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Introduzione 

 

Nel nostro sistema solare, Marte è il pianeta più simile alla Terra. Nonostante al giorno d’oggi 

sia un pianeta freddo, arido e con una sottile atmosfera composta principalmente da CO2, i dati 

geologici rivelano che, in passato, Marte possedeva un’atmosfera più densa e con acqua liquida 

che scorreva in superficie. Per questo motivo, si ipotizza che, in epoche remote, la vita potesse 

essersi sviluppata e che alcune forme microbiche possano ancora esistere nel sottosuolo. 

Questo ha portato tutte le principali agenzie spaziali mondiali ad impegnarsi nell’esplorazione 

del pianeta rosso. L’ESA (European Space Agency) nel 2003, ha lanciato la sonda Mars 

Express, avviando la prima missione interplanetaria europea. L’obiettivo è fornire una 

copertura globale senza precedenti del pianeta, studiandone l’atmosfera, superficie e sottosuolo. 

MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) è un radar montato 

a bordo della sonda europea Mars Express, entrato in funzione nel 2005, due anni dopo che la 

sonda su cui è installato è entrata nell’orbita del pianeta. La sua copertura di Marte è pressoché 

completa, ma i dati analizzati nel presente elaborato provengono principalmente dal polo sud 

marziano. Un numero ridotto di orbite è stato inoltre acquisito al polo nord e all’equatore 

marziano.  

La funzione principale di MARSIS è quella di trasmettere impulsi con una banda di 1 MHz, 

centrati a frequenze di 1.8, 3, 4 o 5 MHz (Orosei et al, 2017). Lunghezze d’onda maggiori 

consentono una penetrazione più profonda, ma la frequenza degli impulsi deve essere superiore 

alla frequenza del plasma della ionosfera marziana per poter raggiungere la superficie (R. 

Orosei et al, 2018). 

Lo strumento passa poi in modalità ricezione e registra gli echi riflessi dalla superficie e da 

eventuali discontinuità dielettriche presenti nel sottosuolo.  

Il dato grezzo prodotto dal radar, corrispondente ad una singola orbita, è una matrice di echi, in 

cui le colonne rappresentano i singoli echi. Visivamente, la matrice è rappresentata come 

un’immagine a falsi colori, dove la luminosità del singolo pixel è funzione dell'intensità del 

segnale.  

Se necessario, una ridotta quantità di dati può essere salvata in una flash memory ed inviata a 

Terra ancora in forma grezza, dove vengono sottoposti ad un’operazione di processing: una 

compressione in range ed un’eventuale correzione per la distorsione ionosferica. Di 
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conseguenza, la matrice risultante, visivamente, è simile ad una sezione prodotta da un 

georadar, e può essere paragonata ad un'ecografia che mostra la struttura verticale del sottosuolo 

lungo un piano perpendicolare alla superficie e contenente la traiettoria della sonda.  

L’analisi dei dati del radar ha permesso di ottenere importanti informazioni sulla natura e la 

conformazione del sottosuolo marziano. Un risultato di straordinaria importanza è stato 

raggiunto nel 2018, quando, grazie a MARSIS, è stata annunciata la scoperta di acqua liquida 

sotto la calotta polare sud del pianeta (R. Orosei et al, 2018): tale ritrovamento ha rafforzato 

l’interesse scientifico verso Marte e le sue potenziali condizioni di abitabilità.  

Nonostante i traguardi, i dati grezzi del radar rimangono fortemente influenzati da diverse 

sorgenti di rumore, tra cui le interferenze generate dall’elettronica di bordo, le risonanze del 

plasma locale, l’attenuazione e la dispersione introdotte dalla ionosfera, nonché la presenza di 

echi provenienti da regioni distanti della superficie.  Ridurre o correggere questi effetti ha 

costituito la principale difficoltà nell'elaborazione dei dati di MARSIS, poiché essi si 

sovrappongono agli echi provenienti dal sottosuolo e non ne possono essere facilmente separati. 

Per questo motivo, si è ipotizzato che, una volta proiettata la matrice degli echi nello spazio 

delle frequenze di Fourier mediante trasformata bidimensionale, gli effetti descritti sopra siano 

più facilmente riconoscibili e separabili. Il risultato è una rappresentazione che chiameremo 

“diagramma Doppler-frequenza”.  

Dopo averne esaminati una grande quantità, sono state individuate tre tipologie di interferenze 

ciascuna con un aspetto caratteristico, mentre si è osservato che il segnale utile si concentra in 

una banda verticale molto stretta che, nei dati grezzi, si allinea lungo la frequenza Doppler 

dovuta al moto verticale della sonda. 

Si ipotizza quindi che sia possibile sviluppare algoritmi di computer vision in grado di 

individuare automaticamente ciascuna tipologia al fine di creare un catalogo sistematico, 

facilitandone l’analisi statistica.  

Visto che, contrariamente alle ipotesi di partenza, si è constatato che il segnale utile può essere 

distinto dal rumore di fondo, l’elaborato tratterà anche di metodologie di pulizia dei dati basate 

sull’eliminazione delle componenti esterne alla banda utile. L’efficacia di questi approcci sarà 

valutata attraverso il confronto del Signal to Noise Ratio (SNR) prima e dopo l’applicazione 

delle operazioni di filtraggio.  
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In particolare, il Capitolo 1 sarà dedicato al radar MARSIS, descrivendone gli obiettivi 

scientifici, il principio di funzionamento e le modalità con cui i dati vengono acquisiti e 

processati a bordo della sonda e a Terra.  

Il Capitolo 2 tratterà dell’analisi dei dati del radar, svolta interamente in ambiente MATLAB, 

che ha concesso un accesso agevole ai dati. In questa sezione l’attenzione si sposterà su aspetti 

più teorici. In particolare, come anticipato, la matrice degli echi verrà trasformata nel dominio 

delle frequenze di Fourier, così da rendere più evidente la struttura del segnale e i contributi 

dovuti alle interferenze. Infine, si discuterà della generazione di diagrammi Doppler-frequenza, 

che permettono di osservare visivamente le interferenze.  

Il Capitolo 3 si occuperà invece del rilevamento automatico di tre diverse tipologie di 

interferenze, ciascuna con aspetto caratteristico. Le prima, si presenta come righe perfettamente 

orizzontali di diversa luminosità lungo tutta l’immagine. La seconda appare come una serie di 

piccoli punti luminosi disposti diagonale generalmente nella parte destra dell’immagine. 

L’ultima, infine, si presenta come singoli punti ad alta intensità che possono comparire in 

posizioni variabili. 

Vista la loro diversa morfologia, per ciascuna tipologia sono state adottate tecniche di 

rilevamento specifiche. Per la prima tipologia, dopo un’equalizzazione dell’istogramma per 

migliorare il contrasto, è stata calcolata la media delle intensità per riga, riducendo l’immagine 

ad un array monodimensionale. Infine, sono state individuate le righe con picchi di intensità.  

Per la seconda tipologia, è stato innanzitutto applicato un filtro per ridurre il rumore. 

Successivamente, all’ immagine è stata applicata una soglia binaria, ed analizzata con 

l’algoritmo di clustering DBSCAN (Ester et al., 1996), utilizzato per raggruppare pixel vicini. 

Per ogni cluster ottenuto è stato calcolato il centroide e, attraverso l’algoritmo RANSAC 

(Fischler & Bolles, 1981), è stata stimata una retta robusta in grado di approssimare 

l’allineamento dei centroidi. 

Il rilevamento dell’ultima tipologia, caratterizzata da punti isolati di elevata luminosità, si è 

dimostrato più complesso delle precedenti. Sono stati sperimentati due approcci differenti: il 

primo è basato, come i precedenti, su OpenCV, il secondo a cui sarà dedicato il capitolo 4, 

prevede l’utilizzo di YOLO (You Only Look Once), un metodo di object detection basato su 

reti neurali convoluzionali (CNN).  

Infine, il Capitolo 5 si concentrerà su metodologie di pulizia dei segnali radar. Come accennato, 

si è osservato che il segnale presenta delle caratteristiche spettrali che lo rendono facilmente 
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identificabile. Di conseguenza, invece di cercare di pulire l’immagine eliminando il rumore, si 

ipotizza essere sufficiente rimuovere tutto ciò che non è considerato segnale utile. 

La prima parte tratterà di una tecnica che prevede la costruzione di un intervallo di frequenze 

in cui ci si attende il segnale radar tramite informazioni orbitali quali le velocità radiali minime 

e massima della sonda. Verranno evidenziati inoltre casi anomali individuati nell’analisi dei 

campioni. 

