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Sommario

L’obiettivo di questa tesi e la progettazione e implementazione di una libreria in C++ per
il calcolo parallelo distribuito di problemi di algebra lineare (ad esempio operazioni tra
matrici e risoluzione di sistemi lineari). Questa libreria, una volta sviluppata, sara uti-
lizzata dall’ente INGV [14] all’interno del codice per il calcolo del problema di inversione
sismico-gravimetrica. Il loro codice originale, scritto in Fortran, fa uso delle routine della
libreria ScaLAPACK [23] per eseguire in modo efficiente calcoli paralleli su cluster: in
particolare, ScaLAPACK implementa una decomposizione a blocchi ciclici (block-cyclic
distribution) [1] delle matrici sui vari nodi e algoritmi progettati per macchine con me-
moria distribuita. Lo scopo della libreria realizzata per questa tesi (denominata SLAC
- Scalable Linear Algebra for C++ [21]) & quello di proporre un’alternativa a questa li-
breria ormai consolidata come standard nell’ambito fisico-computazionale per problemi
algebrici.

L’utilizzo del linguaggio C++ offre diversi vantaggi rispetto al Fortran: migliori
opportunita di integrazione con altri tool e programmi, maggiore facilita d’uso e ma-
nutenzione, e uso di un linguaggio piu affermato nel contesto software ingegneristico
moderno. Il vero problema - e la reale sfida - nella creazione di una libreria di questo ti-
po risiede nella progettazione della libreria e nella logica di utilizzo: come ScaLAPACK,
anche SLAC si propone di adottare la distribuzione ciclica a blocchi per suddividere le
matrici sui vari nodi del cluster. La distribuzione ciclica a blocchi non solo consente di
distribuire il carico di lavoro in modo uniforme fra i nodi, ma fa si che ogni nodo conser-
vi solo una porzione della matrice globale, con conseguente utilizzo piu efficiente della
memoria locale, a costo di comunicazioni intra-nodo e fra i nodi per coordinamento e
condivisione dei dati necessari ai calcoli. Questo approccio rappresenta un compromesso
fra uso della memoria locale, flessibilita e comunicazione di rete.

La libreria si appoggia su tecnologie consolidate ed efficienti: per le operazioni ma-
triciali a livello locale viene utilizzata la libreria Eigen [12], implementata in C++ e
progettata per manipolare matrici, vettori, decomposizioni e operazioni numeriche in
modo efficiente. Per quanto riguarda le comunicazioni tra nodi, invece, viene impiegato
il modello MPI (Message-Passing Interface) [9], standard de facto per la parallelizzazione
su cluster con memoria distribuita.

In questa tesi verranno presentati i fondamenti teorici, la struttura architetturale
della libreria, gli algoritmi implementati, e le ottimizzazioni adottate per ottenere una
libreria efficiente e facile da comprendere e utilizzare.






Capitolo 1

Introduzione

1.1 Contesto e obiettivi

Il problema affrontato in questa tesi riguarda l'inversione geofisica. L’inversione geofisica
mira a ricostruire modelli delle proprieta fisiche della Terra (come densita, conducibilita
e velocita delle onde elastiche nel mezzo) in grado di riprodurre adeguatamente le ano-
malie osservate nei dati acquisiti tramite indagini geofisiche quali rilievi gravimetrici, di
resistivita in corrente continua e sismici, rimanendo al contempo coerenti con le infor-
mazioni geologiche. Le proprieta fisiche sono legate alla composizione delle rocce, alla
struttura e allo stato fisico del mezzo. Di conseguenza, i modelli di proprieta fisiche ot-
tenuti mediante inversione forniscono informazioni essenziali non solo per ’esplorazione
mineraria, ma anche per la comprensione pitu generale della struttura e dei processi del
pianeta Terra.

A causa dell’incertezza dei dati e di altri aspetti intrinseci del problema inverso geo-
fisico sottodeterminato, in cui il numero di osservazioni ¢ inferiore a quello dei parametri
fisici da determinare, esiste un numero infinito di modelli che possono adattarsi ai dati
geofisici con il grado di accuratezza desiderato [17]: il problema non ¢ univoco. Informa-
zioni aggiuntive sono quindi essenziali per ottenere una soluzione univoca. L’integrazione
di conoscenze geologiche pregresse e la combinazione di diversi tipi complementari di dati
geofisici raccolti sulla stessa area terrestre possono ridurre 'ambiguita e migliorare i risul-
tati dell’inversione, portando a modelli della Terra piu affidabili. Phillips [19], Williams
[26] e Farquharson et al. [8, 7] forniscono esempi di come 'integrazione di informazioni
sulle proprieta fisiche possa migliorare in modo significativo i risultati dell’inversione.

L’algoritmo [24] originariamente sviluppato in linguaggio Fortran, adotta una stra-
tegia iterativa in cui i due dataset vengono trattati in modo sequenziale: 'informazione
sismica viene utilizzata per derivare il modello di velocita e i relativi vincoli, mentre i
dati gravimetrici contribuiscono all’aggiornamento sia del modello di densita, in accordo
con la relazione velocita-densita assunta o stimata, sia del modello di velocita iniziale.
Questo processo viene ripetuto iterativamente fino al raggiungimento della convergenza
verso il modello finale. L’uso di una funzione di densita di probabilita [22] colloca 1’algo-
ritmo in una posizione intermedia tra un approccio di inversione puramente congiunta,



in cui i due dataset sono trattati simultaneamente [25], e un’inversione strettamente
sequenziale, in cui i dati vengono invertiti separatamente fino al raggiungimento di un
misfit accettabile per entrambi i set [15]. In particolare, I'obiettivo pratico del lavoro di
tesi e consistito nella riscrittura del codice originale da Fortran a C+4. Un elemento
fortemente originale di questo lavoro é rappresentato dallo sviluppo ex novo di una libre-
ria in C++ per il calcolo parallelo di operazioni di algebra lineare su matrici distribuite,
progettata e implementata durante questo studio. Tale libreria, ispirata alla struttura
e alle funzionalita di ScaLAPACK [23] in Fortran, adotta uno schema di distribuzione
ciclica a blocchi.

1.2 Inversione geofisica

Nel contesto delle geoscienze, il termine inversione indica il processo matematico me-
diante il quale, a partire da misure effettuate in superficie (ad esempio tempi di arrivo
di onde sismiche o anomalie di gravita), si ricava un modello plausibile delle proprieta
fisiche del sottosuolo. Si tratta, in pratica, di “risalire dagli effetti alle cause”: poiché non
e possibile osservare direttamente densita o velocita in profondita, si utilizzano modelli
fisici che descrivono come tali proprieta generano le osservazioni (forward modeling), e
si cerca il modello che riproduce meglio i dati. Questo procedimento ¢ tuttavia insta-
bile e non univoco: molti modelli diversi possono produrre osservazioni simili, e piccoli
errori nei dati possono propagarsi in variazioni significative del modello. Per questo
motivo ogni inversione richiede I'introduzione di vincoli aggiuntivi, o regolarizzazioni,
che guidano la soluzione verso configurazioni fisicamente realistiche oppure coerenti con
informazioni indipendenti [22].

Un tipico schema di inversione lineare, ampiamente utilizzato in tomografia sismica
e gravimetria, € illustrato in Fig. 1.1. L’algoritmo prevede una sequenza iterativa di
passi: a partire da un modello iniziale si calcolano le risposte teoriche tramite il forward
model; queste vengono confrontate con i dati osservati, ottenendo il misfit; sulla base di
tale misfit si calcola un aggiornamento del modello secondo una relazione lineare (spesso
espressa tramite matrici di sensibilita o derivate del modello); il modello viene quindi
modificato e il processo viene ripetuto fino a ottenere una soluzione stabile o fino al
soddisfacimento di criteri di arresto predeterminati. La struttura iterativa del metodo
evidenzia come l’'inversione sia in realta un problema di ottimizzazione.

Dal punto di vista concettuale, questa formulazione risulta particolarmente utile
anche nei metodi di integrazione di dataset differenti, nei quali ciascun tipo di misura
(ad esempio sismica e gravimetrica) fornisce vincoli complementari sulle proprieta fisiche
del mezzo, e constribuisce quindi a ridurre 'ambiguita del problema inverso.

1.3 Strategia di inversione integrata

La strategia considerata in questo lavoro di tesi € di tipo multi-step sequential integrated
tnversion. Sinteticamente si possono indicare i passi essenziali:

4



Observed Seismic

Initial G
Trace F(p) nitial Guess

3

Forward Model

Calculate F(p)-F(q)

y

v Update
Finish €5 £ Is error small Impedance
enough? guess
No
v

Solve inversion
equation For (p-q)

Figura 1.1: Schema classico dell’algoritmo di inversione lineare. L’immagine illustra la
sequenza iterativa di forward modeling, confronto con i dati e aggiornamento del modello

[4].

1. Inversione sismica: si stima un modello di velocita delle onde sismiche utiliz-
zando i dati sismici disponibili. Qualsiasi tecnica di inversione sismica (traveltime
tomography, inversione full waveform, tomografia a rifrazione/riflessione ecc.) com-
patibile con i dati puo essere impiegata in questo passo. Il risultato € un modello di
velocita tridimensionale che risolve, entro limiti di errore, le osservazioni sismiche
locali.

2. Relazione velocita-densita: si assume o si stima mediante misure di tipo pe-
trografico o in pozzo una relazione spazio-dipendente tra velocita e densita (es.
modelli lineari o parametrici locali) che permette di tradurre il modello di velocita
in un modello iniziale di densita a priori per ’analisi gravimetrica.

3. Integrazione gravimetrica: a partire dal modello di velocita ottenuto dall’inver-
sione sismica, viene derivato un modello di densita iniziale mediante una relazione
velocita-densita assunta o stimata. Su questo modello di densita viene quindi cal-
colata la risposta gravimetrica prevista. Successivamente, si costruisce una matrice
di covarianza che tiene conto sia della propagazione delle incertezze associate al
modello sismico (tramite la sua matrice di covarianza a posteriori) sia degli errori
legati alla stima della relazione velocita-densita utilizzata per ricavare il modello di
densita iniziale. A partire da queste informazioni, il problema gravimetrico viene



formulato in termini probabilistici e viene determinata la correzione al modello di
densita che massimizza la funzione di densita di probabilita a posteriori. In questo
modo si ottiene un modello di densita ottimale, coerente sia con le osservazioni
gravimetriche sia con i vincoli a priori derivanti dall’informazione sismica.

Iterazione: all’aggiornamento del modello di densita fa seguito ’aggiornamento
del modello di velocita, ottenuto attraverso la relazione densita-velocita, che puo
essere a sua volta aggiornata nel corso del processo di ottimizzazione. Il modello di
velocita cosl stimato viene quindi utilizzato come vincolo a priori nella successiva
iterazione dell’inversione sismica. L’intero procedimento viene ripetuto iterativa-
mente fino al raggiungimento della convergenza per entrambi i dataset, sismico e
gravimetrico.

Questo approccio sequenziale mantiene separate le stime per i due dataset, ma le
integra iterativamente per sfruttare la complementarita informativa: i dati sismici of-
frono risoluzione strutturale dettagliata in determinate regioni, mentre i dati di gravita
forniscono vincoli integrali sulla distribuzione delle masse.

1.4 Problema diretto

Il problema diretto della gravita consiste nel calcolare la componente verticale dell’ac-
celerazione gravitazionale misurata in N stazioni nota la distribuzione di densita in un
volume discretizzato in M elementi (cubi, prismi o poliedri). In forma discretizzata
lineare:

g =GAp + ¢ (1.1)

dove

g € RY &l vettore che rappresenta il campo di gravita (componente verticale della
gravita), osservato o calcolato,

Ap € RM ¢ il vettore delle anomalie di densita (incognite),
G € RY*M ¢ ]a matrice delle derivate parziali: ogni elemento Gy, . = 9gn/0pm
misura 'effetto della variazione di densita nel volume m sulla misura della gravita

sul punto n,

€ rappresenta l’errore associato alle macchine di calcolo.

