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Sommario

L’elaborato descrive lo sviluppo e la valutazione di un sistema completo per l’analisi
del passo umano basato su sensori di movimento. Il lavoro nasce dall’esigenza di
disporre di strumenti affidabili per il conteggio dei passi, un’attività centrale in ambito
fitness, sanitario e di monitoraggio dell’attività fisica. Tuttavia, la letteratura non offre
metodologie standardizzate per confrontare in modo riproducibile le prestazioni degli
algoritmi dedicati. Per affrontare questa criticità è stata realizzata un’applicazione
Android in linguaggio Kotlin che integra differenti algoritmi di rilevazione dei passi
e un’infrastruttura di testing automatizzato basata sulla riproduzione controllata
di dati sensoristici. Il sistema permette di ricreare, tramite emulatore, le stesse
condizioni registrate sul campo, consentendo una valutazione comparativa equa e
replicabile. Le prove sperimentali, condotte su differenti tipologie di camminata
e su varie posizioni del dispositivo, hanno consentito di confrontare l’accuratezza
degli algoritmi implementati con quella di applicazioni commerciali, evidenziandone
prestazioni e limiti. Il lavoro fornisce così un contributo utile alla comprensione e al
miglioramento dei sistemi di pedometria basati su smartphone.



Introduzione

In un’epoca in cui il movimento naturale è sempre più sostituito da quello
artificiale, la camminata conserva un valore centrale, non solo come attività fisica,
ma come misura del benessere e della qualità della vita. Numerosi studi scientifici, a
partire dalle linee guida dell’Organizzazione Mondiale della Sanità, evidenziano come
il mantenimento di un livello regolare dell’attività fisica riduca il rischio di malattie
e migliori le funzioni cognitive. In tale cornice, l’analisi e lo sviluppo di sistemi in
grado di monitorare e interpretare il movimento umano assumono un’importanza
crescente. Esistono numerosi articoli scientifici riguardanti lo studio di contapassi.
In [13] l’autore li suddivide secondo due modalità, in tempo reale e non in tempo
reale, e crea inoltre un’applicazione Android in linguaggio Java che implementa gli
algoritmi di tipo Real-Time. In [19], invece, vengono descritti ed implementati alcuni
algoritmi Non Real-Time nell’applicazione creata in [13]. L’elaborato in [27] descrive
un sistema per il testing di applicazioni Android sull’emulatore di Android Studio.
Lo scopo di questo elaborato è raffinare ed ampliare gli studi presentati in questi tre
lavori. Il lavoro svolto è stato suddiviso in tre differenti fasi:

1. Raccolta dati, registrazione dei valori dell’accelerometro, magnetometro e
giroscopio durante diversi tipi di camminata

2. Implementazione di una nuova applicazione Android in linguaggio Kotlin che
implementa gli algoritmi descritti in [13] e [19]

3. Confronto dei dati raccolti utilizzando l’architettura proposta in [27]

Nei capitoli successivi verranno descritti nel dettaglio la metodologia adottata, le
implementazioni software e i risultati ottenuti dal confronto sperimentale.
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Capitolo 1

I Pedometri

1.1 Storia e definizione dei pedometri

Un pedometro è un dispositivo che conta il numero di passi effettuati da una
persona. Le prime versioni erano di tipo meccanico: un esempio celebre è quello
ideato dall’orologiaio svizzero Abraham-Louis Perrelet, che utilizzava un meccanismo
a leva e sospensione per registrare i passi. Con il progresso tecnologico, i pedometri
sono divenuti dispositivi elettronici, basati su sensori di movimento in grado di
rilevare le oscillazioni del corpo umano durante la camminata. Oggi sono integrati in
sistemi più complessi, come smartphone e smartwatch, che aggiungono funzionalità
di monitoraggio avanzate, come ad esempio la misura della frequenza cardiaca, delle
calorie bruciate e della distanza percorsa. I sensori impiegati sono generalmente
di tipo MEMS (Micro-Electro-Mechanical Systems), dispositivi miniaturizzati che
combinano componenti meccaniche ed elettroniche su scala micrometrica. Dal punto
di vista fisico, trasformano stimoli meccanici in segnali elettrici digitali. I sensori
MEMS integrati negli smartphone presentano inevitabilmente fenomeni di bias
statico, rumore casuale e deriva termica, che influenzano la stima della velocità o
della posizione ottenuta tramite integrazione numerica dei dati. Nonostante ciò, la
loro precisione è generalmente sufficiente per applicazioni come il rilevamento dei
passi. I sensori maggiormente utilizzati nei pedometri moderni appartengono a tre
categorie principali:

1. Accelerometri: misurano l’accelerazione lineare del corpo, ossia la variazione
di velocità nel tempo, lungo uno o più assi (solitamente x, y, z). In un
accelerometro MEMS, una massa di prova sospesa è collegata al substrato
tramite micro-molle. Quando il dispositivo subisce un’accelerazione, la massa

1



2 1. I Pedometri

si sposta leggermente, modificando la capacità elettrica tra elettrodi fissi e
mobili. Il circuito integrato converte tale variazione di capacità in un segnale
proporzionale all’accelerazione;

2. Giroscopi: misurano la velocità angolare del dispositivo, cioè quanto rapida-
mente e in quale direzione esso ruota intorno ai propri assi, di solito nelle tre
dimensioni spaziali. Nei MEMS, il principio di funzionamento si basa sull’effet-
to Coriolis: una massa vibrante subisce una forza proporzionale alla velocità
di rotazione, producendo una deviazione misurabile che viene convertita in
segnale elettrico;

3. Magnetometri: misurano l’intensità e la direzione del campo magnetico
terrestre, fornendo informazioni sull’orientamento del dispositivo rispetto al
campo magnetico. Sono anch’essi implementati, in genere, lungo tre assi (x, y,
z).

Va precisato che la qualità dei sensori può variare sensibilmente da un dispositivo
all’altro, anche quando si tratta dello stesso tipo di sensore. Ciò dipende da fattori
come la tecnologia costruttiva, la calibrazione di fabbrica e i filtri applicati dal
sistema operativo. Tuttavia, la combinazione di più sensori consente di ottenere
una precisione complessiva sufficiente per la maggior parte delle applicazioni. In
ambito pedometrico, l’obiettivo principale è individuare un modello algoritmico
che garantisca la massima accuratezza possibile, indipendentemente dal dispositivo
utilizzato. Lo scopo di questo elaborato è confrontare diverse implementazioni — sia
commerciali sia open-source — e analizzarne i risultati per trarre conclusioni sulla
loro affidabilità e robustezza.

1.2 Stato dell’arte

Negli ultimi anni, la diffusione capillare di smartphone e dispositivi indos-
sabili dotati di sensori inerziali ha favorito un notevole incremento della ricerca
sui pedometri digitali. In letteratura sono stati proposti numerosi approcci per il
rilevamento automatico dei passi, spesso con l’obiettivo di migliorarne l’accuratezza e
l’affidabilità in condizioni d’uso reali. Nonostante i progressi tecnologici, il problema
della corretta rilevazione del passo umano resta aperto. L’accuratezza dei pedometri
dipende infatti non solo dalla qualità dei sensori, ma anche dall’algoritmo impiegato
per interpretare i segnali. Le differenze tra modelli commerciali e implementazioni
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accademiche derivano proprio da questa componente algoritmica, che rappresenta
il cuore del sistema. Le sezioni seguenti presentano un excursus delle principali
tipologie di algoritmi proposti in letteratura e un riepilogo dei lavori comparativi
più significativi, fino a introdurre l’approccio metodologico adottato in [28], che
costituisce la base sperimentale di questo elaborato.

1.2.1 Background e principi fisici

Secondo [10], un passo è definito come un evento di movimento che produce un
segnale di accelerazione con caratteristiche specifiche di ampiezza e frequenza, ovvero,
un picco positivo ed uno negativo attorno ad un punto di equilibrio. Il pattern che si
forma corrisponde al movimento del piede che si stacca dal suolo, si muove in avanti
e poi ritorna a toccare il terreno. Dal punto di vista fisico, il passo è rilevato quando
la magnitudine dell’accelerazione supera una certa soglia predefinita, che può variare
in base all’implementazione dell’algoritmo utilizzato per il rilevamento.

1.2.2 Algoritmi in letteratura

In letteratura sono stati proposti numerosi algoritmi per il conteggio dei passi.
Negli studi, i dati rilevati dai sensori dei dispositivi vengono generalmente pre-
elaborati attraverso filtri che hanno l’obiettivo di ridurre il rumore e migliorare la
qualità del segnale. Questo viene poi analizzato per identificare i pattern caratteristici
del passo umano. Gli algoritmi possono venire classificati in base a diversi criteri,
come verrà illustrato in seguito. Secondo [19] e [14], una prima distinzione può essere
fatta tra algoritmi di tipo Real-Time e Non Real-Time. Gli algoritmi Real-Time sono
progettati per elaborare i dati in tempo reale, mentre quelli Non Real-Time richiedono
dati precedenti a quelli attuali per effettuare il calcolo. Di seguito, verranno descritti
i principali approcci utilizzati in letteratura per il conteggio dei passi, in modo da
fornire un quadro generale delle tecniche più comuni.

Filtri

Lo studio [3] propone un algoritmo di filtraggio basato su un filtro passa-basso.
Lo scopo, in questo caso, è lasciare passare le componenti lente del segnale, che sono
quelle più rilevanti per il rilevamento dei passi, eliminando le componenti ad alta
frequenza che rappresentano il rumore. La soglia che determina l’attenuazione del
segnale è chiamata frequenza di taglio. Nello studio appena citato, la frequenza di
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taglio è stata impostata a 20 Hz. Viene inoltre dichiarato che le informazioni sul
movimento umano si verificano sotto la tale soglia. Molti altri studi utilizzano questo
tipo di filtro, come ad esempio [7], [9], [20], [22]. Le differenze nelle implementazioni
risiedono principalmente nelle frequenze di taglio scelte. Relativamente al filtro
passa-basso, una variante comune è il tipo Butterworth che permette di ottenere una
risposta in banda passante più piatta possibile come descritto in [11]. In particolare,
questo studio propone un filtro con frequenza di taglio adattiva, che varia in base
alla velocità della camminata.

Oltre al filtro passa-basso, è utilizzato in alternativa il filtro passa-alto, come
in [1]. A differenza del primo, questo filtro lascia passare le componenti ad alta
frequenza del segnale, eliminando quelle a bassa frequenza. L’obiettivo è rimuo-
vere le componenti statiche del segnale, come la gravità, che possono influenzare
negativamente il rilevamento dei passi.

Un alternativa ai precedenti, presente frequentemente in letteratura, è il filtro
passa-banda. Questo lascia passare solo le componenti del segnale comprese tra due
frequenze di taglio, eliminando sia le componenti a bassa che ad alta frequenza. Un
esempio di questo approccio è lo studio [21], dove viene usato un filtro passa-banda di
tipo butterworth per rimuovere sia le componenti lente che quelle veloci del segnale.

Un ulteriore approccio, spesso descritto negli articoli analizzati, è l’uso della
matrice di rotazione, come lo studio [29], [8], [26] o [18]. Riguardo al funzionamento
del filtro, questi articoli utilizzano accelerometro, magnetometro e giroscopio in modo
da calcolare una matrice che proietta i dati nel sistema di riferimento del mondo
reale ed ottenere un segnale più pulito. Un altro studio analizzato [15] propone un
approccio differente, necessita soltanto dei dati dell’accelerometro ed introduce una
trasformazione delle coordinate per rendere il segnale indipendente dall’orientamento
del dispositivo.

L’ultimo tipo di filtro preso in considerazione come tra i più comuni in letteratura
è il filtro di Kalman, viene utilizzato ad esempio in [25] per ricostruire i passi mancanti
che vengono nascosti a causa dell’oscillazione del braccio. In generale, il filtro di
Kalman è un algoritmo ricorsivo che stima lo stato interno di un sistema dinamico a
partire da una serie di misurazioni rumorose.

Rilevamento dei passi

Si possono classificare diversi approcci per il rilevamento dei passi in base
al dominio di analisi del segnale. Un primo gruppo di metodi analizza il segnale
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nel dominio del tempo. Indubbiamente, l’approccio più comune in questo caso,
ed in generale per il rilevamento dei passi, è l’individuazione dei picchi nel segnale
dell’accelerometro. Questo metodo si basa sull’osservazione che durante la camminata,
l’accelerazione verticale del corpo umano mostra un pattern caratteristico di picchi
positivi e negativi. La maggioranza degli studi analizzati utilizza questo metodo,
come ad esempio [3], [15] o [1]. Esistono tuttavia diverse varianti di questo approccio.
Ad esempion in [9] viene proposto un algoritmo che utilizza l’intersezione dei picchi
con l’asse delle ascisse, ovvero utilizza il giroscopio per individuare i punti in cui il
segnale angolare cambia segno. Ogni volta che il giroscopio cambia segno si considera
il passo iniziato o terminato.

Un diverso approccio è l’analisi del dominio della frequenza. In questo caso,
il segnale viene di solito trasformato in frequenza utilizzando la Trasformata di
Fourier (FFT). Un esempio di questo approccio lo abbiamo in [21] dove la FFT
viene utilizzata per individuare le frequenze dominanti del passo. Questo articolo
descrive inoltre un algoritmo denominato autocorrelazione, che calcola la correlazione
del segnale con sè stesso, ovvero dopo esser filtrato sul segnale viene calcolata una
funzione che misura la somiglianza del segnale con sè stesso nel tempo. I picchi
periodici dell’autocorrelazione corrispondono ai passi.

Gli algoritmi più moderni, invece, utilizzano tecniche di machine learning per il
rilevamento dei passi. In questo approccio, non vengono usate soglie o regole fisse, ma
il sistema viene addestrato su un insieme di dati etichettati per imparare a riconoscere
i pattern caratteristici del passo umano. Esistono già applicazioni commerciali che
utilizzano questo approccio, come Google Fit che rileva automaticamente l’attività
svolta ed elabora i dati dei sensori tramite modelli di machine learning.

1.2.3 Lavori comparativi

I sensori integrati negli smartphone sono tendenzialmente abbastanza precisi da
permettere il rilevamento dei passi attraverso algoritmi come quelli precedentemente
descritti. Il nodo cruciale risiede però nella scelta dell’algoritmo più adatto per
interpretare i dati. A tal proposito, sono stati condotti numerosi studi comparativi
per valutare l’accuratezza di diversi algoritmi di conteggio dei passi, con l’obiettivo
di identificare le soluzioni più efficaci e robuste e guidare verso lo sviluppo di metodi
sempre più performanti. I tipi di confronto presenti negli articoli analizzati sono di
diversi tipi. In [4] viene valutata l’influenza della posizione del dispositivo e della
velocità di camminata sul conteggio dei passi, utilizzando quattro diversi tipi di
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dispositivi commerciali. Velocità e passo sono regolati con metronomo e cordicella
alle caviglie, l’ambiente è controllato su percorso a terra. I partecipanti vengono
ripresi in modo da poter contare i passi manualmente e confrontarli con quelli
rilevati dai dispositivi. In [24] viene analizzata l’accuratezza del rilevamento dei
passi e del riconoscimento delle attività di sette monitor di attività fisica, in vari
contesti di utilizzo, come camminata indoor, outdoor, scale, viene anche cambiata la
velocità di camminata. Lo studio [12] valuta l’accuratezza di tre app di pedometria su
smartphone Android. I test vengono effettuati su tapis roulant alternando le posizioni
del dispositivo (tasca, fascia alla vita, braccio) e confrontati con i risultati in "free-
living" dei partecipanti. Per il conteggio in laboratorio, è un ricercatore che si occupa
del conteggio manuale dei passi. Le tre app vengono eseguite in contemporanea sullo
stesso dispositivo in modo che il riferimento della camminata sia identico per tutte e
tre. Generalmente, gli studi comprendono un numero limitato alle poche decine di
partecipanti, il più solido tra i precedenti rimane quest’ultimo citato con 48 soggetti
coinvolti. Come viene evidenziato infatti in [23], su 25 studi analizzati, la media è di
circa 20 partecipanti per studio. Per quanto riguarda le modalità di confronto fra i
diversi pedometri, l’approccio è simile. Viene effettuato un conteggio manuale dei
passi, che funge da riferimento per valutare l’accuratezza dei dispositivi; le camminate
vengono svolte in ambienti controllati ed i risultati vengono confrontati. Un approccio
alternativo è quello proposto in [28], che costituisce la base sperimentale di questo
elaborato. In questo studio, viene sviluppata un’architettura di testing automatizzato
per il confronto di diverse applicazioni Android di pedometria tramite emulatore, sia
commerciali sia open-source. In [14] viene inoltre effettuato un confronto tra diversi
algoritmi implementati in un’applicazione Android open-source, con la peculiarità
di utilizzare dati registrati in precedenza per il confronto, piuttosto che camminate
effettuate in tempo reale.

1.2.4 Motivazioni e obiettivi

La ricerca e la validazione di algoritmi per il conteggio dei passi rappresentano
un nodo cruciale nello sviluppo di strumenti di monitoraggio dell’attività fisica affida-
bili. Le procedure sperimentali tradizionali si basano su sessioni ripetute di cammino
in condizioni controllate. Nonostante l’adozione di protocolli rigorosi, ogni prova resta
soggetta a variazioni intrinseche: differenze nella cadenza, nella lunghezza del passo,
nella posizione del dispositivo o nella stabilità del segnale, che introducono rumore
sperimentale e limitano la capacità di isolare il contributo dell’algoritmo rispetto a
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quello della variabilità umana. Inoltre, la raccolta di dati reali è onerosa dal punto di
vista temporale e logistico: per testare efficacemente molte configurazioni, parametri
e versioni di algoritmo servirebbero molteplici ripetizioni per ciascuna combinazione,
con costi sperimentali rapidamente insostenibili. Per affrontare queste limitazioni,
il lavoro qui presentato propone e adotta un meccanismo di sensor injection: una
pipeline che registra tracce grezze dei sensori (accelerometro, giroscopio, magne-
tometro e timestamp associati) durante camminate reali e consente di riprodurle
su emulatori Android. Questo approccio trasforma sequenze di movimento reali
in dataset riutilizzabili, somministrabili a molteplici implementazioni di algoritmi
di individuazione dei passi. Riprodurre lo stesso segnale consente di confrontare
algoritmi sulla base di uno stesso input di riferimento, eliminando la componente di
variazione dovuta alla ripetizione delle prove dal vivo e permettendo di attribuire
con maggiore certezza le differenze di output alle scelte progettuali degli algoritmi
stessi. Gli obiettivi principali dell’approccio sono tre:

1. aumentare il rigore metodologico dei confronti: usando dati identici per ogni
test, si migliora la validità interna degli esperimenti e si riduce il rischio che le
conclusioni vengano contaminate da differenze nelle esecuzioni;

2. ampliare la scalabilità sperimentale: l’automazione della riproduzione dei
segnali permette di eseguire rapidamente grandi batterie di test senza la
necessità di riunire soggetti o ripetere camminate reali ogni volta;

3. favorire la riproducibilità: i dataset registrati possono essere documentati, ver-
sionati e condivisi, offrendo alla comunità la possibilità di replicare valutazioni
e confronti con i medesimi input originali.