La seconda parte invece si focalizzerà sui dati già processati. L’analisi nel dominio delle 

frequenze Doppler permette di individuare e selezionare automaticamente gli echi più 

significativi attraverso criteri statistici basati sui valori mediani delle colonne del diagramma 

Doppler-frequenza. L’efficacia della metodologia sarà valutata tramite un confronto tra il SNR 

medio, calcolato come media dei valori calcolati per ciascuna colonna della matrice degli echi, 

prima e dopo le operazioni di filtraggio, evidenziando, soprattutto nella seconda tipologia di 

dati, un miglioramento significativo nella qualità del segnale. 
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Capitolo 1 

MARSIS: obiettivi e funzionamento 

 

1.1 L’importanza dell’acqua 

 

La scoperta di acqua liquida su un altro pianeta è un elemento di fondamentale importanza per 

diversi fattori: in primis, essendo un fattore necessario per la vita come la conosciamo, la sua 

presenza rappresenta un forte indicatore di potenziale abitabilità. Inoltre, lo studio di bacini o 

riserve idriche può fornire informazioni importanti riguardo la storia geologica e climatica del 

paese. Infine, l’acqua liquida costituisce anche una risorsa strategica per possibili missioni 

spaziali con equipaggio. 

La possibile presenza di acqua liquida alla base delle calotte polari marziane è stata ipotizzata 

più di 30 anni fa, ma mai osservata. Per indagare questa ipotesi si è deciso di ricorrere ad una 

tecnica largamente impiegata sulla Terra per trovare acqua liquida sotto alle calotte glaciali 

terrestre: il Radio Echo Sounding (RES). Tale approccio consiste nel trasmettere un impulso 

elettromagnetico a bassa frequenza verso il terreno, registrare gli echi riflessi, generati ogni 

volta che viene incontrata una discontinuità nel sottosuolo, e, grazie alla misurazione del tempo 

di ritorno è possibile stimare la profondità, ricostruendo una sezione verticale della stratigrafia 

del terreno (R. Orosei et al, 2018). 

 

1.2 Il radar MARSIS 

 

Lo strumento utilizzato è MARSIS, un radar per l’esplorazione del sottosuolo dotato di 

un’antenna di 40 metri, montato a bordo dell’orbiter Mars Express dell’Agenzia Spaziale 

Europea (ESA). Il suo obiettivo primario è mappare la distribuzione di acqua, sia in forma 

liquida che solida, nel sottosuolo marziano. 

A tal fine, MARSIS ha esplorato il sottosuolo marziano per oltre 12 anni (R. Orosei et al, 2018). 
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Nonostante la copertura del pianeta sia pressoché completa, i dati su cui si è svolto il presente 

elaborato sono stati acquisiti principalmente in aree del polo sud, polo nord ed equatore 

marziano.  

Le figure 1, 2 e 3 mostrano la posizione di acquisizione di 303 orbite relative a queste tre aree. 

Il colore delle tracce rappresenta l’angolo di elevazione del sole (espresso in gradi), indicato 

nella colorbar di ciascuna immagine, e descrive la posizione del Sole rispetto all’orizzonte, in 

particolare se si trova al di sopra o al di sotto di esso durante l’acquisizione dei dati.  

L’angolo di elevazione è un’informazione di notevole importanza, poiché quando il Sole si 

trova al di sotto dell’orizzonte, ovvero durante la notte, la frequenza del plasma ionosferico 

raggiunge i valori più bassi, creando condizioni più favorevoli per l’esplorazione del sottosuolo 

(European Space Agency, 2019). 

 

Figura 1 - Orbite acquisite nel polo nord marziano 
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Figura 2 - Orbite acquisite nella zona equatoriale 

 

 

Figura 3 - Orbite acquisite nel polo nord marziano 

 

Tra le aree investigate, una regione in particolare, un’area di 200 km del Planum Australe, 

centrata a 193° E, 81° S, ha mostrato anomalie di particolare interesse: sono stati rilevati valori 

di permittività che non erano mai stati osservati prima su Marte. In base ad analogie con misure 

di costante dielettrica effettuate in laboratorio (Cosciotti et al., 2023) è stato dedotto che l’area 
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brillante situata sotto la calotta polare sud marziana siano dovuti a materiali (parzialmente) 

saturi d’acqua e/o a strati di acqua liquida (R. Orosei et al, 2018). 

La figura 4 mostra l’area del Planum Australe, mentre il riquadro nero indica l’area di indagine. 

 

Figura 4 - Mappa del Planum Australe (R. Orosei et al, 2018)  

 

1.2.1 Le antenne 

 

L’insieme delle antenne di MARSIS è costituito da due elementi: un dipolo e un monopolo. 

L’antenna principale, un dipolo montato parallelamente alla superficie e alla direzione di moto 

della sonda, è utilizzata per la trasmissione di impulsi e la ricezione di echi riflessi dalla 

superficie marziana, dal sottosuolo e dalla ionosfera. L’antenna secondaria, un monopolo 

orientato lungo il nadir, presenta uno zero di risposta proprio in direzione nadir ed è quindi 

sensibile ai ritorni provenienti da direzioni oblique. Tali ritorni superficiali, giungendo nello 

stesso intervallo temporale degli echi di sottosuolo, potrebbero mascherarli, rappresentando 

dunque un contributo indesiderato al segnale ricevuto. Per questo motivo, durante le operazioni 

di sondaggio del sottosuolo, il monopolo viene impiegato per rimuovere il clutter dal segnale 

acquisito dal dipolo (Orosei et al, 2017). 
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1.2.2 Il segnale trasmesso 

 

Il sondaggio del sottosuolo dipende in maniera critica da una conoscenza accurata del ritardo 

temporale tra la trasmissione del segnale e la ricezione degli echi. Questo ritardo è 

significativamente influenzato dalle proprietà della ionosfera marziana, come la massima 

frequenza del plasma o il contenuto totale degli elettroni, e, sebbene grazie a MARSIS si 

disponga oggi di una notevole quantità di informazioni sulla ionosfera marziana, non è ancora 

possibile prevedere con precisione gli effetti che ne perturbano il comportamento rispetto alle 

condizioni attese (Peter et al., 2024). Per questo motivo MARSIS è in grado di effettuare una 

determinazione preliminare del tempo di andata e ritorno dell’impulso trasmesso attraverso una 

particolare modalità operativa chiamata fase di acquisizione, affinché, ogni volta che lo 

strumento entra in una nuova sotto-modalità di sondaggio del sottosuolo o utilizza una diversa 

banda di frequenze, esso inizia a trasmettere un impulso molto più lungo, con una larghezza di 

banda ridotta (200 kHz), raccogliendo echi all’interno di una finestra di ricezione molto più 

estesa. È possibile però programmare MARSIS in modo da saltare questa fase (Orosei et al, 

2017). 

I dati sono stati acquisiti trasmettendo impulsi radio centrati a 1.8, 3, 4 o 5 MHz, ciascuno con 

un’ampiezza di banda pari a 1 MHz. Sono state impiegate onde a basse frequenze poiché hanno 

una penetrazione maggiore, comportando però il rischio di essere distorte dalla ionosfera 

marziana. Per questo motivo, come precedentemente accennato, al fine di ridurre al minimo la 

dispersione ionosferica del segnale, le osservazioni sono state effettuate quando la sonda si 

trovava sul lato notturno di Marte (Orosei et al, 2017). 

L’impulso trasmesso è un chirp, un segnale nel quale la frequenza varia linearmente con il 

tempo. Questo tipo di segnale è generalmente utilizzato quando la durata dell’impulso 

necessaria ad ottenere la risoluzione desiderata è talmente breve che, per raggiungere un buon 

rapporto segnale-rumore, l’impulso richiederebbe una potenza di picco superiore ai limiti 

imposti dal design della missione. 

Si parla in particolare di “up-chirp”, in cui la durata del chirp è di 250 µs, mentre la finestra di 

ricezione è di 350 µs; dopo la compressione del segnale, il chirp genera un picco di circa 1 µs. 

La maggior parte delle orbite è caratterizzata da chirps trasmessi ad intervalli regolari. Ciò è 

dovuto al metodo di trasmissione, i chirp sono trasmessi in gruppi di 100-200, a seconda della 

quota della sonda e della frequenza, separati da intervalli di tempo in cui gli echi vengono 

elaborati a bordo prima di essere trasmessi a Terra. 
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Un diverso metodo di acquisizione, definito superframe, prevede l’invio consecutivo di 3200 

impulsi come un unico blocco, senza alcuna pausa tra un chirp e l’altro.  

Nella regione di Planum Australe, dove sono state individuate anomalie radar interpretate come 

possibili tracce di acqua liquida, un numero ristretto di orbite, circa 25, è stato acquisito tramite 

questa modalità, utilizzando impulsi centrati nelle bande 3–4 MHz o 4–5 MHz. 

La limitatezza nel numero di orbite trasmesse come superframe è dovuta al fatto che tale 

configurazione richiede una programmazione speciale dello strumento che può eseguita solo 

tramite un intervento manuale sui parametri operativi. 

