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Chapter 1

Introduction

The ability to effectively retrieve relevant information from vast collections

of documents is a cornerstone of modern information systems. Search en-

gines, recommendation systems, and question-answering platforms all rely

on sophisticated Information Retrieval (IR) techniques to meet user needs. A

prevalent and highly effective strategy inmodern IR is themulti-stage retrieval

pipeline. This process typically begins with a fast, recall-oriented retriever

model that scans a large corpus to identify a narrowed pool of potentially rel-

evant passages. Following this initial stage, a more computationally intensive

but significantly more accurate reranker model is employed to re-evaluate

and reorder this candidate set, pushing the most relevant passages to the top.

This two-stage approach balances efficiency with precision, and the reranking

phase is critical for enhancing the quality of the final results.

The advent of large-scale, pre-trained language models has revolutionized

the field of Natural Language Processing (NLP) and, by extension, the domain

of information retrieval. Transformer-based models have demonstrated an un-

precedented ability to understand the nuances of human language, thanks to

their deep contextualized representations of text. These properties make them

exceptionally powerful tools for tasks that require a profound understanding

of semantic relevance, such as passage reranking.
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Among these models, ModernBERT represents a recent and highly opti-

mized evolution of the BERT architecture. It preserves the strengths of the

original bidirectional Transformer design while introducing significant im-

provements in efficiency, scalability, and robustness. ModernBERT operates

within the cross-encoder paradigm, where a query and a passage are processed

jointly. This joint encoding allows for deep, token-level attention to model

the intricate interactions between the query and the passage, resulting in rich

combined representations. These representations can then be mapped to a

relevance score through a learned prediction head. While classification heads

are common,ModernBERT’s flexibility allows researchers to experiment with

different output layers and loss functions to maximize performance in rerank-

ing scenarios.

Despite the progress enabled by these models, the quality and structure

of available datasets remain a critical factor for advancing research. For En-

glish, several benchmark datasets exist; however, many of them adhere to a

rigid structure. Typically, they are built with a single positive (relevant) pas-

sage and a set of one or more negative (non-relevant) passages for each query.

Although effective for evaluation, this design does not fully capture the com-

plexity of real-world search scenarios, where multiple passages may exhibit

varying degrees of relevance. Such structural limitations may bias models

toward identifying only the single best passage, rather than learning to distin-

guish nuanced levels of relevance.

To address these limitations, this thesis introduces a new English passage

reranking dataset. Unlike conventional resources, it is designed with a more

varied and realistic structure, moving beyond the “one positive, many neg-

atives” paradigm. By providing a richer spectrum of relevance annotations,

the dataset enables a more robust and comprehensive evaluation of reranking

models.

The central aim of this thesis is therefore twofold. First, we present the

creation and characteristics of this novel English passage reranking dataset.
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Second, we conduct an in-depth empirical study of ModernBERT, analyz-

ing how architectural choices and training objectives affect its performance in

reranking.



Chapter 2

The Foundations of Text Ranking

2.1 Early years

The central task of Information Retrieval (IR) is to satisfy a user’s information

need by providing relevant information. The most common formulation of

this task is ad hoc retrieval, where a system must rank a collection of texts in

response to a user’s query. The goal is notmerely to find documents containing

the query’s keywords, but to generate an ordered list where the texts at the

top are most likely to be relevant to the underlying information need. This

foundational challenge has driven decades of research, evolving from simple

keyword matching to the sophisticated, context-aware models that define the

current state-of-the-art.

The evolution of information retrieval has been shaped by a shift from

document retrieval to document ranking. Early systems of the 1950s, rooted

in Boolean logic, treated relevance as a rigid binary-documents either matched

a query or not. This “go or no-go affair” failed to account for the ambiguity

of natural language, often retrieving irrelevant results while missing relevant

ones.

A decisive turning point came with Maron and Kuhns’ [27]. They re-

framed retrieval as a probabilistic inference problem, proposing that the task

of an information retrieval system is not simply to identify matches, but to
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estimate the probability that a document Di is relevant to a user’s query con-

taining index term Ij . Drawing on Bayes’ theorem, they expressed this as:

P (Di | Ij) = P (Ij | Di) · P (Di)
P (Ij)

(2.1)

Here, P (Di | Ij) is the probability that document Di is relevant given the

occurrence of index term Ij; P (Ij | Di) represents the likelihood that a user

interested inDi would use term Ij in a query andP (Di) is the prior probability

of Di’s relevance, reflecting its general utility. The denominator P (Ij) serves

as a normalizing constant.

This probabilistic formulation introduced the concept of a relevance num-

ber, a score quantifying the likelihood of relevance, and established the prin-

ciple that documents should be ranked by degrees of probable relevance rather

than returned as an unordered set.

Building on this foundation, Salton, et al. [45] introduced the Vector Space

Model (VSM), which provided a geometric and algebraic framework for rank-

ing documents. In this model, each document Di is represented as a vector in

a high-dimensional space spanned by the vocabulary terms:

Di = (di1, di2, . . . , dit) (2.2)

where dij denotes the weight of term Tj in document Di.

Beyond the basic algebraic formulation, Salton et al. explored the geomet-

ric properties of the document space. They showed that retrieval effectiveness

is inversely related to space density: effective indexing methods tend to pro-

duce configurations where relevant documents cluster together, while irrele-

vant ones are well separated . This insight laid the groundwork for techniques

such as clustering, discrimination-based indexing, and refined termweighting.

In particular, the introduction of TF–IDF weighting was a major innovation,

as it emphasizes terms that are frequent in a given document but rare across the

corpus, thereby “spreading out” document vectors in the space and improving
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their discriminability.

Building upon the TF-IDF paradigm, a significant thread of research through-

out the 1980s and 1990s focused on optimizing term weighting strategies

within the vector space framework. These approaches remained grounded in

the principle of exact term matching, wherein a term must appear in both the

query and the document to influence the relevance score [24]. While stem-

ming and token normalization allowed for some flexibility in matching, the

fundamental constraint was that only overlapping terms contributed to docu-

ment ranking.

Formally, scoring functions based on exact term matching typically take

the form:

S(q, d) =
∑

t∈q∩d

f(t) (2.3)

where f(t) is a function of term-level statistics such as:

• Term Frequency (TF): The number of times term t appears in docu-

ment d.

• Document Frequency (DF): The number of documents in the corpus

that contain term t.

• Document Length: The total number of terms in document d.

These statistics serve as the foundation for thewidely-used TF-IDFweight-

ing scheme, where terms are given more importance if they occur frequently

in a document but are rare in the overall corpus. However, TF–IDF does not

directly model document length normalization or term saturation, leading to

further refinements in retrieval models.

One of the most successful and enduring advancements is the BM25 rank-

ing function [42], which remains a strong baseline in both academic and in-

dustrial search systems. BM25 retains the core idea of exact term matching
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but incorporates more sophisticated handling of term frequency saturation and

document length normalization.

The BM25 scoring function is defined as:

BM25(q, d) =
∑

t∈q∩d

log N − df(t) + 0.5
df(t) + 0.5

· tf(t, d) · (k1 + 1)
tf(t, d) + k1 · (1 − b + b · ld

L
)
(2.4)

where N is the total number of documents in the corpus, df(t) is the num-

ber of documents containing term t, tf(t, d) is the frequency of term t in doc-

ument d, ld is the length of document d; L is the average document length

in the collection and k1 and b are tunable hyperparameters that control term

frequency saturation and length normalization, respectively.

BM25 models two core intuitions: (1) additional occurrences of a term in

a document increase relevance, but with diminishing returns; and (2) longer

documents are more likely to contain a term by chance, so their scores should

be normalized accordingly. The first component of the summation—the in-

verse document frequency (IDF)—downweights ubiquitous terms, while the

second component scales the contribution of term frequency with respect to

document length.

Although BM25 is often viewed as a heuristic, its empirical effectiveness

has led to widespread adoption and many variants, including those imple-

mented in open-source IR libraries such as Lucene. Importantly, BM25 forms

the conceptual and empirical foundation upon which many neural and hybrid

retrieval models are evaluated today.

2.2 Learning to rank

The advent of Learning to Rank (LTR) marked a significant evolution in in-

formation retrieval, characterized by the integration of supervised machine
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learning techniques with explicitly defined ranking objectives. Unlike tra-

ditional probabilistic and vector space models, where relevance estimation

relied on fixed statistical heuristics, LTR approaches learn ranking functions

from labeled data, often in the form of queries associated with graded rele-

vance judgments. However, it is important to note that the term ’learning to

rank’ does not simply refer to any supervised learning applied to ranking. In-

stead, it defines a distinctive research period and methodology within the IR

community, particularly in the 2000s, where models were driven by sparse,

hand-crafted features and optimization of ranking-specific objectives [24].

2.2.1 RankNet

A seminal work in this lineage is RankNet [8], which introduced a pairwise

learning-to-rank paradigm based on probabilistic cost functions. RankNet

learns to predict which of two documents is more relevant to a given query by

modeling the probability of preference using a sigmoid function over a scoring

model f(·), often implemented as a feed-forward neural network.

For a given query q, let Ui and Uj denote two candidate documents (for

example, two different URLs retrieved for q). Each document Uk is repre-

sented by a feature vector xk ∈ Rn, which encodes query-document inter-

action features such as term overlap, document length. RankNet maps each

feature vector to a real-valued score through the learned function f(·), pro-

ducing si = f(xi) and sj = f(xj).

If the relevance label indicates that Ui should be ranked higher than Uj

(e.g., Ui labeled “excellent” and Uj labeled “bad”), we denote this preference

relation as Ui ≻ Uj . The model then estimates the probability of this event by

applying a sigmoid to the score difference:

Pij ≡ P (Ui > Uj) ≡ 1
1 + e−σ(si−sj)
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This probabilistic formulation allows RankNet to be trained using cross-

entropy loss between the predicted probability and the ground-truth prefer-

ence, enabling the model to learn from relative relevance judgments without

requiring absolute scores.

2.2.2 LambdaRank

RankNet established the foundation for learning-to-rank by modeling pair-

wise preferences, but it required evaluating all document pairs for each query,

which introduced computational overhead. LambdaRank [7] addresses this

limitation by avoiding the explicit definition of a cost function. Instead, it

formulates gradients directly in terms of how much a ranking metric, such as

Normalized Discounted Cumulative Gain (NDCG), would change if the posi-

tions of two documents were swapped.

NDCG is one of the most widely used metrics in information retrieval

because it emphasizes placing highly relevant documents near the top of the

ranking. For a ranked list of length k, it is defined as

DCG@k =
k∑

i=1

2reli − 1
log2(i + 1)

(2.5)

where reli denotes the graded relevance of the document at position i.

In LambdaRank, consider two documents Ui and Uj associated with the

same query. If swapping their positions leads to a change ∆NDCG, the gra-

dient contribution is defined as

λij = ∂C(si − sj)
∂si

= −σ

1 + eσ(si−sj) · |∆NDCGij| (2.6)

where si and sj are the scores assigned by the model, and σ is a scaling param-

eter. This expression ensures that the score of the more relevant document is

pushed upward, while the less relevant one is pushed downward, in proportion

to the potential improvement in NDCG.
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By replacing the explicit loss with lambda-based gradients, LambdaRank

enables direct and efficient optimization of non-differentiable ranking metrics

such as NDCG.

2.2.3 LambdaMART

While RankNet and LambdaRank were originally implemented with neural

networks, the underlying ideas are not restricted to them. In practice, tree-

based models often offer better scalability and interpretability for ranking

tasks. This leads to the exploitation of MART (Multiple Additive Regres-

sion Trees) [17], a gradient boosting framework that builds an ensemble of

decision trees in a stage-wise manner.

The central idea of gradient boosting is to construct a strong predictor by

iteratively adding weak learners, where each new tree is trained to correct

the mistakes of the ensemble so far. Instead of optimizing the original loss

function directly, MART fits each tree to the residual errors (or more precisely,

the gradients of the loss) of the current model. In this way, the model gradually

improves its predictions through successive refinements.

Formally, MART represents the final model after M boosting rounds as

an additive combination of regression trees:

FM(x) =
M∑

m=1
η fm(x), (2.7)

where each fm is a regression tree, and η is a learning rate that controls how

much each tree contributes. By repeatedly fitting new trees to capture the re-

maining errors, MART performs a form of gradient descent in function space.

This combination of trees and boosting has proven to be highly effective across

many supervised learning tasks.

Building on this, LambdaMART [6] combines the metric-aware gradient

signals of LambdaRank with the powerful boosting mechanism of MART.
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Instead of computing residuals from a differentiable loss, LambdaMART di-

rectly uses the λ-gradients from LambdaRank as the training signal. Intu-

itively, the model learns to grow trees that reduce ranking errors most harmful

to evaluation metrics such as NDCG.

For each query, the pairwise λ values are first computed as in Equation 2.6,

and then aggregated into a single gradient target λi for each document. These

aggregated signals serve as the pseudo-residuals that guide MART’s boosting

procedure. Each tree is thus trained to predict how document scores should be

adjusted to improve the target ranking metric.

In summary, LambdaMART inherits the ability of LambdaRank to align

training with evaluation metrics, while leveraging the efficiency and robust-

ness of boosted regression trees.