Implementando questo metodo l’obiettivo è quindi accelerare e rendere più
rigorose le valutazioni comparative degli algoritmi contapassi, ridurre il carico spe-
rimentale e aumentare la solidità delle conclusioni ottenute, contribuendo così allo
sviluppo di soluzioni più accurate e affidabili per il monitoraggio dell’attività fisica.



Capitolo 2

Architettura del progetto

In questo capitolo viene presentata l’architettura generale del sistema svilup-
pato, descrivendone i principali componenti e le loro interazioni ad un livello alto
di astrazione. L’obiettivo è fornire una visione d’insieme dell’ecosistema sperimen-
tale realizzato per l’analisi e la validazione di algoritmi di rilevamento dei passi
pedonali, rimandando ai capitoli successivi la trattazione dettagliata delle singole
implementazioni. L’infrastruttura complessiva è articolata in tre moduli principali,
che cooperano tra loro per consentire la raccolta, la riproduzione e l’analisi dei dati
sensoristici:

1. Applicazione Android StepLab, che integra diversi algoritmi di conteggio
dei passi;

2. Applicazione Android MotionTracker, utilizzata per registrare i segnali
grezzi provenienti dai sensori durante camminate reali e salvarli online per la
successiva elaborazione;

3. Iniezione dei dati, che consente di riprodurre negli emulatori Android i
tracciati registrati, simulando in modo controllato le camminate e permettendo
di confrontare le prestazioni di diverse applicazioni di pedometria.

Ciascun modulo svolge un ruolo distinto ma complementare, contribuendo alla
creazione di un ambiente sperimentale riproducibile per lo studio comparativo de-
gli algoritmi di step detection. Nei paragrafi successivi verrà descritto come tali
componenti si integrano e quali tecnologie ne supportano il funzionamento.

8
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2.1 Panoramica dell’architettura

Nel sistema concepito, ogni modulo interagisce con gli altri in maniera com-
plementare per realizzare un flusso di lavoro coerente. Il punto di partenza è
l’applicazione MotionTracker, che viene eseguita su dispositivi reali per registrare
i dati grezzi dei sensori durante camminate effettuate da volontari. Questi hanno
installato l’app sul proprio smartphone personale oppure, nel caso non fossero in
possesso di un dispositivo Android, viene fornito loro uno smartphone dedicato.
I dati raccolti vengono salvati su uno spazio di archiviazione online, accessibile
successivamente per l’elaborazione. Le sessioni di registrazione sono state condotte
su camminate reali in ambienti esterni (parchi, strade cittadine), seguendo un pro-
tocollo controllato per garantire l’uniformità dei dati raccolti. Ogni registrazione
corrisponde a una camminata di 50 passi, conteggiati manualmente per fungere da
riferimento. I dati raccolti vengono poi utilizzati nel modulo di Iniezione dei dati,
che consente di riprodurre le tracce registrate. Viene utilizzato un emulatore Android,
parte integrante di Android Studio, che permette di simulare il funzionamento di
un dispositivo reale. Lo script di iniezione carica i dati dallo spazio di archiviazione
online, Firebase Storage, e li invia all’emulatore, che li interpreta come se fossero
stati acquisiti in tempo reale dai sensori. In questo modo, è possibile testare diverse
applicazioni di pedometria in condizioni identiche, utilizzando gli stessi segnali di
input. Tra le applicazioni testate, vi è StepLab. Questa integra diversi algoritmi di
conteggio dei passi, implementati in linguaggio Kotlin, e consente di visualizzare i
risultati in tempo reale. L’applicazione è stata sviluppata appositamente per questo
progetto, con l’obiettivo di confrontare le prestazioni degli algoritmi open-source con
quelle di applicazioni commerciali, utilizzando i dati iniettati dall’emulatore. Nelle
sezioni successive verranno descritti ad alto livello i singoli moduli che compongono
l’architettura.



10 2. Architettura del progetto

Figura 2.1: Architettura del sistema: diagramma dei componenti e flusso dei dati.
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2.2 Contributi

L’applicazione Android StepLab nasce prendendo come riferimento le imple-
mentazioni in Java presentate in [13, 19], utilizzate esclusivamente come base di
requisiti e catalogo degli algoritmi da considerare. La versione qui presentata è stata
riscritta da zero in Kotlin e mantenendo le caratteristiche comuni e non funzionali dei
lavori precedenti, ma con un’implementazione nuova e indipendente, introducendo
correzioni, migliorie e funzionalità aggiuntive specifiche per questo progetto. Per
quanto riguarda gli algoritmi, StepLab implementa tutte le famiglie considerate
in [13, 19], introducendo modifiche e ottimizzazioni ove necessario. In particolare,
invece dell’algoritmo denominato “autocorrelazione” in [19] (implementato in Matlab
e non integrato nell’app), StepLab integra l’algoritmo di autocorrelazione descritto in
[21]. Per quanto riguarda l’applicazione MotionTracker, al momento dell’inizio del
progetto era già disponibile in [5]. Tuttavia, sono state apportate alcune modifiche
per adattarla alle esigenze specifiche di questo lavoro, come l’integrazione con Firebase
Storage utilizzato per la memorizzazione dei dati e l’ottimizzazione delle funzionalità
di registrazione per garantire la coerenza e l’affidabilità dei dati raccolti, oltre a
correzioni di bug che non permettevano un corretto funzionamento dell’applicazione.

2.3 StepLab

StepLab è un’applicazione Android completa per sperimentare e valutare
algoritmi di rilevamento dei passi pedonali. Consente di registrare dati dei sensori,
eseguire il rilevamento in tempo reale con algoritmi e opzioni di filtraggio configurabili
e confrontare le prestazioni di diverse configurazioni su test registrati in precedenza.
L’applicazione è pensata principalmente per la ricerca e la didattica, permettendo il
confronto tra diversi tipi di configurazioni e visualizzando l’output di queste.

2.3.1 Ruolo nel sistema

Nel contesto dell’architettura complessiva di questo progetto, StepLab svolge
una duplice funzione:

1. Implementazione e confronto di algoritmi open-source: acquisizione di
tracce sensoristiche ed applicazione di algoritmi di step detection che offrono
un’alternativa alle soluzioni commerciali, permettendo il confronto diretto tra
implementazioni open-source e proprietarie;
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2. Strumento di validazione del sistema di iniezione: come sarà illustrato
nei capitoli successivi, StepLab offre funzionalità per l’analisi delle registrazioni
di camminate, consentendo di valutare l’accuratezza del sistema di iniezione dei
dati, ovvero verificare le corrispondenze tra i risultati ottenuti con l’architettura
descritta in questo elaborato e quelli che si otterrebbero senza di essa.

2.3.2 Materiali e tecnologie utilizzate

L’applicazione è sviluppata interamente in Kotlin e la build è gestita tramite
Gradle Kotlin DSL, sfruttando un catalogo versioni centralizzato per la gestione
delle dipendenze.

L’interfaccia utente è realizzata con layout XML tradizionali, supportati
da AppCompat e Material Components. Questa scelta, preferita a Jetpack
Compose, assicura maggiore compatibilità con tutte le versioni di Android suppor-
tate e con le librerie preesistenti, mantenendo una netta separazione tra logica e
presentazione e garantendo performance prevedibili nelle sezioni a tempo reale. La
rappresentazione grafica dei dati in tempo reale avviene tramite MPAndroidChart,
una potente libreria open source per grafici interattivi su Android. La persistenza
è affidata al framework Room ORM e supporta migrazioni di schema additive,
garantendo l’evoluzione del database senza perdita di dati utente. L’elaborazione
del segnale utilizza librerie specializzate: JTransforms per la FFT (Fast Fourier
Transformation) necessaria all’algoritmo di autocorrelazione, e iirj per i filtri digitali
IIR (Infinite Impulse Response) di tipo Butterworth.

2.3.3 Architettura interna

L’applicazione è organizzata in quattro package funzionali, ciascuno con una
responsabilità ben definita che contribuisce alla modularità e manutenibilità del
codice:

Package UI Gestisce l’intero livello di presentazione e interazione con l’utente.
Include le schermate per la configurazione degli algoritmi, la registrazione dei test,
l’esecuzione del pedometro in tempo reale e la visualizzazione dei confronti tra
configurazioni. L’interfaccia è realizzata con layout XML tradizionali, garantendo
compatibilità e separazione tra logica e presentazione.
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Package Algorithms Costituisce il nucleo computazionale dell’applicazione. Im-
plementa gli algoritmi di step detection, i filtri digitali per il condizionamento del
segnale e le operazioni matematiche di supporto. Gestisce sia l’elaborazione in tempo
reale che quella batch su tracce registrate.

Package Data Si occupa della persistenza dei dati attraverso il framework Room.
Memorizza i test acquisiti con i relativi metadati (frequenza di campionamento,
durata, passi reali) e gli snapshot delle configurazioni utilizzate nei confronti.

Package Utils Fornisce funzionalità di supporto per la conversione tra formati
(JSON e CSV), permettendo l’import di tracce da fonti esterne e l’export dei dati
registrati per analisi successive. Garantisce la compatibilità con i file generati da
MotionTracker [5].

2.3.4 Principali funzionalità

L’applicazione offre un ambiente per la sperimentazione e la valutazione degli
algoritmi di rilevamento dei passi. Le principali funzionalità possono essere riassunte
come segue:

• Raccolta e gestione dei test: acquisizione e archiviazione di tracce sensori-
stiche.

• Configurazione ed esecuzione degli algoritmi: possibilità di selezionare
filtri e strategie di rilevamento, eseguire analisi in tempo reale e visualizzare
graficamente l’andamento dei segnali.

• Confronto e analisi dei risultati: valutazione comparativa delle diverse
configurazioni di algoritmo mediante grafici sovrapposti.

• Interoperabilità: import ed export dei dati in formati standard (JSON, CSV),
garantendo la compatibilità con i tracciati raccolti tramite MotionTracker.

2.4 MotionTracker

MotionTracker [5] è un’applicazione open-source per la registrazione dei dati
di movimento, progettata per funzionare con smartphone Android ma anche con
dispositivi bluetooth.
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2.4.1 Ruolo nel sistema

Nel contesto dell’architettura complessiva di questo progetto, MotionTracker
svolge il ruolo di strumento di acquisizione dati. Viene utilizzata per registrare
i segnali grezzi provenienti dai sensori (in particolare accelerometro, giroscopio e
magnetometro) durante camminate reali. I dati raccolti vengono salvati su Firebase
Storage, accessibile successivamente per la riproduzione tramite il modulo di iniezione
dei dati. In questo modo, MotionTracker fornisce le tracce di movimento necessarie
per testare e confrontare le prestazioni delle diverse applicazioni di pedometria.

2.4.2 Materiali e tecnologie utilizzate

MotionTracker è sviluppata in Kotlin con build system basato su Gradle
Kotlin DSL. L’interfaccia utente adotta Jetpack Compose per la creazione
dichiarativa delle schermate e i Material 3 Components per garantire coerenza
visiva con le linee guida Android moderne. La navigazione tra le schermate è gestita
tramite Navigation Compose, mentre la gestione dello stato dell’interfaccia si
avvale di ViewModel e LiveData. L’iniezione delle dipendenze è affidata a Dagger
Hilt, che permette una configurazione modulare e testabile dei componenti applicativi.
Per la persistenza remota e la sincronizzazione delle tracce registrate, l’applicazione
si integra con i servizi Firebase Storage (archiviazione file) e Firebase Realtime
Database. L’applicazione supporta inoltre la connessione a dispositivi esterni
tramite Bluetooth Low Energy, utilizzando la libreria RxAndroidBle per la
gestione reattiva delle comunicazioni BLE e la libreria proprietaria mdslib per
l’integrazione con sensori Movesense. Questi ultimi sono dispositivi indossabili,
sviluppati da Suunto, progettati appositamente per la rilevazione accurata dei dati
inerziali. Combina nove assi, tre per ogni sensore: accelerometro, giroscopio e
magnetometro. La piattaforma Movesense è programmabile e include un SDK che
consente di personalizzare il comportamento dei sensori e di accedere ai dati registrati
tramite API dedicate.

2.4.3 Architettura interna

L’applicazione è organizzata in package funzionali che separano le diverse
responsabilità:
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Package screen Contiene le schermate dell’interfaccia utente realizzate con Jetpack
Compose. Include i composable per la registrazione dei dati, la gestione del ciclo di
vita della registrazione e i dialoghi di conferma. Integra la logica di navigazione e la
comunicazione con il servizio di monitoraggio in background.

Package sensor Incapsula lo strato di acquisizione dei segnali. Normalizza le
letture hardware e le consegna al resto del sistema.

Package data Realizza il modello dati dell’applicazione, funge da strato di
astrazione tra l’acquisizione e la persistenza.

Package navigation Definisce le destinazioni di navigazione dell’applicazione e
coordina il flusso tra le diverse schermate attraverso Navigation Compose.

Package bluetooth Implementa lo strato di comunicazione con dispositivi ester-
ni tramite Bluetooth dell’applicazione, responsabile della scoperta e gestione dei
dispositivi esterni.

Package di Definisce i moduli di iniezione delle dipendenze utilizzando Dagger
Hilt, fornisce i contesti e i componenti condivisi tra i diversi layer, mantenendo le
dipendenze disaccopiate e riusabili.

2.4.4 Principali funzionalità

Lato utente, l’applicazione offre principalmente funzionalità relative alla regi-
strazione dei dati di movimento:

• Configurazione camminata: mostra un form per inserire i metadati del-
la camminata (età, altezza, peso, sesso, posizione del dispositivo, tipo di
camminata) prima di iniziare la registrazione.

• Registrazione dati sensoristici: acquisizione in tempo reale dei dati prove-
nienti dai sensori integrati dello smartphone o da dispositivi esterni collegati
via Bluetooth. Mostra un dialog che invita l’utente a effettuare 50 passi e
permette di terminare la registrazione.

• Associazione Bluetooth: connessione a sensori esterni che permettono di
ampliare le possibilità di raccolta informazioni oltre i sensori integrati.
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2.5 Iniezione dei dati

A differenza delle altre componenti del sistema, il modulo di iniezione dei dati
non è un’applicazione Android, ma uno script javascript che viene eseguito su un
computer host per interagire con l’emulatore Android.

2.5.1 Ruolo nel sistema

Il modulo di iniezione dei dati svolge il ruolo cruciale di ponte tra le tracce
registrate con MotionTracker e le applicazioni di pedometria eseguite nell’emulatore
Android (inclusa StepLab). Pertanto, il suo ruolo nell’architettura complessiva è
fondamentale per consentire la riproduzione controllata delle camminate registrate.

2.5.2 Materiali e tecnologie utilizzate

Il modulo di iniezione è sviluppato in Node.js e utilizza il framework Appium
con driver UiAutomator2 per comunicare con gli emulatori Android (AVD) tramite
la console sensori. L’automazione è realizzata con la libreria WebdriverIO, che con-
sente di inviare comandi come sensor set acceleration/gyroscope/magnetic-field

per riprodurre fedelmente le tracce raccolte. L’accesso ai file CSV avviene sia in locale
sia da Firebase Storage, grazie al Firebase Admin SDK, mentre dotenv gestisce
la configurazione tramite variabili d’ambiente e csv-parse si occupa del parsing dei
dati. L’ambiente richiede inoltre un’installazione di Android SDK/Emulator, gli
APK delle app target e l’avvio di Appium con i permessi necessari.

2.5.3 Flusso di esecuzione

Lo script di iniezione esegue in modo automatizzato la riproduzione delle tracce
sensoristiche registrate da MotionTracker sugli emulatori Android. Dopo l’avvio, il
sistema consente di selezionare la sorgente dei dati (file locale o Firebase Storage) e
scarica automaticamente i file CSV necessari. Successivamente, se necessario, Appium
e WebdriverIO gestiscono le interazioni con l’interfaccia dell’app target per prepararla
alla ricezione dei dati. Una volta pronta, lo script legge i dati sensoristici dal file
CSV e li invia all’emulatore. La riproduzione avviene in tempo reale, mantenendo la
stessa temporizzazione dei dati originali. Al termine della riproduzione di un file, lo
script interagisce con l’utente. Viene data la possibilità di salvare i risultati ottenuti
dall’applicazione (ad esempio i conteggi dei passi), procedere con la riproduzione
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di un nuovo file oppure terminare il processo. In questo modo è stato possibile
automatizzare (seppur parzialmente) la pipeline di esecuzione dei test.

Modulo Piattaforma Ruolo principale

StepLab Android (Kotlin) Analisi e confronto di algoritmi di step
detection

MotionTracker Android (Kotlin) Registrazione dei dati sensoristici e sal-
vataggio su Firebase

Iniezione dati Node.js / Appium Riproduzione controllata delle tracce su
emulatore

Tabella 2.1: Sintesi dei moduli software del sistema



Capitolo 3

Implementazione di StepLab

In questo capitolo viene presentata l’implementazione dettagliata dell’applica-
zione Android StepLab, descritta ad alto livello nel Capitolo 2, e resa disponibile
open source in [6]. Vengono illustrati i componenti software, le logiche operative,
i flussi applicativi e le principali scelte progettuali adottate durante lo sviluppo.
L’applicazione è organizzata in quattro package principali, come già introdotto nel
Capitolo 2. In questa sezione se ne approfondisce la struttura interna.

3.1 UI

Questo package gestisce l’interfaccia utente e l’interazione con l’utente. Con-
tiene le activity e i fragment per le diverse schermate. Questi sono organizzati in
sottopackage, separati in base alle loro responsabilità in modo da rendere il codice il
più coeso possibile.

3.1.1 Main

Il package main contiene due classi fondamentali per l’avvio e la gestione
dell’applicazione: StepLabApplication e MainActivity.

La prima rappresenta il punto di ingresso dell’intera applicazione. La sua
responsabilità principale è l’inizializzazione e la gestione del database Room.

Nel metodo onCreate(), eseguito una sola volta all’avvio dell’applicazione prima
di qualsiasi activity, viene creata l’istanza del database tests.db utilizzando il
pattern Singleton. Questa scelta architetturale garantisce che:

• il database venga inizializzato una sola volta durante l’intero ciclo di vita
dell’applicazione;

18
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• si evitino istanze multiple e potenziali race condition;

• l’accesso al database sia disponibile da qualsiasi punto dell’applicazione tramite
StepLabApplication.database.