Le figure 5 e 6 mostrano rispettivamente la matrice degli echi dell’orbita 03936, acquisita in 

maniera tradizionale, e dell’orbita 10737, acquisita in modalità superframe. Entrambe le figure 

rappresentano gli echi prima della compressione in range e, di conseguenza, non mostrano la 

struttura del sottosuolo. 

 

Figura 5 - Matrice degli echi dell'orbita 03936 
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Figura 6 - Matrice degli echi dell'orbita 10737 

 

 

1.2.3 Conversione A/D 

 

Dopo la trasmissione, lo strumento passa in modalità di ricezione e registra gli echi provenienti 

dalla superficie e dal sottosuolo. Per rappresentare correttamente le caratteristiche di un segnale 

che contiene frequenze superiori alla frequenza di campionamento, come nel caso degli echi 

del sottosuolo, nelle bande centrate a 1.8 MHz, 3 MHz, 4 MHz o 5 MHz, il segnale viene 

traslato a una frequenza portante di 0.7 MHz tramite un mixer e poi campionato ad una 

frequenza di 2.8 MHz da un convertitore analogico-digitale, in modo da ottenere una 

rappresentazione digitale del segnale. 

A seconda però della configurazione dello strumento, i dati digitalizzati possono seguire un 

percorso diverso. Nella modalità standard, gli echi vengono elaborati direttamente a bordo 

mediante compressione in range e in azimuth, prima di essere inviati a Terra (telemetria 20.3). 

In alternativa, se l’acquisizione avviene nella modalità superframe accennata in precedenza, 

una quantità limitata di dati può essere salvata nella memoria di bordo prima della 

compressione, preservando così l’informazione grezza del segnale (telemetria 6.6) e 
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permettendo di effettuare a Terra elaborazioni che l’elettronica a bordo non esegue o esegue in 

maniera limitata. 

 

1.2.4 Flash Memory 

 

MARSIS è dotato di una memoria flash che può essere utilizzata per il recupero delle 

informazioni. È importante precisare che l’archiviazione dei dati è possibile solo durante le 

operazioni di sondaggio del sottosuolo e che tali dati si aggiungono sempre a quelli già elaborati 

a bordo, i quali vengono comunque trasmessi a Terra. Di conseguenza, la memoria flash 

conterrà dati non elaborati che, una volta processati, sono comunque inclusi nella telemetria 

scientifica dello strumento.  

In figura 7, la freccia blu indica il percorso dei dati. 

 

Figura 7 - Schema concettuale dell’elaborazione a bordo di MARSIS durante il sondaggio del sottosuolo (Orosei et al., 

2017) 
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1.2.5 Elaborazione dei dati 

 

Come accennato, è possibile memorizzare una ridotta quantità di dati grezzi e trasmetterli a 

Terra, in modo da effettuare elaborazioni più approfondite. In particolare, una volta ricevuti i 

dati, viene effettuata una compressione in range, che consiste nella correlazione tra l’eco 

ricevuto e l’onda trasmessa (Orosei et al., 2015), e vengono allineati ad un tempo di ritardo 

corrispondente ad un’altitudine di 25 km sopra l’ellissoide marziano, che va a compensare 

parzialmente lo spostamento in frequenza dovuto all’effetto Doppler. 

 

1.3  MATLAB e struttura dei file MARSIS  

 

L’ambiente scelto per l’accesso e la manipolazione dei dati è MATLAB, vista la sua capacità 

di gestire efficientemente matrici di grandi dimensioni.  

Secondo la documentazione tecnica di Orosei, Huff, Ivanov e Noschese, i dati acquisiti da 

MARSIS, sia grezzi che processati, vengono memorizzati in formato binario all’interno di file 

con estensione .DAT. Per ogni orbita, nel caso dei file grezzi, sono disponibili due file distinti: 

E_orbita_SS3_TRK_RAW_M_F.DAT e E_orbita_SS3_TRK_RAW_M_G.DAT. Il primo 

contiene i dati del radar, metadati temporali e telemetria. Il secondo invece contiene parametri 

orbitali e geometrici necessari a localizzare le osservazioni nello spazio e nel tempo. 

Al fine di potervi accedere e manipolarli sono stati utilizzati due script 

MARSIS_E_SS3_TRK_RAW.m e MARSIS_E_GEO.m, che descrivono la struttura interna 

rispettivamente di file dati e file geometrici. Nel primo caso, ogni record binario ha una 

lunghezza fissa di 2048 byte da cui è possibile estrarre 62 parametri, divisi in due blocchi, B1 

e B2, a seconda della frequenza centrale della banda utilizzata per la trasmissione. 

L’informazione relativa alla banda è codificata nel campo “xxyy”, dove xx e yy indicano 

rispettivamente la prima e la seconda frequenza trasmessa (nel caso di acquisizioni a due 

frequenze). I valori 00 e 01 corrispondono rispettivamente alle bande B1 e B2. (Orosei et al, 

2017). 

Nella tabella 1 sono mostrati i campi più rilevanti.  

 

 



 
 

14 
 

 

Parametro Offset 

(byte:bit) 

Dimensione Tipo Descrizione 

SCIENTIFIC_DATA_B1 44:0 980 byte int8 Matrice degli 

echi 

DCG_CONFIGURATION_B1 12:0 2 byte ubit2  

Tabella 1 – Parametri dei file dati grezzi 

 

Per quanto riguarda i file geometrici, invece, ogni record ha dimensione di 215 byte ed è 

composto da 19 parametri. Nella tabella 2 sono mostrati i principali. 

Parametro  Offset 

(byte:bit) 

Dimensione Tipo Descrizione 

GEOMETRY_EPHEMERIS_TIME 6:0 1 byte float64 Tempo 

effemeride 

ORBIT_NUMBER 53:0 1 byte uint32 Numero 

dell’orbita 

della sonda 

TARGET_SC_RADIAL_VELOCITY 135:0 8 bytes float64 Velocità 

radiale della 

sonda 

Tabella 2 – Parametri dei file geometrici dei dati grezzi 

 

Per quanto riguarda i dati già processati, alla stessa maniera dei file per i dati grezzi, sono 

disponibili i file: I_orbita_SS3_TRK_RAW_M.DAT, che contengono gli echi radar in forma 

complessa, ovvero modulo e fase, per le due bande B1 e B2, più tutti i campi geometrici della 

sonda.  

Il file MARSIS_I_SS3_TRK_RAW definisce la struttura interna dei file dati. Ogni file ha una 

lunghezza fissa di 15927 bytes da cui è possibile estrarre 30 parametri.  

La tabella 3 mostra i campi più rilevanti. 
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Parametro Offset 

(byte:bit) 

Dimensione Tipo Descrizione 

ECHO_MODULUS_B1 38:0 1 byte float32 Modulo 

dell’eco radar 

ECHO_PHASE_B1 3958:0 1 byte float32 Fase dell’eco 

radar 

GEOMETRY_EPHEMERIS_TIME 

 

15718:0 1 byte float64 Tempo 

effemeride 

CENTRAL_FREQUENCY 0:0 2 byte float32 Frequenza 

centrale 

operativa 

Tabella 3 – Parametri dei file dei dati processati 
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Capitolo 2 

Radargrammi e spazio delle frequenze 

di Fourier 

 

Il seguente capitolo è suddiviso in due parti. Nella prima verrà presentata l’elaborazione dei 

dati grezzi, con l’obiettivo di rappresentare visivamente la matrice degli echi e di mettere in 

evidenza le diverse tipologie di interferenze che saranno oggetto di studio nel capitolo 

successivo. La seconda parte, invece, sarà dedicata ai dati processati, analizzati per evidenziare 

le loro caratteristiche e la loro utilità ai fini delle elaborazioni successive. 

L’analisi di dati grezzi e processati risulta complessa a causa di diversi fattori: interferenze 

generate dall’elettronica della sonda, presenza di echi provenienti da zone lontane dalla 

superficie e dispersione del segnale dovuto alla ionosfera marziana. 

2.1 L’influenza della ionosfera marziana  

 

La ionosfera marziana presenta caratteristiche che variano significativamente tra il lato diurno 

e quello notturno del pianeta. La ionosfera diurna è controllata principalmente dalla 

fotoionizzazione dovuta alle radiazioni solari. Al contrario, la ionosfera notturna, che appare 

molto più frammentata e meno densa, è formata, oltre che dal trasporto di plasma dalle zone 

illuminate, principalmente a causa della ionizzazione prodotta dall’impatto degli elettroni 

precipitati (Němec et al., 2019). 

Nonostante Marte non possieda un campo magnetico globale come la Terra, campi magnetici 

crostali locali sono talvolta abbastanza forti da influenzare sia i processi ionosferici del plasma, 

sia la precipitazione degli elettroni. Di conseguenza, la densità ionosferica del plasma in luoghi 

con forti campi magnetici crostali può essere significativamente più forte rispetto a zone con 

campi magnetici crostali più deboli (Němec et al., 2019). 