2.3 Deep Neural Ranking Models

The next major development in ranking research came with the application of

deep learning techniques. Unlike earlier learning-to-rank approaches, which

relied on carefully engineered features to capture query-document relation-

ships, neural ranking models typically operate directly on distributed repre-

sentations of raw text. This shift enabled models to automatically extract rel-

evance signals without the need for hand-crafted input features, a departure

that marked a clear break from the feature-based learning-to-rank era.

Broadly, early neural ranking models can be grouped into two families:

representation-based and interaction-based architectures [24]. Representation-

based models encode queries and documents independently into dense vector

embeddings, after which a similarity measure such as cosine similarity or in-

ner product is used to estimate relevance. In contrast, interaction-based mod-

els emphasize fine-grained matching by first computing pairwise token-level

interactions between the query and document, typically represented as a simi-

larity matrix. This matrix is then processed by additional neural layers to infer
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a final ranking score.

In both paradigms, deep architectures such as convolutional and recurrent

neural networks were employed to capture sequential and compositional pat-

terns in text.

Figure 2.1: Representation-based and Interaction-based architectures [24].

2.3.1 Representation-Based Models

Representation-based models approach ranking by independently encoding

queries and documents into dense vector embeddings within a shared semantic

space. Relevance is then estimated by applying a similarity function directly

to the resulting embeddings. In this setup, the interaction between query and

document is not modeled explicitly at the term level; instead, all necessary in-

formation is assumed to be captured in the learned representations themselves.

The main appeal of this paradigm is its simplicity and efficiency. Once

embeddings are computed, relevance scores can be obtained through lightweight

similarity calculations, making such models highly scalable to large document

collections. However, the independence of query and document encoding can

limit expressiveness, as fine-grained term-level interactions are not directly

captured.
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Deep Structured Semantic Model

A representative example of the representation-based paradigm is the Deep

Structured Semantic Model (DSSM) [20]. The central idea is to map both

queries and documents into a common low-dimensional semantic space, such

that their similarity can be directly measured. Relevance is then computed

using cosine similarity between the query and document embeddings in this

shared space.

Formally, both queries and documents are first represented as high-dimensional

term vectors, typically based on raw counts of words. Passing these vectors

directly to a neural network is impractical due to vocabulary size, which in

web search can reach hundreds of thousands of unique terms. To address

this, DSSM introduces a word hashing step: words are decomposed into letter

n-grams (e.g., trigrams) and represented as fixed-dimensional vectors. This

technique reduces input dimensionality while also providing robustness to rare

and out-of-vocabulary terms.

Training leverages large-scale clickthrough data, where clicked documents

are assumed to bemore relevant than unclicked ones for the same query. Given

a query q and its clicked document d+ among a set of candidates {d+, d−
1 , . . . , d−

n },

the model maximizes the conditional likelihood of d+ via a softmax over sim-

ilarity scores:

P (d+|q) = exp(γ rel(q, d+))∑
d′∈{d+,d−

1 ,...,d−
n } exp(γ rel(q, d′))

, (2.8)

where γ is a smoothing parameter and rel(q, d) is the cosine similarity be-

tween the query vector and the document vector. Through this design, DSSM

demonstrates how representation-based models can align query and document

semantics in a dense vector space, removing the dependence onmanual feature

engineering and providing scalability to large vocabularies through hashing.
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Convolutional Latent Semantic Model

While representation based approaches such as DSSM encode queries and

documents independently, they fail to capture local contextual dependencies.

To address this limitation, Convolutional Latent SemanticModels (CLSM) [49]

introduced convolutional and pooling layers to explicitly model word-level in-

teractions within a sequence.

The architecture of CLSM consists of several key components. First, each

word in a query or document is represented using letter-trigram hashing, as

in DSSM, which provides a compact and generalizable encoding of vocabu-

lary items. These hashed word vectors are then concatenated within a sliding

context window to form n-gram representations.

A convolutional layer applies shared linear transformations to these n-

gram vectors, producing local contextual feature representations. This step

ensures that semantically similar word n-grams, even if unseen during train-

ing, are mapped to nearby points in the feature space. To aggregate these lo-

cal features into a fixed-length representation, CLSM employs max pooling,

which selects the most salient activations across the sequence. The intuition is

that only a subset of word n-grams are crucial for capturing the semantics of a

query or document, and max pooling highlights these discriminative patterns.

The pooled sentence-level vector is then passed through a fully connected

layer to obtain the final latent semantic embedding. Relevance between a

query q and a document d is computed as the cosine similarity between their

semantic vectors.
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Figure 2.2: Convolutional Latent Semantic Model Architecture [49].

Dual Embedding Space Models

Another line of work explored leveraging distributional semantics for rank-

ing. A prominent example is the Dual Embedding Space Model(DESM) [30],

which builds on the Continuous Bag-of-Words (CBOW) variant of Word2Vec

[28]. Unlike the standard usage ofWord2Vec where only the input embedding

matrix is retained after training, DESM explicitly utilizes both the input (IN)

and output (OUT) embedding spaces.

The core motivation of DESM is to better capture whether a document is

about a query term, rather than merely containing it. In CBOW, the IN space

tends to encode functional similarity (words of the same type, e.g., “Harvard”

and “Yale”), while the OUT space captures topical co-occurrence (e.g., “Yale”

and “faculty”). By mapping query words into the IN space and document

words into the OUT space, DESM exploits this complementary structure to

measure topical alignment between queries and documents.
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Formally, each document D is represented by the centroid of its normal-

ized word embeddings:

D = 1
|D|

∑
dj∈D

dj

∥dj∥
, (2.9)

where dj denotes the embedding of word dj . Relevance between a query Q

and document D is then defined as the average cosine similarity between each

query word embedding and the document centroid:

DESM(Q, D) = 1
|Q|

∑
qi∈Q

q⊤
i D

∥qi∥ ∥D∥
. (2.10)

This formulation allows pre-computation of document centroids, making

the model efficient for large-scale retrieval.

2.3.2 Interaction-Based Models

In contrast to representation-based approaches, which encode queries and doc-

uments independently, interaction-basedmodels emphasize fine-grainedmatch-

ing patterns between their terms. As illustrated in Figure 2.1, these models

typically construct a similarity matrix where rows correspond to query terms

and columns to document terms. Each entry mij in this matrix encodes the

similarity between the embedding of the i-th query term and the j-th docu-

ment term.

At a high level, interaction-based architectures operate in two stages: fea-

ture extraction and relevance scoring. During feature extraction, the similarity

matrix is processed to highlight relevance signals emerging from term-level

alignments. In the relevance scoring stage, the extracted features are aggre-

gated through pooling and non-linear transformations to produce a compact

representation. This representation is then fed into a feed-forward network

to compute the final query–document relevance score. Through this two-step
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design, interaction-based models explicitly operationalize the intuition that ef-

fective ranking depends not only on overall semantic similarity but also on the

detailed structure of query–document interactions.

Deep Relevance Matching Model

Among interaction-based architectures, a well-known example is the Deep

Relevance Matching Model (DRMM) [18]. The authors argue that ad-hoc

retrieval differs fundamentally from other NLP matching tasks in three ways:

1. Exact matching signals: the presence of exact query terms in a docu-

ment remains a dominant indicator of relevance.

2. Query term importance: since queries are typically short and keyword-

based, different terms contribute unequally to relevance.

3. Diverse matching requirements: relevance may occur in specific pas-

sages of long documents, without requiring global semantic alignment.

DRMMdoes not encode queries and documents independently before com-

parison, Instead it explicitly constructs local interactions between each query

term and all document terms, represented as similarity scores. These raw in-

teractions are then aggregated into matching histograms, which capture the

distribution of similarity strengths. Neural layers operate directly on these in-

teraction features, rather than on global query/document embeddings. In this

way, DRMMmodels the query–document relationship at the token-interaction

level.

For each query term qi, the model computes cosine similarities with every

document term dj:

sim(qi, dj) = q⊤
i dj

∥qi∥ ∥dj∥
. (2.11)

This yields a set of similarity scores between qi and all document terms. Rather

than preserving term positions, DRMM discretizes these scores into a fixed

number of bins spanning [−1, 1], with exact matches (i.e., similarity = 1)
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treated as a dedicated bin. The histogram for qi is then obtained by counting

how many similarity values fall into each bin.

For example, consider the query term “virus” and document terms {virus,

infection, software, cure, data}, with corresponding cosine similarities (1.0, 0.73, 0.12, 0.55, −0.20).

Using five bins [−1, −0.5), [−0.5, 0), [0, 0.5), [0.5, 1), [1], the histogram is [0, 1, 1, 2, 1].

This fixed-length vector compactly represents the strength distribution of in-

teractions, distinguishing exact matches from weaker semantic similarities.

Each query-term histogram is fed into a feed-forward matching network,

which learns hierarchical patterns of interaction strengths and outputs a rel-

evance score z
(L)
i . To incorporate term importance, a term gating network

assigns a weight gi to each query term. The final query–document relevance

score is the weighted sum:

s(q, d) =
M∑

i=1
gi z

(L)
i . (2.12)

Figure 2.3: Deep Relevance Matching Model Architecture [18].
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MatchPyramid

Another representative interaction-based architecture is theMatchPyramidmodel [38]

which explicitly constructs a two-dimensional matching matrix that captures

all pairwise similarities between query and document terms:

Mij = wi ⊗ vj, (2.13)

where wi and vj are embeddings of the i-th query and j-th document terms,

and ⊗ denotes a similarity function such as indicator, cosine, dot product, or

Gaussian kernel. This interaction matrix can be interpreted as an “image”

whose pixels encode token-level similarity signals.

To extract higher-level interaction patterns, the similarity matrix is passed

through a series of convolutional and dynamic pooling layers. Convolutional

kernels capture local structures such as n-gram matches and proximity pat-

terns, while pooling layers reduce dimensionality and emphasize the most

salient matching signals. For ad-hoc retrieval, pooling by paragraph length

in the document was shown to be particularly effective at filtering out noisy

background terms while retaining informative signals.

The high-level feature maps are then flattened and fed into fully connected

layers to produce a final query-document matching score as shown in the fol-

lowing image.

Figure 2.4: MatchPyramid Pipeline [38].

2.3.3 Hybrid Approaches

While interaction-based and representation-based models capture different as-

pects of query–document relevance, they are not mutually exclusive. Hybrid
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models attempt to combine the strengths of both paradigms, leveraging the

fine-grained matching signals of interaction-based methods alongside the se-

mantic generalization ability of representation-based methods.

The Duet Model

The central hypothesis of the Duet model [29] is that exact term matches (lo-

cal representations) and semantic matches (distributed representations) pro-

vide complementary signals for ad-hoc retrieval. To operationalize this idea,

the Duet architecture consists of two distinct deep neural subnetworks trained

jointly:

The local component estimates relevance from patterns of exact termmatches

and their positions within the document. Each query and document term is

represented as a one-hot vector, and an interaction matrix X is constructed:

X = D⊤Q, (2.14)

where Q and D denote the one-hot matrices of query and document terms, re-

spectively. This matrix encodes exact matches between terms and preserves

positional information. Convolutional layers are then applied to capture prox-

imity and clustering effects, followed by fully connected layers producing a

local relevance score fℓ(Q, D).

The distributed component learns dense representations of text via charac-

ter n-gram encodings. Queries and documents are projected into embedding

spaces through convolution and pooling layers, resulting in continuous vector

representations that capture semantic relatedness beyond surface term overlap.

The query and document embeddings are combined via a Hadamard product,

and the resulting features are processed by fully connected layers to output a

distributed relevance score fd(Q, D).
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The final Duet score is the sum of the two subnetworks:

f(Q, D) = fℓ(Q, D) + fd(Q, D). (2.15)

Training is performed using a softmax loss over relevant and non-relevant

documents, with human-judged labels as supervision. Importantly, the two

subnetworks are optimized together, allowing them to complement one an-

other rather than compete.

The Duet model demonstrates how hybrid architectures can effectively

unify the strengths of interaction-based and representation-based approaches.

Its distributed subnetwork excels at capturing semantic similarity for frequent

queries, while its local subnetwork provides robustness on rare or tail queries

where exact term matching is crucial. By combining these complementary

capabilities, the Duet model consistently achieves strong performance across

different query types.

2.4 The advent of Transformers

The introduction of the Transformer architecture [54] marked a decisive shift

in information retrieval and text ranking. Unlike recurrent or convolutional

models, which process sequences sequentially or locally, transformers rely on

self-attention mechanisms to compute contextualized representations in paral-

lel. This design enables modeling of long-range dependencies, efficient train-

ing on large corpora, and unprecedented scalability.

The release of BERT [15] demonstrated that pretrained transformers could

be fine-tuned on downstream ranking tasks with relatively little supervised

data, yet achieve dramatic gains over prior deep neural ranking models.

The advent of transformers did not merely improve ranking accuracy: it

restructured the architecture of retrieval systems. Modern search pipelines

increasingly rely on a retriever-reranker division of labor, where transformers
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dominate the reranking stage. This transition sets the stage for the next chapter,

which examines multi-stage architectures in detail.

The next chapter will examine these multi-stage architectures in detail, be-

ginning with early cross-encoder approaches such as BERT-based rerankers,

and then tracing the evolution toward the T5 family of models (MonoT5,

DuoT5, and ListT5) that reformulated reranking as a text-to-text task. We

will then consider the more recent paradigm of using large language models

(LLMs), including GPT-style architectures, as powerful listwise rerankers. Fi-

nally, the chapter will introduce ModernBERT, which combines the efficiency

of compact architectures with the representational strength of transformers,

and which will serve as the primary reranker investigated in this thesis.