Durante l’inizializzazione vengono registrate le migrazioni del database, per-
mettendo l’evoluzione dello schema senza perdita di dati utente. Questa architettura
separa la logica di inizializzazione globale dalla logica UI delle activity, migliorando
la manutenibilità e la testabilità del codice.

La MainActivity funge da hub centrale dell’applicazione. All’avvio, verifica
in una coroutine su thread IO se esistono dati salvati, abilitando o disabilitando
di conseguenza le funzioni che ne dipendono (confronto, export e visualizzazione
salvataggi).

La navigazione è implementata tramite intent espliciti verso le seguenti scher-
mate:

• contapassi live;

• registrazione di un nuovo test;

• confronto configurazioni;

• export dei dati;

• visualizzazione dei salvataggi di confronti.

La funzionalità più articolata presente in questa activity è l’import di file esterni.
Non dispone di una schermata dedicata, ma viene avviata tramite un pulsante nella
MainActivity. Il flusso operativo è il seguente:

1. Viene lanciato un ActivityResultLauncher che apre il file picker Android,
utilizzando il contratto GetMultipleContents() per permettere la selezione
di più file contemporaneamente.

2. Un dialog non cancellabile tiene informato l’utente sul progresso dell’importa-
zione.

3. Per ogni file selezionato, l’intero contenuto viene letto come stringa e processato
in base al formato:

• se il file ha estensione .csv, il contenuto viene convertito in formato JSON
tramite la classe di utilità CsvToJsonConverter;
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• altrimenti, viene tentato direttamente il parsing del contenuto come JSON.

4. Una copia del JSON viene salvata nello storage interno con un timestamp come
nome del file.

5. I metadati del test vengono inseriti nel database Room.

6. Al termine, il dialog mostra il riepilogo dell’importazione con il numero di file
importati con successo ed eventuali errori.

Figura 3.1: Schermata principale dell’applicazione StepLab.
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3.1.2 Configuration

La cartella configuration raccoglie i componenti UI dedicati alla selezione
degli elementi da utilizzare per il conteggio dei passi. Ciò comprende la costruzione
della configurazione, ovvero la combinazione di filtri digitali e algoritmi di ricono-
scimento dei passi, e la scelta dei test pre-registrati da analizzare. A causa della
dipendenza con tutti i file presenti in questo package, è stata qui localizzata anche
l’activity dedicata al confronto delle configurazioni.

Andando nello specifico dell’implementazione, un elemento chiave dell’applica-
zione è EnterSettingsFragment, che è il form centralizzato per tradurre le scelte
dell’utente in una configurazione concreta. Viene riutilizzato sia nella schermata di
live testing sia in quella di confronto configurazioni, offrendo un’interfaccia coerente
per la personalizzazione dell’analisi. Viene passato come argomento, dall’activity
che contiene il fragment, un oggetto algorithms.Configuration che rappresenta la
configurazione corrente. Il riferimento è condiviso tra activity e fragment, permetten-
do a quest’ultimo di modificare direttamente l’oggetto in memoria. Al salvataggio,
l’activity può recuperare la configurazione aggiornata e procedere con l’esecuzione
del pedometro o del confronto. Il fragment supporta due scenari distinti:

• Live testing: disabilita in UI l’autocorrelazione poiché non compatibile e
mostra la frequenza di campionamento alla quale si vogliono registrare i sensori.

• Comparazione offline: tutti gli algoritmi sono disponibili ma la frequenza
di campionamento non è modificabile, in quanto dipende dal test selezionato.

Il tipo di configurazione creata viene identificata in maniera automatica:

• Non real-time se è selezionata almeno un’opzione fra Autocorrelation,
False step detection, Butterworth filter o Time filtering.

• Real-time in tutti gli altri casi.

L’indicatore di modalità viene aggiornato di conseguenza. L’autocorrelazione è
trattata come modalità speciale ed esclusiva: quando selezionata, azzera tutte le
altre scelte; alla deselezione, ripristina immediatamente la configurazione predefinita
standard. Questa modalità segue una pipeline completamente separata, incompatibile
con gli altri algoritmi. Viene dunque utilizzato il pattern Model View Controller,
scelto per la semplicità del caso. Questa struttura è stata creata per permettere il
riutilizzo del fragment in diverse activity e garantire la solidità e la correttezza degli
algoritmi applicati alle varie modalità.
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Figura 3.2: Schermata di configurazione degli algoritmi in StepLab.

Il package contiene anche due activity utilizzate soltanto per la costruzione
della comparazione nel caso in cui si voglia confrontare in modalità non live:

• SelectConfigurationsToCompare funge da contenitore per il fragment di con-
figurazione e gestisce la memorizzazione delle configurazioni create dall’utente.
Dopo aver creato un oggetto Configuration che viene modificato dal frag-
ment, permette tramite un pulsante di aggiungerlo ad una lista interna. Viene
istanziato poi un nuovo fragment con una configurazione vuota per permettere
la creazione di una nuova configurazione. Possono esserne aggiunte fino a sei in
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totale. Al termine, viene avviata l’activity di selezione del test da utilizzare per
il confronto passando come extra nell’intent la lista delle configurazioni create.

• SelectTest è una Activity intermedia che permette all’utente di selezionare il
test registrato su cui effettuare il confronto delle configurazioni appena create.
Carica i test salvati utilizzando una coroutine su thread IO e li mostra in una
RecyclerView. A tal proposito, viene utilizzato un AdapterForTestCard per
popolare la lista. Al click su un elemento, viene avviata l’activity di confronto
passando come extra nell’intent il test selezionato e la lista delle configurazioni.

ConfigurationsComparison è l’Activity finale del workflow di confronto con-
figurazioni. Nel suo flusso di esecuzione, le prime operazioni che svolge sono:

1. caricare il test dal database cercandolo tramite l’ID passato

2. inizializzare le view e il grafico per la visualizzazione dei dati della libreria [16]

In seguito viene disegnata sul grafico, in rosso e sull’asse delle ordinate, la magnitudi-
ne dell’accelerazione indicata nel test registrato, effettuando un ciclo su tutte le entry
ordinate nel file JSON del test. In questo modo è dunque possibile visualizzare i dati
grezzi registrati dai sensori sul grafico. Il passo successivo che l’Activity svolge è prepa-
rare la lista delle Card che saranno inserite per mostrare i risultati delle configurazioni
processate. Viene istanziato un AdapterForConfigurationsCard e viene associato
alla RecyclerView dedicata. Arriva poi la core logic di ConfigurationsComparison.
Esegue un thread in background che si occupa di processare tutte le configurazioni.
Mentre l’operazione è in svolgimento nasconde la RecyclerView e mostra una barra di
progresso. Ad ogni configurazione viene assegnato un colore e ognuna di queste viene
incapsulata in un’istanza della classe interna ConfigurationContext. Quest’ultima
utilizza il pattern GOF Facade per semplificare l’utilizzo degli algoritmi, delegando
le operazioni da svolgere alla classe StepDetectionProcessor, di cui discuteremo
più avanti, ed esponendo al resto dell’activity i metodi semplificati. Il flusso subisce
poi una biforcazione:

• utilizza context.processAutocorrelationAlgorithm() se l’algoritmo di autocorrela-
zione è attivo;

• negli altri casi utilizza context.myOnSensorChanged().

In entrambe le opzioni, viene effettuata una delega al processore che restituisce i
passi individuati. La scelta di dividere il flusso in un blocco condizionale è dovuta
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dal fatto che, come accennato in precedenza, l’algoritmo di autocorrelazione segue
una pipeline separata ed è stato dunque necessario separarlo da tutte le altre opzioni.
Nel primo caso viene passato il file JSON completo del test al processore, mentre nel
secondo caso vengono simulati i sensori passando i valori letti dal file uno ad uno.
Una volta che le configurazioni sono state processate, viene aggiornata l’interfaccia
utente. Per ogni configurazione processata, sul grafico vengono disegnati e collegati
con una linea i punti in cui i passi sono stati rilevati. Infine la RecyclerView viene
resa visibile e vengono aggiunte le Cards che indicano la configurazione processata
ed il relativo colore sul grafico. Il disegno dei punti e linee sul grafico avviene
aggiungendo a questo degli oggetti di tipo Entry, specifici della libreria [16]. Per la
magnitudine grezza, vengono creati dinamicamente per ogni campione del file JSON,
mentre per i passi rilevanti vengono creati e memorizzati dal processore algoritmico
centrale e recupearti dal contesto di configurazione. Un’ulteriore funzionalità resa
disponibile in ConfigurationsComparison è il salvataggio della comparazione che
si sta visualizzando. Viene richiesto un nome univoco tramite un dialog, dopodichè
su una coroutine serializza le configurazioni e le memorizza nella entity dedicata nel
database.
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Figura 3.3: Schermata di confronto delle configurazioni in StepLab.

3.1.3 Test

Questo sottopackage contiene i componenti UI dedicati alla registrazione dei
test ed alla gestione di questi. Qui viene definita anche la schermata per la visua-
lizzazione live del pedometro, l’activity LiveTesting. Questa utilizza il fragment
di configurazione descritto in precedenza per permettere la selezione degli algo-
ritmi. La creazione della configurazione avviene nello stesso modo descritto per
la modalità non live. Tuttavia, viene esposto all’utente soltanto un pulsante per
avviare il pedometro che, quando premuto, sostituisce il fragment corrente con un
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PedometerRunningFragment che mostra il numero di passi individuati ed un grafico
per la visualizzazione della magnitudo dell’accelerazione. Anche il pulsante viene
sostituito con un pulsante di stop che interrompe il pedometro e ripristina la UI
precedente. Dunque viene implementato in questa activty una sorta di State Pattern
nella quale lo stato è rappresentato dalla modalità di visualizzazione (configurazione
o pedometro in esecuzione). Il fragment di esecuzione del pedometro si occupa di
registrare i sensori alla frequenza di campionamento specificata dall’utente e de-
registrarli. Quando rilevano un nuovo campione, delegano al processore algoritmico
centrale la gestione del dato, in maniera analoga alla pipeline di confronto delle
configurazioni. Vengono ritornate varie informazioni, tra cui se è stato rilevato un
passo e se il dato passato è un evento accelerometrico. Se il primo caso è affermativo,
il contatore dei passi viene incrementato e la UI aggiornata. Se il secondo caso è
affermativo, viene aggiunto un nuovo punto al grafico per la visualizzazione della
magnitudo dell’accelerazione filtrata in base alla configurazione utilizzata.
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Figura 3.4: Schermata di live testing in StepLab.

Un ulteriore funzionalità inclusa in questa cartella è la registrazione di un
nuovo test. Viene utilizzata l’activity NewTest che registra i sensori e aggiorna,
analogamente a ciò che succede in live testing, un grafico quando vengono rilevati
eventi accelerometrici. I sensori sono registrati con SENSOR DELAY GAME,
poichè si tratta di un buon compromesso tra consumo energetico, frequenza di
campionamento e fedeltà del segnale. Per ogni evento rilevato dai sensori, costruisce
un json object e lo inserisce in una mappa indicizzata da time stamp. I sensori
utilizzati sono l’accelerometro, il magnetometro, il sensore di rotazione e di gravità.
Se l’evento è accelerometrico, viene anche calcolata ed inserita nella mappa anche
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la magnitudo dell’accelerazione, utilizzata anche per il disegno del grafico. Quando
si ferma la registrazione, si apre un dialog e vengono richiesti alcuni metadati
opzionali (numero di passi e note aggiuntive) all’utente. Questo mostra un pulsante
di salvataggio, che quando premuto effettua le operazioni di salvataggio necessarie:
salva il file nello storage interno con un nome basato sul timestamp e crea una
EntityTest con i metadati e l’ID del file salvato e la inserisce nel database Room.

Figura 3.5: Schermata di registrazione di un nuovo test in StepLab.

Nella cartella corrente sono presenti anche i componenti dedicati all’esportazio-
ne dei test registrati. L’activity SendTest al momento dell’avvio legge il contenuto
del database locale e popola una lista di elementi che rappresentano ciascun test,
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mostrando per ognuno le informazioni principali (numero di passi, note e nome del
file). Ciò avviene utilizzando una RecyclerView e un AdapterForSendTestCard per
la gestione degli elementi. L’utente può selezionare uno o più test tramite la Recy-
clerView e, con un semplice pulsante, aprire una finestra di dialogo in cui scegliere
il formato di esportazione preferito, JSON o CSV. Una volta confermata la scelta,
l’applicazione recupera i file da esportare. Se il formato scelto è CSV, applica prima

Figura 3.6: Schermata di esportazione dei test in StepLab.

una conversione tramite la classe JsonToCsvConverter, in quanto i test utilizzabili
dall’applicazione vengono sempre salvati in JSON e perciò quando recuperati possie-
dono questo formato. Infine, utilizza FileProvider per generare gli URI e raccgolierli



30 3. Implementazione di StepLab

in un lista, poi utilizza un Intent implicito di tipo ACTION_SEND_MULTIPLE per inviare
i file.

L’ultima funzionalità presente in questa sezione è la visualizzazione dei salva-
taggi delle comparazioni effettuate. L’activity SavedTests è la schermata principale
per la visualizzazione dei test salvati. Carica l’elenco delle comparazioni salvate,
ognuna contiene il nome assegnato, la data di creazione e le configurazioni utilizzate
durante l’esperimento.

Figura 3.7: Schermata di visualizzazione dei salvataggi in StepLab.

I dati vengono quindi mostrati in una lista interattiva, tramite RecyclerView.
Utilizza un SavedTestsAdapter per popolare la lista che nasconde però le confi-
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gurazioni utilizzate. Queste diventano visibili quando l’utente espande la scheda
del test, permettendo di esplorare i dettagli. A tal proposito, ogni card della lista
quando espansa, annida dentro di sè una seconda RecyclerView, popolata da un
SavedConfigurationAdapter che mostra le singole configurazioni utilizzate nel test
salvato. L’utente può interagire con ogni scheda in due modi principali: toccando la
scheda stessa per aprire il test in modalità di sola visualizzazione, avviando l’activity
di confronto configurazioni con i dati del test selezionato, oppure premendo l’icona
di eliminazione per rimuovere il test. Questa architettura è stata scelta in modo da
permettere all’applicazione di offrire una memoria storica strutturata delle prove
effettuate e mantenere la tracciabilità delle esperienze di test.

3.2 Algoritmi e building blocks del rilevamento
passi

Prima di presentare l’implementazione degli algoritmi nel codice, è utile fornire
una tassonomia dei principali blocchi che compongono la pipeline di rilevamento
passi. Ogni configurazione creabile nell’applicazione è composta da una serie di
moduli che operano in sequenza per elaborare i dati grezzi provenienti dai sensori,
questi vengono di seguito descritti.

3.2.1 Filtri

I filtri digitali sono componenti essenziali per la pulizia del segnale prima
dell’analisi. Rimuovono il rumore e permettono di isolare le caratteristiche rilevanti
per il riconoscimento dei passi, rappresentando di fatto il primo passo per il conteggio.
Di seguito vengono spiegati i filtri implementati nell’applicazione.

Filtro passa-basso

Il filtro passa-basso implementato è un filtro digitale applicato separatamente
ai tre assi dell’accelerometro. Il suo obiettivo è attenuare le componenti ad alta
frequenza del segnale, tipicamente dovute al rumore dei sensori e alle oscillazioni
rapide del dispositivo che non sono correlate al passo. Il filtro è definito dalla seguente
equazione ricorsiva:

yt = yt−1 + α(xt − yt−1),
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dove xt è il valore grezzo del sensore, yt è il valore filtrato e α ∈ (0, 1) è un
coefficiente che controlla la reattività del filtro. Valori piccoli di α rendono il filtraggio
più aggressivo, mentre valori più grandi avvicinano il filtro al segnale originale. Il
valore yt−1 rappresenta lo stato interno del filtro, ovvero l’ultimo valore filtrato, che
viene aggiornato ad ogni nuovo campione. Il parametro α è calcolato in funzione
della frequenza di campionamento fs e della frequenza di taglio fc desiderata, secondo
la formula:

α = ∆t

RC + ∆t
,

dove ∆t = 1/fs è il periodo di campionamento e RC = 1/(2πfc) rappresenta
la costante di tempo del filtro, che indica quanto rapidamente il filtro risponde
ai cambiamenti del segnale. Una frequenza di taglio alta corrisponde a un valore
RC piccolo, rendendo il filtro più reattivo; viceversa, una frequenza di taglio bassa
produce un valore RC più grande, rallentando la risposta del filtro. Il valore di
α viene inoltre limitato nell’intervallo [0, 1] per garantire la stabilità numerica del
filtro. La frequenza di taglio fc rappresenta la frequenza oltre la quale il filtro
inizia ad attenuare significativamente le componenti del segnale. La scelta di questo
parametro ha un impatto determinante sul comportamento del filtro: più è alta,
minore sarà l’attenuamento e più il segnale filtrato rimarrà vicino a quello originale.
Viceversa, frequenze di taglio basse comportano un filtraggio più aggressivo, che
rimuove efficacemente il rumore ma può anche attenuare i picchi associati ai passi.

Matrice di rotazione

Questo filtro non agisce sul segnale tramite attenuazione selettiva delle frequenze,
ma tramite una trasformazione di coordinate. Il suo obiettivo è rendere il segnale
dell’accelerometro invariabile rispetto all’orientamento del dispositivo, in modo da
stabilizzare il riconoscimento dei passi. Il filtro utilizza la matrice di rotazione fornita
dall’API SensorManager. Questa stima l’orientamento del dispositivo rispetto al
sistema di riferimento del mondo attraverso la gravità e il nord magnetico. Una volta
calcolata la matrice, il vettore di accelerazione viene trasformato nel sistema mondo
tramite:

a(w) = R a(d),

dove a(d) è il vettore dell’accelerazione nel sistema del dispositivo e a(w) è quello
nel sistema di riferimento globale, mentre R è la matrice di rotazione calcolata. Questo
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filtro si limita a una trasformazione lineare per campione e risulta particolarmente
utile quando l’orientamento del dispositivo è variabile.

Filtro passa-basso Butterworth

Il filtro Butterworth implementato in StepLab è un filtro digitale di tipo IIR
(Infinite Impulse Response), ovvero un filtro che utilizza non soltanto il campione
di ingresso corrente, ma anche i valori filtrati delle iterazioni precedenti. Questa
caratteristica consente una risposta più selettiva rispetto al passa-basso semplice, a
costo di dover mantenere uno stato interno che evolve nel tempo. Il filtro è applicato
separatamente ai tre assi dell’accelerometro ed è configurato come passa-basso del
secondo ordine. La forma ricorsiva di un tale filtro è:

yt = b0xt + b1xt−1 + b2xt−2 − a1yt−1 − a2yt−2,

dove i coefficienti bi controllano il contributo dei nuovi campioni mentre i
coefficienti ai rappresentano l’influenza delle uscite precedenti. Tali coefficienti sono
calcolati a partire dalla frequenza di taglio fc e dalla frequenza di campionamento fs,
ma in StepLab non vengono calcolati manualmente, si appoggia invece alla libreria
open source [17]. Un aspetto distintivo di questa implementazione è la frequenza di
taglio dinamica. L’applicazione parte da un valore iniziale di 3 Hz, ma può modificarlo
automaticamente durante l’elaborazione in risposta al comportamento del segnale.
La regolazione tiene conto di:

• variazioni della magnitudine tra passi consecutivi,

• differenze temporali tra le durate dei passi,

• frequenza di campionamento stimata dinamicamente.