Per il calcolo di G e della previsione g si usano formule analitiche o semi-analitiche
per corpi poliedrici o prismatici; esistono metodi efficienti e numericamente stabili (per
corpi poliedrici con densita variabile, vedi Pohanka [20]).
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1.5 Problema inverso

L’inversione lineare regolarizzata puo essere formulata come un problema di minimi
quadrati con termine di regolarizzazione (fare riferimento a Tondi et al. [24] per mag-
giori dettagli). Applicando il principio di massima probabilita alla funzione densita di
probabilita si ottiene la soluzione del problema:

ApY) = (GTC, G +C,)) H(GTC,  Ag +aC,y, Av) (12)

dove

o Ag ¢ il vettore dei residui di gravita;
e G ¢ la matrice delle derivate parziali che lega variazioni di densita alle osservazioni;

o Cyy e Gy, sono rispettivamente le matrici di covarianza degli errori sui dati e del
modello a priori;

e Av ¢ il vettore delle velocita;

1.6 Problematiche

La principale limitazione computazionale del lavoro originale & rappresentata dalla co-
struzione e dalla gestione della matrice delle derivate parziali G. Questa matrice e in
generale densa: ogni elemento della discretizzazione del volume influisce, seppur con
intensita decrescente con la distanza, su ciascuna stazione di misura. Di conseguenza la
costruzione esplicita di G e la risoluzione del sistema 1.2 diventano rapidamente onero-
se sia in termini di tempo di calcolo ma soprattutto di memoria quando il numero di
osservazioni IV e il numero di celle di discretizzazione M aumentano.

La memorizzazione completa di G puo richiedere risorse superiori a quelle disponibili
su una singola macchina; analogamente, la soluzione diretta delle equazioni necessarie
alla risoluzione del problema puo risultare computazionalmente troppo onerosa. Per la
gestione di grandi volumi di dati, corrispondenti a volumi di terreno di grandi dimensioni,
e per rendere questi calcoli praticabili ¢ quindi necessario distribuire i dati (matrici e
vettori) e il carico computazionale su pitt processori di un cluster.

Il codice sviluppato da Tondi et al. [24] affronta precisamente questo problema
mediante calcolo distribuito: le matrici vengono suddivise tra i nodi del cluster invece
di essere tutte conservate nella memoria di un unico calcolatore. Questo € reso possibile
dall’uso della libreria ScaLAPACK, che consente di eseguire operazioni di algebra lineare
in parallelo su matrici distribuite secondo lo schema della distribuzione ciclica a blocchi.
Il funzionamento e i dettagli implementativi di ScaLAPACK verranno approfonditi in
un capitolo successivo.

11 software originario & tuttavia scritto in Fortran: il presente lavoro di tesi consiste nel
porting dell’applicazione e delle routine necessarie per la gestione distribuita delle matrici
dal Fortran al C++, con particolare attenzione agli aspetti legati alla formulazione
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e alla risoluzione del problema inverso. L’obiettivo & quello di di ottenere un codice
pit moderno, manutenibile e integrabile nell’ecosistema C+-+ contemporaneo. Questo
intervento comprende la riscrittura delle procedure di inversione sismico-gravimetrica,
nonché I'implementazione di una libreria di funzioni in C++ in grado di riprodurre le
funzionalita della libreria ScaLAPACK nell’ambito delle operazioni di algebra lineare su
matrici distribuite.

Nei capitoli successivi verranno descritti nel dettaglio gli aspetti implementativi, gli
algoritmi algebrici adottati e i risultati delle misure di prestazione sulle funzionalita
sviluppate.



Capitolo 2

Distribuzione delle matrici per il
calcolo parallelo

2.1 Matrici su memoria distribuita

La crescente dimensione dei problemi numerici in scienze e ingegneria rende spesso im-
possibile o inefficiente 1'uso di strutture dati monolitiche residenti su un unico nodo:
memorie locali limitate, limiti di I/O e costi computazionali spingono verso soluzioni
parallele. Distribuire gli elementi di una matrice su piu processi permette di:

o aumentare la memoria totale disponibile (ogni processo conserva solo una porzione
della matrice globale);

o parallelizzare le operazioni aritmetiche (ogni processo esegue calcoli sulla propria
porzione);

e ridurre i tempi di esecuzione sfruttando 'hardware del cluster in modo scalabile;

Esistono diverse tecniche per la distribuzione delle matrici su pit processi, ognuna
con i propri vantaggi e svantaggi: la distribuzione a blocchi, la distribuzione ciclica e la
distribuzione ciclica a blocchi.

2.1.1 Distribuzione a blocchi

Le prime strategie di distribuzione sono basate su suddivisioni lungo righe o colonne o
su blocchi contigui. Dato una matrice globale A € R™*™, si possono definire:

o Block-row: ogni processo riceve un insieme contiguo di righe (Fig. 2.1). Se p ¢ il
numero di processi e m; = % il numero di righe assegnate al processo ¢, allora la
(2) c R xn

porzione locale é A,
o Block-column: analogamente per le colonne (Fig. 2.2), con porzioni Al(?c €

RmXni



e Block: la matrice viene suddivisa in blocchi rettangolari contigui secondo una
griglia regolare; ogni processo memorizza uno o pit blocchi contigui (Fig. 2.3).

P1

p2

—>

P3

P4

Figura 2.1: Distribuzione block-row di una matrice tra 4 processi.

P1 P2 P3 P4

—>

Figura 2.2: Distribuzione column-row di una matrice tra 4 processi.

P1 P2

|:> P3 P4

Figura 2.3: Distribuzione a blocchi di una matrice tra 4 processi.
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Queste strategie sono semplici da implementare e consentono di sfruttare I'adiacen-
za in memoria dei dati, ottimizzando le prestazioni grazie all’'utilizzo della cache e la
vettorizzazione. Tuttavia, tali vantaggi si limitano alle operazioni su una singola ma-
trice. Quando due o piu matrici hanno distribuzioni differenti, i processi possono dover
accedere a porzioni di dati non allineate, con conseguente squilibrio di carico e costosi
scambi di dati tra nodi.

2.1.2 Distribuzione ciclica

La distribuzione ciclica assegna righe o colonne (o blocchi di dimensione 1) ai processi
in modo periodico: il primo elemento al processo 0, il secondo al processo 1, e cosi via,
tornando al processo 0 dopo l'ultimo (Fig. 2.4).

P1 p2

|:> P3 P4

Figura 2.4: Distribuzione ciclica di una matrice tra 4 processi.

Questo approccio migliora il bilanciamento del carico sia nelle operazioni su singole
matrici, sia nelle operazioni fra piti matrici, poiché la distribuzione dei dati risulta piu
uniforme. In questo modo, elementi corrispondenti di matrici diverse tendono a essere
mappati sugli stessi processi, semplificando 1’esecuzione di operazioni locali. Tuttavia,
la mancanza di adiacenza in memoria penalizza le prestazioni, e la frequente necessita
di comunicazioni tra processi puo introdurre overhead significativi.

2.1.3 Distribuzione block-cyclic

La distribuzione block-cyclic generalizza la precedente: si definisce una dimensione di
blocco locale (b,,b.) (righe per blocco, colonne per blocco) e si mappa la griglia di
blocchi globali sui processi seguendo uno schema ciclico bidimensionale su una griglia
di processori P, x P.. In altre parole, la matrice globale viene suddivisa in celle di
dimensione b, X b, e queste celle vengono assegnate ai processi in ordine ciclico secondo
la disposizione dei processori (Fig. 2.5).

11



P1 P2

|:> P3 P4

Figura 2.5: Immagine che mostra la distribuzione ciclica a blocchi di una matrice tra 4
processi.

Questa soluzione combina i vantaggi dei due approcci precedenti:

¢ bilanciamento del carico computazionale piu uniforme;

¢ riduzione del volume complessivo di comunicazioni;

o possibilita di sfruttare ottimizzazioni locali basate su blocchi contigui in memoria.

Per queste ragioni, la distribuzione block-cyclic ¢ quella adottata nelle principali
librerie di algebra lineare parallela, come ScaLAPACK.

2.2 ScaLAPACK

ScaLAPACK (Scalable Linear Algebra PACKage) [23] ¢ una libreria standard per il cal-
colo numerico parallelo di algebra lineare su architetture a memoria distribuita. Basata
sui concetti di BLAS [6] e PBLAS [3] per le operazioni locali, estende LAPACK [2] per
ambienti distribuiti, fornendo routine per fattorizzazioni (LU, QR, Cholesky), risoluzio-
ne di sistemi lineari, calcolo di autovalori e autovettori, e altre operazioni di algebra
lineare. Le routine sono progettate per essere eseguite su griglie di processi organizzate
attraverso BLACS (Basic Linear Algebra Communication Subprograms) [5] o MPI.

ScaLAPACK ¢ ampiamente diffuso nella comunita scientifica per la sua stabilita nu-
merica, I'efficienza degli algoritmi implementati e la portabilita su differenti architetture
HPC. Esso fornisce un’infrastruttura solida per lo sviluppo di applicazioni scientifiche
di larga scala.

Il disegno concettuale di ScaLAPACK si basa su pochi elementi chiave:

1. Griglia di processori: i processi vengono organizzati in una griglia bidimensio-
nale P, x P,. Questa struttura facilita la mappatura delle matrici distribuite e
delle comunicazioni a livello di riga/colonna di blocchi.
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2. Distribuzione block-cyclic 2D: usando questa distribuzione, si hanno i vantaggi
descritti sopra e si possono riutilizzare degli algoritmi di LAPACK per eseguire i
calcoli localmente.

3. Array descriptor: ogni matrice distribuita possiede un descrittore che specifica
le dimensioni globali m, n, le dimensioni di blocco by, b., e la posizione/offset della
porzione locale memorizzata. Le routine ScaLAPACK usano questo descrittore
per calcolare gli indici locali e orchestrare comunicazioni.

4. PBLAS e BLACS: ScaLAPACK si appoggia su Primitive BLAS parallele (PBLAS)
per le operazioni di base a livello distribuito, e su BLACS per la gestione delle
comunicazioni e dei contesti di processo.

L’utilizzo di ScaLAPACK consente di risolvere efficientemente problemi di algebra
lineare di grandi dimensioni, motivo per cui & divenuto un riferimento nel calcolo scienti-
fico. Tuttavia, la libreria presenta alcune complessita d’uso: richiede una configurazione
preliminare (inizializzazione di BLACS e MPI) e, essendo scritta principalmente in For-
tran, risulta meno accessibile a utenti non esperti di programmazione. Sebbene siano
disponibili interfacce C, 'interazione resta complessa per chi desidera utilizzare la libreria
come strumento di ricerca numerica piuttosto che come framework di sviluppo.

Queste considerazioni, unite all’esigenza di tradurre il codice d’inversione sismico-
gravimetrica dellINGV in C++, hanno motivato la creazione di una nuova libreria,
denominata SLAC (Scalable Linear Algebra for C++), con I'obiettivo di offrire presta-
zioni e affidabilita paragonabili a ScaLAPACK, ma con una progettazione pitt moderna,
intuitiva e integrata nell’ecosistema C++-.
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Capitolo 3

Scalable Linear Algebra for C++

La libreria SLAC [21] (acronimo di Scalable Linear Algebra for C++) ¢ un framework
progettato per lo sviluppo e la risoluzione di problemi di algebra lineare con matrici
dense in contesti distribuiti. Scritta in C++20, essa propone, attraverso un linguaggio
moderno, una valida alternativa alle librerie tradizionali per ’algebra lineare parallela.

L’intera libreria e ottimizzata per il calcolo parallelo, non soltanto su singoli nodi
multi-core, ma soprattutto su cluster con memoria distribuita. Analogamente a librerie
come ScaLAPACK, SLAC adotta una distribuzione delle matrici secondo lo schema di
distribuzione ciclica a blocchi, che € uno standard per queste tipologie di problemi.

Inoltre, SLAC si distingue per una maggiore semplicita d’uso e configurazione: € una
libreria header-only, facile da includere nei progetti, e al contempo nasconde all’utente
I’intera logica di distribuzione, calcolo e comunicazione. Questo la rende piu adatta anche
ad utenti non esperti di programmazione parallela, pur mantenendo elevata efficienza e
affidabilita.

3.1 Tecnologie

Le tecnologie impiegate per lo sviluppo di questa libreria sono ormai consolidate tanto
in ambito scientifico quanto informatico, per la risoluzione di problemi di algebra lineare
e per le comunicazioni tra processi in memoria non condivisa. In particolare:

Ogni processo esegue le proprie computazioni sulle matrici locali mediante la libreria
Eigen, e si coordina e scambia dati con gli altri processi tramite MPI.

3.1.1 Eigen

La libreria Eigen [12] & una libreria C++ a template per l'algebra lineare: vettori,
matrici dense e sparse, risolutori numerici e algoritmi correlati. Tra le motivazioni della
sua scelta occorrono evidenziare i seguenti punti:

e ¢ header-only: non richiede una fase di linking o installazione complessa, basta
includere gli header nel progetto.
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o fornisce una interfaccia un semplice e familiare, che consente rapido sviluppo ed e
utilizzata in molti ambiti industriali e di ricerca.

o fornisce prestazioni elevate grazie all’'uso di tecniche come expression templates,
ottimizzazione del codice, supporto per vettorizzazione, e supporto per matrici
dinamiche.

« ¢ ampiamente diffusa e supportata da una comunita attiva, cid garantisce robu-
stezza e affidabilita.

