ms2/g) ms?2
CSV_GYRO_UNITS Unita giroscopio (rad/s o dps) rad/s
CSV_MAG_UNITS Unita magnetometro pT
(nT/mGauss)
CSV_LAYOUT Ordine colonne del CSV t,ax,ay,...

Tabella 4.4: Variabili di configurazione relative al parsing e normalizzazione dei file
CSV.

52

4. Implementazione del sistema di iniezione dei dati

Variabile

Descrizione

Valore di de-
fault

IMMEDIATE_ START
INJECT GYRO
INJECT_MAG

LOOP_REPEATS
LOOP_GAP_ MS
AXIS _MAP

AXIS SIGN

START AHEAD_MS

Avvio immediato dello streaming
Abilita I'iniezione del giroscopio

Abilita I'iniezione del magnetome-

tro

Ripetizioni del file CSV
Pausa tra le ripetizioni

Rimappatura assi (es. XYZ)

Segno assi (+/-)

Offset iniziale del tempo simulato

true
true

true

1
0 ms
XYZ
+++
0

Tabella 4.5: Parametri che controllano il comportamento dell’injection dei dati

sensoristici.

Variabile

Descrizione

Valore di de-
fault

FORLANI_RECORD_GAP_MS Pausa dopo il salvataggio di un

FORLANI RECORD_LOOP

FORLANI_CLICK_WAIT MS Attesa dopo ogni interazione Ul

test

Ripeti registrazione automatica

1000 ms

false
1200 ms

Tabella 4.6: Variabili di configurazione specifiche per 'automazione dell’app StepLab.

Lo script e stato dunque reso estremamente parametrico in modo da poter

essere adattato a diverse situazioni senza dover modificare il codice sorgente. Una

volta configurate quelle necessarie, si puo procedere con ’esecuzione dello script. Si

rende necessario passare come argomento il nome dell’applicazione da utilizzare, le

opzioni sono:

o forlani per StepLab utilizzando la modalita Live Testing;

o forlani_register per StepLab utilizzando la modalita di registrazione dei

test;
e tayutau per Tayutau;
e run per Runtastic;

e accupedo per Accupedo;

4.2 Iniezione dei dati su emulatore 53

o walklogger per Walklogger.

Nel caso 'applicazione scelta sia StepLab in modalita di Live Testing, viene richiesto
all'utente di specificare anche la configurazione da utilizzare. L’interazione avviene
sempre, in ogni caso di questo script, tramite linea di comando. Le configurazioni

disponibili sono quelle considerate mediamente piu precise, queste sono:

Filtro Butterworth + Rilevamento dei picchi;
o Filtro Butterworth + Rilevamento dei picchi + Filtraggio temporale;

o Filtro passa-basso con frequenza di taglio a 10 Hz + Rilevamento dei picchi +

Filtraggio temporale;

« Filtro passa-basso con frequenza di taglio a 10 Hz + Rilevamento dei picchi +

Intersezione con asse delle ascisse;

 Filtro passa-basso con frequenza di taglio al 2% della frequenza di campiona-

mento + Rilevamento dei picchi.

« Filtro passa-basso con frequenza di taglio al 2% della frequenza di campiona-

mento + Rilevamento dei picchi + Intersezione con asse delle ascisse.

Inoltre ¢ necessario specificare anche che cosa processare. Si pud passare un singolo
file CSV, specificando il percorso, oppure utilizzare il comando firebase per scaricare
automaticamente i file. In questo caso, viene richiesto di scegliere una cartella tra
quelle disponibili su Firebase Storage, le quali contengono i file registrati tramite
MotionTracker. Una volta scelta, i file vengono scaricati in locale e salvati in una
cartella temporanea che sara eliminata al termine dell’esecuzione dello script. Dunque,
lo script puo essere eseguito specificando gli argomenti necessari. Ecco un esempio di

comando per eseguire l'iniezione dei dati sensoristici scaricando i file da Firebase.

node test_injection.js accupedo firebase

4.2.2 Automazione dell’interfaccia utente

In base agli argomenti passati, lo script procede con 'automazione dell’applica-
zione scelta. L’interazione con l'interfaccia utente avviene attraverso tre elementi

principali:

54 4. Implementazione del sistema di iniezione dei dati

o WebdriverlO, che fornisce I’API JavaScript per comunicare con Appium

tramite il protocollo WebDriver e inviare comandi all’emulatore;

o Appium, che funge da ponte tra lo script e il dispositivo virtuale, traducendo

le richieste WebDriver in operazioni concrete sui componenti Android;

e UiAutomator2, il framework nativo di Android utilizzato da Appium per

eseguire le azioni sull’interfaccia.

Una volta selezionata 1’applicazione (e, nel caso di StepLab, anche la configurazione
dell’algoritmo), lo script richiama una funzione dedicata che contiene la sequenza di
interazioni da simulare. Queste operazioni riproducono i gesti dell’'utente, solitamente
tocchi su pulsanti o scorrimenti per raggiungere elementi fuori dallo schermo. Queste
azioni sono normalmente eseguite prima dell’iniezione dei dati, in modo da portare
I’applicazione nello stato appropriato per il test. In alcune applicazioni, Accupedo e
Walklogger, non e necessario alcun intervento manuale perché il conteggio dei passi
inizia automaticamente all’avvio. In altre, come StepLab in modalita di registrazione
dei test, lo script deve eseguire anche azioni dopo l'iniezione, ad esempio premere i
pulsanti per completare e salvare la sessione. Se i file CSV da processare sono piu di
uno, l'intera sequenza di interazioni Ul viene ripetuta automaticamente per ogni file.
In questo modo, al termine della fase di automazione dell’interfaccia I'applicazione
e sempre nello stato corretto per ricevere la traccia sensoristica e procedere con

I'iniezione descritta nella sezione successiva.

4.2.3 Iniezione dei dati sensoristici

Dopo aver portato 'applicazione nello stato desiderato, lo script apre il file
CSV da processare e lo legge riga per riga. Ogni riga rappresenta un campione
sensoristico, contenente i valori dell’accelerometro, del giroscopio e del magnetometro
in un preciso istante di tempo. Per ciascun campione, i valori vengono estratti,
mappati nei rispettivi vettori e normalizzati. La procedura tiene conto del layout
del CSV, di eventuali rimappature degli assi e di inversioni del segno specificate
tramite variabili d’ambiente. Se necessario, i valori vengono anche convertiti nelle
unita attese dai sensori virtuali dell’emulatore. In questo modo lo script rimane
compatibile con file CSV provenienti da diverse sorgenti. L’iniezione non avviene in
modo sequenziale: per simulare fedelmente il comportamento reale del dispositivo, lo
script calcola l'istante esatto in cui ogni campione deve essere inviato, rispettando

gli intervalli temporali originali della registrazione. Se il momento di emissione non

4.2 Iniezione dei dati su emulatore 55

& ancora arrivato, lo script attende; dopodiché invia i valori all’emulatore. L’invio

avviene tramite comandi diretti alla console dell’emulatore Android, come mostrato

di seguito.

if (hasMag) await emuCmd(driver, ’sensor set magnetic-field °’
+ mag[0] + ’:° + mag[1l] + ’:’° + magl[2]);

if (hasAcc) await emuCmd(driver, ’sensor set acceleration ’ +
acc[0] + ?:7 + accl[1] + ’:’ + accl2]);

if (hasGyr) await emuCmd(driver, ’sensor set gyroscope ’ +
gyr[0] + ’:’> + gyr[1] + ’:° + gyr[2]);

Al termine della simulazione, si rende necessaria un’ulteriore interazione con

I'utente, come descritto nella sezione successiva.

4.2.4 Raccolta e salvataggio dei risultati

Terminata l’iniezione dei dati sensoristici contenuti in un file CSV, lo script
apre un prompt su linea di comando che mostra il nome del file appena processato e

le opzioni disponibili per I'utente:

e se viene inserito un numero, questo viene interpretato come il conteggio dei

passi rilevati dall’applicazione;

e se viene premuto r, lo script ripete I'iniezione del file corrente, permettendo di

rivedere i risultati senza riavviare la procedura;

e se viene premuto n, il risultato non viene salvato e lo script passa al file

successivo (o termina se non vi sono altri file);

e se viene premuto s, 'intera procedura viene interrotta immediatamente.

Queste opzioni sono disponibili per tutte le applicazioni, ad eccezione della
modalita forlani_register. In questo caso, al termine dell’iniezione, lo script
completa automaticamente il flusso di salvataggio del test direttamente all’interno
di StepLab. Se 'utente inserisce comunque un numero di passi, lo script accetta il
valore ma segnala che questo non verra salvato nei file CSV locali come avviene negli
altri casi.

Quando l'utente inserisce un numero di passi (nelle modalita diverse da

forlani_register), lo script crea automaticamente, se non esiste, un file CSV

26

4. Implementazione del sistema di iniezione dei dati

dedicato all’applicazione e alla configurazione selezionata. In questo file vengono

salvati il numero di passi inserito insieme a una serie di metadati estratti dal nome

del file CSV originale. Il formato del file prodotto ¢ il seguente:

time-

stamp

csv__file

walking

type

phone

position

age

gen-
der

device

steps

counted

Tabella 4.7: Formato del file CSV per il salvataggio dei risultati.

Il nome del file CSV processato, riportato nella seconda colonna, viene utilizzato
dallo script per riconoscere i file gia analizzati ed evitare duplicazioni nelle esecuzioni
successive. E inoltre presente una diramazione opzionale del flusso principale: se
si utilizza StepLab con la configurazione che combina filtro passa-basso al 2% della
frequenza di campionamento e rilevamento dei picchi, lo script chiede all’'utente se
attivare la modalita di verifica. Se questa viene abilitata, dopo l'inserimento dei
passi rilevati mediante iniezione viene richiesto di inserire anche il numero di passi
stimato tramite la modalita di comparazione offline di StepLab (Capitolo 3). Questa

procedura genera un secondo file CSV di verifica, con il seguente formato:

file

name

steps

live

steps
batch

error

absolute

error

Tabella 4.8: Formato del file CSV di verifica dei risultati.

La modalita di verifica e la registrazione dei test di StepLab permettono un

confronto diretto fra:
o il conteggio ottenuto tramite iniezione (simulazione live),
« il conteggio ottenuto tramite elaborazione offline dello stesso file (batch).

