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Abstract

Questo lavoro presenta alcuni aspetti fondamentali del formalismo hamiltoniano della
meccanica classica, riportando le dimostrazioni dettagliate degli enunciati e delle formule
presentate. Tra gli strumenti principali per lo studio della meccanica hamiltoniana vi
sono le trasformazioni canoniche e gli invarianti canonici, quali le parentesi di Poisson e
di Lagrange e gli invarianti di Poincaré. Il primo capitolo discute oggetti fondamentali
invarianti sotto trasformazioni canoniche. Si affrontano le parentesi di Poisson e di La-
grange e si introduce inoltre la notazione simplettica, che consente di esprimere in forma
compatta le relazioni fondamentali del formalismo. Vengono illustrati gli invarianti di
Poincaré e il teorema di Liouville, per mostrare come le trasformazioni canoniche siano
caratterizzate dalla proprietà di conservare determinate misure nello spazio delle fasi. Il
secondo capitolo si concentra sulle trasformazioni canoniche sia nella versione infinitesima
che nella versione finita. Si dimostra come le parentesi di Poisson, introdotte nel primo
capitolo, svolgano il ruolo di commutatore dei flussi hamiltoniani. Si affrontano poi le tra-
sformazioni finite introducendo le serie di Lie, che forniscono una formulazione elegante e
generale delle trasformazioni continue nello spazio delle fasi. Si dimostrano le proprietà
algebriche dell’operatore di Lie e di una sua semplice generalizzazione. Infine si arriva a
derivare l’operatore di evoluzione tempo-ordinato nel contesto della meccanica classica,
per poi mostrarne un esempio applicativo particolare riportandone i calcoli espliciti.
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Introduzione

Storicamente la formulazione hamiltoniana della meccanica classica fu introdotta dal ma-
tematico Sir W. R. Hamilton nella prima metà dell’Ottocento, a partire dalla formulazione
lagrangiana. Si tratta di un formalismo alternativo, e più potente, di quello di Lagrange
e di quello di Newton, per lo studio dei sistemi meccanici conservativi. Le velocità gene-
ralizzate della meccanica di Lagrange vengono sostituite dai momenti generalizzati. La
dinamica di un sistema è determinata, per mezzo delle equazioni del moto, dalla funzione
hamiltoniana. Questa trasformazione di variabili consente di mettere in luce la simmetria
tra coordinate e momenti coniugati, che non è evidente nelle altre formulazioni. I cambi
di variabili ammissibili formano un insieme più vasto rispetto alle trasformazioni ammes-
se nel formalismo lagrangiano, perché coinvolgono sia coordinate che momenti, potendo
rimescolarli. Quindi la distinzione tra coordinate e momenti non è rigida: la formulazione
hamiltoniana li tratta in modo simmetrico.
La formulazione hamiltoniana della meccanica sta alla base dell’evoluzione di teorie fon-
damentali quali la meccanica quantistica, la meccanica statistica e la teoria delle pertur-
bazioni. Classicamente, la funzione hamiltoniana è la generatrice infinitesima delle trasla-
zioni temporali, ossia genera l’evoluzione del sistema nel tempo. In meccanica quantistica
l’hamiltoniana è promossa ad operatore, e mantiene il ruolo di generatore dell’evoluzione
temporale per mezzo dell’equazione di Schroedinger. L’introduzione in meccanica classi-
ca hamiltoniana delle parentesi di Poisson dota l’insieme delle variabili dinamiche di una
struttura algebrica che è rispecchiata nell’algebra degli operatori della meccanica quanti-
stica. La quantizzazione canonica, introdotta da Dirac come procedura per quantizzare
sistemi classici, sostituisce le parentesi di Poisson degli osservabili classici con il commuta-
tore degli operatori quantistici (per un numero immaginario). Nel corso della trattazione
vedremo come già classicamente le parentesi di Poisson svolgano il ruolo di commutatore
delle trasformazioni canoniche, il che aiuta a comprendere l’origine di questa procedura
di quantizzazione.
Lo spazio descritto dalle coordinate e dai momenti, detto spazio delle fasi, possiede una
geometria intrinseca, che è preservata da una classe di trasformazioni canoniche, che
conservano la forma delle equazioni di Hamilton. L’evoluzione temporale stessa è una
trasformazione canonica. L’utilizzo delle trasformazioni canoniche permette di effettuare
cambi di variabili per semplificare le equazioni del moto s̀ı da facilitarne la soluzione. La
teoria di Hamilton-Jacobi si basa sull’idea di trovare una trasformazione, e quindi una sua
funzione generatrice, che ponga le equazioni in una forma immediatamente integrabile.
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Hamilton aveva in precedenza studiato l’ottica geometrica e cercava una formulazione
della meccanica che mostrasse pienamente l’analogia strutturale tra ottica e meccanica,
che fu raggiunta con la teoria di Hamilton-Jacobi. Questa analogia avrebbe, tra l’altro,
guidato Schroedinger nella concezione della sua famosa equazione per una particella quan-
tistica non-relativistica in un potenziale esterno.

L’obiettivo di questo lavoro è presentare in modo coerente ed autosufficiente alcuni
aspetti fondamentali del formalismo hamiltoniano della meccanica classica. Al fine di for-
nire un’esposizione il più possibile autonoma, gli enunciati e le formule presentate vengono
dimostrati in dettaglio.
Nel corso del primo capitolo si richiamano dapprima gli aspetti essenziali del formalismo
lagrangiano ed hamiltoniano nel contesto della meccanica classica, necessari per fornire un
quadro di riferimento coerente per la discussione successiva. In seguito vengono discusse le
parentesi di Poisson e di Lagrange, affrontando in dettaglio la loro invarianza rispetto alle
trasformazioni canoniche. Si introduce inoltre la notazione simplettica, che consente di
esprimere in forma compatta le relazioni fondamentali del formalismo. Nella parte finale
vengono affrontati gli invarianti di Poincaré e il teorema di Liouville, per mostrare come
le trasformazioni canoniche siano caratterizzate dalla proprietà di conservare determinate
misure nello spazio delle fasi.
Nel secondo capitolo si sviluppa dapprima la teoria delle trasformazioni canoniche infi-
nitesime, mostrando anche come le parentesi di Poisson, introdotte nel primo capitolo,
svolgano il ruolo di commutatore dei flussi hamiltoniani. Si affrontano poi le trasformazio-
ni finite introducendo le serie di Lie, che forniscono una formulazione elegante e generale
delle trasformazioni continue nello spazio delle fasi. Verranno introdotti e si dimostre-
ranno le proprietà algebriche dell’operatore di Lie e di una sua semplice generalizzazione.
Infine si arriverà a derivare l’operatore di evoluzione tempo-ordinato nel contesto della
meccanica classica, per poi mostrarne un esempio applicativo particolare con calcoli espli-
citi.
In generale, la trattazione segue testi di riferimento classici, quali Analytical Mechanics
di N. A. Lemos e Classical Mechanics di H. Goldstein, ma alcune derivazioni, pur non
presentando risultati nuovi nel contesto di una materia consolidata, sono state elaborate
dall’autore in modo autonomo, cercando di mantenere consistenza con la trattazione e
per fornire un ragionamento più semplice od intuitivo.
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Capitolo 1

Meccanica Hamiltoniana: invarianti
canonici e matrici simplettiche

1.1 Richiami

In meccanica lagrangiana, un dato sistema viene descritto da un set di variabili indipen-
denti, dette coordinate generalizzate, che servono ad individuare univocamente la confi-
gurazione del sistema ad ogni istante. Queste variabili sono scelte in modo da tenere
conto automaticamente dei vincoli a cui è sottoposto il sistema. Il numero di gradi di
libertà del sistema è il numero minimo di coordinate indipendenti necessarie a descrivere
univocamente la configurazione del sistema. Un sistema ad n gradi di libertà sarà quindi
descritto da un set di n coordinate generalizzate q ≡ (q1, ..., qn). Lo spazio mappato da
queste coordinate viene detto spazio delle configurazioni del sistema.
Per descrivere la dinamica si introduce la funzione lagrangiana L del sistema, dipendente
dalle q, dalle loro derivate temporali, ed eventualmente dal tempo: L = L(q, q̇, t). La
traiettoria fisica seguita dal sistema nell’intervallo di tempo [t1, t2] tra due configurazioni
fissate agli estremi, q(t1) e q(t2), è quella che rende stazionario il funzionale d’azione S,

S[q] ≡
∫ t2

t1

Ldt. (1.1)

Da questo principio variazionale: δS = 0, discendono le equazioni del moto di Eulero-
Lagrange,

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (1.2)

Si definisce il momento coniugato alla coordinata qi come

pi ≡
∂L

∂q̇i
. (1.3)

Possiamo passare ad una diversa formulazione, in cui assumiamo a variabili indipendenti
le coordinate e i momenti coniugati, effettuando una trasformata di Legendre della lagran-
giana. La funzione ottenuta dipenderà da q, p ed eventualmente dal tempo, ed è detta
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hamiltoniana del sistema,

H(q, p, t) ≡
n∑

i=1

piq̇i − L, (1.4)

dove q̇i devono essere sostituite con pi invertendo le (1.3) per ricavare q̇i = q̇i(q, p, t). Nel
formalismo hamiltoniano il principio variazionale può essere espresso

δ

∫ t2

t1

(
n∑

i=1

piq̇i −H

)
dt = 0, (1.5)

e avremo ancora che le variazioni δq si annullano agli estremi t1, t2. Non ci sono invece
vincoli sulle variazioni δp, ma è conveniente in alcuni contesti assumere che anch’esse si
annullino agli estremi, ad esempio trattando le trasformazioni canoniche, come si vedrà
in seguito. Dal principio variazionale (1.5) si ricavano le equazioni del moto di Hamilton

q̇i =
∂H

∂pi
,

ṗi = −∂H
∂qi

.

(1.6)

Si definisce spazio delle fasi del sistema lo spazio delle 2n coordinate
(q, p) ≡ (q1, ..., qn, p1, ..., pn). Lo stato del sistema ad un dato istante è rappresentato da
un punto (q, p) nello spazio delle fasi. Al passare del tempo, il punto rappresentativo si
muove nello spazio delle fasi, descrivendo una curva continua (q(t), p(t)). L’evoluzione è
determinata dalle equazioni (1.6), che sono un sistema di 2n equazioni differenziali ordi-
narie del primo ordine, che determina univocamente la soluzione una volta assegnato lo
stato del sistema al tempo iniziale. Mentre le equazioni di Lagrange sono n equazioni del
secondo ordine nelle q, le equazioni di Hamilton sono 2n equazioni del primo ordine in q, p,
scritte in forma normale. Questo permette di effettuare lo studio qualitativo delle solu-
zioni e di interpretare le soluzioni come flusso di un campo vettoriale nello spazio delle fasi.

Un osservabile è rappresentato da una funzione f(q, p, t) definita sullo spazio delle fasi,
eventualmente dipendente dal tempo. Se guardiamo come varia f durante l’evoluzione
del sistema, valutandola sui punti dell’orbita, f(t) := f(q(t), p(t), t), possiamo riesprimere
la variazione temporale di f durante il moto ricorrendo alle equazioni di Hamilton,

df

dt
=

n∑
i=1

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
+
∂f

∂t
=

=
n∑

i=1

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
+
∂f

∂t
=

= {f,H}+ ∂f

∂t
,

(1.7)
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e compare la parentesi di Poisson di f ed H. In generale, la parentesi di Poisson di due
funzioni A(q, p, t) e B(q, p, t), dove (q, p) sono variabili canoniche, è definita come

{A,B} =
n∑

i=1

∂A

∂qi

∂B

∂pi
− ∂B

∂qi

∂A

∂pi
. (1.8)

L’equazione (1.7) si può leggere dicendo che la variazione temporale di una funzione di
fase f può avere due origini. In primo luogo, f può cambiare nel tempo perché il punto
rappresentativo del sistema si muove nello spazio delle fasi, spostandosi in un nuovo punto
(q, p) dove f(q, p, t) assume un valore diverso. La parentesi di Poisson con l’hamiltoniana
tiene conto della variazione dovuta al movimento nello spazio delle fasi. In secondo luo-
go, se f dipende esplicitamente dal tempo, può cambiare anche rimanendo nello stesso
punto dello spazio delle fasi, e la derivata parziale rispetto al tempo tiene conto di questo
secondo contributo.

Una trasformazione canonica è una trasformazione delle variabili canoniche, eventual-
mente dipendente dal tempo, tale da preservare la forma delle equazioni di Hamilton [2].
Siano (q, p) variabili canoniche. Una trasformazione

Qi = Qi(q, p, t),

Pi = Pi(q, p, t)
(1.9)

è canonica se esiste una funzione K(Q,P, t) tale che

Q̇i =
∂K

∂Pi

,

Ṗi = − ∂K

∂Qi

.

(1.10)

Questo vuol dire che valgono le equazioni di Hamilton nelle variabili (Q,P ), e la funzione
hamiltoniana è K(Q,P, t), in generale diversa dall’hamiltoniana nelle ”vecchie” variabili
H(q, p, t).
Come discusso sopra, le equazioni di Hamilton si possono ricavare dal principio variazio-
nale,

δ

∫ t2

t1

(
n∑

i=1

piq̇i −H

)
dt = 0, (1.11)

e se le equazioni devono conservare la stessa forma, dovranno seguire da un analogo
principio

δ

∫ t2

t1

(
n∑

i=1

PiQ̇i −K

)
dt = 0. (1.12)

Un modo di garantire che il principio variazionale valga nelle nuove variabili è imporre
che gli argomenti differiscano per una derivata totale rispetto al tempo

n∑
i=1

piq̇i −H =
n∑

i=1

PiQ̇i −K +
dϕ

dt
(q, p, t), (1.13)
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infatti, dato che le variazioni δq si annullano agli estremi, e possiamo scegliere anche le
δp nulle agli estremi, risulta δ

∫ t2
t1

dϕ
dt
dt = δϕ(q(t2), p(t2), t2)− δϕ(q(t1), p(t1), t1) = 0.

Spesso scriviamo la (1.13) in forma differenziale

n∑
i=1

(pidqi − PidQi) + (K −H)dt = dϕ, (1.14)

ovvero la quantità a primo membro deve essere un differenziale esatto.
L’espressione (1.14) suggerisce di pensare ϕ come funzione di (q,Q, t). Supponiamo di
poter risolvere le n equazioni Qi = Qi(q, p, t) per pi = pi(q,Q, t). Sostituendo poi pi
nelle Pi otteniamo Pi = Pi(q,Q, t). In pratica, possiamo prendere (q,Q) come set di 2n
variabili indipendenti per ϕ. Definiamo la funzione generatrice di primo tipo F1(q,Q, t) =
ϕ(q, p(q,Q, t), t). Dalla (1.14) con ϕ = F1 ricaviamo

pi =
∂F1

∂qi
, Pi = −∂F1

∂Qi

, K(Q,P, t) = H(q, p, t) +
∂F1

∂t
. (1.15)

Data una qualunque funzione F1(q,Q, t), regolare e tale che det ∂2F1

∂qi∂Qj
̸= 0, è automa-

ticamente definita una trasformazione canonica grazie a queste equazioni [3]. Infatti, la
condizione che il determinante hessiano sia non nullo implica che possiamo risolvere il
sistema di n equazioni pi =

∂F1

∂qi
(q,Q, t) per le Qi = Qi(q, p, t). Sostituendo queste ultime

in Pi = − ∂F1

∂Qi
(q,Q, t) si ottengono anche Pi = Pi(q, p, t). Le equazioni Qi = Qi(q, p, t),

Pi = Pi(q, p, t) definiscono una trasformazione (q, p) → (Q,P ), che è canonica per costru-
zione.
Supponiamo ora, invece, di poter prendere (q, P ) come set di 2n variabili indipendenti,
cioè di poter invertire il sistema di n equazioni Pi = Pi(q, p, t) per pi = pi(q, P, t), da sosti-
tuire nelle Qi. Per passare alle variabili (q, P ) dobbiamo eliminare dQi e far comparire dPi

nella (1.14). Ciò può essere ottenuto tramite una trasformata di Legendre. Aggiungiamo
d(
∑
PiQi) ad entrambi i membri ed usiamo l’identità d(

∑
PiQi) =

∑
PidQi +

∑
QidPi,

per riscrivere la (1.14) come

n∑
i=1

(pidqi +QidPi) + (K −H)dt = d

(
ϕ+

n∑
i=1

PiQi

)
, (1.16)

che ci permette di identificare la generatrice di secondo tipo F2(q, P, t) =
∑n

i=1 Pi Qi(q, P, t)+
ϕ(q, p(q, P, t), t), ed ottenere le equazioni

pi =
∂F2

∂q1
, Qi =

∂F2

∂Pi

, K(Q,P, t) = H(q, p, t) +
∂F2

∂t
. (1.17)

Come prima, data una qualsiasi F2(q, P, t), regolare, con det ∂2F2

∂qi∂Pj
̸= 0, risolviamo il siste-

ma pi =
∂F2

∂qi
(q, P, t) per Pi = Pi(q, p, t), che sostituiamo in Qi =

∂F2

∂Pi
(q, P, t) per ricavare

Qi = Qi(q, p, t).
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Notiamo che, quando la generatrice dipende esplicitamente dal tempo, la nuova hamilto-
niana K non è semplicemente la trasformata puntuale della precedente, H, ma acquisisce
un termine aggiuntivo, uguale alla derivata parziale rispetto al tempo della generatrice.