3.1.2 MPI (Message Passing Interface)

La Message Passing Interface (MPI) [9] & uno standard di libreria per la comunicazione
fra processi in architetture a memoria distribuita. Nel contesto di SLAC, MPI consente
ai processi di coordinarsi, scambiare porzioni di matrici distribuite e cooperare nel calcolo
parallelo. Le ragioni della sua scelta includono:

¢ lo standard de facto nelle applicazioni HPC su cluster con memoria distribuita,
garantisce portabilita e scalabilita.

e consente la comunicazione punto-a-punto, le operazioni collettive, la gestione di
gruppi di processi e topologie logiche di comunicazione.

o dispone di implementazioni mature e performanti (come Open MPI [18]), con
supporto per processi distribuiti su nodi eterogenei.

3.2 Struttura

3.2.1 Glossario

Prima di mostrare la struttura interna della libreria, ¢ opportuno definire un breve
glossario dei termini che verranno utilizzati pit avanti, al fine di evitare ambiguita. Si
useranno frequentemente i termini nodo, matrice locale, matrice distribuita e matrice
reale. Con questi termini si intende:

e Nodo: rappresenta un nodo logico di un cluster; non si intende necessariamente
un nodo fisico, bensi un processo identificato da una posizione nella griglia dei pro-
cessi. Si preferisce la parola “nodo” per enfatizzare che il codice & completamente
trasparente alla collocazione fisica dei processi: pitt nodi potrebbero risiedere nella
stessa, macchina fisica e I'applicazione li tratterebbe come processi indipendenti,
senza, conoscere la loro localizzazione fisica.

¢ Matrice locale: ¢ una matrice residente in un singolo nodo. Se un nodo possiede
una matrice locale, allora detiene in memoria tutti gli elementi di quella matrice.
I calcoli su tale matrice non richiedono comunicazioni inter-nodi e percio sono
definiti locali.
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e Matrice distribuita: & una matrice suddivisa fra piti nodi secondo la distribuzio-
ne ciclica a blocchi. Cio implica che un nodo che gestisce una matrice distribuita
non necessariamente detiene tutti gli elementi della matrice globale; se ha bisogno
di accedere ad elementi che risiedono su altri nodi, puo essere necessario richiederli
via comunicazione.

¢ Matrice reale: indica la matrice dal punto di vista globale e logico. Indipen-
dentemente dal modo in cui ¢ memorizzata (localmente o in forma distribuita)
questo termine viene usato principalmente per descrivere il comportamento degli
algoritmi distribuiti.

3.2.2 Funzionalita

La libreria SLAC opera mediante funzioni collettive, ossia chiamate che devono essere
invocate simultaneamente da tutti i processi coinvolti per ottenere un risultato comune
e cooperativo. Tutti i nodi eseguono lo stesso programma e, in base alle matrici in gioco
e alla posizione logica del nodo, calcolano il risultato.

I nodi di SLAC corrispondono ai processi MPI, decisi all’avvio del programma: in
base al numero di processi disponibili viene creata una griglia logica che associa a ogni
nodo una posizione. Tale posizione ¢ utilizzata principalmente per coordinare i nodi ed
eseguire algoritmi basati sulla distribuzione ciclica a blocchi.

Nella libreria sono previste due classi principali per 'utente:

e LocalMatrix: rappresenta una matrice locale. Ogni nodo che crea una LocalMatrix
conserva in memoria tutti gli elementi della matrice. Internamente utilizza le
strutture della libreria Eigen per eseguire in modo efficiente i calcoli locali.

e DistributedMatrix: rappresenta una matrice distribuita. Ogni nodo che crea
una DistributedMatrix conserva in memoria solo gli elementi mappati su quel
nodo secondo la distribuzione ciclica a blocchi. In sostanza, ¢ un wrapper su
LocalMatrix: contiene una matrice locale e include le informazioni riguardanti
la porzione della matrice globale a cui il nodo ¢ assegnato. L’assegnazione degli
elementi ai rispettivi nodi e gestita da una classe ausiliaria, Mapper, il cui compito
¢ stabilire una corrispondenza biunivoca tra ogni elemento della matrice reale e il
nodo corretto, determinandone anche la posizione all’interno della matrice locale.

LocalMatrix e DistributedMatrix implementano una medesima interfaccia astrat-
ta, Matrix, che definisce le informazioni strutturali di base (dimensioni) e i metodi di
accesso in lettura e scrittura ai singoli elementi. La logica di accesso ¢ delegata all’in-
terfaccia ElementLogic, che fornisce un meccanismo unificato per la gestione degli ele-
menti. A seconda dell’implementazione concreta, questa pud operare su memoria locale
(LocalElementLogic) oppure su memoria distribuita (DistributedElementLogic).

La classe LocalMatrix non eredita direttamente da Matrix, ma da una classe astrat-
ta intermedia, BaseMatrix. Questa scelta progettuale permette di incapsulare qualunque
tipo di matrice di Eigen, sfruttandone le ottimizzazioni. Un’altra estensione utilizzata
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di BaseMatrix & LocalSubmatrix, che rappresenta una vista su una porzione di una
LocalMatrix. Questa classe permette di manipolare sottomatrici senza effettuare co-
pie dei dati, consentendo aggiornamenti ottimizzati direttamente sulla matrice originale
grazie alle operazioni su blocchi offerte da Eigen.

Nella Fig. 3.1 & mostrato lo schema delle classi definite nella libreria.

) Element
<<interface>>
Matrix getlset---------------- = + value: double
+ rows: uint + position: Coord <<interface>>
ElementLogic
+ columns: uint
+ get(): double
+ size: uint
+ set(double): double

| 3

' iy i '

i P T Eigen:MatrixBase | '

i——— BaseMatrix<T> |------- use logic-------- ] LocalElementLogic = |-—--

i [y

i LocalSubMatrix

LocalMatrix '
AL LocalVector :
--------- use logic--------»| DistributedElementLogic -----
~-1 DistributedMatrix
TTCuse mapper.._ . N Mapper
L o + global_coords_to_local_coords(Coord): Coord
DistributedVector
+ global_coords_to_node(Coord): Coord
+ local_coords_to_global_coords{Coord, Coord): Coord

Figura 3.1: Schema UML delle classi definite nella libreria SLAC.

E importante osservare che, se su un nodo si definiscono due matrici con le stesse
dimensioni - una LocalMatrix e una DistributedMatrix - la DistributedMatrix oc-
cupera sempre meno spazio in memoria rispetto alla LocalMatrix. La matrice locale
alloca tutti gli elementi della matrice globale, mentre quella distribuita alloca soltanto gli
elementi mappati sul nodo, che sono in numero inferiore rispetto al totale. Di conseguen-
za, la DistributedMatrix risulta piu efficiente in termini di occupazione di memoria, a
fronte di algoritmi piu complessi e della necessita di comunicazione e coordinamento tra
nodi.
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Nel sistema sono previste anche le classi LocalVector e DistributedVector, esten-
sioni rispettivamente di LocalMatrix e DistributedMatrix che rappresentano rispet-
tivamente vettori locali e distribuiti (i quali possono essere visti come matrici con una
delle due dimensioni unitaria) utilizzate per ottimizzare alcuni algoritmi e imporre vincoli
sulle dimensioni degli input.

Uno dei punti di forza della libreria e che le stesse funzioni e operazioni sono iden-
tiche sia per matrici locali sia per matrici distribuite. Grazie all’overload delle funzio-
ni (che selezionano l’algoritmo appropriato in base al tipo), le classi LocalMatrix e
DistributedMatrix sono completamente intercambiabili e integrabili dal punto di vista
dell’'utente, mentre la logica sottostante rimane nascosta. Anche I'accesso agli elementi
delle matrici e uniformato tramite la classe Element, che consente di leggere e scrive-
re un singolo elemento sia su matrici locali che distribuite, in base alla ElementLogic
utilizzata.

3.3 Test e prestazioni

Tutte le funzionalita implementate in SLAC sono state verificati tramite un’ampia suite
di test e risultano correttamente funzionanti. Lo sviluppo & avvenuto seguendo il para-
digma del test-driven development: per ciascuna funzione della libreria sono stati scritti
uno o piu test che verificano tutti gli scenari d’uso previsti.

Per i test & stato adottato il framework CATCH2 [16], un popolare framework di
testing in C++ che fornisce una sintassi semplice, leggibile e basata su macro per definire
casi di test. CATCH2 supporta anche il micro-benchmarking e puo essere facilmente
integrato nello sviluppo TDD grazie alla sua natura header-only.

Oltre ai test di correttezza, sono stati creati benchmark dedicati per misurare le
prestazioni di SLAC. In questa tesi si presentano le misurazioni di tempo di esecuzione,
la scalabilita (in modalita strong scaling) e 'efficienza delle varie operazioni al variare
delle dimensioni delle matrici, delle dimensioni dei blocchi e del numero di processi.

Le prove di performance sono state condotte su un server dotato di processore Intel
Xeon E5-2603 (12 core a 1,70 GHz), 64 GB di RAM e 3 GPU NVIDIA GTX 1070.
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Capitolo 4

Algoritmi per matrici distribuite

Le matrici locali, essendo interamente memorizzate nella memoria di un singolo nodo,
possono sfruttare senza limitazioni gli algoritmi ottimizzati forniti dalla libreria Eigen.
Le matrici distribuite, invece, non possono delegare direttamente a Eigen le operazioni
algebriche, poiché nessun nodo possiede tutte le informazioni necessarie. Per eseguire
tali calcoli & quindi necessario ricorrere ad algoritmi specifici, in grado di orchestrare lo
scambio dei dati tra i nodi affinché ciascuno possa disporre localmente degli elementi
richiesti dalle routine di Eigen.

Gli algoritmi distribuiti sviluppati in questo lavoro sono progettati per operare su
matrici distribuite secondo lo schema ciclico a blocchi (Fig. 2.5). Tale modalita di distri-
buzione presenta alcune proprieta strutturali che possono essere sfruttate per ottimizzare
le operazioni:

e i dati sono suddivisi in blocchi quadrati di lato B, il che implica che gli elementi
con indici appartenenti all’intervallo [iB...(i + 1)B], per ogni i € N, risultano
adiacenti anche nella matrice reale;

o inodi del cluster sono organizzati in una griglia di processi di dimensione (G, G),
e ciascun nodo ¢ identificato dalla coppia (Cy, Cy);

o tutti i nodi appartenenti alla stessa colonna della griglia (stesso valore di C;)
memorizzano localmente lo stesso numero di colonne;

o tutti i nodi appartenenti alla stessa riga della gridlia (stesso valore di Cy) memo-
rizzano localmente lo stesso numero di righe;

o il nodo (0,0) contiene sempre almeno un elemento, poiché ¢ il nodo che possiede
la posizione reale (0, 0).

Gli elementi locali della DistributedMatrix vengono assegnati ai nodi corretti se-
guendo uno schema ciclico a blocchi, tramite una formula che, data la posizione reale

(Py, Py) di un elemento, determina sia il nodo a cui esso appartiene (Cy, Cy), sia la sua
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posizione locale nel nodo (Pag, Pé):

, P,
P, + { J B + (P, mod Gz B) mod B

(4.1)
/ P
P, + {nyBJ B + (P, mod GyB) mod B
Cyp VDIJ mod G,
B
(4.2)

Cy {%J mod Gy

La formula inversa permette invece di determinare la posizione reale di un elemento a
partire dalla sua posizione locale e dal nodo che lo contiene:

Px<—<
P, /
Py<— E Gy+Cy -l-PyInOdB

E importante osservare che questo mapping & universale: dato un qualunque elemen-
to di una matrice, indipendentemente dalle dimensioni della matrice stessa, € sempre
possibile determinare in anticipo su quale nodo verra collocato e in quale posizione della
matrice locale di quel nodo sara memorizzato. Cio implica che due elementi che occupa-
no la stessa posizione in matrici diverse verranno comunque assegnati allo stesso nodo e
alla medesima posizione locale. Questo rende gli algoritmi distribuiti significativamente
piu semplici ed efficienti, riducendo il costo delle comunicazioni e facilitando 1’esecuzione
dei calcoli.

/
_z

G, + Cx> + P, mod B
(4.3)

Grazie a tali relazioni, ogni nodo puo determinare in modo univoco dove reperi-
re e verso chi inviare i dati necessari per le operazioni distribuite, consentendo una
comunicazione efficiente.