Questo confronto consente di misurare l'accuratezza dell’intero processo di
iniezione e verificare se, e in quale misura, 'architettura introduce errori nella
riproduzione dei dati sensoristici. Nel complesso, la procedura di raccolta dei risultati
completa il ciclo di test, fornendo i dati necessari per le analisi illustrate nei Capitoli

successivi.

4.2 Iniezione dei dati su emulatore

57

Flusso dello script di iniezione sensori

?

‘, Leggi argomenti CLI (app, sorgente)]
h. A

= Sorgente == "firebase"? no

4 ™ 4 ™
Seleziona e scarica CSV | carica CSV locale]
da Firebase Storage e A

o v
. -
sl

e “\‘
| Seleziona configurazione algoritmo |

-

re Y
| Awvia sessione Appium]

CSV da processare?
si

[Esegui automazione Ul ‘|
- g

) v

|r Inietta dati sensoriali (timestamp-paced)]
p. ,,

App == "forlani_register'?
si

e ™
| Completa salvataggio test in StepLab]\
* A

f § A

| Chiedi input utente (passi/r/n/s) |
N y,

—

Input == "s"?>—)<lnput == numero?

gtnp salva

Ve Y
| salvarisuitato in CSV |

T
v

- ~
Chiudi sessione e pulisci file temporanel |

®

Figura 4.2: Riassunto del flusso dello script di iniezione dei dati sensoristici.

-

Capitolo 5
Validazione del sistema

L’obiettivo di questo capitolo ¢ validare il sistema di iniezione dei dati senso-
ristici, ovvero verificare se i dati riprodotti nell’emulatore Android sono fedeli alle
registrazioni originali e, in caso contrario, quantificarne lo scostamento. Per effettuare
tale validazione e stata utilizzata 'applicazione StepLab che, come illustrato nel
Capitolo 3, dispone di una funzionalita dedicata alla comparazione ripetibile di
registrazioni di camminate. Alla fine del Capitolo 4 ¢ stato inoltre descritto come
lo script di iniezione includa specifiche modalita pensate proprio per supportare
questa validazione, automatizzando sia la simulazione dei dati sia la registrazione
dei risultati.

In questo capitolo vengono presentati la metodologia adottata, i risultati

ottenuti e le considerazioni finali.

5.1 Metodologia

Per validare il sistema di iniezione si e deciso di confrontare i conteggi dei passi
ottenuti tramite riproduzione dei dati sensoristici con quelli ottenuti elaborando
direttamente le registrazioni originali, senza passare dallo strato di iniezione. A
questo scopo 'utilizzo di StepLab ¢ imprescindibile: ’applicazione mette infatti
a disposizione sia la modalita [ive, che consente di contare i passi in tempo reale
durante la simulazione, sia la modalita offline, che permette di caricare un file CSV
e analizzarlo direttamente. Questa duplice modalita rende possibile un confronto
rigoroso tra i due processi, isolando 1’eventuale errore introdotto dall’iniezione. Per
il confronto e stata selezionata una specifica configurazione di StepLab, ovvero quella
che combina un filtro passa-basso con frequenza di taglio pari al 2% della frequenza

di campionamento con 'algoritmo di rilevamento dei picchi. Come descritto nel

38

5.2 Risultati della validazione 59

Capitolo 4, si tratta dell’'unica configurazione che include una modalita di verifica
progettata appositamente per registrare i risultati del confronto tra esecuzione live
e analisi offline. Dal punto di vista operativo, il flusso di lavoro seguito per ogni

camminata ¢ stato il seguente:

1. esecuzione della simulazione tramite iniezione dei dati registrati con Motion-

Tracker;

2. visualizzazione manuale, su un dispositivo reale, del conteggio dei passi ottenuto

dalla modalita di comparazione offline di StepLab;

3. registrazione dei due conteggi, quello ottenuto tramite iniezione e quello ottenuto
tramite elaborazione offline, in un file CSV utilizzando le funzionalita dello

script.

Il confronto e stato effettuato sull’intero dataset registrato, per un totale di 360
simulazioni, producendo un file completo di risultati, il cui formato ¢ illustrato
nella Tabella 4.8. Nella sezione successiva vengono analizzati nel dettaglio i risultati

ottenuti.

5.2 Risultati della validazione

Il risultato ideale sarebbe stato 1’assenza totale di errore, ovvero che il conteggio
dei passi ottenuto tramite iniezione coincidesse esattamente con quello calcolato
direttamente sui file originali. L’analisi dei dati ha pero evidenziato un certo scosta-
mento tra i due conteggi. Inoltre, ¢ importante sottolineare che ’errore osservato
¢ relativo alla specifica combinazione di algoritmi utilizzata. Il segno dello scosta-
mento e, seppur in misura non troppo marcata, la sua entita possono variare in base
alla configurazione scelta. I risultati sono dunque da intendersi come una misura
indicativa dell’accuratezza del sistema e non come una misura assoluta valida per

ogni possibile pipeline di rilevamento.

5.2.1 Metriche di valutazione

Per quantificare 'accuratezza del sistema di iniezione sono state utilizzate

diverse metriche statistiche, ciascuna con uno specifico obiettivo interpretativo:

60

5. Validazione del sistema

« MAE (Mean Absolute Error): rappresenta l’errore assoluto medio, calcolato

come

1.
MAE:*ZM—W
ni=

dove y; ¢ il valore reale, ovvero quello che si ottiene senza passare dall’iniezione, e
7; € il valore predetto, il conteggio tramite iniezione. Questa metrica fornisce una
misura della distanza media tra i valori predetti e quelli reali, indipendentemente

dalla direzione dell’errore.

Errore medio con segno (Signed Mean Error): a differenza del MAE,

questa metrica preserva il segno dell’errore:

1 &
SME = = (i — vs)
Nz
Un valore positivo indica una tendenza generale alla sovrastima, mentre un va-
lore negativo indica sottostima. Questa metrica ¢ fondamentale per identificare

bias sistematici nel sistema di conteggio.

Mediana: valore centrale della distribuzione degli errori assoluti. Rispetto
alla media, la mediana ¢ meno sensibile alla presenza di valori estremi (outliers)

e fornisce quindi una misura piu robusta della tendenza centrale.

Outliers: valori anomali identificati mediante il metodo IQR, (Interquartile
Range). Un dato ¢ considerato outlier se cade al di fuori dellintervallo [(Q); —
1.5 - IQR, Q3 + 1.5 - IQR], dove @1 e @3 sono rispettivamente il primo e il
terzo quartile, e IQR = Q)3 — Q). L’identificazione degli outliers permette di

distinguere errori occasionali da quelli sistematici.

Deviazione standard: misura la dispersione degli errori attorno alla loro

media. E definita, per un campione di valori z1, x», ..., z,, come

n—1

s :\l ! z:(xz —)2,

dove = ¢ la media campionaria. Una deviazione standard elevata indica che gli
errori sono molto variabili , alternando sovrastime e sottostime di entita diversa.
Al contrario, una deviazione standard ridotta segnala un comportamento piu

regolare e prevedibile.

5.2 Risultati della validazione 61

5.2.2 Analisi dei risultati

Sul totale delle simulazioni effettuate con la configurazione selezionata di

StepLab, sono stati riscontrati:

193 sovrastime (53,5%);

» 33 sottostime (9,4%);

134 conteggi corretti (37,1%).

L’analisi statistica degli errori ¢ stata condotta distinguendo fra statistiche
totali, per tipologia di camminata e per posizione del dispositivo. La Tabella 5.1

riporta una sintesi delle metriche principali a livello globale.

Metrica Con Outliers Senza Outliers Riduzione (%)
MAE 2.856 2.395 16.1%
SME 2.418 1.943 19.6%
Mediana MAE 2 2 —
Mediana SME 2 1 50.0%
Dev. Std. MAE 3.74 2.67 28.6%
Dev. Std. SME 4.038 3.017 25.3%

Tabella 5.1: Statistiche generali di MAE e SME.

Nella Tabella 5.2 vengono riportate le metriche di errore suddivise per tipologia di
camminata, mentre nella Tabella 5.3 sono mostrate le stesse metriche stratificate per

posizione del dispositivo.

62 5. Validazione del sistema

Tipo MAE SME

DOWNHILL WALKING 3.836 3.018 3.443 2.596

UPHILL_WALKING 3.417 2793 3.283 2.655
BABY_STEPS 3.288 2.895 2.847 2.439
IRREGULAR STEPS 2767 1875 22 1.268
PLAIN_WALKING 2.623 2.623 2.098 2.098
RUNNING 1.2 1.2 0.633 0.633

Tabella 5.2: Metriche di errore per tipologia di camminata (c¢/o = con outliers, s/o

= senza outliers).

Posizione MAE SME

POCKET 4.185 3.092 3.782 2.651
HAND 2478 2333 1.887 1.737
SHOULDER 1.953 1.849 1.622 1.516

Tabella 5.3: Metriche di errore per posizione del dispositivo (c/o = con outliers, s/o

= senza outliers).

Dai risultati emerge che la presenza di outliers incrementa il MAE complessivo,
senza di questo la riduzione ¢ di circa il 16%. L’effetto ¢ ancora piu marcato per il
SME, che diminuisce di quasi il 20%. Le condizioni di camminata in salita e discesa
presentano generalmente gli errori piu elevati, suggerendo che tali movimenti sono
piu difficili da riprodurre fedelmente tramite iniezione. In una situazione simile
si trovano le metriche riguardanti i passi stretti, leggermente inferiori rispetto a
quelle delle camminate in pendenza, ma comunque piu alte rispetto agli altri tipi
di camminata, eccezion fatta per il MAE senza outliers che & piu elevato anche di
quello della camminata in salita. Al contrario, la corsa risulta l'attivita piu stabile,
con un MAE di 1.2 passi e un SME inferiore a 1. Per quanto riguarda la posizione
del dispositivo, la tasca (POCKET) introduce 'errore maggiore, mentre la spalla
(SHOULDER) risulta la posizione piu accurata. Lo SME mostra una tendenza

generale alla sovrastima, confermata dalla presenza di un numero significativamente

5.3 Considerazioni sulla metodologia 63

maggiore di sovrastime rispetto alle sottostime. Nel complesso, 1’errore assoluto
medio rimane comunque contenuto, suggerendo che il sistema di iniezione riesce
a riprodurre in maniera ragionevolmente fedele la dinamica della camminata, pur
introducendo un inevitabile margine di imprecisione. Prima di definire lo scostamento
riportato nelle tabelle di questa sezione, si & prima cercato di identificare la causa
principale degli scostamenti riscontrati e di applicare le correzioni necessarie. Il

lavoro svolto e presentato nella sezione successiva.