Le osservazioni di MARSIS insieme ai dati dello strumento ASPERA-3 (Duru et al., 2011) 

mostrano che, durante la notte, la ionosfera presenta una densità elettronica notevolmente 

inferiore rispetto al lato diurno. In assenza di fotoionizzazione solare, infatti, il plasma tende a 

rarefarsi, dando origine a regioni a bassa densità accompagnate da fenomeni di accelerazione 
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di particelle. Per questo motivo, le misure radar del sottosuolo marziano vengono effettuate 

principalmente nelle ore notturne, migliorando la qualità dei dati raccolti. 

2.2 Matrice degli echi  

 

I dati acquisiti da MARSIS sono organizzati sotto forma di una matrice di echi, in cui le colonne 

rappresentano i singoli echi, mentre le righe indicano la profondità nel sottosuolo. Visivamente, 

la matrice è rappresentata come un’immagine a falsi colori, dove la luminosità del singolo pixel 

è funzione dell'intensità del segnale, di conseguenza, zone più chiare dell’immagine 

evidenziano superfici o discontinuità che riflettono maggiormente il segnale (Orosei et al., 

2015). 

Per quanto riguarda i dati grezzi, la matrice degli echi, che è costituita da valori reali, non risulta 

facilmente interpretabile e fornisce un’immagine poco significativa. Dopo l’elaborazione 

secondo le modalità descritte nel paragrafo 1.2.5, la matrice, ora formata da valori complessi, 

assume un aspetto visivo simile ad una sezione prodotta da un georadar, mostrando la struttura 

verticale del sottosuolo lungo un piano perpendicolare alla superficie e che segue la traiettoria 

della sonda. 

Le figure 8 e 9 sono relative alla stessa orbita, rispettivamente prima e dopo il processing. La 

seconda immagine, definita “radargramma”, mostra la sezione verticale del sottosuolo 

marziano. 
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Figura 8 - Matrice degli echi dell'orbita 10737 prima del processing 

 

Figura 9 – Radargramma dell’orbita 10737  
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2.3 Trasformata di Fourier 

 

La trasformata di Fourier è largamente impiegata nella teoria dei segnali. Il suo uso più comune 

è trasformare una funzione nel dominio del tempo, in quello delle frequenze, evidenziando 

componenti del segnale che nel dominio temporale risulterebbero difficilmente distinguibili, 

come interferenze o rumore strumentale.  

Se un 𝑥(𝑡) è un segnale definito nel dominio del tempo, la trasformata di Fourier 𝑋(𝑓) è definita 

come:  

𝑋(𝑓) =  ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
+∞

−∞

 

Dove:  

• 𝑡 è la variabile temporale 

• 𝑓 è la frequenza 

• 𝑗 =  √−1 

Nel caso di immagini o dati radar nella forma di matrici, si utilizza la trasformata 

bidimensionale. Per un’immagine 𝑥[𝑚, 𝑛] di dimensioni 𝑀 × 𝑁, la trasformata 2D è definita 

come:  

𝑋[𝑘, 𝑙] =  ∑ ∑ 𝑥[𝑚, 𝑛]

𝑁−1

𝑛=0

𝑒−𝑗2𝜋(
𝑘𝑚
𝑀

+ 
𝑙𝑛
𝑁

)

𝑀−1

𝑚=0

 

Dove: 

• 𝑚 e 𝑛 indicano le coordinate spaziali della matrice originale 

• 𝑘 e 𝑙 indicano le coordinate nel dominio della frequenza 

 

2.3.1 Proiezione nello spazio delle frequenze: dati grezzi 

 

Per proiettare la matrice degli echi nello spazio di Fourier si applica una trasformata 

bidimensionale. 
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In MATLAB, lo spettro delle frequenze è ordinato a partire da 0 Hz fino alla massima frequenza 

positiva, per poi proseguire dalle frequenze negative fino a tornare a 0 Hz. Si possono 

rappresentare gli spettri in ordine crescente di frequenza tramite il comando fftshift. 

Tale disposizione ne facilita la visualizzazione, disponendo le frequenze negative a sinistra e 

quelle positive a destra. 

Questa rappresentazione, che può essere definita un “diagramma Doppler-frequenza”, mostra, 

visualizzandone del modulo, che l’eco proveniente dalla superficie si concentra in una banda 

quasi verticale molto stretta che, nei dati prima dell’elaborazione a Terra, si allinea lungo la 

frequenza Doppler dovuta al moto verticale della sonda. 

Di seguito, in figura 10, la trasformata della matrice degli echi dell’orbita 10737. 

 

Figura 10 – Diagramma Doppler-frequenza della matrice degli echi dell'orbita 10737 

 

In seguito, si applica un filtro passa banda per mantenere solo la banda di segnale utile, 

ovvero quella contenente il chirp trasmesso. Nei dati grezzi, il segnale si trova tra 0.2 MHz e 

1.2 MHz. Tutte le componenti spettrali al di fuori di questa gamma vengono eliminate. 

La figura 11 mostra l’applicazione del filtro passa banda. 
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Figura 11 – Applicazione del filtro passa banda per l’orbita 10737 prima e dopo il processing 

 

Visto che il segnale analizzato è reale, la sua trasformata è di tipo Hermitiano: la parte reale 

risulta simmetrica, mentre quella immaginaria antisimmetrica. Per semplificare l’analisi, si è 

considerata soltanto la metà dello spettro corrispondente alle frequenze positive, comprese tra 

0 e metà della frequenza di campionamento del convertitore analogico–digitale. 

La figura 12 mostra le trasformata di Fourier dopo l’eliminazione della parte simmetrica.  
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Figura 12 - Eliminazione della parte simmetrica 

 

Infine, come mostra la figura 13, si eliminano le righe che contengono solo zeri in quanto non 

rilevanti ai fini dell’analisi.  

 

Figura 13 - Eliminazione delle righe di zeri 
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2.3.2 Proiezione nello spazio delle frequenze: dati elaborati 

 

Il procedimento è analogo al precedente, con alcune leggere differenze dovute al processing 

descritto nella sezione 1.2.5, eseguito unicamente sulla parte positiva del segnale mostrata 

nella sezione precedente, opportunamente traslata in modo che il centro della banda sia posto 

a 0 Hz.  

La figura 14 mostra l’applicazione della trasformata 2D alla matrice degli echi. 

 

 

Figura 14 – Diagramma Doppler-frequenza della matrice degli echi dell'orbita 10737 

 

Infine, visto che il segnale, a differenza del caso precedente, si concentra tra -0.5 MHz e +0.5 

MHz, si eliminano tutte le frequenze al di fuori di questa banda (Figura 15). 



 
 

24 
 

 

Figura 15 - Eliminazione delle frequenze fuori banda 
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Capitolo 3 

Analisi delle interferenze con tecniche di 

Computer Vision 

 

Come discusso in precedenza, i dati grezzi prodotti da MARSIS sono affetti da rumore dovuti 

e più fattori: strumentazione di bordo, le risonanze del plasma locale, l’attenuazione e la 

dispersione introdotte dalla ionosfera marziana. In questa fase del lavoro l’attenzione sarà 

rivolta esclusivamente all’analisi dei dati grezzi, poiché essi consentono di osservare in modo 

diretto la presenza e la natura dei disturbi non ancora mitigati dalle procedure di processing. 

I dati analizzati per il presente lavoro di tesi riguardano all’incirca 5800 orbite. Dopo aver 

applicato la trasformata di Fourier bidimensionale alla matrice di echi e aver esaminato 

un’ampia porzione di immagini, è stato possibile individuare tre tipologie di interferenze 

diverse per morfologia e frequenza, ciascuna delle quali mostrava una forte somiglianza tra i 

singoli esempi appartenenti alla stessa categoria. 

Il seguente capitolo si focalizzerà sulla discussione di metodologie per l’identificazione 

automatica dei disturbi utilizzando tecniche di computer vision. L’obiettivo è realizzare un 

catalogo relativo alle principali interferenze presenti nei diagrammi Doppler-frequenza, 

classificandoli in base alla tipologia e frequenza, che ha permesso di comprenderne meglio la 

distribuzione all’interno dei campioni analizzati. 

L’intero processo è stato implementato in linguaggio Python, sfruttando librerie come NumPy, 

OpenCV e Matplotlib per l’elaborazione e la visualizzazione dei risultati.  

3.1 Pre-processing per aumentare il contrasto 

 

Al fine di identificare le interferenze è necessario che siano ben evidenti nell’immagine. Per 

questo motivo tutti i campioni sono stati sottoposti ad un pre-processing su MATLAB, volto ad 

aumentarne il contrasto.  
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Innanzitutto, i valori complessi della matrice ottenuta dall’applicazione della trasformata 2D di 

Fourier alla matrice degli echi sono convertiti in dB, in modo da rappresentare l’intensità del 

segnale in scala logaritmica e rendere più evidenti i segnali più deboli.  

