ALMA MATER STUDIORUM — UNIVERSITA DI BOLOGNA
CAMPUS DI CESENA

DIPARTIMENTO DI INFORMATICA - SCIENZA E INGEGNERIA
Corso di Laurea in Ingegneria e Scienze Informatiche

PROGETTAZIONE E SVILUPPO
DELL'INTEGRAZIONE DI DIGITAL TWINS
NEL WEB OF THINGS

Elaborato in

INTERNET OF THINGS

Relatore Presentata da

Prof. ALESSANDRO RICCI PIETRO PASINI
Corelatore

Dott. SAMUELE BURATTINI

Anno Accademico 2024 — 2025

Indice

Introduzione

1 Web of Things W3C

1.1 L’idea del Web of Things
1.1.1 Lastoria
1.1.2 Applicazioni del Web of Things
1.2 Modello
1.2.1 Rappresentazioni della Thing
1.2.2 Affordance e interazioni
1.2.3 Il Servient
1.3 Struttura della Thing Description
1.3.1 Formato del documento
1.3.2 Metadati generali
1.3.3 Interaction Affordances: specifica dettagliata
1.3.4 Forms e Protocol Bindings
1.3.5 Validazione e conformita

Digital Twin e WLDT

2.1 Definizione e applicazioni
2.1.1 Origini dellidea
2.1.2 Definizione
2.1.3 Applicazioni del Digital Twin
2.1.4 Sintesi

2.2 Architettura modulare per Digital Twin
2.2.1 Modello multidimensionale
222 Model
2.2.3 Physical Interfaceo
2.2.4 Digital Interface
2.2.5 Digital Twin lifecycle
2.2.6 Digital Twins ecosystem
2.2.7 Sintesi architetturale

23 WLDT

il

v

2.3.1 Introduzione
2.3.2 Implementazione dell’architettura
2.3.3 Sistema Event-Driven.

2.3.4 Sviluppo di un Digital Twin con WLDT

3 WoT Adapters: requisiti e funzionalita
3.1 Integrazione dei Digital Twin nel Web of Things
3.1.1 Confronto tra Thing WoT e Digital Twin

3.1.2 Due direzioni di integrazione
3.1.3 Realizzazione tramite adapters.
3.1.4 Sintesi dei vantaggi L.
3.2 WoT Physical Adapter
3.2.1 Lifecycle
3.2.2 Inizializzazione e Binding
3.2.3 Sincronizzazione
3.2.4 Configurazione
3.3 WoT Digital Adapter
3.3.1 Lifecycleo
3.3.2 Generazione della Thing Description
3.3.3 Sincronizzazione con lo Stato del DT
3.3.4 Configurazione

4 Sviluppo e soluzioni implementative

4.1 Tecnologie L
4.1.1 Linguaggio Kotlin
4.1.2 Kotlin-WoT

4.2 WoT Physical Adapter
4.2.1 Proceduradiavvio
4.2.2 Gestione aggiornamento delle proprieta

4.3 WoT Digital Adapter
4.3.1 Avvio e sincronizzazione
4.3.2 Gestione dell’aggiornamento di stato

4.4 Testing
4.4.1 Testing del WoT Digital Adapter
4.4.2 Testing del WoT Physical Adapter

Conclusioni

INDICE

Introduzione

L’evoluzione dei sistemi cyber-fisici e dell’Internet of Things ha prodotto
un ecosistema caratterizzato da una frammentazione significativa in termini
di protocolli di comunicazione, formati di rappresentazione dei dati e modelli
architetturali. Questa eterogeneita, se da un lato riflette la diversita dei domini
applicativi e dei requisiti specifici, dall’altro costituisce un ostacolo concreto
alla realizzazione di sistemi interoperabili su larga scala, limitando le possibilita
di integrazione e orchestrazione di dispositivi e servizi provenienti da ecosistemi
differenti.

Due paradigmi emergenti affrontano aspetti complementari di questa pro-
blematica. Il Web of Things, standardizzato dal World Wide Web Consor-
tium, propone un’astrazione unificata per l'interazione con dispositivi etero-
genei attraverso protocolli web consolidati, definendo un vocabolario comune
per descrivere le capacita dei dispositivi indipendentemente dalle tecnologie
sottostanti. Parallelamente, nel dominio dei Digital Twin, che si e affermato
come approccio fondamentale per la rappresentazione digitale di entita fisiche,
sono state progettate e implementate architetture modulari che incapsulano in
specifici componenti il problema dell’interoperabilita.

L’osservazione di queste proposte suggerisce che l'integrazione dei Digi-
tal Twin nel paradigma Web of Things rappresenterebbe un’opportunita per
superare i requisiti di interoperabilita richiesti. Il presente lavoro di tesi esplo-
ra questa possibilita e la realizza attraverso lo sviluppo di componenti per
un framework per la creazione di Digital Twin che realizzano un’architettura
modulare.

La tesi si articola in quattro capitoli principali. Il primo capitolo introdu-
ce lo standard W3C Web of Things, analizzandone ’architettura, i modelli di
interazione e I'idea centrale di Thing Description. Il secondo ripercorre ’evolu-
zione storica del concetto di Digital Twin, e ne descrive le tipiche applicazioni.
Viene quindi esaminata un’architettura modulare per Digital Twin, caratteriz-
zata dalla separazione tra interfacciamento fisico, logica di sincronizzazione ed
esposizione digitale, che trova realizzazione concreta nel framework WLDT. 1l
terzo capitolo costituisce il nucleo concettuale della tesi, definendo i requisiti
funzionali per I'integrazione tra Digital Twin e Web of Things. Vengono ana-

vi INTRODUZIONE

lizzate analogie e differenze nelle rappresentazioni di dispositivi IoT pensate
dai due modelli, e si discutono strategie di mapping tra esse. Il quarto capitolo
presenta I'implementazione dei componenti sviluppati per WLDT, descrivendo
le scelte tecnologiche, 'architettura e i meccanismi implementati per aderire
al requisiti, in fine i test effettuati e i risultati ottenuti.

Capitolo 1

Web of Things W3C

1.1 L’idea del Web of Things

1.1.1 La storia

Il concetto di Web of Things (WoT) nasce dall’esigenza di estendere i prin-
cipi e le tecnologie del Web al dominio dell’Internet of Things (IoT). La sua
evoluzione si sviluppa lungo una traiettoria che parte da esigenze concrete
di interoperabilita e accessibilita, per arrivare oggi a un insieme di standard
consolidati e scenari applicativi in continua espansione.

Le necessita alla base del Web of Things

Con la diffusione massiva di dispositivi connessi agli inizi degli anni 2000,
emerse chiaramente il problema della frammentazione tecnologica: produttori
e programmatori adottavano i diversi protocolli di comunicazione (come Zig-
Bee, Z-Wave o Modbus) senza un’infrastruttura a piu alto livello, limitando la
possibilita di integrazione trasversale. La crescente eterogeneita dei dispositivi
rendeva sempre piu complesso lo sviluppo di soluzioni scalabili e riutilizzabi-
li. Per superare tali limiti, divenne cruciale iniziare a progettare un livello di
astrazione comune, capace di esporre le funzionalita dei dispositivi attraverso
interfacce pubblicamente comprensibili. La scelta cadde naturalmente sugli
standard consolidati del Web, in grado di offrire un linguaggio universale e
indipendente dalle specificita hardware.

Evoluzione

e 20002001 — le prime sperimentazioni: ricercatori e sviluppatori
iniziarono a proporre interfacce web elementari per il controllo di oggetti

2 CAPITOLO 1. WEB OF THINGS W3C

fisici, utilizzando protocolli HTTP e pagine HTML. Un esempio emble-
matico ¢ il progetto Cooltown di HP Labs (2000-2001) [1], che mirava
a collegare oggetti e luoghi fisici con URL univoci: fu virtualizzato un
museo, nel quale le opere avevano degli URL con le informazioni, ed una
sala conferenze dove i servizi della stanza, quali stampanti e proiettori,
erano esposti via web.

e 2007 — la formalizzazione del concetto: il termine Web of Things
venne formalmente definito da Dominique Guinard e Vlad Trifa, che fon-
darono la comunita webofthings.org e proposero un approccio RESTful
per I'ToT [8]. Questo segno l'inizio di un movimento verso 1'utilizzo degli
standard web come livello applicativo per I'Internet of Things.

e 2011-2014 — la standardizzazione embrionale: iniziarono a con-
solidarsi approcci basati su architetture REST, JSON e tecnologie se-
mantiche. Furono pubblicate le tesi di dottorato di Guinard [6] e Trifa
[13], che delinearono modelli architetturali WoT e si diffusero le prime
piattaforme middleware orientate al Web.

e 20142015 — l’ingresso del W3C: il World Wide Web Consortium
(W3C) organizzo un workshop sul Web of Things a Berlino nel giugno
2014, seguito dal lancio del Web of Things Interest Group nel gennaio
2015 [14]. Nel 2015 venne anche pubblicato il Web Thing Model come
W3C Member Submission [7].

e 2016—2019 — sviluppo delle specifiche: nel 2016-2017 il W3C avvio
il Web of Things Working Group con l'obiettivo di sviluppare racco-
mandazioni formali. Nel 2019 furono pubblicate le versioni Candidate
Recommendation della WoT Architecture e della WoT Thing Descrip-
tion.

e 2020—presente — maturita e adozione: nell’aprile 2020, le specifiche
WoT Architecture e WoT Thing Description diventarono raccomanda-
zioni ufficiali del W3C [15, 16], segnando il riconoscimento del paradigma
come standard globale. Nel dicembre 2023 e stata pubblicata la versio-
ne 1.1 della Thing Description. Le attivita recenti si concentrano su
sicurezza, discovery automatico, e integrazione con tecnologie emergenti.

1.1.2 Applicazioni del Web of Things

Oggi il Web of Things (WoT) trova applicazione in numerosi domini diversi,
riflettendo la sua natura trasversale e di interoperabilita. Le architetture e
gli standard proposti dal W3C permettono di integrare dispositivi e servizi

CAPITOLO 1. WEB OF THINGS W3C 3

in scenari che spaziano dal contesto domestico a quello industriale, fino ad
ambiti urbani e ambientali. Di seguito vengono presentati alcuni tra i casi piu
significativi.

Smart Home

Nel contesto consumer, la smart home rappresenta una delle applicazioni
piu diffuse del WoT. Attraverso I'uso di gateway e protocolli di comunicazione
locale, i dispositivi domestici — quali sensori, telecamere, elettrodomestici e
sistemi di climatizzazione — possono essere integrati in un ecosistema unifica-
to. I dati raccolti vengono analizzati a livello di cloud, abilitando funzionalita
avanzate come il controllo remoto, I’automazione basata su presenza o con-
dizioni ambientali, la gestione dei consumi energetici e la manutenzione pre-
dittiva degli elettrodomestici. L’approccio WoT consente dunque di superare
la frammentazione dei protocolli e di offrire agli utenti esperienze omogenee,
migliorando comfort, efficienza energetica e sicurezza.

Smart Factory

In ambito industriale, il WoT costituisce un abilitatore chiave per il para-
digma dell’'Industria 4.0. Le smart factory integrano dispositivi e macchinari
attraverso protocolli come Modbus, PROFINET, EtherCAT e OPC UA, che
possono essere resi interoperabili tramite ’architettura WoT. L’uso di disposi-
tivi edge consente di raccogliere e aggregare i dati provenienti da controllori di
linea e macchine di produzione, rendendoli disponibili per servizi cloud di ana-
lisi, monitoraggio remoto e manutenzione predittiva. Cio permette non solo
di ridurre i costi legati ai fermi macchina, ma anche di migliorare la sicurezza
dei lavoratori grazie al monitoraggio ambientale (ad esempio presenza di gas
tossici o calore eccessivo) e di ottimizzare l'intera catena di produzione.