5.3 Considerazioni sulla metodologia

Prima di interpretare i risultati ottenuti, ¢ stato necessario indagare se gli
errori osservati provenissero dall’implementazione di StepLab oppure dal meccanismo
stesso di iniezione. Fin dalle prime esecuzioni della validazione e stato osservato un
disallineamento tra i conteggi ottenuti tramite iniezione e quelli derivanti dall’ela-
borazione offline dei file originali. Per individuarne la causa, alcuni test sono stati
eseguiti utilizzando StepLab in modalita di registrazione dei test, in modo da ottenere
nuovamente i tracciati sensoristici dopo la simulazione ed analizzarli direttamente.

Il confronto tra i file registrati tramite iniezione e quelli originali ha confermato
che la discrepanza non era legata alle modalita di conteggio di StepLab, ma al processo
di iniezione stesso: i file post-iniezione risultavano infatti alterati. In particolare, si &
osservata la presenza di righe duplicate o campioni mancanti, oltre a differenze nel
numero totale di record.

L’analisi ha evidenziato che la causa principale risiede nella temporizzazione
dei sensori virtuali dell’emulatore Android. Tali sensori non aggiornano il proprio
valore a ogni comando sensor set, ma secondo una loro frequenza interna di
campionamento, come viene confermato dalla documentazione ufficiale [2]. Se il
comando arriva troppo vicino a una lettura gia programmata, il valore precedente
puo essere letto due volte (determinando la duplicazione), oppure il nuovo valore puo
essere ignorato (determinando la perdita di campioni). Questo effetto ¢ amplificato
dalla latenza intrinseca della console dell’emulatore, che non garantisce capacita
real-time.

Per verificare se il problema fosse mitigabile, sono stati condotti ulteriori
esperimenti modificando le frequenze di registrazione e di iniezione, provando sia
a registrare a frequenze piu elevate sia a iniettare i dati verso sensori configurati a
frequenze inferiori. In nessuno dei due casi si € ottenuto un miglioramento significativo:

anzi, l'iniezione ad alta frequenza ha talvolta aumentato la perdita di campioni.

64 5. Validazione del sistema

Si & dunque concluso che il problema non e imputabile alla latenza dello
script, ma € una limitazione strutturale dell’emulatore Android, che non permette
di controllare né 'istante di acquisizione dei sensori virtuali, né la loro frequenza
effettiva. Di conseguenza, una perfetta fedelta tra registrazione originale e tracciato
iniettato non ¢ tecnicamente ottenibile.

In ogni caso, gli errori introdotti rimangono limitati e non compromettono
la validita della valutazione complessiva. Per questo motivo la validazione e stata
condotta come descritto, accettando un inevitabile margine di imprecisione dovuto a

tale vincolo tecnico.

Capitolo 6
Raccolta dati e risultati

In questo capitolo viene presentato il dataset ottenuto dalla raccolta dati iniziale
e vengono descritti i risultati delle simulazioni condotte utilizzando il sistema di

iniezione illustrato nel Capitolo 4.

6.1 Raccolta dati

La raccolta dati, come anticipato nella sezione 2.1, ¢ stata effettuata tramite
MotionTracker in contesti reali quali parchi pubblici e aree urbane. Ogni sessione ¢
stata supervisionata dallo sperimentatore, che ha fornito indicazioni ai partecipanti
sulle attivita da svolgere. Ogni volontario ha eseguito sei tipologie di camminata,

selezionate per coprire una varieta ampia di condizioni locomotorie:

o Camminata normale

o Corsa

o Camminata a passi stretti

o Camminata a passi irregolari
o Camminata in salita

o« Camminata in discesa

Ogni camminata ¢ stata registrata in tre diverse posizioni del dispositivo,
ovvero in mano, in tasca e in spalla tramite supporto da braccio. In totale sono
stati raccolti 18 tracciati per ciascun partecipante, per un totale di 20 volontari e

360 registrazioni complessive. In alcuni casi e stato necessario riutilizzare lo stesso

65

66 6. Raccolta dati e risultati

dispositivo per partecipanti diversi, qualora non disponessero di uno smartphone

Android compatibile con ’applicazione utilizzata.

Eta Sesso Dispositivo
21 MALE Xiaomi M2003J15SC
22 MALE Xiaomi M2003J15S5C

22 MALE motorola motorola edge 50 fusion

21 MALE motorola motorola edge 50 fusion

22 MALE Xiaomi M2003J155C
22 MALE samsung SM-A505FN
23 MALE samsung SM-A505FN
22 MALE TCL 5030D EEA

18 MALE samsung SM-A346B
19 MALE samsung SM-A346B
18 | FEMALE samsung SM-A346B
57 MALE samsung SM-A326B

23 MALE motorola motorola edge 50 fusion

22 MALE motorola motorola edge 50 fusion

55 FEMALE Xiaomi 2109119DG
53 | FEMALE Xiaomi 2109119DG
22 MALE samsung SM-G770F
22 MALE samsung SM-G770F
21 MALE OPPO CPH2219
23 MALE OPPO CPH2219

Tabella 6.1: Eta, sesso e dispositivo dei partecipanti alle registrazioni.

6.2 Configurazione delle applicazioni

I file registrati sono stati utilizzati per condurre le simulazioni secondo le
modalita descritte nel Capitolo 4. Le applicazioni utilizzate per il conteggio dei passi

sono:
o Tayutau
o Runtastic

e Accupedo

6.3 Risultati delle simulazioni 67

o Walklogger

o StepLab

Le prime quattro sono applicazioni commerciali che consentono unicamente di
regolare la sensibilita del conteggio; per garantire uniformita sperimentale ¢ stata
selezionata la sensibilita intermedia disponibile in ciascuna di esse.

StepLab, invece, ¢ interamente configurabile e permette di combinare filtri,
algoritmi di rilevamento e modalita di elaborazione differenti. Sono state selezionate
sei configurazioni: tre classificate come Real Time e tre come Non Real Time,
seguendo la distinzione adottata in [13] e [19]. Le configurazioni Real Time sono

state selezionate in base alle performance migliori ottenute nello studio [13]:

» Filtro passa-basso 10 Hz + Rilevamento dei picchi 4 Intersezione con asse delle

ascisse

 Filtro passa-basso al 2% della frequenza di campionamento + Rilevamento dei

picchi + Intersezione con asse delle ascisse

 Filtro passa-basso al 2% della frequenza di campionamento + Rilevamento dei

picchi

Le configurazioni Non Real Time sono state scelte effetuando una valutazione

preliminare delle performance e scegliendo le tre piu accurate:

o Filtro Butterworth + Rilevamento dei picchi
o Filtro passa-basso 10 Hz + Rilevamento dei picchi + Filtraggio temporale

o Filtro Butterworth + Rilevamento dei picchi + Filtraggio temporale

I risultati ottenuti vengono presentati nella sezione successiva.

6.3 Risultati delle simulazioni

In questa sezione, vengono analizzate le performance delle applicazioni di
conteggio dei passi. L’analisi viene divisa in due parti, in base alla tipologia di
camminata ed in base alla posizione del telefono durante la registrazione. Viene poi
fornita un’analisi complessiva dei risultati. Le metriche valutate vengono illustrate

nella sezione 5.2.1, con la differenza che in questo caso il valore reale y; rappresenta il

68 6. Raccolta dati e risultati

conteggio dei passi effettuati, quindi 50, il valore predetto y; ¢ il conteggio ottenuto
dall’applicazione o dalla configurazione di StepLab in esame.

Per rappresentare i risultati sono stati utilizzati due tipi di grafici:

1. Box plot. I box plot mostrano la distribuzione completa dei passi contati
dalle diverse applicazioni o configurazioni. Evidenziano la mediana, i quartili e gli
eventuali valori anomali (outliers). Questo tipo di grafico permette di valutare la
stabilita di un algoritmo, di identificare la presenza di valori estremi e di osservare
quanto le misurazioni siano concentrate attorno al valore atteso.

2. Grafici a barre con intervalli di confidenza al 95%. Per ciascuna
applicazione ¢ stato calcolato il valore medio dell’errore assoluto (MAE) e rappresen-
tato tramite un grafico a barre accompagnato da un intervallo di confidenza al 95%.
L’intervallo e stato stimato mediante bootstrap, una tecnica di campionamento che
costruisce una stima dell’incertezza ri-generando numerosi insiemi di dati ottenuti
tramite ricampionamento con rimpiazzamento. Per ogni ricampionamento viene
ricalcolata la media: la distribuzione delle medie cosi ottenuta permette di stimare
direttamente 'intervallo di confidenza, corrispondente ai percentili 2.5% e 97.5% della
distribuzione bootstrap. Le error bars rappresentano quindi 'incertezza statistica
sulla stima del MAE, indicando quanto la media potrebbe variare se I’esperimento
venisse ripetuto piu volte nelle stesse condizioni.

Come anticipato nella sezione 5.2, i risultati devono essere considerati indica-
tivi. Per questo motivo, in questa sezione non vengono applicate correzioni basate
sugli scostamenti osservati nella fase di validazione: I'incertezza complessiva delle

misurazioni viene valutata e comunicata attraverso gli intervalli di confidenza.

6.3.1 Risultati per tipologia di camminata

La tipologia di camminata influenza significativamente le performance dei
pedometri. Illustriamo dunque i risultati ottenuti per ciascuna delle sei tipologie

considerate.

Camminata normale

La camminata normale rappresenta il caso classico per 'analisi delle presta-
zioni dei pedometri, poiché caratterizzata da un’andatura regolare e da un segnale
accelerometrico generalmente favorevole al rilevamento dei passi. La Tabella 6.2
riassume il MAE e lo SME per ciascuna applicazione e configurazione di StepLab,

limitatamente alla camminata normale.

6.3 Risultati delle simulazioni 69

Applicazione / Configurazione MAE SME
Runtastic 9.623 -6.246
Tayutau 5.836 -2.689
WalkLogger 9.525 +1.328
Accupedo 11.590 -1.230
StepLab (Peak 4+ Butterworth) 7.820 -1.131
StepLab (Peak + Intersection + Low-Pass 10Hz) 12.623 -11.377
StepLab (Peak + Intersection + Low-Pass 2%) 30.607 -30.607
StepLab (Peak + Low-Pass 2%) 10.607 -9.230
StepLab (Peak + Time Filter + Low-Pass 10Hz) 14.639 +8.443
StepLab (Time Filter + Peak + Butterworth) 6.475 -2.049

Tabella 6.2: Metriche di accuratezza per la camminata normale.