4.1 Operazioni embarrassingly parallel

4.1.1 Design

Alcune operazioni possono essere classificate come embarrassingly parallel, ovvero com-
poste da insiemi di task completamente indipendenti tra loro. In questi casi ogni ope-
razione locale puo essere eseguita senza richiedere alcuna forma di comunicazione o
sincronizzazione con gli altri nodi del cluster, portando a un parallelismo perfetto.
Rientrano in questa categoria tutte le operazioni elemento-per-elemento: ciascun
nodo lavora esclusivamente sugli elementi della porzione locale della matrice, gia presente
in memoria, e pud quindi completare il proprio calcolo in autonomia. Esempi tipici sono
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la somma tra matrici (eseguita come somma indipendente dei rispettivi elementi locali)
e la moltiplicazione elemento-per-elemento.

A queste si aggiunge una funzione generica implementata in SLAC, denominata
apply, che consente di applicare una funzione unaria a ogni elemento della matrice. Il
risultato della funzione viene quindi memorizzato direttamente in corrispondenza della
posizione dell’elemento originale.

4.1.2 Implementazione

Poiché le operazioni embarrassingly parallel possono essere svolte interamente in locale,
la loro implementazione & delegata a Eigen, che offre primitive ottimizzate e ad alte
prestazioni per il calcolo matriciale. Non & richiesta alcuna comunicazione tra i nodi:
anche nel caso della somma tra due matrici distribuite, il fatto che esse condividano la
stessa dimensione globale garantisce che, su ogni nodo, le corrispondenti matrici locali
abbiano dimensioni identiche e rappresentino la stessa porzione della matrice globale.

Questo allineamento naturale permette di eseguire 'operazione in perfetto paralle-
lismo, con ogni nodo che effettua il proprio calcolo in modo autonomo. Le funzioni
che seguono questo schema sono Slac::add, Slac::cwise_mul, Slac::cwise_div e
Slac: :apply.

4.1.3 Analisi delle prestazioni

Per la valutazione delle prestazioni ¢ stata analizzata esclusivamente la funzione Slac: : add.
Le tabelle 4.1 e 4.2 riportano i tempi di esecuzione per diversi numeri di nodi e dimensioni
della matrice, utilizzando rispettivamente blocchi di lato 32 e 64. Sono inoltre presentati

i grafici relativi ai tempi di esecuzione (Fig. 4.1), nonché lo speedup e lefficienza per
matrici di dimensione fissata 2048 x 2048 (Fig. 4.2).

Tabella 4.1: Tempi di esecuzione della funzione Slac: :add (blocksize = 32)

Tempo di esecuzione (s)

Dimensione matrice (px) 1 nodo 4 nodi 8 nodi 12 nodi

256 x 256 0.00008 0.0001 0.00003 0.00002
512 x 512 0.0003 0.0002  0.0001 0.00010
1024 x 1024 0.0015 0.0003  0.0002  0.0003
1536 x 1536 0.0051 0.0010  0.0006  0.0005
2048 x 2048 0.0091 0.0026  0.0015  0.0017
2560 x 2560 0.0142 0.0034 0.0023  0.0021

Essendo un’operazione completamente parallela e priva di comunicazioni, ci si atten-
de uno speedup quasi lineare. Dai risultati sperimentali si osserva effettivamente tale
comportamento, con una leggera perdita di efficienza all’aumentare del numero di nodi.
Questo effetto ¢ spiegabile con la distribuzione a blocchi: a differenza della distribuzio-
ne ciclica, il carico computazionale non ¢ ripartito in modo perfettamente uniforme, e

23



Tabella 4.2: Tempi di esecuzione della funzione Slac: :add (blocksize = 64)

Tempo di esecuzione (s)

Dimensione matrice (px) 1nodo 4nodi 8nodi 12 nodi

256 x 256 0.00008 0.0001 0.00002 0.00002
512 x 512 0.0003 0.0002  0.0001  0.0001
1024 x 1024 0.0015 0.0003  0.0002  0.0001
1536 x 1536 0.0051 0.0011  0.0006  0.0006
2048 x 2048 0.0091 0.0024 0.0015 0.0011
2560 x 2560 0.0142 0.0035 0.0022  0.0018

Tempeo di esecuzione della funzione ADD

Dim. blocco = 32 Dim. blocco = 64
0.0141 # Nodi 0.0147  # Nodi
—&— 1 nodi —8— 1 nodi
) 0.012 1 4 nodi & 0012 4 nodi
L 0.010 1 —* 8nodi 2 90104 —* @nodi
2 —— 12 nodi 2 —+— 12 nodi
g 0.008 - o 0.008
w1
L 0.006 2 0.006
© o
2 0.004 2 0.004
5 5
= 0.002 = 0.002 —M
0.000 | 0.000 { #=
500 1000 1500 2000 2500 500 1000 1500 2000 2500
Dim. matrice Dim. matrice

Figura 4.1: Tempi di esecuzione della funzione Slac: :add misurati su diverse dimensioni
dei blocchi.

alcuni nodi possono ricevere un numero di blocchi maggiore rispetto ad altri, riducendo
Iefficienza complessiva.

4.2 Trasposizione

4.2.1 Design

La trasposizione di una matrice consiste nel rimappare ogni elemento dalla sua posizione
originale alla posizione speculare rispetto alla diagonale principale. Data una matrice
A, la sua matrice trasposta A’ si costruisce tramite la relazione:

Afi = A (4.4)

Cio implica che gli elementi in posizione (7, j) della matrice originale vengono spostati
in posizione (j,7) della matrice trasposta.
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Speedup ed Efficienza della funzione ADD (matrice 2048x2048)

Speedup Efficienza

12 4 Dim. blocco e 1.0 4 Dim. blocco
—e— block 32 - —e— block 32

block 64 e block 64 \
104 o

o
o

Speedup
IS @
S
'\
\
S
S
\ .
\
. \
) Y
\
Efficienza
o o
I o

\

T T T T T T T T T T T T
0 2 4 6 8 10 12 o] 2 4 6 8 10 12
# Nodi # Nodi

Figura 4.2: Speedup ed efficienza della funzione Slac: :add con dimensione della matrice
fissa 2048 x 2048.

In un contesto distribuito, tuttavia, questa operazione non ¢ banale: le coordinate
(i,7) e (J,1) si riferiscono alla posizione globale all'interno della matrice distribuita. Di
conseguenza, ’elemento destinato alla nuova posizione puo non appartenere al nodo che
detiene la posizione originale. Ogni nodo deve quindi inviare gli elementi ai nodi che
ospiteranno le rispettive posizioni trasposte, e ricevere gli elementi che completano la
propria porzione locale della matrice (Fig. 4.3).

Questa fase coinvolge tutti i nodi e richiede numerose comunicazioni punto-punto,
rendendo l'operazione di trasposizione una delle piu complesse da gestire in memoria
distribuita.

4.2.2 Implementazione

L’utilizzo della distribuzione ciclica a blocchi riduce in modo significativo il costo delle
comunicazioni necessarie per la trasposizione. Poiché gli elementi della matrice sono
raggruppati in blocchi, € possibile manipolare ciascun blocco localmente prima e dopo il
trasferimento al nodo corretto. Questo approccio permette di inviare dati piu strutturati
e di dimensione maggiore, invece di effettuare comunicazioni elemento-per-elemento.
L’algoritmo usato & descritto dal seguente pseudocodice:

1: function BLOCKED TRANSPOSE(A)

2 for each block (i,j) € A do

3 t + node that will own block (j,) of AT
4: if this node owns block (i,7) of A then
5: send block (7,7) of A to node t

6 end if

7 end for

8 allocate AT

9 for each block (j,i) € AT do
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10: t < node that owns block (7, ) of A

11: if this node owns block (j,i) of AT then
12: receive block b from node ¢

13: block (4,4) of AT < bT

14: end if

15: end for

16: return AT

17: end function

MPI offre strumenti ottimizzati per I'invio di buffer di grandi dimensioni, includendo
la possibilita di definire tipi derivati personalizzati che rappresentano strutture complesse
come blocchi rettangolari di una matrice. Questo rende il trasferimento dei blocchi
particolarmente efficiente.

La complessita principale rimane comunque legata al numero totale di blocchi della
matrice: per completare la trasposizione € necessario che ogni nodo invii e riceva un
numero di blocchi proporzionale alla dimensione globale della matrice. Di conseguenza,
I’algoritmo comporta un numero di operazioni di comunicazione pari al numero totale
di blocchi, pur beneficiando dell’ottimizzazione data dal loro trattamento aggregato.

L’algoritmo puo essere ulteriormente migliorato quando si utilizza una griglia di
processi quadrata. In questo caso, ogni nodo comunica sempre con un unico nodo spe-
cifico, quello simmetrico rispetto alla diagonale della griglia: il nodo (z,y) scambia i
blocchi esclusivamente con (y,z). Questo consente di sostituire le molteplici operazioni
di send/recv per ciascun blocco con una singola operazione di invio e una di ricezio-
ne contenenti tutti i blocchi necessari, con un notevole miglioramento delle prestazioni
complessive.

La funzione che realizza la trasposizione di una matrice distribuita ¢ Slac: : transpose.

Original Transposed D =
A| B < | O | m [] € P2
-—-'*
C|D W O |rmr
| ] € Pra
E | F

Figura 4.3: Logica di trasposizione delle matrici distribuite.

4.2.3 Analisi delle prestazioni

Le tabelle 4.3 e 4.4 riportano i tempi di esecuzione della funzione Slac: :transpose per
diversi numeri di nodi e dimensioni della matrice, con blocchi di lato 32 e 64. Sono
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inoltre mostrati i grafici dei tempi di esecuzione (Fig. 4.4) e quelli relativi a speedup ed
efficienza (Fig. 4.5).

Tabella 4.3: Tempi di esecuzione della funzione Slac: :transpose (blocksize = 32)

Tempo di esecuzione (s)

Dimensione matrice (px) 1 nodo 4 nodi 8nodi 12 nodi

256 x 256 0.0007 0.0003 0.0001  0.0001
512 x 512 0.0021 0.0007 0.0004  0.0005
1024 x 1024 0.0088 0.0029 0.0017  0.0020
1536 x 1536 0.0253 0.0073 0.0046  0.0049
2048 x 2048 0.0513 0.0134 0.0089  0.0094
2560 x 2560 0.0918 0.0208 0.0140  0.0147

Tabella 4.4: Tempi di esecuzione della funzione Slac: :transpose (blocksize = 64)

Tempo di esecuzione (s)

Dimensione matrice (px) 1 nodo 4 nodi 8 nodi 12 nodi

256 x 256 0.0006 0.0003 0.00006 0.00006
512 x 512 0.0021 0.0008  0.0004  0.0005
1024 x 1024 0.0090 0.0028  0.0013  0.0014
1536 x 1536 0.0247 0.0073  0.0034  0.0046
2048 x 2048 0.0509 0.0135 0.0065  0.0067
2560 x 2560 0.0937 0.0208 0.0102  0.0108

Dalle curve in Fig. 4.5 emerge chiaramente la presenza di due picchi corrispondenti a 4
e 9 nodi, cioe alle griglie quadrate 2x2 e 3x3. Questo comportamento conferma ’efficacia
dell’ottimizzazione introdotta per le griglie quadrate: in tali configurazioni ogni nodo
comunica con un unico nodo “simmetrico”, riducendo drasticamente il numero totale di
messaggi e privilegiando il lavoro locale. L’ottimizzazione risulta pertanto determinante
per migliorare prestazioni ed efficienza complessiva dell’algoritmo di trasposizione.

4.3 Moltiplicazione matriciale

4.3.1 Design

La moltiplicazione tra matrici rappresenta una delle operazioni fondamentali dell’algebra
lineare e, al tempo stesso, una delle pitt complesse da distribuire in modo efficiente su
cluster. Il problema nasce dal fatto che il calcolo di ciascun elemento (i, j) della matrice
risultato R = P x @ richiede l'intera riga i della matrice P e l'intera colonna j della
matrice . Nelle matrici distribuite, tuttavia, nessun nodo possiede per intero una riga
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Tempo di esecuzione della funzione TRANSPOSE
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Figura 4.4: Tempi di esecuzione della funzione Slac: :transpose misurati su diverse
dimensioni dei blocchi.

o una colonna: ogni processo detiene solo una porzione locale della matrice globale,
rendendo necessarie comunicazioni coordinate tra nodi.

Per eseguire la moltiplicazione matrice per matrice in modo efficiente viene utiliz-
zato una variazione dell’algoritmo SUMMA (Scalable Universal Matrix Multiplication
Algorithm) [11]. SUMMA suddivide il prodotto in “fasi” successive: a ogni iterazione,
una banda di colonne di P e una banda di righe di ) vengono trasmesse rispettivamente
lungo le righe e lungo le colonne della griglia di processi. I nodi, una volta ricevuti i
blocchi rilevanti, possono aggiornare localmente la porzione del risultato. La variazione
usata invece consiste nell’aggregare tutti i blocchi di una riga/colonna prima di aggior-
nare la matrice risultato, e poi eseguire il calcolo; in questo modo si sfruttano meglio le
ottimizzazioni locali (Fig. 4.6).