Chapter 3

Transformer Architectures for

Reranking

Building upon the foundations of classical retrieval models and the advent

of transformers discussed in the previous chapter, this section focuses on the

architectures specifically designed for passage reranking. While early ranking

approaches relied on feature engineering or shallow neural networks, transformer-

based models introduced a paradigm shift by jointly modeling queries and

candidate passages through deep contextualized representations.

In this chapter, we first examine cross-encoder architectures, where queries

and passages are concatenated and processed together, highlighting their strengths

and computational trade-offs. We then move to sequence-to-sequence frame-

works, such as the T5 family, which reformulate reranking as a text-to-text

generation task. Finally, we consider the latest developments, including large

language models (LLMs) and ModernBERT, the architecture at the core of

this thesis.

3.1 BERT-based Rerankers

Before discussing BERT as a reranker, we first provide an overview of the

model itself. BERT (BidirectionalEncoderRepresentations fromTransformers)
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was introduced by Devlin et al. [15]. BERT leverages a deep bidirectional

Transformer encoder pre-trained on large corpora using two self-supervised

tasks:

• Masked Language Modeling (MLM): predicting randomly masked

tokens given their bidirectional context.

• Next Sentence Prediction (NSP): predicting whether a sentence B fol-

lows sentence A in the corpus.

These objectives enable BERT to learn rich contextualized representations

that capture both local and long-range dependencies. The pre-trained model

can then be fine-tuned with minimal architectural changes, simply by adding a

small output layer for the target task. This paradigm shift significantly reduced

the need for heavily engineered task-specific models.

Figure 3.1: BERT input representation: token embeddings are combined with
segment and position embeddings [15]).

Figure 3.1 illustrates how BERT represents input sequences. Each token

is represented as the sum of three embeddings:

• Token embeddings: obtained from a WordPiece [58] vocabulary of

about 30,000 subword units, ensuring that rare words are decomposed

into smaller, more frequent pieces.
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• Segment embeddings: used to differentiate between sentence A and

sentenceB when the input consists of a pair (e.g., question and passage).

All tokens from sentence A share one segment embedding, and those

from sentence B share another.

• Position embeddings: encode the absolute position of each token in the

sequence, allowing the otherwise order-invariant self-attention mecha-

nism to take word order into account.

Special tokens further structure the input: [CLS] is placed at the begin-

ning of every sequence and provides a holistic representation of the input

(commonly used for classification tasks), while [SEP] marks the boundary

between sentences or the end of the sequence.

BERT was released in two main configurations: BERT-Base (12 layers,

hidden size 768, 12 attention heads, 110M parameters) and BERT-Large (24

layers, hidden size 1024, 16 heads, 340Mparameters). Pre-trained onBooksCor-

pus (800Mwords) and EnglishWikipedia (2,500Mwords), thesemodels achieved

state-of-the-art results across a wide range of NLP benchmarks with onlymod-

est task-specific fine-tuning.

A detailed survey of BERT and its many variants is given in Rogers et

al. [43]. The survey reviews over 150 studies, analyzing what linguistic and

world knowledge BERT encodes, how this information is distributed across

layers, and which probing methods can extract it. Probing studies suggest that

BERT embeddings capture syntactic trees, semantic roles, and even certain

types of factual knowledge. However, the model often relies on superficial

cues, and its success does not necessarily imply deep linguistic understand-

ing. For example, BERT has been shown to perform well on subject–verb

agreement tasks, yet it may still produce plausible outputs for sentences with

scrambled word order or semantically incoherent content.

The survey also highlights several important limitations. Although later

large language models scale to billions of parameters, BERT itself was already
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considered over-parameterized: it contains many redundant components, and

studies demonstrated that comparable performance can often be achieved af-

ter pruning attention heads, compressing layers, or distilling knowledge into

smaller models. This redundancy makes the architecture resource-intensive

to train and deploy relative to its effective capacity, motivating a wave of re-

search into compression and efficiency. Beyond size, other limitations are

methodological. Attention weights, for instance, are frequently used as an

interpretability signal, but the connection between attention patterns and lin-

guistic structure remains ambiguous, and visualizations can be misleading.

Moreover, BERT demonstrates brittleness: it can achieve high benchmark

scores yet fail under input perturbations such as shuffled word order, adversar-

ial triggers, or logically inconsistent sentences. Finally, while BERT encodes

a surprising amount of syntactic, semantic, and factual knowledge, it struggles

with multi-step reasoning, robust handling of negation, and generalization be-

yond surface patterns.

3.1.1 BERT as a Passage Reranker

While BERT was originally introduced as a general-purpose language under-

standing model, its effectiveness as a reranker in information retrieval tasks

was quickly established. Nogueira and Cho [32] were the first to demonstrate

that a fine-tuned BERTmodel could substantially improve passage re-ranking

performance on large-scale benchmarks. In their setup, the query was pro-

vided as sentence A and the candidate passage as sentence B. The [CLS]

embedding was then used as input to a classification layer, yielding the prob-

ability that the passage is relevant to the query. Despite its simplicity, this

approach surpassed previous state-of-the-art neural ranking methods by large

margins, establishing BERT as a strong baseline for retrieval research.

A key reason the [CLS] token works in this setup is that, through BERT’s

self-attention mechanism, it learns to aggregate information from all tokens in
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the input sequence, both from the query and the passage. During fine-tuning,

supervision from relevance judgments pushes the [CLS] representation to en-

code features predictive of query–document matching. Intuitively, the [CLS]

token acts as a compressed interaction space: when strong semantic or lex-

ical alignments exist between query and passage tokens, these signals prop-

agate into [CLS], allowing a shallow classification head to map this vector

to a scalar relevance score. In this way, the [CLS] token serves as a global

summary of query–passage interactions that can be directly transformed into

ranking scores.

MonoBERT-DuoBERT

Building upon this work, Nogueira et al. [35] proposed amulti-stage document

ranking architecture that integrates BERT at different levels of the pipeline.

Their framework introduced two key variants: monoBERT, which applies

BERT in a pointwise manner to score individual query–document pairs, and

duoBERT, which adopts a pairwise classification strategy by jointly model-

ing two candidate passages with respect to the same query. By combining

these models in a cascaded ranking pipeline, the system achieves both high

effectiveness and controllable latency.

Figure 3.2 illustrates this multi-stage ranking architecture. An initial can-

didate set is retrieved using BM25 (H0), after which monoBERT (H1) scores

each candidate independently. The top-k candidates are then passed to duoBERT

(H2), which refines the ranking by explicitly modeling pairwise preferences

between documents. This integration of BERT into classical retrieval pipelines

marked a turning point, showing that pretrained language models can be suc-

cessfully adapted to large-scale ranking tasks with significant gains in retrieval

quality.

A crucial aspect of this design is the way queries and candidate passages

are encoded as BERT inputs. In monoBERT, the query q is placed in segment

A and the passage di in segment B, with the total length truncated so that the
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Figure 3.2: Multi-stage ranking with BM25, monoBERT, and duoBERT [35].

concatenated sequence (including special tokens) does not exceed 512 tokens.

Typically, queries are capped at 64 tokens, while the remaining budget is allo-

cated to the passage. The [CLS] token at the beginning serves as a summary

representation and is fed into a classification layer to predict the probability

of relevance. In duoBERT, the input is extended to three segments: the query

as sentence A, candidate di as sentence B, and candidate dj as sentence C.

To fit within the same 512-token limit, the query is truncated to 62 tokens,

and each candidate passage to 223 tokens. This careful segmentation ensures

that BERT jointly models the interactions between queries and documents, or

between document pairs, while respecting its architectural constraints.

Although BERT-based rerankers provide large gains in retrieval effective-

ness, their computational cost is prohibitive if applied directly to an entire cor-

pus. Each query–document interaction requires a full forward pass through a

large transformer model, which becomes infeasible when millions of candi-

date documents are considered. For this reason, an initial stage based on a

lightweight and efficient retrieval method, such as BM25, remains indispens-

able. BM25 serves as a high-recall filter that quickly selects a manageable

set of candidates (e.g., the top 1000 documents) from the corpus. Subsequent

neural rerankers can then be applied only to this reduced candidate set, balanc-

ing efficiency with effectiveness. In this way, the classical inverted-index re-

trieval stage and modern transformer-based rerankers complement each other:
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BM25 ensures scalability, while BERT provides semantic precision in the fi-

nal ranking.

3.1.2 Limitations of BERT for Long Passages

A notable limitation of monoBERT is that it does not offer an obvious solu-

tion to the input length restrictions of BERT. Nogueira and Cho [32] did not

face this issue in their early experiments, since the benchmark collections they

examined consisted primarily of short passages that easily fit within BERT’s

maximum sequence length of 512 tokens. However, in realistic ad hoc re-

trieval scenarios such as ranking news articles, reports, or web pages docu-

ments are often substantially longer. In such cases, truncation is unavoidable

and directly affects effectiveness.

This constraint arises from two intertwined factors:

1. Architectural and Pretraining Constraints. BERT was pretrained

with maximum sequences of 512 tokens, meaning that positional em-

beddings for indices beyond this length were never learned. Since po-

sition embeddings are the only source of linear order information in the

model, inputs exceeding this limit lose structural cues.

2. Computational Complexity. Self-attention in BERT scales quadrati-

cally in both time and memory with respect to sequence length, making

naïve extensions to longer inputs computationally prohibitive

While these limitations appear fundamental, research has demonstrated

that BERT can still be applied effectively to longer inputs through segmenta-

tion and aggregation strategies. Instead of discarding overflow tokens, pas-

sages can be divided into smaller spans (e.g., sentences or sliding windows)

that are each paired with the query and processed independently.

One line of work proposes aggregating sentence-level evidence. Akkaly-

oncu Yilmaz et al. [2] showed that applying BERT at the sentence level and
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then combining the top-scoring sentences yields strong retrieval effectiveness.

This approach is motivated by the observation that even in long passages, rel-

evance is often concentrated in a small portion of text; identifying and lever-

aging these “best” sentences provides a practical workaround to the length

barrier.

Another strategy is to apply BERT to fixed-width passage segments and

then aggregate their scores. Dai and Callan [13] explored three simple yet

effective aggregation methods:

• FirstP: using the score of the first segment,

• MaxP: using the score of the most relevant segment,

• SumP: summing the scores of all segments.

Among these, MaxP often performs best, reflecting the intuition that a single

highly relevant span can dominate the overall relevance judgment of a passage.

Together, these approaches show that even though monoBERT is naturally

constrained to short inputs, segmentation combined with evidence aggrega-

tion allows BERT-based rerankers to handle longer passages effectively. This

not only preserves semantic precision but also opens the door to more robust

reranking in realistic retrieval scenarios where passages often exceed the 512-

token window.

PARADE: Passage Representation Aggregation for Document Reranking

Building on these ideas, Li et al. [23] proposed PARADE (PassageRepresentation

Aggregation for Document REranking), which moves beyond score aggrega-

tion by combining representations of query–passage pairs. Each passage is

paired with the query and encoded by BERT, producing a [CLS] embedding.

PARADE then applies aggregation mechanisms such as pooling, attention,

CNNs, or transformers to integrate these embeddings into a holistic represen-

tation before predicting relevance. This enables the model to capture not only
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the strongest local relevance signals but also their distribution and dependen-

cies across multiple spans.

Figure 3.3: Comparison between score aggregation and PARADE’s represen-
tation aggregation [23]

.

Although PARADE was originally proposed for document reranking, its

central idea is equally relevant for long passage reranking: by aggregating

multiple truncated segments at the representation level, it preserves more con-

textual information than simple truncation or max-score strategies. PARADE

thus illustrates how segmentation and aggregation can evolve from simple

heuristics to end-to-end trainable architectures that overcome BERT’s context

window limitations.

3.2 T5 and Text-to-Text Reranking

3.2.1 Introduction to T5

The Text-to-Text Transfer Transformer (T5) [39] was proposed as a unified

framework for transfer learning in NLP. Unlike previous approaches that de-

signed models and objectives around specific tasks, T5 casts every problem

into a text-to-text format. This means that both the input and output are se-

quences of text: machine translation is framed as generating text in the target

language given text in the source language, classification is framed as gener-

ating a class label and ranking can be cast as generating an ordering of candi-

dates. This unifying principle allows the same architecture, loss function, and

training pipeline to be applied across a wide variety of tasks.
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T5 is built on the Transformer encoder–decoder architecture, in contrast to

BERT, which is encoder-only. The encoder processes the input text, while the

decoder autoregressively generates the output text, conditioned on both the

encoder’s representation and its own previously generated tokens. This archi-

tectural choice makes T5 naturally suitable for both understanding-oriented

tasks (e.g., classification, ranking) and generation-oriented tasks (e.g., sum-

marization, translation).

Whereas BERT is pretrained with a masked language modeling (MLM)

objective, T5 uses a span corruption or denoising objective. Random spans

of text in the input are replaced with sentinel tokens, and the model is trained

to reconstruct the missing spans in order, generating them as output. This

approach generalizes MLM while leveraging the encoder–decoder setup, en-

couraging the model to handle both missing-word prediction and free-form

text generation.

The differences between T5 and BERT can be summarized as follows:

• Architecture: BERT is encoder-only, while T5 uses an encoder–decoder

structure.

• Objective: BERT is pretrained with MLM, while T5 uses span corrup-

tion, a denoising objective that better aligns with generative tasks.