Smart Cities e altre applicazioni

Oltre ai contesti domestici e industriali, il WoT trova applicazione in nume-
rosi altri ambiti emergenti. Nelle smart cities, esso abilita sistemi di monito-
raggio per infrastrutture critiche, illuminazione pubblica, parcheggi intelligenti
e gestione dei rifiuti, contribuendo a una gestione piu sostenibile ed efficiente
delle risorse urbane. Nel settore dei trasporti, i veicoli connessi possono sfrut-
tare il WoT per condividere dati con servizi cloud e migliorare la sicurezza
stradale. Altri domini rilevanti includono ’agricoltura di precisione, la sanita
(ad esempio con il monitoraggio remoto dei pazienti) e il monitoraggio am-
bientale, in cui reti di sensori distribuiti inviano dati a piattaforme web per
prevenire rischi ambientali o sanitari.

4 CAPITOLO 1. WEB OF THINGS W3C

1.2 Modello

Secondo la definizione del W3C:

"Una Thing € un’astrazione di un’entita fisica o virtuale (ad esem-
pio, un dispositivo o una stanza) descritta da metadati standardiz-
zati”.

Normalmente questa entita e capace di esporre funzionalita e stati osservabili
attraverso la rete tramite uno o diversi protocolli di telecomunicazioni. L’in-
sieme dei metadati ¢ precisamente esposto da un documento chiamato Thing
Description, che rispecchia le specifiche del Web of Things. Tale descrizio-
ne puo essere letta e interpretata da un sistema client che prende il nome di
Consumer.

1.2.1 Rappresentazioni della Thing

Sono quindi emersi diversi punti di vista dell’oggetto Thing, che si distin-
guono con un lessico specifico:

e Thing Description (TD): ¢ un documento statico che specifica in mo-
do formale le funzionalita, le interfacce e i metadati della Thing. La TD
non esegue alcun comportamento, ma e I’elemento alla base del WoT,
perché consente di comprendere come interagire con l'oggetto in modo
standardizzato. Essa funge da contratto semantico e sintattico tra il
dispositivo e i sistemi che vi accedono.

e Exposed Thing: rappresenta la controparte digitale effettivamente ese-
guita dall’oggetto o da una sua componente software. L’Exposed Thing
¢ l'entita runtime che espone concretamente le proprieta, le azioni e
gli eventi definiti nella TD, traducendoli in interfacce e protocolli di
comunicazione.

e Consumed Thing: ¢ la proiezione della Thing dal punto di vista di
un Consumer. A partire dalla TD, esso genera un modello locale —
la Consumed Thing — che fornisce metodi e strutture dati per intera-
gire con I'Exposed Thing. Essa costituisce quindi I'adattamento della
Thing Description ad un’istanza operativa utilizzabile dal software che
la consuma.

CAPITOLO 1. WEB OF THINGS W3C 5

1.2.2 Affordance e interazioni

Il concetto di affordance, introdotto inizialmente nella psicologia ecologi-
ca e successivamente ripreso da Donald Norman nell’ambito della Human-
Computer Interaction, indica le proprieta percepite e reali di un oggetto che
ne suggeriscono i possibili usi. Un esempio classico e la maniglia di una porta:
la sua sola presenza suggerisce che la porta puo essere aperta e, a seconda della
forma, come debba essere utilizzata (ruotare, spingere verso il basso, ecc.).

Nel contesto del Web of Things, questo concetto assume un ruolo centrale
nella Thing Description, poiche questa non si limita a descrivere le caratte-
ristiche di una Thing, ma fornisce anche metadati leggibili da macchine che
indicano chiaramente quali capacita I'oggetto offre e come esse possano essere
sfruttate da un Consumer. 11 W3C definisce quindi le Interaction Affordan-
ces come i meccanismi standardizzati che descrivono le possibili modalita di
interazione con una Thing. Esse si distinguono in tre categorie fondamentali:

e Proprieta (Properties): descrivono lo stato interno della Thing che, a
seconda dei casi, puo essere letto o modificato. Una proprieta corrisponde
a un attributo persistente, ad esempio la temperatura corrente di un
sensore o il valore soglia che attiva un allarme.

e Azioni (Actions): rappresentano operazioni invocabili sulla Thing dal-
I’esterno in maniera asincrona, che possono produrre effetti immediati o
complessi. Le azioni catturano la dimensione procedurale dell’interazio-
ne, come accendere una lampadina, avviare un motore o aggiornare un
firmware.

e Eventi (Events): modellano notifiche asincrone generate dalla Thing
in risposta a cambiamenti di stato o condizioni specifiche. Un esempio
tipico e la segnalazione di un allarme, il rilevamento di un movimento o
la notifica di avvio di una procedura automatica.

Questi tre pattern di interazione formano un vocabolario minimo in grado
di modellare ogni forma di scambio tra un sistema e un oggetto connesso. Dal
punto di vista del modello di comunicazione, le Properties sono spesso perce-
pite come interazioni sincrone di lettura/scrittura di stati, anche se possono
supportare notifiche di aggiornamento asincrone. Le Actions e gli Events,
invece, rispecchiano piu fedelmente il paradigma asincrono: le azioni come
invocazioni dal sistema verso 1'oggetto, gli eventi come notifiche dall’oggetto
verso il sistema.

6 CAPITOLO 1. WEB OF THINGS W3C

1.2.3 1l Servient

L’architettura del Web of Things definisce un insieme di componenti soft-
ware e pattern progettuali che consentono l'implementazione pratica del pa-
radigma WoT. Al centro di questa architettura si colloca il Servient, termine
che deriva dalla contrazione di Server e Client.

Il modello di Servient

Un Servient e un’entita software che implementa l'interfaccia di runtime del
W3C WoT e puo operare contemporaneamente come produttore e consumatore
di Thing. Questa duplice natura lo distingue dai tradizionali paradigmi client-
server, rendendolo un componente altamente versatile e adattabile a diversi
contesti applicativi. Dal punto di vista architetturale, un Servient ¢ composto
da due macro-componenti principali:

e WoT Runtime: ¢ il nucleo esecutivo che fornisce le API standardizzate
per la gestione delle Thing. Il runtime si occupa della gestione del ciclo
di vita delle istanze (sia Exposed che Consumed), della serializzazione
e deserializzazione delle Thing Description, e del coordinamento tra i
diversi livelli architetturali.

e Protocol Bindings: costituiscono lo strato di adattamento tra il mo-
dello astratto delle affordance e i protocolli di rete concreti. Ogni bin-
ding implementa la logica necessaria per tradurre le operazioni WoT

(readproperty, invokeaction, etc.) in chiamate specifiche del protocollo
sottostante (HTTP, CoAP, MQTT, Modbus, etc.).

La natura modulare del Servient permette di aggiungere o rimuovere di-
namicamente protocol bindings in base alle esigenze operative, garantendo
estensibilita e adattabilita a contesti eterogenei.

Ruoli operativi e API standard

Un Servient puo operare secondo due diverse modalita a seconda dello sce-
nario applicativo, anche entrambe simultaneamente. Il W3C ha standardizzato
un insieme di API che i Servient devono esporre per garantire interoperabilita
a livello applicativo, distinguendo chiaramente tra operazioni di produzione e
consumo.

Modalita Producer Quando opera come producer, il Servient ospita una o
piu Exposed Thing rendendole accessibili attraverso la rete. La WoT Scrip-
ting API fornisce il metodo produce (), che accetta una Thing Description e
restituisce un’istanza di Exposed Thing. In questa modalita, il Servient:

CAPITOLO 1. WEB OF THINGS W3C 7

e [stanzia e mantiene attive le Exposed Thing basate su Thing Description
fornite;

e Permette di registrare handler per le affordance tramite metodi come
setPropertyReadHandler (), setActionHandler () ed emitEvent ();

e Implementa la logica applicativa che collega le affordance esposte alle
risorse fisiche o virtuali sottostanti;

e Gestisce le richieste in arrivo applicando le policy di sicurezza definite
nella TD;

e Pubblica le Thing Description, aggiungendo negli appositi campi gli
endpoint disponibili per accedere alle funzionalita.

Modalita Consumer In modalita consumer, il Servient utilizza Thing De-
scription di oggetti remoti per interagire con essi. Il metodo consume () accetta
una Thing Description e genera una Consumed Thing, ovvero un proxy loca-
le che incapsula la comunicazione remota. Le responsabilita in questo ruolo
includono:

e Acquisizione e parsing delle Thing Description da discovery service, re-
pository o direttamente dai producer;

e Creazione di proxy che espongono metodi asincroni come readProperty (),
writeProperty(), invokeAction() e subscribeEvent (), astraendo com-
pletamente i dettagli del protocollo di comunicazione;

e Gestione automatica delle credenziali e dei meccanismi di autenticazione
richiesti;

e Implementazione della logica di retry, caching e gestione degli errori di
rete;

e Orchestrazione di interazioni complesse che coinvolgono multiple Thing.

Queste API permettono agli sviluppatori di scrivere applicazioni WoT in
modo completamente indipendente dal protocollo sottostante, delegando al
runtime del Servient la gestione dei dettagli di comunicazione. Le imple-
mentazioni possono inoltre estendere le API standard con funzionalita di di-
scovery (metodi come discover() o exploreDirectory()) per individuare
automaticamente Thing disponibili nella rete locale o in directory remoti.

8 CAPITOLO 1. WEB OF THINGS W3C

1.3 Struttura della Thing Description

La Thing Description (TD) costituisce il documento fondamentale attra-
verso cui una Thing espone le proprie capacita e metadati in forma standardiz-
zata e machine-readable. Come definito dal W3C, essa rappresenta il contrat-
to informativo che abilita 'interoperabilita nel Web of Things, permettendo
ai Consumer di scoprire, comprendere e interagire con dispositivi eterogenei
senza conoscerne a priori i dettagli implementativi.

1.3.1 Formato del documento

Una Thing Description e rappresentata mediante un documento JSON-
LD (JSON for Linking Data), che combina la semplicita sintattica del formato
JSON con le capacita semantiche del Linked Data, questo garantisce facilita di
elaborazione automatica dai parser standard implementati nei diversi linguag-
gi. Successivamente viene esaminata la struttura dei campi principali secondo
le specifiche del W3C, concentrandosi su quelli pitt utili a questo lavoro.

1.3.2 Metadati generali

I metadati di alto livello includono informazioni identificative e descrittive
della Thing:

e @context: definisce i vocabolari semantici utilizzati nel documento, ti-
picamente includendo il contesto Wo'T standard e eventuali estensioni di
dominio;

e id: un identificatore univoco (URI) della Thing;
e title: nome leggibile dell’oggetto;
e description: descrizione testuale delle funzionalita;

e @type: classificazione semantica della Thing (opzionale).

Questi campi consentono ai sistemi di catalogare e ricercare dispositivi
in base a criteri semantici, facilitando scenari di discovery automatico. La
sezione securityDefinitions specifica inoltre i meccanismi di autenticazione
richiesti (basic, bearer, apikey, etc.), che possono poi essere referenziati nelle
singole affordance.

CAPITOLO 1. WEB OF THINGS W3C 9

1.3.3 Interaction Affordances: specifica dettagliata

Il nucleo operativo della TD ¢ costituito dalle tre categorie di affordance:
properties, actions ed events. Ciascuna affordance e identificata da una
chiave univoca all’interno del proprio namespace e descritta da un insieme di
metadati che ne specificano le caratteristiche operative.