Un semplice pseudocodice dell’algoritmo usato & il seguente:

1: function SUMMA (P, Q)
2: allocate R to store P x @)
3: max__it < iterations needed to fetch all row and columns
4: for it =0 to maxz it —1 do
5: PT(;?JS + P rows aggregated from same process row
6: le)s + @ columns aggregated from same process column
7: A R + local portion of R corresponding to the rows of P}éﬁgs and the columns
of QL4
8: R P x Q")
9: end for
10: return R

11: end function

La distribuzione ciclica a blocchi offre un vantaggio sostanziale: le comunicazioni
necessarie riguardano esclusivamente i nodi appartenenti alla stessa riga (per i blocchi
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Speedup ed Efficienza della funzione TRANSPOSE (matrice 2048x2048)
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Figura 4.5: Speedup ed efficienza della funzione Slac: :transpose con dimensione della
matrice fissa 2048 x 2048.

della prima matrice) o alla stessa colonna (per i blocchi della seconda). Questo perché
ogni nodo necessita soltanto dei blocchi posseduti dai processi della propria riga o colonna
logica. Ne deriva che nodi appartenenti a righe diverse possono eseguire in parallelo la
fase di aggregazione.

4.3.2 Implementazione

In SLAC la moltiplicazione matriciale & progettata per funzionare non solo tra matri-
ci entrambe distribuite, ma anche tra matrici di natura diversa (ad esempio: matrice
locale x matrice distribuita, matrice distribuita x matrice locale, ecc.). Per ottenere
questo comportamento flessibile € stata introdotta una gerarchia di classi ausiliarie, de-
nominate MatmulInfo. Queste classi incapsulano tutte le informazioni necessarie per
recuperare, all’occorrenza, le righe o le colonne di una matrice, indipendentemente dalla
sua rappresentazione interna.
Ogni MatmulInfo fornisce due funzionalita principali:

o un metodo per ottenere i dati necessari al calcolo (righe o colonne, eventualmente
distribuite o locali);

e un metodo per determinare il numero di iterazioni richieste dal prodotto. Questo
€ necessario quando il volume di dati da scambiare € troppo grande per essere
mantenuto simultaneamente in memoria: in tal caso il calcolo viene suddiviso in
piu fasi, riducendo I'impatto sulla memoria locale.

La classe MatmulInfo ¢ stata estesa in quattro varianti specifiche:

e DistrRow_MatmulInfo per estrarre le righe da una DistributedMatrix;

e DistrCol_MatmulInfo per estrarre le colonne da una DistributedMatrix;
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Figura 4.6: Principali fasi dell’algoritmo per la moltiplicazione matriciale per il nodo P1.
Prima ottiene le righe e colonne comunicando con gli altri nodi, poi esegue localmente
la moltiplicazione.

e LocalRow_MatmulInfo per estrarre le righe da una LocalMatrix;

e LocalCol_MatmullInfo per estrarre le colonne da una LocalMatrix.

La combinazione di queste classi permette di comporre qualsiasi forma di moltiplica-
zione, mantenendo la logica di gestione dei dati completamente astratta rispetto al tipo
concreto della matrice (vedi Fig. 4.7 per uno schema riassuntivo).

Il modo in cui si inviano e ricevono le righe e le colonne delle matrici e stato pro-
gettato per sfruttare al meglio le capacita di MPI attraverso la definizione di datatype
personalizzati. Questi tipi derivati permettono di trasmettere dati in modo efficiente,
soprattutto quando non sono contigui in memoria. Nel nostro caso, la necessita di rico-
struire righe e colonne della matrice reale a partire dai blocchi distribuiti rende questo
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<<interface>>
Matmulinfo

+get_size(): Coord

+ get_may_iterations(): int

+ get_matrix_matmul_data(int): (LocalMatrix, int)

?

AbstractMatmulinfo
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DistrRow_Matmulinfo DistrCol_Matmulinfo DistrTranspCol_Matmulinfo

LocalRow_Matmulinfo LocalCol_Matmulinfo

T T
matmul syrk

Figura 4.7: Schema UML delle classi Matmullnfo e le sue estensioni

meccanismo particolarmente adatto: i blocchi provenienti dai vari nodi possono essere
ricevuti ed inseriti automaticamente nelle posizioni corrette.

In ogni nodo i dati locali sono contigui in memoria, quindi 'operazione di invio &
semplice ed efficiente. Sul lato della ricezione, invece, i datatype MPI gestiscono lo stride
tra i blocchi, consentendo di depositare ciascun elemento direttamente nella posizione
finale che avra nella riga o colonna globale, senza passaggi intermedi né copie aggiuntive.

Le funzioni incaricate dell’invio e dell’assemblaggio delle righe e delle colonne sono
fetch_global_rows, utilizzata da DistrRow_MatmulInfo, e fetch_global_cols, uti-
lizzata da DistrCol_MatmulInfo. All'interno di esse vengono impiegati rispettivamente
le strutture dati rows_datatype e cols_datatype, che definiscono la struttura dei seg-
menti da inviare e ricevere, permettendo una ricostruzione diretta e ordinata dei blocchi
nella matrice globale.

11 calcolo della moltiplicazione matriciale viene eseguito nel metodo generic_matmul,
che implementa una versione generica del prodotto tra due MatmulInfo. Al suo interno
viene applicato l'algoritmo SUMMA, adattato alle esigenze della libreria. La divisione
del calcolo in iterazioni € resa possibile grazie a un meccanismo essenziale fornito da
Figen: le block operations. Questo consente di operare direttamente su porzioni di
matrice, migliorando l'efficienza, riducendo le copie e permettendo alla procedura di
essere compatibile con matrici di dimensioni anche molto elevate.

La funzione che esegue la moltiplicazione matriciale ¢ Slac: :matmul.
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4.3.3 Analisi delle prestazioni

Le tabelle 4.5 e 4.6 mostrano i tempi di esecuzione della funzione Slac::matmul per
diverse dimensioni della matrice, utilizzando blocchi di lato 32 e 64. I grafici dei tempi
(Fig. 4.8) e quelli relativi a speedup ed efficienza (Fig. 4.9) completano I’analisi.

Tabella 4.5: Tempi di esecuzione della funzione Slac: :matmul (blocksize = 32)

Tempo di esecuzione (s)

Dimensione matrice (px) | 407 4 1odi 8 nodi 12 nodi

256 x 256 0.0074 0.0311 0.0713  0.1335
512 x 512 0.0494 0.0668 0.1359  0.2420
1024 x 1024 0.3659 0.1811 0.2752  0.4026
1536 x 1536 1.1894 0.3173 0.3717  0.4890
2048 x 2048 27711 0.6150 0.6609  0.7608
2560 x 2560 5.3506 0.8520 0.9158  1.1570

Tabella 4.6: Tempi di esecuzione della funzione Slac: :matmul (blocksize = 64)

Tempo di esecuzione (s)

Dimensione matrice (px) 1nodo 4nodi 8mnodi 12 nodi

256 x 256 0.0074 0.0287 0.0655  0.1507
512 x 512 0.0494 0.0714 0.1329  0.2753
1024 x 1024 0.3671 0.1774 0.2681  0.4673
1536 x 1536 1.1887 0.3042 0.3837  0.5185
2048 x 2048 2.7702 0.6048 0.6568  0.7937
2560 x 2560 5.3665 0.9081 0.9069 1.1951

Dal grafico in Fig. 4.9 emerge chiaramente che la moltiplicazione distribuita non scala
in modo perfettamente lineare. Il motivo principale risiede nelle numerose comunicazioni
necessarie per scambiare i blocchi tra nodi: mentre le moltiplicazioni locali avvengono
in parallelo, il costo dominante diventa proprio il traffico MPI.

Nel caso con tre nodi si osserva uno speedup apparentemente superlineare. Questo
comportamento, sebbene controintuitivo, puo essere spiegato considerando alcune otti-
mizzazioni interne di Eigen. Riducendo la dimensione dei blocchi locali su cui vengono
eseguite le moltiplicazioni, la libreria puo selezionare varianti piu efficienti dei propri ker-
nel di calcolo, ottenendo dunque prestazioni migliori rispetto all’esecuzione sequenziale
su matrici piu grandi.

I benefici derivanti dall’impiego di un numero crescente di nodi diventano partico-
larmente evidenti per matrici di dimensioni elevate, nelle quali il costo computazionale
della moltiplicazione domina su quello delle comunicazioni. In questi scenari, la paralle-
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Tempo di esecuzione della funzione MATMUL
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Figura 4.8: Tempi di esecuzione della funzione Slac: :matmul misurati su diverse dimen-
sioni dei blocchi.

lizzazione consente una riduzione significativa del tempo totale di esecuzione e permette
di sfruttare in modo piu efficace la memoria locale di ciascun nodo.

4.4 Aggiornamento simmetrico di rango k

4.4.1 Design

L’aggiornamento simmetrico di rango k (symmetric rank-k update, spesso indicato come
SYRK) rappresenta un caso particolare di moltiplicazione matriciale in cui la matrice
risultante & necessariamente simmetrica. L’operazione di base consiste nel calcolo:

C «— AAT

dove A ¢ la matrice di input e C' e la matrice di output, che risulta simmetrica per costru-
zione. In altre parole, invece di combinare righe di una matrice con colonne di un’altra,
si combinano righe di A con le corrispondenti righe di A interpretate come colonne di
AT . Questo consente di evitare I’esplicita trasposizione della matrice, operazione costosa
e non necessaria ai fini del calcolo.

L’idea chiave & quindi quella di riformulare il prodotto AAT come un’aggregazione
riga-per-riga, sfruttando il fatto che la colonna da utilizzare in ogni passo non & altro
che la riga corrispondente della matrice originale. Cio permette ottimizzazioni sia sul
piano computazionale sia su quello della comunicazione nei contesti distribuiti.

L’operazione ¢ stata ulteriormente estesa includendo una matrice diagonale D con
diagonale d, consentendo il calcolo:

C + ADAT

Questa generalizzazione e di grande utilita in contesti fisico-computazionali, dove aggior-
namenti pesati lungo specifiche direzioni - rappresentati proprio da una matrice diago-
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Speedup ed Efficienza della funzione MATMUL (matrice 2048x2048)
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Figura 4.9: Speedup ed efficienza della funzione Slac::matmul con dimensione della
matrice fissa 2048 x 2048.

nale - sono frequenti. Integrare tale funzionalita direttamente nell’operazione permette
di ridurre passaggi intermedi e di migliorare prestazioni e chiarezza del codice.
L’operazione si ottiene applicando una piccola modifica all’algoritmo SUMMA usato

per la moltiplicazione matriciale: durante un’iterazione, prima di eseguire il prodotto
locale sulle righe e colonne aggregate, si moltiplicano le colonne per la matrice diagonale
D. Uno schema semplificato dell’algoritmo ¢ il seguente:

1: function SYRK(P,d)

2: allocate R to store P x PT

3 D <+ diagonal matrix with diagonal d

4: max_ it < iterations needed to fetch all row and columns

5 for it = 0 to maz_it — 1 do
6 PTEZ%S + P rows aggregated from same process row
. plit

o1 < I rows corresponding to PT columns, aggregated from same process

row
8: R « Jocal portion of R corresponding to the rows of P,%Q,S and the columns
(it)
of Qcols ' ) )
0 R Py x (D x P
10: end for
11: return R

12: end function

4.4.2 Implementazione

All’interno di SLAC, 'aggiornamento simmetrico di rango k ¢ implementato sfruttan-
do la stessa infrastruttura utilizzata per la moltiplicazione generica, ossia la funzione
generic_matmul. Per rendere possibile il calcolo senza costruire esplicitamente la ma-
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trice trasposta AT, ¢ stata introdotta una variante dedicata della classe MatmulInfo
(Fig. 4.7).

Questa nuova classe, chiamata DistrTranspCol_MatmulInfo, fornisce al sistema le
colonne logiche di AT senza eseguire alcuna trasposizione reale della matrice: in pratica,
quando € necessario ottenere la colonna j della trasposta, essa si limita a recuperare la
riga j della matrice originale, che contiene esattamente gli stessi elementi nella stessa
sequenza. In questo modo si evita sia il costo computazionale della trasposizione, sia la
necessita di mantenere in memoria una copia aggiuntiva della matrice.

L’algoritmo risultante si integra perfettamente con SUMMA, mantenendo la stes-
sa struttura distribuita ma riducendo sensibilmente la quantita di dati da generare o
trasformare.

La funzione che esegue questa operazione ¢ Slac: :syrk.