• Task Formulation: BERT typically requires task-specific output layers

(e.g., classification heads), whereas T5 unifies all tasks into a text-to-

text format, avoiding architecture modifications.

• Generative Capabilities: BERT is primarily designed for representa-

tion learning and classification, while T5 naturally supports both dis-

criminative and generative tasks.

This unification and flexibilitymake T5 particularly attractive for informa-

tion retrieval research, where reranking can be cast as a sequence-to-sequence
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task (e.g., generating labels, scores, or rankings). Building on this founda-

tion, recent work has introduced retrieval-specific T5 variants which adapt

the model to ranking scenarios more directly.

Nogueira et al. [33]were the first to adapt a pretrained sequence-to-sequence

model, specifically T5, to the document reranking task. Their formulation dif-

fers from the classification-based approach commonly used with encoder-only

models like BERT, which typically predict relevance by applying a classifica-

tion head to the [CLS] representation. Instead, the T5 reranker casts ranking

as a generation task.

In this setup, the query q and candidate document d are concatenated into

an input sequence of the form:

Query: q Document: d Relevant:

The model is fine-tuned to generate either the token true or false, rep-

resenting whether the document is relevant to the query. At inference time,

the logits associated with these two tokens are normalized with a softmax, and

the probability of the token true is used as the relevance score. Documents

are then reranked according to these scores.

Finally, they conducted probing experiments by varying the target words

(e.g., replacing “true/false” with unrelated or semantically inconsistent pairs).

Results showed that the choice of target words significantly affected effective-

ness, indicating that the model relies on latent semantic and linguistic knowl-

edge learned during pretraining to map queries and documents to relevance

judgments.

Thisworkmarks the first demonstration that pretrained sequence-to-sequence

models can serve as effective and data-efficient rerankers, motivating the de-

velopment of subsequent retrieval-specific T5 variants.
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3.2.2 Advances in T5-based Reranking

Building on the initial monoT5 formulation [33], subsequent work has ex-

plored more direct and effective ways to adapt T5 for ranking. Two of the

most notable developments are RankT5 and ListT5, which extend the T5

framework to better align with learning-to-rank objectives and listwise infer-

ence.

RankT5

The monoT5 model demonstrates that reranking can be formulated as a text

generation task, where the model is trained to produce “true” or “false” to-

kens given a query-document pair. While effective, this formulation has two

limitations: it reduces ranking to binary classification, and it does not directly

optimize for ranking metrics that depend on the relative ordering of multiple

documents.

To address these issues, Zhuang et al. [61] introduced RankT5, which

adapts T5 to natively support ranking by predicting real-valued scores instead

of tokens. RankT5 introduces two main variants (Figure 3.4):

• Encoder-Decoder RankT5: the standard T5 architecture is preserved,

and the decoder outputs a reserved special token whose unnormalized

logit is taken as the relevance score. This leverages the generative de-

coder but bypasses the need to interpret discrete tokens like “true/false”.

• Encoder-Only RankT5: the T5 encoder is paired with a pooling layer

followed by a dense layer to directly predict a scalar score. This variant

discards the decoder entirely, making inference faster and closer in style

to BERT rerankers.

A central contribution of RankT5 is its effort to align training objectives

with evaluation metrics. While monoT5 is trained as a binary classifier, re-

trieval effectiveness is typically measured with ranking metrics such as MRR
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Figure 3.4: Comparison between monoT5 [33] and RankT5 [61].

and NDCG, which are sensitive to the relative order of documents. To bet-

ter capture this distinction, RankT5 explores three classes of training losses:

pointwise, pairwise, and listwise. Pointwise cross-entropy treats each query–

document pair independently and thus fails to optimize for relative order. Pair-

wise logistic loss improves alignment by encouraging relevant documents to

be ranked higher than non-relevant ones, but it still neglects global list struc-

ture. In contrast, listwise objectives such as ListMLE and softmax cross-

entropy directlymodel permutations of candidate documents, providing a closer

match to ranking metrics like NDCG. Empirical results confirm that listwise

RankT5 consistently outperforms pointwise and pairwise variants.

The encoder-only variant of RankT5 offered a compelling trade-off be-

tween effectiveness and efficiency, reducing inference cost while preserving

competitive accuracy.

ListT5

Although RankT5 aligns training objectives with ranking metrics, it remains

a pointwise approach at inference: documents are scored independently and

later sorted. Yoon et al. [60] pushed this idea further by introducing ListT5,

which performs listwise reranking by considering multiple candidate passages

jointly.
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As shown in Figure 3.5, each candidate passage is concatenated with the

query and a unique index, and then encoded independently by the T5 encoder.

The decoder then autoregressively generates a permutation of passage indices,

which directly corresponds to a ranking of candidates.

This formulation has several advantages:

• It allows the model to directly output an ordering, eliminating the need

for separate score sorting.

• It captures dependencies between passages during inference, enabling

the model to reason jointly about relative relevance.

A challenge in listwise inference is computational scalability: naïve ap-

proaches can require quadratic O(n2) comparisons across documents. To

overcome this, ListT5 employs an m-ary tournament sort algorithm with out-

put caching, reducing inference to O(n+k log n) complexity. This makes the

model practical even when reranking hundreds of candidates.

Figure 3.5: Illustration of ListT5 [60].

In summary, RankT5 and ListT5 represent complementary advances in
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adapting T5 to reranking. RankT5 improves alignment between training ob-

jectives and ranking metrics, while ListT5 reformulates inference to output

rankings directly. Together, they highlight the growing role of encoder–decoder

architectures in state-of-the-art information retrieval.

3.3 Beyond BERT and T5: LLMs for Zero-Shot

Reranking

The rapid progress of large languagemodels (LLMs) such asGPT-4 has opened

a new frontier in reranking research. Unlike earlier models such as BERT and

T5, which typically rely on supervised fine-tuning with large amounts of la-

beled relevance data, LLMs bring a different advantage: strong zero-shot rea-

soning capabilities developed through large-scale pretraining and instruction

tuning. This makes them especially appealing in scenarios where task-specific

training data is scarce or entirely absent.

As a result, recent work has begun to explore how prompting strategies

and structural adaptations can transform general-purpose LLMs into effective

rerankers. Rather than requiring additional training, these approaches aim to

exploit the models’ existing reasoning abilities to directly order candidate doc-

uments by relevance.

RankGPT

One of the first systematic attempts to adapt LLMs for reranking is RankGPT,

introduced by Sun et al. [51]. Their work investigates whether models such

as ChatGPT and GPT-4 [36] can be instructed to perform ranking tasks effec-

tively.

The LLM is prompted to output a complete permutation of the candidate

set in descending order of relevance. This setup encourages the model to

jointly reason over multiple candidates when determining their order.



3.3 Beyond BERT and T5: LLMs for Zero-Shot Reranking 38

To deal with the input length constraints of GPT-4, the authors employ

a sliding window strategy: candidate passages are divided into overlapping

groups, rankedwithin eachwindow, and thenmerged into a final ordering. Ex-

periments across standard benchmarks—including TRECDL [12],BEIR [52],

and Mr.TyDi [44] show that GPT-4, when used in this way, consistently out-

performs strong supervised baselines.

To further test generalization, Sun et al. introduced NovelEval, a small

evaluation set collected after the release of GPT-4 to ensure that the model

had not seen the relevant information during training. Even on this challeng-

ing test, GPT-4 achieved state of the art performance, suggesting that it can

effectively rerank unfamiliar content in a zero-shot setting.

Finally, recognizing the computational expense of deploying GPT-4 in

large-scale search systems, the authors explored permutation distillation. Here,

the rankings generated by GPT-4 are used as supervision to train smaller stu-

dentmodels (such as cross-encoders or compact GPT like architectures). These

distilled models inherit much of GPT-4’s performance while being far more

efficient to deploy.

Taken together, the RankGPT results suggest that modern LLMs not only

rival but often surpass specialized supervised rerankers in zero-shot condi-

tions. Moreover, the use of distillation highlights a practical path toward

deployment, where powerful but expensive LLMs can serve as teachers for

lightweight and cost-effective retrieval models.

TourRank: Tournament-Inspired Zero-Shot Reranking

While RankGPT demonstrates that LLMs can serve as powerful zero-shot

rerankers, it also highlights several practical challenges. Among these are the

limited input length of current models, their sensitivity to the order in which

candidates are presented, and the high computational cost of listwise or pair-

wise prompting. Addressing these issues requires more structured prompting

strategies that can scale more effectively.
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To this end, Chen et al. [10] introduced TourRank, a framework that reimag-

ines reranking as a tournament. Inspired by sports competitions such as the

FIFAWorld Cup, TourRank avoids asking the LLM to order a large candidate

set all at once. Instead, documents are grouped into small “matches,” with the

LLM selecting the most relevant candidates to advance through successive

rounds.

This tournament-style design offers several advantages:

• Scalability: By restricting comparisons to small groups, TourRank nat-

urally sidesteps the input length constraints of LLMs, while also allow-

ing parallel processing across matches.

• Robustness: Multiple independent tournaments are run, and their re-

sults are aggregated using a points based ensemble, reducing the impact

of input ordering and model stochasticity.

• Efficiency: Compared with pairwise prompting (which scales quadrat-

ically) or listwise prompting (which requires long contexts), TourRank

achieves a favorable balance between effectiveness and computational

cost.

By reframing reranking as a structured tournament, TourRank turns the

constraints of LLMs into design opportunities. It demonstrates that careful

prompting strategies can bring both effectiveness and efficiency, making LLM

based reranking more practical for real world retrieval systems.

DynRank: Dynamic Prompting with Question Classification

A complementary direction to listwise and tournament-style approaches is

taken by Abdallah et al. [1], who introduced DynRank. Instead of applying a

fixed prompt across all queries, as in RankGPT, DynRank adapts the instruc-

tion dynamically based on fine-grained question classification. In this way,

the prompting strategy becomes sensitive to the specific intent of the query.
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Formally, each candidate passage zi is evaluated by estimating how likely

the LLM can regenerate the original question q under a dynamic prompt p.

The relevance score is given by:

si = 1
|q|

|q|∑
t=1

log P (qt | q<t, zi, p; Θ),

where |q| is the number of tokens in the question, qt is the t-th token, q<t

denotes all preceding tokens, zi is the candidate passage, p is the dynamic

prompt, and Θ are the parameters of the pre-trained language model. Candi-

date passages are then reranked in descending order of si.

This formulation makes the reranking process more query aware, since

the evaluation criterion adapts to the type of question. For instance, queries

classified as HUM:individual emphasize biographical cues, while NUM:date

queries highlight temporal information. By coupling classification with dy-

namic prompting, DynRank addresses a different limitation than TourRank:

rather than restructuring how candidates are compared, it adapts how themodel

is instructed. This improves flexibility and generalization in zero-shot rerank-

ing.

3.4 ModernBERT for Reranking

Encoder-only Transformers have remained the workhorses of retrieval and

classification since BERT, offering lower latency and simpler deployment

than decoder style LLMs. Yet, despite numerous variants, much of the ecosys-

tem still inherits core constraints from the original 2018 design: short effective

context windows, absolute positional encodings, GeLU activations, and train-

ing/inference inefficiencies that becomemore pronounced at scale. These lim-

itations motivate a more thorough modernization of the encoder architecture

culminating in ModernBERT.

Over the years, successive BERT style models tackled isolated pain points
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without fully revising the backbone. RoBERTa [26] emphasized stronger pre-

training; ALBERT [22] reduced parameters via sharing and factorized em-

beddings; DistilBERT [46] compressed models through distillation; ELEC-

TRA [11] improved sample efficiency with replaced token detection. Other

lines pushed longer inputs or better representations—Longformer [5] with

sparse attention for extended contexts, and DeBERTa [19] with disentangled

attention and relative positions.

Despite these advances, most variants retained architectural choices that

now look dated: absolute position embeddings that do not scale gracefully

to long sequences; post norm layouts and activation choices that limit train-

ing stability and expressivity; attention patterns that do not exploit hardware

friendly kernels; and depth/width allocations not tuned for modern accelera-

tors. As a result, context length, throughput, and cost have remained bottle-

necks for high throughput reranking. ModernBERT addresses these issues as

a cohesive, hardware-aware upgrade rather than a single point fix.

Architectural Upgrades

ModernBERT [57] revisits BERT’s blueprint end to end, adopting contempo-

rary design patterns and kernels that matter in practice:

• Bias removal. Bias terms are removed from linear layers and Layer-

Norms (except in the decoder head), reallocating capacity to more im-

pactful components and simplifying kernels.

• Rotary positions. Rotary positional embeddings (RoPE) [50] replace

learned absolute position embeddings by rotating query/key vectors in

each attention head by a position dependent phase. This yields smoother

length generalization than absolute embeddings, straightforward exten-

sion to long contexts and compatibility with fused attention kernels

(e.g., FlashAttention).
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• Pre-normalization. Themodel switches to pre-normTransformer blocks

for stability. An additional LayerNorm is applied after embeddings, and

a redundant early attention LayerNorm is removed to streamline com-

putation.

• Structured attention. Attention alternates between local sliding win-

dows (e.g., 128 tokens) and periodic global layers (e.g., every third

block), preserving accuracy while reducing quadratic overhead.

• FlashAttention integration. Local layers use FlashAttention-2 [14],

while global layers adopt FlashAttention-3 [48], improving memory ef-

ficiency and kernel throughput on modern GPUs.