1.2 Parentesi di Poisson

La parentesi di Poisson di due funzioni di fase, definita nella sezione precedente, soddisfa
le seguenti proprietà algebriche, per ogni funzioni di fase A,B,C,

linearità {αA+ βB,C} = α{A,C}+ β{B,C} ∀α, β ∈ R,
antisimmetria {A,B} = −{B,A},

identità di Jacobi {{A,B}, C}+ {{B,C}, A}+ {{C,A}, B} = 0,

regola di Leibniz {AB,C} = A{B,C}+ {A,B}C.

(1.18)

Se si assume come definizione delle parentesi la (1.8), le (1.18) possono essere ricavate a
partire da essa. Useremo spesso queste proprietà nel seguito.

1.2.1 Invarianza canonica delle parentesi fondamentali

Consideriamo una generica trasformazione dipendente dal tempo, della forma

(q, p) → (Q,P ) Qi = Qi(q, p, t), Pi = Pi(q, p, t). (1.19)

Assumendo una generatrice del primo tipo, in base alla (1.15), scriviamo l’hamiltoniana
come

H(q, p, t) = K(Q,P, t)− ∂F

∂t
(q,Q, t) . (1.20)

Deriviamo questa equazione prendendo come variabili indipendenti le (q, p),

∂H

∂qj
=

n∑
l=1

(
∂K

∂Ql

∂Ql

∂qj
+
∂K

∂Pl

∂Pl

∂qj

)
− ∂2F

∂t∂qj
−

n∑
l=1

∂2F

∂t∂Ql

∂Ql

∂qj
,

∂H

∂pj
=

n∑
l=1

(
∂K

∂Ql

∂Ql

∂pj
+
∂K

∂Pl

∂Pl

∂pj

)
−

n∑
l=1

∂2F

∂t∂Ql

∂Ql

∂pj
.

(1.21)

Deriviamo rispetto al tempo le equazioni di trasformazione (1.19)

Q̇i =
n∑

j=1

(
∂Qi

∂qj
q̇j +

∂Qi

∂pj
ṗj

)
+
∂Qi

∂t
,

Ṗi =
n∑

j=1

(
∂Pi

∂qj
q̇j +

∂Pi

∂pj
ṗj

)
+
∂Pi

∂t
.

(1.22)
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Sostituiamo le equazioni di Hamilton per le ”vecchie” variabili canoniche (q, p), poi usiamo
le (1.21) per esprimerle rispetto a K,

Q̇i =
n∑

j=1

(
∂Qi

∂qj

∂H

∂pj
− ∂Qi

∂pj

∂H

∂qj

)
+
∂Qi

∂t
=

=
∑
j,l

(
∂Qi

∂qj

∂Ql

∂pj
− ∂Qi

∂pj

∂Ql

∂qj

)
∂K

∂Ql

+
∑
j,l

(
∂Qi

∂qj

∂Pl

∂pj
− ∂Qi

∂pj

∂Pl

∂qj

)
∂K

∂Pl

+

−
∑
j,l

(
∂Qi

∂qj

∂Ql

∂pj
− ∂Qi

∂pj

∂Ql

∂qj

)
∂2F

∂t∂Ql

+
∑
j

∂Qi

∂pj

∂2F

∂t∂qj
+
∂Qi

∂t
=

=
∑
l

{Qi, Ql}
∂K

∂Ql

+
∑
l

{Qi, Pl}
∂K

∂Pl

−
∑
l

{Qi, Ql}
∂2F

∂t∂Ql

+

+

[∑
j

∂Qi

∂pj

∂2F

∂t∂qj
+
∂Qi

∂t

]
.

(1.23)

Ora, se prendiamo la seguente identità nelle variabili q,Q, t,

Qi(q, p(q,Q, t), t) = Qi (1.24)

e la deriviamo rispetto a t tenendo costanti q,Q, otteniamo∑
k

∂Qi

∂pk

∣∣∣
q,t,pj ̸=k

∂pk(q,Q, t)

∂t

∣∣∣
q,Q

+
∂Qi

∂t

∣∣∣
q,p

= 0, (1.25)

e ricordando che, per una generatrice del primo tipo,

pk(q,Q, t) =
∂F (q,Q, t)

∂qk

∣∣∣
Q,t,qj ̸=k

, (1.26)

la (1.25) è uguale a ∑
k

∂Qi

∂pk

∣∣∣
q,t,pj ̸=k

∂2F

∂t∂qk

∣∣∣
Q,qj ̸=k

+
∂Qi

∂t

∣∣∣
q,p

= 0. (1.27)

Il primo membro della (1.27) coincide con la parentesi quadra della (1.23), che quindi si
annulla identicamente. La (1.23) si riduce cos̀ı a

Q̇i =
n∑

l=1

{Qi, Ql}
∂K

∂Ql

+
n∑

l=1

{Qi, Pl}
∂K

∂Pl

−
n∑

l=1

{Qi, Ql}
∂2F

∂t∂Ql

. (1.28)

Seguiamo un procedimento analogo per calcolare Ṗi,

Ṗi = −
∑
l

{Ql, Pi}
∂K

∂Ql

+
∑
l

{Pi, Pl}
∂K

∂Pl

+
∑
l

{Ql, Pi}
∂2F

∂t∂Ql

+

[∑
j

∂Pi

∂pj

∂2F

∂t∂qj
+
∂Pi

∂t

]
.

(1.29)
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Partiamo dall’identità
Pi(q, p(q,Q, t), t) = Pi(q,Q, t) (1.30)

e deriviamola rispetto a t tenendo costanti q,Q,∑
k

∂Pi

∂pk

∣∣∣
q,t,pj ̸=k

∂pk(q,Q, t)

∂t

∣∣∣
q,Q

+
∂Pi

∂t

∣∣∣
q,p

=
∂Pi

∂t

∣∣∣
q,Q
. (1.31)

Impiegando le relazioni per gli impulsi coniugati con una generatrice di primo tipo, che
sono la (1.26) e la seguente

Pi(q,Q, t) = − ∂F

∂Qi

∣∣∣
q,t,Qm ̸=i

(q,Q, t), (1.32)

la (1.31) diventa∑
k

∂Pi

∂pk

∣∣∣
q,t,pj ̸=k

∂2F

∂t∂qk

∣∣∣
qm ̸=k,Q,t

+
∂Pi

∂t

∣∣∣
q,p

= − ∂2F

∂t∂Qi

∣∣∣
q,Qm ̸=i

. (1.33)

Sostituendo quest’ultima nella parentesi quadra della (1.29), otteniamo

Ṗi = −
∑
l

{Ql, Pi}
∂K

∂Ql

+
∑
l

{Pi, Pl}
∂K

∂Pl

+
∑
l

({Ql, Pi} − δli)
∂2F

∂t∂Ql

. (1.34)

Per una trasformazione canonica, le (1.28) e (1.34) devono ridursi alle equazioni di Ha-
milton

Q̇i =
∂K

∂Pi

, Ṗi = − ∂K

∂Qi

. (1.35)

Questo si verifica se la trasformazione (q, p) → (Q,P ) soddisfa le condizioni

{Qi, Qj} = 0, {Qi, Pj} = δij, {Pi, Pj} = 0. (1.36)

Vale anche l’inverso. Una trasformazione canonica va considerata indipendente dal siste-
ma specifico, cioè indipendente dalla forma dell’hamiltoniana del sistema. Quindi nelle
condizioni di canonicità non deve comparireK, o le sue derivate. Le (1.28) e (1.34) devono
ridursi alle (1.35) qualunque sia K. Allora dobbiamo annullare, o porre uguali alla delta,
le parentesi di Poisson, che compaiono come ”coefficienti” delle derivate di K.
Se calcoliamo le parentesi fondamentali di (Q,P ) rispetto alle (Q,P ) stesse, avremo
ovviamente l’identità,

{Qi, Pj}(Q,P ) =
n∑

k=1

(
∂Qi

∂Qk

∂Pj

∂Pk

− ∂Qi

∂Pk

∂Pj

∂Qk

)
= δij,

{Qi, Qj}(Q,P ) = 0, {Pi, Pj}(Q,P ) = 0.

(1.37)
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Pertanto valgono le condizioni di invarianza

{Qi, Qj}(Q,P ) = {Qi, Qj}(q,p) = 0,

{Qi, Pj}(Q,P ) = {Qi, Pj}(q,p) = δij,

{Pi, Pj}(Q,P ) = {Pi, Pj}(q,p) = 0.

(1.38)

La (1.38) significa che le parentesi fondamentali hanno lo stesso valore se calcolate rispetto
a qualunque insieme di variabili canoniche. Sono invarianti per trasformazioni canoniche.
Le (1.36) possono essere prese come definizione di un set di variabili canoniche.

1.2.2 Invarianza canonica di qualunque parentesi di Poisson

Siano f(q, p, t) e g(q, p, t) due funzioni di fase. Effettuiamo una arbitraria trasformazione
canonica delle coordinate (q, p) → (Q(q, p, t), P (q, p, t)). Indichiamo {f, g}(q,p) la parentesi
di Poisson di f e g calcolata rispetto alle variabili (q, p). Vale l’invarianza canonica delle
parentesi di Poisson

{f, g}(Q,P ) = {f, g}(q,p). (1.39)

Dimostrazione. Consideriamo f e g come funzioni composte con le equazioni di trasfor-
mazione,

f(q, p, t) = f ′(Q(q, p, t), P (q, p, t), t),

g(q, p, t) = g′(Q(q, p, t), P (q, p, t), t)
(1.40)

(omettiamo gli apici da qui in poi). Applicando la regola della catena, si giunge a

{f, g}(q,p) =
n∑

k=1

n∑
m=1

( ∂f

∂Qk

∂g

∂Qm

{Qk, Qm}(q,p) +
∂f

∂Qk

∂g

∂Pm

{Qk, Pm}(q,p)+

+
∂f

∂Pk

∂g

∂Qm

{Pk, Qm}(q,p) +
∂f

∂Pk

∂g

∂Pm

{Pk, Pm}(q,p)
)
,

(1.41)

che mostra come ogni parentesi di Poisson si riconduca alle parentesi fondamentali. Per
l’invarianza delle parentesi fondamentali, già dimostrata, l’espressione precedente si riduce
a

n∑
k=1

n∑
m=1

( ∂f

∂Qk

∂g

∂Pm

δk,m − ∂f

∂Pk

∂g

∂Qm

δk,m

)
=

=
n∑

k=1

(
∂f

∂Qk

∂g

∂Pk

− ∂f

∂Pk

∂g

∂Qk

)
= {f, g}(Q,P ).

(1.42)

12



La (1.39) significa, esplicitamente,

n∑
k=1

(
∂f

∂Qk

∂g

∂Pk

− ∂f

∂Pk

∂g

∂Qk

)
=

n∑
k=1

(
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)
, (1.43)

ossia, la parentesi di due funzioni di fase f, g può essere calcolata rispetto a qualunque
insieme di variabili canoniche. Non è quindi necessario mantenere il pedice che indica le
variabili di derivazione.
Finora abbiamo adottato il punto di vista passivo, pensando alle trasformazioni come
un cambio di coordinate che etichettano gli stessi punti geometrici. L’invarianza delle
parentesi di Poisson vale anche dal punto di vista attivo. In particolare, assumiamo una
trasformazione canonica continua dipendente da un parametro t (ad esempio l’evoluzio-
ne temporale, con parametro il tempo). La trasformazione ”muove” il punto corrente
(q(t), p(t)) lungo una curva continua nello spazio delle fasi, in modo formalmente analogo
all’evoluzione ottenibile a partire da un’hamiltoniana. Si può definire un flusso di fase che
mappa ogni punto (q, p) nel suo evoluto al ”tempo” t,

(q(t), p(t)) ≡ (Q,P ) = ϕt(q, p). (1.44)

Per ogni funzione di fase f(q, p), definiamo la funzione di fase

ft(q, p) ≡ f(ϕt(q, p)) = f(Q(t; q, p), P (t; q, p)), (1.45)

che ad ogni (q, p) associa il valore di f nel punto trasformato ϕt(q, p). Con questa
notazione, l’invarianza delle parentesi di Poisson si scrive

{f ◦ ϕt, g ◦ ϕt} = {f, g} ◦ ϕt, (1.46)

che può essere ricavata nel seguente modo. Come abbiamo dimostrato, la parentesi può
essere calcolata in qualunque set di variabili canoniche,∑

i

(
∂ft
∂qi

∂gt
∂pi

− ∂ft
∂pi

∂gt
∂qi

)
=
∑
i

(
∂ft
∂Qi

∂gt
∂Pi

− ∂ft
∂Pi

∂gt
∂Qi

)
. (1.47)

Ora, in base alla (1.45), la derivata di ft rispetto a Qi coincide con la derivata di f(q, p)
rispetto a qi, calcolata nel punto trasportato (q(t), p(t)),(

∂ft
∂Qi

)
Qm ̸=i,P

=

(
∂f

∂qi

)
qm ̸=i,p

∣∣∣∣∣q=Q(t;q,p)
p=P (t;q,p)

. (1.48)

Pertanto (1.47) si può riscrivere

∑
i

(
∂ft
∂qi

∂gt
∂pi

− ∂ft
∂pi

∂gt
∂qi

)
=
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

) ∣∣∣∣∣q=Q(t;q,p)
p=P (t;q,p)

, (1.49)
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che è la (1.46).
In particolare, le parentesi fondamentali sono costanti nel flusso

{qi(t), qj(t)} = 0, {qi(t), pj(t)} = δij, {pi(t), pj(t)} = 0. (1.50)

Esempio 1.1. Consideriamo l’hamiltoniana di un oscillatore armonico unidimensionale
(con m = ω = 1), H = (q2 + p2)/2, che genera l’evoluzione

Q(t) = q cos t+ p sin t, P (t) = −q sin t+ p cos t. (1.51)

Siano f(q, p) = q2, g(q, p) = p2, per cui {f, g} = 4qp. Le funzioni trasformate sono

ft(q, p) = Q(t)2 = (q cos t+ p sin t)2, gt(q, p) = P (t)2 = (−q sin t+ p cos t)2 (1.52)

e la loro parentesi è

{ft, gt} =
∂ft
∂q

∂gt
∂p

− ∂ft
∂p

∂gt
∂q

=

= [2 cos t(q cos t+ p sin t)][2 cos t(−q sin t+ p cos t)]

− [2 sin t(q cos t+ p sin t)][−2 sin t(−q sin t+ p cos t)] =

= 4(q cos t+ p sin t)(−q sin t+ p cos t) = 4Q(t)P (t),

(1.53)

che è precisamente la trasformata di {f, g}, come stabilisce la (1.46).

1.3 Matrici simplettiche

Per un sistema hamiltoniano ad n gradi di libertà, descritto dalle variabili canoniche
(q1, ..., qn, p1, ..., pn), definiamo i vettori colonna di 2n componenti

η =


q1
...
qn
p1
...
pn

 ,
∂H

∂η
=


∂H/∂q1
...

∂H/∂qn
∂H/∂p1
...