4.4.3 Analisi delle prestazioni

Le tabelle 4.7 e 4.8 riportano i tempi di esecuzione della funzione Slac: : syrk con blocchi
di lato 32 e 64. I corrispondenti grafici dei tempi (Fig. 4.10) e quelli relativi a speedup
ed efficienza (Fig. 4.11) mostrano ’andamento delle prestazioni.

Tabella 4.7: Tempi di esecuzione della funzione Slac: :syrk (blocksize = 32)

Tempo di esecuzione (s)

Dimensione matrice (px) 1 nodo 4nodi 8mnodi 12 nodi

256 x 256 0.0079 0.0289 0.0730  0.1502
512 x 512 0.0505 0.0730 0.1327  0.2705
1024 x 1024 0.3711 0.1744 0.2730  0.4746
1536 x 1536 1.2060 0.3131 0.4086  0.5599
2048 x 2048 2.8237 0.6541 0.7869  0.9277
2560 x 2560 5.4644 0.9975 1.1093 1.3713

Tabella 4.8: Tempi di esecuzione della funzione Slac: :syrk (blocksize = 64)

Tempo di esecuzione (s)

Dimensione matrice (px) 1 nodo 4nodi 8 nodi 12 nodi

256 x 256 0.0079 0.0324 0.0761  0.1545
512 x 512 0.0505 0.0715 0.1458  0.2692
1024 x 1024 0.3705 0.1900 0.2782  0.4502
1536 x 1536 1.2057 0.3386 0.4068  0.5549
2048 x 2048 2.8223 0.6318 0.7849 0.9344
2560 x 2560 5.4570 1.0158 1.1159  1.3500
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Tempo di esecuzione della funzione SYRK
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Figura 4.10: Tempi di esecuzione della funzione Slac: :syrk misurati su diverse dimen-
sioni dei blocchi.

Dal punto di vista delle prestazioni, la syrk presenta un comportamento simile alla
moltiplicazione matriciale, di cui rappresenta una variante specializzata. Si osservano
tempi leggermente superiori rispetto alla matmul: la causa principale ¢ legata alla mo-
dalita con cui vengono reperite le colonne necessarie per la moltiplicazione, secondo il
metodo descritto nel paragrafo precedente.

Questa fase richiede un maggior coordinamento tra i nodi rispetto alla moltiplicazione
standard, nella quale i blocchi devono essere scambiati solo all’interno della stessa colon-
na di processi. Nel caso della syrk, invece, i nodi appartenenti alla stessa riga inviano
piu blocchi rispetto agli altri, aumentando il traffico e riducendo lefficienza. Il princi-
pale vantaggio della syrk risiede tuttavia nel non richiedere I’allocazione di una seconda
matrice completa, caratteristica molto importante in contesti con memoria limitata o in
presenza di matrici di dimensioni molto elevate.

Anche per questa computazione emerge uno speedup superlineare nel caso con tre
nodi. Il fenomeno ha la stessa origine osservata per matmul: trattandosi di un caso
particolare di moltiplicazione matriciale, eredita sia il comportamento che i meccanismi
di ottimizzazione della funzione generale. Gli stessi effetti legati alla riduzione dei blocchi
locali e alla selezione di kernel piu efficienti spiegano quindi 'incremento di prestazioni
riscontrato in questo caso.
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Speedup ed Efficienza della funzione SYRK (matrice 2048x2048)
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Figura 4.11: Speedup ed efficienza della funzione Slac: :syrk con dimensione della

trice fissa 2048 x 2048.
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Capitolo 5

Risoluzione di sistemi lineari
distribuiti

La risoluzione di sistemi lineari costituisce uno degli strumenti fondamentali in numerosi
ambiti scientifici e ingegneristici. Gran parte dei modelli matematici alla base della
fisica computazionale, dell’analisi numerica, dell’ingegneria strutturale e dei metodi di
ottimizzazione porta infatti alla formulazione di sistemi lineari di grandi dimensioni,
spesso malcondizionati e caratterizzati da strutture particolari. Per questo motivo, la
disponibilita di strumenti efficienti per la loro risoluzione & un requisito centrale per
qualunque libreria di algebra lineare distribuita.

Sebbene nelle sue prime versioni e con un insieme di funzionalitd ancora limitato,
SLAC offre gia metodi in grado di risolvere sistemi lineari triangolari e sistemi simmetrici
definiti positivi. Nel seguito vengono descritti nel dettaglio i metodi implementati e le
strategie progettuali adottate.

5.1 Risoluzione di sistemi triangolari

La risoluzione di sistemi triangolari rappresenta un’operazione di base nei solver piu
diffusi: molte procedure di fattorizzazione (come LU, QR e Cholesky) portano infatti alla
risoluzione di sequenze di sistemi triangolari. Affrontare tali sistemi in modo efficiente &
quindi essenziale. SLAC mette a disposizione due risolutori distinti: Slac::trsm_lower
per matrici triangolari inferiori e Slac: :trsm_upper per matrici triangolari superiori.

5.1.1 Design

Per risolvere un sistema triangolare inferiore si utilizza ’algoritmo di forward substitu-
tion [13], mentre per un sistema triangolare superiore si usa la corrispondente backward
substitution. Entrambi si basano sulla stessa idea: ogni incognita viene calcolata sfrut-
tando le soluzioni gia determinate alle equazioni precedenti (o successive, nel caso della
matrice superiore).

Un classico pseudocodice per la forward substitution & il seguente:
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1: function LOCAL TRSM(L,b)
2 fori=0ton—1do

3 s <« bl]

4 for j=0toi—1do
5: s < s — Lli][j] - «[J]
6 end for

7 x[i] < s/L[i][i]

8 end for

9 return x

10: end function

Questi algoritmi hanno complessita lineare e presentano una struttura intrinsecamen-
te sequenziale: ogni valore di x; dipende da tutti i valori precedenti, il che limita il pa-
rallelismo possibile. Tuttavia, & comunque possibile parallelizzare il calcolo dei prodotti
intermedi L[i][j] - z[j], distribuendoli tra i nodi che possiedono i blocchi rilevanti.

Con la distribuzione ciclica a blocchi, I’algoritmo puo essere trasformato in una ver-
sione blocked. Gli algoritmi di tipo blocked traggono vantaggio dal lavorare su blocchi
quadrati contigui in memoria, migliorando 'efficienza grazie alla localita dei dati e all’uso
dei metodi di risoluzione ottimizzati per le matrici locali.

Una descrizione semplificata dello schema blocked & la seguente:

1: function BLOCKED TRSM(M,b)

2 s b

3 for each diagonal block D;; in M do

4: if node owns block D;; then

5: S < LOCAL_TRSM(DW', 8)

6: send s to nodes owning block A4; ,, Yy
7 else if node owns block A4;,, vy then

8 receive s’ (solution of block Dj ;)

9

: S Ajy-s
10: end if
11: end for
12: return s

13: end function

Questo approccio permette a ciascun nodo di contribuire al calcolo mantenendo la
massima localita possibile e riducendo il volume di comunicazione alla sola necessaria
propagazione delle soluzioni parziali.

5.1.2 Implementazione

L’implementazione basata su DistributedMatrix segue fedelmente la struttura dell’al-
goritmo a blocchi. La soluzione viene calcolata dai soli nodi che ospitano le componenti
finali del vettore soluzione: poiché si tratta di un DistributedVector colonna, tali nodi
corrispondono a quelli situati nella prima colonna della griglia dei processi (Fig. 5.1).
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Questi nodi recuperano dai nodi disposti lungo le righe i blocchi di riga necessari, cosi
da costruire localmente la porzione completa dei dati utili al calcolo. Una volta ricevute
le informazioni, essi eseguono la versione blocked dell’algoritmo, riducendo drasticamente
le comunicazioni e beneficiando della localita dei dati e del caching.

Le righe globali si ottengono tramite la classe DistrRow_MatmulInfo. Sebbene que-
sta fosse stata inizialmente progettata per supportare esclusivamente la moltiplicazione
matriciale, essa fornisce gia le funzionalita necessarie per recuperare le righe globali; per
questo motivo si ¢ scelto di riutilizzarla anche in questo contesto.

Le righe globali estratte vengono quindi rappresentate come LocalMatrix, che si
appoggiano alle primitive ottimizzate di Eigen. Tale scelta consente di eseguire in modo
efficiente tutta la parte computazionale locale, come la risoluzione dei sistemi triangolari
e gli aggiornamenti progressivi delle soluzioni, garantendo prestazioni elevate.

Solution

|
|
|

gather rows on P1

2

gather rows on P3

—>

gather rows on P1

gather rows on P3

_:DE
T

S

Figura 5.1: Calcolo della soluzione di un sistema triangolare distribuito. Le righe ven-
gono aggregate sui nodi della prima colonna dei processi, che calcoleranno localmente la
soluzione.

5.1.3 Analisi delle prestazioni

Le tabelle 5.1 e 5.2 riportano i tempi di esecuzione per diversi numeri di nodi e dimensioni
della matrice, utilizzando rispettivamente blocchi di lato 32 e 64. Sono inoltre presentati
i grafici relativi ai tempi di esecuzione (Fig. 5.2), nonché lo speedup e lefficienza per
matrici di dimensione fissata 2048 x 2048 (Fig. 5.3).

Dal grafico in Fig. 5.3 emerge un comportamento apparentemente anomalo dello
speedup, spiegabile conoscendo la dimensione della griglia dei processi e ’algoritmo
utilizzato. In particolare, quando la griglia si riduce a una sola riga di processi (situazione
che si verifica quando non ¢ possibile costruire una griglia bidimensionale bilanciata),
I’esecuzione effettiva ricade interamente sul primo processo della riga. Ne consegue
che lo speedup risulta pari a uno: il comportamento e quindi assimilabile alla versione
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Tabella 5.1: Tempi di esecuzione della funzione Slac: :trsm_lower (blocksize = 32)

Tempo di esecuzione (s)

Dimensione matrice (px) 1nodo 4 nodi 8nodi 12 nodi

256 x 256 0.0005 0.0002 0.0002  0.0002
512 x 512 0.0020 0.0005 0.0006  0.0005
1024 x 1024 0.0082 0.0015 0.0017  0.0015
1536 x 1536 0.0204 0.0052 0.0054  0.0043
2048 x 2048 0.0401 0.0103 0.0111  0.0083
2560 x 2560 0.0633 0.0163 0.0177  0.0131

Tabella 5.2: Tempi di esecuzione della funzione Slac: :trsm_lower (blocksize = 64)

Tempo di esecuzione (s)

Dimensione matrice (px) 1 nodo 4 nodi 8 nodi 12 nodi

256 x 256 0.0005 0.0002 0.0002  0.0002
512 x 512 0.0021 0.0006 0.0005  0.0005
1024 x 1024 0.0084 0.0014 0.0016  0.0015
1536 x 1536 0.0213 0.0047 0.0044  0.0036
2048 x 2048 0.0380 0.0089 0.0087  0.0068
2560 x 2560 0.0632 0.0143 0.0143  0.0126

sequenziale, con l'aggravante che i dati non sono inizialmente disponibili in memoria
locale.

Questo approccio puo essere migliorato distribuendo il carico di lavoro in modo piu
uniforme tra i processi. L’implementazione corrente privilegia invece il riutilizzo di
funzioni gia esistenti e la riduzione del numero di comunicazioni.

5.2 Decomposizione di Cholesky

La decomposizione di Cholesky ¢ una fattorizzazione fondamentale nel calcolo scientifico:
permette di riscrivere una matrice simmetrica definita positiva A nella forma

A=LL"

dove L é triangolare inferiore. Questa operazione costituisce la base del solver per sistemi
lineari definiti positivi, ed & quindi stata implementata direttamente in Slac nel metodo
Slac::cholesky.

5.2.1 Design
L’algoritmo classico di Cholesky presenta una complessita computazionale pari a

O (n3)
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Tempo di esecuzione della funzione TRSM
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Figura 5.2: Tempi di esecuzione della funzione Slac: :trsm_lower misurate su diverse
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dimensioni dei blocchi.

ed ¢ intrinsecamente difficile da parallelizzare: ogni riga (o colonna) dipende da tutte
le precedenti, e la propagazione delle dipendenze limita il parallelismo. In un contesto

T T T T
1000 1500 2000 2500

Dim. matrice

T
500

distribuito, questo si traduce in comunicazioni frequenti e sincronizzazioni costose.

Per mitigare queste difficolta si utilizza la versione blocked dell’algoritmo [10] (Fig.
Una matrice simmetrica definita positiva puo essere partizionata nel seguente

y

5.4).

modo:

(

Az

AH *

Liu| O Ly |

0

)= () (

Ago Loy | Lo

Dal quale si deriva che:

L’idea dell’algoritmo e quella di suddividere la matrice in blocchi quadrati e procedere

Ly | Lo

L11 = ChOl(AH),
Loy = Ao LT,
L22 = ChOl(A22 — Lgngl).

ricorsivamente (Fig. 5.4):

LllL{l ‘ *

(

Loy LT} | Lyt L3 + Lyp L3,

1. si calcola la fattorizzazione di Cholesky sul blocco diagonale corrente;

2. si aggiorna la colonna relativa al blocco appena calcolato;

3. si aggiorna la sottomatrice rimanente;

4. si ripete sul blocco successivo.