In seguito, si sottrae il valore mediano dall’intera matrice al fine di rimuovere un livello di 

fondo dovuto al rumore e centrare la distribuzione dei valori intorno allo zero. Si è deciso di 

utilizzare il valore mediano invece del valore medio poiché la mediana fornisce una stima più 

robusta del livello di fondo, meno sensibile alla presenza di picchi. 

Per mantenere solo le componenti significative, tutti i valori negativi vengono posti a zero, 

mantenendo quindi solo le intensità positive. 

Infine, è stata applicata una scala di colori limitata all’intervallo [0 dB, 30 dB].  

La figura 16 mostra la trasformata 2D dopo l’aumento del contrasto. 

 

Figura 16 - Diagramma Doppler-frequenza prima e dopo l'aumento del contrasto 

 

3.2 Prima tipologia 

 

Un elevato numero di diagrammi Doppler-frequenza analizzati presenta un insieme di righe 

orizzontali di diversa intensità che si estendono per tutta la larghezza dell’immagine. Questo 

suggerisce la presenza di componenti spettrali che hanno una frequenza fissa all’interno della 

banda del segnale, ma una fase che varia in maniera sostanzialmente casuale, determinandone 

un’estensione lungo lo spettro Doppler.  
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Queste componenti mantengono una frequenza costante lungo tutta l’orbita e non mostrano 

alcuna correlazione con le variazioni geometriche o fisiche del segnale radar. Per questo 

motivo, si ipotizza che l’interferenza possa essere causata dalla strumentazione di bordo. 

Le figure 17, 18 e 19 mostrano alcuni esempi del disturbo.  

 

Figura 17 - Orbita 6835 
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Figura 18 - Orbita 12350 

 

 

Figura 19 - Orbita 4601 
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Per individuare automaticamente l’interferenza è stato sviluppato un algoritmo che sfrutta la 

libreria OpenCV.  

In particolare, dopo aver convertito l’immagine in scala di grigi, si applica un’equalizzazione 

dell’istogramma (cv.equalizeHist) per migliorarne il contrasto. In seguito, calcolando la media 

dell’intensità dei pixel per ogni riga, si ottiene un array 1D che rappresenta la luminosità media 

di ogni riga.  

Per distinguere le righe “anomale” dalle altre, è stata definita una soglia corrispondente al 

ventesimo percentile dei valori dell’array calcolato in precedenza, in modo da evidenziare le 

righe significativamente più luminose. 

Successivamente, tramite la funzione find_peaks() di SciPy, sono stati rilevati i picchi che 

superano tale soglia. Le righe corrispondenti ai picchi individuati rappresentano le potenziali 

interferenze strumentali e sono evidenziate in rosso (Figura 20). 

 

Figura 20 – Rilevazione dell’interferenza 

 

3.3 Seconda tipologia 

 

La seconda tipologia si presenta come una serie di picchi luminosi disposti in diagonale, quasi 

a ricordare una costellazione, generalmente nella parte destra dell’immagine. Il particolare 

pattern suggerisce la presenza di componenti spettrali correlate tra loro. Si ipotizza infatti, che 

nel dominio del tempo fosse presente una componente periodica, in particolare un segnale 

armonico, ed i picchi luminosi rappresentino frequenze multiple della frequenza fondamentale 

di tale segnale. 
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In tal caso, l’interferenza è molto probabilmente dovuta alla strumentazione di bordo. 

Le figure 21, 22 e 23 mostrano alcuni esempi di come l’interferenza si presenta. 

 

 

Figura 21 - Orbita 04202 
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Figura 22 - Orbita 15831 

 

Figura 23 - Orbita 09478 

3.3.1 Rilevamento dell’interferenza 

 

L’algoritmo per individuare il disturbo si basa, come il precedente, sulla libreria OpenCV, ma 

prevede più passaggi, combinando filtraggio, segmentazione binaria, clustering e regressione.  
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Inizialmente, l’immagine, letta in scala di grigi, viene divisa in due metà e su ciascuna viene 

applicato un filtro bilaterale (cv2.biltareralFilter), che permette di ridurre il rumore 

preservando i contorni.  

Nella metà inferiore, presentando solitamente più rumore, sono utilizzati parametri più intensi, 

con un incremento di circa un fattore tre rispetto alla metà superiore. In particolare, sono stati 

utilizzati valori più elevati di σColor e σSpace, rispettivamente la deviazione standard del filtro 

nello spazio dei colori e nello spazio delle coordinate.  

Le due parti sono poi ricombinate in un’unica immagine (Figura 24).  

L’immagine filtrata viene poi binarizzata (cv2.threshold), ovvero la si trasforma in bianco e 

nero in base ad una soglia, scelta appositamente in modo da lasciare solo le parti più luminose 

nell’immagine (Figura 25).  

Dopo una dilatazione morfologica per connettere i pixel vicini (cv2.dilate), viene applicata una 

maschera che mantiene solo la porzione destra dell’immagine, regione in cui tende a 

manifestarsi l’interferenza (Figura 26). 

 

 

Figura 24 – Immagine dell’orbita 4202 in seguito all’applicazione dei filtri 
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Figura 25 – Risultato della binarizzazione  

 

 

 

Figura 26 - Risultato della dilatazione ed eliminazione della parte sinistra dell’immagine 
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In seguito, vengono ricavate le coordinate di tutti i pixel bianchi, che costituiranno la base per 

l’algoritmo di clustering non supervisionato DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) che raggruppa i punti in base alla densità spaziale. (Ester et al., 1996) 

La figura 27 mostra in rosso i centroidi di ciascun cluster, calcolati come media delle coordinate 

rispettivamente delle x e delle y. 

 

Figura 27 - Centroidi dei clusters 

 

Infine, per stimare una retta passante per i centroidi dei cluster si è dimostrato particolarmente 

efficace il metodo iterativo RANSAC (RANdom SAmple Consensus), un algoritmo non 

deterministico progettato per stimare i parametri di un modello a partire da un insieme di dati 

contenenti outlier, ovvero valori anomali o rumorosi (Fischler & Bolles, 1981). 

L’algoritmo assume che i dati siano formati da inlier, ovvero punti che seguono il modello 

ipotizzato (in questo caso, la retta che attraversa i centri dei cluster), e outlier, che invece si 

discostano da esso. Dopo un numero prefissato di iterazioni, viene scelto il modello che 

massimizza il numero di inlier, garantendo una stima robusta della retta anche in presenza di 

disturbi o errori di rilevamento nei dati.  

La figura 28 mostra il risultato dell’applicazione del RANSAC, disegnando in blu la retta 

stimata. 



 
 

35 
 

 

Figura 28 - Applicazione del RANSAC per stimare la retta passante per i centroidi 

 

3.3.2 Analisi del segnale 

 

Un segnale armonico presenta una struttura periodica nel dominio del tempo, in cui ciascuna 

armonica è multiplo intero della frequenza fondamentale. Per verificare che l’interferenza 

osservata derivi da un segnale di questo tipo, è stato adottato un approccio basato sull’analisi 

della distanza in frequenza tra i picchi luminosi visibili nell’immagine: una spaziatura costante 

costituirebbe una prova a favore dell’ipotesi di una struttura armonica. 

Innanzitutto, tra tutti i centroidi trovati in precedenza, si considerano solo quelli appartenenti 

alla retta calcolata tramite RANSAC (Figura 29).  
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Figura 29 - Centroidi appartenenti alla retta 

In seguito, si calcolano la distanza euclidea media tra i punti ottenuti e la relativa deviazione 

standard. Si utilizza poi il seguente criterio di valutazione: se la deviazione standard risulta 

inferiore del 5% della distanza media, la spaziatura è considerata pressoché costante e quindi 

compatibile con un segnale armonico. La figura 30 mostra un istogramma con la distanza media 

tra i diversi picchi. 

 

Figura 30 - Distanza tra centroidi 
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Sfortunatamente, questo approccio non è efficace su tutti i campioni a causa di diversi fattori: 

il segnale che causa questa interferenza potrebbe essere modulato in frequenza, di conseguenza 

un allineamento perfetto non è possibile. Inoltre, la risoluzione del dato è limitata, spesso alcuni 

picchi non sono sufficientemente luminosi per essere rilevati, di conseguenza la distanza media 

risulta inaccurata. 

 

3.4 Terza tipologia 

 

L’ultima tipologia si presenta con meno frequenza delle precedenti ad appare come un picco 

luminoso isolato, all’incirca 300 campioni nell’intero dataset,solitamente nella parte centrale 

dell’immagine. La sua morfologia mostra una larghezza di banda molto ridotta sia nella 

frequenza del segnale, indicando un’assenza di modulazione, sia nella sua frequenza Doppler, 

indicando una stazionarietà nel tempo, in modo molto simile ad un disturbo causato dalla 

strumentazione di bordo. 