∂H/∂pn

 . (1.54)

Le equazioni di Hamilton si scrivono

η̇ =

(
0 In

−In 0

)
∂H

∂η
= J

∂H

∂η
, (1.55)

dove In è la matrice identità n× n, e si è introdotta la matrice simplettica 2n× 2n

J =

(
0 In

−In 0

)
, (1.56)
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che ha le proprietà JT = J−1 = −J , J2 = −I2n e det J = +1. Per calcolare il determinante
conviene portare la matrice in forma diagonale, scambiando la colonna i-esima con la
colonna (n+ i)-esima. Sono quindi necessari n scambi, il che porta fuori dal determinante
un fattore (−1)n

det J = (−1)n det

(
In 0
0 −In

)
= (−1)n(−1)n = +1. (1.57)

Data una trasformazione canonica T : η = (q, p)T → ζ = (Q,P )T indipendente dal tempo,
scriviamo la condizione di canonicità in questa nuova notazione. Poiché la trasformazione
non dipende dal tempo, la hamiltoniana K nelle nuove variabili è legata ad H da

H(η) = K(ζ(η)). (1.58)

Derivando questa equazione

∂H

∂ηi
=

2n∑
k=1

∂K

∂ζk

∂ζk
∂ηi

, (1.59)

che si scrive in forma matriciale

∂H

∂η
=

(
∂ζ

∂η

)T
∂K

∂ζ
= (DT )T

∂K

∂ζ
, (1.60)

dove si è indicata DT = ∂ζ/∂η la matrice jacobiana della trasformazione T , di elementi
(DT )ij = ∂ζi/∂ηj, e l’apice T indica trasposizione. Usando la regola della catena,

ζ̇ = DT η̇ = (DT )J
∂H

∂η
= (DT )J(DT )T

∂K

∂ζ
. (1.61)

La trasformazione T è canonica se valgono le equazioni di Hamilton

ζ̇ = J
∂K

∂ζ
, (1.62)

e confrontando le (1.61) e (1.62), deduciamo che per una trasformazione canonica la
matrice jacobiana è una matrice simplettica, ossia soddisfa la condizione

(DT )J(DT )T = J, (1.63)

che è equivalente a (DT )TJ(DT ) = J , come si può dimostrare facilmente manipolando
l’espressione.
Viceversa, se DT è una matrice simplettica, allora la trasformazione T è canonica. Infatti
in tal caso si avrà

ζ̇ = (DT )η̇ = (DT )J
∂H

∂η
= (DT )J(DT )T

∂K

∂ζ
= J

∂K

∂ζ
. (1.64)
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La condizione simplettica (1.63) vale anche per le trasformazioni dipendenti dal tempo,
il che può essere dimostrato considerando la trasformazione finita come successione di
trasformazioni infinitesime [2], come si vedrà nel prossimo capitolo.
Mostriamo che la composizione di trasformazioni canoniche è canonica. Date due trasfor-
mazioni canoniche T1 e T2, esse soddisfano la condizione simplettica (1.63). La jacobiana
della composta è il prodotto delle jacobiane, D(T2 ◦ T1)(q, p) = DT2(T1(q, p))DT1(q, p).

(D(T2 ◦ T1))TJD(T2 ◦ T1) = (DT1)
T (DT2)

TJ(DT2)(DT1) = (DT1)
TJ(DT1) = J. (1.65)

Le parentesi di Poisson si possono scrivere in notazione simplettica

{f, g}η =
(
∂f

∂η

)T

J
∂g

∂η
=

2n∑
i=1

2n∑
j=1

∂f

∂ηi
Jij

∂g

∂ηj
. (1.66)

Infatti, se η = (q, p)T = (q1, ..., qn, p1, ..., pn)
T , svolgendo esplicitamente il conto,(

∂f/∂q ∂f/∂p
)( 0 In

−In 0

)(
∂g/∂q
∂g/∂p

)
=

=
(
∂f/∂q ∂f/∂p

)( ∂g/∂p
−∂g/∂q

)
=

=
n∑

k=1

(
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)
= {f, g}η.

(1.67)

In particolare, le parentesi fondamentali si riassumono in un’unica espressione

{ηi, ηj} = Jij, (1.68)

dove gli indici i, j vanno da 1 a 2n.
Data una trasformazione canonica T : η = (q, p)T → ζ = (Q,P )T , vediamo che la condi-
zione simplettica (1.63) equivale all’invarianza delle parentesi fondamentali. Calcoliamo
la parentesi fondamentale {ζi, ζj} rispetto alle ”vecchie” variabili η,

{ζi, ζj}η =
(
∂ζi
∂η

)T

J
∂ζj
∂η

=
2n∑
k=1

2n∑
l=1

∂ζi
∂ηk

Jkl
∂ζj
∂ηl

=

=
2n∑
k=1

2n∑
l=1

((DT )ikJkl(DT )jl) =
(
(DT )J(DT )T

)
ij
= Jij.

(1.69)

Questo dimostra che
{ζi, ζj}η = {ζi, ζj}ζ = Jij, (1.70)

ossia le parentesi fondamentali sono invarianti sotto la trasformazione T : η → ζ.
Più in generale, è immediato dimostrare l’invarianza canonica di qualunque parentesi di
Poisson. Partiamo dalla regola della catena

∂f

∂ηi
=

2n∑
k=1

∂f

∂ζk

∂ζk
∂ηi

−→ ∂f

∂η
= (DT )T

∂f

∂ζ
, (1.71)
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dove per brevità si è indicata la funzione composta F (ζ) = f(η(ζ)) con lo stesso simbolo
f . Usando la condizione simplettica (1.63),

{f, g}η =
(
∂f

∂η

)T

J
∂g

∂η
=

(
∂f

∂ζ

)T

(DT )J(DT )T
∂g

∂ζ
=

=

(
∂f

∂ζ

)T

J
∂g

∂ζ
= {f, g}ζ .

(1.72)

Se f, g sono funzioni composte della forma f(η) = f̃(ψ(η)), g(η) = g̃(ϕ(η)), dove ψ1, ..., ψr,
ϕ1, ..., ϕs sono arbitrarie funzioni di fase, applicando la regola della catena,

{f, g} =

(
∂f

∂η

)T

J

(
∂g

∂η

)
=

(
∂f̃

∂ψ

)T (
∂ψ

∂η

)
J

(
∂ϕ

∂η

)T (
∂g̃

∂ϕ

)
=

=

(
∂f̃

∂ψ

)T

{ψ, ϕ}
(
∂g̃

∂ϕ

)
=

r∑
k=1

s∑
l=1

∂f̃

∂ψk

{ψk, ϕl}
∂g̃

∂ϕl

,

(1.73)

rappresenta la regola della catena per le parentesi di Poisson.

1.4 Parentesi di Lagrange

Siano (χ, ξ) 2n variabili canoniche, dipendenti da due parametri u, v. Definiamo la
parentesi di Lagrange

[u, v](χ,ξ) :=
n∑

k=1

(
∂χk

∂u

∂ξk
∂v

− ∂χk

∂v

∂ξk
∂u

)
=

=

(
∂η

∂u

)T

J
∂η

∂v
, η ≡ (χ, ξ)T .

(1.74)

1.4.1 Invarianza canonica delle parentesi di Lagrange

Sia T : η = (χ, ξ)T → ζ = (q, p)T una trasformazione canonica, che quindi deve soddisfare
la condizione simplettica sulla matrice jacobiana, (DT )TJ(DT ) = J . Se η è funzione di
due parametri u, v allora ζ è funzione di u, v attraverso η: ζ = ζ(η(u, v)). La regola della
catena implica

∂ζ

∂u
= (DT )

∂η

∂u
, (1.75)

sicché la parentesi di Lagrange sarà

[u, v]ζ =

(
∂ζ

∂u

)T

J
∂ζ

∂v
=

(
∂η

∂u

)T

(DT )TJ(DT )
∂η

∂v
=

=

(
∂η

∂u

)T

J
∂η

∂v
= [u, v]η.

(1.76)
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La (1.76) si scrive esplicitamente come

n∑
k=1

(
∂χk

∂u

∂ξk
∂v

− ∂χk

∂v

∂ξk
∂u

)
=

n∑
k=1

(
∂qk
∂u

∂pk
∂v

− ∂qk
∂v

∂pk
∂u

)
, (1.77)

la quale significa che la parentesi [u, v] assume lo stesso valore, nel generico punto (u, v),
in qualunque sistema di coordinate canoniche la si calcoli.

1.4.2 Parentesi fondamentali

Prendendo come funzioni u, v le variabili canoniche stesse (χ, ξ) si ricava

u = χi, v = χj → [χi, χj] = 0,

u = χi, v = ξj → [χi, ξj] = δij,

u = ξi, v = ξj → [ξi, ξj] = 0,

(1.78)

o, scritte in forma matriciale,
[η, η] = J. (1.79)

1.4.3 Condizioni di canonicità con le parentesi di Lagrange

Le condizioni di canonicità sono analoghe a quelle formulate con le parentesi di Poisson
ed esprimono l’invarianza delle parentesi fondamentali sotto trasformazioni canoniche.
In questa sezione seguiamo sostanzialmente l’approccio del Lemos [3]. La condizione di
canonicità in forma differenziale (1.14), che qui riportiamo,

n∑
i=1

(pidqi − PidQi) + (K −H)dt = dϕ, (1.14)

può essere presa a tempo fissato ed implica quindi, come caso particolare,

n∑
i=1

(pidqi − PidQi) |t=const= dϕ|t=const. (1.80)

Dimostriamo che vale anche l’inverso: (1.80) implica (1.14). Sia F la generatrice, sup-
poniamo di primo tipo, per cui ϕ(q, p, t) = F (q,Q(q, p, t), t). Definiamo come al solito
K(Q,P, t) = H(q, p, t) + ∂F/∂t.

dϕ = dϕ|t +
∂ϕ

∂t
dt,

dQi = dQi

∣∣∣
t
+
∂Qi

∂t
dt,

(1.81)
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dove la derivata di ϕ rispetto al tempo si può esprimere come

∂ϕ

∂t
=

n∑
i=1

∂F

∂Qi

∂Qi

∂t
+
∂F

∂t
= −

n∑
i=1

Pi
∂Qi

∂t
+
∂F

∂t
. (1.82)

Ora sostituiamo dentro la (1.80) le espressioni ricavate

n∑
i=1

(
pidqi − Pi

(
dQi −

∂Qi

∂t
dt

))
= dϕ− ∂ϕ

∂t
dt. (1.83)

Sostituendo anche la (1.82) e riarrangiando,

n∑
i=1

(pidqi − PidQi) +
∂F

∂t
dt = dϕ. (1.84)

Avendo definito ∂F/∂t = K −H, segue la (1.14).

Sia (q, p) un set di variabili canoniche. La trasformazione di variabili (q, p) → (Q,P )
nello spazio delle fasi è canonica se e solo se

[qi, qj](Q,P ) = 0,

[qi, pj](Q,P ) = δij,

[pi, pj](Q,P ) = 0.

(1.85)

Dimostrazione. In base alla discussione precedente, assumeremo il tempo fissato. Per
definizione, una trasformazione canonica deve soddisfare la condizione (1.80),

n∑
j=1

(pjdqj − PjdQj) = dϕ. (1.86)

Nella trasformazione, le variabili (Q,P ) sono funzioni di (q, p), e i differenziali sono

dQi =
n∑

j=1

(
∂Qi

∂qk
dqk +

∂Qi

∂pk
dpk

)
,

dPi =
n∑

j=1

(
∂Pi

∂qk
dqk +

∂Pi

∂pk
dpk

)
.

(1.87)

Sostituiamo questi differenziali e riarrangiamo l’equazione,

n∑
k=1

(
pk −

n∑
i=1

Pi
∂Qi

∂qk

)
dqk −

n∑
k=1

(
n∑

i=1

Pi
∂Qi

∂pk

)
dpk = dϕ. (1.88)
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Posto

Ak = pk −
n∑

i=1

Pi
∂Qi

∂qk
, Bk = −

n∑
i=1

Pi
∂Qi

∂pk
, (1.89)

riscriviamo dϕ come

dϕ =
n∑

k=1

(Akdqk +Bkdpk) . (1.90)

Se la trasformazione è canonica, allora l’espressione (1.90) è un differenziale esatto, il
che implica la condizione di chiusura della forma differenziale (simmetria delle derivate
seconde miste di ϕ),

∂Aj

∂qk
=
∂Ak

∂qj
,

∂Bj

∂pk
=
∂Bk

∂pj
,

∂Aj

∂pk
=
∂Bk

∂qj
. (1.91)

Il calcolo esplicito di queste condizioni porta all’invarianza delle parentesi di Lagrange
fondamentali. Vediamo per esempio la prima,

∂

∂qk

(
pj −

∑
l

Pl
∂Ql

∂qj

)
=

∂

∂qj

(
pk −

∑
l

Pl
∂Ql

∂qk

)
. (1.92)

La derivata rispetto a qk è calcolata tenendo le altre variabili qm ̸=k, p costanti, quindi pj
e pk non danno contributo,∑

l

(
∂Pl

∂qk

∂Ql

∂qj
+ Pl

∂2Ql

∂qj∂qk

)
=
∑
l

(
∂Pl

∂qj

∂Ql

∂qk
+ Pl

∂2Ql

∂qk∂qj

)
. (1.93)

La trasformazione Q(q, p) è per ipotesi una funzione regolare, quindi le derivate seconde
commutano e si cancellano nell’espressione, e rimaniamo con∑

l

(
∂Ql

∂qj

∂Pl

∂qk
− ∂Pl

∂qj

∂Ql

∂qk

)
= 0, (1.94)

dove a primo membro figura la parentesi di Lagrange [qj, qk], e j e k sono arbitrari. In
modo analogo si dimostrano le altre condizioni, [pj, pk] = 0 e [qj, pk] = δjk.
Viceversa, sotto l’ipotesi che il dominio di R2n su cui sono definite le variabili (q, p) sia un
aperto semplicemente connesso, la chiusura della forma differenziale implica l’esattezza
(lemma di Poincaré). Pertanto sotto questa ipotesi vale l’implicazione inversa: se le
parentesi fondamentali sono invarianti, allora la trasformazione è canonica.

1.4.4 Reciprocità delle parentesi di Lagrange e di Poisson

Siano ui = ui(η1, ..., η2n) per i = 1, ..., 2n un set di 2n funzioni indipendenti delle variabili
canoniche η, tali che la matrice jacobiana sia non singolare e sia possibile quindi invertire
localmente per ηi(u1, ..., u2n).

20



Indicando con { , } le parentesi di Poisson e con [ , ] le parentesi di Lagrange rispetto
alle variabili canoniche η,

2n∑
k=1

{ui, uk}[uk, uj] = −δij, (1.95)

o, in forma matriciale,
{u, u}[u, u] = −I2n. (1.96)

Dimostrazione. La dimostrazione è immediata per le parentesi fondamentali, cioè se u =
η, ricordando che

{η, η} = J, [η, η] = J, (1.97)

segue {η, η}[η, η] = [η, η]{η, η} = J2 = −I2n.
Per funzioni ui qualsiasi, ricordiamo che

{ui, uk} =
2n∑

l,m=1

∂ui
∂ηl

Jlm
∂uk
∂ηm

,

[uk, uj] =
2n∑

r,s=1

∂ηr
∂uk

Jrs
∂ηs
∂uj

.

(1.98)

Calcoliamo

2n∑
k=1

{ui, uk}[uk, uj] =
∑
k

∑
l,m

∑
r,s

(
∂ui
∂ηl

Jlm
∂uk
∂ηm

)(
∂ηr
∂uk

Jrs
∂ηs
∂uj

)
, (1.99)

dove tutti gli indici nelle somme vanno da 1 a 2n. Osservando che, per la regola della
catena,

∑
k(∂uk/∂ηm)(∂ηr/∂uk) = ∂ηr/∂ηm = δrm, sommiamo prima su k,∑

l,m

∑
r,s

∂ui
∂ηl

JlmδrmJrs
∂ηs
∂uj

. (1.100)

Contraendo su m compare la somma
∑

r JlrJrs = −δls,∑
l,s

∂ui
∂ηl

(−δls)
∂ηs
∂uj

= −
∑
s

∂ui
∂ηs

∂ηs
∂uj

= −∂ui
∂uj

= −δij. (1.101)

Questo dimostra che {u, u}[u, u] = −I.
Ricordando l’antisimmetria delle parentesi,∑

k

{ui, uk}[uk, uj] =
∑
k

(−{uk, ui}) (−[uj, uk]) =
∑
k

[uj, uk]{uk, ui}, (1.102)

segue che {u, u}[u, u] = ([u, u]{u, u})T , e poiché la trasposta dell’identità è ancora l’iden-
tità, esse coincidono

{u, u}[u, u] = [u, u]{u, u} = −I. (1.103)
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1.5 Invarianti di Poincaré

Sia S una superficie bidimensionale nello spazio delle fasi, parametrizzata da due coordi-
nate (u, v) che assumono valori in un dominio D ⊂ R2. Definiamo

A ≡
∫
S

dq · dp =
∫
S

n∑
i=1

dqidpi =
n∑

i=1

∫
S

dqidpi =
n∑

i=1

∫
D

dudv
∂(qi, pi)

∂(u, v)
. (1.104)

Spieghiamo il significato di questo oggetto. L’oggetto dqidpi ≡ dqi ∧ dpi è una 2-forma
differenziale che misura l’area orientata della proiezione sul piano di fase (qi, pi) di una
porzione infinitesima della superficie S. Più precisamente, per ogni coppia di vettori
w1, w2 tangenti alla superficie,

(dqi ∧ dpi)(w1, w2) = dqi(w1)dpi(w2)− dqi(w2)dpi(w1) =

= (w1)qi(w2)pi − (w2)qi(w1)pi ,
(1.105)

dove (w)qi è la componente del vettore w lungo la direzione del vettore ∂/∂qi della
base locale dello spazio tangente allo spazio delle fasi. Si osservi che ((w1)qi , (w1)pi) e
((w2)qi , (w2)pi) sono le proiezioni di (rispettivamente) w1 e w2 sul piano delle fasi i-esimo,
di coordinate (qi, pi). La combinazione numerica delle componenti nella (1.105) è proprio
l’area del parallelogramma formato dai vettori proiettati.
Integrando la forma dqi ∧ dpi sopra ad S, otteniamo l’area orientata della proiezione di S
sul piano (qi, pi). La quantità (1.104) è quindi la somma delle aree orientate delle proie-
zioni di S sui piani di fase [1]. Nell’ultima uguaglianza abbiamo cambiato le variabili di
integrazione da qi, pi ad u, v ed è comparso quindi il determinante jacobiano, che come
noto rappresenta il fattore di scala locale degli elementi di ”volume” sotto cambio di va-
riabili. La trasformazione (u, v) → (qi, pi) trasforma l’”area infinitesima” dudv nell’”area
infinitesima” ∂(qi, pi)/∂(u, v)dudv. Questo segue anche dalle proprietà di bilinearità e
antisimmetria del prodotto esterno. I differenziali sono dqi = (∂qi/∂u)du + (∂qi/∂v)dv e
dpi = (∂pi/∂u)du+ (∂pi/∂v)dv, perciò

dqi ∧ dpi =
(
∂qi
∂u

du+
∂qi
∂v

dv

)
∧
(
∂pi
∂u

du+
∂pi
∂v

dv

)
=

=

(
∂qi
∂u

∂pi
∂v

− ∂pi
∂u

∂qi
∂v

)
du ∧ dv =

∂(qi, pi)

∂(u, v)
du ∧ dv.