Se tali indicatori suggeriscono un andamento anomalo, la frequenza di taglio viene
adattata entro un intervallo sicuro [2 Hz, fs/3]. Questo comportamento rende il
filtro più robusto ma richiede una situazione di campionamento relativamente stabile,
poiché l’adattamento continuo dipende dalla memoria interna del filtro e dalla
coerenza del segnale in ingresso.

Filtro passa-banda Butterworth

Questo filtro non viene reso disponibile direttamente nell’applicazione, ma viene
implementato unicamente per supportare l’algoritmo di autocorrelazione. Quando
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quest’ultimo è utilizzato, viene applicato il filtro descritto in questa sezione. A
differenza del filtro passa-basso, che attenua solo le frequenze alte, il filtro passa-
banda Butterworth isola un intervallo specifico di frequenze, attenuando sia le
componenti troppo basse che quelle troppo alte. Il filtro è configurato specificando
due parametri di frequenza:

• frequenza inferiore flow: limite inferiore della banda passante, al di sotto del
quale il segnale viene attenuato;

• frequenza superiore fhigh: limite superiore della banda passante, al di sopra del
quale il segnale viene attenuato.

La banda passante ∆f = fhigh −flow determina l’ampiezza dell’intervallo di frequenze
conservato, mentre la frequenza centrale fc = (flow + fhigh)/2 indica il punto medio
della banda. Matematicamente, il filtro è descritto da un’equazione ricorsiva simile a
quella del passa-basso, ma con coefficienti che dipendono da entrambe le frequenze
di taglio:

yt = b0xt + b1xt−1 + · · · + bnxt−n − a1yt−1 − · · · − anyt−n,

dove l’ordine n del filtro (in questo caso 6) determina la selettività della risposta
in frequenza. Il filtro viene applicato al segnale di magnitudine dell’accelerazione
producendo un segnale che enfatizza le oscillazioni periodiche tipiche del cammino,
facilitando così l’analisi di autocorrelazione per il riconoscimento dei passi. Anche
questo filtro si appoggia alla libreria [17] per l’implementazione dei coefficienti.

Filtro Bagilevi

Il filtro Bagilevi non è un filtro digitale nel senso tradizionale, ma una trasfor-
mazione euristica applicata ai tre assi del magnetometro. Il suo scopo è produrre un
segnale scalare più stabile e più sensibile alle variazioni utili per il riconoscimento dei
picchi. Il filtro sfrutta il valore massimo atteso del campo magnetico terrestre Bmax

(fornito dalla costante di sistema MAGNETIC_FIELD_EARTH_MAX) e combina i tre assi
del magnetometro secondo la seguente formula:

y = 1
3
∑

i=x,y,z

4 · (Bmax − mi).

Questa operazione amplifica le deviazioni del segnale rispetto al valore teorico
del campo geomagnetico e ne calcola la media sui tre assi, riducendo l’effetto di
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anomalie localizzate su un singolo asse. Il filtro Bagilevi fa parte di una pipeline
dedicata: quando selezionato, attiva un algoritmo di riconoscimento specifico che
sostituisce quello standard per l’individuazione dei picchi.

3.2.2 Strategie di rilevamento passi

Il secondo blocco fondamentale della pipeline di conteggio dei passi è rap-
presentato dalle strategie di rilevamento. Questi algoritmi analizzano il segnale
pre-elaborato dai filtri per identificare i momenti in cui l’utente compie un passo. Di
seguito vengono descritte le strategie implementate.

Rilevamento dei picchi

Questa strategia identifica i passi analizzando l’andamento del segnale filtrato.
L’algoritmo rileva un picco quando la magnitudine dell’accelerazione smette di
crescere (mt ≤ mt−1 dopo una fase crescente), mentre una valle viene rilevata quando
il segnale smette di decrescere dopo un picco. Durante l’esecuzione vengono mantenuti
il massimo locale Mmax, il minimo locale Mmin e i relativi timestamp. Una volta
identificata una coppia picco-valle, si calcola la differenza

∆ext = |Mmax − Mmin|.

Per ridurre i falsi positivi, l’algoritmo rileva un nuovo passo solo se le condizioni
seguenti sono soddisfatte:

• il massimo locale supera un valore minimo fisso (10.5 m/s2);

• la differenza tra gli estremi supera una soglia dinamica ridotta:

∆ext >
3
5 θ.

La soglia θ viene aggiornata secondo una media mobile pesata:

θn+1 = n θn + ∆ext

n + 1 ,

che rende l’algoritmo adattativo all’intensità del movimento dell’utente. Questo
metodo è leggero dal punto di vista computazionale e funziona bene quando il segnale
presenta picchi regolari e ben separati.
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Rilevamento dei picchi con filtraggio temporale

Questa strategia estende il rilevamento dei picchi introducendo vincoli temporali
adattativi, in modo da migliorare la robustezza in presenza di oscillazioni irregolari
o rumore. L’algoritmo mantiene due serie distinte di timestamp: una per i picchi
(massimi locali) e una per le valli (minimi locali). Per ciascun tipo di estremo vengono
conservati i due timestamp più recenti, Tn−1 e Tn−2, utilizzati per definire soglie
temporali che verificano la regolarità della cadenza. Per ogni coppia di estremi dello
stesso tipo vengono calcolate due soglie:

• soglia di inizio
θS = 0.35 |Tn−1 − Tn−2|,

che verifica la coerenza dell’intervallo corrente con quelli precedenti;

• soglia di fine
θE = 0.20 (tcurr − Tn−1),

che richiede un’adeguata separazione temporale tra candidati successivi.

Richiede dunque almeno due cicli precedenti per attivare la logica. Quando un nuovo
estremo candidato viene rilevato, l’algoritmo verifica che l’intervallo corrente δ =
tcurr −Tn−1 rispetti δ > θS. Se un secondo candidato appare prima del completamento
del ciclo, viene accettato solo se soddisfa δnew ≥ θE. Un passo viene confermato solo
al termine di un’intera sequenza picco-valle che rispetta i vincoli temporali. Questo
permette di filtrare oscillazioni che non seguono la cadenza naturale del cammino.

Rilevamento tramite intersezione con l’asse

Questa strategia non sostituisce il rilevamento dei picchi, ma ne costituisce
una verifica aggiuntiva. Il normale algoritmo picco-valle individua un massimo
locale Tmax e un minimo locale Tmin, questi valori definiscono un ciclo candidato al
riconoscimento del passo. Parallelamente, questo algoritmo registra il timestamp
dell’ultimo attraversamento del segnale rispetto all’asse di riferimento, ovvero il
momento in cui la magnitudine cambia segno. Tale istante viene memorizzato come

Tcross = lastXAxisIntersectionTime.

Il passo viene confermato solo se l’intersezione avviene all’interno del ciclo
picco-valle. In altre parole, l’algoritmo verifica se l’asse è stato attraversato tra i due
estremi:

Tmax < Tcross < Tmin.
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Questa condizione funge da guardia aggiuntiva, un passo viene riconosciuto
solo se il ciclo picco-valle attraversa effettivamente l’asse, riducendo i falsi positivi in
tutti quei casi in cui il segnale presenta oscillazioni che non superano lo zero o non
rappresentano un vero movimento ciclico del passo.

Algoritmo Bagilevi

Questa strategia è progettata per funzionare esclusivamente in combinazione
con il filtro Bagilevi e sostituisce il rilevamento dei picchi standard. A differenza degli
altri metodi, che identificano direttamente picchi e valli, questo algoritmo analizza la
variazione direzionale del segnale filtrato per individuare le inversioni di andamento,
che interpretate come estremi locali. L’algoritmo osserva il segno della derivata
discreta:

dirt = sign(mt − mt−1),

dove mt è il valore corrente del segnale filtrato. Una variazione del segno indica
un’inversione di pendenza:

• da negativa a positiva ⇒ minimo locale (valle);

• da positiva a negativa ⇒ massimo locale (picco).

Quando viene rilevato un estremo, la magnitudine corrispondente viene salvata come

Mmin = lastLocalMinAccel, Mmax = lastLocalMaxAccel,

, mentre i tempi di rilevamento vengono memorizzati in

Tmin = lastStepFirstPhaseTime, Tmax = lastStepSecondPhaseTime.

La decisione finale sul riconoscimento di un passo utilizza una logica di coerenza
basata sulla differenza di ampiezza tra gli estremi locali.

∆t =
∣∣∣Mmax,t − Mmin,t

∣∣∣
La quantità ∆t rappresenta l’ampiezza del movimento verticale associato a un

potenziale passo; valori troppo piccoli suggeriscono rumorosità o falsi estremi. Nel
codice, la decisione utilizza tre criteri:

1. Ampiezza minima del movimento:

∆t > 10.
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2. Coerenza con il ciclo precedente:

∆t > 2
3 ∆t−1 e ∆t−1 > 1

3 ∆t.

3. Alternanza corretta del tipo di estremo, ovvero, l’algoritmo richiede che il tipo
di estremo corrente (picco/minimo) alterni rispetto al precedente. Ciò evita di
contare due picchi o due valli consecutivi come passi distinti.

Solo quando tutte e tre le condizioni sono soddisfatte, il passo viene confermato.
Questo rende l’algoritmo particolarmente adatto a contesti in cui il segnale sia
rumoroso o presenti variazioni irregolari di ampiezza.

Algoritmo di autocorrelazione

L’algoritmo di autocorrelazione rappresenta un approccio diverso rispetto ai
metodi basati sui picchi. Invece di analizzare il segnale campione per campione, esso
considera porzioni più ampie del segnale e ne studia la periodicità, che nel cammino
umano tende ad essere costante. Dal vettore tridimensionale dell’accelerazione viene
calcolata la magnitudine:

mt =
√

x2
t + y2

t + z2
t .

Per stabilizzare l’analisi viene rimossa la componente continua (media del segnale):

m′
t = mt − 1

N

N∑
i=1

mi.

Se la frequenza di campionamento è molto elevata, il segnale viene decimato verso
50–60 Hz per ridurre la complessità computazionale senza perdere informazioni utili
alla camminata. Per determinare la frequenza caratteristica del passo (f0), il segnale
viene trasformato nel dominio della frequenza tramite FFT (Fast Fourier Transform).
La ricerca del picco viene limitata al range plausibile per l’andatura umana (1–3.5 Hz).
Utilizzando la stima di f0, il segnale viene filtrato tramite un Butterworth passa-
banda (vedi 3.2.1), così da isolare le oscillazioni tipiche del passo ed eliminare sia
movimenti troppo lenti sia vibrazioni ad alta frequenza. Per rilevare gli intervalli in
cui è effettivamente presente la camminata si calcola la deviazione standard mobile
(MSD):

MSDt =

√√√√ 1
w

t∑
i=t−w+1

(yi − ȳ)2.

Dove indichiamo con yt il segnale filtrato, con ȳ la media del segnale nella finestra
mobile, mentre w indica l’ampiezza della finestra stessa (in numero di campioni). I
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campioni per cui MSDt supera una soglia dinamica vengono raggruppati in segmenti
continui, successivamente fusi e filtrati in modo da mantenere solo intervalli compa-
tibili con almeno un ciclo completo di camminata. Su ogni segmento valido viene
calcolata l’autocorrelazione normalizzata:

ρ(k) =
∑N−k−1

t=0 yt yt+k∑N−1
t=0 y2

t

, ρ(0) = 1.

Il primo picco significativo di ρ(k) fornisce il lag k∗, ossia il numero di campioni
corrispondenti a due passi successivi. Il numero di passi stimato nel segmento è
quindi:

Ŝ = L

k∗ ,

dove L è la lunghezza del segmento. Poiché la cadenza del cammino non può variare
arbitrariamente, la stima viene vincolata entro un intervallo coerente con la frequenza
fondamentale globale:

Smin ≤ Ŝ ≤ Smax, Smin ≈ 0.7 L

f0
, Smax ≈ 1.3 L

f0
.

In sintesi, l’algoritmo di autocorrelazione non cerca picchi locali, ma individua
la periodicità del movimento. Risulta essere molto robusto anche in presenza di
rumore, richiede tuttavia segmenti di camminata sufficientemente lunghi per produrre
stime affidabili.

3.2.3 Algoritmi aggiuntivi

Oltre ai filtri e alle strategie di rilevamento, nella pipeline sono includibili anche
eventuali algoritmi aggiuntivi per manipolare ulteriormente il segnale. Nel caso
di questa implementazione, tra questi rientra soltanto una guardia utilizzata per
riconoscere e scartare i passi falsi.

Algoritmo dei passi falsi

L’idea alla base del metodo è che ogni passo reale produce un andamento
del campo magnetico relativamente stabile da un ciclo all’altro, mentre oscillazioni
casuali generano deviazioni anomale. Ad ogni passo individuato dagli algoritmi
principali viene raccolta la magnitudine del magnetometro per l’intera durata del
passo:

m
(k)
1 , m

(k)
2 , . . . , m(k)

nk
,



40 3. Implementazione di StepLab

, e si calcola la media del passo k:

m̄k = 1
nk

nk∑
i=1

m
(k)
i .

Per i primi quattro passi rilevati, il sistema costruisce una finestra contenente:

{m̄1, m̄2, m̄3, m̄4}.

Prima che la finestra sia piena, il controllo di falsi passi è molto semplice: se la
differenza tra la media corrente e quella immediatamente precedente è eccessiva,

|m̄k − m̄k−1| > 3.6,

il passo viene marcato come falso. Una volta popolata la finestra con quattro valori,
il riconoscimento dei falsi passi utilizza un criterio più robusto. Siano:

m4 = 1
4

4∑
i=1

m̄k−i, m5 = 1
5

( 4∑
i=1

m̄k−i + m̄k

)
.

Il passo corrente viene considerato un falso positivo se:

|m4 − m5| > τ, τ = 0.8.

Questa misura confronta la stabilità dei passi precedenti con l’effetto dell’inseri-
mento del nuovo valore: se l’aggiunta della media del passo corrente modifica troppo
la media mobile, il passo è considerato anomalo. Dopo ogni verifica, la finestra dei
quattro passi più recenti viene aggiornata in modo scorrevole, mantenendo sempre
memoria delle ultime quattro medie valide.

3.3 Algorithms

Questo package contiene la logica centrale dell’applicazione, ovvero l’implemen-
tazione degli algoritmi di step detection e dei filtri digitali. Vengono quindi descritte
le classi necessarie e il loro utilizzo.

3.3.1 Configurazione e dati dei sensori

La classe Configuration è una semplice data class, inizializzata nella parte UI
e modificata e letta dagli algoritmi durante la pipeline di rilevamento passi, fungendo
da contenitore unico di stato e parametri. Questa è la spina dorsale del contesto:
non solo memorizza i tipi di algoritmi da applicare indicati durante la creazione
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da parte dell’utente, ma memorizza anche alcuni valori numerici utilizzati dagli
algoritmi e modificati da questi. Un esempio sono i timestamp dei picchi rilevati
che vengono utilizzati per calibrare il filtraggio temporale. Ciò permette a tutta la
pipeline di operare in modo adattivo, coerente e robusto. Un ruolo simile lo svolge
la classe SensorData la quale funge da contenitore dei dati provenienti dai vari
sensori, mantenendo distinti i valori grezzi e quelli filtrati o trasformati durante la
pipeline. Per ogni sensore memorizza il vettore tridimensionale, le versioni filtrate , le
eventuali componenti nel sistema di riferimento del mondo e le relative magnitudini.
Ogni istanza dispone inoltre di un flag di validità per evitare elaborazioni su dati
non inizializzati. Nel processore principale, che sarà descritto in questa sezione,
più oggetti SensorData lavorano in parallelo per separare i diversi flussi di segnale,
garantendo ordine, isolamento dello stato e coerenza tra le varie fasi di elaborazione.

3.3.2 Calcoli ed algoritmi

Gli algoritmi sono incapsulati in diverse classi, ognuna di queste con una propria
responsabilità. Sono “attrezzi” utilizzati dal processore principale per elaborare i
dati. Di seguito si fornisce una panoramica di queste specificando la rispettiva
responsabilità di ognuna:

• Calculations: fornisce un insieme di funzioni matematiche e supporto numeri-
co utilizzate da tutti i moduli della pipeline, ad esempio, contiene il metodo per
calcolare la magnitudine, ampliamente utilizzato dalle altre classi come messo
in evidenza precedentemente. Non si occupa direttamente della classificazione
dei passi ma rappresenta la base numerica sulla quale i moduli di filtraggio e
rilevamento si fondano.

• Filters: incapsula le operazioni di filtraggio del segnale necessarie per eli-
minare rumore prima dell’individuazione del passo. Mantiene diversi tipi di
filtro e gli stati di questi, ove necessario. Inoltre, nella UI viene rese disponibile
come filtro anche la matrice di rotazione, che effettua una trasformazione
di coordinate per rendere il segnale invariabile rispetto all’orientamento del
dispositivo. Tuttavia, non è presente in questa classe in quanto viene calcolata
direttamente nel processore principale.

• KeyValueRecognition: si occupa dell’analisi dei valori chiave dei segnali dei
sensori, ovvero del riconoscimento dei picchi e delle valli che caratterizzano



42 3. Implementazione di StepLab

il passo umano. Offre anche altre funzioni: espone un algoritmo di riconosci-
mento dei picchi utilizzato solo nel caso in cui si sia prima applicato un filtro
bagilevi e permette di applicare ulteriori correzioni al segnale. Una di filtraggio
temporale sui picchi rilevati e un’altra di filtraggio in base all’attraversamento
dell’accelerazione dello zero. L’individuamento dei valori chiave dipende dai
valori precedentemente rilevati, che vengono memorizzati come stato interno in
un’istanza della classe Configuration ed alla quale questa classe fa riferimento.
In ogni caso, i metodi esposti restituiscono un valore booleano che indica se
il valore passato è un massimo locale. Su ciò viene basata poi la logica di
rilevamento del passo.

• StepDetection: rappresenta il nucleo logico della rilevazione dei passi. Imple-
menta diverse strategie di riconoscimento: differenza dei picchi, intersezione
con l’asse delle ascisse, autocorrelazione. Il funzionamento generale è simile a
quello della classe precedentemente illustrata: ogni metodo espone un algoritmo
di rilevamento dei passi che restituisce un valore booleano che indica se il cam-
pione passato corrisponde ad un passo. Anche in questo caso, il riconoscimento
dipende da valori precedentemente rilevati e memorizzati come stato interno
nell’istanza di Configuration.