La Figura 6.1 visualizza graficamente il MAE di ciascuna applicazione e configu-
razione, con gli intervalli di confidenza al 95% che permettono di valutare I'incertezza

statistica delle stime.

MAE per plain walking (Cl195%)

Runtastic

Tayutau

WalkLogger

Accupedo

StepLab (Peak + Butterworth)

StepLab (Peak + Intersection + Low-Pass 10Hz)
StepLab (Peak + Intersection + Low-Pass 2%)
StepLab (Peak + Low-Pass 2%)

StepLab (Peak + Time Filter + Low-Pass 10Hz)

StepLab (Time Filter + Peak + Butterworth)

N
&
@
S

15 20
MAE (passi)

o
o
=)

Figura 6.1: MAE con intervalli di confidenza al 95% per camminata normale.

Per le applicazione commerciali, ’analisi dei risultati mostra una forte eteroge-
neita nelle prestazioni. Il box plot in Figura 6.2 permette di visualizzare la dispersione
dei valori e la stabilita dei diversi pedometri. Tra le applicazioni esaminate, Tayutau

risulta la pit accurata nella camminata normale: presenta il MAE piu basso (5.836)

70 6. Raccolta dati e risultati

e uno SME relativamente contenuto (-2.689), indicando una tendenza moderata
alla sottostima ma senza deviazioni estreme. Runtastic e WalkLogger mostrano
invece un comportamento piu variabile, con box plot pit ampi e la presenza di
valori anomali. Runtastic tende chiaramente alla sottostima (SME -6.246), mentre
WalkLogger alterna sovrastime e sottostime, riflettendo uno SME vicino allo zero ma
con scarsa precisione (MAE 9.525). Accupedo ¢ 'app commerciale con le prestazioni
peggiori sulla camminata normale, con un MAE di 11.590, nonostante uno SME
abbastanza contenuto (-1.230), segno che il problema ¢ da attribuire soprattutto alla

dispersione.

Step Count Comparison - Commercial Applications
Plain Walking

— = Ground Truth (50 steps)

80

@
=}

I
o

Detected Steps

20

Runtastic Tayutau WalkLogger Accupedo
Application

Figura 6.2: Box plot dei risultati per camminata normale delle applicazioni commer-

ciali.

Le configurazioni di StepLab presentano una variabilita pit marcata. Il box plot
in Figura 6.3 evidenzia come alcune combinazioni siano altamente affidabili, mentre
altre introducano errori sistematici significativi. Le configurazioni piu stabili sono
Time Filter + Peak + Butterworth (MAE = 6.475) e Peak + Butterworth
(MAE = 7.820) entrambe caratterizzate da SME moderati e distribuzioni concentrate.
All’estremo opposto, filtraggi troppo aggressivi generano prestazioni molto scarse. La
configurazione Peak + Intersection + Low-Pass 2% ¢ quella con 'accuratezza
peggiore di tutto il set, con un MAE di 30.607 e uno SME pari a -30.607, segno
evidente di una sistematica e grave sottostima del numero di passi. Anche Peak +
Intersection + Low-Pass 10Hz presenta un errore significativo (MAE 12.623),
confermando che la combinazione di pit operazioni di filtraggio puo introdurre ritardi

o attenuazioni che compromettono la rilevazione dei passi.

6.3 Risultati delle simulazioni 71

Step Count Comparison - StepLab Configurations
Plain Walking

— = Ground Truth (50 steps)

T = = _ B=E | ==

80

@
=}
*

N
o

Detected Steps

N
o

Peak Peak Peak Peak Peak Time Filter
+ Butterworth + Intersection + Intersection + Low-Pass 2% + Time Filter + Peak
+ Low-Pass 10Hz + Low-Pass 2% + Low-Pass 10Hz + Butterworth

Application

Figura 6.3: Box plot dei risultati per camminata normale di StepLab.

Corsa

La corsa presenta caratteristiche dinamiche diverse rispetto alla camminata:
le accelerazioni sono piu elevate, la frequenza dei passi aumenta e il segnale tende
ad essere piu regolare ma piu energico. Cio rende la rilevazione dei passi in alcuni
casi piu semplice, ma puo anche accentuare gli errori sistematici nei filtraggi piu
aggressivi. La Tabella 6.3 riassume il MAE e lo SME relativi alla corsa per tutte le

applicazioni commerciali e per le configurazioni di StepLab.

Applicazione / Configurazione MAE SME
Runtastic 4.333 -1.667
Tayutau 6.583 -1.950
WalkLogger 6.117 +2.350
Accupedo 9.217 +3.983
StepLab (Peak + Butterworth) 5.167 +0.933
StepLab (Peak + Intersection + Low-Pass 10Hz) 7.983 -6.683
StepLab (Peak + Intersection + Low-Pass 2%) 29.683 -29.683
StepLab (Peak + Low-Pass 2%) 3.717 -1.183
StepLab (Peak + Time Filter + Low-Pass 10Hz) 6.833 43.467
StepLab (Time Filter + Peak + Butterworth) 3.950 +0.483

Tabella 6.3: Metriche di accuratezza per la corsa.

72 6. Raccolta dati e risultati

La rappresentazione grafica del MAE con intervalli di confidenza & mostrata in
Figura 6.4.

MAE per running (CI195%)

Runtastic

Tayutau

WalkLogger

Accupedo

StepLab (Peak + Butterworth)

StepLab (Peak + Intersection + Low-Pass 10Hz)

StepLab (Peak + Intersection + Low-Pass 2%)

StepLab (Peak + Low-Pass 2%)

SteplLab (Peak + Time Filter + Low-Pass 10Hz)

StepLab (Time Filter + Peak + Butterworth)

0 5 10 15 20 25 30
MAE (passi)

Figura 6.4: MAE con intervalli di confidenza al 95% per la corsa.

Per quanto riguarda le applicazioni commerciali, i risultati mostrano una
maggiore stabilita rispetto alla camminata normale. Il box plot in Figura 6.5
evidenzia che tutte le app tendono a raggrupparsi attorno al valore atteso dei 50
passi, con dispersioni piu contenute. Runtastic ¢ I’app migliore in questo scenario
(MAE = 4.333), con una leggera tendenza alla sottostima. Anche Tayutau si
comporta bene, mentre Accupedo mostra la dispersione pit ampia e una marcata
sovrastima (SME +3.983). WalkLogger, pur avendo uno SME vicino allo zero,
presenta comungue una certa variabilita.

Le configurazioni di StepLab mostrano un comportamento piu diversificato.
Il box plot in Figura 6.6 mette in evidenza come alcune configurazioni si adattino
molto bene alla corsa, mentre altre risultino inadatte. Le configurazioni piu accurate
sono Peak 4+ Low-Pass 2% (MAE = 3.717), la migliore in assoluto, e Time
Filter + Peak 4+ Butterworth (MAE = 3.950), entrambe caratterizzate da errori
bassi e distribuzioni compatte. Al contrario, configurazioni che combinano filtraggio
aggressivo e operazioni di intersezione con ’asse delle ascisse mostrano prestazioni
pessime: Peak + Intersection + Low-Pass 2% produce un MAE estremamente
elevato (29.683) con una sottostima sistematica di pari valore.

Nel complesso, la corsa risulta un contesto favorevole per il conteggio dei passi.
Tutte le applicazioni registrano SME inferiori rispetto alla camminata normale, e

alcune configurazioni di StepLab raggiungono prestazioni particolarmente elevate.

6.3 Risultati delle simulazioni

73

Step Count Comparison - Commercial Applications

Running

80

60
a | S —
a Sy S QU S pa—— S .
-
2] 1
°
840 B —
5
Q
-
7
=]

20

0
WalkLogger Accupedo

Runtastic Tayutau
Application

Figura 6.5: Box plot dei risultati per la corsa delle applicazioni commerciali.

Step Count Comparison - StepLab Configurations

Running
8
70
60
a .
————————————————————————— === - -=d
o 50
-
z .
40
2
o
]
% 30
a —1
20
10
0
Peak Peak Peak Peak Time Filter
+ Butterworth + Intersection + Intersection + Low-Pass 2% + Time Filter + Peak
+ Low-Pass 10Hz + Low-Pass 2% + Low-Pass 10Hz + Butterworth

Application

Figura 6.6: Box plot dei risultati per la corsa con le

configurazioni di StepLab.

74 6. Raccolta dati e risultati

Camminata a passi stretti

La camminata a passi stretti e caratterizzata da un’accelerazione piu contenuta
rispetto alla camminata normale. Le oscillazioni risultano meno pronunciate e i
picchi associati ai passi diventano meno distinti, rendendo questa tipologia una delle
piu difficili da rilevare correttamente. Nella Tabella 6.4 € possibile visualizzare le

metriche relative a questa attivita.

Applicazione / Configurazione MAE SME
Runtastic 11.683 -8.250
Tayutau 4.867 -0.100
WalkLogger 11.400 -2.867
Accupedo 14.200 -2.333
StepLab (Peak + Butterworth) 8.000 -3.567
StepLab (Peak + Intersection + Low-Pass 10Hz) 15.017 -14.517
StepLab (Peak + Intersection + Low-Pass 2%) 32.867 -32.867
StepLab (Peak + Low-Pass 2%) 17.966 -17.458
StepLab (Peak + Time Filter + Low-Pass 10Hz) 12.883 +5.850
StepLab (Time Filter + Peak + Butterworth) 8.200 -4.967

Tabella 6.4: Metriche di accuratezza per la camminata a passi stretti.

La Figura 6.7 mostra graficamente i valori di MAE con i rispettivi intervalli di
confidenza.

Per quanto riguarda le applicazioni commerciali, le prestazioni peggiorano
rispetto alle tipologie precedenti, coerente con la maggiore difficolta nel rilevare
picchi deboli. Dal box plot in Figura 6.8 emerge che Tayutau rimane ’app piu
stabile anche in questo contesto: ottiene il MAE piu basso (4.867) e uno SME quasi
nullo. Runtastic e WalkLogger evidenziano un errore sensibilmente maggiore
rispetto al caso precedente, mentre Accupedo si conferma offrire le prestazioni
peggiori a livello di errore assoluto.