(1.106)

Notiamo che la somma dei determinanti jacobiani è una parentesi di Lagrange,∑
i

∂(qi, pi)

∂(u, v)
=
∑
i

(
∂qi
∂u

∂pi
∂v

− ∂qi
∂v

∂pi
∂u

)
= [u, v]. (1.107)

Pertanto la (1.104) è uguale a

A =

∫
D

dudv[u, v]. (1.108)
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Consideriamo ora una trasformazione canonica T : (q, p) → (Q,P ). Se la interpretiamo
in senso attivo, T muove i punti dello spazio delle fasi rimanendo all’interno dello stesso
spazio e la superficie S viene mappata in una nuova superficie S ′ = T (S) nello stesso
spazio. Consideriamo quindi la quantità

A′ ≡
∫
S′
dQ · dP (1.109)

e dimostriamo che A′ = A, ossia A è un invariante canonico: per ogni superficie S, il
numero A è preservato dalle trasformazioni canoniche.
Se immaginiamo la trasformazione finita T come il risultato di una trasformazione canoni-
ca continua che sposta i punti nello spazio delle fasi, la superficie S evolve con continuità
arrivando ad S ′. Sotto una trasformazione canonica continua, il movimento di ogni punto
dello spazio delle fasi è descritto da delle equazioni del primo ordine analoghe a quelle
di Hamilton. Pertanto, il punto iniziale su S fissa univocamente la traiettoria seguita da
tale punto. Punti distinti seguono traiettorie distinte che non si intersecano mai: dato
che la soluzione che passa per un dato punto è unica, se due soluzioni si intersecano,
allora coincidono. Poiché le traiettorie non si intersecano, ogni coppia di coordinate (u, v)
su S individua univocamente una di queste traiettorie, sicché il punto evoluto su S ′ può
essere individuato ancora dalle stesse coordinate (u, v). Possiamo pensare alla superfi-
cie in movimento come ad una famiglia continua ad un parametro di superfici, del tipo
η = η(u, v;λ). Pertanto A′ si può scrivere come integrale sullo stesso dominio D di A,

A′ =

∫
D

dudv[u, v](Q,P ). (1.110)

Come abbiamo già dimostrato, le parentesi di Lagrange sono invarianti canonici: [u, v](Q,P ) =
[u, v](q,p), e precisamente la parentesi non cambia in valore, perciò

A′ =

∫
D

dudv[u, v](Q,P ) =

∫
D

dudv[u, v](q,p) = A. (1.111)

L’evoluzione temporale è una trasformazione canonica, perciò conserva A. Al passare del
tempo, la superficie iniziale S0 evolve con continuità in una superficie St, ma il valore di
A rimane costante, A(St) = A(S0) ad ogni tempo t, per ogni S0.

Possiamo anche calcolare direttamente∑
i

dQi ∧ dPi =
∑
i,k,l

(
∂Qi

∂qk
dqk +

∂Qi

∂pk
dpk

)
∧
(
∂Pi

∂ql
dql +

∂Pi

∂pl
dpl

)
. (1.112)

Applichiamo la proprietà distributiva del prodotto esterno. Grazie all’antisimmetria, i
termini con differenziali uguali si annullano, e i termini del tipo dqk ∧ dql con k > l si
riconducono a quelli con k < l con un cambio di segno, portando a costruire le parentesi
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di Lagrange. ∑
i

dQi ∧ dPi =
∑
k<l

(
[qk, ql]dqk ∧ dql + [pk, pl]dpk ∧ dpl

)
+

+
∑
k ̸=l

[qk, pl]dqk ∧ dpl +
∑
k

[qk, pk]dqk ∧ dpk.
(1.113)

Come si è dimostrato sopra, la trasformazione è canonica se e solo se preserva le parentesi
fondamentali. Quindi tutte le parentesi nella (1.113) si annullano ad eccezione di [qk, pk],
che vale 1, e concludiamo che

n∑
i=1

dQi ∧ dPi =
n∑

i=1

dqi ∧ dpi. (1.114)

Questo significa che una trasformazione è canonica se e solo se preserva questa forma
differenziale.

Esempio 1.2. Siano (q, p) due variabili canoniche in uno spazio delle fasi 2-dimensionale.
Prendiamo la seguente trasformazione

Q = q, P = p+ f(q), (1.115)

dove f(q) è una funzione arbitraria. La trasformazione è canonica, infatti è immediato
constatare che preserva le parentesi, o equivalentemente, la forma differenziale (1.114)
(con n = 1).
Supponiamo ora che (x, y) siano due variabili non canoniche, ossia {x, y} = k ̸= 1. Ora
la medesima trasformazione

Q = x, P = y + f(x), (1.116)

non è canonica, perché le variabili di partenza non lo sono. Le nuove variabili non sono
canoniche,

{Q,P} = {x, y + f(x)} = {x, y}+ {x, f(x)} = {x, y} = k ̸= 1, (1.117)

dove abbiamo usato la proprietà delle parentesi di Poisson {x, f(x)} = {x, x}(df/dx) = 0.
Tuttavia, vale ancora che

∂Q

∂x

∂P

∂y
− ∂Q

∂y

∂P

∂x
= 1. (1.118)

Concludiamo che, quando le variabili (x, y) non sono canoniche, la parentesi di Poisson
{Q,P} non può essere rappresentata dalla usuale espressione differenziale a primo mem-
bro di (1.118). Quest’ultima rappresenta solo il fattore di scala delle parentesi: impigando
la regola della catena,

{Q,P} =

(
∂Q

∂x

∂P

∂y
− ∂Q

∂y

∂P

∂x

)
{x, y} = {x, y}. (1.119)
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Possiamo definire una nuova trasformazione in modo da bilanciare il fattore k nella
parentesi di Poisson. Ad esempio, assumendo k ̸= 0,

Q = x, P = y/k, (1.120)

in modo da avere
{Q,P} = {x, y}/k = k/k = 1. (1.121)

Questa trasformazione continua a non essere canonica, in quanto non preserva la forma
differenziale (1.114),

dQ ∧ dP =
1

k
dx ∧ dy (1.122)

o, (equivalentemente, perchè siamo in 2 dimensioni), il determinante jacobiano è diverso
da 1.

1.6 Teorema di Liouville

Sia R una regione dello spazio delle fasi (q, p) che viene mappata nella regione R′ dello
spazio (Q,P ) da una trasformazione canonica. La misura 2n-dimensionale della regione
R può essere scritta

Γ =

∫
R

dq1...dqndp1...dpn ≡
∫
R

d2nz (1.123)

e, analogamente, per R′ avremo

Γ′ =

∫
R′
dQ1...dQndP1...dPn ≡

∫
R′
d2nζ. (1.124)

Applicando il teorema del cambio di variabile negli integrali,

Γ′ =

∫
R

∣∣∣∣∂(ζ1, ..., ζ2n)∂(z1, ..., z2n)

∣∣∣∣d2nz, (1.125)

compare il valore assoluto del determinante jacobiano della trasformazione z ≡ (q, p) →
ζ ≡ (Q,P ). Abbiamo dimostrato in precedenza come ogni trasformazione canonica debba
soddisfare la condizione simplettica sulla matrice jacobiana DT ≡ ∂ζ/∂z, che riportiamo
qui

(DT )J(DT )T = J. (1.63)

Questa condizione implica che il valore assoluto del determinante jacobiano è uguale a 1.
Ricordando che il determinante della matrice simplettica J è uguale a 1,

det(DT ) det(J) det
(
(DT )T

)
= det(J) = 1,

(det(DT ))2 = 1 → |det(DT )| = 1.
(1.126)

Allora Γ′ = Γ, cioè le trasformazioni canoniche conservano la misura 2n-dimensionale di
qualunque regione R dello spazio delle fasi.
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Pensiamo ad una trasformazione canonica dipendente da un parametro continuo (di cui
l’evoluzione temporale, generata dall’hamiltoniana, è un caso particolare). Una arbitraria
regione iniziale R0, corrispondente al valore t0 del parametro, ha un certo ”volume” (mi-
sura) Γ0 definito. Ciascun punto di R0 evolve sotto il flusso generato dalla trasformazione
seguendo delle equazioni del moto formalmente uguali alle equazioni di Hamilton. Allora
questa regione evolve con continuità attraverso lo spazio delle fasi, cambiando in generale
la sua forma, ma conservando sempre il suo volume. Sia Rt l’immagine di R0 quando il
parametro (pensiamo al tempo) assume il valore t. Sia Γt il volume di Rt, definito da
(1.124). La conservazione della misura sotto il flusso canonico si può esprimere: Γt = Γ0,
per ogni t.
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Capitolo 2

Trasformazioni canoniche

2.1 Trasformazioni canoniche infinitesime (ICT)

Una trasformazione canonica infinitesima (ICT) è una trasformazione canonica in cui le
variabili canoniche trasformate differiscono dalle iniziali per quantità infinitesime [2]

qi → Qi = qi + δqi,

pi → Pi = pi + δpi.
(2.1)

Si può quindi vedere come la trasformazione identità, che è una trasformazione canonica
di generatrice F =

∑n
i=1 qiPi, più una parte infinitesima. La generatrice si può scrivere

quindi

F =
n∑

i=1

qiPi + ϵG(q, P, t), (2.2)

dove ϵ è una parametro infinitesimo e G una qualunque funzione differenziabile. Essendo
F una generatrice del secondo tipo, per definizione

Qj =
∂F

∂Pj

= qj + ϵ
∂G

∂Pj

,

pj =
∂F

∂qj
= Pj + ϵ

∂G

∂qj
,

(2.3)

quindi le variazioni delle variabili canoniche sono

δqj ≡ Qj − qj = ϵ
∂G

∂Pj

,

δpj ≡ Pj − pj = −ϵ∂G
∂qj

.

(2.4)

Poiché la variazione dell’impulso coniugato pj è del primo ordine in ϵ, se sostituiamo p
a P dentro la funzione G(q, P, t) nella (2.2), commettiamo un errore del secondo ordine,
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ϵG(q, P, t) = ϵG(q, p, t) + O(ϵ2). Questo significa che le generatrici delle trasformazioni
canoniche infinitesime (del secondo tipo) possono essere scritte come

F =
n∑

i=1

qiPi + ϵG(q, p, t). (2.5)

Per la stessa ragione, ϵ∂G/∂Pj = ϵ∂G/∂pj+O(ϵ
2) e possiamo riscrivere la variazione delle

coordinate come

δqj = Qj − qj = ϵ
∂G

∂pj
. (2.6)

Possiamo anche partire direttamente dall’invarianza della forma differenziale per ar-
rivare alle stesse conclusioni. Assumiamo per semplicità lo spazio delle fasi bidimensio-
nale, di variabili canoniche (q, p). Consideriamo una trasformazione infinitesima (q, p) →
(q + δq, p + δp). Sotto quali condizioni questa trasformazione è canonica? La condizione
di canonicità richiede che la forma differenziale ω = pdq − Hdt differisca al più per il
differenziale totale di una funzione ϕ(q, p, t). Consideriamo quindi

ω′ = p′dq′ −Kdt = (p+ δp)(dq + dδq)−Kdt =

= (pdq −Hdt) + [δpdq + pdδq − (K −H)dt] + δpdδq.
(2.7)

Possiamo trascurare il termine δpdδq, che è infinitesimo di ordine superiore ai termini
precedenti. Usiamo poi l’identità pdδq = d(pδq)− δqdp per riscrivere

ω′ = (pdq −Hdt)− [−δpdq + δqdp+ (K −H)dt] + d(pδq). (2.8)

Affinché la quantità dentro parentesi quadre sia un differenziale totale, deve esistere una
funzione differenziabile G(q, p, t) tale che

δp = −∂G
∂q

, δq =
∂G

∂p
, K −H =

∂G

∂t
. (2.9)

Inoltre questa funzione G dovrà essere ”infinitesima” perché le variazioni sono molto
piccole. Conviene quindi scriverla come ϵG, dove ϵ è un parametro infinitesimo che molti-

plica G, la quale invece resta finita. Ponendo infine ϕϵ(q, p, t) = ϵ
(
p∂G

∂p
−G

)
, otteniamo

ω′ = ω + dϕϵ, come richiesto. In conclusione, la trasformazione (q, p) → (q + δq, p+ δp) è
canonica se esiste una funzione differenziabile G(q, p, t) tale che

δp = −ϵ∂G
∂q

, δq = ϵ
∂G

∂p
, K −H = ϵ

∂G

∂t
. (2.10)

In generale, per uno spazio delle fasi 2n-dimensionale, ripercorriamo lo stesso ragiona-
mento. La trasformazione (q, p) → (q + δq, p + δp) è canonica se esiste una funzione
differenziabile G(q, p, t), detta generatrice, tale che

δpi = −ϵ∂G
∂qi

, δqi = ϵ
∂G

∂pi
, K −H = ϵ

∂G

∂t
. (2.11)
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Queste variazioni si riesprimono per mezzo delle parentesi di Poisson

δqj = ϵ
∂G

∂pj
= ϵ{qj, G},

δpj = −ϵ∂G
∂qj

= ϵ{pj, G},
(2.12)

e si raccolgono in forma compatta introducendo il vettore η = (q, p)T , ed utilizzando la
matrice simplettica J definita in (1.56),

δη = ϵJ
∂G

∂η
= ϵ{η,G}. (2.13)

Più in generale, sia u(q, p, t) una qualunque variabile dinamica differenziabile. Interpre-
tando la ICT in senso attivo, ossia come mappa che sposta il punto di fase (q, p) nel punto
(q + δq, p+ δp), la variazione al primo ordine subita dalla funzione u(q, p, t) è

δu = u(q + δq, p+ δp, t)− u(q, p, t) ≈
n∑

i=1

(
∂u

∂qi
δqi +

∂u

∂pi
δpi

)
=

= ϵ
n∑

i=1

(
∂u

∂qi

∂G

∂pi
− ∂u

∂pi

∂G

∂qi

)
= ϵ{u,G} = ϵ

(
∂u

∂η

)T

J
∂G

∂η
.

(2.14)

La (2.13) permette di dimostrare che l’impulso è il generatore infinitesimo delle traslazioni,
e il momento angolare è il generatore infinitesimo delle rotazioni [2]. Se come generatrice
prendiamo un impulso G = pi, le variazioni delle coordinate canoniche sono

δqk = ϵ{qk, pi} = ϵδki

δpk = ϵ{pk, pi} = 0.
(2.15)

Questo significa che lo spostamento di una singola coordinata qi è generato dal suo mo-
mento coniugato pi. Viceversa, la coordinata qi genera le traslazioni dell’impulso ad essa
coniugato pi. Consideriamo una singola particella e adottiamo le coordinate cartesiane
(il significato fisico della generatrice non dipende dalle coordinate). Abbiamo dimostrato
che la componente px dell’impulso genera le traslazioni lungo l’asse x, e analogamente
per gli altri assi. Studiamo ora il momento angolare, le cui componenti cartesiane so-
no li =

∑
j,k ϵijkxjpk. Le variazioni delle coordinate canoniche sotto la trasformazione

generata dalla componente li di parametro infinitesimo δθ risultano

δxa = δθ
∑
k

ϵaikxk

δpb = δθ
∑
k

ϵbikpk.
(2.16)

Per esempio, se prendiamo la terza componente lz, le trasformazioni sono

δx = −yδθ, δy = xδθ, δz = 0

δpx = −pyδθ, δpy = pxδθ, δpz = 0,
(2.17)
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che rappresentano una rotazione infinitesima della posizione attorno all’asse z, e una ro-
tazione infinitesima dell’impulso attorno all’asse pz. In altre parole, la componente li del
momento angolare genera le rotazioni attorno all’asse cartesiano i-esimo. Quanto discus-
so si può generalizzare ad un sistema di N particelle. La proiezione dell’impulso totale
del sistema sul versore n di R3, Pn = P · n, genera le traslazioni del sistema lungo la
direzione n dello spazio. La componente del momento angolare totale su n, Ln = L · n, è
la generatrice delle rotazioni del sistema attorno all’asse n.