Data Schema

Prima di descrivere le singole affordance, ¢ fondamentale comprendere come
vengono specificati i tipi di dato. Il WoT adotta uno schema basato su JSON
Schema, che permette di descrivere non solo tipi primitivi (string, number,
integer, boolean, null), ma anche strutture complesse.

Per i tipi object, lo schema richiede i campi:

o type: "object"

e properties: un dizionario che associa a ciascun campo il proprio schema
e required: array dei campi obbligatori (opzionale)

Per i tipi array include invece:

o type: "array"

e items: lo schema degli elementi contenuti nell’array

e minltems/maxItems: vincoli sulla cardinalita (opzionali)

Questa composizione permette di descrivere strutture dati arbitrariamente
complesse e annidate, essenziali per modellare scenari reali in cui una Thing
gestisce informazioni articolate.

Properties

Ogni proprieta espone lo stato interno della Thing e viene descritta dai seguenti
campi principali:

e type: schema del tipo di dato, che puo essere primitivo, oggetto o array
secondo quanto descritto precedentemente;

e readOnly: se true, la proprieta e accessibile solo in lettura;
e writeOnly: se true, la proprieta ¢ accessibile solo in scrittura;

e observable: indica se la proprieta supporta notifiche asincrone di cam-
biamento;

10 CAPITOLO 1. WEB OF THINGS W3C

e unit: unita di misura (opzionale), ad esempio "celsius" o "percent";

e forms: array di form che specificano come accedere alla proprieta.

Una proprieta puo quindi rappresentare sia dati semplici (ad esempio una
temperatura espressa come numero), sia strutture complesse. Ad esempio,
una proprieta che descrive la configurazione di rete di un dispositivo potrebbe
essere di tipo object con campi per indirizzo IP, subnet mask e gateway.

Actions

Le azioni rappresentano operazioni invocabili sulla Thing e sono descritte da:
e input: schema del payload di input (opzionale)
e output: schema della risposta prodotta dall’azione (opzionale);
e safe: se true, 'azione non modifica lo stato del sistema;

e idempotent: se true, invocazioni multiple producono lo stesso effetto
di una singola invocazione;

e synchronous: indica se l'azione viene eseguita in modo sincrono o
asincrono;

e forms: array di form per I'invocazione.

Events

Gli eventi modellano notifiche asincrone generate dalla Thing e prevedono:

e data: schema del messaggio di notifica, che puo contenere strutture
complesse per veicolare informazioni articolate;

e subscription: schema dei parametri per la sottoscrizione (opzionale);

e cancellation: schema per la cancellazione della sottoscrizione (opziona-
le);

e forms: array di form per gestire la sottoscrizione agli eventi.

CAPITOLO 1. WEB OF THINGS W3C 11

1.3.4 Forms e Protocol Bindings

Gli oggetti form rappresentano il ponte tra il modello astratto della TD e
le implementazioni concrete dei protocolli di rete. Ogni form contiene:

e href: URI dell’endpoint di accesso;
e contentType: tipo MIME del payload (es. "application/json");
e Op: operazione o array di operazioni supportate;

e parametri specifici del protocollo (es. htv:methodName per HTTP).
Le operazioni possibili variano in base al tipo di affordance:

e Properties: readproperty, writeproperty, observeproperty,
unobserveproperty

e Actions: invokeaction, queryaction, cancelaction

e Events: subscribeevent, unsubscribeevent

Una singola affordance puo esporre piu form, consentendo ’accesso tramite
protocolli diversi (HTTP, CoAP, MQTT) per adattarsi a contesti operativi
differenti. Ad esempio, una proprieta potrebbe essere leggibile via HT'TP GET
e osservabile tramite MQTT, offrendo flessibilita al Consumer nella scelta del
meccanismo piu appropriato.

1.3.5 Validazione e conformita

Il W3C fornisce schemi JSON Schema per la validazione sintattica delle
TD, garantendo che i documenti prodotti rispettino le specifiche ufficiali. La
conformita puo essere verificata attraverso tool dedicati che controllano la pre-
senza dei campi obbligatori, la correttezza dei tipi di dato e la coerenza dei
riferimenti interni. Questa fase di validazione e fondamentale per assicurare
I'interoperabilita reale tra produttori e consumer di diversi fornitori.

Capitolo 2

Digital Twin e WLDT

2.1 Definizione e applicazioni

2.1.1 Origini dell’idea

Il concetto di Digital Twin (DT) nasce nei primi anni 2000 nell’ambito del
Product Lifecycle Management (PLM). Nel 2002, Michael Grieves presento al-
I’Universita del Michigan il cosiddetto Mirrored Spaces Model, che proponeva
la coesistenza di due spazi: uno fisico e uno virtuale, connessi da flussi in-
formativi bidirezionali. L’idea di fondo era che ogni sistema reale avesse un
gemello digitale, capace di accompagnarlo lungo tutto il ciclo di vita: creazione,
produzione, utilizzo e dismissione [5].

2.1.2 Definizione

La terminologia di Digital Twin si ¢ consolidata a partire dal 2010, quando
NASA inizio ad adottarla nei propri documenti strategici. Nel 2012 Glaessgen
e Stargel pubblicarono la prima definizione ufficiale in ambito aerospaziale:

“A Digital Twin is an integrated multiphysics, multiscale, proba-
bilistic simulation of an as-built vehicle or system that uses the
best available physical models, sensor updates, fleet history, etc., to
mirror the life of its corresponding flying twin.” [3]

Tale definizione, sebbene fortemente legata a questo contesto, segno un
punto di svolta, spostando il concetto dal PLM verso la modellazione predittiva
e la manutenzione basata sui dati.

Negli anni successivi, il termine si e evoluto, arricchendosi di nuove inter-
pretazioni, la pluralita di definizioni ha generato confusione, talvolta portando

13

14 CAPITOLO 2. DIGITAL TWIN E WLDT

a identificare erroneamente semplici modelli digitali o simulazioni come Di-
gital Twin. Una successiva chiarificazione e stata introdotta in un articolo
ieee del 2020, che ha distinto tre categorie concettuali in base agli scambi di
informazioni [2]:

1. Digital Model: rappresentazione digitale statica di un oggetto fisico o
pianificato, senza scambio automatico di dati;

2. Digital Shadow: replica digitale con flusso dati unidirezionale dal fisico
al virtuale;

3. Digital Twin: integrazione bidirezionale in tempo reale, in cui modifiche
a uno dei due domini (fisico o virtuale) si riflettono immediatamente
sull’altro.

Questa classificazione ha contribuito a riportare il termine Digital Twin in
linea con la sua origine legata al PLM, distinguendolo chiaramente da modelli
virtuali e simulazioni tradizionali.

2.1.3 Applicazioni del Digital Twin

Grazie all’avanzamento dell’ Internet of Things (10T), dell’ Industrial IoT e
dell’intelligenza artificiale, le applicazioni del Digital Twin si stanno diffonden-
do in diversi settori [2].

Smart Cities

Nel contesto delle smart cities, i Digital Twins vengono utilizzati per model-
lare infrastrutture urbane, servizi energetici e reti di trasporto. L’integrazione
di sensori IoT consente di raccogliere dati in tempo reale sul traffico, sui con-
sumi energetici e sulla gestione dei rifiuti. Cio permette di creare piattaforme
digitali capaci di simulare scenari alternativi e ottimizzare decisioni strategi-
che, con benefici significativi in termini di sostenibilita, sicurezza e qualita
della vita dei cittadini.

Industria 4.0

Il settore manifatturiero rappresenta uno dei principali ambiti di adozione
dei Digital Twins, strettamente collegato al paradigma dell’Industria 4.0. In
questo contesto, i gemelli digitali consentono di monitorare in tempo reale le
prestazioni delle macchine e delle linee produttive, di effettuare manutenzione
predittiva e di ridurre i tempi e i costi di produzione. Inoltre, permettono

CAPITOLO 2. DIGITAL TWIN E WLDT 15

di testare virtualmente modifiche ai processi produttivi prima della loro im-
plementazione fisica, riducendo il rischio di errori e aumentando la flessibilita
industriale.

Sanita e Healthcare

Nel settore sanitario, i Digital Twins offrono prospettive innovative per
la medicina personalizzata e la gestione delle strutture ospedaliere. Esempi
di applicazione includono la simulazione dell’effetto dei farmaci su pazienti
virtuali, la pianificazione di interventi chirurgici e la gestione predittiva delle
apparecchiature mediche. In prospettiva, la creazione di gemelli digitali di
organi o dell’intero corpo umano potrebbe fornire strumenti potenti per la
diagnosi precoce e il supporto alle decisioni cliniche.

2.1.4 Sintesi

11 Digital Twin si configura dunque come una tecnologia abilitante di fonda-
mentale importanza per settori chiave quali smart cities, manifattura e sanita.
La sua peculiarita consiste nell’integrazione continua tra il mondo fisico e quello
virtuale, resa possibile dall’loT e dall’analisi avanzata dei dati, con ’obiettivo
di migliorare predittivita, efficienza e capacita decisionale.

2.2 Architettura modulare per Digital Twin

2.2.1 Modello multidimensionale

Nel 2015 Grieves espone l'idea astratta di architettura scomposta in tre
livelli separati. Secondo l'articolo [4], il modello concettuale del Digital Twin
comprende tre parti principali:

1. prodotti fisici nello spazio reale
2. prodotti virtuali nello spazio virtuale

3. le connessioni di dati e informazioni che legheranno insieme i prodotti
virtuali e quelli reali.

Questa ispiro una delle architetture pitu riconosciute per la modellizzazione
di Digital Twin, il modello a cinque dimensioni (5D) proposto da Tao et al. [12].
Il modello 5D rappresenta formalmente un DT come una quintupla:

DT = (PE,VE,Ss,DD,CN)

dove:

16 CAPITOLO 2. DIGITAL TWIN E WLDT

e PFE (Physical Entity): rappresenta l'entita fisica, costituita dai vari sot-
tosistemi funzionali e dispositivi sensoriali che eseguono compiti predefi-
niti e raccolgono dati sullo stato operativo;

o VE (Virtual Entity): costituisce un modello digitale ad alta fedelta del-
I'entita fisica, che integra geometrie, proprieta fisiche, comportamenti e
regole.

e Ss (Services): include i servizi per PE e VE, ottimizzando le operazioni
dell’entita fisica e garantendo ’alta fedelta del modello virtuale attraverso
la calibrazione continua dei parametri. Ogni servizio ¢ caratterizzato da
funzione, input, output, qualita e stato;

e DD (DT Data): mantiene tutti i dati utili al modello, provenienti dalla
PE, generati dalla VE, usati dai servizi e relativi al dominio.

e CN (Connection): gestisce le connessioni bidirezionali tra le varie di-

mensioni (PE-VE, PE-DD, VE-DD, PE-Ss, VE-Ss, Ss-DD).

Questo modello si distingue dall’architettura originale di Grieves per la fusione
esplicita di dati provenienti da aspetti sia fisici che virtuali, consentendo una
cattura di informazioni piu completa e accurata. Inoltre, incapsula le funzio-
ni del DT (rilevamento, giudizio, predizione) come servizi per una gestione
unificata e un utilizzo on-demand.

Nel recente articolo [10] ¢ spiegato come le 5 dimensioni del modello di Tao
possano essere mappate in una struttura software con tre componenti:

e Physical Interface (PI): si occupa della connessione e sincronizzazione
con 'entita fisica (PE), gestendo I'acquisizione dei dati dal mondo reale;

e Model (M): elabora i dati ricevuti dalla PI implementando 'entita
virtuale (VE), assolvendo alla digitalizzazione del gemello fisico e memo-
rizzando i dati rilevanti (DD);

e Digital Interface (DI): espone i risultati dei modelli del DT, insieme
agli endpoint per richieste di azione e query verso entita esterne come
servizi (SS), creando una connessione tra il DT e le applicazioni digitali.