Questo approccio riduce drasticamente la quantita di comunicazione, massimizza il

lavoro locale sui blocchi e permette un’elevata efficienza anche su matrici distribuite.
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Speedup ed Efficienza della funzione TRSM (matrice 2048x2048)

Speedup Efficienza
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Figura 5.3: Speedup ed efficienza della funzione Slac: :trsm_lower con dimensione della
matrice fissa 2048 x 2048.

5.2.2 Implementazione

L’implementazione della fattorizzazione di Cholesky in SLAC segue fedelmente lo schema
distribuito a blocchi, riproducendo passo per passo la struttura dell’algoritmo classico
per matrici suddivise su una griglia di processi. Le DistributedMatrix sono progettate
per delegare tutte le operazioni locali a Eigen, incluse le block operations, che permettono
un aggiornamento estremamente efficiente sia dei blocchi locali sia delle sottomatrici.

L’algoritmo procede secondo le sue tre fasi canoniche. Nel primo passo, il processo che
possiede il blocco diagonale calcola localmente e in-place la fattorizzazione di Cholesky
del proprio blocco. Questa operazione ¢ completamente locale e non richiede alcuna
comunicazione.

Successivamente, il blocco appena fattorizzato deve essere propagato ai nodi che
possiedono i blocchi nella stessa riga e nella stessa colonna. Questa fase ¢ realizzata
tramite operazioni di broadcast. Nella versione attuale il broadcast ¢ implementato
in modo semplice e sequenziale: ci0 garantisce correttezza, ma puo diventare un collo
di bottiglia sulle configurazioni con molti nodi. Una versione pit avanzata, non ancora
implementata, integrerebbe un broadcast ad albero binario che ridurrebbe drasticamente
il numero di messaggi e la latenza complessiva.

Una volta ricevuto il blocco fattorizzato, ciascun nodo aggiorna il proprio blocco
locale applicando un solver triangolare (inferiore o superiore a seconda del ruolo nella
griglia di processo). Questa scelta ¢ cruciale: sfruttare un solver triangolare locale
permette di distribuire il calcolo senza dover ricorrere a inversioni o operazioni meno
strutturate, rendendo 'aggiornamento dei pannelli notevolmente piu efficiente.

Completata la fase di risoluzione sui pannelli di riga e colonna, i nodi che li possiedo-
no inviano i blocchi aggiornati ai processi che memorizzano la sottomatrice rimanente.
Questi ultimi eseguono quindi 'operazione di aggiornamento tramite moltiplicazione
matriciale distribuita, sfruttando ancora una volta le primitive locali ottimizzate di Ei-
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Figura 5.4: Fasi ricorsive dell’algoritmo a blocchi della decomposizione di Cholesky su
matrici distribuite. Le fasi comprendono: (1) calcolo locale della fattorizzazione, (2) ag-
giornamento delle righe e delle colonne con la fattorizzazione trovata, (3) aggiornamento
della sottomatrice tramite moltiplicazione matriciale distribuita. L’algoritmo viene ri-
petuto sulla sottomatrice (4), fino all’elaborazione di tutti i blocchi della diagonale.

gen. A questo punto l'algoritmo procede ricorsivamente alla sottomatrice successiva,
ripetendo lo stesso schema fino alla completa fattorizzazione della matrice.

La matrice globale viene sovrascritta interamente con il fattore L nella parte inferiore
e con LT nella parte superiore. Nel contesto distribuito risulta piti efficiente aggiornare
anche la parte superiore: cio evita comunicazioni aggiuntive nella fase di aggiornamento
e consente di utilizzare direttamente un solver triangolare superiore nella risoluzione
dei sistemi simmetrici definiti positivi. Limitarsi alla sola parte inferiore richiederebbe
invece 'esecuzione di un aggiornamento simmetrico, meno efficiente sia in termini di
messaggi inviati.

Sebbene I'implementazione sia pienamente funzionante e riproduca correttamente
tutte le fasi dell’algoritmo distribuito, non rappresenta ancora la versione ottimale. Oltre
alla mancanza di broadcast ad albero binario, I’algoritmo non sfrutta ancora il pipelining

45



delle fasi, che permetterebbe di sovrapporre comunicazione e calcolo riducendo signifi-
cativamente i tempi complessivi. Questi aspetti costituiscono margini di miglioramento
evidenti e saranno al centro dei futuri sviluppi della libreria.

5.2.3 Analisi delle prestazioni

Le tabelle 5.3 e 5.4 riportano i tempi di esecuzione variando il numero di nodi e la
dimensione della matrice, utilizzando blocchi di lato 32 e 64. Sono inoltre presentati
i grafici relativi ai tempi (Fig. 5.5) e, a dimensione fissata 2048 x 2048, speedup ed
efficienza (Fig. 5.6).

Tabella 5.3: Tempi di esecuzione della funzione Slac: :cholesky (blocksize = 32)

Tempo di esecuzione (s)

Dimensione matrice (px) 1 nodo 4nodi 8 nodi 12 nodi

256 x 256 0.0036 0.0736 0.1000  0.1358
512 x 512 0.0244 0.2868 0.6075  0.9748
1024 x 1024 0.1865 0.7642 1.8796  3.0479
1536 x 1536 0.6708 1.3136 2.8565  5.2953
2048 x 2048 1.6436 1.8821 4.1474  7.8447
2560 x 2560 3.7517 2.7033 5.4660 10.0438

Tabella 5.4: Tempi di esecuzione della funzione Slac: :cholesky (blocksize = 64)

Tempo di esecuzione (s)

Dimensione matrice (px) 1 nodo 4nodi 8mnodi 12 nodi

256 x 256 0.0034 0.0505 0.1453  0.2537
512 x 512 0.0221 0.1731 0.4250 0.7322
1024 x 1024 0.1638 0.4206 1.0345 1.8244
1536 x 1536 0.5599 0.7216 1.6258  2.9377
2048 x 2048 1.3202 1.1189 2.3114  4.1773
2560 x 2560 2.7984 1.4674 3.2595  5.2623

Dai grafici risulta evidente che il problema non scala bene con il numero di nodi:
I’aumento dei processi tende spesso a peggiorare le prestazioni. Tale comportamento
deriva dalla natura fortemente iterativa e dipendente della decomposizione di Cholesky,
che limita il parallelismo e aumenta il numero di comunicazioni. Con un numero ridotto
di nodi ¢ inoltre piu probabile che i dati necessari siano gia presenti localmente, ridu-
cendo quindi la latenza comunicativa. Inoltre, proprio perché I'algoritmo non & ancora
ottimizzato, il numero di comunicazioni broadcast dipendono dal numero di nodi coin-
volti, come emerge chiaramente dai dati sperimentali, e costituiscono un collo di bottiglia
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Figura 5.5: Tempi di esecuzione della funzione Slac::cholesky misurate su diverse
dimensioni dei blocchi.

significativo. L’implementazione delle ottimizzazioni citate dovrebbe ridurre in maniera
sostanziale le latenze introdotte da queste comunicazioni.

E tuttavia interessante notare che il tempo di esecuzione non cresce linearmente: nel
caso a singolo nodo, il tempo per matrici molto grandi supera quello della configurazione
a quattro nodi. Cio e dovuto agli aggiornamenti delle sottomatrici eseguiti mediante
moltiplicazioni matriciali, operazioni che beneficiano significativamente dell’uso di piu
nodi. Ne consegue che la decomposizione di Cholesky trae vantaggio dal parallelismo
solo per matrici sufficientemente grandi; per dimensioni ridotte risulta piu efficiente un
approccio sequenziale.

Un altro aspetto rilevante ¢ la forte dipendenza dei tempi dalla dimensione dei bloc-
chi, che cresce quasi linearmente. Blocchi piu grandi favoriscono le operazioni locali, e
Eigen dispone di routine altamente ottimizzate per questo tipo di computazioni.

5.3 Risoluzione di sistemi simmetrici definiti positivi

5.3.1 Design e implementazione

La risoluzione di sistemi lineari simmetrici definiti positivi ¢ una delle operazioni piu
comuni nel calcolo fisico e nell’analisi numerica: problemi di ottimizzazione, simulazioni
meccaniche e modelli ellittici portano quasi sempre a sistemi SPD.

Per questo caso ¢ inutile e inefficiente usare una fattorizzazione LU generale. La solu-

zione piu rapida per risolvere il sistema Ax = b consiste nell’eseguire una decomposizione
di Cholesky:

A=1LLT
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Speedup ed Efficienza della funzione CHOLESKY (matrice 2048x2048)
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Figura 5.6: Speedup ed efficienza della funzione Slac: :cholesky con dimensione della
matrice fissa 2048 x 2048.

e poi risolvere due sistemi triangolari:
Ly=1b
LTz =y

L’algoritmo ¢ estremamente semplice e si basa unicamente sulle primitive gia fornite da

SLAC.

1: function POSV(A4,b)

2: L <+ CHOLESKY (A4)

3: y < TRSM__LOWER(L,b)
4.z + TRSM_UPPER(LT,y)
5: return x

6: end function

L’implementazione & quindi diretta: una volta ottenuta la fattorizzazione, la soluzio-
ne si ottiene tramite una forward e una backward substitution, entrambe gia ottimizzate
in forma distribuita. La funzione che esegue questo calcolo ¢ Slac: :posv.

5.3.2 Analisi delle prestazioni

Le tabelle 5.5 e 5.6 riportano i tempi di esecuzione variando il numero di nodi e la
dimensione della matrice, utilizzando blocchi di lato 32 e 64. Sono inoltre mostrati i
grafici dei tempi di esecuzione (Fig. 5.7) e, per matrici di dimensione fissata 2048 x 2048,
speedup ed efficienza (Fig. 5.8).

Come prevedibile, il costo computazionale ¢ dominato dalla decomposizione di Cho-
lesky. Sebbene entrambe le fasi risolutive (Cholesky e le due risoluzioni triangolari) siano
intrinsecamente iterative, il peso delle comunicazioni necessarie alla decomposizione su-
pera di gran lunga quello della computazione locale. Di conseguenza, le due risoluzioni
dei sistemi triangolari risultano molto piu rapide ed efficienti.
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Tabella 5.5: Tempi di esecuzione della funzione Slac: :posv (blocksize = 32)

Tempo di esecuzione (s)

Dimensione matrice (px) 1nodo 4 nodi 8nodi 12 nodi

256 x 256 0.0046 0.0740 0.1004  0.1361
512 x 512 0.0284 0.2879 0.6086  0.9757
1024 x 1024 0.2028 0.7673 1.8830  3.0508
1536 x 1536 0.7117 1.3240 2.8672  5.3038
2048 x 2048 1.7239 1.9027 4.1696  7.8612
2560 x 2560 3.8783 2.7360 5.5013 10.0701

Tabella 5.6: Tempi di esecuzione della funzione Slac: :posv (blocksize = 64)

Tempo di esecuzione (s)

Dimensione matrice (px) 1 nodo 4 nodi 8nodi 12 nodi

256 x 256 0.0045 0.0509 0.1458  0.2541
5912 x 512 0.0263 0.1742 0.4261 0.7331
1024 x 1024 0.1806 0.4234 1.0377  1.8275
1536 x 1536 0.6025 0.7311 1.6346  2.9449
2048 x 2048 1.3961 1.1366 2.3289  4.1910
2560 x 2560 2.9248 1.4960 3.2881  5.2875

Il modo piu efficace per migliorare le prestazioni ¢ aumentare la dimensione dei bloc-
chi, favorendo il calcolo locale. Tuttavia, cid comporta una distribuzione piu irregolare
dei dati e un potenziale sbilanciamento del carico di lavoro.
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Tempo di esecuzione della funzione POSV
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Figura 5.7: Tempi di esecuzione della funzione Slac: :posv misurate su diverse dimen-

sioni dei blocchi.

Speedup ed Efficienza della funzione POSV (matrice 2048x2048)
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Figura 5.8: Speedup ed efficienza della funzione Slac: :posv con dimensione della ma-

trice fissa 2048 x 2048.
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Capitolo 6

Implementazione del codice di
inversione

L’intero flusso di lavoro dell’inversione sismico-gravimetrica € composto da una sequenza
di eseguibili che, eseguiti nell’ordine corretto, producono il modello finale di densita del
sottosuolo. Alcuni di questi moduli erano gia disponibili in C++4, mentre la parte relativa
al calcolo dell’inversione (quella piti numericamente complessa e direttamente coinvolta
nell’uso dei dati di velocita e gravita) & stata oggetto della riscrittura presentata in questo
capitolo.