Per una ICT η → η + δη, la matrice jacobiana rispetto alle variabili η è, impiegando
la (2.13),

DT = I +
∂δη

∂η
= I + ϵJ

∂2G

∂η∂η
, (2.18)

dove ∂2G
∂η∂η

è la matrice hessiana della generatrice G. La trasposta è (DT )T = I − ϵ ∂2G
∂η∂η

J ,
perché l’hessiana è simmetrica mentre l’unità simplettica J è antisimmetrica. Pertanto

(DT )TJ(DT ) = J +O(ϵ2), (2.19)

che significa che ogni trasformazione canonica infinitesima soddisfa la condizione simplet-
tica. Una trasformazione finita, anche dipendente dal tempo, può sempre vedersi come
composizione di trasformazioni infinitesime. Dato che la composizione di trasformazioni
simplettiche è simplettica, segue che ogni trasformazione canonica finita, anche dipendente
dal tempo, è simplettica.

2.1.1 Corrispondenza tra ICT e funzioni dello spazio delle fasi

Come si è discusso in precedenza, per ogni ICT della forma

q′i = qi + ϵfi(q, p, t),

p′i = pi + ϵgi(q, p, t),
(2.20)

esiste una funzione G(q, p, t) tale che fi = ∂G/∂pi e gi = −∂G/∂qi, e questa G è la
generatrice infinitesima.
Vale anche l’inverso: per ogni funzione differenziabile G(q, p, t) dello spazio delle fasi, la
trasformazione delle variabili definita da

q′i = qi + λ
∂G

∂pi
,

p′i = pi − λ
∂G

∂qi
,

(2.21)

dove λ è un parametro infinitesimo, e dove si definisce l’hamiltoniana trasformata come
K = H + λ∂G/∂t, è una ICT.
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Dimostrazione. In base alla condizione di canonicità di una trasformazione dello spazio
delle fasi, occorre dimostrare che la forma differenziale espressa nelle nuove coordinate
ω′ =

∑
i p

′
idq

′
i −Kdt differisce da ω =

∑
i pidqi −Hdt per un differenziale totale.

Sostituiamo le quantità trasformate nell’espressione di ω′,

ω′ =
∑
i

(
pi − λ

∂G

∂qi

)(
dqi + λd

∂G

∂pi

)
− (H + λ∂G/∂t) dt =

=
∑
i

(
pidqi − λ

∂G

∂qi
dqi + λpid

∂G

∂pi

)
−Hdt− λ

∂G

∂t
dt+O(λ2).

(2.22)

Ora usiamo l’identità
∑

i pid
∂G
∂pi

= d
(∑

i pi
∂G
∂pi

)
−
∑

i
∂G
∂pi
dpi,(∑

i

pidqi −Hdt

)
− λdG+ λd

(∑
i

pi
∂G

∂pi

)
+O(λ2) =

= ω − λd

(
G−

∑
i

pi
∂G

∂pi

)
+O(λ2).

(2.23)

Ponendo ϕλ(q, p, t) = λ
(
G−

∑
i pi

∂G
∂pi

)
, e trascurando i termini infinitesimi di ordine

superiore al primo, si riscrive ω′ = ω − dϕλ, mostrando che le forme differiscono per un
differenziale totale.

Questo prova che, se riusciamo a dimostrare che una data trasformazione infinitesima
delle variabili η ≡ (q, p)T soddisfa η′ = η + λ{η,G} per una qualche funzione G(q, p, t),
allora è una trasformazione canonica.

2.1.2 Trasformazioni canoniche continue e sistemi dinamici

Si consideri una trasformazione canonica continua (CCT), ossia una famiglia di trasfor-
mazioni canoniche dipendente da un parametro continuo λ

qi(λ) = qi(q, p, λ),

pi(λ) = pi(q, p, λ),
(2.24)

e poniamo che per λ = 0 la trasformazione si riduca all’identità: qi(0) = qi, pi(0) = pi. La
versione infinitesima di questa trasformazione si ottiene come approssimazione al primo
ordine nell’intorno dell’identità, cioè per valori molto piccoli di λ,

qi(λ) ≈ qi + λ
∂qi(q, p, λ)

∂λ

∣∣∣
0
= qi + λfi(q, p),

pi(λ) ≈ pi + λ
∂pi(q, p, λ)

∂λ

∣∣∣
0
= pi + λgi(q, p),

(2.25)
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e come sappiamo, la trasformazione è canonica se esiste una funzione G(q, p) tale che
fi = ∂G/∂pi e gi = −∂G/∂qi. Abbiamo discusso l’interpretazione attiva della trasfor-
mazione, nella quale lo spostamento infinitesimo lungo la curva (q(λ), p(λ)) è propor-
zionale a (∂G/∂p,−∂G/∂q)T . Come sappiamo, la variazione delle coordinate in uno
spostamento infinitesimo lungo la curva è data da δqi = {qi, G}dλ = (∂G/∂pi)dλ e
δpi = {pi, G}dλ = −(∂G/∂qi)dλ. In altre parole, per ogni punto (q, p) dello spazio
delle fasi passa un’unica traiettoria generata dalla trasformazione continua, soluzione del
problema ai valori iniziali 

dqi
dλ

=
∂G

∂pi
,

dpi
dλ

= −∂G
∂qi

,

qi(0) = qi , pi(0) = pi.

(2.26)

Osserviamo come queste non siano altro che le equazioni di Hamilton con hamiltoniana
G e il ruolo del tempo svolto dal parametro continuo λ. Le linee di flusso generate da
una CCT sono matematicamente equivalenti all’evoluzione di sistemi dinamici. Tutte le
trasformazioni canoniche continue (q(λ), p(λ)) sono esempi di soluzioni di sistemi dinamici.

2.2 Variazioni dell’hamiltoniana

2.2.1 Trasformazioni canoniche indipendenti dal tempo

Data una trasformazione canonica

(q, p) → (Q(q, p), P (q, p)), (2.27)

per definizione, la nuova hamiltoniana è la trasformata puntuale della vecchia

K(Q,P, t) = H(q(Q,P ), p(Q,P ), t). (2.28)

Il cambio di variabili canoniche determina un cambiamento di dipendenza funzionale
H → K, ma il valore delle due funzioni in punti corrispondenti è lo stesso. In altre
parole, un dato punto X dello spazio delle fasi può essere rappresentato in diversi sistemi
di coordinate X → (q, p), X → (Q,P ), ma il valore delle funzioni dipende solo da X:
K(X) = H(X). K e H sono due rappresentazioni diverse della stessa applicazione dello
spazio delle fasi a valori reali. Questo non sarà più vero per una trasformazione canonica
dipendente dal tempo.
Consideriamo adesso trasformazioni canoniche che ammettono un’interpretazione in senso
attivo: è necessario che la trasformazione agisca all’interno dello stesso spazio. Esempi
sono rotazioni, traslazioni, scaling dello spazio delle fasi. Le simmetrie di un sistema fisico
saranno trasformazioni di questo tipo. Al contrario, una trasformazione da coordinate
cartesiane a polari non può essere interpretata in senso attivo.
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Definiamo tre tipi di variazione a seguito di una trasformazione canonica di questo tipo

variazione in forma δ0H := K(q, p, t)−H(q, p, t),

variazione attiva δAH := H(Q,P, t)−H(q, p, t),

variazione passiva δPH := K(Q,P, t)−H(q, p, t),

(2.29)

dove (Q,P ) è il punto trasformato di (q, p). Nella variazione in forma, le due funzioni sono
valutate nel medesimo generico argomento (q, p, t), per cui la differenza può essere dovuta
solo alla diversa dipendenza funzionale di K e di H dai rispettivi argomenti. Da cui il
nome di variazione in forma. Nella variazione passiva, interpretiamo la trasformazione
canonica come un cambio di variabili: le variabili (q, p) e (Q(q, p), P (q, p)) sono diverse
coordinate che individuano lo stesso punto geometrico X dello spazio delle fasi. Come
abbiamo visto, nelle nuove coordinate la hamiltoniana non è più H, ma K. Per le tra-
sformazioni indipendenti dal tempo, che stiamo considerando qui, K è data dalla (2.28),
perciò la variazione passiva è identicamente nulla per questo tipo di trasformazioni. Nella
variazione attiva, pensiamo alla trasformazione non come a un cambio di variabili, ma
come ad una mappa che muove il punto geometrico di coordinate (q, p) nel punto geome-
trico di coordinate (Q,P ). Ci muoviamo rimanendo all’interno dello stesso spazio, i punti
vengono mappati in altri punti dello stesso spazio, muovendosi lungo il flusso generato
dalla trasformazione. Quindi possiamo calcolare l’hamiltoniana H nel punto iniziale e nel
punto finale, e vedere quanto è cambiata: questa differenza è δAH.
Cerchiamo ora una relazione tra i tre tipi di variazione.

δPH = K(Q,P, t)−H(q, p, t) =

= [K(Q,P, t)−H(Q,P, t)] + [H(Q,P, t)−H(q, p, t)] =

= δ0H + δAH.

(2.30)

Assumiamo in particolare una trasformazione infinitesima, indipendente dal tempo, di
generatrice G(q, p) e parametro infinitesimo λ,

Qi = qi(λ) = qi + λ
∂G

∂pi
(q, p) ,

Pi = pi(λ) = pi − λ
∂G

∂qi
(q, p) .

(2.31)

Abbiamo già discusso la variazione di funzioni di fase arbitrarie sotto una ICT attiva. La
variazione attiva dell’hamiltoniana è infatti

δAH = H(q(λ), p(λ), t)−H(q, p, t) =

=
n∑

k=1

(
∂H

∂qk
(qk(λ)− qk) +

∂H

∂pk
(pk(λ)− pk)

)
+O(λ2) =

= λ
n∑

k=1

(
∂H

∂qk

∂G

∂pk
− ∂H

∂pk

∂G

∂qk

)
+O(λ2) = λ{H,G}+O(λ2).

(2.32)
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Ricordando che, per una trasformazione indipendente dal tempo, la variazione passiva è
identicamente nulla, otteniamo

δAH = λ{H,G}+O(λ2),

δPH = 0 = δ0H + δAH +O(λ2) −→ δ0H = −δAH +O(λ2).
(2.33)

Le simmetrie sono le trasformazioni canoniche che lasciano invariante l’hamiltoniana. La
(2.33) illustra che, al primo ordine, l’annullamento della variazione in forma equivale
all’annullamento della variazione attiva, nel caso indipendente dal tempo. Pertanto, in
presenza di una simmetria, deve annullarsi la parentesi di Poisson {H,G} = 0, il che
comporta che la generatrice G, indipendente dal tempo per ipotesi, è una costante del
moto: dG

dt
= {G,H} = 0.

2.2.2 Trasformazioni canoniche dipendenti dal tempo

Quando la trasformazione canonica dipende dal tempo, la hamiltoniana nelle nuove va-
riabili è

K(Q,P, t) = H(q, p, t) + λ
∂G

∂t
, (2.34)

dove G è la generatrice, e la variazione passiva risulterà quindi

δPH := K(Q,P, t)−H(q, p, t) = λ
∂G

∂t
. (2.35)

Perciò, a meno di termini di ordine λ2,

δPH − δAH = δ0H = λ

(
∂G

∂t
+ {G,H}

)
= λ

dG

dt
. (2.36)

Ciò mostra che la quantità che deve annullarsi per avere una costante del moto non è la
variazione passiva o quella attiva, ma la variazione in forma, che è uguale alla differenza
delle due. È questa la variazione che si annulla sempre in presenza di simmetria, sia nel
caso dipendente che indipendente dal tempo. Ovviamente, la variazione dipende dalla
particolare trasformazione, e per sottolineare la dipendenza dalla generatrice G possiamo
indicarla δ

(G)
0 H.

Teorema di Noether δ
(G)
0 H = 0 −→ dG

dt
= 0. (2.37)

Le (2.36) e (2.37) valgono anche nel caso tempo-indipendente con ∂G/∂t = 0.

2.3 Serie di Lie e trasformazioni canoniche finite

Secondo l’interpretazione attiva, una trasformazione canonica dipendente da un para-
metro continuo sposta il punto di fase lungo una curva continua nello spazio delle fasi,
a partire da un dato punto iniziale. Una TC finita si può vedere come successione di
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ICT, ciascuna corrispondente ad uno spostamento infinitesimo lungo questa curva. La
TC finita può quindi essere ricavata, almeno formalmente, integrando l’espressione dello
spostamento infinitesimo (2.14) [3].
Sia u(q, p) una variabile dinamica e consideriamo una ICT di generatrice X(q, p) e para-
metro continuo α. Lungo questa trasformazione lo stato del sistema varia con continuità
in funzione del parametro α e in funzione del punto iniziale: (q(α), p(α); q0, p0). Quindi
ogni punto evolve lungo una curva nello spazio delle fasi, e le curve non si intersecano,
perché l’equazione (2.14) è del primo ordine e la condizione iniziale determina univoca-
mente l’evoluzione. Corrispondentemente, se valutiamo le funzioni di stato del sistema
lungo le orbite, esse diventano funzioni di α: u(α) = u(q(α), p(α)). Se la funzione u non ha
dipendenza esplicita da α, la variazione al primo ordine è data da (2.14), δu = {u,X}dα,
e quindi la derivata prima di u(α) è

du

dα
= {u,X}. (2.38)

La trasformazione finita si ottiene integrando questa equazione differenziale ricavando
u(α). Assumiamo che sia possibile sviluppare u(α) in serie di Taylor attorno al valore
iniziale (in α = 0)

u(α) = u(0) + α
du

dα

∣∣∣∣∣
0

+
α2

2!

d2u

dα2

∣∣∣∣∣
0

+ ... (2.39)

Per calcolare le derivate successive, applichiamo ripetutamente la formula (2.38) pren-
dendo come funzione u la derivata precedente (ricordando che per ipotesi u non dipende
esplicitamente da α, per cui non c’è la derivata parziale rispetto ad α).

d2u

dα2
=

d

dα
{u,X} = {{u,X}, X}. (2.40)

Introducendo l’operatore di Lie DX ≡ { , X},

du

dα
= DXu ,

d2u

dα2
= DX(DXu) ≡ D2

Xu (2.41)

e, ragionando per induzione, si ricava

dnu

dαn
= Dn

Xu. (2.42)

Con questo nuovo operatore, la serie si riscrive come

u(α) = u(0) + α(DXu)
∣∣∣
0
+
α2

2!
(D2

Xu)
∣∣∣
0
+ ...+

αn

n!
(Dn

Xu)
∣∣∣
0
+ ... (2.43)

che prende il nome di serie di Lie della funzione u rispetto alla generatrice X. Riconoscia-
mo in questa espressione lo sviluppo formale dell’esponenziale, perciò possiamo esprimerla
simbolicamente in forma compatta come

u(α) = exp (αDX)u(0). (2.44)
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L’operatoreDX gioca il ruolo di derivata lungo il flusso hamiltoniano, ed exp (αDX) svolge
il ruolo di operatore di evoluzione per il flusso generato dalla trasformazione canonica di
generatrice X(q, p) e parametro α, ossia evolve il valore u(α = 0), definito nel punto
iniziale (q(0), p(0)), lungo la linea di flusso della trasformazione passante per (q(0), p(0)),
restituendo l’effetto u(α) della trasformazione finita.
Dimostriamo di seguito alcune elementari proprietà algebriche dell’operatore di Lie, che
seguono subito dalle proprietà delle parentesi di Poisson.

linearità DX(αF + βG) = αDXF + βDXG,

DaX+bY (F ) = aDXF + bDY F,

antisimmetria DXF = −DFX,

prodotto DX(FG) = G(DXF ) + F (DXG),

commutatore [DX , DY ] = D{Y,X}.