Le configurazioni di StepLab presentano una variabilita ancora piu marcata. Il
box plot in Figura 6.9 conferma un comportamento simile a quelli osservati finora.
Le configurazioni piu accurate sono Peak + Butterworth (MAE = 8.000) e Time
Filter + Peak + Butterworth (MAE = 8.200), mentre la peggiore ¢ nuovamente

6.3 Risultati delle simulazioni 75

MAE per baby steps (CI95%)

Runtastic

Tayutau

WalkLogger

Accupedo

StepLab (Peak + Butterworth)

StepLab (Peak + Intersection + Low-Pass 10Hz)
StepLab (Peak + Intersection + Low-Pass 2%)
StepLab (Peak + Low-Pass 2%)

StepLab (Peak + Time Filter + Low-Pass 10Hz)

StepLab (Time Filter + Peak + Butterworth)

N
o
w
S
w
&

20
MAE (passi)

o

)
3
a

Figura 6.7: MAE con intervalli di confidenza al 95% per la camminata a passi stretti.

Step Count Comparison - Commercial Applications

Baby Steps
120
100
2 80
Q
3
w
3
E 60
- I I P T 0909090909090 PR
o
n -
40
20 _
N
0
Runtastic Tayutau WalkLogger Accupedo
Application

Figura 6.8: Box plot dei risultati per camminata a passi stretti delle applicazioni

commerciali.

76 6. Raccolta dati e risultati

Peak + Intersection + Low-Pass 2% (MAE = 32.867), con una sottostima

sistematica molto marcata.

Step Count Comparison - StepLab Configurations

Baby Steps
—— Ground Truth (50 steps)

80
1}
2 60 _
o —T .
3
®w | e e] S I R
g v -
s |
S 40
‘; *
a *

20]

0 JR
Peak Peak Peak Peak Peak Time Filter
+ Butterworth + Intersection + Intersection + Low-Pass 2% + Time Filter + Peak
+ Low-Pass 10Hz + Low-Pass 2% + Low-Pass 10Hz + Butterworth
Application

Figura 6.9: Box plot dei risultati per camminata a passi stretti delle configurazioni
di StepLab.

Camminata a passi irregolari

Questo tipo di camminata si caratterizza per la variabilita dei passi, i quali
possono essere effettuati a ritmo diverso e con intensita differenti. Questa irregolarita
rende piu complesso per gli algoritmi individuare i passi in modo accurato, poiché il
segnale diventa meno prevedibile. I valori delle metriche calcolati per questa tipologia
di camminata sono riportati nella Tabella 6.5.

La visualizzazione grafica del MAE con intervalli di confidenza e riportata in
Figura 6.10.

Le applicazioni commerciali mostrano una certa variabilita nelle prestazioni.
Tayutau e ancora una volta I'applicazione piu accurata con un MAE di 5.567 e
uno SME molto basso (4+0.767), indicando un comportamento equilibrato anche in
presenza di passi irregolari. Runtastic presenta un MAE di 8.067 con una tendenza
alla sottostima (SME -3.067). WalkLogger mostra invece una marcata tendenza alla
sovrastima (SME +6.750) con un MAE di 10.183, mentre Accupedo evidenzia uno
SME positivo (4+3.700) e un MAE di 9.467. Le configurazioni di StepLab presentano
risultati coerenti con le tipologie di camminata analizzate precedentemente. Le
configurazioni piu accurate sono Peak + Butterworth (MAE = 6.867) e Time
Filter 4+ Peak 4+ Butterworth (MAE = 7.250). La configurazione Peak +

6.3 Risultati delle simulazioni 77

Applicazione / Configurazione MAE SME
Runtastic 8.067 -3.067
Tayutau 5.567 40.767
WalkLogger 10.183 46.750
Accupedo 9.467 +3.700
StepLab (Peak 4+ Butterworth) 6.867 -0.633
StepLab (Peak + Intersection + Low-Pass 10Hz) 10.817 -10.117
StepLab (Peak + Intersection + Low-Pass 2%) 27.850 -27.850
StepLab (Peak + Low-Pass 2%) 10.167 -8.067
StepLab (Peak 4+ Time Filter + Low-Pass 10Hz) 12.000 +5.933
StepLab (Time Filter + Peak + Butterworth) 7.250 -2.683

Tabella 6.5: Metriche di accuratezza per la camminata a passi irregolari.

MAE per irregular steps (C195%)

Runtastic

Tayutau

WalkLogger

Accupedo

StepLab (Peak + Butterworth)

StepLab (Peak + Intersection + Low-Pass 10Hz)
StepLab (Peak + Intersection + Low-Pass 2%)
StepLab (Peak + Low-Pass 2%)

StepLab (Peak + Time Filter + Low-Pass 10Hz)

StepLab (Time Filter + Peak + Butterworth)

o

o

3
)
8
)
&
@
3

15
MAE (passi)

Figura 6.10: MAE con intervalli di confidenza al 95% per la camminata a passi

irregolari.

Intersection + Low-Pass 2% si conferma la peggiore, con un MAE di 27.850 e
una grave sottostima sistematica (SME -27.850). Anche Peak + Intersection +
Low-Pass 10Hz mostra prestazioni scarse (MAE = 10.817), con una significativa

sottostima dei passi.

78 6. Raccolta dati e risultati

Step Count Comparison - Commercial Applications
Irregular Steps

— = Ground Truth (50 steps)

80

« 80
=
Q
-
d | p— = N
] *
2
g 40
- PR E—
@
=]

20

0
Runtastic Tayutau WalkLogger Accupedo

Application

Figura 6.11: Box plot dei risultati per camminata a passi irregolari delle applicazioni

commerciali.
Step Count Comparison - StepLab Configurations
Irregular Steps
N

80
a -
8 60
& —_ -
- T - E ___ % ____ 1, ___ —_
Q
P=1
g
g E -
=]

20

Peak Peak Peak Peak Peak Time Filter
+ Butterworth + Intersection + Intersection + Low-Pass 2% + Time Filter + Peak
+ Low-Pass 10Hz + Low-Pass 2% + Low-Pass 10Hz + Butterworth

Application

Figura 6.12: Box plot dei risultati per camminata a passi irregolari delle configurazioni

di StepLab.

6.3 Risultati delle simulazioni 79

Camminata in salita

Per questo tipo di camminata, i movimenti tendono ad essere piu lenti a
causa del maggiore sforzo richiesto per salire. Inoltre, I'inclinazione del busto puo
influenzare il contributo gravitazionale sul segnale accelerometrico. Cio puo rendere
piu complicata I'individuazione dei passi. Nella Tabella 6.6 sono riportate le metriche

riguardanti questa attivita.

Applicazione / Configurazione MAE SME
Runtastic 10.217 -7.017
Tayutau 3.483 +0.250
WalkLogger 9.683 -0.017
Accupedo 10.050 40.250
StepLab (Peak + Butterworth) 6.367 -2.833

StepLab (Peak + Intersection + Low-Pass 10Hz) 14.717 -14.317

(

(
StepLab (Peak + Intersection + Low-Pass 2%) 31.650 -31.650
StepLab (Peak + Low-Pass 2%) 13.283 -12.417
StepLab (Peak + Time Filter + Low-Pass 10Hz) 11.350 +4.283
StepLab (Time Filter + Peak + Butterworth) 6.983 -3.383

Tabella 6.6: Metriche di accuratezza per la camminata in salita.

I valori di MAE con i rispettivi intervalli di confidenza al 95% sono rappresentati
graficamente in Figura 6.13.

Come nei casi precedenti, Tayutau si conferma ’applicazione piu accurata
con un MAE di 3.483 e uno SME quasi nullo, confermando la sua buona capacita
di adattamento a varie situazioni. Runtastic presenta un MAE di 10.217 con una
marcata tendenza alla sottostima (SME -7.017). WalkLogger mostra uno SME
praticamente nullo ma un MAE piu elevato (9.683), cio indica una certa dispersione
nei risultati. Accupedo segue la stessa tendenza, evidenziando un MAE di 10.050
con uno SME minimo.

Le configurazioni di StepLab mantengono il pattern osservato nelle tipologie
precedenti. Le configurazioni piu accurate sono Peak 4+ Butterworth (MAE =
6.367) e Time Filter + Peak + Butterworth (MAE = 6.983), entrambe con SME

moderati. La configurazione Peak + Intersection + Low-Pass 2% si conferma

80 6. Raccolta dati e risultati

MAE per uphill walking (C195%)

Runtastic

Tayutau

WalkLogger

Accupedo

StepLab (Peak + Butterworth)

StepLab (Peak + Intersection + Low-Pass 10Hz)
StepLab (Peak + Intersection + Low-Pass 2%)
StepLab (Peak + Low-Pass 2%)

StepLab (Peak + Time Filter + Low-Pass 10Hz)

StepLab (Time Filter + Peak + Butterworth)

35

N
a
8

15 20
MAE (passi)

=3
o
=)

Figura 6.13: MAE con intervalli di confidenza al 95% per la camminata in salita.

Step Count Comparison - Commercial Applications

Uphill Walking

80

60
1}
-3
Q
3
5 - -
]
% v

40
3
o _
=]

20

0
WalkLogger Accupedo

Runtastic Tayutau

Application

Figura 6.14: Box plot dei risultati per camminata in salita delle applicazioni com-

merciali.

6.3 Risultati delle simulazioni 81

ancora una volta la peggiore, con un MAE di 31.650 e una sottostima sistematica

molto grave.

Step Count Comparison - StepLab Configurations
Uphill Walking

— = Ground Truth (50 steps)

100

80

60 e

o R e

20

Detected Steps

Peak Peak Peak Peak Peak Time Filter
+ Butterworth + Intersection + Intersection + Low-Pass 2% + Time Filter + Peak
+ Low-Pass 10Hz + Low-Pass 2% + Low-Pass 10Hz + Butterworth

Application

Figura 6.15: Box plot dei risultati per camminata in salita delle configurazioni di
StepLab.

Camminata in discesa

Per questo tipo di camminata, i movimenti tendono ad essere piu rapidi poiché
il corpo tende ad accelerare verso il basso. Inoltre, il busto si inclina all’indietro,
modificando il contributo gravitazionale e le piccole frenate che si effettuano per
mantenere ’equilibrio contribuiscono a rendere il segnale meno omogeneo e dunque
piu difficile da analizzare. I valori delle metriche calcolati per questa tipologia di
camminata sono riportati nella Tabella 6.7.

La Figura 6.16 illustra graficamente 1’errore assoluto medio con gli intervalli di
confidenza.