La nuova implementazione sfrutta la libreria SLAC, che fornisce tutte le operazio-
ni necessarie: gestione di matrici distribuite, calcolo di prodotti matriciali ottimizzati,
aggiornamenti simmetrici e solutori per sistemi lineari simmetrici definiti positivi.

6.1 Inversione sismico-gravimetrica

Il codice implementa il calcolo descritto dall’equazione 1.2, che rappresenta lo schema
dell’inversione lineare con regolarizzazione congiunta sismico-gravimetrica. I dati neces-
sari provengono da file forniti dall'INGV: dimensioni della griglia, posizione delle stazioni
osservative, misure di gravita e velocita, relazione densita-velocita, matrici di covarianza
degli errori e la matrice delle derivate parziali G, quest’ultima precomputata tramite
l’algoritmo di Pohanka [20].

Una volta letti i dati, il calcolo dell’inversione viene eseguito interamente tramite
funzioni SLAC. La scelta delle strutture dati e stata fatta considerando dimensioni e
costi di comunicazione:

e ivettori e le matrici di covarianza sono memorizzati come LocalVector, poiché di
dimensioni moderate e facilmente mantenibili in memoria locale;

e lamatrice G, invece, € enormemente piu grande e viene gestita come DistributedMatrix;

¢« G ¢ mantenuta direttamente in forma trasposta, poiché tutte le operazioni suc-
cessive utilizzano GT: evitare una trasposizione esplicita riduce notevolmente il
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tempo di preprocessamento, dato che la trasposizione distribuita & un’operazione
costosa.

Le matrici di covarianza inverse C;il e C1 sono diagonali e vengono rappresentate
come LocalVector. Nel caso di C;gl ¢ possibile scegliere, tramite ’opzione -cgg-dim,
se interpretare il valore come diagonale vera e propria o come costante scalare (utile
quando gli errori sono omogenei).

Le principali operazioni dell’espressione dell’inversione si traducono direttamente in
primitive SLAC:

1. Il termine
T ~—1
G C,,G
¢ implementato come una chiamata a Slac: :syrk, passando la diagonale Cg*gl per
applicare il peso ai blocchi corretti.

2. Il termine
T ~—1
G ng Ag

si ottiene con Slac::matmul tra GZT e il vettore C’g_g1

Slac::cwise_mul.

® Ag, calcolato tramite

3. La regolarizzazione sismica
-1
aC . Av

¢ implementata anch’essa tramite Slac: :cwise_mul.
4. Le somme sono implementate con Slac: :add.
5. 1l sistema finale simmetrico definito positivo viene risolto tramite
Ap = A"z,
usando direttamente Slac: :posv.

Una volta ottenuto il modello finale di densita, questo viene salvato su file insieme alle
differenze rispetto al modello di partenza e alle velocita ricostruite tramite la relazione
densita-velocita.

6.2 Calcolo del campo di gravita

La fase successiva della riscrittura ha riguardato il calcolo diretto del campo gravitazio-
nale e la costruzione della matrice GT. Questa parte ha richiesto particolare attenzione
a causa della gestione dei dati di input.

Nel codice Fortran originale, ogni nodo calcolava autonomamente la propria porzione
locale della matrice G, evitando la necessita di memorizzarla globalmente su disco (im-
possibile a causa delle dimensioni). Ogni processo salvava su file solo il proprio blocco,
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che il programma di inversione successivamente ricombinava assumendo la stessa griglia
di processi, la stessa dimensione dei blocchi e la stessa politica di distribuzione.

Questo approccio rigido ha generato problemi nella nuova implementazione: leggere
la matrice precomputata richiedeva che la configurazione del cluster fosse identica a
quella dell’eseguibile Fortran. Bastava una variazione nel numero di processi o nella
dimensione dei blocchi per rendere il file inutilizzabile.

Per superare definitivamente questo limite, si & deciso di implementare direttamente
anche il calcolo del problema diretto, generando G! come DistributedMatrix senza
passare da file intermedi.

La modifica del codice C++ fornito, originalmente seriale e basato su array lineari,
& stata semplice grazie agli oggetti Element di SLAC, che gestiscono automaticamente
la localizzazione dei dati nel processo corretto. E stato sufficiente sostituire I’array con
una DistributedMatrix e correggere gli indici per salvare direttamente la matrice tra-
sposta: in questo modo si ottiene G” senza dover effettuare la trasposizione distribuita,
operazione molto costosa.

L’approccio risultante ¢ piu robusto, piu efficiente, e soprattutto indipendente dal-
la configurazione del cluster utilizzata per generare i file di input. Questo comple-
ta la riscrittura dell’intero workflow in C+4 e rende 'inversione sismico-gravimetrica
pienamente portabile e scalabile.

6.3 Prestazioni

Le prove delle prestazioni sono state eseguite su Ada, il cluster di calcolo della sede di Bo-
logna del’INGV. Il sistema & composto da un nodo master, dodici nodi di computazione
e due workstation HPC. La gestione delle risorse e dell’esecuzione ¢ affidata a Slurm, che
partiziona logicamente i nodi: per i test & stata utilizzata una partizione costituita da
sei nodi CentOS 7.9.2009, ciascuno dotato di quattro processori Intel Xeon Gold 6140 e
di 7 GB di memoria RAM per core, connessi da una rete Infiniband MT27800 100Gbs.

L’INGYV ha inoltre fornito i dati necessari per testare 'intera procedura di inversione:
di un dataset relativamente contenuto, rappresentativo di un problema di dimensioni
ridotte: le osservazioni di gravita sono 6794, mentre quelle di densita e velocita sono
6760. Ne deriva una matrice G € R6794x6760,

Nei grafici seguenti sono riportati i tempi di esecuzione (Fig. 6.1) e lo speedup
(Fig. 6.2) ottenuti impiegando un numero variabile di processi del cluster e con diverse
dimensioni di blocco.

Dall’analisi dei risultati emerge chiaramente che la scalabilita non € ancora ottimale.
Questo ¢ dovuto sia alla struttura intrinsecamente sequenziale di alcune operazioni del
problema, sia al fatto che le implementazioni attuali dei risolutori non sfruttano ancora
tutte le possibili ottimizzazioni. Nonostante cio, il comportamento osservato fornisce
una base solida su cui intervenire: le ottimizzazioni discusse nei capitoli precedenti
dovrebbero portare a miglioramenti significativi in termini di tempi di esecuzione e
utilizzo efficiente delle risorse del cluster.

53



Tempo di esecuzione in funzione del numero di core - barre raggruppate per dim. blocchi

400
BLOCK SIZE
I block 32
350 1 = block 64
I block 128
300

)

o

=]
L

150

Tempo di esecuzione (s)
L
=3
o
"

100 -

# Core

Figura 6.1: Tempi di esecuzione del programma di inversione misurati su un input di
grandezza fissa 6794 x 6760.
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Figura 6.2: Speedup del programma di inversione misurati su un input di grandezza fissa
6794 x 6760.
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Capitolo 7

Conclusioni

In questa tesi e stato presentato SLAC, un primo prototipo di libreria per ’algebra
lineare distribuita progettata con 'obiettivo di essere semplice da utilizzare, facilmente
estendibile e integrabile in differenti contesti applicativi. Pur trovandosi ancora in una
fase iniziale di sviluppo, la libreria offre gia un insieme coerente di funzionalita di base per
operare su matrici distribuite, con un’interfaccia chiara e un modello di programmazione
che punta a minimizzare la complessita per 'utente.

I risultati sperimentali mostrano come molte operazioni, in particolare quelle alta-
mente parallelizzabili (come ’addizione di matrici), riescano a sfruttare efficacemente
I’architettura distribuita, ottenendo speedup significativi e comportamenti in linea con
le aspettative teoriche nonostante 1’assenza di ottimizzazioni avanzate. Altre operazioni
pitu complesse, come matmul, syrk, trsm e soprattutto chol, evidenziano invece i limiti
attuali del sistema: le comunicazioni rappresentano spesso il principale collo di botti-
glia, e 'implementazione dei risolutori non & ancora in grado di sfruttare pienamente il
parallelismo disponibile.

E importante sottolineare che tali limiti non sono solo attesi, ma costituiscono un
punto di partenza per sviluppi futuri. Le sezioni precedenti hanno evidenziato diverse
ottimizzazioni potenzialmente decisive: 1'introduzione di broadcast ad albero binario per
ridurre le latenze, la possibilita di eseguire alcune fasi degli algoritmi in pipeline, e un
migliore bilanciamento del carico. Queste ottimizzazioni, se implementate, permetteran-
no a SLAC di migliorare sensibilmente la scalabilita, soprattutto per algoritmi iterativi
e a forte dipendenza comunicativa come la decomposizione di Cholesky.

Nonostante cio, SLAC dimostra gia oggi di essere una soluzione flessibile e, soprat-
tutto, semplice da utilizzare e configurare rispetto a librerie consolidate come Scal.A-
PACK. Questo rappresenta uno degli obiettivi principali del progetto: offrire uno stru-
mento accessibile per sperimentare, integrare e comprendere i metodi dell’algebra lineare
distribuita senza dover affrontare la complessita delle grandi librerie HPC.

Il progetto ha inoltre ampi margini di estensione: ’aggiunta di nuove operatozioni,
Iintroduzione di algoritmi di fattorizzazione avanzati, I’esplorazione di strategie di sche-
duling e comunicazione alternative, 'integrazione con GPU e acceleratori. Tutti questi
elementi rendono SLAC una base promettente per un sistema piu completo ed efficiente.
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Guida alla compilazione

Questa sezione fornisce una guida completa alla compilazione di programmi che utiliz-
zano la libreria SLAC.

SLAC ¢ una libreria header-only: cio significa che non richiede alcuna fase di com-
pilazione separata, ma e sufficiente includere gli header direttamente nel proprio codice
sorgente. Gli header possono essere scaricati dal repository ufficiale [21]. La libre-
ria e suddivisa in piu file di intestazione, ciascuno dedicato a una specifica compo-
nente funzionale: local_matrix.hpp, distributed_matrix.hpp, local_vector.hpp,
distributed_vector.hpp, env.hpp, operators.hpp. Ogni file definisce il relativo tipo
di matrice o vettore, e puo essere incluso singolarmente se si desidera utilizzare solo
una parte delle funzionalita. Per caricare I'intero set di strumenti forniti da SLAC, e
sufficiente includere ’header principale:

#include <Slac/core.hpp>

Dipendenze
SLAC richiede due componenti esterni gia installati nel sistema:
o Eigen (versione C++): utilizzato per le operazioni locali su matrici e vettori;

¢ MPI: necessario per la gestione della distribuzione dei dati e delle comunicazioni
tra processi.

E inoltre necessario un compilatore C++ che supporti pienamente lo standard C+420.

Compilazione
Poiché il programma risultante € un eseguibile MPI, la compilazione deve essere effettua-

ta tramite mpic++, includendo la directory contenente gli header di SLAC. Un esempio
di comando ¢ il seguente:

mpic++ -std=c++20 -fopenmp -I<slac_directory> ...
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Macro configurabili

Durante la compilazione ¢ possibile definire alcune macro che controllano parametri
interni della libreria e permettono di ottimizzare I’esecuzione:

¢« SLAC_BLOCK__SIZE Definisce la dimensione del lato dei blocchi utilizzati
nella distribuzione a blocchi ciclici. La dimensione predefinita & 32, quindi i blocchi
risultano essere matrici locali 32 x 32. Un valore maggiore puo aumentare le
prestazioni, ma a costo di un maggiore uso di memoria locale.

¢« SLAC_MAX_ TEMP_MATRIX_ BLOCKS Stabilisce il numero massimo
di blocchi che possono comporre una matrice temporanea utilizzata per calcoli in-
termedi. Aumentare questo valore consente di ridurre le riallocazioni, migliorando
la velocita al prezzo di un consumo di memoria superiore.

« ENABLE__DEBUG Abilita stampe diagnostiche per analizzare il comportamen-
to della comunicazione tra processi. Questa opzione rallenta significativamente
I’esecuzione ed € quindi consigliata solo per il debugging.

Esecuzione

Una volta compilato, il programma puo essere eseguito tramite mpirun. La dimensione
dei blocchi ¢ fissata in fase di compilazione, mentre il numero di processi puo essere
scelto liberamente al momento dell’esecuzione:

mpirun -np <num_processi> ./programma

La creazione della griglia dei processi e la gestione delle comunicazioni avvengono au-
tomaticamente all’interno dell’ambiente di SLAC, permettendo di scalare il programma
senza ulteriori modifiche al codice sorgente.
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