(2.45)

Dimostrazione. Sfruttando la linearità delle parentesi di Poisson, che viene dalla linearità
delle derivate, DX(αF +βG) = {αF +βG,X} = α{F,X}+β{G,X} = αDXF +βDXG.
Analogamente, DaX+bY (F ) = {F, aX + bY } = a{F,X} + b{F, Y } = aDXF + bDY F . Si
noti che α, β, a, b possono essere qualsiasi funzioni che non dipendano da (q, p).
Supponendo che anche F (q, p, t) si possa interpretare come generatrice di una trasforma-
zione canonica, le associamo l’operatore DF ≡ { , F} e dall’antisimmetria delle parentesi
di Poisson segue DXF = {F,X} = −{X,F} = −DFX.
Impiegando la proprietà di Leibniz delle parentesi di Poisson,
DX(FG) = {FG,X} = F{G,X}+ {F,X}G = F (DXG) + (DXF )G.
Per l’ultima proprietà, valutiamo il commutatore su una generica funzione argomento F ,
ed applichiamo l’identità di Jacobi per le parentesi di Poisson,

DX(DY F )−DY (DXF ) = {{F, Y }, X} − {{F,X}, Y } =

= {F, {Y,X}} = D{Y,X}F.
(2.46)

La Figura 2.1 mostra un’interpretazione geometrica dell’operatore di Lie. Ragionando
in due variabili per semplicità, se partiamo dal generico punto (q, p) e applichiamo la
TC generata da X(q, p) per una quantità infinitesima dα, adottando ancora una volta
l’interpretazione attiva, ci ritroveremo nel punto (q(α+dα), p(α+dα)) ≈ (q+ δq, p+ δp),
e lo ”spostamento infinitesimo” (q, p) → (q+ δq, p+ δp) rappresenta la direzione tangente
alla traiettoria nello spazio delle fasi generata daX(q, p), nel punto (q, p), ossia la tangente
alla curva di flusso (q(α), p(α)). Viceversa, possiamo definire la linea di flusso della TC
come la curva tangente al ”campo vettoriale” (q, p) → (q + δq, p+ δp) nel generico punto
(q, p). La direzione del vettore tangente nel punto (q, p) è quindi

1

dα

(
δq
δp

)
=

(
DXq
DXp

)
=

(
∂X/∂p
−∂X/∂q

)
. (2.47)
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q

p

η(α) ≡ (q(α), p(α))

(q, p)

DXη

∂X/∂η

Figura 2.1: Rappresentazione schematica di alcune orbite di una trasfor-
mazione canonica nello spazio delle fasi, con disegnati vettore tangente e
normale in un punto.

La linea di flusso è quindi normale al gradiente della generatrice ∂X/∂η ≡ (∂X/∂q, ∂X/∂p)T ,
vale a dire che la generatrice stessa è costante lungo la trasformazione da essa generata,
come del resto segue immediatamente dal fatto che {X,X} = 0. In altri termini, le li-
nee di flusso sono curve di livello di X. L’operatore DX può essere visto come campo
vettoriale, ossia un operatore differenziale del primo ordine che agisce sulle funzioni di
fase,

DX ≡ { , X} =
∂X

∂p

∂

∂q
− ∂X

∂q

∂

∂p
, (2.48)

e le sue componenti nella ”base” locale {∂/∂q, ∂/∂p} rappresentano proprio la direzione
della tangente (2.47) alla linea di flusso in quel punto. Questo operatore prende il nome
di campo vettoriale hamiltoniano XH generato da X, l’operatore che misura il tasso di
variazione delle funzioni di fase lungo il flusso generato da X: XH(F ) ≡ DX(F ) = {F,X}.

XH(η) ≡ DX(η) = {η,X} = J
∂X

∂η
=

(
∂X/∂p
−∂X/∂q

)
. (2.49)

2.3.1 Parentesi di Poisson e commutatore di campi hamiltoniani

Date due trasformazioni canoniche infinitesime: T1 di generatrice X e T2 di generatrice
Y . Dimostriamo che il loro commutatore è ancora una trasformazione canonica e la sua
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generatrice è la parentesi di Poisson delle due generatrici.
Consideriamo un punto generico A di coordinate (q, p)T dello spazio delle fasi. Se appli-
chiamo prima la trasformazione T1 per una quantità infinitesima ϵ1, secondo l’interpreta-
zione attiva il punto A viene portato in un nuovo punto A1 dello spazio delle fasi, molto
vicino ad A. Se ora applichiamo T2 per una quantità infinitesima ϵ2, il punto A1 verrà
portato in un altro punto A2. Si può fare riferimento alla Figura 2.2. Come abbiamo
discusso, i campi vettoriali XH , YH ci permettono di calcolare la variazione di qualunque
funzione di fase lungo questo percorso. Se invece, partendo ancora da A, applichiamo le
stesse trasformazioni nell’ordine opposto, passeremo da un punto B1 e arriveremo in un
punto B2, che in generale sarà diverso da A2. Se sono diversi, significa che le trasforma-
zioni non commutano: l’ordine in cui vengono applicate influisce sul risultato.

q

p

A

A1

A2

B1

B2

XH

YH

YH

XH

Figura 2.2: Trasformazioni non commutanti.

Al primo ordine nei parametri infinitesimi,

A
T1−→ A1 = A+ ϵ1XH(A)

T2−→ A2 = A1 + ϵ2YH(A1),

A
T2−→ B1 = A+ ϵ2YH(A)

T1−→ B2 = B1 + ϵ1XH(B1).

(2.50)

Ora approssimiamo gli spostamenti come

YH(A1) = YH(A) + ϵ1XH(YH(A)) +O(ϵ21),

XH(B1) = XH(A) + ϵ2YH(XH(A)) +O(ϵ22).
(2.51)

Per esempio, la prima di queste equazioni significa che il campo YH nel punto A1 è uguale
al campo YH nel punto A più una correzione dovuta al trasporto del campo YH da A ad
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A1 lungo la trasformazione T1 generata da XH .

Infatti, ricordando che YH(A1) = {η, Y }
∣∣∣
A1

= (∂Y/∂p,−∂Y/∂q)T
∣∣∣
A1

, dove η ≡ (q, p)T

sono le coordinate dello spazio delle fasi, concentriamoci su una singola componente.
Utilizziamo la formula già dimostrata δu = ϵ{u,X}, con u = ∂Y/∂pi.

∂Y

∂pi

∣∣∣
A1

=
∂Y

∂pi

∣∣∣
A
+ ϵ1{

∂Y

∂pi
, X}

∣∣∣
A
+O(ϵ21) =

=
∂Y

∂pi

∣∣∣
A
+ ϵ1XH

(
∂Y

∂pi

) ∣∣∣
A
+O(ϵ21).

(2.52)

Analogamente avremo

∂Y

∂qi

∣∣∣
A1

=
∂Y

∂qi

∣∣∣
A
+ ϵ1XH

(
∂Y

∂qi

) ∣∣∣
A
+O(ϵ21). (2.53)

Mettendole insieme,

YH(A1) =

(
∂Y/∂p
−∂Y/∂q

) ∣∣∣∣∣
A1

=

(
∂Y/∂p
−∂Y/∂q

) ∣∣∣∣∣
A

+ ϵ1XH

(
∂Y/∂p
−∂Y/∂q

) ∣∣∣∣∣
A

+O(ϵ21) =

= YH(A) + ϵ1XH(YH(A)) +O(ϵ21),

(2.54)

che è la prima delle (2.51). La seconda si deriva in modo del tutto analogo. Possiamo
scrivere allora i punti finali

A2 = A+ ϵ1XH(A) + ϵ2YH(A) + ϵ1ϵ2XH(YH(A)) + ...

B2 = A+ ϵ2YH(A) + ϵ1XH(A) + ϵ2ϵ1YH(XH(A)) + ...
(2.55)

La differenza tra i punti finali dei due percorsi misura quanto le trasformazioni falliscono
nel commutare

A2 −B2 = ϵ1ϵ2(XH(YH(A))− YH(XH(A))) + ... =

= ϵ1ϵ2[XH , YH ]
∣∣∣
A
+ ...

(2.56)

Qui ci viene in aiuto la proprietà del commutatore (2.45) dimostrata in precedenza per
l’operatore di Lie, [DX , DY ] = D{Y,X} (ricordiamo che XH ≡ DX), grazie alla quale
troviamo

A2 −B2 = ϵ1ϵ2{Y,X}H(A) = ϵ1ϵ2{η, {Y,X}}
∣∣∣
A
. (2.57)

Poiché B2 differisce da A per quantità infinitesime, se sostituiamo B2 al posto di A nella
(2.57) non perdiamo precisione perché la differenza, moltiplicata per ϵ1ϵ2, è trascurabile.
Perciò A2 − B2 = ϵ1ϵ2{Y,X}H(B2). Questo risultato significa che la trasformazione che
manda B2 → A2, ossia il commutatore delle due trasformazioni, è a sua volta una tra-
sformazione canonica infinitesima, di generatrice {Y,X} e parametro uguale al prodotto
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dei parametri. Vediamo quindi che la differenza è di ordine superiore alle singole trasfor-
mazioni: le trasformazioni infinitesime commutano all’ordine lineare in ϵ1 ed ϵ2, ma non
all’ordine ϵ1ϵ2.
Un esempio fisico e geometrico di ciò è dato dalle relazioni di commutazione del momento
angolare. In meccanica, il momento angolare è il generatore delle rotazioni nello spazio
delle fasi, e le componenti cartesiane soddisfano le parentesi di Poisson {Lx, Ly} = Lz e
permutazioni cicliche. Queste a loro volta riflettono la struttura geometrica del gruppo
delle rotazioni SO(3), codificata nell’algebra di Lie dei generatori, [Jx, Jy] = Jz e sue
permutazioni cicliche. Da un punto di vista geometrico, se effettuiamo una rotazione in-
finitesima di angolo δθx attorno all’asse x, seguita da una rotazione infinitesima di angolo
δθy attorno all’asse y, e poi eseguiamo queste trasformazioni in ordine inverso, la differen-
za al secondo ordine è una rotazione attorno all’asse z, di angolo δθxδθy.
La (2.57) può essere generalizzata a funzioni di fase arbitrarie

δf = f(A2)− f(B2) = ϵ1ϵ2{f, {Y,X}}. (2.58)

2.3.2 Osservabile dipendente dal parametro della trasformazio-
ne

Se la variabile dinamica u(q, p, α) ha una dipendenza esplicita dal paramtro della tra-
sformazione continua, alle formule precedenti occorre aggiungere un contributo dovuto
alla derivata parziale ∂/∂α. Assumiamo ancora che la generatrice X(q, p, t) non dipenda
da α. Lungo le orbite generate da X sarà u(α) = u(q(α), p(α), α) e derivando questa
espressione,

du

dα
=
∑
i

(
∂u

∂qi

dqi
dα

+
∂u

∂pi

dpi
dα

)
+
∂u

∂α
=

= {u,X}+ ∂u

∂α
= DXu+

∂u

∂α
= LX,αu,

(2.59)

dove si è introdotto l’operatore LX,α ≡ DX + ∂
∂α

= { , X} + ∂
∂α
. Notiamo che, poiché X

non dipende da α, DX e ∂/∂α commutano,

DX

(
∂f

∂α

)
= {∂f

∂α
,X} =

∑
i

(
∂

∂qi

(
∂f

∂α

)
∂X

∂pi
− ∂

∂pi

(
∂f

∂α

)
∂X

∂qi

)
=

=
∂

∂α

∑
i

(
∂f

∂qi

∂X

∂pi
− ∂f

∂pi

∂X

∂qi

)
=

∂

∂α
{f,X} =

∂

∂α
DXf,

(2.60)

la quale vale per ogni argomento f(q, p, α). In altri termini, possiamo scambiare la derivata
con la parentesi: {∂f/∂α,X} = ∂/∂α{f,X}.
Assumendo di poter sviluppare u(α) in serie di potenze attorno al punto iniziale, come si
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è fatto in precedenza, calcoliamo le derivate successive.

d2u

dα2
= {du

dα
,X}+ ∂

∂α

du

dα
=

= {{u,X}+ ∂u

∂α
,X}+ ∂

∂α

(
{u,X}+ ∂

∂α

)
=

= D2
Xu+ 2DX

∂u

∂α
+
∂2u

∂α2
=

=

(
DX +

∂

∂α

)2

u = L2
X,αu,

(2.61)

dove abbiamo usato la commutatività (2.60).
Per induzione si dimostra che

dnu

dαn
=

(
DX +

∂

∂α

)n

u = Ln
X,αu. (2.62)

Pertanto, la serie di Lie è uguale formalmente all’esponenziale dell’operatore LX,α,

u(α) = u0 + αLX,αu
∣∣∣
0
+
α2

2!
L2
X,αu

∣∣∣
0
+ ...+

αn

n!
Ln
X,αu

∣∣∣
0
+ ... =

= exp(LX,α)u0 = exp (DX + ∂/∂α)u0.
(2.63)

Mostriamo di seguito alcune semplici proprietà algebriche dell’operatore LX,α.

linearità LX,α(aF + bG) = aLX,αF + bLX,αG,

difetto di antisimmetria LX,αF + LF,αX = ∂α(F +X),

commutatore [LX,α , LY,β] = [DX , DY ] +D∂αY −D∂βX =

= D{Y,X} +D∂αY −D∂βX = D{Y,X}+∂αY−∂βX ,

(2.64)

dove DX è l’operatore di Lie e ∂α ≡ ∂/∂α. Nelle (2.64) si è lasciata aperta la possibilità
che le funzioni X, Y, F,G dipendano esplicitamente dai parametri α, β. Si noti però che se
la generatrice di una trasformazione continua dipende dal parametro della trasformazione
stessa, allora l’operatore di evoluzione non è il semplice esponenziale che compare nella
(2.63), ma ha una forma differente, che sarà discussa in una sezione successiva. Se X e Y
non dipendono né da α né da β, il commutatore si riduce a

[LX,α , LY,β] = [DX , DY ] = D{Y,X}. (2.65)

Dimostrazione. La linearità segue da quella degli operatori DX e ∂α:

LX,α(aF + bG) = DX(aF + bG) + ∂α(aF + bG)

= a(DX + ∂α)F + b(DX + ∂α)G
= aLX,αF + bLX,αG,
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dove a, b possono essere qualsiasi funzioni che non dipendando da (q, p, α).
Assumendo che F (q, p, t) sia a sua volta una generatrice di trasformazione canonica di
parametro α, possiamo associarle l’operatore LF,α. Avremo allora

LX,αF = {F,X}+ ∂αF

= −{X,F} − ∂αX + ∂α(X + F )
= −LF,αX + ∂α(X + F ).

Per calcolare il commutatore, applichiamolo su un generico argomento f(q, p, α). Usiamo
l’identità di Jacobi per le parentesi di Poisson.

[LX,α, LY,β]f = LX,α({f, Y }+ ∂βf)− LY,β({f,X}+ ∂αf) =

{{f, Y }, X}+ ∂α{f, Y }+ {∂βf,X}+ ∂2αβf+

−{{f,X}, Y } − ∂β{f,X} − {∂αf, Y } − ∂2βαf =

= {f, {Y,X}}+ {f, ∂αY } − {f, ∂βX}.

(2.66)

Infine, l’ultima uguaglianza segue ricordando la linearità di DX rispetto a X, per cui
D{Y,X} +D∂αY −D∂βX = D{Y,X}+∂αY−∂βX .

2.3.3 Evoluzione temporale con hamiltoniana indipendente dal
tempo

Prendiamo come generatrice l’hamiltoniana del sistema X = H, e supponiamo che sia
indipendente dal tempo. La ICT da essa generata è l’evoluzione temporale infinitesima
dal tempo t a t+ dt. Allora la serie di Lie corrispondente fornisce l’evoluzione temporale
finita dal tempo iniziale t0 (poniamo uguale a zero) al tempo t0 + t. L’equazione del
moto per una generica variabile dinamica u(q, p) indipendente dal tempo è la (2.38),
opportunamente riscritta,

du

dt
= {u,H}. (2.67)

Ragionando come nel precedente paragrafo, esprimiamo la sua soluzione come

u(t) = u0 + t{u,H}|0 +
t2

2!
{{u,H}, H}|0 + ... =

= exp (tDH)u0,
(2.68)

dove exp (tDH) gioca il ruolo di operatore di evoluzione temporale della meccanica classica.
Se prendiamo come funzioni u le variabili canoniche,

q(t) = exp (tDH) q0 , p(t) = exp (tDH) p0, (2.69)

forniscono il moto del sistema nel tempo. L’operatore di evoluzione commuta con le
funzioni di fase,

exp (tDH)u(q0, p0) = u(q(t), p(t)) = u(exp (tDH) q0, exp (tDH) p0), (2.70)
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e l’insieme degli operatori {exp (tDH)} al variare di t forma un gruppo abeliano. Infatti,
è chiuso rispetto alla composizione,

exp (tDH) exp (sDH) = exp ((t+ s)DH) , (2.71)

dato che l’operatore DH è indipendente dal tempo perché H non dipende dal tempo
per ipotesi, e ovviamente DH commuta con se stesso. Il prodotto (2.71) è associativo
e commutativo. L’identità corrisponde a t = 0, e ciascun operatore exp (tDH) ha un
inverso, exp (−tDH).