Le figure 31, 32 e 33 mostrano alcuni esempi dell’interferenza.  

 

Figura 31 - Orbita 02937 
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Figura 32 - Figura 04145 

 

Figura 33 - Figura 04123 
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Per individuare automaticamente l’interferenza sono stati provati due approcci differenti: il 

primo, in maniera simile ai precedenti, si basa su OpenCV. L’obiettivo è riconoscere l’oggetto 

che presenta una forma più circolare delle altre dopo operazioni di filtraggio, sogliatura e 

dilatazione.  

Il secondo, discusso nel capitolo successivo, si utilizza un modello YOLO per il rilevamento 

dell’interferenza. 

 

3.4.1 Rilevamento dell’interferenza 

 

Inizialmente, all’immagine letta in scala di grigi viene applicata un filtro bilaterale 

(cv2.bilateralFilter) per ridurre il rumore. In seguito, tramite cv2.threshold, l’immagine viene 

binarizzata utilizzando come parametro una soglia sufficientemente alta da lasciare solamente 

le parti più luminose dell’immagine.  

L’immagine viene poi sottoposta a una dilatazione morfologica (cv2.dilate), dettata da un 

kernel di 6x6 pixel di forma ellittica (Figura 34).  

 

Figura 34 - Applicazione di soglia e dilatazione 
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La funzione measure.label() della libreria scikit-image consente di individuare e numerare 

automaticamente tutte le regioni connesse. I pixel neri sono considerati sfondo e di 

conseguenza, ignorati.  

La figura 35 mostra le diverse regioni evidenziate con colori diversi. 

 

Figura 35 - Regioni connesse evidenziate con colori diversi 

 

Per ciascuna componente individuata viene creata una maschera binaria che isola unicamente i 

pixel specifici a quella particolare etichetta. Al fine di eliminare sia piccoli artefatti dovuti al 

rumore sia regioni troppo estese che potrebbero non rappresentare strutture di potenziale 

interesse, viene calcolato il numero di pixel bianchi per ciascuna componente e considerate solo 

quelle comprese all’interno di un intervallo dimensionale predefinito.  

Per ciascuna delle regioni valide, tramite la funzione cv2.find_countours(), vengono estratti i 

contorni per calcolare le seguenti metriche morfologiche:  

• Circolarità: un valore uguale ad 1 indica una forma perfettamente circolare 

• Rapporto d’aspetto: un valore vicino ad 1 indica una forma isotropa 

• Solidità: valori prossimi ad 1 indicano oggetti compatti e privi di concavità evidenti. 

Una regione è considerata valida se soddisfa le seguenti condizioni:  

• Circolarità > 0.3 
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• 0.2 < Rapporto d’aspetto < 1.2 

• Solidità > 0.8 

Alle regioni che soddisfano tali vincoli viene assegnato uno score combinato:  

score = C + 0.01 * S 

Il candidato con lo score più elevato, il contorno corrispondente viene evidenziato 

sull’immagine originale.  

La figura 36 mostra l’output dell’algoritmo eseguito su un’immagine contenente l’interferenza. 

 

Figura 36 - Interferenza individuata correttamente 

 

L’algoritmo sviluppato funziona, ma è particolarmente sensibile a falsi positivi, come mostrano 

le figure 37 e 38. Di conseguenza, il capitolo successivo mostrerà un diverso approccio, basato 

su YOLO (You Only Look Once), un sistema di rilevamento oggetti in tempo reale, che utilizza 

reti convoluzionali (Redmon et al., 2015). 
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Figura 37 Falso positivo 1 

 

Figura 38 - Falso positivo 2 
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Capitolo 4 

Rilevamento di interferenze tramite 

YOLO 
 

YOLO è un algoritmo di object detection in tempo reale estremamente diffuso. A differenza di 

altri approcci che eseguono una scansione sequenziale dell’immagine, YOLO tratta l’immagine 

in una sola volta unendo velocità di elaborazione e accuratezza nella localizzazione degli 

oggetti (Redmon et al., 2015).  

L’algoritmo divide l’immagine in una griglia N x N, se il centro di un oggetto si trova in una 

particolare cella, allora essa si occupa del suo rilevamento. Ciascuna cella predice infatti B 

bounding boxes ed i livelli di confidenza per ciascuno di essi. Questi ultimi rappresentano 

quanto il modello è sicuro che il bounding box contenga l’oggetto da rilevare. 

Formalmente, la confidenza è misurata come:  

𝑃(𝑂𝑏𝑗𝑒𝑐𝑡) ∙ 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ 

dove: 

• P(Object): probabilità che nella cella sia effettivamente presente un oggetto. 

• 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ: misura la sovrapposizione tra il box previsto e il box reale (ground truth), 

ovvero quanto accuratamente la predizione coincide con la posizione effettiva 

dell’oggetto. 

Se la cella non contiene nessun oggetto, P(Object) è nulla, di conseguenza la confidenza è zero. 

Viceversa, se un oggetto è presente, la confidenza riflette direttamente la qualità della 

predizione (Redmon et al., 2015). 

Per un’immagine in input, YOLO produce una mappa di output di dimensioni:  

𝑁 × 𝑁 × (𝐵 × 5 + 𝐶) 

In cui:  

• N x N: numero di suddivisione delle celle 

• B: numero di bounding boxes  
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• C: numero di classi da riconoscere 

Ogni bounding box contiene cinque valori (x,y,w,h,c):  

• x,y: coordinate del centro del box (relative alla cella della griglia) 

• w,h: larghezza e altezza del box (relative all’intera immagine) 

• c: punteggio di confidenza 

YOLO è un modello pre-addestrato su grandi dataset generici, come COCO o ImageNet. 

Tuttavia, è necessario adattarlo al nostro dominio, in questo caso il riconoscimento delle 

interferenze della terza tipologia.  

Per questo motivo, è stato realizzato un dataset personalizzato, formato da un insieme di 

immagini contenenti il fenomeno di interesse annotate manualmente mediante bounding boxes. 

In questo modo è stato possibile ri-addestrare (fine-tuning) il modello YOLO, permettendogli 

di apprendere le caratteristiche specifiche del problema.  

Per valutare le prestazioni del modello sarà utilizzata la metrica Box(P, R, mAP50, Map50-95), 

dove:  

• P (Precisione): L'accuratezza degli oggetti rilevati, che indica quante rilevazioni erano 

corrette. 

• R (Recall): La capacità del modello di identificare tutte le istanze di oggetti nelle 

immagini. 

• mAP50: Precisione media (mean average precision) calcolata con una soglia di 

intersection over union (IoU) di 0.50. È una misura dell'accuratezza del modello 

considerando solo le detection "facili". 

• mAP50-95: La media della precisione media (mean average precision) calcolata a 

diverse soglie di IoU, che vanno da 0.50 a 0.95. Fornisce una visione completa delle 

prestazioni del modello a diversi livelli di difficoltà di detection. 

(Ultralytics, n.d.) 

 

4.1 Creazione del dataset 

 

Sono state selezionate 363 immagini in totale: 273 contengono l’interferenza da individuare, le 

restanti, invece, ne sono prive, per consentire al modello di apprendere più efficacemente la 
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differenza tra le aree prive di oggetti e quelle contenente i punti luminosi, riducendo la 

probabilità di falsi positivi. 

Il dataset è stato suddiviso in tre cartelle:  

• Training set: contenente 291 immagini  

• Validation set: contenente 40 immagini 

• Test set: contenente 32 immagini 

Ogni cartella, per ciascuna immagine, contiene anche una label, un file .txt con lo stesso nome 

dell’immagine a cui fa riferimento, con le seguenti informazioni:  

< 𝑐𝑙𝑎𝑠𝑠_𝑖𝑑 > < 𝑥_𝑐𝑒𝑛𝑡𝑒𝑟 > < 𝑦_𝑐𝑒𝑛𝑡𝑒𝑟 > < 𝑤𝑖𝑑𝑡ℎ > < ℎ𝑒𝑖𝑔ℎ𝑡 > 

• class_id: intero che indica la classe degli oggetti nell’immagine, in questo caso solo 

una. 

• 𝑥_𝑐𝑒𝑛𝑡𝑒𝑟, 𝑦_𝑐𝑒𝑛𝑡𝑒𝑟: valori tra 0 e 1 che indicano rispettivamente le coordinate 

orizzontali e verticali del centro del bounding box. 

• 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡: valori tra 0 e 1 che indicano la larghezza e altezza del bounding box 

rispetto all’immagine. 

Le labels sono state realizzate tramite il software LabelImg (Tzutalin, 2015), che permette 

realizzare il bounding box attorno all’oggetto di interesse e generare una label YOLO-like. Nel 

caso in cui l’interferenza non sia presente nell’immagine, è sufficiente avere una label vuota.  