3.3.3 Processore principale

La classe StepDetectionProcessor funge da facade per orchestrare l’intera
pipeline di elaborazione dei dati sensoristici e l’applicazione degli algoritmi di step
detection, nascondendo la complessità dell’implementazione.

Riceve la dipendenza da Configuration al costruttore, assicurando che tutti
i collaboratori ricevano gli stessi dati e garantendo coerenza nella pipeline di ela-
borazione. A questa classe viene delegato il lavoro che sarebbe altrimenti svolto
direttamente nelle modalità di live testing e confronto configurazioni.

Poiché vi è differenza nel processare dati in live rispetto all’elaborazione in
batch, StepDetectionProcessor presenta una biforcazione principale, definendo due
metodi distinti per le due modalità operative.

ProcessRealTimeSensorData() Questo metodo viene invocato dal Pedometer

RunningFragment ogni volta che arrivano nuovi campioni dai sensori. Riceve in
ingresso il tipo di sensore, il vettore dei valori e il timestamp del campione.
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In base al tipo di sensore, distingue tra accelerometro, magnetometro, gravità
e rotazione. Per contenere le allocazioni ed evitare pressione sul Garbage Collector,
utilizza un piccolo pool di array pre-allocati (uno per ciascun sensore gestito) su
cui copia i valori prima di convertirli in BigDecimal: questo approccio riduce
sensibilmente le nuove istanze per secondo rispetto a una conversione naive.

Quando l’evento è accelerometrico, attiva la pipeline:

1. applica il filtro scelto in configurazione;

2. eventualmente esegue la correzione di intersezione se l’algoritmo di riconosci-
mento selezionato lo richiede;

3. convalida i falsi positivi;

4. aggiorna il contapassi.

L’esito viene restituito come un oggetto ProcessingResult, che riporta se è
stato rilevato un passo, il valore filtrato utile alla visualizzazione e l’etichetta da
mostrare sul grafico.

ProcessBatchSensorData() Questo metodo è utilizzato durante il confronto di
configurazioni per riprodurre test registrati in precedenza, processando una alla volta
le entry del file JSON.

In ingresso riceve l’istante (in millisecondi) e l’oggetto JSON dell’evento. Il
parsing è flessibile: può leggere file che contengono solo accelerometro oppure più
sensori nello stesso record (diversamente dal live, dove gli eventi arrivono separati).

In questo contesto non real-time privilegia la semplicità: crea i BigDecimal

direttamente dalle stringhe del JSON senza object pooling, scelta accettabile perché
l’elaborazione non deve rispettare vincoli di latenza. La frequenza di campionamento
viene stimata dinamicamente dai timestamp tramite updateFsFromMillis().

Quando è attiva la raccolta per i grafici, aggiunge automaticamente le entry
utili alla visualizzazione finale. Dopo il parsing, la pipeline è la stessa della modalità
live: filtri, riconoscimento e gestione dei falsi passi. Il metodo restituisce un booleano
che indica se in quel frame è stato rilevato un passo.

ProcessAutocorrelationAlgorithm() Vi è inoltre un’ulteriore pipeline dedicata
all’autocorrelazione, che richiede un file completo e non funziona frame-by-frame
come quelle precedenti. Le operazioni qui effettuate sono indipendenti e diverse da
quelle disponibili negli altri due metodi.
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Il metodo riceve in ingresso l’intero oggetto JSON contenente tutti gli eventi
registrati. Inizialmente, le chiavi vengono ordinate cronologicamente e per ciascun
evento viene estratta la magnitudine dell’accelerazione, costruendo una lista di
campioni con i relativi timestamp.

La frequenza di campionamento viene stimata analizzando l’intervallo temporale
totale e il numero di campioni disponibili. Successivamente, viene invocato il metodo
countStepsAutocorrelation(), che applica:

• rimozione della componente continua dal segnale;

• filtraggio band-pass Butterworth sulla banda di frequenza identificata come
ottimale per il riconoscimento dei passi;

• segmentazione del segnale e calcolo dell’autocorrelazione su ciascun segmento;

• individuazione dei picchi periodici, che corrispondono ai passi rilevati.

Questa modalità è particolarmente efficace per l’analisi offline di camminate
regolari, dove la periodicità del passo è ben definita.

3.4 Data

Questo package ha la responsabilità di gestire la persistenza locale attraverso
entità Room, DAO e la configurazione del database.

La persistenza utilizza Room con due entità principali: EntityTest memorizza i
test acquisiti, mentre EntitySavedConfigurationComparison conserva gli snapshot
delle configurazioni scelte dall’utente per confronti ripetibili. Questa separazione
riflette due casi d’uso distinti: i test sono dati di misura, le configurazioni sono
insiemi di parametri. Tutto è esposto tramite un DAO (DatabaseDao) con metodi
suspend: le query sono naturalmente integrabili con le coroutine, evitando blocchi
dell’UI e rendendo evidente che ogni accesso al disco avviene off-main-thread.

Per i test, la scelta architetturale adottata prevede il salvataggio dei dati
sensoristici come file JSON separati nello storage interno, referenziati tramite il
campo fileName nell’entità. Questa soluzione evita di memorizzare grandi payload
direttamente nel database, mantenendo Room snello e performante. I campioni
sono eterogenei e la loro struttura può evolvere nel tempo: preservare fedelmente
il tracciato completo in file JSON consente di evitare migrazioni frequenti dello
schema solo per aggiungere colonne. Il caricamento dei dati avviene tramite i metodi
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loadTestData() e loadTestValues(), che leggono il file dal filesystem solo quando
necessario all’elaborazione algoritmica.

Il contro di questa scelta è rinunciare a query SQL sui singoli campi dei campioni,
ma qui non servono: l’analisi avviene nella pipeline algoritmica in memoria, non nel
database. Per i metadati effettivamente utili alla UI (numero passi, note, nome file,
data di registrazione) sono invece presenti colonne dedicate, che rendono snella la
schermata di elenco senza dover aprire i file.

Per i confronti di configurazione (EntitySavedConfigurationComparison) è
stato adottato un modello testa e corpo: alcuni campi atomici (nome, riferimento
al test, timestamp) e un campo configurationsJson che contiene l’elenco delle
configurazioni serializzate. La motivazione è la stabilità: la classe Configuration

evolve con l’algoritmica, e serializzarla in JSON evita di rendere rigido Room con
decine di colonne sensibili a modifiche. Gli snapshot possono essere riaperti su versioni
successive dell’applicazione, e dove un campo nuovo manca, la deserializzazione può
assegnare un valore predefinito senza compromettere i dati storici.

La serializzazione/deserializzazione è incapsulata in ConfigurationSerializer,
un oggetto stateless che costruisce e ricostruisce Configuration da e verso JSON.

Il DAO è minimale e leggibile: metodi per ottenere ed eliminare test, cercare
per ID o nome file, e le equivalenti operazioni per i confronti salvati. Per l’evoluzione
dello schema è presente una migrazione esplicita che introduce la tabella dei confronti
senza distruggere dati, testimoniando l’orientamento a migrazioni additive e non
distruttive.

Il database aggrega le due entità necessarie al dominio. È presente una foreign
key da EntitySavedConfigurationComparison verso EntityTest, la quale garanti-
sce che l’eliminazione di un test rimuova automaticamente anche i confronti associati,
mantenendo la coerenza referenziale.

In sintesi, l’architettura locale privilegia robustezza all’evoluzione e semplicità
operativa: Room per i metadati stabili, file JSON per i payload complessi e le
configurazioni versionabili, DAO sospensivi per threading corretto, migrazioni additive
per non perdere dati. Il risultato è un sottosistema che non intralcia la ricerca
algoritmica, ma la supporta.

3.5 Utils

Il package utils raccoglie le componenti di supporto dedicate alla conver-
sione dei formati dati utilizzati dal sistema. Le classi, CsvToJsonConverter e
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JsonToCsvConverter, consentono rispettivamente di importare test esterni in forma-
to CSV e di esportarli nel medesimo formato. Entrambe gestiscono in modo flessibile
diversi schemi di file, riconoscendoli automaticamente tramite analisi dell’intestazione.
L’applicazione è resa compatibile anche con i file CSV registrati tramite l’applicazione
MotionTracker [5], in modo da poter riutilizzarli in StepLab. Vengono convertiti
in un formato conforme allo standard di quest’ultima, consentendo l’importazione
senza perdita di dati e l’utilizzo in modalità di comparazione.

3.6 Considerazioni sull’implementazione

L’implementazione di StepLab presentata in questo capitolo riflette un approc-
cio ingegneristico orientato alla modularità, alla manutenibilità e all’estensibilità.
L’architettura a package separati consente di isolare le responsabilità: l’interfaccia
utente gestisce la presentazione e l’interazione, gli algoritmi incapsulano la logica
di elaborazione, la persistenza garantisce la conservazione dei dati e le utilità forni-
scono l’interoperabilità con sistemi esterni. Il risultato è un’applicazione funzionale
allo scopo di questo progetto, in linea con quanto descritto riguardo al suo ruolo
nell’architettura generale (Sezione 2.3).



Capitolo 4

Implementazione del sistema di
iniezione dei dati

In questo capitolo si illustra l’implementazione del sistema di iniezione dei dati
sensoristici nella sua completezza. Si descrive come avviene la registrazione dei dati,
la loro memorizzazione e lo script di iniezione utilizzato per riprodurli.

4.1 Registrazione e memorizzazione dei dati

Come anticipato nel Capitolo 2, la registrazione dei dati sensoristici avviene
tramite l’applicazione MotionTracker. Per gli esperimenti di questo elaborato non
sono state utilizzate le funzionalità Bluetooth né sensori esterni, ma esclusivamente i
sensori interni del dispositivo Android (accelerometro, giroscopio e magnetometro).
Dal punto di vista implementativo, la responsabilità principale della raccolta dei dati
è delegata ad un foreground service, MonitoringService, avviato dalla schermata
principale (HomeScreen). Quando l’utente avvia una nuova registrazione, la Home-
Screen genera (o recupera) un identificativo univoco e un timestamp di sessione, che
vengono passati al servizio insieme ai metadati inseriti dall’utente.
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Figura 4.1: Schermata principale di MotionTracker.

I sensori sono gestiti tramite la classe astratta AndroidSensor, che incapsula
la logica di interazione con il SensorManager. Nel codice originale, i sensori venivano
campionati con SENSOR_DELAY_NORMAL (∼ 5 Hz), producendo tracce molto povere e
non utilizzabili ai fini della tesi: una camminata di 50 passi generava soltanto 150–200
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campioni complessivi. Tale densità era insufficiente per qualsiasi analisi temporale
e, soprattutto, i tre sensori aggiornando i valori in momenti diversi causavano un
marcato disallineamento temporale tra accelerometro, giroscopio e magnetometro,
rendendo il file incompatibile con il sistema di iniezione. Per risolvere questi problemi,
la frequenza di campionamento è stata aumentata utilizzando SENSOR_DELAY_GAME,
che porta la frequenza a circa 50 Hz, e la logica di raccolta è stata completamente
ristrutturata. In MonitoringService, ogni listener aggiorna solo l’ultimo valore noto
del rispettivo sensore, memorizzato in variabili condivise. La costruzione del campione
da salvare è demandata a una funzione centrale (checkAndStoreSampleImproved()),
che produce un nuovo record completo (accelerometro + giroscopio + magnetometro)
ogni ∼ 20 ms, utilizzando i valori più recenti disponibili. Questo meccanismo elimina i
problemi di disallineamento e produce tracce con timestamp regolari e densità elevata
(1500–2000 campioni per 50 passi), massimizzando l’utilizzabilità del tracciato. Alla
conclusione della registrazione, MonitoringService scrive i dati raccolti su un file
CSV, che contiene sia i valori sensoristici sia i metadati della sessione. La tabella
seguente mostra l’intestazione del file prodotto:

Colonna Descrizione
Timestamp Millisecondi dal sistema
AccelerometerX/Y/Z Componenti dell’accelerazione (m/s2)
GyroscopeX/Y/Z Velocità angolare (rad/s)
MagnetometerX/Y/Z Componenti del campo magnetico (µT)
Sex Sesso dell’utente
Age Età
Height Altezza (cm)
Weight Peso (kg)
Position Posizione del telefono durante la registrazione
Activity Tipo di attività svolta

Tabella 4.1: Intestazione del file CSV generato da MotionTracker.

Il file risultante viene quindi passato a WorkManager, che ne gestisce l’upload
asincrono verso Firebase Storage, collocandolo in una cartella organizzata per data.
Il worker dedicato (SendToFirebaseWorker) utilizza un’API sospensiva per attendere
il completamento effettivo dell’upload. Nel complesso, le modifiche introdotte hanno
reso i dati registrati effettivamente utilizzabili: la pipeline garantisce una frequenza
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adeguata alla registrazione di camminate e una corretta sincronizzazione tra sensori,
permettendo l’iniezione descritta nella sezione successiva.

4.2 Iniezione dei dati su emulatore

Lo script per l’iniezione dei dati è stato implementato in modo da poter
interfacciarsi con l’emulatore Android e simulare i sensori interni. Qui i file registrati
con MotionTracker vengono scaricati da Firebase Storage e riprodotti in modo da
simulare una camminata reale, creando una pipeline semi-automatica per la raccolta
dei risultati.

4.2.1 Avvio del sistema
Il prerequisito fondamentale per il corretto funzionamento del sistema è aver

installato le tecnologie necessarie che vengono elencate nella Sezione 2.5.2. Il primo
passo per l’utilizzo dello script è l’avvio dell’emulatore Android. Per questo progetto,
è stato utilizzato l’emulatore fornito con Android Studio. Si rende poi necessario
avviare il server Appium in modo che resti in ascolto per i comandi da eseguire:

appium --allow - insecure " chromedriver_autodownload :

emulator_console "

Il flag –allow-insecure è necessario per abilitare funzionalità considerate
potenzialmente rischiose da Appium. Nello specifico, emulator_console permette
di accedere alla console dell’emulatore Android per inviare comandi diretti ai sensori
virtuali. Senza questo parametro, Appium bloccherebbe l’accesso alla console per
motivi di sicurezza, impedendo l’iniezione dei dati sensoristici. Questa configurazione
è essenziale per simulare gli eventi dei sensori nell’emulatore durante la riproduzione
delle tracce registrate. Al fine di rendere lo script flessibile e configurabile, è possibile
modificare alcune variabili d’ambiente. Ciò modifica il comportamento dell’iniezione
ma soprattutto si rende necessario per installare sull’emulatore le applicazioni coinvol-
te. Infatti, è necessario specificare i percorsi ai file APK di queste, che devono dunque
essere scaricati preventivamente; l’installazione viene poi gestita automaticamente da
Appium. Di seguito sono riportate le tabelle con le variabili d’ambiente disponibili e
i loro valori di default.
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Variabile Descrizione Valore di de-
fault

APPIUM_HOST Host del server Appium 127.0.0.1
APPIUM_PORT Porta del server Appium 4723
APPIUM_BASE_PATH Path base API Appium /
DEVICE_NAME Nome dispositivo/emulatore Android Emu-

lator
AUTOMATION_NAME Motore di automazione UiAutomator2
NEW_COMMAND_TIMEOUT Timeout comandi Appium 600 s
AUTO_GRANT_PERMISSIONS Permessi auto-grant true
NO_RESET Mantiene stato delle app true

Tabella 4.2: Variabili di configurazione del server Appium e dell’emulatore.

Variabile Descrizione Valore di de-
fault

APP_FORLANI_APK Percorso locale dell’APK StepLab -
APP_TAYUTAU_APK Percorso APK Tayutau -
APP_RUN_APK Percorso APK Runtastic -
APP_ACCUPEDO_APK Percorso APK Accupedo -
APP_WALKLOGGER_APK Percorso APK Walklogger -

Tabella 4.3: Percorsi degli APK installati automaticamente sull’emulatore.

Variabile Descrizione Valore di de-
fault

CSV_HAS_HEADER Il CSV contiene l’intestazione true
CSV_TIMES_ARE_MS Timestamp in millisecondi true
CSV_UNITS Unità accelerometro (ms2/g) ms2
CSV_GYRO_UNITS Unità giroscopio (rad/s o dps) rad/s
CSV_MAG_UNITS Unità magnetometro

(µT/mGauss)
µT

CSV_LAYOUT Ordine colonne del CSV t,ax,ay,...

Tabella 4.4: Variabili di configurazione relative al parsing e normalizzazione dei file
CSV.
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Variabile Descrizione Valore di de-
fault

IMMEDIATE_START Avvio immediato dello streaming true
INJECT_GYRO Abilita l’iniezione del giroscopio true
INJECT_MAG Abilita l’iniezione del magnetome-

tro
true

LOOP_REPEATS Ripetizioni del file CSV 1
LOOP_GAP_MS Pausa tra le ripetizioni 0 ms
AXIS_MAP Rimappatura assi (es. XYZ) XYZ
AXIS_SIGN Segno assi (+/-) +++
START_AHEAD_MS Offset iniziale del tempo simulato 0

Tabella 4.5: Parametri che controllano il comportamento dell’injection dei dati
sensoristici.

Variabile Descrizione Valore di de-
fault

FORLANI_RECORD_GAP_MS Pausa dopo il salvataggio di un
test

1000 ms

FORLANI_RECORD_LOOP Ripeti registrazione automatica false
FORLANI_CLICK_WAIT_MS Attesa dopo ogni interazione UI 1200 ms

Tabella 4.6: Variabili di configurazione specifiche per l’automazione dell’app StepLab.

Lo script è stato dunque reso estremamente parametrico in modo da poter
essere adattato a diverse situazioni senza dover modificare il codice sorgente. Una
volta configurate quelle necessarie, si può procedere con l’esecuzione dello script. Si
rende necessario passare come argomento il nome dell’applicazione da utilizzare, le
opzioni sono:

• forlani per StepLab utilizzando la modalità Live Testing;

• forlani_register per StepLab utilizzando la modalità di registrazione dei
test;

• tayutau per Tayutau;

• run per Runtastic;

• accupedo per Accupedo;
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• walklogger per Walklogger.

Nel caso l’applicazione scelta sia StepLab in modalità di Live Testing, viene richiesto
all’utente di specificare anche la configurazione da utilizzare. L’interazione avviene
sempre, in ogni caso di questo script, tramite linea di comando. Le configurazioni
disponibili sono quelle considerate mediamente più precise, queste sono:

• Filtro Butterworth + Rilevamento dei picchi;

• Filtro Butterworth + Rilevamento dei picchi + Filtraggio temporale;

• Filtro passa-basso con frequenza di taglio a 10 Hz + Rilevamento dei picchi +
Filtraggio temporale;

• Filtro passa-basso con frequenza di taglio a 10 Hz + Rilevamento dei picchi +
Intersezione con asse delle ascisse;

• Filtro passa-basso con frequenza di taglio al 2% della frequenza di campiona-
mento + Rilevamento dei picchi.