Tra le applicazione commerciali, Tayutau continua a distinguersi come la piu
accurata, con un MAE di 4.148 e uno SME molto basso. WalkLogger e Accupedo
hanno sorprendentemente ottenuto lo stesso MAE di 8.951, ma il primo presenta uno
SME quasi nullo, mentre il secondo tende leggermente alla sovrastima. Runtastic
con questo tipo di camminata e invece I’applicazione con le prestazioni peggiori. Le
configurazioni di StepLab mostrano ancora una volta un comportamento coerente con
le tipologie precedenti. Le configurazioni pit accurate sono Peak 4+ Butterworth
(MAE = 6.443) e Time Filter + Peak 4+ Butterworth (MAE = 6.934). La

configurazione Peak + Intersection 4+ Low-Pass 2% si conferma la peggiore,

82 6. Raccolta dati e risultati

Applicazione / Configurazione MAE SME
Runtastic 9.951 -7.820
Tayutau 4.148 -0.574
WalkLogger 8.951 -0.066
Accupedo 8.951 +1.639
StepLab (Peak + Butterworth) 6.443 -3.885

StepLab (Peak + Intersection + Low-Pass 10Hz) 14.033 -13.934

StepLab (Peak + Low-Pass 2%) 12.623 -11.967

(

(

StepLab (Peak + Intersection + Low-Pass 2%) 31.049 -31.049

(

StepLab (Peak + Time Filter + Low-Pass 10Hz) 9.590 +2.836
(

StepLab (Time Filter + Peak + Butterworth) 6.934 -4.639

Tabella 6.7: Metriche di accuratezza per la camminata in discesa.

MAE per downbhill walking (C195%)

Runtastic

Tayutau

WalkLogger

Accupedo

StepLab (Peak + Butterworth)

StepLab (Peak + Intersection + Low-Pass 10Hz)
StepLab (Peak + Intersection + Low-Pass 2%)
StepLab (Peak + Low-Pass 2%)

SteplLab (Peak + Time Filter + Low-Pass 10Hz)

StepLab (Time Filter + Peak + Butterworth)

N
&
W
S

20

o
3
=)

15
MAE (passi)

Figura 6.16: MAE con intervalli di confidenza al 95% per la camminata in discesa.

mentre le altre presentano un errore poco superiore rispetto alle performance ottenute

con le applicazioni commerciali.

6.3 Risultati delle simulazioni 83

Step Count Comparison - Commercial Applications
Downhill Walking

== Ground Truth (50 steps)

80

-}
=}

________ ji____________ __________________ = —_—

N
o

Detected Steps

20

Runtastic Tayutau WalkLogger Accupedo
Application

Figura 6.17: Box plot dei risultati per camminata in discesa delle applicazioni

commerciali.
Step Count Comparison - StepLab Configurations
Downhill Walking
—

80

70

60
[%2]
2 P
3 - P
O B~ = =TT T T T T T T e e e e e e e e e e e e e e = = ==
] ~
@
S 40
: | |
%
B3 N

20 —

10

0
Peak Peak Peak Peak Peak Time Filter
+ Butterworth + Intersection + Intersection + Low-Pass 2% + Time Filter + Peak
+ Low-Pass 10Hz + Low-Pass 2% + Low-Pass 10Hz + Butterworth
Application

Figura 6.18: Box plot dei risultati per camminata in discesa delle configurazioni di

StepLab.

6.3.2 Risultati per posizione del dispositivo

La posizione del dispositivo influenza significativamente il conteggio dei passi,
poiché una posizione stabile tende a produrre meno rumore nel segnale rispetto a una
posizione pit mobile. Analiziamo dunque i risultati distinguendo per le tre posizioni

considerate.

84 6. Raccolta dati e risultati

Risultati con dispositivo in mano

Una registrazione effettuata con il dispositivo in mano puo essere soggetta a
rumore aggiuntivo dovuto ai movimenti del braccio. Tuttavia, puo anche offrire un
segnale piu definito relativo ai movimenti del corpo. Cid varia molto in base alla
persona e al modo in cui tiene il dispositivo. Ad esempio, durante la raccolta dati, si
é notato che alcuni partecipanti tendevano a muovere il braccio in modo piu marcato,
mentre altri lo tenevano piu fermo. Dunque, tra le posizioni considerate, questa e
forse quella con maggiore variabilita. Nella Tabella 6.8 sono riportate le metriche

calcolate per questa posizione.

Applicazione / Configurazione MAE SME
Runtastic 10.139 -9.774
Tayutau 5930 -3.217
WalkLogger 6.374 +0.809
Accupedo 9.670 -2.783
StepLab (Peak + Butterworth) 6.704 -4.930

(
StepLab (Peak + Intersection + Low-Pass 10Hz) 14.513 -14.235
StepLab (Peak + Intersection + Low-Pass 2%) 28.800 -28.800
StepLab (Peak + Low-Pass 2%) 13.600 -13.409
StepLab (Peak + Time Filter + Low-Pass 10Hz) 7.200 -3.687
StepLab (Time Filter + Peak + Butterworth) 7.287 -6.261

Tabella 6.8: Metriche di accuratezza per dispositivo in mano.

La rappresentazione grafica dei risultati € mostrata in Figura 6.19.

Tra le applicazioni commerciali, Tayutau si conferma I’applicazione piu accu-
rata con un MAE di 5.930. Tuttavia, anche WalkLogger mostra buone prestazioni
in questa posizione, con un MAE di 6.374 e uno SME compreso tra 0 e 1, inferiore
a quello di Tayutau. Runtastic ha le prestazioni peggiori mentre Accupedo si
posiziona al terzo posto con performance di poco migliori rispetto all’app precedente.

Le configurazioni di StepLab mostrano un comportamento simile a quello
osservato in precedenza. La piu accurata ¢ Peak 4+ Butterworth (MAE = 6.704).
Anche Peak + Time Filter + Low-Pass 10Hz (MAE = 7.200) e Time Filter
+ Peak 4+ Butterworth (MAE = 7.287) ottengono buoni risultati. La penultima

ottiene tra l'altro lo SME piu basso tra tutte le configurazioni. Ancora una volta,

6.3 Risultati delle simulazioni)

MAE per posizione hand (CI95%)

Runtastic

Tayutau

WalkLogger

Accupedo

StepLab (Peak + Butterworth)

StepLab (Peak + Intersection + Low-Pass 10Hz)
StepLab (Peak + Intersection + Low-Pass 2%)
StepLab (Peak + Low-Pass 2%)

StepLab (Peak + Time Filter + Low-Pass 10Hz)

StepLab (Time Filter + Peak + Butterworth)

=
3
5}
N
S
N
&
W
S

15
MAE (passi)

Figura 6.19: MAE con intervalli di confidenza al 95% per dispositivo in mano.

Step Count Comparison - Commercial Applications - Hand Position

80

60
1}
n‘ _
Q e == ———————— — | - - - - — —]
e
7]
3
E 40 *
g —
o
=]

20 1

0

Runtastic Tayutau WalkLogger Accupedo

Application

Figura 6.20: Box plot dei risultati con dispositivo in mano delle applicazioni com-

merciali.

86 6. Raccolta dati e risultati

la peggiore ¢ Peak + Intersection + Low-Pass 2%, mentre le altre ottengono
prestazioni fra loro non troppo distanti in termini di errore assoluto e risultati

significativamente peggiori rispetto alle applicazioni commerciali.

Step Count Comparison - StepLab Configurations - Hand Position

— — Ground Truth (50 steps)

60 -

%
=}
T
]
1

N
o

Detected Steps
w
S

N
o

10

Peak Peak Peak Peak Peak Time Filter
+ Butterworth + Intersection + Intersection + Low-Pass 2% + Time Filter + Peak
+ Low-Pass 10Hz + Low-Pass 2% + Low-Pass 10Hz + Butterworth

Application

Figura 6.21: Box plot dei risultati con dispositivo in mano delle configurazioni di
StepLab.

Risultati con dispositivo in tasca

Quando il dispositivo ¢ in tasca, spesso il segnale risulta piu disturbato rispetto
alle altre posizioni considerate. Cio succede perché non essendo in una posizione
salda, il telefono puo muoversi abbastanza liberamente. Questo varia in base al tipo
di abbigliamento indossato, una tasca piu stretta tendera a limitare i movimenti
del dispositivo, mentre una tasca piu ampia permettera al telefono di oscillare
maggiormente. Nella Tabella 6.9 sono riportate le metriche calcolate per questa
posizione.

Tra le applicazioni commerciali, Tayutau si conferma ’applicazione piu accu-
rata con un MAE di 5.442, seguita da Runtastic con 6.075. Piu distanti risultano
essere WalkLogger e Accupedo, entrambe con un margine di errore significativo.
In tutti i casi si nota una tendenza alla sovrastima del numero di passi, frutto proprio
del rumore aggiuntivo introdotto dalla posizione in tasca.

Per StepLab, invece, la tendenza ¢ sempre quella dei risultati precedenti: le tre
configurazioni piu accurate sono Time Filter + Peak + Butterworth (MAE =
6.275), Peak 4+ Butterworth (MAE = 7.458) e Peak 4+ Low-Pass 2% (MAE

= 8.420). La peggiore ¢ ancora una volta Peak 4+ Intersection + Low-Pass

6.3 Risultati delle simulazioni &7

MAE per posizione pocket (C195%)

Runtastic

Tayutau

WalkLogger

Accupedo

StepLab (Peak + Butterworth)

StepLab (Peak + Intersection + Low-Pass 10Hz)
StepLab (Peak + Intersection + Low-Pass 2%)
StepLab (Peak + Low-Pass 2%)

StepLab (Peak + Time Filter + Low-Pass 10Hz)

StepLab (Time Filter + Peak + Butterworth)

Figura 6.22: MAE con intervalli di confidenza al 95% per dispositivo in tasca.

Step Count Comparison - Commercial Applications - Pocket Position

120
100
[%2] .
g I :
8 -
& 80
3
- . :
g
% 60
=]
40 — 1
20
Runtastic Tayutau WalkLogger Accupedo
Application

Figura 6.23: Box plot dei risultati con dispositivo in tasca delle applicazioni commer-

ciali.