La figura 39 mostra la creazione di una bounding box utilizzando LabelImg.  
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Figura 39 – Creazione manuale del bounding box  

 

4.2 Training e testing del modello 

 

In seguito, il modello è stato allenato sul dataset realizzato. Si è scelto YOLOv8n viste le sue 

ottime prestazioni anche su hardware limitato (Yaseen, 2024). L’allenamento è stato infatti 

eseguito su una CPU Ryzen 5 3600XT con 16GB di RAM, in quanto la GPU disponibile 

(Radeon RX 6750 XT) non supporta CUDA, un’architettura software sviluppata da NVIDIA 

per l’elaborazione parallela, che riduce significativamente il tempo necessario per 

l’addestramento e l’inferenza dei modelli di deep learning. 

Prima della fase di training, è fondamentale impostare gli iperparametri, ovvero insiemi di 

variabili che rimangono fissi durante l’addestramento e che regolano l’apprendimento del 

modello, con l’obiettivo di ottimizzarne le prestazioni.  

La regolazione degli iperparametri è un processo iterativo, anche una lieve variazione dei loro 

valori può causare cambiamenti significativi nelle prestazioni del modello.  

Al fine di aumentare la robustezza e migliorare capacità di generalizzazione, sono stati utilizzati 

diversi parametri di data augmentation, che generano, a partire dal dataset originale, nuove 

immagini modificate. È importante che l’impostazione dei valori sia coerente con le 

caratteristiche delle immagini nel dataset. Nel caso dell’interferenza, essendo le immagini 
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molto simili tra loro, introdurre trasformazioni troppo marcate potrebbe generare campioni 

fuorvianti. Per questo motivo si è optato solo per iperparametri che modificano leggermente la 

scala, la posizione e la luminosità dell’immagine.  

Per monitorare l’andamento dell’addestramento è stato utilizzato un validation set che ha 

permesso di stimare le capacità del modello e, di conseguenza, guidare la scelta degli 

iperparametri. 

In seguito a diversi allenamenti con leggere variazioni nella regolazione dei parametri, il 

risultato migliore si è ottenuto con i valori mostrati nella tabella 4. La descrizione è presa 

dalla documentazione di Ultralytics. 
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Parametro Valore Descrizione 

epochs 100 Un'epoca è un passaggio completo in avanti e 

indietro di tutti gli esempi di training. 

batch 2 Numero di immagini elaborate simultaneamente in 

ogni iterazione 

warmup_epochs 5 Numero di epoche per il warmup del tasso di 

apprendimento 

imgsz 640 Dimensioni dell'immagine per l'inferenza. 

lr0 0.002 Tasso di apprendimento iniziale all'inizio 

dell'addestramento. 

lrf 0.002 Fattore finale del learning rate come frazione di lr0 

degrees 0.0 Ruota l'immagine in modo casuale entro 

l'intervallo di gradi specificato 

mixup 0.0 Fattore di mixup augmentation 

mosaic 0.0 Probabilità di mosaic augmentation che combina 

quattro immagini diverse in una sola 

flipud 0.0 Probabilità di flip orizzontale 

hsv_v 0.1 Intervallo casuale di aumento della luminosità 

translate 0.05 Trasla l'immagine orizzontalmente e verticalmente 

di una frazione della dimensione dell'immagine 

scale 0.1 Scala l'immagine di un fattore di guadagno 

box 0.02 Peso della loss del riquadro di delimitazione nella 

funzione di loss totale 

cls 0.5 Peso della loss di classificazione nella funzione di 

loss totale. 

fliplr 0.0 Probabilità di flip verticale 

patience 20 Numero max. di epoche senza miglioramenti 

prima di early stopping 

dropout 0.35 Percentuale di neuroni disattivati casualmente 

durante il training 

workers 0 Thread di lavoro per il caricamento dei dati 

device cpu Specifica il dispositivo per l'esportazione 

optimizer AdamW Scelta dell'ottimizzatore per l'addestramento 

Tabella 4 – Iperparametri utilizzati 
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Una volta completato l’addestramento, il modello è stato sottoposto ad una fase di testing su 

dati mai visti prima, al fine di valutarne la capacità di generalizzare il riconoscimento 

l’interferenza. 

Il test set contiene 32 immagini di cui 24 contenenti l’oggetto da rilevare.  

Come si può osservare dalla tabella 5, il modello ha mostrato prestazioni eccellenti secondo 

tutte le metriche. Il valore più basso, ottenuto nell’mAP50-95 indica che, sebbene il modello 

trovi gli oggetti, la precisione nel posizionare la bounding box non è sempre perfetta quando 

si alza la soglia di IoU. 

Metrica Valore 

P 0.995 

R 1 

mAP50 0.995 

mAP50-95 0.584 

Tabella 5 – Risultati della fase di test 

 

Per valutare le prestazioni del modello è stata valutata anche un’altra metrica, lo F1-Score, 

che fornisce una misura più bilanciata delle performance di un modello, calcolato come la 

media armonica tra precisione e richiamo (Ultralytics, n.d.).  

La figura 40 mostra l’andamento dell’F1-Score attraverso varie soglie, identificando la soglia 

di confidenza ideale tra ≈ 0.1 e  ≈ 0.75, mentre il picco a 0.565 rappresenta il punto 

operativo ottimale. 

Le figure 41 e 42 mostrano invece i grafici di Richiamo e Precisione. 
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Figura 40 - F1-Confidence curve 

 

Figura 41 – Precision curve 
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Figura 42 – Recall curve 

Una volta terminata la fase di allenamento, YOLO salva il modello con le migliori metriche di 

validazione nel file best.pt, che rappresenta sostanzialmente il fine-tuning del modello sul 

dataset fornito e può ora essere utilizzato per fare inferenza su immagini nuove.   

La figura 43 mostra l’output del modello a seguito dell’inferenza effettuati su dati non 

etichettati. 

 

Figura 43 - Invididuazione corretta dell'interferenza 
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Capitolo 5 

Pulizia dei dati  
 

Si è osservato che, dopo aver proiettato la matrice degli echi nel dominio delle frequenze di 

Fourier, il segnale utile, ovvero l’eco della superficie e del sottosuolo, si concentra in una stretta 

banda verticale, che nei dati grezzi, si allinea lungo la frequenza Doppler dovuto al moto 

verticale della sonda. 

Si ipotizza quindi che, contrariamente alle ipotesi di partenza, invece di andare a mitigare il 

rumore eliminando le interferenze, sia possibile migliorare il segnale andando ad eliminare tutto 

ciò che si trova al di fuori di questa banda.  

A questo proposito, la prima parte del capitolo si concentrerà sul filtraggio dei dati prima 

dell’elaborazione, sfruttando le informazioni sulle velocità radiali minima e massima durante 

l’acquisizione, con particolare attenzione ad alcuni casi anomali, come l’assenza di eco radar o 

la presenza di interferenze significative.  

La seconda parte riguarderà invece i dati processati, in cui si sperimenterà un metodo basato 

sul calcolo e filtraggio dei valori mediani sotto una certa soglia. L’efficacia della tecnica sarà 

misurata confrontando il SNR (Signal to Noise Ratio) prima e dopo le operazioni di pulizia.  

5.1 Analisi dei dati grezzi 

 

Quando il radar MARSIS e la superficie si muovono uno rispetto all’altro, la frequenza del 

segnale subisce uno spostamento Doppler. Nel caso di velocità molto minori a quella della luce, 

lo spostamento Doppler può essere semplificato nel seguente modo:  

𝑓𝐷 ≈
2𝑉𝑟

𝑐
∙ 𝑓𝑠𝑖𝑔 

dove:  

• 𝑓𝐷: frequenza Doppler 

• 𝑉𝑟: velocità radiale relativa tra radar e punto riflettente 

• 𝑐: velocità della luce 

• 𝑓𝑠𝑖𝑔: frequenza del segnale  
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Il metodo di filtraggio proposto si basa sull’estrazione della porzione di segnale di nostro 

interesse andando a creare una maschera dinamica, definita a partire dalle velocità radiali 

minime e massime della sonda rispetto alla superficie marziana, ottenute dalle informazioni 

orbitali.  

La maschera viene quindi applicata riga per riga per ogni valore di frequenza del segnale. In 

ciascuna riga vengono mantenute unicamente le colonne comprese entro i limiti calcolati per 

quella specifica frequenza.  

La figura 42 mostra il caso ideale, in cui l’unica porzione di segnale rimasta è quella di nostro 

interesse.  

 

Figure 42 – Applicazione della maschera al diagramma Doppler-frequenza 

 

Il metodo presentato è però fortemente influenzato dalla morfologia della superficie marziana. 

Concentrandosi unicamente sulla Doppler, si potrebbero perdere porzioni di segnale utile che 

vengono riflesse in direzioni diverse a causa di discontinuità nel terreno, come ad esempio la 

presenza di un cratere. 