• Filtro passa-basso con frequenza di taglio al 2% della frequenza di campiona-
mento + Rilevamento dei picchi + Intersezione con asse delle ascisse.

Inoltre è necessario specificare anche che cosa processare. Si può passare un singolo
file CSV, specificando il percorso, oppure utilizzare il comando firebase per scaricare
automaticamente i file. In questo caso, viene richiesto di scegliere una cartella tra
quelle disponibili su Firebase Storage, le quali contengono i file registrati tramite
MotionTracker. Una volta scelta, i file vengono scaricati in locale e salvati in una
cartella temporanea che sarà eliminata al termine dell’esecuzione dello script. Dunque,
lo script può essere eseguito specificando gli argomenti necessari. Ecco un esempio di
comando per eseguire l’iniezione dei dati sensoristici scaricando i file da Firebase.

node test_injection .js accupedo firebase

4.2.2 Automazione dell’interfaccia utente

In base agli argomenti passati, lo script procede con l’automazione dell’applica-
zione scelta. L’interazione con l’interfaccia utente avviene attraverso tre elementi
principali:
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• WebdriverIO, che fornisce l’API JavaScript per comunicare con Appium
tramite il protocollo WebDriver e inviare comandi all’emulatore;

• Appium, che funge da ponte tra lo script e il dispositivo virtuale, traducendo
le richieste WebDriver in operazioni concrete sui componenti Android;

• UiAutomator2, il framework nativo di Android utilizzato da Appium per
eseguire le azioni sull’interfaccia.

Una volta selezionata l’applicazione (e, nel caso di StepLab, anche la configurazione
dell’algoritmo), lo script richiama una funzione dedicata che contiene la sequenza di
interazioni da simulare. Queste operazioni riproducono i gesti dell’utente, solitamente
tocchi su pulsanti o scorrimenti per raggiungere elementi fuori dallo schermo. Queste
azioni sono normalmente eseguite prima dell’iniezione dei dati, in modo da portare
l’applicazione nello stato appropriato per il test. In alcune applicazioni, Accupedo e
Walklogger, non è necessario alcun intervento manuale perché il conteggio dei passi
inizia automaticamente all’avvio. In altre, come StepLab in modalità di registrazione
dei test, lo script deve eseguire anche azioni dopo l’iniezione, ad esempio premere i
pulsanti per completare e salvare la sessione. Se i file CSV da processare sono più di
uno, l’intera sequenza di interazioni UI viene ripetuta automaticamente per ogni file.
In questo modo, al termine della fase di automazione dell’interfaccia l’applicazione
è sempre nello stato corretto per ricevere la traccia sensoristica e procedere con
l’iniezione descritta nella sezione successiva.

4.2.3 Iniezione dei dati sensoristici

Dopo aver portato l’applicazione nello stato desiderato, lo script apre il file
CSV da processare e lo legge riga per riga. Ogni riga rappresenta un campione
sensoristico, contenente i valori dell’accelerometro, del giroscopio e del magnetometro
in un preciso istante di tempo. Per ciascun campione, i valori vengono estratti,
mappati nei rispettivi vettori e normalizzati. La procedura tiene conto del layout
del CSV, di eventuali rimappature degli assi e di inversioni del segno specificate
tramite variabili d’ambiente. Se necessario, i valori vengono anche convertiti nelle
unità attese dai sensori virtuali dell’emulatore. In questo modo lo script rimane
compatibile con file CSV provenienti da diverse sorgenti. L’iniezione non avviene in
modo sequenziale: per simulare fedelmente il comportamento reale del dispositivo, lo
script calcola l’istante esatto in cui ogni campione deve essere inviato, rispettando
gli intervalli temporali originali della registrazione. Se il momento di emissione non
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è ancora arrivato, lo script attende; dopodiché invia i valori all’emulatore. L’invio
avviene tramite comandi diretti alla console dell’emulatore Android, come mostrato
di seguito.

if ( hasMag ) await emuCmd (driver , ’sensor set magnetic -field ’

+ mag [0] + ’:’ + mag [1] + ’:’ + mag [2]);

if ( hasAcc ) await emuCmd (driver , ’sensor set acceleration ’ +

acc [0] + ’:’ + acc [1] + ’:’ + acc [2]);

if ( hasGyr ) await emuCmd (driver , ’sensor set gyroscope ’ +

gyr [0] + ’:’ + gyr [1] + ’:’ + gyr [2]);

Al termine della simulazione, si rende necessaria un’ulteriore interazione con
l’utente, come descritto nella sezione successiva.

4.2.4 Raccolta e salvataggio dei risultati

Terminata l’iniezione dei dati sensoristici contenuti in un file CSV, lo script
apre un prompt su linea di comando che mostra il nome del file appena processato e
le opzioni disponibili per l’utente:

• se viene inserito un numero, questo viene interpretato come il conteggio dei
passi rilevati dall’applicazione;

• se viene premuto r, lo script ripete l’iniezione del file corrente, permettendo di
rivedere i risultati senza riavviare la procedura;

• se viene premuto n, il risultato non viene salvato e lo script passa al file
successivo (o termina se non vi sono altri file);

• se viene premuto s, l’intera procedura viene interrotta immediatamente.

Queste opzioni sono disponibili per tutte le applicazioni, ad eccezione della
modalità forlani_register. In questo caso, al termine dell’iniezione, lo script
completa automaticamente il flusso di salvataggio del test direttamente all’interno
di StepLab. Se l’utente inserisce comunque un numero di passi, lo script accetta il
valore ma segnala che questo non verrà salvato nei file CSV locali come avviene negli
altri casi.

Quando l’utente inserisce un numero di passi (nelle modalità diverse da
forlani_register), lo script crea automaticamente, se non esiste, un file CSV
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dedicato all’applicazione e alla configurazione selezionata. In questo file vengono
salvati il numero di passi inserito insieme a una serie di metadati estratti dal nome
del file CSV originale. Il formato del file prodotto è il seguente:

time-
stamp

csv_file walking
type

phone
position

age
gen-
der

device
steps
counted

Tabella 4.7: Formato del file CSV per il salvataggio dei risultati.

Il nome del file CSV processato, riportato nella seconda colonna, viene utilizzato
dallo script per riconoscere i file già analizzati ed evitare duplicazioni nelle esecuzioni
successive. È inoltre presente una diramazione opzionale del flusso principale: se
si utilizza StepLab con la configurazione che combina filtro passa-basso al 2% della
frequenza di campionamento e rilevamento dei picchi, lo script chiede all’utente se
attivare la modalità di verifica. Se questa viene abilitata, dopo l’inserimento dei
passi rilevati mediante iniezione viene richiesto di inserire anche il numero di passi
stimato tramite la modalità di comparazione offline di StepLab (Capitolo 3). Questa
procedura genera un secondo file CSV di verifica, con il seguente formato:

file

name

steps

live

steps

batch
error

absolute

error

Tabella 4.8: Formato del file CSV di verifica dei risultati.

La modalità di verifica e la registrazione dei test di StepLab permettono un
confronto diretto fra:

• il conteggio ottenuto tramite iniezione (simulazione live),

• il conteggio ottenuto tramite elaborazione offline dello stesso file (batch).

Questo confronto consente di misurare l’accuratezza dell’intero processo di
iniezione e verificare se, e in quale misura, l’architettura introduce errori nella
riproduzione dei dati sensoristici. Nel complesso, la procedura di raccolta dei risultati
completa il ciclo di test, fornendo i dati necessari per le analisi illustrate nei Capitoli
successivi.
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Figura 4.2: Riassunto del flusso dello script di iniezione dei dati sensoristici.



Capitolo 5

Validazione del sistema

L’obiettivo di questo capitolo è validare il sistema di iniezione dei dati senso-
ristici, ovvero verificare se i dati riprodotti nell’emulatore Android sono fedeli alle
registrazioni originali e, in caso contrario, quantificarne lo scostamento. Per effettuare
tale validazione è stata utilizzata l’applicazione StepLab che, come illustrato nel
Capitolo 3, dispone di una funzionalità dedicata alla comparazione ripetibile di
registrazioni di camminate. Alla fine del Capitolo 4 è stato inoltre descritto come
lo script di iniezione includa specifiche modalità pensate proprio per supportare
questa validazione, automatizzando sia la simulazione dei dati sia la registrazione
dei risultati.

In questo capitolo vengono presentati la metodologia adottata, i risultati
ottenuti e le considerazioni finali.

5.1 Metodologia

Per validare il sistema di iniezione si è deciso di confrontare i conteggi dei passi
ottenuti tramite riproduzione dei dati sensoristici con quelli ottenuti elaborando
direttamente le registrazioni originali, senza passare dallo strato di iniezione. A
questo scopo l’utilizzo di StepLab è imprescindibile: l’applicazione mette infatti
a disposizione sia la modalità live, che consente di contare i passi in tempo reale
durante la simulazione, sia la modalità offline, che permette di caricare un file CSV
e analizzarlo direttamente. Questa duplice modalità rende possibile un confronto
rigoroso tra i due processi, isolando l’eventuale errore introdotto dall’iniezione. Per
il confronto è stata selezionata una specifica configurazione di StepLab, ovvero quella
che combina un filtro passa-basso con frequenza di taglio pari al 2% della frequenza
di campionamento con l’algoritmo di rilevamento dei picchi. Come descritto nel

58
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Capitolo 4, si tratta dell’unica configurazione che include una modalità di verifica
progettata appositamente per registrare i risultati del confronto tra esecuzione live
e analisi offline. Dal punto di vista operativo, il flusso di lavoro seguito per ogni
camminata è stato il seguente:

1. esecuzione della simulazione tramite iniezione dei dati registrati con Motion-
Tracker ;

2. visualizzazione manuale, su un dispositivo reale, del conteggio dei passi ottenuto
dalla modalità di comparazione offline di StepLab;

3. registrazione dei due conteggi, quello ottenuto tramite iniezione e quello ottenuto
tramite elaborazione offline, in un file CSV utilizzando le funzionalità dello
script.

Il confronto è stato effettuato sull’intero dataset registrato, per un totale di 360
simulazioni, producendo un file completo di risultati, il cui formato è illustrato
nella Tabella 4.8. Nella sezione successiva vengono analizzati nel dettaglio i risultati
ottenuti.

5.2 Risultati della validazione

Il risultato ideale sarebbe stato l’assenza totale di errore, ovvero che il conteggio
dei passi ottenuto tramite iniezione coincidesse esattamente con quello calcolato
direttamente sui file originali. L’analisi dei dati ha però evidenziato un certo scosta-
mento tra i due conteggi. Inoltre, è importante sottolineare che l’errore osservato
è relativo alla specifica combinazione di algoritmi utilizzata. Il segno dello scosta-
mento e, seppur in misura non troppo marcata, la sua entità possono variare in base
alla configurazione scelta. I risultati sono dunque da intendersi come una misura
indicativa dell’accuratezza del sistema e non come una misura assoluta valida per
ogni possibile pipeline di rilevamento.

5.2.1 Metriche di valutazione

Per quantificare l’accuratezza del sistema di iniezione sono state utilizzate
diverse metriche statistiche, ciascuna con uno specifico obiettivo interpretativo:
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• MAE (Mean Absolute Error): rappresenta l’errore assoluto medio, calcolato
come

MAE = 1
n

n∑
i=1

|ŷi − yi|

dove yi è il valore reale, ovvero quello che si ottiene senza passare dall’iniezione, e
ŷi è il valore predetto, il conteggio tramite iniezione. Questa metrica fornisce una
misura della distanza media tra i valori predetti e quelli reali, indipendentemente
dalla direzione dell’errore.

• Errore medio con segno (Signed Mean Error): a differenza del MAE,
questa metrica preserva il segno dell’errore:

SME = 1
n

n∑
i=1

(ŷi − yi)

Un valore positivo indica una tendenza generale alla sovrastima, mentre un va-
lore negativo indica sottostima. Questa metrica è fondamentale per identificare
bias sistematici nel sistema di conteggio.

• Mediana: valore centrale della distribuzione degli errori assoluti. Rispetto
alla media, la mediana è meno sensibile alla presenza di valori estremi (outliers)
e fornisce quindi una misura più robusta della tendenza centrale.

• Outliers: valori anomali identificati mediante il metodo IQR (Interquartile
Range). Un dato è considerato outlier se cade al di fuori dell’intervallo [Q1 −
1.5 · IQR, Q3 + 1.5 · IQR], dove Q1 e Q3 sono rispettivamente il primo e il
terzo quartile, e IQR = Q3 − Q1. L’identificazione degli outliers permette di
distinguere errori occasionali da quelli sistematici.

• Deviazione standard: misura la dispersione degli errori attorno alla loro
media. È definita, per un campione di valori x1, x2, . . . , xn, come

s =
√√√√ 1

n − 1

n∑
i=1

(xi − x̄)2,

dove x̄ è la media campionaria. Una deviazione standard elevata indica che gli
errori sono molto variabili , alternando sovrastime e sottostime di entità diversa.
Al contrario, una deviazione standard ridotta segnala un comportamento più
regolare e prevedibile.
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5.2.2 Analisi dei risultati

Sul totale delle simulazioni effettuate con la configurazione selezionata di
StepLab, sono stati riscontrati:

• 193 sovrastime (53,5%);

• 33 sottostime (9,4%);

• 134 conteggi corretti (37,1%).

L’analisi statistica degli errori è stata condotta distinguendo fra statistiche
totali, per tipologia di camminata e per posizione del dispositivo. La Tabella 5.1
riporta una sintesi delle metriche principali a livello globale.

Metrica Con Outliers Senza Outliers Riduzione (%)

MAE 2.856 2.395 16.1%
SME 2.418 1.943 19.6%
Mediana MAE 2 2 —
Mediana SME 2 1 50.0%
Dev. Std. MAE 3.74 2.67 28.6%
Dev. Std. SME 4.038 3.017 25.3%

Tabella 5.1: Statistiche generali di MAE e SME.

Nella Tabella 5.2 vengono riportate le metriche di errore suddivise per tipologia di
camminata, mentre nella Tabella 5.3 sono mostrate le stesse metriche stratificate per
posizione del dispositivo.
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Tipo MAE SME

c/o s/o c/o s/o

DOWNHILL_WALKING 3.836 3.018 3.443 2.596
UPHILL_WALKING 3.417 2.793 3.283 2.655
BABY_STEPS 3.288 2.895 2.847 2.439
IRREGULAR_STEPS 2.767 1.875 2.2 1.268
PLAIN_WALKING 2.623 2.623 2.098 2.098
RUNNING 1.2 1.2 0.633 0.633

Tabella 5.2: Metriche di errore per tipologia di camminata (c/o = con outliers, s/o
= senza outliers).

Posizione MAE SME

c/o s/o c/o s/o

POCKET 4.185 3.092 3.782 2.651
HAND 2.478 2.333 1.887 1.737
SHOULDER 1.953 1.849 1.622 1.516

Tabella 5.3: Metriche di errore per posizione del dispositivo (c/o = con outliers, s/o
= senza outliers).

Dai risultati emerge che la presenza di outliers incrementa il MAE complessivo,
senza di questo la riduzione è di circa il 16%. L’effetto è ancora più marcato per il
SME, che diminuisce di quasi il 20%. Le condizioni di camminata in salita e discesa
presentano generalmente gli errori più elevati, suggerendo che tali movimenti sono
più difficili da riprodurre fedelmente tramite iniezione. In una situazione simile
si trovano le metriche riguardanti i passi stretti, leggermente inferiori rispetto a
quelle delle camminate in pendenza, ma comunque più alte rispetto agli altri tipi
di camminata, eccezion fatta per il MAE senza outliers che è più elevato anche di
quello della camminata in salita. Al contrario, la corsa risulta l’attività più stabile,
con un MAE di 1.2 passi e un SME inferiore a 1. Per quanto riguarda la posizione
del dispositivo, la tasca (POCKET ) introduce l’errore maggiore, mentre la spalla
(SHOULDER) risulta la posizione più accurata. Lo SME mostra una tendenza
generale alla sovrastima, confermata dalla presenza di un numero significativamente
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maggiore di sovrastime rispetto alle sottostime. Nel complesso, l’errore assoluto
medio rimane comunque contenuto, suggerendo che il sistema di iniezione riesce
a riprodurre in maniera ragionevolmente fedele la dinamica della camminata, pur
introducendo un inevitabile margine di imprecisione. Prima di definire lo scostamento
riportato nelle tabelle di questa sezione, si è prima cercato di identificare la causa
principale degli scostamenti riscontrati e di applicare le correzioni necessarie. Il
lavoro svolto è presentato nella sezione successiva.

5.3 Considerazioni sulla metodologia

Prima di interpretare i risultati ottenuti, è stato necessario indagare se gli
errori osservati provenissero dall’implementazione di StepLab oppure dal meccanismo
stesso di iniezione. Fin dalle prime esecuzioni della validazione è stato osservato un
disallineamento tra i conteggi ottenuti tramite iniezione e quelli derivanti dall’ela-
borazione offline dei file originali. Per individuarne la causa, alcuni test sono stati
eseguiti utilizzando StepLab in modalità di registrazione dei test, in modo da ottenere
nuovamente i tracciati sensoristici dopo la simulazione ed analizzarli direttamente.

Il confronto tra i file registrati tramite iniezione e quelli originali ha confermato
che la discrepanza non era legata alle modalità di conteggio di StepLab, ma al processo
di iniezione stesso: i file post-iniezione risultavano infatti alterati. In particolare, si è
osservata la presenza di righe duplicate o campioni mancanti, oltre a differenze nel
numero totale di record.

L’analisi ha evidenziato che la causa principale risiede nella temporizzazione
dei sensori virtuali dell’emulatore Android. Tali sensori non aggiornano il proprio
valore a ogni comando sensor set, ma secondo una loro frequenza interna di
campionamento, come viene confermato dalla documentazione ufficiale [2]. Se il
comando arriva troppo vicino a una lettura già programmata, il valore precedente
può essere letto due volte (determinando la duplicazione), oppure il nuovo valore può
essere ignorato (determinando la perdita di campioni). Questo effetto è amplificato
dalla latenza intrinseca della console dell’emulatore, che non garantisce capacità
real-time.

Per verificare se il problema fosse mitigabile, sono stati condotti ulteriori
esperimenti modificando le frequenze di registrazione e di iniezione, provando sia
a registrare a frequenze più elevate sia a iniettare i dati verso sensori configurati a
frequenze inferiori. In nessuno dei due casi si è ottenuto un miglioramento significativo:
anzi, l’iniezione ad alta frequenza ha talvolta aumentato la perdita di campioni.
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Si è dunque concluso che il problema non è imputabile alla latenza dello
script, ma è una limitazione strutturale dell’emulatore Android, che non permette
di controllare né l’istante di acquisizione dei sensori virtuali, né la loro frequenza
effettiva. Di conseguenza, una perfetta fedeltà tra registrazione originale e tracciato
iniettato non è tecnicamente ottenibile.