Questa compattazione mantiene le funzionalita fondamentali del modello
5D organizzandole in una struttura software piu snella. Nelle sezioni successive,
ciascuno di questi tre componenti viene esaminato nel dettaglio, con particolare
attenzione all’approccio modulare basato su adapter e 'interoperabilita che essi
consentono.

CAPITOLO 2. DIGITAL TWIN E WLDT 17

2.2.2 Model

Il Model rappresenta il nucleo concettuale del Digital Twin, contenendo
la rappresentazione digitale ad alta fedelta dell’entita fisica. Come descritto
nell’architettura proposta da Ricci et al. [11], il Model si basa su un modello
M della corrispondente entita fisica, che definisce come quest’ultima viene
rappresentata a livello digitale.

Stato del Digital Twin

Lo stato del DT costituisce la componente dinamica del modello e viene
calcolato come funzione dello stato del Physical Twin (PT). Dato un modello
M, lo stato dinamico Spr di un DT puo essere definito formalmente come una
quadrupla:

Spr =(P,R,E, A)

dove:

e P rappresenta l'insieme corrente delle Properties: dati etichettati che
cambiano dinamicamente con l’evoluzione dello stato della controparte
fisica. Le proprieta rappresentano gli attributi osservabili del PT come
valori di dati (variabili) che possono cambiare secondo ’evoluzione dello

stato del PT;

e R rappresenta l'insieme corrente delle Relationships: connessioni del
PT con altri physical asset, rappresentate come collegamenti ad altri
digital twin. Come le proprieta, anche le relazioni sono osservabili, pos-
sono essere create dinamicamente e cambiare nel tempo. Diversamente
dalle proprieta, non riguardano puramente lo stato locale del PT, ma
permettono di riferirsi ad altri PT attraverso i corrispondenti DT

e [rappresenta la sequenza degli Events generati fino al momento cor-
rente: segnali non persistenti che catturano eventi rilevanti e osserva-
bili occorsi al PT, a livello di dominio. Gli eventi sono generati dalle
informazioni raccolte dall’asset fisico associato;

e A: rappresenta l'insieme delle Actions, ossia le possibili operazioni che il
DT consente di invocare per conto della controparte fisica, sia per inviare
feedback all’entita fisica che per sfruttare un servizio esposto dal DT.

18 CAPITOLO 2. DIGITAL TWIN E WLDT

Processo di Shadowing

Lo shadowing (o twinning) ¢ il processo fondamentale che mantiene lo sta-
to del DT Spr sincronizzato con lo stato del PT Spr, secondo il modello M.
Questo processo opera in modo bidirezionale, garantendo sia la sincronizzazio-
ne dallo spazio fisico a quello digitale, sia 'attuazione di azioni dallo spazio
digitale a quello fisico attraverso 2 funzioni di shadowing (2.1), (2.2). [11]

Shadowing da PT a DT

1. Qualsiasi cambiamento rilevante dello stato Spr che avviene nel PT viene
catturato da un evento evpr;

2. L’evento evpr viene propagato al DT attraverso la Physical Interface;

3. Dato I'evento evpr,il nuovo stato S, del DT viene calcolato viene ag-

giornato mediante una shadowing function Shadpr_,pr che dipende dal
modello M:

SbT = Shade_)DT(SDT,eva) (21)

dove rappresenta il nuovo stato del DT dopo I’aggiornamento.

In sistemi concreti, i PT possono essere entita complesse con uno stato
strutturato e distribuito. Il processo di shadowing puo quindi coinvolgere mul-
tiple sorgenti che generano flussi di informazioni ed eventi. Le sorgenti possono
includere anche altri DT, ovvero un DT puo rappresentare un PT logico di al-
to livello (ad esempio, il DT di un’organizzazione) aggregando informazioni ed
eventi forniti da altri DT.

Shadowing da DT a PT

1. Un’azione apr viene richiesta sul DT, ad esempio attraverso I’API del
digital twin esposta dalla Digital Interface;

2. Una nuova richiesta di azione apa per il PT viene generata mediante
un’ulteriore shadowing function Shadpr_, pr:
apa = Shadpr—pr(Spr, apr) (2.2)
e propagata al PT attraverso la Physical Interface;

3. La richiesta di azione apr viene applicata al PT, determinando un cam-
biamento dello stato del PT Spr.

CAPITOLO 2. DIGITAL TWIN E WLDT 19

B importante sottolineare che una richiesta di azione apr non modifi-
ca direttamente Spr. 1 cambiamenti a Spr sono causati unicamente dallo
shadowing da PT a DT, questo garantisce che il DT rimanga sempre una
rappresentazione fedele dello stato effettivo del sistema fisico.

Gli aggiornamenti di stato vengono quindi comunicati alle applicazioni at-
traverso la Digital Interface, realizzando 1'obiettivo del DT di fornire una rap-
presentazione aggiornata e sincronizzata del Physical Twin. Questo mecca-
nismo di sincronizzazione bidirezionale permette al DT non solo di osservare
passivamente lo stato del sistema fisico, ma anche di interagire attivamente
con esso attraverso l'invocazione di azioni.

2.2.3 Physical Interface

Una delle principali sfide nella progettazione di Digital Twin risiede nella
necessita di interfacciarsi con un mondo fisico eterogeneo, caratterizzato da
dispositivi IoT che operano su standard, protocolli e architetture differenti.

Per affrontare questa eterogenita fisica, ’architettura propone un approc-
cio modulare basato su Physical Adapters (PA): moduli specializzati ca-
paci di interagire con il PT utilizzando diversi protocolli e formati di dati.
Ciascun PA ¢ responsabile di mediare l'interazione bidirezionale attraverso
un singolo canale di comunicazione (aggiornamento dello stato, acquisizione
eventi e invocazione di azioni), semplificando la progettazione e la riutilizzabi-
lita del componente e rendendolo configurabile per adattarsi a diversi contesti
applicativi.

La Physical Interface diventa quindi un contenitore di diversi PA, con la
responsabilita di gestirli e assicurare che il modello del DT possa interpretare,
processare e sfruttare accuratamente i dati generati dal mondo fisico per creare
la replica digitale e implementare i suoi comportamenti. Sebbene possa acca-
dere che un PT invii tutti i dati relativi alla sua digitalizzazione attraverso un
solo canale, ¢ molto piu frequente costruire un DT aggregando diverse sorgenti
di informazione [10].

Physical Asset Descriptions

Per facilitare il processo di gestione dei diversi PA, viene introdotto il con-
cetto di Physical Asset Description (PAD): una descrizione delle capacita
rese disponibili da un canale di comunicazione in termini di proprieta, azioni,
eventi e relazioni che caratterizzano il PT associato. Ogni PA, poiché incapsula
le caratteristiche di un canale, puo generare la corrispondente PAD, disaccop-
piando efficacemente la funzionalita dell’asset dai protocolli di comunicazione
specifici utilizzati.

20 CAPITOLO 2. DIGITAL TWIN E WLDT

L’implementazione della generazione della PAD puo risultare difficoltoso
a causa delle diverse capacita dei protocolli di comunicazione, ma confinare
questa complessita all’interno della PI consente al modello del DT di essere
agnostico rispetto all’eterogeneita del mondo fisico sottostante.

La PAD permette quindi alla PI di scoprire, estrarre e gestire le informa-
zioni dell’asset e presentarle al modello, che puo scegliere quali sono rilevanti
per 'implementazione del comportamento del DT. Per esempio, per creare il
DT di un sensore di temperatura che trasmette dati binari su MQTT, la PI
potrebbe essere composto da un adapter MQTT generico, configurato per ana-
lizzare correttamente il payload come numero decimale, e generare una PAD
che pubblichi la proprieta temperatura disponibile al modello del DT come
valore in gradi Celsius [10].

2.2.4 Digital Interface

Per favorire I'interoperabilita, i DT devono esporre o una Digital Interface
(DI) standardizzata e general-purpose che possa servire diverse applicazioni,
oppure - seguendo gli stessi principi di progettazione adottati per affrontare
I'interoperabilita fisica - avere un’interfaccia modulare che possa soddisfare le
diverse esigenze di applicazioni differenti.

Analogamente ai PA, I'architettura prevede che la DI sia composta da Di-
gital Adapters (DA) modulari. Utilizzando il concetto di DA, la DI puo
esporre lo stato e i servizi del DT supportando molteplici formati di dati e
pattern di interazione. Questo rende lo sviluppo dell’applicazione piu sempli-
ce perché I'aggiunta di un DA specifico per I'applicazione non richiederebbe
interventi nel resto del sistema. Essa risulterebbe pitu robusta e stabile poiché
dipenderebbe solo dal DT, e i cambiamenti alla configurazione fisica del PT
(ad es., aggiornamenti software, sostituzione di sensori, riconfigurazioni di rete)
non avrebbero impatto sul software dell’applicazione. Anche se il PT dovesse
cambiare (ad es., un aggiornamento software su un robot modifica il formato
della telemetria), la DI del DT potrebbe rimanere invariata, poiché le modifiche
avverrebbero entro i confini della PI e del modello del DT.

Tale modularita favorirebbe, inoltre, anche la connessione con applicazioni
gia esistenti e sistemi legacy. Solitamente interfacciarsi con questi ultimi im-
plica avere poco controllo sui requisiti di integrazione, rendendo vantaggioso
avere DT piu flessibili per adattarsi meglio ai protocolli dell’applicazione.

Per esempio, utilizzando diversi DA, un DT potrebbe :

e esporre il suo stato corrente utilizzando diversi formati di rappresenta-
zione,

CAPITOLO 2. DIGITAL TWIN E WLDT 21

e supportare sia meccanismi request-response che publish-subscribe per
accedere ai suoi stati correnti e precedenti,

e supportare diversi linguaggi di query per accedere allo stesso data store.

Dunque, attraverso questo meccanismo, i DT raggiungono efficacemen-
te il loro ruolo di ponte, proteggendo le applicazioni dalla complessita dei
deployment fisici [10].

Digital Twin Descriptions

Un ulteriore livello di interoperabilita e possibile quando si consente ai DT
di descrivere la propria DI, pubblicizzando capacita e canali di comunicazione
disponibili che le applicazioni possono sfruttare. Un DT dovrebbe quindi uti-
lizzare una Digital Twin Description (DTD), che, similmente alla PAD,
consentirebbe di rappresentare le caratteristiche del DT ai suoi osservatori.

Il modo in cui tali descrizioni sono implementate puo differire significativa-
mente, ma essendo rivolte a consumatori esterni, dovrebbero preferibilmente
aderire a formati e rappresentazioni standard per essere utile nella pratica nel
raggiungimento dell’interoperabilita [10].

2.2.5 Digital Twin lifecycle

I1 DT & un’entita software ”vivente” che attraversa diverse fasi dalla crea-
zione alla disattivazione, questa dinamicita prende il nome di lifecycle e si puo
rappresentare con un diagramma a stati finiti (figura 2.1).

STOP
\/!\ DISMISS
Shadowed Done STOP

EVENTS &
STATE SYNC

STOP

BIND
WITH PA

EVENTS &
STATE SYNC

=

Figura 2.1: Lifecycle di un DT [11]

1. Not Bound (Unbound): il DT si trova a seguito della fase di inizializ-
zazione, indicando che tutti i moduli interni del DT sono attivi ma non
¢’e ancora un’associazione con il PA corrispondente;

22 CAPITOLO 2. DIGITAL TWIN E WLDT

2. Bound: il DT transita a seguito della corretta esecuzione della procedura
di binding. La procedura di binding permette di connettere le due parti
e abilita il flusso bidirezionale di eventi;

3. Synchronized: il processo di shadowing inizia e il suo stato e corretta-
mente sincronizzato con quello del PA;

4. Out of Sync: determina la presenza di errori nel processo di shadowing.
In questo stato, il DT non ¢ in grado di gestire né eventi di allineamento
dello stato né quelli generati dal livello applicativo;

5. Domne: il DT raggiunge quando il processo di shadowing e arrestato,
ma il DT continua ad essere attivo per gestire richieste provenienti da
applicazioni esterne.