2.3.4 Commutatore dell’evoluzione temporale

Esempio 2.1. La seguente hamiltoniana descrive una particella in una dimensione sot-
toposta ad una forza esterna F costante

H(q, p) =
p2

2m
− qF. (2.72)

Consideriamo due hamiltoniane siffatte con valori di F distinti, diciamo F1 < F2, H1(q, p) =
p2

2m
− qF1, H2(q, p) =

p2

2m
− qF2. Queste hamiltoniane non commutano,

{H1, H2} =
∂H1

∂q

∂H2

∂p
− ∂H2

∂q

∂H1

∂p
=

p

m
(F2 − F1). (2.73)

Assumiamo che al tempo t = 0 la particella sia ferma nell’origine, (q(0), p(0)) = (0, 0).
Supponiamo di far evolvere il sistema per un tempo t0 lungo il flusso generato da H1 e in
seguito per un altro tempo t0 lungo il flusso generato da H2. Ora invece, partendo sempre
dall’origine, eseguiamo le stesse operazioni in ordine opposto. Il risultato è diverso nei
due casi, ossia lo stato del sistema al tempo t = 2t0 è diverso. La (2.73) ci dice come e
quanto le evoluzioni differiscono. Ricordando che l’impulso è il generatore delle traslazioni
lungo la sua coordinata coniugata, la (2.73) significa che la differenza tra le due evoluzioni
consiste in una traslazione della posizione della particella. Applichiamo infatti la (2.57)
alle coordinate q, p, e supponendo che le trasformazioni agiscano per un tempo infinitesimo
t0 = δt,

δq = δt2{q, {H1, H2}} = δt2(F2 − F1)/m,

δp = δt2{p, {H1, H2}} = 0,
(2.74)

che mostrano come lo stato finale sia diverso, in quanto la particella si troverà in una
posizione diversa. L’impulso invece non cambia, il che è coerente con l’osservazione pre-
cedente che la differenza è una pura traslazione spaziale. Fisicamente, la particella che
è stata sottoposta per prima alla forza maggiore, ha passato più tempo con una velocità
più alta, quindi alla fine dell’intervallo di tempo 2t0 ha percorso più distanza. La (2.73)
mostra che le evoluzioni non commutano anche quando una (e una sola) delle forze sia
identicamente nulla. Anche in questo caso la particella accelerata per prima passa più
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tempo con una velocità più alta.
Quanto discusso è confermato dal calcolo esplicito delle soluzioni

prima H1, poi H2, q1(t) =
1

2
f1t

2
0 + f1t0(t− t0) +

1

2
f2(t− t0)

2,

p1(t) = f1t0 + f2(t− t0),

prima H2, poi H1, q2(t) =
1

2
f2t

2
0 + f2t0(t− t0) +

1

2
f1(t− t0)

2,

p2(t) = f2t0 + f1(t− t0),

(2.75)

dove f1 ≡ F1/m, f2 ≡ F2/m. La differenza calcolata al tempo t = 2t0 risulta

q2(2t0)− q1(2t0) = (f2 − f1)t
2
0,

p2(2t0)− p1(2t0) = 0,
(2.76)

che è la (2.74) con t0 = δt.

Nell’esempio precedente, invece di due hamiltoniane con forze esterne diverse, avrem-
mo potuto prendere un’hamiltoniana con un potenziale dipendente dal tempo, valutata
in due istanti diversi, H(t1), H(t2). In generale, H(t) non commuta con sé stessa a tempi
diversi.
Sia f(q, p, t) una arbitraria funzione di fase. Esplicitamente, l’operatore LH(t),t al tempo
t = t1 agisce su f come

LH(t1),t(f(q, p, t)) = {f(q, p, t), H(q, p, t1)}+
∂f(q, p, t)

∂t
, (2.77)

dove l’hamiltoniana H(q, p, t1) è calcolata al tempo t1 costante, e la quantità df =
LH(t1),tdt misura la variazione di f nell’evoluzione temporale nell’intorno dell’istante t1.
Passando alla composizione con un altro operatore LH(t2),t, con t2 ̸= t1, possiamo calcolare
il commutatore grazie alla formula (2.64) ricavata in precedenza,

[LH(t1),t, LH(t2),t]f = D{H(t2),H(t1)}f +D∂tH(t2)f −D∂tH(t1)f. (2.78)

Le derivate parziali ∂H(t1)/∂t = ∂H(t2)/∂t = 0 perché le hamiltoniane sono calcolate a
tempi costanti, e rimane

[LH(t1),t, LH(t2),t]f = D{H(t2),H(t1)}f = {f, {H(t2), H(t1)}}. (2.79)

La parentesi di Poisson delle hamiltoniane è in generale diversa da zero, perché t2 ̸= t1,
pertanto il commutatore non si annulla.

Esempio 2.2. L’hamiltoniana

H(q, p, t) =
p2

2m
+

1

2
mω2q2 − qF (t) (2.80)
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descrive un oscillatore armonico forzato unidimensionale, di equazione q̈ = ṗ/m = −ω2q+
F (t). Verifichiamo che la parentesi di Poisson a tempi diversi non si annulla.

∂H

∂q
= mω2q − F (t),

∂H

∂p
= p/m, (2.81)

{H(t1), H(t2)} =
∂H(t1)

∂q

∂H(t2)

∂p
− ∂H(t2)

∂q

∂H(t1)

∂p
=

=
(
mω2q − F (t1)

)
p/m−

(
mω2q − F (t2)

)
p/m = (F (t2)− F (t1))p/m.

(2.82)

Non si annulla identicamente proprio perché la forzante F (t) varia nel tempo.

2.3.5 Operatore di evoluzione con generatrice dipendente dal
tempo

Sia f(q, p, t) un osservabile e sia H(q, p, t) l’hamiltoniana, in generale dipendente dal
tempo. Il flusso di fase generato da H muove il punto di fase lungo le orbite (q(t), p(t)).
Ci interessa come varia f lungo l’orbita: f(t) = f(q(t), p(t), t). L’evoluzione temporale è
governata dall’equazione

df

dt
= {f,H}+ ∂f

∂t
= LH(t)f(t), (2.83)

dove si è introdotto l’operatore lineare

LH(t) ≡ LH,t ≡ {., H}+ ∂

∂t
. (2.84)

già affrontato in precedenza. Cerchiamo l’operatore di evoluzione associato a questa
equazione, ossia l’operatore che mappa la condizione iniziale nella soluzione al tempo t,

f(t) = U(t, t0)f(t0). (2.85)

Come abbiamo discusso, quando l’operatore LH(t) dipende dal tempo, gli operatori va-
lutati a tempi diversi non commutano. L’equazione (2.83) non ammette una semplice
soluzione esponenziale. Per poter scrivere l’operatore di evoluzione, consideriamo prima
un caso più semplice unidimensionale, sostituendo l’operatore LH(t) con una semplice
funzione numerica a(t). Questo ci aiuterà a capire le complicazioni che insorgono quando
passiamo ad operatori non commutanti.

df

dt
= a(t)f(t). (2.86)

È immediato risolverla per separazione delle variabili,

f(t) = exp

(∫ t

t0

a(t′)dt′
)
f(t0). (2.87)
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Ora vorremmo però darne una ”dimostrazione” intuitiva, che poi cercheremo di genera-
lizzare, stando attenti a modificare i passaggi che dipendono dalla commutatività.
Immaginiamo di suddividere l’intervallo di tempo [t0, t] in tanti sottointervalli [tk, tk+1] con
k = 0, 1, ..., N e con tN+1 = t. Gli intervalli siano sufficientemente piccoli da poter consi-
derare a(t) costante su ogni sottointervallo, uguale al valore nel primo estremo. In questo
modo ci riconduciamo ad una funzione a(t) costante a tratti, per la quale conosciamo la
soluzione

df

ds
= a(tk)f(s) −→ f(s) = exp(a(tk)(s− tk))f(tk), s ∈ [tk, tk+1]. (2.88)

La continuità è assicurata avendo imposto la condizione iniziale nel primo estremo degli
intervalli. Pertanto, la soluzione nel punto t potrà essere scritta come

f(t) = exp(a(tN)(t− tN))f(tN) =

= exp(a(tN)(t− tN)) exp(a(tN−1)(tN − tN−1))f(tN−1) = ...

... =
N∏
k=0

exp(a(tk)(tk+1 − tk))f(t0).

(2.89)

Poiché stiamo lavorando con esponenziali numerici, gli argomenti commutano e possiamo
impiegare la usuale proprietà dell’esponenziale, ottenendo

f(t) = exp

(
N∑
k=0

a(tk)(tk+1 − tk)

)
f(t0). (2.90)

Adesso, infittiamo la suddivisione dell’intervallo prendendo il limite N → ∞ e |tk+1−tk|→
0 mantenendo t costante. La continuità dell’esponenziale permette di portare il limite
all’interno. La sommatoria tende cos̀ı all’integrale, recuperando cos̀ı la (2.87).
Proviamo a ripetere il precedente ragionamento nel caso dell’equazione (2.83). Otteniamo
un insieme di equazioni della forma (2.88) con al posto di a(tk) l’operatore L(tk), che è un
operatore costante. Quindi possiamo ancora applicare la soluzione esponenziale (2.88).
Possiamo poi ripetere i passaggi che conducono alla analoga della (2.89),

f(t) = exp(L(tN)∆tN) exp(L(tN−1)∆tN−1) · · · exp(L(t0)∆t0)f(t0) =
=Uf(t0),

(2.91)

dove si è indicato ∆tk ≡ tk+1 − tk. A questo punto però sorge una difficoltà: gli operatori
L(tk) sono valutati a tempi diversi e quindi non commutano. Questo implica che non
possiamo usare la proprietà che avevamo con l’esponenziale numerico e passare alla (2.90).
Espandendo i singoli termini esponenziali operatoriali,

exp(L(tk)∆tk) =
∞∑
j=0

1

j!
(L(tk)∆tk)

j, (2.92)
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riscriviamo l’operatore che figura nella (2.91) come

U =
∞∑

nN=0

· · ·
∞∑

n0=0

(exp(L(tN)∆tN))
nN

nN !
· · · (exp(L(t0)∆t0))

n0

n0!
=

=
∞∑

nN=0

· · ·
∞∑

n0=0

(∆tN)
nN · · · (∆t0)n0

nN ! · · ·n0!
L(tN)

nN · · ·L(t0)n0 .

(2.93)

Mettiamo per un momento da parte U e consideriamo il seguente operatore

exp

(
N∑
k=0

L(tk)∆tk

)
=

∞∑
n=0

1

n!

(
N∑
k=0

L(tk)∆tk

)n

. (2.94)

Poiché gli operatori non commutano, nell’espandere la potenza dobbiamo conservare
l’ordine:(

N∑
k=0

L(tk)∆tk

)n

=

(
N∑

k1=0

L(tk1)∆tk1

)
· · ·

(
N∑

kn=0

L(tkn)∆tkn

)
=

=
( n∑

nN=0

· · ·
n∑

n0=0
nN+···+n0=n

)
(∆tN)

nN · · · (∆t0)n0

∑
p

p(L(tN)
nN , . . . , L(t0)

n0).

(2.95)

Sviluppando la potenza n-esima dobbiamo moltiplicare i termini L(tk)∆tk formando se-
quenze di n termini in tutti gli ordinamenti possibili. Si è indicato con p(L(tN)

nN , . . . , L(t0)
n0)

la generica permutazione di n oggetti, dei quali nN uguali ad L(tN), nN−1 uguali ad
L(tN−1), ..., n0 uguali ad L(t0) (si tenga presente che, dentro a p(), nk non sono potenze,
ma una notazione per indicare il numero di termini). La somma su p significa somma
su tutte le possibili permutazioni siffatte. La somma sugli indici n0, ..., nN è sottoposta
al vincolo n0 + · · · + nN = n, perché stiamo considerando una potenza n fissata. Fissati
gli indici n0, ..., nN , le sequenze differiscono solo per l’ordine dei termini, i quali devono
comparire in tutti gli ordini possibili. Il numero di queste sequenze è quindi(

n

nN , ..., n0

)
=

n!

nN ! · · ·n0!
, (2.96)

perché si contano le permutazioni di n oggetti (termine n! a numeratore) senza contare
quelle che scambiano termini uguali (fattoriali a denominatore). Per ogni k vanno escluse
le permutazioni che scambiano gli nk oggetti identici, quindi si divide per nk!.
Introduciamo l’operatore lineare di ordinamento temporale T che riordina i prodotti di
operatori L(tk) in ordine cronologico

Tp(L(tN)
nN , . . . , L(t0)

n0) = L(tN)
nN · · ·L(t0)n0 . (2.97)
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Impiegando questo operatore,

T
∑
p

p(L(tN)
nN , . . . , L(t0)

n0) =

(
n

nN , ..., n0

)
L(tN)

nN · · ·L(t0)n0 . (2.98)

Se applichiamo T alla (2.94),

T exp

(
N∑
k=0

L(tk)∆tk

)
=

=
∞∑
n=0

1

n!

( n∑
nN=0

· · ·
n∑

n0=0
nN+···+n0=n

)
(∆tN)

nN · · · (∆t0)n0

(
n

nN , ..., n0

)
L(tN)

nN · · ·L(t0)n0 =

=
∞∑
n=0

( n∑
nN=0

· · ·
n∑

n0=0
nN+···+n0=n

)(∆tN)
nN · · · (∆t0)n0

nN ! · · ·n0!
L(tN)

nN · · ·L(t0)n0 .

(2.99)

Infine osserviamo che sommare sugli n0, ..., nN col vincolo n0+· · ·+nN = n, e poi sommare
su tutti i valori di n da 0 a infinito, è uguale a sommare direttamente su tutti i valori
degli indici nk da 0 a infinito. Quindi riscriviamo

T exp

(
N∑
k=0

L(tk)∆tk

)
=

∞∑
nN=0

· · ·
∞∑

n0=0

(∆tN)
nN · · · (∆t0)n0

nN ! · · ·n0!
L(tN)

nN · · ·L(t0)n0 . (2.100)

e notiamo come questo sia uguale all’operatore U della (2.93),

U = T exp

(
N∑
k=0

L(tk)∆tk

)
. (2.101)

Passando al limite N → ∞ e |∆tk|→ 0 mantenendo t fissato, l’operatore U tende all’ope-
ratore di evoluzione in base alla (2.91), e l’argomento dell’esponenziale nella (2.101) tende
ad un integrale. L’operatore di evoluzione quando l’hamiltoniana dipende dal tempo sarà
quindi

U(t, t0) = T exp

(∫ t

t0

L(t′)dt′
)
. (2.102)

Ricaviamo ora un’espansione in serie dell’operatore di evoluzione. Riprendiamo l’e-
quazione (2.83) e sostituiamo f(t) = U(t, t0)f(t0),

∂U(t, t0)

∂t
f(t0) = L(t)U(t, t0)f(t0). (2.103)

Essendo l’argomento f(t0) arbitrario, otteniamo l’equazione per l’operatore di evoluzione

∂U(t, t0)

∂t
= L(t)U(t, t0). (2.104)
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che può essere riscritta in forma integrale,

U(t, t0) = I +

∫ t

t0

L(t′)U(t′, t0)dt
′, (2.105)

dove I è l’operatore identità. Questa equazione può essere integrata ricorsivamente. Se
sostituiamo nuovamente l’equazione (2.105) nel membro destro della (2.105),

U(t, t0) = I +

∫ t

t0

L(t1)

[
I +

∫ t1

t0

L(t2)U(t2, t0)dt2

]
dt1 =

= I +

∫ t

t0

L(t1)dt1 +

∫ t

t0

dt1

∫ t1

t0

dt2L(t1)L(t2)U(t2, t0).

(2.106)

Procedendo iterativamente in questo modo, scriviamo U come una serie U =
∑∞

k=0 Uk,
dove il termine k-esimo è un integrale ordinato nel tempo di ordine k in L(t). Questa
espansione prende il nome di serie di Dyson,

U(t, t0) =
∞∑
k=0

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tk−2

t0

dtk−1

∫ tk−1

t0

dtkL(t1)L(t2) · · ·L(tk−1)L(tk), (2.107)

dove abbiamo adottato la convenzione che il termine k = 0 sia l’identità.

Questa espansione è consistente con la rappresentazione esponenziale (2.102). L’azione
dell’operatore di ordinamento sulla potenza di un integrale è

T

(∫ t

t0

L(t′)dt′
)n

= T

∫
[t0,t]n

dt1dt2 · · · dtnL(t1)L(t2) · · ·L(tn) =

=

∫
[t0,t]n

dt1dt2 · · · dtnTL(t1)L(t2) · · ·L(tn) =

= n!

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−2

t0

dtn−1

∫ tn−1

t0

dtnL(t1)L(t2) · · ·L(tn−1)L(tn).