Together, these choices modernize the encoder stack, yielding a model

that is both more scalable (longer contexts, better kernels) and more trainable

(stable norms, stronger activations), without abandoning the simplicity and

deployment advantages of encoder-only inference.

Pretraining and Efficiency

ModernBERT’s gains also come from a training recipe tuned for utilization,

stability, and long-context capacity:

• Data mixture. Broad pretraining over web, code, and scientific text

with a modernized BPE tokenizer, deduplication and filtering improve

coverage without overfitting to frequent sources.

• Objective & signal density. Masked language modeling with a higher

masking rate (e.g. ∼30%) and dynamic masking increases per token

learning signal at large batch sizes.

• Token packing. Pack multiple short sequences into each Lmax window

(bin-packing) and mask cross-sequence attention, converting padding
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into useful tokens. UtilizationU = Tnonpad
B·Lmax

rises from≪ 1 to≈ 1 on het-

erogeneous corpora. Correctness follows from per-token attn_mask, a

loss mask that ignores padding/sentinels, and per-segment MLM cor-

ruption.

• Long-context adaptation. RoPE scaling with continued training ex-

tends context from 1,024 to up to 8,192 tokens, preserving short-context

quality while enabling cross-document reasoning.

ModernBERT reframes the BERT style encoder for today’s hardware and

reranking workloads: rotary positions and structured attention unlock longer

contexts, pre-norm and bias removal stabilize and streamline training, FlashAt-

tention kernels and token packing drive near full utilization and continued

training with RoPE scaling preserves quality while extending reach. In ag-

gregate, these changes translate into higher throughput at lower latency for

reranking, with the capacity to incorporate multi passage evidence.



Chapter 4

Dataset Creation and Analysis

A key contribution of this thesis is the construction of a new English passage

reranking dataset specifically designed to overcome the limitations of exist-

ing benchmark collections. As discussed in Chapter 1, most publicly available

datasets for reranking adhere to a rigid one positive, many negatives format,

in which each query is associated with a single relevant passage and a set

of explicitly non relevant distractors. While such datasets are effective for

evaluation, they do not accurately reflect real world retrieval scenarios, where

multiple passages may express different degrees of relevance to the same in-

formation need.

The goal of the dataset introduced in this work is therefore twofold:

1. To provide a more realistic supervision signal, capturing not only binary

relevance but also graded semantic relatedness between passages.

2. To expose reranking models to richer intra query variability, encourag-

ing them to reason beyond exact answer spans and instead learn contex-

tual preference ordering among partially relevant candidates.

This chapter presents the dataset construction pipeline in detail. We be-

gin by describing the source corpora and query selection strategy, followed

by the methodology used to retrieve candidate passages. We then outline the

annotation procedure employed to assign relevance labels, highlighting cases
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where multiple passages are considered partially or complementary relevant.

Finally, we provide statistics on the resulting dataset, including query distri-

bution, passage lengths and relevance label frequencies.

4.1 Overview of the Pipeline

The construction of the dataset follows a multi-stage pipeline designed to sim-

ulate realistic retrieval conditionswhile enabling fine-grained relevance super-

vision. The process begins with the selection of target Wikipedia pages, cho-

sen from question-answering benchmarks such as SQuAD and Google QA.

Each selected page is segmented into coherent passages, which serve as the

initial pool of candidate documents.

To generate diverse information needs, synthetic queries are produced us-

ing a large language model for a subset of passages. In order to avoid overly

narrow supervision restricted to a single source page, the candidate corpus is

expanded by incorporating relatedWikipedia pages obtained through category

links, disambiguation pages, and internal references.

For each query, a retrieval step is performed to obtain the top-N most

relevant passages from the expanded candidate set. These passages are then

jointly evaluated by a language model, which assigns relevance labels that

capture different degrees of semantic alignment with the query.

The following sections provide a detailed description of each stage of this

pipeline.

4.2 Data Sources, Expansion, and Passage Em-

bedding

As outlined in the pipeline overview, the first phase of dataset construction

involves creating a large and diverse pool of candidate passages. This section

details the three core steps of this process: selecting an initial set of articles



4.2 Data Sources, Expansion, and Passage Embedding 46

from established benchmarks, expanding this collection to include topically

related content, and embedding the resulting passages to enable efficient se-

mantic retrieval.

4.2.1 Initial Article Selection

The construction process begins by extractingWikipedia article titles from two

widely used question answering benchmarks: SQuAD [40] andGoogleNQ [21].

These sources were selected for three main reasons. First, both datasets con-

tain naturally phrased questions written by human annotators, ensuring that the

underlying information needs are fluent and diverse. Second, each question is

explicitly linked to its originating Wikipedia page, providing a stable contex-

tual anchor. Third, the two datasets exhibit complementary content character-

istics: while SQuAD mainly draws from expository articles, Google NQ in-

cludes longer and structurally varied pages. Combining both yields a broader

and more heterogeneous set of initial pages.

While these benchmarks provide a valuable starting point, directly reusing

their original passages proved infeasible due to the evolving nature ofWikipedia.

Inmany cases, the content associatedwith a question had been restructured, re-

located, or removed. To ensure consistency, we retain only the page titles from

the benchmarks and re-download all pages in their most recent form. This

forward-compatible strategy guarantees that supervision remains grounded in

a temporally consistent snapshot of Wikipedia.

4.2.2 Corpus Expansion for Hard Negative Mining

After selecting the initial set of Wikipedia pages, each source article is ex-

panded into a broader local corpus by following interlinking relations that cap-

ture semantic neighborhood structures. This expansion serves two main pur-

poses: (i) to replicate the natural network of related content within Wikipedia,
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and (ii) to enable the retrieval of challenging distractor passages that are top-

ically close yet ultimately non-relevant. For each initial page, we follow

three categories of links—internal hyperlinks, category and disambiguation

links, and “See also” references. To maintain topical breadth without uncon-

trolled expansion, we cap each neighborhood to 20 disambiguation pages, 30

category-linked pages, and 40 internal links.

This approach encourages the inclusion of hard negatives—passages that

are semantically close to the query but not fully relevant. Such negatives pro-

vide stronger supervision for reranker training by forcingmodels to make fine-

grained relevance distinctions [59]. Our construction intentionally favors set-

tings where multiple partially relevant candidates coexist, aligning with the

dataset’s primary goal.

4.2.3 Content Parsing and Segmentation

Each selected article and its expanded set of linked pages are downloaded and

parsed. Boilerplate elements such as navigation menus, citation markers, and

template artifacts are removed to obtain clean text. The resulting content is

then segmented into overlapping passages of approximately 100 tokens using

a sliding-window strategy. Metadata including section titles, source URLs,

and outgoing links are retained for downstream provenance tracking. In total,

2,175 Wikipedia pages were processed, forming the base candidate pool for

subsequent retrieval and reranking.

4.2.4 Passage Embedding for Retrieval

To enable semantic retrieval, each passage chunk is embedded into a dense

vector representation. While traditional sparse approaches like BM25 rely on

lexical overlap, dense embeddings from transformer-based encoders capture

paraphrasing and implicit semantic relations. We evaluated a set of represen-

tative embedding models covering diverse architectures and objectives:
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• E5 (e5-small) [56]: an instruction-tuned encoder optimized for retrieval

tasks using contrastive learningwith explicit role prefixes (e.g., query:,

passage:).

• MPNet (multi-qa-mpnet-base-dot-v1) [41]: a cross-encoder distilled

into a dual-encoder form, commonly used for question-answer retrieval.

• Sentence-T5 (sentence-t5-base) [31]: a sequence-to-sequence model

repurposed for embedding via decoder pooling.

• MiniLM (all-MiniLM-L6-v2) [47]: a compact transformermodel suited

for resource-constrained retrieval.

• BGE-M3 (BAAI/bge-m3) [9]: a multilingual model supporting dense,

sparse, and multi-vector retrieval.

• BM25 [53]: a lexical baseline included for comparison.

For evaluation, a validation set of 100 Wikipedia pages was created. For

each question sampled fromSQuADorGoogleNQ, the taskwas to retrieve the

passage containing the correct answer from among all chunks derived from the

same page. Retrieval was considered successful at rank-k if the target chunk

appeared within the top-k results (Table 4.1).

Model Top-1 Top-3 Top-5 Top-10

E5-small 76% 89% 95% 96%
MPNet 69% 87% 92% 98%
Sentence-T5 61% 83% 88% 93%
MiniLM 64% 83% 89% 95%
BGE-M3 81% 93% 95% 98%
BM25 56% 88% 92% 97%

Table 4.1: Retrieval success rates across different embedding models (single-
page setting).

The choice between the two top-performing models, BGE-M3 and E5,

was ultimately determined by scalability. BGE-M3’s superior accuracy was



4.3 Query Generation, Retrieval, and Relevance Annotation 49

offset by significant computational costs in GPU memory and throughput,

making it impractical for this project’s scale. E5 (e5-small) presented a more

balanced profile, delivering competitive accuracy with high efficiency. This

strong performance-to-cost ratio, combined with its helpful instruction-prefix

format, made E5 the clear selection for the default encoder.

4.3 Query Generation, Retrieval, and Relevance

Annotation

With the passage corpus established, the next phase of the pipeline focuses

on creating supervised training instances. This involves a three-stage process:

(1) generating synthetic queries grounded in the passage content, (2) retriev-

ing a set of candidate passages for each query using a dense retriever, and

(3) assigning fine-grained relevance labels to these candidates using an LLM

annotator. This section details each of these stages in sequence.

4.3.1 Synthetic Query Generation

While the source benchmarks contain high-quality questions, they are bound

to historical passages that no longer align with our reconstructed Wikipedia

chunks. To create supervision for the updated corpus, we adopted a controlled

large languagemodel (LLM) pipeline to synthesize realistic, user-style queries

directly from the current content.

After experimenting with several models, GPT-4o Mini [37] was chosen

for its favorable balance of linguistic accuracy, cost-effectiveness, and format

compliance, making large-scale generation practical. To ensure reliability, the

model was instructed to return "NA" if a valid question could not be derived

from the input text, thereby minimizing hallucinations.

Two distinct prompting strategies were employed to generate a diverse

range of information needs.
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• Single-Chunk Queries: For isolated passages, the model generated

six factoid-style questions, one for each primary interrogative category

(What, Where, When, Who, Why, How). This created supervision sim-

ilar to traditional QA datasets.

• Multi-Chunk Relational Queries: To encourage more complex rea-

soning, multiple thematically related chunkswere provided to themodel.

It was tasked with generating queries that required integrating infor-

mation from all provided chunks to be answered. These queries tar-

geted four relational categories: Comparison, Cause-and-Effect, Tem-

poral Sequence, and Elaboration.

To create varied inputs for the multi-chunk strategy, passages were grouped

using either sequential (adjacent chunks from the same section) or random

(non-contiguous chunks) sampling patterns. The specific prompts used for

single-chunk and multi-chunk generation are detailed in the listings below.

Single-Chunk Prompt

You are an expert question generator. Your task is to generate

six distinct questions

from the provided text, one for each of the fundamental

interrogative categories

(What, Where, When, Why, Who, How), and provide a direct answer

from the text.

**Primary Goal:**

For each category, create a single, insightful question and its

corresponding answer,

both derived *only* from the provided text passage.

**Mandatory Categories:**
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You must generate a question-answer pair for each of the

following:

What, Where, When, Why, Who, How.

**Quality Standards:**

- Each question must be answerable using *only* the provided

text.

- NA Fallback Rule: If a question or answer for a specific

category cannot be formed

from the text, you must use "NA" as the value.

- All questions must be self-contained and must not reference

"the text" or "the passage".

**Context from Wikipedia:**

---

{context}

---

Generate your response now. Prioritize creating high-quality,

answerable questions above anything else.

Multi-Chunk Relational Prompt

You are an expert query synthesizer for a search engine training

pipeline. Your task is

to analyze multiple related text chunks and generate a set of

insightful queries, one for

each of the four relational categories.

**Primary Goal:**

For each category below, create a query that a user might ask to

understand the specific
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relationship between the chunks. Each query must be answerable

*only* by combining

information from ALL provided chunks.

**Mandatory Categories:**

You must generate a query-reasoning pair for each of the

following:

- Comparison: The chunks describe different entities that can be

compared or contrasted.

- Cause-and-Effect: One chunk describes an event or cause, and

another describes its effect or consequence.

- Temporal-Sequence: The chunks describe events that occur in a

sequence.

- Elaboration: One chunk introduces a topic, and the others

provide specific details or examples.

**Quality Standards:**

- NA Fallback Rule: If a meaningful query for a specific

category cannot be formed,

you must use "NA" for both query and reasoning.

- Reasoning: Briefly explain *how* the chunks connect to answer

the query.

**Context from Wikipedia:**

--- Chunk 1 ---

{chunk 1}

--- Chunk 2 ---

{chunk 2}

(Additional chunks if available)
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Your output must be a single JSON object containing all four

categories.

4.3.2 Candidate Retrieval via Dense Embedding Search

With the synthetic queries generated, the next step was to retrieve a set of can-

didate passages for each one, simulating the first stage of a search pipeline. For

each query q, its embedding was computed using the E5 model (prefixed with

``query:'') and a dense similarity search was performed against all chunk

embeddings from the corresponding source page and its expanded neighbor-

hood:

score(q, pi) = cos(E5(q),E5(pi)).

The top-N = 30 highest-scoring passages were selected as the initial candi-

date set for annotation.