Il progetto modulare della PI ha un impatto sul ciclo di vita del DT, illu-
strato nella Figura 2.1. In particolare, deve affrontare le sfide delle transizioni
dallo stato Unbound allo stato Bound e da Bound a Shadowed.

Unbound — Bound

Quando un PA si connette con successo al canale del PT e inizia a ricevere
dati, puo inviare la PAD generata al modello del DT. La generazione della
PAD puo essere utilizzata come passo di sincronizzazione per segnalare che il
PA & connesso con successo al PT. Il modello del DT e quindi responsabile
di raccogliere le diverse PAD, valutare se tutte le informazioni rilevanti per
iniziare a calcolare lo stato del DT sono disponibili e, quindi, passare alla fase
Bound.

Bound — Shadowed

Per permettere al DT di passare dallo stato Bound allo stato Shadowed, il
modello definisce quali proprieta devono essere monitorate sul Physical Asset
e inizia ad osservarle attraverso i PA. Gli step coinvolti sono:

1. il Model definisce quali proprieta monitorare e inizia ad osservarle;

2. i Physical Adapter coinvolti comunicano con il Physical Asset, ricevono
dati e generano eventi per notificare cambiamenti nelle proprieta fisiche;

3. gli eventi ricevuti sono utilizzati dal Digital Twin Model per eseguire la
Shadowing Function e computare il nuovo DT State;

CAPITOLO 2. DIGITAL TWIN E WLDT 23

4. il DT puo passare dalla fase Bound a quella Shadowed fino a quando &
in grado di mantenere una sincronizzazione appropriata con il Physical
Asset nel tempo.

Questi meccanismi consentono di gestire il comportamento del DT in modo
coerente, anche con la complessita aggiuntiva del design modulare della PI.

2.2.6 Digital Twins ecosystem

In parallelo all’evoluzione dei modelli architetturali dei singoli DT, € emersa
nel 2022 una visione pit ampia con il Web of Digital Twins (WoDT) [11]. Tale
approccio estende il paradigma dei Digital Twin dalla virtualizzazione di asset
isolati verso la creazione di ecosistemi distribuiti di DT interconnessi, in grado
di rappresentare realta fisiche complesse, dinamiche e cross-domain.

Gestione centralizzata L’architettura WoDT prevede componenti infra-
strutturali esterni ai singoli DT che supportano la gestione dell’ecosistema. 1l
Digital Twin Manager (DTM) ¢ responsabile della gestione del ciclo di
vita dei DT, dalla creazione e assegnazione di identificatori univoci fino alla
dismissione. Questo componente offre servizi per individuare DT basandosi su
ID o proprieta specifiche, fungendo da registro centrale dell’ecosistema.

Altro aspetto fondamentale & che multipli Digital Twin possono essere ese-
guiti sullo stesso Digital Twin Engine, che orchestra l’esecuzione concorrente
di diverse istanze DT attraverso un meccanismo multi-thread. Questo approc-
cio consente di ottimizzare le risorse computazionali e facilita la comunicazio-
ne tra DT che operano nello stesso contesto, pur mantenendo l'indipendenza
logica di ciascun gemello digitale.

Interoperabilita tra Digital Twins La comunicazione tra DT avviene at-
traverso le Relationships modellate esplicitamente nello stato di ciascun DT.
Queste relazioni, rappresentate come link verso altri DT (tramite IRI univo-
ci), permettono di navigare I’ecosistema e di accedere alle informazioni di DT
correlati. Il Distributed Knowledge Graph Engine (DKGE) fornisce i
mezzi per navigare I'intero grafo di DT interconnessi, instradando e inoltrando
richieste di accesso ai dati verso i DT coinvolti in una query, senza richiedere
conoscenza a priori della topologia dell’ecosistema.

Digital Interface condivisa Per favorire I'uso di DT come servizi e per fa-
cilitare I'interoperabilita degli ecosistemi, ¢ possibile uniformare i digital adap-
ter di diversi DT in un’unica Digital interface, la cui DTD descrive tutte le
funzionalita e relazioni dell’ecosistema.

24 CAPITOLO 2. DIGITAL TWIN E WLDT

2.2.7 Sintesi architetturale

In Figura 2.2 il diagramma riassume ’architettura spiegata, unificando
nello schema la suddivisione in moduli e le comunicazioni tra essi con l’'idea di
un ecosistema con 2 DT.

Physical
Adapter

Physical <‘: Digital Digital —
Interface Twin — Adapter

App

Physical
Twin

il

Digital

Engine
Interface

DTD

Protocol 1

:
I

App

Event: Action req.
PI %— PAD DT > DA

|<¢—Action req

PT

v

I

Protocol 2

Figura 2.2: Diagramma riassuntivo

Questo modello fornisce una base concettuale solida per I'implementazione
di Digital Twin che siano:

e Modulari: attraverso adapter specializzati a responsabilita singola;
e Interoperabili: capaci di adattarsi all’eterogeneita fisica e digitale;

e Scalabili: utilizzabili sia come entita standalone che come componenti
di ecosistemi distribuiti;

e Riusabili: con componenti configurabili per diversi contesti applicativi.

Il framework WLDT (White Label Digital Twins), presentato nella sezione
successiva, si propone come implementazione di questa architettura, fornendo
una libreria che concretizza i principi discussi e ne facilita ’adozione in scenari
applicativi reali.

CAPITOLO 2. DIGITAL TWIN E WLDT 25

2.3 WLDT

2.3.1 Introduzione

Il framework WLDT (White Label Digital Twins) ¢ una libreria Java open-
source progettata per semplificare lo sviluppo e l'implementazione di Digital
Twins nell’ambito dell’Internet of Things [9]. L’obiettivo principale del fra-
mework e massimizzare modularita, riusabilita e flessibilita, permettendo di
creare in modo efficace repliche digitali di oggetti fisici intelligenti. WLDT si
propone come soluzione generale per la creazione di DT che possano essere
eseguiti sia in cloud che su dispositivi edge, il design del framework ¢ guidato
da tre importanti requisiti:

e Semplicita — gli sviluppatori devono poter creare nuove istanze utiliz-
zando moduli esistenti o personalizzando il comportamento secondo le
esigenze dello scenario applicativo;

e Fstendibilita — pur mantenendo un core semplice e leggero, le API de-
vono essere facilmente estendibili per permettere la personalizzazione e
I’aggiunta di nuove funzionalita attraverso il caricamento ed esecuzione
di moduli multipli;

e Portabilita e Microservice Readiness — un Digital Twin implementato
con WLDT deve poter essere eseguito su qualsiasi piattaforma senza
modifiche, supportando lo sviluppo di applicazioni DT modellate come
agenti software indipendenti e impacchettate come microservizi.

2.3.2 Implementazione dell’architettura

WLDT implementa I’architettura modulare attraverso una struttura stra-
tificata su tre livelli principali (Figura 2.3).

26 CAPITOLO 2. DIGITAL TWIN E WLDT

| CoAP | | CoAP |
Adapters
~ | MQTT | | MQTT |
Layer
Physical Adapters Digital Adapters
L | Physical Adapter Core H Digital Adapter Core |
Digital Twin Life Cycle Digital Twin State
Digital Twin Digital Twin Shadowing Function

Modelling Layer

Digital Twin Model

Digital Twin
WLDT Core Digital Twin Engine
Layer Event Communication Bus

Metrics Manager Utils & Commons

Figura 2.3: Schema dell’architettura a strati dalla documentazione WLDT [9]

Livello Core

Il livello core fornisce le funzionalita infrastrutturali specifiche dell’imple-
mentazione WLDT:

Digital Twin Engine : definisce il motore multi-thread della libreria, per-
mettendo 1’esecuzione e il monitoraggio di multipli DT simultaneamente. E
responsabile dell’orchestrazione dei diversi moduli interni dell’architettura. At-
tualmente supporta I’esecuzione di gemelli nello stesso processo Java, realiz-
zando concretamente il concetto di engine condiviso discusso nell’architettura
WoDT. La stessa astrazione del motore potrebbe essere estesa per supportare
I’esecuzione distribuita.

Event Communication Bus rappresenta una specifica implementazione
event-driven della comunicazione interna al DT. Progettato per supportare la
comunicazione tra i diversi componenti dell’istanza DT, permette di defini-
re eventi personalizzati per modellare input e output fisici e digitali. Ogni
componente WLDT puo pubblicare sul bus condiviso e definire un Event Fil-
ter per specificare quali tipi di eventi gestire, associando callback specifici per
elaborare i diversi messaggi.

Storage Layer : integrato nel core con l'obiettivo di abilitare un salvataggio
manuale o automatico dei dati relativi all’evoluzione dello stato dei Digital
Twins, degli eventi generati e processati, e di qualsiasi variazione che coinvolge

CAPITOLO 2. DIGITAL TWIN E WLDT 27

proprieta, eventi, azioni, relazioni e ciclo di vita. Questa funzionalita e specifica
dell’implementazione WLDT e non fa parte dell’architettura astratta.

Livello di Modellazione

Il livello di modellazione implementa i concetti architetturali di Model e
Shadowing Function:

Digital Twin State : usa il modello Spr = (P, R, E, A) definita nell’ar-
chitettura, gestendo la lista di proprieta, eventi, azioni e relazioni. Ogni mo-
difica genera automaticamente un evento di notifica per tutti i componenti
interessati.

Shadowing Function : componente fondamentale che deve essere esteso dal
designer del DT per concretizzare il modello specifico. Implementa le funzioni
di shadowing Shadpr_.pr € Shadpr_, pr attraverso un’architettura basata su
callback. La Shadowing Function osserva il ciclo di vita del Digital Twin ed ¢
notificata dei cambiamenti di stato, ad esempio quando il DT entra nello stato
Bound dopo che i Physical Adapter hanno completato la procedura di binding.

Livello Adapter

WLDT fornisce classi astratte per Physical e Digital Adapter che devono
essere estese per protocolli specifici:

Physical Adapter : classe astratta che definisce le funzionalita essenziali
per implementazioni specifiche. Ogni adapter produce la propria PAD attra-
verso metodi dedicati. Un DT puo essere equipaggiato con multipli Physical
Adapter, e transita dallo stato Unbound allo stato Bound quando tutti hanno
prodotto le rispettive PAD.

Digital Adapter : fornisce callback che ogni implementazione specifica uti-
lizza per essere notificata dei cambiamenti nello stato del DT. Simmetricamente
ai Physical Adapter, un DT puo definire multipli Digital Adapter per esporre
stato e funzionalita attraverso diversi canali e protocolli.

2.3.3 Sistema Event-Driven

L’approccio event-driven di WLDT rappresenta una scelta implementativa
specifica che disaccoppia i componenti attraverso un efficace scambio di mes-
saggi. Il framework definisce due categorie principali di eventi:

28 CAPITOLO 2. DIGITAL TWIN E WLDT

Eventi del Physical Asset, che mappano interazioni bidirezionali con il PT:
e Physical Asset Description — variazioni nella PAD;
e Physical Asset Variation — variazioni di proprieta, eventi e relazioni;
e Physical Asset Action Request — richieste di azione verso il mondo fisico.
Eventi del Digital Twin, che mappano I’evoluzione del DT

e Life Cycle Variation — cambiamenti di stato nel ciclo di vita;
e DT State Variation — variazioni dello stato del DT
e DT State Event Notification — eventi generati dal DT

e Digital Action Request — richieste di azione da applicazioni esterne.