(2.108)

L’integrando TL(t1)L(t2) · · ·L(tn) è simmetrico rispetto alle permutazioni dei suoi ar-
gomenti, perché se scambiamo due tj, l’operatore T li riposiziona in ordine crescente.
Pertanto l’integrale sull’ipercubo si può ricondurre all’integrale sul simplesso t0 ≤ t1 ≤
t2 ≤ · · · ≤ tn ≤ t, che rappresenta una delle n! suddivisioni dell’ipercubo corrispondenti
ai possibili ordinamenti degli istanti tj. Data la simmetria dell’integrando, l’integrale su
ciascuna di queste regioni è uguale, perciò l’integrale sull’ipercubo è uguale a n! volte
l’integrale sul simplesso. Se dividiamo la (2.108) per n! e sommiamo per n da zero a in-
finito, recuperiamo a primo membro la forma esponenziale dell’operatore U , e ad ultimo
membro la rappresentazione come serie di Dyson.
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2.3.6 Applicazione dell’operatore tempo-ordinato

Supponiamo che l’hamiltoniana del sistema si possa scrivere come somma di una parte
indipendente dal tempo H0 e di una piccola perturbazione dipendente dal tempo W (t).
Conviene separare i due problemi, fattorizzando la parte indipendente dal tempo in mo-
do da ricondursi alla sola hamiltoniana W (t). Omettendo per semplicità il termine di
dipendenza esplicita ∂/∂t, l’operatore LH assume la forma

LH(t) = { , H0 +W (t)} = { , H0}+ { ,W (t)} = LH0 + LW (t). (2.109)

L’operatore di evoluzione associato al flusso di H0 è, come sappiamo,

U0(t, t0) = exp (LH0(t− t0)) . (2.110)

Facciamo l’ipotesi che l’operatore di evoluzione associato ad H(t) abbia la forma

U(t, t0) = U0(t, t0)Ũ(t, t0). (2.111)

Sostituendo l’ansatz nella (2.104) troviamo l’equazione che deve soddisfare Ũ ,

∂Ũ(t, t0)

∂t
= exp (−LH0(t− t0))LW (t) exp (LH0(t− t0)) Ũ(t, t0) =

=
(
U0(t, t0)

−1LW (t)U0(t, t0)
)
Ũ(t, t0) = L̃W (t)Ũ(t, t0).

(2.112)

Possiamo quindi calcolare Ũ con la serie (2.107), prendendo L(t) = L̃W (t). Una volta
ricavato Ũ , l’operatore di evoluzione complessivo si ottiene dalla (2.111). L’espansione in
serie è utile perché, quando la perturbazione W (t) è ”piccola”, l’operatore L̃W (t), essendo
proporzionale aW (t), è anch’esso ”piccolo”, e possiamo approssimare la soluzione tenendo
solo i primi termini della serie, come illustriamo nel prossimo esempio.

Esempio 2.3. Consideriamo l’hamiltoniana di un oscillatore armonico unidimensionale
con costante elastica con dipendenza sinusoidale dal tempo,

H(t) =
p2

2m
+

1

2
(k0 + ϵ sin(ωt))q2 = H0 +W (t), (2.113)

dove k0 ≡ mω2, H0 = p2/2m + k0q
2/2 è l’hamiltoniana dell’oscillatore imperturbato,

W (t) = ϵ sin(ωt)q2/2 è la perturbazione dipendente dal tempo, ed ϵ è un parametro con le
dimensioni di una costante elastica, piccolo rispetto a k0.
Mostriamo che le hamiltoniane a tempi diversi hanno parentesi di Poisson diversa da
zero,

{H(t1), H(t2)} =�����{H0, H0}+ {H0,W (t2)}+ {W (t1), H0}+((((((((({W (t1),W (t2)} =

= ϵqp(sin(ωt1)− sin(ωt2))/m.
(2.114)

Come abbiamo discusso, questo implica che l’operatore di evoluzione non è l’esponenziale
di H(t), e dobbiamo ricorrere all’operatore tempo-ordinato.
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Scegliamo il tempo iniziale t0 = 0. Conviene adottare la rappresentazione matriciale degli
operatori, che agiscono sul vettore η ≡ (q, p)T . In questa rappresentazione, l’operatore di
evoluzione relativo alla hamiltoniana imperturbata H0 è

U0(t, 0) =

(
cos(ωt) 1

mω
sin(ωt)

−mω sin(ωt) cos(ωt)

)
. (2.115)

Ricordiamo l’azione dell’operatore di Lie sul vettore η,

LW (η) = {η,W} =

(
∂W/∂p
−∂W/∂q

)
=

(
0

−∆k(t)q

)
, (2.116)

dove abbiamo posto ∆k(t) ≡ ϵ sin(ωt). Da questo deduciamo che LW (t) si rappresenta in
forma matriciale come

LW (t) =

(
0 0

−∆k(t) 0

)
. (2.117)

Calcoliamo adesso

L̃W (t) ≡ U−1
0 LW (t)U0 =

=

(
∆k(t)
mω

sin(ωt) cos(ωt) ∆k(t)
(mω)2

sin2(ωt)

−∆k(t) cos2(ωt) −∆k(t)
mω

sin(ωt) cos(ωt)

)
.

(2.118)

Come mostra questa equazione, l’operatore L̃W (t) è proporzionale ad ϵ, e se ϵ è sufficien-
temente piccolo, possiamo limitarci a tenere i primi termini della serie di Dyson,

Ũ(t, 0) = I +

∫ t

0

dt1L̃W (t1) +

∫ t

0

dt1

∫ t1

0

dt2L̃W (t1)L̃W (t2) +O(ϵ3). (2.119)

Calcoliamo il termine del primo ordine,

A(t, 0) ≡
∫ t

0

dt1L̃W (t1) ≡
(
A11 A12

A21 A22

)
, (2.120)

i cui elementi di matrice risultano

A11 =
ϵ

4mω2

(
sin(ωt)− 1

3
sin(3ωt)

)
,

A12 =
ϵ

2m2ω3

(
4

3
− 3

2
cos(ωt) +

1

6
cos(3ωt)

)
,

A21 =
ϵ

2ω

(
−2

3
+

1

2
cos(ωt) +

1

6
cos(3ωt)

)
,

A22 = −A11.

(2.121)
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Le correzioni del primo ordine da aggiungere all’operatore di evoluzione sono gli elementi
di matrice di U (1)(t) ≡ U0(t)A(t),

U
(1)
11 =

ϵ

6mω2

(
sin(2ωt)− 2 sin(ωt)

)
,

U
(1)
12 =

ϵ

6m2ω3

(
− cos(2ωt) + 4 cos(ωt)− 3

)
,

U
(1)
21 =

ϵ

3ω

(
cos(2ωt)− cos(ωt)

)
,

U
(1)
22 =

ϵ

3mω2

(
sin(2ωt)− 2 sin(ωt)

)
.

(2.122)

Passiamo ora al secondo ordine,

B(t, 0) ≡
∫ t

0

dt1

∫ t1

0

dt2L̃W (t1)L̃W (t2). (2.123)

Le correzioni sono gli elementi di matrice di U (2)(t) ≡ U0(t)B(t). Il calcolo dettagliato è
riportato in appendice. Mostriamo qui il risultato,

U
(2)
11 =

ϵ2

24m2ω4

(
4− ωt sin(ωt)− 61

12
cos(ωt) +

4

3
cos(2ωt)− 1

4
cos(3ωt)

)
,

U
(2)
12 =

ϵ2

24m3ω5

(
− 5ωt cos(ωt) +

5

12
sin(ωt) +

8

3
sin(2ωt)− 1

4
sin(3ωt)

)
,

U
(2)
21 =

ϵ2

24mω3

(
− ωt cos(ωt) +

49

12
sin(ωt)− 8

3
sin(2ωt) +

3

4
sin(3ωt)

)
,

U
(2)
22 =

ϵ2

24m2ω4

(
5ωt sin(ωt)− 55

12
cos(ωt) +

16

3
cos(2ωt)− 3

4
cos(3ωt)

)
.

(2.124)

L’operatore Ũ al secondo ordine si scrive

Ũ(t, 0) = I + A(t, 0) +B(t, 0) +O(ϵ3), (2.125)

e l’operatore di evoluzione associato all’hamiltoniana completa è

U(t, 0) = U0(t, 0)(I + A(t, 0) +B(t, 0)) +O(ϵ3) =

= U0(t, 0) + U (1)(t, 0) + U (2)(t, 0) +O(ϵ3).
(2.126)
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Pertanto, gli elementi di matrice di U sono, al secondo ordine,

U11 = cos(ωt) +
ϵ

6mω2

(
− 2 sin(ωt) + sin(2ωt)

)
+

+
ϵ2

24m2ω4

(
4− ωt sin(ωt)− 61

12
cos(ωt) +

4

3
cos(2ωt)− 1

4
cos(3ωt)

)
,

U12 =
sin(ωt)

mω
+

ϵ

6m2ω3

(
− 3 + 4 cos(ωt)− cos(2ωt)

)
+

+
ϵ2

24m3ω5

(
− 5ωt cos(ωt) +

5

12
sin(ωt) +

8

3
sin(2ωt)− 1

4
sin(3ωt)

)
,

U21 = −mω sin(ωt) +
ϵ

3ω

(
− cos(ωt) + cos(2ωt)

)
+

+
ϵ2

24mω3

(
− ωt cos(ωt) +

49

12
sin(ωt)− 8

3
sin(2ωt) +

3

4
sin(3ωt)

)
,

U22 = cos(ωt) +
ϵ

3mω2

(
− 2 sin(ωt) + sin(2ωt)

)
+

+
ϵ2

24m2ω4

(
5ωt sin(ωt)− 55

12
cos(ωt) +

16

3
cos(2ωt)− 3

4
cos(3ωt)

)
.

(2.127)

Si può verificare direttamente che ad ogni ordine di approssimazione valgono U21 =
m∂U11/∂t e U22 = m∂U12/∂t, perché continua a valere l’equazione q̇ = p/m. Il determi-
nante di U è uguale ad 1 ad ogni ordine di approssimazione, il che significa che l’evoluzione
conserva la misura nello spazio delle fasi anche ad ogni step dell’approssimazione.
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Appendice A

Calcolo dei termini del secondo
ordine nell’Esempio 2.3

Assumendo l’istante iniziale t0 = 0, il termine del secondo ordine nella serie (2.119) è

B(t, 0) ≡
∫ t

0

dt1

∫ t1

0

dt2L̃W (t1)L̃W (t2), (A.1)

Abbiamo calcolato nell’esempio l’operatore L̃W (t), che qui riportiamo

L̃W (t) ≡ U−1
0 LW (t)U0 =

=

(
∆k(t)
mω

sin(ωt) cos(ωt) ∆k(t)
(mω)2

sin2(ωt)

−∆k(t) cos2(ωt) −∆k(t)
mω

sin(ωt) cos(ωt)

)
.

(A.2)

Scriviamo gli elementi del prodotto operatoriale

L̃W (t1)L̃W (t2) ≡
(
M11 M12

M21 M22

)
. (A.3)

M11 =
∆k(t1)∆k(t2)

(mω)2
sin(ωt1) cos(ωt2) sin(ω(t2 − t1)) =

=
ϵ2

2(mω)2
sin2(ωt1) sin(2ωt2) sin(ω(t2 − t1)),

M12 =
∆k(t1)∆k(t2)

(mω)3
sin(ωt1) sin(ωt2) sin(ω(t2 − t1)) =

=
ϵ2

(mω)3
sin2(ωt1) sin

2(ωt2) sin(ω(t2 − t1)),

(A.4)
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M21 =
∆k(t1)∆k(t2)

mω
cos(ωt1) cos(ωt2) sin(ω(t1 − t2)) =

=
ϵ2

4mω
sin(2ωt1) sin(2ωt2) sin(ω(t1 − t2)),

M22 =
∆k(t1)∆k(t2)

(mω)2
sin(ωt2) cos(ωt1) sin(ω(t1 − t2)) =

=
ϵ2

2(mω)2
sin2(ωt2) sin(2ωt1) sin(ω(t1 − t2)).

(A.5)

Calcoliamo ora gli integrali. Con un cambio di variabili, prendiamo x1 = ωt1, x2 = ωt2,
e chiamiamo il secondo estremo x ≡ ωt. Conviene ricondurre i prodotti di funzioni
trigonometriche a somme per integrarli facilmente. Conviene prima ridurre il numero di
fattori del singolo prodotto usando le identità trigonometriche. Per ricondurre i prodotti a
somme possiamo applicare ripetutamente le formule di Werner o espandere in esponenziali
immaginari.

B11 =
ϵ2

2(mω)2

∫ x

0

dx1
ω

∫ x1

0

dx2
ω

sin2(x1) sin(2x2) sin(x2 − x1),

dove sin2(x1) sin(2x2) sin(x2 − x1) =
1

4

(
cos(x1 + x2)− cos(3x2 − x1)

)
+

+
1

8

(
cos(x1 + 3x2) + cos(3x1 − 3x2)− cos(x1 − x2)− cos(3x1 + x2)

)
,

B11 =
ϵ2

2(mω)2ω2

1

2

∫ x

0

dx1

(
− sin(x1) +

1

3
sin(2x1) +

1

3
sin(3x1)−

1

6
sin(4x1)

)
=

=
ϵ2

4m2ω4

(
cos(x)− 1

6
cos(2x)− 1

9
cos(3x) +

1

24
cos(4x)− 55

72

)
.

(A.6)

B12 =
ϵ2

(mω)3

∫ x

0

dx1
ω

∫ x1

0

dx2
ω

sin2(x1) sin
2(x2) sin(x2 − x1),

dove sin2(x1) sin
2(x2) sin(x2 − x1) =

3

16
sin(x2 − x1)+

− 1

8

(
sin(x2 − 3x1) + sin(3x2 − x1)

)
+

+
1

16

(
sin(x1 + 3x2)− sin(x2 + 3x1) + sin(3x2 − 3x1)

)
,

B12 =
ϵ2

6(mω)3ω2

∫ x

0

dx1

(
cos(x1) + cos(2x1)− cos(3x1) +

1

4
cos(4x1)−

5

4

)
=

=
ϵ2

6m3ω5

( 1

16
sin(4x)− 1

3
sin(3x) +

1

2
sin(2x) + sin(x)− 5

4
x
)
.

(A.7)
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B21 =
ϵ2

4mω

∫ x

0

dx1
ω

∫ x1

0

dx2
ω

sin(2x1) sin(2x2) sin(x1 − x2),

dove sin(2x1) sin(2x2) sin(x1 − x2) =
1

4

(
sin(3x1 − 3x2)+

+ sin(x2 − x1)− sin(3x1 + x2) + sin(x1 + 3x2)
)
,

B21 =
ϵ2

4mω3

1

3

∫ x

0

dx1

(1
2
cos(4x1)− cos(3x1) + cos(x1)−

1

2

)
=

=
ϵ2

12mω3

(1
8
sin(4x)− 1

3
sin(3x) + sin(x)− 1

2
x
)
.

(A.8)

B22 =
ϵ2

2(mω)2

∫ x

0

dx1
ω

∫ x1

0

dx2
ω

sin(2x1) sin
2(x2) sin(x1 − x2),

dove sin(2x1) sin
2(x2) sin(x1 − x2) =

1

4

(
cos(x1 + x2)− cos(3x1 − x2)

)
+

+
1

8

(
cos(3x1 + x2)− cos(x1 + 3x2)− cos(x1 − x2) + cos(3x1 − 3x2)

)
,

B22 =
ϵ2

2m2ω4

∫ x

0

dx1

( 1

12
sin(4x1)−

1

3
sin(3x1) +

1

2
sin(2x1)−

1

3
sin(x1)

)
=

=
ϵ2

2m2ω4

(
− 1

48
cos(4x) +

1

9
cos(3x)− 1

4
cos(2x) +

1

3
cos(x)− 25

144

)
.

(A.9)

I risultati degli integrali sono quindi

B11 =
ϵ2

24m2ω4

(
6 cos(ωt)− cos(2ωt)− 2

3
cos(3ωt) +

1

4
cos(4ωt)− 55

12

)
,

B12 =
ϵ2

24m3ω5

(1
4
sin(4ωt)− 4

3
sin(3ωt) + 2 sin(2ωt) + 4 sin(ωt)− 5ωt

)
,

B21 =
ϵ2

24mω3

(1
4
sin(4ωt)− 2

3
sin(3ωt) + 2 sin(ωt)− ωt

)
,

B22 =
ϵ2

24m2ω4

(
− 1

4
cos(4ωt) +

4

3
cos(3ωt)− 3 cos(2ωt) + 4 cos(ωt)− 25

6

)
.

(A.10)

Ricordiamo l’operatore di evoluzione dell’hamiltoniana tempo-indipendente,

U0(t, 0) =

(
cos(ωt) 1

mω
sin(ωt)

−mω sin(ωt) cos(ωt)

)
. (A.11)

56



Le correzioni del secondo ordine, U (2) ≡ U0B, sono allora

U
(2)
11 =

ϵ2

24m2ω4

(
4− ωt sin(ωt)− 61

12
cos(ωt) +

4

3
cos(2ωt)− 1

4
cos(3ωt)

)
,

U
(2)
12 =

ϵ2

24m3ω5

(
− 5ωt cos(ωt) +

5

12
sin(ωt) +

8

3
sin(2ωt)− 1

4
sin(3ωt)

)
,

U
(2)
21 =

ϵ2

24mω3

(
− ωt cos(ωt) +

49

12
sin(ωt)− 8

3
sin(2ωt) +

3

4
sin(3ωt)

)
,

U
(2)
22 =

ϵ2

24m2ω4

(
5ωt sin(ωt)− 55

12
cos(ωt) +

16

3
cos(2ωt)− 3

4
cos(3ωt)

)
.

(A.12)
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