Per questo motivo, di seguito verranno mostrati alcuni casi limite individuati durante l’analisi 

dei campioni e si cercherà di dare loro un’interpretazione.  
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Una tipologia che si è presentata con una certa frequenza è un’orbita caratterizzata dall’assenza 

di segnale utile (Figura 44). Si ipotizza che sia dovuto ad una variazione nella composizione 

della ionosfera marziana, dovuta, per esempio, ad un’espulsione di massa coronale da parte del 

Sole che, espellendo grandi quantità di plasma andrebbero a ionizzare la ionosfera, impedendo 

al segnale trasmesso da MARSIS di raggiungere la superficie del pianeta. 

 

 

Figura 44 - Assenza della banda di segnale utile 

 

La figura 45 mostra un diagramma in cui la banda verticale risulta molto dispersa lungo la 

frequenza Doppler. Si ipotizza che la causa sia da ritrovarsi nuovamente nella dispersione 

ionosferica, oppure in un’eccessiva variazione nella velocità radiale durante l’acquisizione.  
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Figura 45 - Eccessivo rumore 

 

Un altro caso singolare è la presenza di due bande verticali invece di una sola. La figura 46 

mostra un esempio dell’anomalia. 

 

Figura 46 - Doppio banda verticale 



 
 

56 
 

5.2 Filtraggio dei dati processati 

 

Il segnale utile, una volta che i dati sono processati secondo le modalità descritte nel paragrafo 

1.2.5, non è più allineato lungo la frequenza Doppler. Di conseguenza, il metodo proposto nel 

paragrafo precedente non è applicabile. 

Il nuovo metodo di filtraggio si basa sul calcolo della mediana di ciascuna colonna, ottenendo 

una rappresentazione monodimensionale dello diagramma Doppler-frequenza con picchi in 

corrispondenza della porzione di segnale utile, essendo solitamente la parte più luminosa 

dell’immagine. 

Le figure 47 e 48 mostrano rispettivamente il diagramma Doppler-frequenza dell’orbita 10737 

e i valori mediani di ogni sua colonna.  

 

Figura 47 - diagramma Doppler-frequenza dell'orbita 10737 
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Figura 48 - Valori mediani delle colonne del diagramma Doppler–frequenza dell’orbita 10737 

 

In seguito, è necessario decidere una soglia sotto la quale azzerare tutti i valori. A questo 

proposito, sono stati sviluppati tre algoritmi. 

Il primo, il più semplice, calcola la soglia come una frazione (impostata arbitrariamente) del 

valore massimo della mediana e considera valide solo le colonne con valori più alti della soglia. 

Questo metodo è semplice e diretto, ma essendo proporzionale al massimo, la soglia può 

risultare troppo permissiva in presenza di picchi molto elevati o troppo restrittiva se il segnale 

utile è debole.  

La seconda tecnica ha invece basi statistiche. Si calcolano la media (μ) e la deviazione standard 

(δ) e si definisce la soglia come:  

𝑠 =  μ + k ∙ σ 

Dove k è un parametro regolabile. Le colonne con valori della mediana superiori alla soglia 

vengono mantenute. L’approccio è più robusto del precedente, in quanto si adatta alla 

distribuzione dei valori, invece di basarsi solo sul massimo, però la scelta del parametro k 

influenza significativamente i risultati.  
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L’ultimo approccio utilizza la binarizzazione di Otsu (Otsu, 1979). Un metodo che, a differenza 

dei precedenti, calcola automaticamente la soglia minimizzando la varianza intra classe, 

assumendo che l’immagine contenga solo due classi.   

L'algoritmo analizza l’istogramma dell’immagine e sceglie una soglia che separa le intensità 

dei pixel in primo piano e sfondo (Figura 49).   

 

Figura 49 - Applicazione della binarizzazione di Otsu (adattato da Biomecardio, 2025). 

 

MATLAB implementa il metodo Otsu tramite graythresh, applicato non su un’immagine 

dimensionale, bensì sul vettore normalizzato delle mediane. Sostanzialmente, viene costruito 

un “piccolo” istogramma interno considerando i valori della mediana come “intensità di pixel”.  

La soglia restituita viene poi scalata sul valore massimo per tornare alla scala originale.  

La figura 50 mostra il segnale filtrato, come si può osservare, tutto ciò che era al di fuori della 

banda centrale è stato eliminato. 
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Figura 50 - Diagramma Doppler-frequenza filtrato con il terzo algoritmo 

 

A questo punto, è sufficiente calcolare l’antitrasformata di Fourier, tornando quindi nel dominio 

temporale e confrontare la matrice degli echi originale con quella filtrata. 

La figura 51 mostra la matrice prima e dopo il filtraggio. Come si può osservare, nonostante 

entrambi i radargrammi siano rappresentati nella stessa scala logaritmica di colore, la banda 

principale risulta più definita e contrastata, mentre il rumore di fondo è stato significativamente 

ridotto. Il miglioramento della qualità del segnale si può anche osservare nella figura 52, dove 

sono rivelati dei particolari che prima non erano distinguibili. 
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Figura 51 Matrice degli echi prima e dopo il filtraggio 

 

Figura 52 - Zoom sulle righe da 380 a 500 

 

Per valutare l’effettivo miglioramento del radargramma, è stato utilizzato un criterio 

quantitativo basato sul rapporto segnale rumore (SNR – Signal To Noise Ratio), che mette in 

relazione la potenza del segnale utile rispetto a quella del rumore di fondo. Formalmente:  

𝑆𝑁𝑅 =
𝑃𝑠𝑒𝑔𝑛𝑎𝑙𝑒

𝑃𝑟𝑢𝑚𝑜𝑟𝑒
 𝑐𝑜𝑛 0 ≤  𝑆𝑁𝑅 <  ∞  

Per aumentare la robustezza dell’algoritmo, per ogni colonna della matrice, la potenza del 

segnale è stata calcolata come media dei cinque valori più alti, mentre il rumore è stato stimato 

come la mediana dei campioni con potenza inferiore al cinquantesimo percentile. Il risultato è 

espresso in decibel secondo la relazione:  
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𝑆𝑁𝑅 = 10 ∙ 𝑙𝑜𝑔10 (
𝑃𝑠𝑒𝑔𝑛𝑎𝑙𝑒

𝑃𝑟𝑢𝑚𝑜𝑟𝑒
) 

La tabella seguente mostra lo SNR medio prima e dopo l’operazione di filtraggio applicata a 

25 orbite, acquisite in modalità superframe, le stesse che sono state utilizzate nel lavoro in cui 

la presenza di forti echi basali è stata usata per identificare la presenza di acqua in forma liquida 

(Orosei et al., 2018). 

 

Orbita SNR Before (dB) SNR After (dB) 

10711 27.28 43.07 

10737 30.74 46.06 

10961 21.9 40.58 

12685 27.9 46.4 

12692 13.31 27.32 

12759 20.38 39.06 

12766 25.43 43.96 

12814 26.8 43.98 

12840 31.18 47.56 

12847 30.79 47.55 

12895 26.34 45.49 

12976 29.53 39.7 

12995 29.01 47.7 

13002 26.37 43.72 

13043 19.65 37.22 

13050 23.17 42.01 

13069 24.38 39.94 

14853 25.99 43.74 

14879 28.28 44.18 

14948 22.05 39.93 

14967 28.78 44.05 

15055 27.59 43.71 

15110 23.03 39.29 

15136 26.19 38.08 

15198 22.51 38.87 

Tabella 6 - Risultati del filtraggio su diverse orbite  
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Conclusioni 
 

Gli obiettivi di questa tesi erano fondamentalmente due: da un lato sviluppare algoritmi per 

rilevare automaticamente tre tipologie di interferenze presenti nei diagrammi Doppler-

frequenza, al fine di costruire un catalogo sistematico e facilitare l’analisi dei dati, dall’altro 

implementare un metodo di filtraggio dei dati, eliminando tutto ciò che non è contenuto 

all’interno della banda utile del segnale. 

Il primo obiettivo è stato raggiunto sfruttando tecniche di computer vision, costruendo algoritmi 

diversi in base alla morfologia dell’interferenza. La somiglianza intra-classe delle interferenze 

ha fatto sì che l’ultima tipologia potesse essere efficacemente rilevata tramite l’utilizzo di 

YOLO, ottenendo prestazioni eccellenti.  

Il secondo obiettivo è stato raggiunto sviluppando un algoritmo che prima calcola la mediana 

dei valori di ogni colonna della matrice, poi trova automaticamente una soglia sotto la quale 

azzerare i valori. Questo metodo si è dimostrato molto efficace e, su 25 orbite, si è osservato un 

incremento del rapporto segnale-rumore di all’incirca 16 dB, che corrisponde ad un fattore 40 

in scala lineare.  

Il prossimo passo consiste nell’implementazione degli algoritmi sviluppati, sia di detection che 

di filtraggio in una pipeline in modo da poter automatizzare la procedura e applicarla all’intero 

dataset di MARSIS.
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