2.3.4 Sviluppo di un Digital Twin con WLDT

Per implementare un Digital Twin utilizzando WLDT, & necessario:

1. Estendere la classe astratta ShadowingFunction per definire il modello
specifico e le logiche di shadowing;

2. Implementare almeno un Physical Adapter estendendo PhysicalAdapter
per il protocollo di comunicazione con il PT;

3. Implementare almeno un Digital Adapter estendendo DigitalAdapter
per esporre il DT alle applicazioni;

4. Istanziare il WldtEngine e registrare il DT con i suoi adapter;
5. Avviare I'engine per iniziare il ciclo di vita del DT.

La libreria WLDT fornisce gia diverse implementazioni di adapter pronte
all’'uso che richiedono solamente una configurazione appropriata per il contesto
applicativo specifico. Tra questi, sono disponibili:

e MgttPhysicalAdapter e MgqttDigitalAdapter: per comunicazione tra-
mite protocollo MQTT, ampiamente utilizzato in scenari IoT;

e HttpDigitalAdapter: per esporre il DT attraverso API REST standard;

e WoTPhysicalAdapter e WoTDigitalAdapter: adapter conformi allo stan-
dard Web of Things del W3C, che costituiscono il contributo principale
di questo lavoro e saranno approfonditi nei capitoli successivi.

Capitolo 3

WoT Adapters: requisiti e
funzionalita

3.1 Integrazione dei Digital Twin nel Web of
Things

L’integrazione tra Digital Twin e Web of Things rappresenta una delle
evoluzioni piu promettenti per la realizzazione di ecosistemi cyber-fisici inte-
roperabili, scalabili e semantici. Sebbene i due paradigmi siano stati concepiti
con obiettivi distinti — il WoT per I'interoperabilita tra dispositivi eterogenei
e il DT per la rappresentazione dinamica e sincronizzata di entita fisiche — la
loro convergenza consente di superare molte delle attuali limitazioni dei sistemi
[oT tradizionali.

3.1.1 Confronto tra Thing WoT e Digital Twin

Prima di procedere con I'analisi e 'attuazione dell’integrazione, e utile com-
prendere le analogie strutturali e le differenze concettuali tra una Thing WoT
e un Digital Twin.

Entrambi hanno 'obiettivo di rappresentare entita fisiche in formato digi-
tale accessibile, fornendo meccanismi per il monitoraggio e il controllo remoto.
Per raggiungere questo scopo nel modo piu conciso ed efficace possibile, il mo-
dello della Thing Description e quello dello stato del Digital Twin condividono
un’organizzazione strutturale simile. Entrambi definiscono proprieta come at-
tributi leggibili che rappresentano lo stato dell’entita, azioni per rappresentare
operazioni invocabili che possono produrre effetti nel dispositivo che rispecchia-
no e gli eventi come notifiche asincrone generate in risposta a cambiamenti di
stato o condizioni specifiche.

29

30 CAPITOLO 3. WOT ADAPTERS: REQUISITI E FUNZIONALITA

Nonostante queste analogie strutturali, comuni nella rappresentazione di di-
spositivi IoT, esistono differenze sostanziali che derivano dalle finalita distinte
dei due modelli. La piu significativa ¢ data dalla capacita del Digital Twin,
attraverso il processo di shadowing, di effettuare computazione autonoma, pro-
ducendo dati elaborati e aggiuntivi rispetto a quelli del Physical Asset. Questo
gli puo permettere anche di continuare a simulare il Physical Twin quando es-
so non e raggiungibile. Una Thing WoT, diversamente, ¢ pensata come una
rappresentazione passiva di interfaccia che espone lo stato corrente dell’entita
fisica o digitale che rappresenta, senza elaborazioni intermedie. Cio porta con
sé un’altra differenza architetturale: il Digital Twin ha necessita di definire un
ciclo di vita esplicito con determintati stati che regolano la sincronizzazione
con il Physical Asset, mentre una Thing WoT e tipicamente sempre attiva
finché i server che la espongono sono raggiungibili.

3.1.2 Due direzioni di integrazione

Analizzando i casi d’'uso descritti nei capitoli precedenti, emerge come le
applicazioni tipiche del WoT si sovrappongano significativamente ai domini
dei Digital Twin. Si possono cosi identificare due strategie di integrazione
complementari, ciascuna con obiettivi e modalita di implementazione distinte
che rispondono a esigenze specifiche dei sistemi cyber-fisici moderni.

La Thing come Physical Asset per un DT

Nella prima soluzione, la Thing WoT rappresenta 1’asset fisico di riferimen-
to per la costruzione del Digital Twin. Le specifiche del W3C WoT, in par-
ticolare la Thing Description (TD), forniscono una rappresentazione unificata
e indipendente dalla tecnologia di comunicazione sottostante, permettendo di
accedere ai dati e alle funzionalita di dispositivi eterogenei attraverso interfacce
web standardizzate.

Questa soluzione risulta particolarmente efficace nei contesti complessi e
dinamici, come le smart city, dove la varieta di sensori, attuatori e piattaforme
rende difficile I'integrazione diretta delle sorgenti informative. In tale contesto,
ogni dispositivo o sottosistema urbano puo essere modellato da una Thing De-
scription, la quale permetterebbe la creazione automatica di una PAD per il DT
della citta. Attraverso gli standard WoT, i dati reali possono essere acquisiti,
interpretati e integrati all’interno di Digital Twin complessi, che rappresentano
in modo aggiornato e sincronizzato lo stato della citta. In questa prospettiva,
il WoT non solo fornisce un’infrastruttura uniforme per la connessione degli
oggetti fisici, ma diventa la base semantica per la costruzione automatizzata
di gemelli digitali di sistemi complessi, come quelli urbani.

CAPITOLO 3. WOT ADAPTERS: REQUISITI E FUNZIONALITA 31

Il Digital Twin esposto come Thing WoT

La seconda direzione di integrazione considera invece il Digital Twin co-
me un’entita digitale che espone le proprie capacita e funzionalita attraverso
le tecnologie del Web of Things. In questo caso, la Thing Description fun-
ge da DTD, permettendo ad applicazioni esterne di scoprire, comprendere e
interagire con i servizi che essa offre, basandosi su implementazioni standard
di Consumer WoT. Questo scenario e proposto anche nella documentazione
ufficiale del W3C stesso, tra i principali pattern di deployment dell’architet-
tura WoT. Nel dominio industriale, ad esempio, i diversi componenti fisici di
un processo produttivo possono essere rappresentati da Digital Twin che ri-
producono il loro comportamento e ne espongono le funzioni operative. L’'uso
delle TD come Digital Twin Description consente di descrivere tali DT in mo-
do standardizzato, rendendoli facilmente accessibili a piattaforme di analisi,
simulazione o ottimizzazione di livello superiore.

In sintesi, le due direzioni di integrazione — la Thing come asset fisico e il DT
come Thing WoT — delineano un ciclo continuo di connessione tra mondo reale
e rappresentazione virtuale, fondato su principi di interoperabilita, scalabilita
e riusabilita. Questa duplice relazione conferma il ruolo del Web of Things
come infrastruttura chiave per ’evoluzione dei sistemi basati su Digital Twin.

3.1.3 Realizzazione tramite adapters

L’architettura modulare di WLDT permette di concretizzare le due moda-
lita di integrazione descritte estendendo rispettivamente le classi di Physical
Adapter e Digital Adapter.

Ruolo del PA Utilizzare una Thing WoT conforme allo standard W3C come
Physical Asset per la costruzione del Digital Twin. I1 WoT Physical Adapter
agisce come Consumer della Thing, acquisendo e parsando la TD per gene-
rare automaticamente la Physical Asset Description. L’adapter si occupa di
leggere le proprieta, sottoscriversi agli eventi e invocare le azioni esposte dalla
Thing, gestendo autonomamente la comunicazione attraverso i Protocol Bin-
ding specificati nei forms e traducendo le interazioni WoT in eventi WLDT
comprensibili dalla Shadowing Function.

Ruolo del DA Rendere il Digital Twin accessibile all’esterno attraverso una
Digital Interface conforme allo standard WoT. Il WoT Digital Adapter agisce
come Exposer del Digital Twin, osservando lo stato corrente del DT e gene-
rando dinamicamente una Thing Description che lo rappresenti fedelmente.

32 CAPITOLO 3. WOT ADAPTERS: REQUISITI E FUNZIONALITA

L’adapter implementa i Protocol Binding necessari per esporre le affordances
e traduce le richieste WoT in eventi WLDT comprensibili dal modello. Le ap-
plicazioni esterne possono cosi interagire con il DT utilizzando i protocolli e le
convenzioni del WoT, mentre il Digital Twin mantiene le sue capacita di sha-
dowing e computazione autonoma, rendendole accessibili tramite I'interfaccia
standardizzata.

3.1.4 Sintesi dei vantaggi
L’integrazione tra WLDT e WoT presenta quindi vantaggi significativi:

e Standardizzazione: le Thing Description forniscono un formato uni-
versalmente riconosciuto per descrivere le capacita dei Digital Twin.

e Interoperabilita: 'adesione agli standard WoT facilita 'integrazione
di Digital Twin con ecosistemi [oT esistenti.

e Scalabilita: I'architettura modulare di WLDT puo sfruttare I'infrastrut-
tura WoT per i deployment distribuiti.

e Riusabilita: adapter WoT configurabili conformi allo standard possono
essere utilizzati per tradurre qualsiasi Thing Description valida.

3.2 WoT Physical Adapter

Estendendo la classe astratta ConfigurablePhysicalAdapter, questo com-
ponente implementa la logica necessaria per consumare una Thing conforme al-
lo standard W3C e tradurne le interazioni nel modello event-driven di WLDT.
L’adapter si posiziona nel livello Physical Interface dell’architettura WLDT
e opera come client nel paradigma WoT, assumendo il ruolo di Consumer
rispetto alla Thing target.

3.2.1 Lifecycle

I WoT Physical Adapter segue il ciclo di vita standard degli adapter
WLDT, applicando negli stati le procedure necessarie al collegamento e scol-
legamento della Thing esposta con il Digital Twin a cui e agganciato.

Fase di Binding (Unbound — Bound)

Durante la fase di binding, ’adapter:

1. Acquisisce la Thing Description dalla sorgente configurata

CAPITOLO 3. WOT ADAPTERS: REQUISITI E FUNZIONALITA 33

2. Valida la TD rispetto allo schema W3C
3. Genera la Physical Asset Description mappando le affordances

4. Pubblica la PAD tramite il metodo notifyPhysicalAdapterBound ()

Se l'acquisizione della TD fallisce (es. Thing non raggiungibile, TD malfor-
mata), 'adapter segnala ’errore e riprova periodicamente, solo quando avviene
con successo avvia la transizione allo stato di Bound.