Two filtering steps were applied to ensure the quality of these candidate

sets. First, a ground truth validation step confirmed that all of the original

passages used to generate the query were present within the top-30 retrieved

candidates. Queries failing this check were discarded. Second, a semantic

deduplication process was applied to remove near-duplicate passages. If two

candidates exceeded a cosine similarity of 0.90, only the higher-scoring one

was retained, unless one was a ground-truth positive. This ensured that each

query was paired with genuinely competing candidates rather than trivially

repetitive ones.

4.3.3 LLM-Based Relevance Annotation

While dense retrieval provides a ranked list, training a reranker requires ex-

plicit, graded relevance scores. To obtain this supervision at scale, we em-

ployed GPT-4o Mini as an automatic annotator. For each query, the full set

of up to 30 retrieved candidate passages was presented to the LLM for scor-

ing. To minimize positional bias, the passages were randomly shuffled before
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being included in the prompt.

The model was instructed to assign each passage a relevance score from

1 (No Relevance) to 10 (Complete Direct Answer), along with a brief justi-

fication, based on a detailed scoring rubric. The prompt used for this task is

shown below.

You are a highly intelligent and precise relevance scoring AI.

TASK:

Your task is to evaluate how relevant each of the following N

text

chunks is to the given query. For each chunk, assign a score

from 1 to 10

and provide a brief reasoning.

SCORING CRITERIA (1–10):

10 – Complete Direct Answer: Fully and precisely answers the

entire query.

9 – Nearly Complete: Strong answer missing only minor details.

8 – Strong Partial Answer: Directly addresses the core question

but incomplete.

7 – Clearly Relevant: Provides useful information that relates

to the query.

6 – Supportive Information: Background or secondary context

that helps indirectly.

5 – Topic Match: Discusses the same subject but does not answer

the question.

4 – Tangentially Related: Mentions related concepts but focuses

elsewhere.

3 – Weak Connection: Contains loose keyword or thematic

overlap.
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2 – Minimal Relevance: Very distant relationship to the

question.

1 – No Relevance: Completely unrelated to the query.

IMPORTANT:

- Use the full range of scores when appropriate.

- Do NOT omit any chunk. Every chunk must receive exactly one

score.

QUERY:

{query}

CHUNKS TO SCORE:

Chunk 1:

{text_1}

---

...

Although the LLM annotated all 30 passages, we employed a structured

subsampling strategy to construct the final training instances, capping the

number of candidates per query at 10. This was a deliberate design choice

to improve the quality of the learning signal. The final set for each query was

constructed by:

1. Preserving all known positive passages (those used to generate the query).

2. Selecting the top-6 highest-scoring non-positive passages to retain strong

hard negatives.

3. Randomly sampling from the remainder to reach the cap of 10.

This approach creates a compact yet diverse supervision signal that balances

clear positives against competitive distractors, encouraging the model to learn

fine-grained distinctions without being overwhelmed by low-value negatives.
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4.4 Dataset Statistics

The final dataset contains 10,000 annotated query-candidate groups. Each

data point consists of a synthetic user query paired with exactly 10 passages,

each assigned a relevance score from 1 to 10 by the LLM annotation proce-

dure. The following subsections provide a detailed breakdown of the dataset’s

composition, analyzing the distribution of query types, their linguistic forms,

and the resulting relevance scores.

4.4.1 Query Type Distribution

The dataset contains two primary query categories: single-chunk factual ques-

tions and multi-chunk relational questions. As shown in Table 4.2, the ma-

jority of queries are factoid-style, providing a strong foundation for standard

retrieval tasks, while a significant subset of relational queries is included to

facilitate research on cross-passage reasoning.

Table 4.2: Distribution of query types in the dataset.
Query Type Count Percentage

Single-Chunk Factual 7,723 77.23%
Multi-Chunk Relational 2,277 22.77%

4.4.2 Analysis of Query Phrasing

A finer-grained analysis of the initial query tokens reveals broad coverage

of common interrogative forms (Table 4.3). The near-uniform spread across

”What,” ”How,” ”When,” ”Where,” ”Why,” and ”Who” indicates that the

dataset reflects a diverse range of user intent types, moving beyond simple

fact-finding to include procedural and explanatory information needs.
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Table 4.3: Distribution of initial query tokens.
First Word Count Percentage

What 2,461 24.61%
How 2,405 24.05%
When 1,306 13.06%
Where 1,272 12.72%
Why 1,274 12.74%
Who 1,276 12.76%
Other 6 0.06%

4.4.3 Relevance Score Distribution

Each of the 100,000 passages in the dataset (10 passages for each of the 10,000

queries) was scored on a 1–10 relevance scale. The overall distribution of

these scores is presented in Table 4.4.

Table 4.4: Overall distribution of relevance scores across all passages.
Score Frequency Percentage

1 15,544 15.54%
2 9,750 9.75%
3 8,234 8.23%
4 11,533 11.53%
5 11,029 11.03%
6 11,473 11.47%
7 6,257 6.26%
8 7,847 7.85%
9 8,011 8.01%
10 10,321 10.32%

The distribution spans the full range, with substantial representation in

both the low-relevance (scores 1–3) and high-relevance (scores 8–10) regions.

This diversity is crucial for training robust reranking models, as it provides the

necessary signal to distinguish not only between relevant and irrelevant pas-

sages but also between partially and fully correct answers. The prevalence of

mid-range scores (4–7) further supports the dataset’s goal of modeling graded

relevance.
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4.5 Integration of the TWOLAR Dataset

In addition to the dataset constructed in this work, a complementary portion

of training data was incorporated from the TWOLAR collection [4]. The goal

of this integration was to further diversify the supervision signal by including

queries and passages derived from independently designed retrieval pipelines.

This section summarizes the TWOLAR dataset construction methodology and

details how a curated subset of it was adapted for compatibilitywith our rerank-

ing framework.

4.5.1 Overview of the TWOLAR Dataset

The TWOLAR dataset was introduced by Baldelli et al. [4] as part of a two-

step LLM-augmented distillation framework for passage reranking. The ap-

proach leverages large language models (LLMs) as high-quality teachers to

automatically produce labeled query–document pairs without requiring hu-

man annotations. The resulting collection was designed to capture the fine-

grained relevance judgments of an LLM while maintaining diversity across

different retrieval paradigms.

The TWOLAR pipeline begins by generating two parallel sets of 10,000

synthetic queries from the MS MARCO corpus [3]:

• Cropped-sentence queries, obtained by sampling sentences directly

from MS MARCO passages to form concise pseudo-queries.

• docT5query-generated queries, produced using the docT5querymodel [34],

which reformulates passages into natural-language questions.

Each query subset (cropped or generated) was divided into four groups

of queries, corresponding to four independent first-stage retrieval systems:

BM25, SPLADE [16], DRAGON [25], and BM25+monoT5. For each query–

retriever pair, the top 30 passages were collected, resulting in a large pool of

candidate documents exhibiting substantial lexical and semantic diversity.
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In the second stage, these retrieved passages were reranked using an LLM-

based teachermodel (gpt-3.5-turbo-16k-0613). Following the listwise prompt-

ing design of RankGPT, the model was provided with all 30 documents per

query and asked to output a relevance-ordered permutation of the candidates.

This LLM-driven reranking step effectively distilled ChatGPT’s implicit rank-

ing knowledge into labeled data suitable for fine-tuning compact rerankers

such as Flan-T5. In total, the TWOLAR dataset contains 20,000 annotated

query–document groups, each consisting of 30 candidate passages and an as-

sociated rank order derived from the LLM annotations.

4.5.2 Sampling and Adaptation for the Present Work

From the publicly released TWOLAR dataset,1 we sampled a subset of 10,000

query–passage pairs to complement our in-house collection. To ensure both

retrieval diversity and topical variety, we focused on examples originating

from the DRAGON, SPLADE, and BM25+T5 retrieval sources. These sys-

tems collectively represent dense, sparse, and hybrid retrieval paradigms that

closely align with the models analyzed in this thesis.

Unlike the original TWOLAR annotations, which provide only an implicit

ordinal ranking of the top 30 passages per query, we employed an explicit

grading procedure to obtain fine-grained relevance scores. Specifically, we

used the gpt-4o-mini model to assign each passage a relevance grade on a

1–10 scale, following the guidelines described in Section 4.3.3. This approach

produces semantically calibrated relevance scores that are directly comparable

to those used in our internal datasets.

To maintain structural consistency across all training instances, we then

subsampled each TWOLAR query group to retain only the top 10 passages

according to the GPT-based relevance scores. This step mirrors the candidate

size used for our synthetic queries and ensures a uniform query–candidate

format suitable for joint training and evaluation across all data sources.
1Available at https://huggingface.co/datasets/Dundalia/TWOLAR_ds.

https://huggingface.co/datasets/Dundalia/TWOLAR_ds
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4.5.3 Resulting Combined Dataset

After integration, the expanded dataset comprises a total of 20,000 annotated

query–candidate groups, evenly split between the newly constructed collec-

tion and the adapted TWOLAR subset. The TWOLAR-derived samples con-

tribute a complementary dimension to the data:

• They introduce natural linguistic diversity through docT5query-style

and cropped pseudo-queries.

• They provide challenging negatives retrieved via distinct systems (DRAGON,

SPLADE, andBM25+T5), enhancing robustness against retriever-specific

bias.

• They include relevance annotations derived from a high-capacity LLM

teacher (gpt-4o-mini), yielding nuanced, fine-grained supervision sig-

nals on a 1–10 scale.

By combining local supervision with LLM-based relevance annotations,

this hybrid dataset forms a rich and balanced training resource that reflects

real-world semantic diversity and supports learning rerankers sensitive to nu-

anced relevance gradations.



Chapter 5

Fine-tuning Strategies and

Experimental Methodology for

Passage Reranking

This chapter presents the fine-tuning strategies and experimental methodology

adopted to train ModernBERT for supervised passage reranking. Building

on the graded relevance corpus introduced in Chapter 4, the central goal of

this study is to investigate whether cross-encoder–based relevance modeling

remains advantageous when passage relevance is expressed on a fine-grained,

multi-level scale rather than through binary or coarse labels.

To address this question, two complementary encoding strategies are ex-

plored. The first approach, Independent Passage Encoding, follows the classi-

cal cross-encoder formulation in which each query–passage pair is processed

independently, and relevance scores are optimized using listwise or pairwise

learning-to-rank objectives. The second approach, All-Passage Encoding, ex-

tends the model to jointly encode all candidate passages associated with a

query, enabling direct cross-passage interactions and potentially richer con-

textual signals.

Both strategies are fine-tuned under a unified experimental framework that

includes consistent preprocessing, loss formulations, optimization routines,
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and evaluation metrics. By comparing their behavior across a range of ranking

and correlation measures, this chapter aims to quantify the extent to which

cross-attention–based modeling benefits passage reranking when trained on

graded relevance supervision.

The remainder of the chapter details the two fine-tuning approaches, the

experimental setup, and the results obtained from empirical evaluation.

5.1 Independent Passage Encoding

The first fine-tuning strategy adopts a classical cross-encoder formulation in

which each query–passage pair is encoded independently. For a given query,

the model processes its ten associated passages separately, producing a scalar

relevance score for each candidate. The final ranking is obtained by jointly

optimizing these scores under a listwise learning-to-rank objective. This ap-

proach serves as a strong and widely used baseline, enabling the model to

capture fine-grained semantic interactions between the query and each pas-

sage through full cross-attention.

Sequence Construction. Each training instance consists of a single query

paired with its ten candidate passages. The two texts are concatenated into the

standard cross-encoder format:

[CLS] Query [SEP] Passage [SEP],

and tokenized using the ModernBERT tokenizer. Only the representation of

the [CLS] token is used for relevance prediction, obtained through a linear

layer applied to the encoder output.

Before defining the preprocessing pipeline, the distribution of actual token

lengths for all query–passage pairs in the corpus was inspected. As shown in

Figure 5.1, more than 99.8% of pairs fall below 256 tokens, with only 192 out

of approximately 160,000 pairs exceeding this threshold. This allowed the use
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of a maximum sequence length of 256 tokens without incurring systematic

truncation. Pairs exceeding the limit were discarded, representing only 0.12%

of the data.

Figure 5.1: Distribution of query–passage token lengths

To ensure that each training instance provides a meaningful ranking signal,

several consistency checks were applied. Instances containing incomplete or

invalid labels (e.g., missing relevance scores) were removed, as were samples

in which all passages shared the same relevance value. These uniform-label

cases do not contribute to ranking learning and accounted for 23 removals

from the training set, 5 from validation, and 6 from the test set. After filtering

by label quality and token length, the final dataset contained:

Train: 15,826, Validation: 1,974, Test: 1,973.

For each query, the graded relevance annotations were scaled to the inter-

val [0, 1] using min–max normalization while preserving their relative order-

ing. Tokenized query–passage pairs were padded to the maximum length of

256 tokens, and batching was implemented at the level of entire query groups,

yielding tensors of shape (B, 10, L) for input IDs and attention masks.

All passages belonging to the same query are processed in parallel. For

a batch of size B, the B × 10 pairs are flattened along the passage dimen-

sion, encoded by ModernBERT, and reshaped back into a matrix of predicted
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relevance scores of size (B, 10).

5.1.1 Evaluation Metrics

To assess reranking performance under the independent encoding strategy,

a broad set of ranking metrics was employed. These metrics quantify both

the quality of the highest-ranked passages and the overall agreement between

predicted and true relevance orderings. Although several measures were con-

sidered, the primary evaluation criterion selected for all experiments is the

Exponential NDCG@3. Its choice is motivated by the graded nature of the

dataset and by the distributional properties of the relevance labels.