In ogni caso, gli errori introdotti rimangono limitati e non compromettono
la validità della valutazione complessiva. Per questo motivo la validazione è stata
condotta come descritto, accettando un inevitabile margine di imprecisione dovuto a
tale vincolo tecnico.



Capitolo 6

Raccolta dati e risultati

In questo capitolo viene presentato il dataset ottenuto dalla raccolta dati iniziale
e vengono descritti i risultati delle simulazioni condotte utilizzando il sistema di
iniezione illustrato nel Capitolo 4.

6.1 Raccolta dati

La raccolta dati, come anticipato nella sezione 2.1, è stata effettuata tramite
MotionTracker in contesti reali quali parchi pubblici e aree urbane. Ogni sessione è
stata supervisionata dallo sperimentatore, che ha fornito indicazioni ai partecipanti
sulle attività da svolgere. Ogni volontario ha eseguito sei tipologie di camminata,
selezionate per coprire una varietà ampia di condizioni locomotorie:

• Camminata normale

• Corsa

• Camminata a passi stretti

• Camminata a passi irregolari

• Camminata in salita

• Camminata in discesa

Ogni camminata è stata registrata in tre diverse posizioni del dispositivo,
ovvero in mano, in tasca e in spalla tramite supporto da braccio. In totale sono
stati raccolti 18 tracciati per ciascun partecipante, per un totale di 20 volontari e
360 registrazioni complessive. In alcuni casi è stato necessario riutilizzare lo stesso

65
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dispositivo per partecipanti diversi, qualora non disponessero di uno smartphone
Android compatibile con l’applicazione utilizzata.

Età Sesso Dispositivo

21 MALE Xiaomi M2003J15SC

22 MALE Xiaomi M2003J15SC

22 MALE motorola motorola edge 50 fusion

21 MALE motorola motorola edge 50 fusion

22 MALE Xiaomi M2003J15SC

22 MALE samsung SM-A505FN

23 MALE samsung SM-A505FN

22 MALE TCL 5030D EEA

18 MALE samsung SM-A346B

19 MALE samsung SM-A346B

18 FEMALE samsung SM-A346B

57 MALE samsung SM-A326B

23 MALE motorola motorola edge 50 fusion

22 MALE motorola motorola edge 50 fusion

55 FEMALE Xiaomi 2109119DG

53 FEMALE Xiaomi 2109119DG

22 MALE samsung SM-G770F

22 MALE samsung SM-G770F

21 MALE OPPO CPH2219

23 MALE OPPO CPH2219

Tabella 6.1: Età, sesso e dispositivo dei partecipanti alle registrazioni.

6.2 Configurazione delle applicazioni

I file registrati sono stati utilizzati per condurre le simulazioni secondo le
modalità descritte nel Capitolo 4. Le applicazioni utilizzate per il conteggio dei passi
sono:

• Tayutau

• Runtastic

• Accupedo
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• Walklogger

• StepLab

Le prime quattro sono applicazioni commerciali che consentono unicamente di
regolare la sensibilità del conteggio; per garantire uniformità sperimentale è stata
selezionata la sensibilità intermedia disponibile in ciascuna di esse.

StepLab, invece, è interamente configurabile e permette di combinare filtri,
algoritmi di rilevamento e modalità di elaborazione differenti. Sono state selezionate
sei configurazioni: tre classificate come Real Time e tre come Non Real Time,
seguendo la distinzione adottata in [13] e [19]. Le configurazioni Real Time sono
state selezionate in base alle performance migliori ottenute nello studio [13]:

• Filtro passa-basso 10 Hz + Rilevamento dei picchi + Intersezione con asse delle
ascisse

• Filtro passa-basso al 2% della frequenza di campionamento + Rilevamento dei
picchi + Intersezione con asse delle ascisse

• Filtro passa-basso al 2% della frequenza di campionamento + Rilevamento dei
picchi

Le configurazioni Non Real Time sono state scelte effetuando una valutazione
preliminare delle performance e scegliendo le tre più accurate:

• Filtro Butterworth + Rilevamento dei picchi

• Filtro passa-basso 10 Hz + Rilevamento dei picchi + Filtraggio temporale

• Filtro Butterworth + Rilevamento dei picchi + Filtraggio temporale

I risultati ottenuti vengono presentati nella sezione successiva.

6.3 Risultati delle simulazioni

In questa sezione, vengono analizzate le performance delle applicazioni di
conteggio dei passi. L’analisi viene divisa in due parti, in base alla tipologia di
camminata ed in base alla posizione del telefono durante la registrazione. Viene poi
fornita un’analisi complessiva dei risultati. Le metriche valutate vengono illustrate
nella sezione 5.2.1, con la differenza che in questo caso il valore reale yi rappresenta il
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conteggio dei passi effettuati, quindi 50, il valore predetto ŷi è il conteggio ottenuto
dall’applicazione o dalla configurazione di StepLab in esame.

Per rappresentare i risultati sono stati utilizzati due tipi di grafici:
1. Box plot. I box plot mostrano la distribuzione completa dei passi contati

dalle diverse applicazioni o configurazioni. Evidenziano la mediana, i quartili e gli
eventuali valori anomali (outliers). Questo tipo di grafico permette di valutare la
stabilità di un algoritmo, di identificare la presenza di valori estremi e di osservare
quanto le misurazioni siano concentrate attorno al valore atteso.

2. Grafici a barre con intervalli di confidenza al 95%. Per ciascuna
applicazione è stato calcolato il valore medio dell’errore assoluto (MAE) e rappresen-
tato tramite un grafico a barre accompagnato da un intervallo di confidenza al 95%.
L’intervallo è stato stimato mediante bootstrap, una tecnica di campionamento che
costruisce una stima dell’incertezza ri-generando numerosi insiemi di dati ottenuti
tramite ricampionamento con rimpiazzamento. Per ogni ricampionamento viene
ricalcolata la media: la distribuzione delle medie così ottenuta permette di stimare
direttamente l’intervallo di confidenza, corrispondente ai percentili 2.5% e 97.5% della
distribuzione bootstrap. Le error bars rappresentano quindi l’incertezza statistica
sulla stima del MAE, indicando quanto la media potrebbe variare se l’esperimento
venisse ripetuto più volte nelle stesse condizioni.

Come anticipato nella sezione 5.2, i risultati devono essere considerati indica-
tivi. Per questo motivo, in questa sezione non vengono applicate correzioni basate
sugli scostamenti osservati nella fase di validazione: l’incertezza complessiva delle
misurazioni viene valutata e comunicata attraverso gli intervalli di confidenza.

6.3.1 Risultati per tipologia di camminata

La tipologia di camminata influenza significativamente le performance dei
pedometri. Illustriamo dunque i risultati ottenuti per ciascuna delle sei tipologie
considerate.

Camminata normale

La camminata normale rappresenta il caso classico per l’analisi delle presta-
zioni dei pedometri, poiché caratterizzata da un’andatura regolare e da un segnale
accelerometrico generalmente favorevole al rilevamento dei passi. La Tabella 6.2
riassume il MAE e lo SME per ciascuna applicazione e configurazione di StepLab,
limitatamente alla camminata normale.
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Applicazione / Configurazione MAE SME

Runtastic 9.623 -6.246

Tayutau 5.836 -2.689

WalkLogger 9.525 +1.328

Accupedo 11.590 -1.230

StepLab (Peak + Butterworth) 7.820 -1.131

StepLab (Peak + Intersection + Low-Pass 10Hz) 12.623 -11.377

StepLab (Peak + Intersection + Low-Pass 2%) 30.607 -30.607

StepLab (Peak + Low-Pass 2%) 10.607 -9.230

StepLab (Peak + Time Filter + Low-Pass 10Hz) 14.639 +8.443

StepLab (Time Filter + Peak + Butterworth) 6.475 -2.049

Tabella 6.2: Metriche di accuratezza per la camminata normale.

La Figura 6.1 visualizza graficamente il MAE di ciascuna applicazione e configu-
razione, con gli intervalli di confidenza al 95% che permettono di valutare l’incertezza
statistica delle stime.

Figura 6.1: MAE con intervalli di confidenza al 95% per camminata normale.

Per le applicazione commerciali, l’analisi dei risultati mostra una forte eteroge-
neità nelle prestazioni. Il box plot in Figura 6.2 permette di visualizzare la dispersione
dei valori e la stabilità dei diversi pedometri. Tra le applicazioni esaminate, Tayutau
risulta la più accurata nella camminata normale: presenta il MAE più basso (5.836)
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e uno SME relativamente contenuto (-2.689), indicando una tendenza moderata
alla sottostima ma senza deviazioni estreme. Runtastic e WalkLogger mostrano
invece un comportamento più variabile, con box plot più ampi e la presenza di
valori anomali. Runtastic tende chiaramente alla sottostima (SME -6.246), mentre
WalkLogger alterna sovrastime e sottostime, riflettendo uno SME vicino allo zero ma
con scarsa precisione (MAE 9.525). Accupedo è l’app commerciale con le prestazioni
peggiori sulla camminata normale, con un MAE di 11.590, nonostante uno SME
abbastanza contenuto (-1.230), segno che il problema è da attribuire soprattutto alla
dispersione.

Figura 6.2: Box plot dei risultati per camminata normale delle applicazioni commer-
ciali.

Le configurazioni di StepLab presentano una variabilità più marcata. Il box plot
in Figura 6.3 evidenzia come alcune combinazioni siano altamente affidabili, mentre
altre introducano errori sistematici significativi. Le configurazioni più stabili sono
Time Filter + Peak + Butterworth (MAE = 6.475) e Peak + Butterworth
(MAE = 7.820) entrambe caratterizzate da SME moderati e distribuzioni concentrate.
All’estremo opposto, filtraggi troppo aggressivi generano prestazioni molto scarse. La
configurazione Peak + Intersection + Low-Pass 2% è quella con l’accuratezza
peggiore di tutto il set, con un MAE di 30.607 e uno SME pari a -30.607, segno
evidente di una sistematica e grave sottostima del numero di passi. Anche Peak +
Intersection + Low-Pass 10Hz presenta un errore significativo (MAE 12.623),
confermando che la combinazione di più operazioni di filtraggio può introdurre ritardi
o attenuazioni che compromettono la rilevazione dei passi.
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Figura 6.3: Box plot dei risultati per camminata normale di StepLab.

Corsa

La corsa presenta caratteristiche dinamiche diverse rispetto alla camminata:
le accelerazioni sono più elevate, la frequenza dei passi aumenta e il segnale tende
ad essere più regolare ma più energico. Ciò rende la rilevazione dei passi in alcuni
casi più semplice, ma può anche accentuare gli errori sistematici nei filtraggi più
aggressivi. La Tabella 6.3 riassume il MAE e lo SME relativi alla corsa per tutte le
applicazioni commerciali e per le configurazioni di StepLab.

Applicazione / Configurazione MAE SME

Runtastic 4.333 -1.667

Tayutau 6.583 -1.950

WalkLogger 6.117 +2.350

Accupedo 9.217 +3.983

StepLab (Peak + Butterworth) 5.167 +0.933

StepLab (Peak + Intersection + Low-Pass 10Hz) 7.983 -6.683

StepLab (Peak + Intersection + Low-Pass 2%) 29.683 -29.683

StepLab (Peak + Low-Pass 2%) 3.717 -1.183

StepLab (Peak + Time Filter + Low-Pass 10Hz) 6.833 +3.467

StepLab (Time Filter + Peak + Butterworth) 3.950 +0.483

Tabella 6.3: Metriche di accuratezza per la corsa.
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La rappresentazione grafica del MAE con intervalli di confidenza è mostrata in
Figura 6.4.

Figura 6.4: MAE con intervalli di confidenza al 95% per la corsa.

Per quanto riguarda le applicazioni commerciali, i risultati mostrano una
maggiore stabilità rispetto alla camminata normale. Il box plot in Figura 6.5
evidenzia che tutte le app tendono a raggrupparsi attorno al valore atteso dei 50
passi, con dispersioni più contenute. Runtastic è l’app migliore in questo scenario
(MAE = 4.333), con una leggera tendenza alla sottostima. Anche Tayutau si
comporta bene, mentre Accupedo mostra la dispersione più ampia e una marcata
sovrastima (SME +3.983). WalkLogger, pur avendo uno SME vicino allo zero,
presenta comunque una certa variabilità.

Le configurazioni di StepLab mostrano un comportamento più diversificato.
Il box plot in Figura 6.6 mette in evidenza come alcune configurazioni si adattino
molto bene alla corsa, mentre altre risultino inadatte. Le configurazioni più accurate
sono Peak + Low-Pass 2% (MAE = 3.717), la migliore in assoluto, e Time
Filter + Peak + Butterworth (MAE = 3.950), entrambe caratterizzate da errori
bassi e distribuzioni compatte. Al contrario, configurazioni che combinano filtraggio
aggressivo e operazioni di intersezione con l’asse delle ascisse mostrano prestazioni
pessime: Peak + Intersection + Low-Pass 2% produce un MAE estremamente
elevato (29.683) con una sottostima sistematica di pari valore.

Nel complesso, la corsa risulta un contesto favorevole per il conteggio dei passi.
Tutte le applicazioni registrano SME inferiori rispetto alla camminata normale, e
alcune configurazioni di StepLab raggiungono prestazioni particolarmente elevate.
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Figura 6.5: Box plot dei risultati per la corsa delle applicazioni commerciali.

Figura 6.6: Box plot dei risultati per la corsa con le configurazioni di StepLab.
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Camminata a passi stretti

La camminata a passi stretti è caratterizzata da un’accelerazione più contenuta
rispetto alla camminata normale. Le oscillazioni risultano meno pronunciate e i
picchi associati ai passi diventano meno distinti, rendendo questa tipologia una delle
più difficili da rilevare correttamente. Nella Tabella 6.4 è possibile visualizzare le
metriche relative a questa attività.

Applicazione / Configurazione MAE SME

Runtastic 11.683 -8.250

Tayutau 4.867 -0.100

WalkLogger 11.400 -2.867

Accupedo 14.200 -2.333

StepLab (Peak + Butterworth) 8.000 -3.567

StepLab (Peak + Intersection + Low-Pass 10Hz) 15.017 -14.517

StepLab (Peak + Intersection + Low-Pass 2%) 32.867 -32.867

StepLab (Peak + Low-Pass 2%) 17.966 -17.458

StepLab (Peak + Time Filter + Low-Pass 10Hz) 12.883 +5.850

StepLab (Time Filter + Peak + Butterworth) 8.200 -4.967

Tabella 6.4: Metriche di accuratezza per la camminata a passi stretti.

La Figura 6.7 mostra graficamente i valori di MAE con i rispettivi intervalli di
confidenza.

Per quanto riguarda le applicazioni commerciali, le prestazioni peggiorano
rispetto alle tipologie precedenti, coerente con la maggiore difficoltà nel rilevare
picchi deboli. Dal box plot in Figura 6.8 emerge che Tayutau rimane l’app più
stabile anche in questo contesto: ottiene il MAE più basso (4.867) e uno SME quasi
nullo. Runtastic e WalkLogger evidenziano un errore sensibilmente maggiore
rispetto al caso precedente, mentre Accupedo si conferma offrire le prestazioni
peggiori a livello di errore assoluto.

Le configurazioni di StepLab presentano una variabilità ancora più marcata. Il
box plot in Figura 6.9 conferma un comportamento simile a quelli osservati finora.
Le configurazioni più accurate sono Peak + Butterworth (MAE = 8.000) e Time
Filter + Peak + Butterworth (MAE = 8.200), mentre la peggiore è nuovamente
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Figura 6.7: MAE con intervalli di confidenza al 95% per la camminata a passi stretti.

Figura 6.8: Box plot dei risultati per camminata a passi stretti delle applicazioni
commerciali.
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Peak + Intersection + Low-Pass 2% (MAE = 32.867), con una sottostima
sistematica molto marcata.

Figura 6.9: Box plot dei risultati per camminata a passi stretti delle configurazioni
di StepLab.

Camminata a passi irregolari

Questo tipo di camminata si caratterizza per la variabilità dei passi, i quali
possono essere effettuati a ritmo diverso e con intensità differenti. Questa irregolarità
rende più complesso per gli algoritmi individuare i passi in modo accurato, poiché il
segnale diventa meno prevedibile. I valori delle metriche calcolati per questa tipologia
di camminata sono riportati nella Tabella 6.5.

La visualizzazione grafica del MAE con intervalli di confidenza è riportata in
Figura 6.10.

Le applicazioni commerciali mostrano una certa variabilità nelle prestazioni.
Tayutau è ancora una volta l’applicazione più accurata con un MAE di 5.567 e
uno SME molto basso (+0.767), indicando un comportamento equilibrato anche in
presenza di passi irregolari. Runtastic presenta un MAE di 8.067 con una tendenza
alla sottostima (SME -3.067). WalkLogger mostra invece una marcata tendenza alla
sovrastima (SME +6.750) con un MAE di 10.183, mentre Accupedo evidenzia uno
SME positivo (+3.700) e un MAE di 9.467. Le configurazioni di StepLab presentano
risultati coerenti con le tipologie di camminata analizzate precedentemente. Le
configurazioni più accurate sono Peak + Butterworth (MAE = 6.867) e Time
Filter + Peak + Butterworth (MAE = 7.250). La configurazione Peak +
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Applicazione / Configurazione MAE SME

Runtastic 8.067 -3.067

Tayutau 5.567 +0.767

WalkLogger 10.183 +6.750

Accupedo 9.467 +3.700

StepLab (Peak + Butterworth) 6.867 -0.633

StepLab (Peak + Intersection + Low-Pass 10Hz) 10.817 -10.117

StepLab (Peak + Intersection + Low-Pass 2%) 27.850 -27.850

StepLab (Peak + Low-Pass 2%) 10.167 -8.067

StepLab (Peak + Time Filter + Low-Pass 10Hz) 12.000 +5.933

StepLab (Time Filter + Peak + Butterworth) 7.250 -2.683

Tabella 6.5: Metriche di accuratezza per la camminata a passi irregolari.

Figura 6.10: MAE con intervalli di confidenza al 95% per la camminata a passi
irregolari.

Intersection + Low-Pass 2% si conferma la peggiore, con un MAE di 27.850 e
una grave sottostima sistematica (SME -27.850). Anche Peak + Intersection +
Low-Pass 10Hz mostra prestazioni scarse (MAE = 10.817), con una significativa
sottostima dei passi.
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Figura 6.11: Box plot dei risultati per camminata a passi irregolari delle applicazioni
commerciali.