Fase di Sincronizzazione

Una volta in stato Bound, I’adapter inizia la sincronizzazione con il Physical
Asset e avvia procedure per mantenerla:

1. Inizializza i client per i protocolli necessari
2. Legge i valori correnti di tutte le proprieta e li pubblica al DT
3. Attiva le sottoscrizioni per proprieta ed eventi observable

4. Avvia i task di polling per le proprieta non-observable

Fase di arresto (Bound — Unbound)

Quando il modello richiede I'arresto dell’adapter, tipicamente in prepara-
zione allo shutdown del Digital Twin o per una riconfigurazione, si avvia una
procedura ordinata di terminazione:

1. Annulla tutte le sottoscrizioni all’osservazione di eventi e proprieta os-
servabili

2. Esce dai cicli di polling per la lettura delle proprieta
3. Termina tutte le task concorrenti ancora in corso

4. Segnala 'arresto avvenuto tramite il metodo notifyPhysicalAdapterUn-

Bound()

34 CAPITOLO 3. WOT ADAPTERS: REQUISITI E FUNZIONALITA

3.2.2 Inizializzazione e Binding
Acquisizione della TD

Per avviarsi I’adapter richiede la TD della Thing che rappresenta il Physical
Asset. Questa e comunemente condivisa tramite un URL web, ma si fornisce
anche la possibilita di caricarla da un percorso file nel caso in cui la TD sia
stata acquisita precedentemente e salvata su disco, o di passare direttamente
la stringa Json, quando e generata dinamicamente o incorporata nella configu-
razione dell’applicazione. La sorgente, indipendentemente dal tipo, puo essere
incapsulata all’interno della configurazione dell’adapter, fornita al momento
della creazione.

Per poter passare allo stato Bound, il Physical Adapter deve fornire la Phy-
sical Asset Description al modello del DT. Poiché tutta l'informazione neces-
saria ¢ contenuta nella Thing Description, questa puo essere immediatamente
tradotta in una PAD. Sebbene i due formati siano concettualmente simili, co-
me discusso in precedenza, esistono differenze di espressivita e semantica che
richiedono scelte implementative appropriate durante la mappatura.

Mappatura delle Affordances

La mappatura segue un approccio uno-a-uno per le tre categorie di affor-
dance:

Properties Per ogni Property della TD si mappa una proprieta della PAD
specificando:

e Il nome, (corrispondente alla chiave nel dizionario properties)
e [l valore iniziale

e Se ¢ mutabile

e Se e scrivibile

La PAD WLDT non richiede di specificare esplicitamente il tipo o il rela-
tivo schema, poiché questi vengono dedotti dal valore iniziale, che, per questa
ragione, diventa in essa un campo obbligatorio. Nella TD, diversamente, il va-
lore default e opzionale: quando non ¢ presente, ’adapter deve creare appositi
valori iniziali che rispecchino lo schema del tipo specificato nella TD.

CAPITOLO 3. WOT ADAPTERS: REQUISITI E FUNZIONALITA 35

Actions Le azioni vengono mappate preservando:

e Il nome dell’azione
e il tipo semantico che puo essere specificato nel campo @type della TD

e il tipo di payload dell’input derivato dallo schema input della action

E importante notare che nella TD e possibile indicare anche uno schema
per l'output dell’azione, ma il modello di WLDT non prevede questo concetto,
assumendo invece che un eventuale cambiamento di stato provocato dall’azione
venga trasmesso attraverso cambiamenti di proprieta osservabili. Questa diffe-
renza riflette filosofie diverse: il WoT permette azioni con side effects espliciti
comunicati tramite il valore di ritorno, mentre WLDT preferisce un modello
piu orientato allo stato dove tutti i cambiamenti si riflettono nelle proprieta.

Events Le caratteristiche degli eventi tradotti sono:

e Il nome dell’evento

e il tipo di payload, basato sullo schema nella TD

Limitazioni nella mappatura

Oltre alle differenze gia evidenziate nella mappatura delle singole affor-
dances, i metadati generali presenti nella TD non trovano una corrispondenza
diretta nella PAD. Informazioni come title e description, che nella TD forni-
scono documentazione human-readable della Thing, non hanno un equivalente
nella PAD che & pensata per uso interno machine-to-machine. Le informa-
zioni di sicurezza globali, specificate nelle securityDefinitions della TD, non
vengono trasferite nella PAD poiché la gestione della sicurezza ¢ demandata al
livello di comunicazione sottostante gestito dal Servient. I link a documenta-
zione esterna e le forme specifiche per operazioni avanzate presenti nella TD
rappresentano metadati di livello superiore che non hanno rilevanza per il fun-
zionamento interno del Digital Twin. Si nota quindi che la Thing Description
ha una capacita espressiva maggiore rispetto alla Physical Asset Description,
riflettendo il suo ruolo pitt ampio di documentazione completa per consumer
esterni rispetto alla finalita piu focalizzata della PAD.

3.2.3 Sincronizzazione
Aggiornamento delle Proprieta

Passato allo stato Bound, il Physical Adapter deve mantenere lo stato del
Digital Twin sincronizzato con il Physical Asset nel tempo. La prima operazio-

36 CAPITOLO 3. WOT ADAPTERS: REQUISITI E FUNZIONALITA

ne consiste nell’aggiornare le proprieta per sostituire i valori iniziali passati con
la PAD, che potrebbero essere valori default generati automaticamente, con i
valori effettivamente correnti letti dalla Thing. Successivamente ¢ necessario
avviare una procedura persistente che garantisca I’aggiornamento continuo dei
valori per tutta la durata della vita del DT. Infatti, nel modello event-driven
del Digital Twin, e il Physical Adapter che deve inviare proattivamente even-
ti di aggiornamento al DT quando lo stato del Physical Asset cambia. Nel
paradigma WoT invece e il Consumer che decide quando leggere una pro-
prieta, seguendo il paradigma request - response tipico del web. Solo se una
proprieta ¢ marcata come observable nella TD ¢ possibile sottoscriversi a
notifiche di cambiamento. Di conseguenza e ’adapter che deve implementare
una procedura di lettura periodica delle properties, per garantire che lo stato
sia aggiornato con ritardo trascurabile rispetto al dominio applicativo. Que-
sto disallineamento richiede strategie differenti a seconda della natura della
proprieta.

Proprieta Observable Se una proprieta espone un’operazione observe nel-
le sue Forms, 'adapter puo sottoscriversi direttamente agli aggiornamenti im-
plementando il pattern di osservabilita nativo del WoT. Questo rappresenta
il caso ideale in quanto minimizza il traffico di rete, eliminando la necessita
di polling periodico, e garantisce aggiornamenti tempestivi poiché le notifiche
vengono inviate dal Physical Asset immediatamente quando il valore cam-
bia. L’adapter gestisce la sottoscrizione secondo il protocollo specificato nella
form corrispondente, che potrebbe utilizzare il subprotocol longpoll su HT'TP,
observe su CoAP, o subscription su topic MQTT.

Proprieta Non-Observable Per le proprieta che non supportano osser-
vabilita, situazione comune in molti dispositivi legacy o con risorse limitate,
I’adapter deve implementare un meccanismo di polling attivo. La frequenza di
polling puo essere configurata globalmente, applicando una singola frequenza
a tutte le proprieta non-observable, oppure per-property, con frequenze diffe-
renziate in base all'importanza della proprieta o alla velocita di cambiamento
attesa nel dominio specifico. Ad esempio, in un sistema di monitoraggio indu-
striale, la temperatura di un processo critico potrebbe richiedere polling ogni
secondo, mentre il livello di un serbatoio potrebbe essere letto ogni minuto.
Poiché la TD non prevede nessun campo dedicato a esprimere periodi di lettu-
ra consigliati, i parametri di polling devono essere forniti esplicitamente nella
configurazione dell’adapter, richiedendo conoscenza del dominio applicativo da
parte di chi configura il sistema.

CAPITOLO 3. WOT ADAPTERS: REQUISITI E FUNZIONALITA 37

Propagazione eventi

Gli eventi esposti dalla Thing vengono gestiti attivando le relative sottoscri-
zioni secondo i Protocol Binding specificati nelle forms. Quando un evento vie-
ne ricevuto, ’adapter lo traduce in un PhysicalAssetEventNotification che
viene pubblicato sul bus interno di WLDT, permettendo alla Shadowing Func-
tion di reagire appropriatamente, ad esempio aggiornando proprieta derivate
o generando eventi di livello superiore nel Digital Twin State.

Invocazione di azioni

Il Physical Adapter espone anche un meccanismo per permettere al Digi-
tal Twin, tramite la Shadowing Function, di invocare azioni sul Physical Asset.
Questo viene implementato nel metodo astratto onPhysicalAssetActionRequest,
in risposta a eventi pubblicati sul bus interno di WLDT. Quando riceve una
tale richiesta, 1'adapter identifica 'affordance appropriata per 1’azione nella
Thing Description, costruisce il payload secondo lo schema input specifica-
to, invoca ’azione utilizzando il protocollo e 'endpoint indicati nella form e
restituisce un segnale di successo o fallimento.

Questo meccanismo bidirezionale, dove il DT puo sia osservare che control-
lare il Physical Asset, ¢ utile per implementare scenari di controllo in closed-
loop dove il gemello digitale prende decisioni autonome basate sull’analisi dello
stato e le attua direttamente sul sistema fisico.

3.2.4 Configurazione

Ricapitolando quanto detto la configurazione necessaria deve specificare:

e Thing Description Source: l'origine della TD, che puo essere un URL
web, un file locale o una stringa JSON.

e Servient: un Servient che implementa I'interfaccia del WoT', configurato
con i protocol client necessari, in ordine di preferenza.

e Polling Configuration: per le proprieta non osservabili, la frequenza
di polling desiderata, con possibilita di impostazione globale o di singola
lettura.

38 CAPITOLO 3. WOT ADAPTERS: REQUISITI E FUNZIONALITA

3.3 WoT Digital Adapter

Estendendo la classe astratta ConfigurableDigitalAdapter, questo com-
ponente espone il Digital Twin a cui e agganciato come Thing WoT confor-
me allo standard W3C, rendendo lo stato e le capacita del DT accessibili a
consumer esterni.

3.3.1 Lifecycle
Attivazione

Quando il Digital Twin segnala I'avvio al Digital Adapter si avvia la se-
guente procedura:

1. Notifica prima il binding con il DT attraverso I'invocazione del metodo
appropriato nel framework WLDT, stabilendo la connessione logica con
il modello.

2. Attende il sync con il DT e osserva il primo DigitalTwinState
3. Genera la Thing Description mappando affordances e metadati
4. Crea la Exposed Thing, aggiungendo gli handler per le varie operazioni

5. Pubblica la TD rendendola scopribile su un endpoint well-known, ed
espone la Thing attraverso i server inizializzati, rendendola accessibile ai
consumer esterni.

Out of sync

Quando il Digital Twin transisce in uno stato non sincronizzato, notifica
I'evento al Digital Adapter. Il modello Web of Things pero, non prevede un
meccanismo per segnalare la perdita di sincronizzazione, I'implementazione de-
ve quindi adottare una delle possibili strategie alternative. Una prima opzione
consiste nell’arrestare completamente la exposed Thing e riattivarla quando il
DT rientra nello stato Synchronized, ma in questo modo non si permette ai
consumer di leggere gli ultimi valori validi delle proprieta prima della perdita
di sincronizzazione, valori che potrebbero comunque essere utili per analisi o
decision making. Una seconda opzione consiste nell’aggiungere una proprieta
dedicata alla Thing Description, ad esempio un booleano denominato synchro-
nized o inserire direttamente il timestamp contenuto nell’ultimo stato del DT
ricevuto. I consumer possono cosl continuare ad accedere ai dati del DT es-
sendo consapevoli del loro livello di aggiornamento e attendibilita, e decidere
autonomamente se considerarli adeguati per il loro caso d’uso specifico.

CAPITOLO 3. WOT ADAPTERS: REQUISITI E FUNZIONALITA 39

Arresto

Quando viene richiesto I'arresto del Digital Twin, l’adapter esegue una pro-
cedura di shutdown ordinato simile a quella del Physical Adapter, terminando
tutte le sottoscrizioni attive, arrestando i server di protocollo, e notificando lo
stato di unbinding.