88

6. Raccolta dati e risultati

Applicazione / Configurazione MAE SME

Runtastic 6.075 +3.042
Tayutau 5.442 42.875
WalkLogger 11.550 +10.083
Accupedo 14.508 +11.242
StepLab (Peak + Butterworth) 7.458 +2.475
StepLab (Peak + Intersection + Low-Pass 10Hz) 12.183 -11.050
StepLab (Peak + Intersection + Low-Pass 2%) 36.008 -36.008
StepLab (Peak + Low-Pass 2%) 8.420 -4.958

StepLab (Peak + Time Filter + Low-Pass 10Hz) 16.742 +15.025
StepLab (Time Filter 4+ Peak + Butterworth) 6.275 +1.908

Tabella 6.9: Metriche di accuratezza per dispositivo in tasca.

2%, mentre le due restanti configurazioni ottengono risultati piuttosto distanti dalle

migliori tre.

Step Count Comparison - StepLab Configurations - Pocket Position

100

80

60 _

Detected Steps
T
1
|

m
|
|
I
]
|
1
]
|
1
|
|
]
]
|
]
]
|
T
1
|
|
]
]
|
|
1
|
|
]
|
|
]
]
|
|
]
|
|
]
|
|
]
|
T
i
i
1
i
i
1
i
i

40

— = Ground Truth (50 steps)

Peak Peak Peak
+ Butterworth + Intersection ntersection + Low-Pass 2%
+ Low-Pass 10Hz ow-Pass 2%

Application

Peak
+ Time Filter

+ Low-Pass 10Hz

Time Filter
+ Peak
+ Butterworth

Figura 6.24: Box plot dei risultati con dispositivo in tasca delle configurazioni di

StepLab.

Risultati con dispositivo in spalla

Quando il dispositivo e fissato in spalla tramite una fascia elastica dedicata,

il segnale tende a essere piu stabile rispetto alle altre posizioni considerate. Cio

6.3 Risultati delle simulazioni 89

e dovuto al fatto che il dispositivo & saldamente ancorato al corpo, riducendo i
movimenti indesiderati. Tuttavia, questa posizione puo anche far tendere il segnale
a essere meno pronunciato, cio varia in base allo stile di camminata della persona.
Nella Tabella 6.10 sono riportate le metriche calcolate per questa posizione. La

Figura 6.25 riporta la visualizzazione grafica del MAE con intervalli di confidenza.

Applicazione / Configurazione MAE SME
Runtastic 10.685 -10.228
Tayutau 3.969 -1.858
WalkLogger 9.850 -6.717
Accupedo 7.685 -5.260
StepLab (Peak 4+ Butterworth) 6.205 -3.165
StepLab (Peak + Intersection + Low-Pass 10Hz) 11.079 -10.386
StepLab (Peak + Intersection + Low-Pass 2%) 27173 -27.173
StepLab (Peak + Low-Pass 2%) 12.134 -11.740
StepLab (Peak 4+ Time Filter + Low-Pass 10Hz) 9.646 +3.787
StepLab (Time Filter + Peak + Butterworth) 6.378 -4.331

Tabella 6.10: Metriche di accuratezza per dispositivo in spalla.

MAE per posizione shoulder (CI95%)

Runtastic

Tayutau

WalkLogger

Accupedo

StepLab (Peak + Butterworth)

StepLab (Peak + Intersection + Low-Pass 10Hz)

StepLab (Peak + Intersection + Low-Pass 2%)

StepLab (Peak + Low-Pass 2%)

SteplLab (Peak + Time Filter + Low-Pass 10Hz)

StepLab (Time Filter + Peak + Butterworth)

o
3
=)

15
MAE (passi)

N
S
N
&

Figura 6.25: MAE con intervalli di confidenza al 95% per dispositivo in spalla.

Tayutau si conferma ’applicazione piu accurata con un MAE di 3.969 e uno

SME di -1.858. Le prestazioni delle altre applicazioni commerciali presentano in

90 6. Raccolta dati e risultati

questo caso un distacco pit marcato, fornendo prestazioni significativamente peggiori

rispetto alla migliore.

Step Count Comparison - Commercial Applications - Shoulder Position

— = Ground Truth (50 steps)

80

4|

-------- L g

N
o
<

Detected Steps

20

Runtastic Tayutau WalkLogger Accupedo

Application

Figura 6.26: Box plot dei risultati con dispositivo in spalla delle applicazioni com-

merciali.

Per StepLab, le configurazioni piu accurate rimangono Peak + Butterworth
(MAE = 6.205) e Time Filter + Peak + Butterworth (MAE = 6.378). La
peggiore ¢ ancora una volta Peak + Intersection + Low-Pass 2%, mentre le

altre configurazioni ottengono risultati piuttosto distanti dalle migliori due.

Step Count Comparison - StepLab Configurations - Shoulder Position

= Ground Truth (50 steps)

80

-}
=}

e —— — — — — — It~ ~

N
o
<
-

]
!
|
i

20 -

Peak Peak Peak Peak Peak Time Filter
+ Butterworth + Intersection + Intersection + Low-Pass 2% + Time Filter + Peak
+ Low-Pass 10Hz + Low-Pass 2% + Low-Pass 10Hz + Butterworth

Application

Figura 6.27: Box plot dei risultati con dispositivo in spalla delle configurazioni di

StepLab.

6.3 Risultati delle simulazioni 91

In conclusione, la maggiore stabilita offerta da questa posizione trova riscontro
nella media dell’errore assoluto, che risulta essere la piu bassa tra le tre posizioni

considerate, seguita da quella in mano ed infine quella in tasca.

6.3.3 Analisi complessiva dei risultati

Per avere una visione d’insieme delle prestazioni delle varie applicazioni e
configurazioni considerate, la Tabella 6.11 riporta il MAE e lo SME calcolati sull’intero

dataset, senza distinzione di tipologia di camminata o posizione del dispositivo.

Applicazione / Configurazione MAE SME
Runtastic 8.983 -5.685
Tayutau 5.080 -0.721
WalkLogger 9.309 +1.243
Accupedo 10.577 40.997
StepLab (Peak + Butterworth) 6.779 -1.856

(
StepLab (Peak + Intersection + Low-Pass 10Hz) 12.536 -11.829
StepLab (Peak + Intersection + Low-Pass 2%) 30.619 -30.619
StepLab (Peak + Low-Pass 2%) 11.377 -10.036
StepLab (Peak + Time Filter + Low-Pass 10Hz) 11.221 +5.138
StepLab (Time Filter + Peak + Butterworth) 6.633 -2.876

Tabella 6.11: Metriche di accuratezza complessive.

Dall’analisi emerge che, tra le applicazioni commerciali, Tayutau ¢ quella che
si comporta meglio, mostrando uno SME inferiore a 1 e un MAE nettamente piu
basso rispetto a quello delle altre app. Runtastic e WalkLogger ottengono prestazioni
intermedie, mentre Accupedo risulta la meno accurata del gruppo.

Per quanto riguarda StepLab, le configurazioni piu affidabili sono quelle che uti-
lizzano il filtro Butterworth. In particolare, Time Filter 4+ Peak + Butterworth
e Peak + Butterworth ottengono un MAE inferiore a 7, posizionandosi immedia-
tamente dopo Tayutau e superando le altre app commerciali. Le configurazioni con
filtraggio molto aggressivo e intersezione con 'asse delle ascisse, invece, mostrano i
risultati peggiori, con una sottostima sistematica del numero di passi.

Sulla base dei risultati globali, la classifica finale ordinata per errore assoluto

medio ¢ la seguente:

92 6. Raccolta dati e risultati

MAE complessivo con CI195%

Runtastic

Tayutau

WalkLogger

Accupedo

StepLab (Peak + Butterworth)

StepLab (Peak + Intersection + Low-Pass 10Hz)
StepLab (Peak + Intersection + Low-Pass 2%)
StepLab (Peak + Low-Pass 2%)

StepLab (Peak + Time Filter + Low-Pass 10Hz)

StepLab (Time Filter + Peak + Butterworth)

N
S
N
&
8

15
MAE (passi)

o
o
=)

Figura 6.28: MAE con intervalli di confidenza al 95% per i risultati complessivi.

Step Count Comparison - Commercial Applications

120
100
:
i :
2 80 H :
Q : I
- RN SR
7] _
g5
E 60
P=1
e == =
=]
40
: 1
20 I i
i
0 .
Runtastic Tayutau WalkLogger Accupedo
Application

Figura 6.29: Box plot dei risultati complessivi delle applicazioni commerciali.

6.3 Risultati delle simulazioni 93

Step Count Comparison - StepLab Configurations

—— Ground Truth (50 steps)

100

80

60 _

Detected Steps
T
1
1

m
|
|
1
1
|
U
1
1
1
1
1
1
1
1
1
1
1
T
1
1
1
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
i
i
i
i
1
1
1

40 o -

0 —

Peak Peak Peak Peak Peak Time Filter
+ Intersection + Intersection + Low-Pass 2% + Time Filter + Peal
+ Low-Pass 10Hz + Low-Pass 2% + Low-Pass 10Hz + Butterworth
Application

Figura 6.30: Box plot dei risultati complessivi delle configurazioni di StepLab.

—_

. Tayutau (MAE = 5.080)

2. StepLab (Time Filter + Peak + Butterworth) (MAE = 6.633)

3. StepLab (Peak + Butterworth) (MAE = 6.779)

4. Runtastic (MAE = 8.983)

5. WalkLogger (MAE = 9.309)

6. Accupedo (MAE = 10.577)

7. StepLab (Peak + Low-Pass 2%) (MAE = 11.377)

8. StepLab (Peak + Time Filter + Low-Pass 10Hz) (MAE = 11.221)
9. StepLab (Peak + Intersection + Low-Pass 10Hz) (MAE = 12.536)

10. StepLab (Peak + Intersection + Low-Pass 2%) (MAE = 30.619)

Nel complesso, i risultati confermano quanto osservato nelle analisi per singola
tipologia di camminata e per posizione del dispositivo. Le applicazioni commerciali
mostrano generalmente prestazioni piu affidabili, ma alcune configurazioni di StepLab
riescono ad avvicinarsi (e in alcuni casi superare) i risultati offerti da diverse app

proprietarie.