Standard NDCG

Normalized Discounted Cumulative Gain (NDCG) measures ranking quality

by comparing the predicted ordering to an ideal ranking of the same items. It

is computed as

NDCG@k = DCG@k

IDCG@k
,

where the Discounted Cumulative Gain (DCG) at cutoff k is defined as

DCG@k =
k∑

i=1

ri

log2(i + 1)
,

and ri is the true relevance of the passage ranked at position i in themodel’s

predicted ordering. The ideal DCG (IDCG) is computed by sorting passages

by decreasing relevance and applying the same formula.

In principle, NDCG provides a normalized measure of ranking quality be-

tween 0 and 1. However, in datasets where multiple passages per query have

high relevance scores and the relevance scale spans a wide numeric range,

the resulting IDCG values can be large. Under such conditions, even weak or

random scoring functions produce DCG values not far from IDCG, causing
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standard NDCG to fall within a narrow, high-valued band. This reduces its

discriminative power for model comparison.

This effect is clearly observed in Table 5.1, which reports several NDCG

variants computed for an untrained model and a random baseline. The stan-

dard NDCG metrics show almost no difference between the two conditions,

indicating that they are not sufficiently sensitive for this task.

Table 5.1: Comparison of NDCG variants on untrained and random scoring
functions.

Metric Untrained Random Gap

Standard NDCG@10 0.8378 0.8409 -0.0031
Standard NDCG@5 0.6703 0.6748 -0.0045
Standard NDCG@3 0.6095 0.6208 -0.0113
Exponential NDCG@10 0.6025 0.6031 -0.0006
Exponential NDCG@5 0.4030 0.4009 0.0020
Exponential NDCG@3 0.3076 0.3162 -0.0086

Exponential NDCG

To increase the metric’s sensitivity to ranking differences among highly rele-

vant items, an exponential gain transformation was considered:

G(i) = 2ri − 1.

This formulation amplifies differences between high relevance values and

enlarges the penalty for placing top-ranked passages in lower positions. When

applied at a small cutoff (e.g., k = 3), the metric becomes particularly respon-

sive to the correct ordering of the most informative passages.

This property aligns well with the structure of the dataset. Many queries

containmultiple passageswith substantive relevance scores; for example, 74.9%

of training queries include at least three passages with r ≥ 7. As a result, top-

three ranking performance is especiallymeaningful, and Exponential NDCG@3

provides a clearer andmore discriminative signal than its standard counterpart.
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Additional Metrics

To provide a more complete evaluation, several complementary metrics were

computed:

• Exponential NDCG@5andNDCG@10, assessing ranking quality over

longer lists.

• MRR, measuring the rank of the most relevant passage.

• Top-k accuracy and recall, evaluating whether the most relevant pas-

sages appear among the top predictions.

• Spearman’s ρ and Kendall’s τ , capturing global agreement between

predicted and true orderings.

Together, these measures provide a detailed characterization of both local

(top-k) and global ranking behavior. They are used consistently throughout the

experiments on the independent encoding approach and later form the basis

for comparison with the all-passage encoding strategy.

5.1.2 Learning-to-Rank Objectives

The independently encoded query–passage pairs are optimized using super-

vised learning-to-rank objectives that compare the predicted scores with the

graded relevance annotations. Three losses were explored in this work: List-

Net, LambdaRank, and an approximate variant of NDCG. These losses cap-

ture different aspects of the ranking problem and provide complementary ap-

proaches to modeling graded relevance.

ListNet

ListNet is a listwise learning-to-rank loss based on comparing probability

distributions over candidate passages. Given predicted scores s ∈ Rn and
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ground-truth relevance labels r ∈ Rn, both vectors are transformed into prob-

ability distributions using a temperature-scaled softmax:

Ppred(i) = exp(si/τ)∑n
j=1 exp(sj/τ)

, Ptrue(i) = exp(ri/τ)∑n
j=1 exp(rj/τ)

.

The loss is the cross-entropy between the two distributions:

LListNet = −
n∑

i=1
Ptrue(i) log (Ppred(i) + ϵ) ,

where ϵ ensures numerical stability. This loss encourages the entire predicted

ranking distribution to match the distribution implied by the relevance labels,

making it well suited for graded supervision.

LambdaRank

LambdaRank is a pairwise loss that optimizes the relative ordering of passage

pairs. For each pair (i, j) with unequal relevance labels, the model is penal-

ized when it predicts an incorrect ordering. Let si and sj denote the predicted

scores, and let ri and rj denote the corresponding true relevance values. A

pair contributes to the loss only if ri > rj . The loss for a single query is

LLambdaRank = 1
M

∑
i<j

log (1 + exp [−σ(si − sj)]) I[ri > rj],

where M is the number of valid pairs and σ controls the steepness of the

sigmoid. Unlike ListNet, LambdaRank directly models the preference rela-

tionships, making it effective in scenarios where relative ordering is the most

important aspect of the ranking task.
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Approximate NDCG

The third objective is a differentiable approximation of NDCG, designed to

directly target the evaluation metric. Exact NDCG is non-differentiable be-

cause it depends on discrete ranks. The approximation replaces hard rank-

ing with soft, expectation-based rank estimates. Let the gain of passage i be

G(i) = 2ri − 1. For predicted scores s, soft pairwise comparisons are com-

puted using

Pij = σ
(

si − sj

τ

)
,

which approximates the probability that passage i should be ranked above

passage j. The expected rank of each passage is then

ˆrank(i) = 1 +
∑
j ̸=i

(1 − Pij).

An approximate DCG is computed by substituting the expected ranks into the

DCG formula:

DCGapprox =
n∑

i=1

G(i)
log2

(
ˆrank(i) + 1

) .

The loss is

LApproxNDCG = 1 − DCGapprox

IDCG
,

where IDCG is computed from the ideal ranking based on the true labels.

Approximate NDCG provides a direct and differentiable surrogate for the

evaluation metric used in this work. While computationally more expensive

than ListNet or LambdaRank, it aligns the training objective closely with the

final ranking metric and is therefore particularly suitable for graded relevance

settings.

5.1.3 Training and Evaluation Procedure

The independent-encoding model is trained using mini-batch stochastic gradi-

ent descent with AdamWoptimization, gradient accumulation, warmup-based
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learning rate scheduling, and early stopping. All experiments were conducted

using ModernBERT-base, and all hyperparameters were kept constant across

runs unless specified otherwise.

Training Loop

Model parameters are updated using the AdamW optimizer with learning rate

2 × 10−5 and weight decay implicitly handled through the optimizer’s decou-

pled regularization. Due to memory constraints and the cost of encoding mul-

tiple passages per query, gradient accumulation is used to reach an effective

batch size of

Beff = B × K,

whereB = 8 is the per-step batch size andK = 4 the number of accumulation

steps. Gradients are clipped to a maximum norm of 1.0 before each parameter

update. Training proceeds for at most six epochs, with early stopping triggered

if validation Exponential NDCG@3 does not improve by at least 0.01 for two

consecutive epochs.

Learning Rate Scheduling

Preliminary experiments using a fixed learning rate resulted in poor conver-

gence: the model failed to learn stable ranking behavior and validation metrics

remained close to random. Introducing a cosine decay schedule with warmup

proved essential for stable optimization. The learning rate follows

η(t) = η0 · 1
2

(
1 + cos

(
π · t − twarm

T − twarm

))
,

after a linear warmup over 10% of the total training steps. Empirically, the co-

sine schedule produced smoother loss curves, more stable gradients, and sub-

stantially better ranking performance across all metrics. All results reported

for this approach use the cosine scheduler.
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Evaluation Protocol

Model evaluation is performed at the end of each epoch over the full validation

set. For each query, the predicted scores for its ten passages are compared with

their corresponding raw relevance labels. A comprehensive suite of ranking

metrics is computed:

• Exponential NDCG@1, @2, @3, @5,

• MRR, Top-1 accuracy, and Top-3 recall,

• Spearman’s ρ and Kendall’s τ (rank correlations)

For each metric, values are averaged across all queries in the dataset. The

validation Exponential NDCG@3 serves as the early stopping criterion and

model selection metric.

Final Evaluation and Reproducibility

Several configurations of learning rates, loss functions, and scheduling param-

eters were explored to identify the most effective setup. Although all three

ranking objectives (ListNet, LambdaRank, and ApproxNDCG) were evalu-

ated under identical training conditions, their impact on performance proved

to be minor. Across metrics such as Exponential NDCG@3 and MRR, the

difference between the strongest and weakest loss amounted to less than one

point, indicating that the model’s behavior is largely insensitive to the specific

choice of learning-to-rank objective. LambdaRank was therefore selected for

the final experiments due to its slightly more consistent performance and sta-

ble convergence.

The chosen configuration was then retrained and evaluated using two ad-

ditional random seeds to ensure that its performance was not an artifact of a

favorable initialization. In total, the final evaluation is based on three seeds,

all using the same hyperparameter settings and training procedure. For each

run, the checkpoint achieving the highest validation Exponential NDCG@3
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was selected and evaluated on the held-out test set. The following table sum-

marizes the hyperparameters used in all three experiments.

Table 5.2: Final hyperparameter configuration used for the independent-
encoding experiments.

Component Value

Base model ModernBERT-base
Loss function LambdaRank (σ = 1)
Learning rate 2 × 10−5

Optimizer AdamW
Batch size 8
Gradient accumulation steps 4 (effective batch size 32)
Max sequence length 256 tokens
Scheduler Cosine decay with warmup
Number of cosine cycles 0.5
Warmup proportion 10% of total steps
Epochs 8
Early stopping patience 2 epochs
Hardware NVIDIA A100 (40GB, Google Colab)

The next section reports the test-set performance obtained from the three

independent training runs, along with the corresponding seed-wise variability.

Test-Set Performance and Comparison with an Untrained Model

The selected hyperparameter configuration was evaluated using three random

seeds (42, 123, 357). Seed 42, which achieved the highest validation Exponen-

tial NDCG@3, also produced the strongest overall performance on the test set,

with its best checkpoint occurring at epoch 2. For seeds 123 and 357, the best

checkpoints were obtained at epoch 1. Despite these differences, the overall

variation across seeds is modest: all three runs exhibit closely aligned rank-

ings, with differences typically within one to two points across the main met-

rics. This indicates that the selected training setup is stable and not strongly

dependent on initialization.

Table 5.3 reports the complete set of test metrics for the three seeds.

To contextualize these results, the same evaluation procedure was applied
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Table 5.3: Test-set results for the three seeds using the selected hyperparame-
ter configuration.

Metric Seed 42 Seed 123 Seed 357

MRR 0.6935 0.6806 0.6848
Exponential NDCG@3 0.7981 0.7829 0.7814
Exponential NDCG@5 0.8369 0.8231 0.8255
Top-1 Accuracy 0.5418 0.5291 0.5352
Top-3 Recall 0.6491 0.6307 0.6298
Pairwise Accuracy 0.7785 0.7666 0.7675
Spearman’s ρ 0.6437 0.6179 0.6214
Kendall’s τ 0.5276 0.5048 0.5064

Best Epoch 2 1 1

to an untrained ModernBERT cross-encoder, using random weights. As ex-

pected, the uninitializedmodel performs poorly on all rankingmetrics that em-

phasize the top of the ranking (MRR, Top-1 Accuracy, Exponential NDCG),

while achieving an artificially high score on Standard NDCG@10. This be-

havior confirms the earlier observation that Standard NDCG@10 is insuffi-

ciently discriminative for this dataset, as it produces values close to those of

fully trained models even in the absence of meaningful ranking signals.

The comparison between the untrained model and the best-performing

trained run (Seed 42) is shown in Table 5.4.



5.2 Joint Passage Encoding (All-Passage Model) 73

Table 5.4: Performance of the untrained model compared with the best trained

model (Seed 42).

Metric Untrained Model Trained Model (Seed 42)

Standard NDCG@10 0.8456 0.8773

Exponential NDCG@3 0.3076 0.7981

Exponential NDCG@5 0.4030 0.8369

MRR 0.1824 0.6935

Top-1 Accuracy 0.1042 0.5418

Top-3 Recall 0.2116 0.6491

Spearman’s ρ 0.0923 0.6437

Kendall’s τ 0.0711 0.5276

Overall, the trainedmodel yields substantial improvements across all mean-

ingful metrics, especially those emphasizing correct identification of the most

relevant passages. The large gap between the untrained and trained models

demonstrates the effectiveness of the cross-encoder architecture and validates

the fine-tuning strategy adopted in this work.

5.2 Joint Passage Encoding (All-Passage Model)

The second fine-tuning strategy is inspired by the architecture of JinaReranker-

v3 [55]. Instead of encoding each query–passage pair independently, all pas-

sages are concatenated together with the query into one long sequence en-

riched with special marker tokens. The transformer thus has full visibility

over cross-document context, potentially enabling more nuanced relevance

estimation.
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Figure 5.2: Architecture of the JinaReranker-v3 model (adapted from [55]).

In this formulation, a single sequence embeds:

Query + ⟨query_emb⟩ + Document1 + ⟨doc_emb⟩ +· · ·+Document10 +⟨doc_emb⟩.