Figura 6.12: Box plot dei risultati per camminata a passi irregolari delle configurazioni
di StepLab.
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Camminata in salita

Per questo tipo di camminata, i movimenti tendono ad essere più lenti a
causa del maggiore sforzo richiesto per salire. Inoltre, l’inclinazione del busto può
influenzare il contributo gravitazionale sul segnale accelerometrico. Ciò può rendere
più complicata l’individuazione dei passi. Nella Tabella 6.6 sono riportate le metriche
riguardanti questa attività.

Applicazione / Configurazione MAE SME

Runtastic 10.217 -7.017

Tayutau 3.483 +0.250

WalkLogger 9.683 -0.017

Accupedo 10.050 +0.250

StepLab (Peak + Butterworth) 6.367 -2.833

StepLab (Peak + Intersection + Low-Pass 10Hz) 14.717 -14.317

StepLab (Peak + Intersection + Low-Pass 2%) 31.650 -31.650

StepLab (Peak + Low-Pass 2%) 13.283 -12.417

StepLab (Peak + Time Filter + Low-Pass 10Hz) 11.350 +4.283

StepLab (Time Filter + Peak + Butterworth) 6.983 -3.383

Tabella 6.6: Metriche di accuratezza per la camminata in salita.

I valori di MAE con i rispettivi intervalli di confidenza al 95% sono rappresentati
graficamente in Figura 6.13.

Come nei casi precedenti, Tayutau si conferma l’applicazione più accurata
con un MAE di 3.483 e uno SME quasi nullo, confermando la sua buona capacità
di adattamento a varie situazioni. Runtastic presenta un MAE di 10.217 con una
marcata tendenza alla sottostima (SME -7.017). WalkLogger mostra uno SME
praticamente nullo ma un MAE più elevato (9.683), ciò indica una certa dispersione
nei risultati. Accupedo segue la stessa tendenza, evidenziando un MAE di 10.050
con uno SME minimo.

Le configurazioni di StepLab mantengono il pattern osservato nelle tipologie
precedenti. Le configurazioni più accurate sono Peak + Butterworth (MAE =
6.367) e Time Filter + Peak + Butterworth (MAE = 6.983), entrambe con SME
moderati. La configurazione Peak + Intersection + Low-Pass 2% si conferma
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Figura 6.13: MAE con intervalli di confidenza al 95% per la camminata in salita.

Figura 6.14: Box plot dei risultati per camminata in salita delle applicazioni com-
merciali.
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ancora una volta la peggiore, con un MAE di 31.650 e una sottostima sistematica
molto grave.

Figura 6.15: Box plot dei risultati per camminata in salita delle configurazioni di
StepLab.

Camminata in discesa

Per questo tipo di camminata, i movimenti tendono ad essere più rapidi poiché
il corpo tende ad accelerare verso il basso. Inoltre, il busto si inclina all’indietro,
modificando il contributo gravitazionale e le piccole frenate che si effettuano per
mantenere l’equilibrio contribuiscono a rendere il segnale meno omogeneo e dunque
più difficile da analizzare. I valori delle metriche calcolati per questa tipologia di
camminata sono riportati nella Tabella 6.7.

La Figura 6.16 illustra graficamente l’errore assoluto medio con gli intervalli di
confidenza.

Tra le applicazione commerciali, Tayutau continua a distinguersi come la più
accurata, con un MAE di 4.148 e uno SME molto basso. WalkLogger e Accupedo
hanno sorprendentemente ottenuto lo stesso MAE di 8.951, ma il primo presenta uno
SME quasi nullo, mentre il secondo tende leggermente alla sovrastima. Runtastic
con questo tipo di camminata è invece l’applicazione con le prestazioni peggiori. Le
configurazioni di StepLab mostrano ancora una volta un comportamento coerente con
le tipologie precedenti. Le configurazioni più accurate sono Peak + Butterworth
(MAE = 6.443) e Time Filter + Peak + Butterworth (MAE = 6.934). La
configurazione Peak + Intersection + Low-Pass 2% si conferma la peggiore,
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Applicazione / Configurazione MAE SME

Runtastic 9.951 -7.820

Tayutau 4.148 -0.574

WalkLogger 8.951 -0.066

Accupedo 8.951 +1.639

StepLab (Peak + Butterworth) 6.443 -3.885

StepLab (Peak + Intersection + Low-Pass 10Hz) 14.033 -13.934

StepLab (Peak + Intersection + Low-Pass 2%) 31.049 -31.049

StepLab (Peak + Low-Pass 2%) 12.623 -11.967

StepLab (Peak + Time Filter + Low-Pass 10Hz) 9.590 +2.836

StepLab (Time Filter + Peak + Butterworth) 6.934 -4.639

Tabella 6.7: Metriche di accuratezza per la camminata in discesa.

Figura 6.16: MAE con intervalli di confidenza al 95% per la camminata in discesa.

mentre le altre presentano un errore poco superiore rispetto alle performance ottenute
con le applicazioni commerciali.
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Figura 6.17: Box plot dei risultati per camminata in discesa delle applicazioni
commerciali.

Figura 6.18: Box plot dei risultati per camminata in discesa delle configurazioni di
StepLab.

6.3.2 Risultati per posizione del dispositivo

La posizione del dispositivo influenza significativamente il conteggio dei passi,
poiché una posizione stabile tende a produrre meno rumore nel segnale rispetto a una
posizione più mobile. Analiziamo dunque i risultati distinguendo per le tre posizioni
considerate.
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Risultati con dispositivo in mano

Una registrazione effettuata con il dispositivo in mano può essere soggetta a
rumore aggiuntivo dovuto ai movimenti del braccio. Tuttavia, può anche offrire un
segnale più definito relativo ai movimenti del corpo. Ciò varia molto in base alla
persona e al modo in cui tiene il dispositivo. Ad esempio, durante la raccolta dati, si
è notato che alcuni partecipanti tendevano a muovere il braccio in modo più marcato,
mentre altri lo tenevano più fermo. Dunque, tra le posizioni considerate, questa è
forse quella con maggiore variabilità. Nella Tabella 6.8 sono riportate le metriche
calcolate per questa posizione.

Applicazione / Configurazione MAE SME

Runtastic 10.139 -9.774

Tayutau 5.930 -3.217

WalkLogger 6.374 +0.809

Accupedo 9.670 -2.783

StepLab (Peak + Butterworth) 6.704 -4.930

StepLab (Peak + Intersection + Low-Pass 10Hz) 14.513 -14.235

StepLab (Peak + Intersection + Low-Pass 2%) 28.800 -28.800

StepLab (Peak + Low-Pass 2%) 13.600 -13.409

StepLab (Peak + Time Filter + Low-Pass 10Hz) 7.200 -3.687

StepLab (Time Filter + Peak + Butterworth) 7.287 -6.261

Tabella 6.8: Metriche di accuratezza per dispositivo in mano.

La rappresentazione grafica dei risultati è mostrata in Figura 6.19.
Tra le applicazioni commerciali, Tayutau si conferma l’applicazione più accu-

rata con un MAE di 5.930. Tuttavia, anche WalkLogger mostra buone prestazioni
in questa posizione, con un MAE di 6.374 e uno SME compreso tra 0 e 1, inferiore
a quello di Tayutau. Runtastic ha le prestazioni peggiori mentre Accupedo si
posiziona al terzo posto con performance di poco migliori rispetto all’app precedente.

Le configurazioni di StepLab mostrano un comportamento simile a quello
osservato in precedenza. La più accurata è Peak + Butterworth (MAE = 6.704).
Anche Peak + Time Filter + Low-Pass 10Hz (MAE = 7.200) e Time Filter
+ Peak + Butterworth (MAE = 7.287) ottengono buoni risultati. La penultima
ottiene tra l’altro lo SME più basso tra tutte le configurazioni. Ancora una volta,
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Figura 6.19: MAE con intervalli di confidenza al 95% per dispositivo in mano.

Figura 6.20: Box plot dei risultati con dispositivo in mano delle applicazioni com-
merciali.
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la peggiore è Peak + Intersection + Low-Pass 2%, mentre le altre ottengono
prestazioni fra loro non troppo distanti in termini di errore assoluto e risultati
significativamente peggiori rispetto alle applicazioni commerciali.

Figura 6.21: Box plot dei risultati con dispositivo in mano delle configurazioni di
StepLab.

Risultati con dispositivo in tasca

Quando il dispositivo è in tasca, spesso il segnale risulta più disturbato rispetto
alle altre posizioni considerate. Ciò succede perché non essendo in una posizione
salda, il telefono può muoversi abbastanza liberamente. Questo varia in base al tipo
di abbigliamento indossato, una tasca più stretta tenderà a limitare i movimenti
del dispositivo, mentre una tasca più ampia permetterà al telefono di oscillare
maggiormente. Nella Tabella 6.9 sono riportate le metriche calcolate per questa
posizione.

Tra le applicazioni commerciali, Tayutau si conferma l’applicazione più accu-
rata con un MAE di 5.442, seguita da Runtastic con 6.075. Più distanti risultano
essere WalkLogger e Accupedo, entrambe con un margine di errore significativo.
In tutti i casi si nota una tendenza alla sovrastima del numero di passi, frutto proprio
del rumore aggiuntivo introdotto dalla posizione in tasca.

Per StepLab, invece, la tendenza è sempre quella dei risultati precedenti: le tre
configurazioni più accurate sono Time Filter + Peak + Butterworth (MAE =
6.275), Peak + Butterworth (MAE = 7.458) e Peak + Low-Pass 2% (MAE
= 8.420). La peggiore è ancora una volta Peak + Intersection + Low-Pass
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Figura 6.22: MAE con intervalli di confidenza al 95% per dispositivo in tasca.

Figura 6.23: Box plot dei risultati con dispositivo in tasca delle applicazioni commer-
ciali.
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Applicazione / Configurazione MAE SME

Runtastic 6.075 +3.042

Tayutau 5.442 +2.875

WalkLogger 11.550 +10.083

Accupedo 14.508 +11.242

StepLab (Peak + Butterworth) 7.458 +2.475

StepLab (Peak + Intersection + Low-Pass 10Hz) 12.183 -11.050

StepLab (Peak + Intersection + Low-Pass 2%) 36.008 -36.008

StepLab (Peak + Low-Pass 2%) 8.420 -4.958

StepLab (Peak + Time Filter + Low-Pass 10Hz) 16.742 +15.025

StepLab (Time Filter + Peak + Butterworth) 6.275 +1.908

Tabella 6.9: Metriche di accuratezza per dispositivo in tasca.

2%, mentre le due restanti configurazioni ottengono risultati piuttosto distanti dalle
migliori tre.

Figura 6.24: Box plot dei risultati con dispositivo in tasca delle configurazioni di
StepLab.

Risultati con dispositivo in spalla

Quando il dispositivo è fissato in spalla tramite una fascia elastica dedicata,
il segnale tende a essere più stabile rispetto alle altre posizioni considerate. Ciò
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è dovuto al fatto che il dispositivo è saldamente ancorato al corpo, riducendo i
movimenti indesiderati. Tuttavia, questa posizione può anche far tendere il segnale
a essere meno pronunciato, ciò varia in base allo stile di camminata della persona.
Nella Tabella 6.10 sono riportate le metriche calcolate per questa posizione. La
Figura 6.25 riporta la visualizzazione grafica del MAE con intervalli di confidenza.

Applicazione / Configurazione MAE SME

Runtastic 10.685 -10.228

Tayutau 3.969 -1.858

WalkLogger 9.850 -6.717

Accupedo 7.685 -5.260

StepLab (Peak + Butterworth) 6.205 -3.165

StepLab (Peak + Intersection + Low-Pass 10Hz) 11.079 -10.386

StepLab (Peak + Intersection + Low-Pass 2%) 27.173 -27.173

StepLab (Peak + Low-Pass 2%) 12.134 -11.740

StepLab (Peak + Time Filter + Low-Pass 10Hz) 9.646 +3.787

StepLab (Time Filter + Peak + Butterworth) 6.378 -4.331

Tabella 6.10: Metriche di accuratezza per dispositivo in spalla.

Figura 6.25: MAE con intervalli di confidenza al 95% per dispositivo in spalla.

Tayutau si conferma l’applicazione più accurata con un MAE di 3.969 e uno
SME di -1.858. Le prestazioni delle altre applicazioni commerciali presentano in
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questo caso un distacco più marcato, fornendo prestazioni significativamente peggiori
rispetto alla migliore.

Figura 6.26: Box plot dei risultati con dispositivo in spalla delle applicazioni com-
merciali.

Per StepLab, le configurazioni più accurate rimangono Peak + Butterworth
(MAE = 6.205) e Time Filter + Peak + Butterworth (MAE = 6.378). La
peggiore è ancora una volta Peak + Intersection + Low-Pass 2%, mentre le
altre configurazioni ottengono risultati piuttosto distanti dalle migliori due.

Figura 6.27: Box plot dei risultati con dispositivo in spalla delle configurazioni di
StepLab.
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In conclusione, la maggiore stabilità offerta da questa posizione trova riscontro
nella media dell’errore assoluto, che risulta essere la più bassa tra le tre posizioni
considerate, seguita da quella in mano ed infine quella in tasca.

6.3.3 Analisi complessiva dei risultati

Per avere una visione d’insieme delle prestazioni delle varie applicazioni e
configurazioni considerate, la Tabella 6.11 riporta il MAE e lo SME calcolati sull’intero
dataset, senza distinzione di tipologia di camminata o posizione del dispositivo.

Applicazione / Configurazione MAE SME

Runtastic 8.983 -5.685

Tayutau 5.080 -0.721

WalkLogger 9.309 +1.243

Accupedo 10.577 +0.997

StepLab (Peak + Butterworth) 6.779 -1.856

StepLab (Peak + Intersection + Low-Pass 10Hz) 12.536 -11.829

StepLab (Peak + Intersection + Low-Pass 2%) 30.619 -30.619

StepLab (Peak + Low-Pass 2%) 11.377 -10.036

StepLab (Peak + Time Filter + Low-Pass 10Hz) 11.221 +5.138

StepLab (Time Filter + Peak + Butterworth) 6.633 -2.876

Tabella 6.11: Metriche di accuratezza complessive.

Dall’analisi emerge che, tra le applicazioni commerciali, Tayutau è quella che
si comporta meglio, mostrando uno SME inferiore a 1 e un MAE nettamente più
basso rispetto a quello delle altre app. Runtastic e WalkLogger ottengono prestazioni
intermedie, mentre Accupedo risulta la meno accurata del gruppo.

Per quanto riguarda StepLab, le configurazioni più affidabili sono quelle che uti-
lizzano il filtro Butterworth. In particolare, Time Filter + Peak + Butterworth
e Peak + Butterworth ottengono un MAE inferiore a 7, posizionandosi immedia-
tamente dopo Tayutau e superando le altre app commerciali. Le configurazioni con
filtraggio molto aggressivo e intersezione con l’asse delle ascisse, invece, mostrano i
risultati peggiori, con una sottostima sistematica del numero di passi.

Sulla base dei risultati globali, la classifica finale ordinata per errore assoluto
medio è la seguente:



92 6. Raccolta dati e risultati

Figura 6.28: MAE con intervalli di confidenza al 95% per i risultati complessivi.

Figura 6.29: Box plot dei risultati complessivi delle applicazioni commerciali.
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Figura 6.30: Box plot dei risultati complessivi delle configurazioni di StepLab.

1. Tayutau (MAE = 5.080)

2. StepLab (Time Filter + Peak + Butterworth) (MAE = 6.633)

3. StepLab (Peak + Butterworth) (MAE = 6.779)

4. Runtastic (MAE = 8.983)

5. WalkLogger (MAE = 9.309)

6. Accupedo (MAE = 10.577)

7. StepLab (Peak + Low-Pass 2%) (MAE = 11.377)

8. StepLab (Peak + Time Filter + Low-Pass 10Hz) (MAE = 11.221)

9. StepLab (Peak + Intersection + Low-Pass 10Hz) (MAE = 12.536)

10. StepLab (Peak + Intersection + Low-Pass 2%) (MAE = 30.619)

Nel complesso, i risultati confermano quanto osservato nelle analisi per singola
tipologia di camminata e per posizione del dispositivo. Le applicazioni commerciali
mostrano generalmente prestazioni più affidabili, ma alcune configurazioni di StepLab
riescono ad avvicinarsi (e in alcuni casi superare) i risultati offerti da diverse app
proprietarie.



Conclusioni

In questo lavoro di tesi è stato progettato e valutato un sistema completo per
il confronto delle prestazioni di applicazioni commerciali e algoritmi open-source
per il conteggio dei passi. La prima fase ha riguardato la raccolta di un dataset
sperimentale, coinvolgendo 20 partecipanti. Successivamente è stata sviluppata
l’applicazione StepLab per Android, che permette di configurare diverse tipologie
di algoritmi per il rilevamento. Infine, è stato realizzato un sistema di valutazione
basato sull’iniezione controllata dei dati, capace di riprodurre in emulatore le stesse
condizioni delle registrazioni reali e dunque di valutare in modo riproducibile le
prestazioni degli algoritmi. Questo sistema è stato validato per verificarne l’accu-
ratezza. Nonostante alcune limitazioni dovute al meccanismo di campionamento
dell’emulatore, i risultati hanno mostrato un livello di precisione complessivamente
soddisfacente, che ha permesso di condurre un’analisi comparativa affidabile. Le me-
triche adottate hanno evidenziato che alcune configurazioni di StepLab sono in grado
di competere con le applicazioni commerciali considerate, raggiungendo in diversi
scenari prestazioni paragonabili o addirittura superiori. L’analisi statistica condotta
ha messo in luce le differenze di accuratezza tra le varie soluzioni, consentendo di
identificare gli algoritmi più stabili e le condizioni che influenzano maggiormente
l’errore. Questo lavoro apre la strada a ulteriori sviluppi. In particolare, il sistema di
simulazione descritto in 4 si è dimostrato non completamente accurato nel replicare
le condizioni reali. I ritardi introdotti dal sistema di iniezione rappresentano oggi la
principale fonte di disallineamento. Un miglioramento possibile sarebbe intervenire
sul funzionamento dei sensori virtuali dell’emulatore Android, affinché campionino
i dati non a intervalli fissi, ma al momento dell’arrivo di un nuovo campione. Ciò
permetterebbe di eliminare gran parte delle problematiche di sincronizzazione e mi-
gliorerebbe sensibilmente la fedeltà delle simulazioni, fermo restando che gli algoritmi
basati su soglie temporali avrebbero comunque limitazioni per la simulazione, questo
perché la soluzione proposta non assicurerebbe la consegna con intervalli di tempo
esattamente identici a quelli reali. In conclusione, il sistema sviluppato ha dimostrato

94
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l’efficacia dell’approccio basato sull’iniezione dei dati e rappresenta una base solida
per futuri lavori sull’analisi e l’ottimizzazione degli algoritmi di conteggio dei passi.
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