Conclusioni

In questo lavoro di tesi e stato progettato e valutato un sistema completo per
il confronto delle prestazioni di applicazioni commerciali e algoritmi open-source
per il conteggio dei passi. La prima fase ha riguardato la raccolta di un dataset
sperimentale, coinvolgendo 20 partecipanti. Successivamente ¢ stata sviluppata
I’applicazione StepLab per Android, che permette di configurare diverse tipologie
di algoritmi per il rilevamento. Infine, ¢ stato realizzato un sistema di valutazione
basato sull’iniezione controllata dei dati, capace di riprodurre in emulatore le stesse
condizioni delle registrazioni reali e dunque di valutare in modo riproducibile le
prestazioni degli algoritmi. Questo sistema ¢ stato validato per verificarne 'accu-
ratezza. Nonostante alcune limitazioni dovute al meccanismo di campionamento
dell’emulatore, i risultati hanno mostrato un livello di precisione complessivamente
soddisfacente, che ha permesso di condurre un’analisi comparativa affidabile. Le me-
triche adottate hanno evidenziato che alcune configurazioni di StepLab sono in grado
di competere con le applicazioni commerciali considerate, raggiungendo in diversi
scenari prestazioni paragonabili o addirittura superiori. L’analisi statistica condotta
ha messo in luce le differenze di accuratezza tra le varie soluzioni, consentendo di
identificare gli algoritmi piu stabili e le condizioni che influenzano maggiormente
Perrore. Questo lavoro apre la strada a ulteriori sviluppi. In particolare, il sistema di
simulazione descritto in 4 si e dimostrato non completamente accurato nel replicare
le condizioni reali. I ritardi introdotti dal sistema di iniezione rappresentano oggi la
principale fonte di disallineamento. Un miglioramento possibile sarebbe intervenire
sul funzionamento dei sensori virtuali dell’emulatore Android, affinché campionino
i dati non a intervalli fissi, ma al momento dell’arrivo di un nuovo campione. Cio
permetterebbe di eliminare gran parte delle problematiche di sincronizzazione e mi-
gliorerebbe sensibilmente la fedelta delle simulazioni, fermo restando che gli algoritmi
basati su soglie temporali avrebbero comunque limitazioni per la simulazione, questo
perché la soluzione proposta non assicurerebbe la consegna con intervalli di tempo

esattamente identici a quelli reali. In conclusione, il sistema sviluppato ha dimostrato

94

CONCLUSIONI 95

Iefficacia dell’approccio basato sull’iniezione dei dati e rappresenta una base solida

per futuri lavori sull’analisi e I'ottimizzazione degli algoritmi di conteggio dei passi.

Bibliografia

1]

[6]

Tom Mikael Ahola. Pedometer for running activity using accelerometer sensors
on the wrist. Medical Equipment Insights, 3:MEI-S3748, 2010.

Android Developers. Sensors overview. https://developer.android.com/
develop/sensors-and-location/sensors/sensors_overview. Accesso: 23

novembre 2025.

Yunhoon Cho, Hyuntae Cho, and Chong-Min Kyung. Design and implementation
of practical step detection algorithm for wrist-worn devices. [EEFE Sensors
Journal, 16(21):7720-7730, 2016.

Frederic Ehrler, Chloé Weber, and Christian Lovis. Influence of pedometer
position on pedometer accuracy at various walking speeds: a comparative study.
Journal of medical Internet research, 18(10):268, 2016.

f1225. Motiontracker. https://github.com/ff225/MotionTracker, 2025.
Accessed: 2025-11-04.

Francesco Forlani. Steplab. https://github.com/Forla03/StepLab, 2025.
Accessed: 2025-11-27.

Jonatan Fridolfsson, Mats Borjesson, Christoph Buck, Orjan Ekblom, Elin
Ekblom-Bak, Monica Hunsberger, Lauren Lissner, and Daniel Arvidsson. Effects
of frequency filtering on intensity and noise in accelerometer-based physical

activity measurements. Sensors, 19(9):2186, 2019.

Ngoc-Huynh Ho, Phuc Huu Truong, and Gu-Min Jeong. Step-detection and
adaptive step-length estimation for pedestrian dead-reckoning at various walking

speeds using a smartphone. Sensors, 16(9):1423, 2016.

96

https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview
https://github.com/ff225/MotionTracker
https://github.com/Forla03/StepLab

CONCLUSIONI 97

[9]

[10]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Sampath Jayalath and Nimsiri Abhayasinghe. A gyroscopic data based pedome-
ter algorithm. In 2013 8th International Conference on Computer Science €
Education, pages 551-555, 2013.

Dinesh John, Alvin Morton, Diego Arguello, Kate Lyden, and David Bassett.
“what is a step?” differences in how a step is detected among three popular acti-
vity monitors that have impacted physical activity research. Sensors, 18(4):1206,
2018.

Maan Khedr and Nasser El-Sheimy. A smartphone step counter using imu
and magnetometer for navigation and health monitoring applications. Sensors,
17(11):2573, 2017.

Jia Yan Leong and Jyh Eiin Wong. Accuracy of three android-based pedometer
applications in laboratory and free-living settings. Journal of sports sciences,
35(1):14-21, 2017.

Giacomo Neri. Pedometri per smartphone: analisi, implementazione e confronto

dei modelli proposti in letteratura, 2022.

Giacomo Neri, Federico Montori, Lorenzo Gigli, Luca Bedogni, Marco Di Felice,
and Luciano Bononi. Pedometers for smartphones: Analysis and comparison
of real-time algorithms. In 2022 IEEE 8th World Forum on Internet of Things
(WF-10T), pages 1-6, 2022.

Meng-Shiuan Pan and Hsueh-Wei Lin. A step counting algorithm for smartphone
users: Design and implementation. [EEE Sensors Journal, 15(4):2296-2305,
2015.

PhilJay. Mpandroidchart. https://github.com/PhilJay/MPAndroidChart,
2024. Accessed: 2025-11-18.

Bernd Porr. iirj - infinite impulse response filters for java. https://github.
com/berndporr/iirj, 2024. Accessed: 2025-11-19.

Valérie Renaudin and Christophe Combettes. Magnetic, acceleration fields
and gyroscope quaternion (magyq)-based attitude estimation with smartphone
sensors for indoor pedestrian navigation. Sensors, 14(12):22864-22890, 2014.

Alessandro Rossi. Implementazione di algoritmi di conteggio passi, 2021.

https://github.com/PhilJay/MPAndroidChart
https://github.com/berndporr/iirj
https://github.com/berndporr/iirj

98

CONCLUSIONI

[20]

[22]

[24]

[25]

[29]

Dario Salvi, Carmelo Velardo, Jamieson Brynes, and Lionel Tarassenko. An
optimised algorithm for accurate steps counting from smart-phone accelerometry.
In 2018 40th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pages 4423-4427, 2018.

Joao Santos, Antonio Costa, and Maria Jodo Nicolau. Autocorrelation analysis
of accelerometer signal to detect and count steps of smartphone users. In 2019

International Conference on Indoor Positioning and Indoor Navigation (IPIN),
pages 1-7. IEEE, 2019.

Arun Kumar Siddanahalli Ninge Gowda, Swarna Ravindra Babu, and Dhine-
shkumar Chandra Sekaran. Umoisp: Usage mode and orientation invariant
smartphone pedometer. IEEE Sensors Journal, 17(3):869-881, 2017.

Anabela G Silva, Patricia Simoes, Alexandra Queirés, Mario Rodrigues, and
Nelson P Rocha. Mobile apps to quantify aspects of physical activity: a
systematic review on its reliability and validity. Journal of medical systems,
44(2):51, 2020.

Fabio A Storm, Ben W Heller, and Claudia Mazza. Step detection and activity re-
cognition accuracy of seven physical activity monitors. PloS one, 10(3):e0118723,
2015.

Young Soo Suh, Ebrahim Nemati, and Majid Sarrafzadeh. Kalman-filter-based
walking distance estimation for a smart-watch. In 2016 IEEFE First Internatio-

nal Conference on Connected Health: Applications, Systems and Engineering
Technologies (CHASE), pages 150-156, 2016.

Abhijit Suprem, Vishal Deep, and Tarek Elarabi. Orientation and displacement
detection for smartphone device based imus. IEEE Access, 5:987-997, 2016.

Alessio Terzi. Architettura per testing di applicazioni android, 2020.

Alessio Terzi, Federico Montori, Lorenzo Gigli, Luca Bedogni, Marco Di Felice,
and Luciano Bononi. Comparison of commercial pedometer applications: A
rigorous approach. In 2024 IEEE International Conference on Smart Computing
(SMARTCOMP), pages 272277, 2024.

Xiaokun Yang and Baoqi Huang. An accurate step detection algorithm using un-
constrained smartphones. In The 27th Chinese Control and Decision Conference
(2015 CCDC), pages 5682-5687, 2015.

Ringraziamenti

Vorrei ringraziare tutte le persone che hanno contribuito alla realizzazione di
questo lavoro di tesi. In particolare, un sentito ringraziamento va a tutti i partecipanti
che hanno dedicato gratuitamente il loro tempo alla raccolta dei dati, senza i quali

questo studio non sarebbe stato possibile.

	Introduzione
	I Pedometri
	Storia e definizione dei pedometri
	Stato dell'arte
	Background e principi fisici
	Algoritmi in letteratura
	Lavori comparativi
	Motivazioni e obiettivi

	Architettura del progetto
	Panoramica dell'architettura
	Contributi
	StepLab
	Ruolo nel sistema
	Materiali e tecnologie utilizzate
	Architettura interna
	Principali funzionalità

	MotionTracker
	Ruolo nel sistema
	Materiali e tecnologie utilizzate
	Architettura interna
	Principali funzionalità

	Iniezione dei dati
	Ruolo nel sistema
	Materiali e tecnologie utilizzate
	Flusso di esecuzione

	Implementazione di StepLab
	UI
	Main
	Configuration
	Test

	Algoritmi e building blocks del rilevamento passi
	Filtri
	Strategie di rilevamento passi
	Algoritmi aggiuntivi

	Algorithms
	Configurazione e dati dei sensori
	Calcoli ed algoritmi
	Processore principale

	Data
	Utils
	Considerazioni sull'implementazione

	Implementazione del sistema di iniezione dei dati
	Registrazione e memorizzazione dei dati
	Iniezione dei dati su emulatore
	Avvio del sistema
	Automazione dell'interfaccia utente
	Iniezione dei dati sensoristici
	Raccolta e salvataggio dei risultati

	Validazione del sistema
	Metodologia
	Risultati della validazione
	Metriche di valutazione
	Analisi dei risultati

	Considerazioni sulla metodologia

	Raccolta dati e risultati
	Raccolta dati
	Configurazione delle applicazioni
	Risultati delle simulazioni
	Risultati per tipologia di camminata
	Risultati per posizione del dispositivo
	Analisi complessiva dei risultati

	Conclusioni