During the forward pass, the transformer processes the entire sequence holis-

tically. The hidden states corresponding to each <doc_emb> token serve as

document-level representations, while <query_emb> provides a comparable

query embedding. These vectors are projected through a two-layer MLP and

scored using cosine similarity.

This design offers two advantages over the independent-encoding base-

line: (1) cross-document interactions become possible, as the model sees all

passages at once, and (2) only a single transformer pass is required per query,

making the approach more computationally efficient at inference time.

Figure 5.3 shows the distribution of total sequence lengths after concate-

nating all passages. The average length is approximately 890 tokens, well

within the token limit of ModernBERT. No truncation was required for any

query, unlike the independent-encoding strategy.



5.2 Joint Passage Encoding (All-Passage Model) 75

Figure 5.3: Distribution of combined token lengths (query + all passages +

marker tokens).

Training Procedure and Evaluation

To ensure a fair comparison with the independent-encoding baseline, the all-

passage model was trained using the same hyperparameter configuration that

yielded the best results in the first strategy (learning rate, batch size, cosine

scheduler with warmup, gradient accumulation, and early-stopping criteria).

Only the architectural components differ, namely the joint query–document

input format and the use of specialmarker tokens <|query_emb|> and <|doc_emb|>

to extract embedding representations.

Two training variants were explored:

1. Standard Joint Encoding: Passages are encoded in their canonical or-

der, as they appear in the dataset.

2. Shuffled-Passage Variant: For each epoch, the ten passages associ-

ated with each query are randomly permuted before concatenation. All

relevance labels and document-embedding marker positions are shuf-

fled accordingly. The goal of this variant is to assess whether the model
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relies on positional biases and whether randomizing document order

improves generalization.

Table 5.5 reports the full set of test metrics for the two all-passage variants,

alongside the best-performing model from the first approach (Seed 42).

Table 5.5: Test-set comparison between the best independent-encoding model

(Seed 42) and the two variants of the all-passage joint encoder.

Metric
First Approach

(Seed 42)
All-Passage
Standard

All-Passage
Shuffled

Exponential NDCG@3 0.7981 0.7278 0.7158

Exponential NDCG@5 0.8369 0.7803 0.7671

MRR 0.6935 0.6527 0.6391

Top-1 Accuracy 0.5418 0.5095 0.5021

Top-3 Recall 0.6491 0.5695 0.5402

Spearman’s ρ 0.6437 0.5496 0.5020

Kendall’s τ 0.5276 0.4422 0.4016

Across all evaluationmetrics, the independent-encoding approach remains

the strongest performer. The all-passage joint encoder—despite its architec-

tural advantages, full-context integration, and the ability to model interactions

between passages—does not surpass the simpler first strategy. The gap is con-

sistent and sizeable, with decreases of approximately 6–10 percentage points

in the primary ranking metrics (MRR, Exponential NDCG@3/5).

Between the two joint-encoding variants, the shuffled-passagemodel yields

slightly lower scores than the standard ordering. This suggests that the model

does not rely heavily on positional biases; however, randomizing the passage

order does not provide a regularization benefit and may mildly disrupt the

model’s ability to learn stable passage–query relationships.

These findings indicate that the independent-encoding configuration is

better aligned with the structure of the dataset. Encoding passages separately
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likely reduces interference between documents, preserves finer semantic dis-

tinctions, and produces more reliable ranking behavior. In contrast, the all-

passage model may struggle with long-sequence attention dynamics and with

disentangling multiple relevance signals within a single forward pass.

Finally, it is important to emphasize that the loss function adopted here

constitutes a simplified version of the training objective proposed in the Jina

Reranker v3 work. The original model employs a significantly more sophis-

ticated training objective, combining multiple auxiliary losses and regular-

ization terms, which were omitted in this thesis to ensure experimental clarity

and reproducibility. As a result, the joint encoder evaluated here may not fully

exploit the potential demonstrated in the original architecture, and it remains

plausible that more expressive loss formulations could narrow or even reverse

the performance gap observed between the two approaches.

5.3 Zero-Shot Evaluation on theBEIRBenchmark

To further assess the generalization capabilities of the trained rankers, we per-

form a zero-shot evaluation on a subset of the BEIR benchmark [52]. BEIR

provides a diverse collection of retrieval tasks covering multiple domains,

query styles, and relevance distributions. Evaluating on BEIR therefore of-

fers an external validation step and allows us to determine whether the ranking

models learn transferable behaviour beyond the supervised training distribu-

tion.

For this purpose, we use the best checkpoint obtained from the independent-

encoding approach, which demonstrated the strongest ranking performance.

No additional fine-tuning is performed on any BEIR dataset: all evaluations

are strictly zero-shot.

The next chapter presents the BEIR evaluation protocol, the retrieval pipeline

used to adapt the models to the benchmark, and the resulting performance

across multiple BEIR tasks.
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5.3.1 BEIR Dataset Analysis and Truncation Feasibility

Before conducting zero-shot evaluation on the BEIR benchmark, all candi-

date datasets were analysed to assess their suitability for the ModernBERT

reranker. Although ModernBERT supports substantially larger context win-

dows, the reranker used in this study was fine-tuned with a maximum input

length of 256 tokens. For methodological consistency and computational effi-

ciency during evaluation, the same input constraint was applied in all zero-shot

experiments. Consequently, it was necessary to examine the extent to which

BEIR documents can be processed without severe truncation.

For each dataset, the number of queries and documents, query and doc-

ument length distributions, approximate token counts (using a conversion of

1.3words per token), and the proportion of documents exceeding the 256-

token limit were computed.

Dataset Docs Queries Meantok Trunc.256

scifact 5,183 300 279 53.9%
arguana 8,674 1,406 217 28.3%
scidocs 25,657 1,000 230 29.5%
nfcorpus 3,633 323 304 71.3%
trec-covid 171,332 50 210 42.0%
fiqa 57,638 648 173 18.1%
webis-touche2020 382,545 49 382 39.2%
climate-fever 5,416,593 1,535 127 11.6%
fever 5,416,568 6,666 127 11.6%
dbpedia-entity 4,635,922 400 65 0.0%

Based on the proportion of documents exceeding the 256-token limit, the

datasets were grouped into three categories:

• Good fit (<30% truncation): scidocs, fiqa, climate-fever, fever, dbpedia-

entity, hotpotqa.

• Penalized (≥30% truncation): scifact, trec-covid, webis-touche2020,

nfcorpus.
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This analysis informed the subsequent evaluation strategy. Datasets with

minimal truncation provide reliable insight into the zero-shot generalisation

ability of the cross-encoder, while datasets with heavy truncation primarily

reveal limitations imposed by the restricted 256-token context window inher-

ited from training.

5.3.2 Experimental Setup and Zero-Shot Evaluation

This section outlines the experimental framework used to evaluate the Mod-

ernBERT reranker developed in this thesis. The aim is to determine whether

the improvements observed during supervised fine-tuning translate to zero-

shot performance on out-of-domain retrieval tasks. We describe the retrieval

pipeline, the evaluation protocol, and themetrics used, followed by a summary

of the results.

Retrieval Pipeline

We use a standard two-stage retrieval pipeline:

1. Dense retrieval: Queries and passages are encoded independently us-

ing the intfloat/e5-small model. Cosine similarity is used to re-

trieve the top-k candidates for each query.

2. ModernBERT reranking: The top-k candidates are re-scored using a

ModernBERT cross-encoder fine-tuned on the training data introduced

in this thesis. Each query–document pair is jointly encoded and as-

signed a relevance score through a prediction head.

Throughout all experiments, we set k = 30, which balances computational

cost with the potential for meaningful reranking.
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5.3.3 Results Discussion

The results in Table 5.6 demonstrate that the ModernBERT reranker yields

consistent improvements over the E5-small dense retriever across various BEIR

datasets. The gains are most evident in NDCG@10 and MRR@10, which re-

flect the model’s ability to promote relevant passages into the highest-ranked

positions. Averaged across datasets, ModernBERT increasesNDCG@10 from

0.397 to 0.484 and MRR@10 from 0.530 to 0.640, confirming the reranker’s

effectiveness in improving top-ranked retrieval quality.

While these improvements are broad, their magnitude varies substantially

across datasets, and this variation aligns closely with the truncation character-

istics reported in Table 5.3.1. Datasets with low truncation rates, such as FiQA

(18.1%), FEVER (11.6%), and DBPedia-Entity (0.0%), consistently bene-

fit from substantial reranking gains. For example, ModernBERT improves

MRR@10 by +0.255 on FEVER and NDCG@10 by +0.067 on DBPedia-

Entity. These datasets typically contain short passages well within the 256-

token context window, allowing the cross-encoder to fully exploit its joint

query–document modelling capability without discarding relevant context.

The largest improvements are observed in semantically complex or evidence-

oriented datasets, such as TREC-COVID and HotpotQA. Despite moderate

truncation rates, these datasets require deeper reasoning over technical ormulti-

hop content, and ModernBERT’s richer interaction mechanism clearly out-

performs the bi-encoder baseline. For TREC-COVID, the reranker raises

NDCG@10 from 0.508 to 0.734, one of the strongest relative gains in the

benchmark.

In contrast, datasets with severe truncation, such as NFCorpus (71.3%)

and SciFact (53.9%), exhibit smaller reranking gains. In these cases, a sub-

stantial portion of the document text must be discarded to meet the 256-token

constraint. This constraint limits the reranker’s ability to fully model the un-

derlying evidence, narrowing the gap between the dense retriever and the
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cross-encoder. Nevertheless, even under such conditions, ModernBERT still

providesmeasurable improvements, reflecting its robustness to partial-context

inputs.

Overall, these results show that the ranking behaviour learned during fine-

tuning generalises reliably across domains, with especially strong gains on

datasets whose documents fit within the training-time context window. Per-

formance degrades gracefully as truncation increases, highlighting the interac-

tion between model capacity, input length constraints, and retrieval task struc-

ture.

Table 5.6: Zero-shot BEIR performance of the E5-small dense retriever and

the ModernBERT reranker.

Dataset NDCG@10E5 NDCG@10MB MRR@10E5 MRR@10MB

dbpedia-entity 0.3543 0.4218 0.6777 0.7407

fever 0.4987 0.7060 0.4600 0.7154

fiqa 0.3274 0.3757 0.3927 0.4517

hotpotqa 0.5461 0.6339 0.7124 0.8149

nfcorpus 0.3353 0.3388 0.5491 0.5518

scidocs 0.1662 0.1816 0.2912 0.3184

scifact 0.6824 0.7070 0.6512 0.6791

trec-covid 0.5081 0.7343 0.7282 0.9500

webis-touche2020 0.1561 0.2607 0.3030 0.5360

Average 0.3972 0.4844 0.5295 0.6398



Chapter 6

Conclusion

This thesis investigated how modern transformer architectures, specifically

ModernBERT, can be effectively leveraged for passage rerankingwithinmulti-

stage information retrieval pipelines. The work addressed two major limita-

tions in current research: the scarcity of datasets that capture graded, fine-

grained relevance, and the lack of systematic analyses on how contemporary

encoder models behave when trained under listwise objectives on such data.

The first contribution of this thesis was the construction of a novel English

passage-reranking dataset designed to move beyond the traditional “one pos-

itive, many negatives” structure that dominates existing benchmarks. Through

a carefully engineered pipeline incorporating synthetic query generation, dense-

retrieval candidate selection, LLM-based scoring on a 1–10 relevance scale,

and structured subsampling, the resulting corpus provides richer semantic di-

versity and more realistic supervision signals. The integration of a curated

subset of the TWOLAR dataset further expanded linguistic variability and in-

troduced challenging negatives, yielding a balanced and comprehensive re-

source for studying fine-grained ranking behaviour.

Building upon this corpus, the second major contribution consisted of

an extensive empirical investigation of ModernBERT under two encoding

strategies: Independent Passage Encoding and All-Passage Joint Encoding.

Despite the theoretical advantages of joint modelling, the empirical results
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showed that independently encoding each query–passage pair produced more

stable learning dynamics and superior overall performance. This finding aligns

with the structure of the dataset, where nuanced relevance distinctions are

more effectively captured when passages are processed independently, with-

out cross-passage interference. The listwise learning-to-rank objective proved

effective in leveraging the graded labels, enabling the model to learn relative

ordering patterns rather than relying on coarse binary signals.

Finally, the zero-shot evaluation on selected BEIR datasets provided an

external validation of the model’s generalisation capability. The fine-tuned

ModernBERT reranker yielded consistent improvements over the dense re-

trieval baseline across a variety of domains. The magnitude of these improve-

ments correlated strongly with truncation characteristics, confirming that the

256-token training constraint plays a central role in downstream performance.

Datasets characterised by shorter passages benefited the most, while tasks re-

quiring long-context reasoning showed more moderate gains. Nonetheless,

even in severely truncated settings, the model remained robust and delivered

measurable improvements.

Overall, this thesis demonstrates that ModernBERT, when trained on a

carefully curated graded-relevance corpus, is an effective and generalisable

reranker, capable of outperforming strong baselines and transferring its learned

ranking behaviour to out-of-domain retrieval tasks. The work additionally

provides new data resources and methodological insights that can facilitate

future research in neural reranking and information retrieval.

Future directions include extending the context window during training,

refining joint-encoding architectures with more expressive objectives, incor-

porating retrieval-aware pretraining, and exploring larger-scale relevance an-

notation pipelines. The dataset and analyses presented in this thesis form a

solid foundation for these developments and contribute meaningfully to the

evolution of transformer-based reranking systems.
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