3.3.2 Generazione della Thing Description
Mappatura dello Stato del DT

Il processo di generazione della TD parte in seguito alla notifica di sincro-
nizzazione del DT, basandosi sul primo DigitalTwinState che viene fornito
all’invocazione del metodo e procede mappando ciascuna componente della sua
struttura:

Properties Ogni proprieta dello stato viene mappata in una Property WoT
con chiave corrispondente al nome. Nell’affordance si specifica lo schema del
tipo, se readOnly o writeOnly e il valore default. Le proprieta del DT possono
essere degli oggetti o delle collezioni, per cui ¢ necessario inserire nella DT lo
schema corrispondente alla classe dell’oggetto, descrivendola come struttura
di oggetti e array.

Actions Le azioni vengono esposte come Actions WoT specificando il tipo
semantico, il tipo dell’input, anch’esso secondo lo schema WoT, e utilizzando
il nome come chiave.

Events Gli eventi diventano Events WoT con chiave il nome dell’evento e il
tipo semantico specificato in type.

Relationships Il modello del Digital Twin include esplicitamente le relazioni
che connettono il DT con altri Physical o Digital Twin, aspetto fondamentale
nell’architettura WoDT per costruire ecosistemi di gemelli digitali interconnes-
si. Nel WoT, sebbene sia possibile referenziare altre Thing tramite link e creare
strutture gerarchiche, questa connessione non puo essere gestita direttamente
dai singoli digital adapter dei DT delle componenti. La soluzione adottata
consiste nel mappare le relationships come proprieta aggiuntive, aventi come
chiave il nome, e come properties dello schema i campi della relazionie, tra cui
un array per le Relationships Instances. In questo modo pero, si puo accedere
ad esse solo leggendo il valore della properties mappata, e non si puo dedurre
nulla dalla sola TD, nonostante siano in parte una componente statica dello
stato.

40 CAPITOLO 3. WOT ADAPTERS: REQUISITI E FUNZIONALITA

Froms e operazioni

Per ogni affordance generata e necessario aggiungere i rispettivi Form che
specificano come accedere concretamente ad essa attraverso i protocolli di-
sponibili. Il numero e il tipo di form dipendono dai server disponibili nel
Servient fornito nella configurazione. Se il Servient ha configurato un ser-
ver HT'TP e un server MQTT connesso a un broker, I’adapter generera due
form per ciascuna affordance, con metodo e URL appropriati. Le operazioni
disponibili in ciascun form possono essere derivate automaticamente da al-
tre caratteristiche dell’affordance: una proprieta observable avra le operazioni
observeproperty e unobserveproperty in aggiunta a readproperty, mentre
una proprieta readOnly non avra l'operazione writeproperty.

Metadati Generali

I metadati generali della Thing Description vengono popolati come:

e (@title e @description) possono essere impostati dalla configurazione.

e Identificatore univoco della Thing (id), uguale all’id del Digital Adapter
se non configurato diversamente.

e Il contesto semantico (@context, @type).

3.3.3 Sincronizzazione con lo Stato del DT

Ogni volta che la Shadowing Function elabora un cambiamento e aggiorna
lo stato del Digital Twin, I’adapter viene notificato con il nuovo stato attra-
verso il meccanismo di eventi WLDT. La Thing esposta deve di conseguenza
aggiornare le properties mappate per riflettere le correnti proprieta e rela-
tionship instances del DT. Per le proprieta marcate come observable nella
TD, 'adapter deve anche inviare una notifica attiva a tutti i consumer che
hanno sottoscritto 'observability di quella specifica proprieta, utilizzando il
meccanismo specificato nel form.

Il modello del Digital Twin permette anche che venga aggiunto, rimosso o
modificato strutturalmente un intero elemento dello stato durante I’evoluzione
del DT. Ad esempio, un’azione che era sempre stata presente a partire dal
primo stato di sincronizzazione potrebbe non trovarsi piu in un aggiornamento
successivo, perché non piu disponibile a causa di un particolare evento rilevato
sul Physical Asset, come un guasto hardware che disabilita una funzionalita
o una riconfigurazione del sistema che ne modifica le capacita. Tale scena-
rio implicherebbe una modifica nella Thing Description, che per continuare

CAPITOLO 3. WOT ADAPTERS: REQUISITI E FUNZIONALITA 41

a rispecchiare accuratamente le capacita del DT dovrebbe in questo caso ri-
muovere ’action corrispondente. Tuttavia, questo aspetto non e considerato
dal modello Web of Things, il quale, prevedendo tipicamente una singola ac-
quisizione iniziale della Thing Description, non dispone di meccanismi API
standardizzati per modificare la TD e notificare ai consumer I’aggiornamento.
La soluzione adottata, approfondita nel capitolo seguente, consiste nel creare
ed esporre una nuova Thing Description, allo stesso end-point, in sostituzione
a quella obsoleta.

3.3.4 Configurazione
I1 WoT Digital Adapter richiede una configurazione che specifichi:
e Metadati Generali: informazioni come title, description, id.

e Servient: Servient che implementi I’API standard del W3C, configurato
con i server sui quali si vuole esporre la Thing, in ordine di preferenza.

e Osservabilita properties: si specifica se si vogliono rendere le pro-
prieta observable, selettivamente o nella totalita.

Capitolo 4

Sviluppo e soluzioni
implementative

Questo capitolo si concentra sugli aspetti implementativi concreti degli
adapter sviluppati. L’implementazione realizzata si propone di fornire un Phy-
sical Adapter e un Digital Adapter configurabili e riutilizzabili per il framework
WLDT, che incapsulino l'integrazione automatica con gli standard W3C Web
of Things, concretizzando i requisiti e le soluzioni discusse in prototipi software
open-source.

4.1 Tecnologie

L’integrazione tra Digital Twin e Web of Things, discussa nel capitolo pre-
cedente, trova la sua realizzazione pratica nell’integrazione tra due framework
JVM specifici: WLDT [9] per la gestione dei Digital Twin e Kotlin-WoT per
I'implementazione delle specifiche del W3C. Questa sezione spiega le caratte-
ristiche tecniche rilevanti del linguaggio di sviluppo e di Kotlin-WoT, essendo
WLDT gia stato approfondito nel capitolo 2.

4.1.1 Linguaggio Kotlin

Essendo un linguaggio che compila su Java Virtual Machine, Kotlin ga-
rantisce piena compatibilita binaria con il framework WLDT esistente, scritto
in Java. Questa interoperabilita bidirezionale elimina la necessita di creare
layer di integrazione complessi o wrapper per l'interazione tra i componenti,
permettendo agli adapter sviluppati in Kotlin di essere utilizzati come normali
classi Java in qualsiasi progetto basato su JVM.

Dal punto di vista della sicurezza del codice, Kotlin introduce un sistema di
tipi che distingue esplicitamente tra riferimenti nullable e non-nullable a livello

43

44 CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE

di linguaggio. Questa caratteristica, assente in Java, consente di prevenire a
compile-time errori runtime legati ai riferimenti nulli.

L’ecosistema di librerie standard di Kotlin offre costrutti nativi particolar-
mente rilevanti per I'implementazione degli adapter. Il supporto alle corouti-
ne, integrato nella libreria standard del linguaggio, facilita la programmazione
asincrona e concorrente, necessaria per gestire le comunicazioni di rete con le
Thing, i protocolli di publish-subscribe e task persistenti come il polling delle
proprieta. A differenza dei thread tradizionali di Java, le coroutine rappresen-
tano un’astrazione piu leggera e componibile, permettendo di scrivere codice
asincrono con una sintassi sequenziale che ne migliora significativamente la
leggibilita e la manutenibilita. Un ulteriore aspetto rilevante ¢ il supporto alla
reflection fornito dalla libreria kotlin-reflect. Questa funzionalita e stata
impiegata nella costruzione automatica degli schemi delle classi per le proprieta
del Digital Twin State, permettendo di ispezionare a runtime la struttura degli
oggetti Kotlin e di generare dinamicamente le corrispondenti rappresentazioni
schema conformi alla specifica W3C.

4.1.2 Kotlin-WoT

La realizzazione degli adapter si basa sul framework Kotlin-WoT, I'imple-
mentazione ufficiale per JVM delle specifiche W3C Web of Things sviluppata
principalmente da Robert Winkler e inserita nel progetto Eclipse ThingWeb.
Questa libreria fornisce un’implementazione completa delle WoT Scripting API
definite dal W3C, insieme ai principali Protocol Binding specificati dallo stan-
dard, offrendo le primitive necessarie per creare sia Consumer che Exposer di
Thing conformi.

L’elemento centrale della libreria e la classe Servient, che incapsula tutta
la logica di gestione dei protocolli di comunicazione secondo 1’architettura del
W3C. Esso viene utilizzato per costruire oggetti di interfaccia Wot, la quale
fornisce metodi come produce e consume.

Durante lo sviluppo degli adapter sono emerse alcune limitazioni della libre-
ria Kotlin-WoT, dovute principalmente al fatto che il progetto & ancora in fase
di sviluppo attivo e alcune funzionalita non sono completamente implementate.
In particolare, e stata riscontrata la necessita di gestire manualmente 1’avvio
dei protocol client per alcuni protocolli, comportamento che dovrebbe essere
automatizzato dal Servient secondo la specifica. Inoltre, la corretta gestione
di alcune operazioni di observability ¢ ancora limitata solo ad alcuni protocol-
li, come MQTT, mentre si e rivelata non ancora pienamente supportata per
HTTP, che non include nativamente meccanismi di publish-subscribe.

CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE 45

4.2 WoT Physical Adapter

PhysicalAdapter

+ adapterld : String

onAdapterStart() : void
onAdapterStop() : void
onlncomingPhysicalAction(actionEvent) : void

notifyPhisycalAdapterBound(PAD)

notifyPhisycalAdapterUnbound()

publishPhysicalAssetProperty(PAproperty)
publishPhysicalAssetEvent(PAevent)

ThingDescriptionSource

- source : String

+ IsfromUri() : Boolean
+ IsfromString() : Boolean
+ IsfromFilePath() : Boolean

A

i

ConfigurablePhysicalAdapter<T>

+ configuration : <T>

i

WoTPhysicalAdapterConfiguration

+ servient : Servient

- tdSource : ThingDescriptionSource

- pollingOptions : List<PollingOptions>
- defaultPollingOptions : PollingOptions

+ getThingDescription() : WoT ThingDescription
+ getPollingOptionsForProperty(properyt: String):
PollingOptions

WoTPhysicalAdapter

- wot : Wot
- td : WoTThingDescription
- consumedThing : ConsumedThing

- propertySubscriptions : List<Subscription>
- eventSubscriptions : List<Subscription>
- pollingActives : Map<String, Boolean>

- coroutineScope : CoroutineScope
- logger : Logger

A4
PollingOptions

+ interval : Int
+ onlyOnUpdate : Boolean

onAdapterStart() : void
onAdapterStop() : void
onlncomingPhysicalAction(actionEvent) : void

- getPadFromTD() : PhysicalAssetDescription
- startPropertyObservation(name : String)

- startPollingForProperty(name : String)

- subscribeToEvent(name: String)

- readProperty(name: String) : Object
- publishProperty(name : String)

utils

+ jsonToObject(node: JsonNode) : Object

+ getinteractionlnput(Object) : Interactioninput

+ getDefaultValue(aff : PropertyAffordance) : Object
+ getDefaultType(schema Schema) : String

Figura 4.1: architettura WotPhysicalAdapter

La classe principale WoTPhysicalAdapter implementa la classe astratta
ConfigurablePhysicalAdapter<WoTPhysicalAdapterConfiguration>, un’e-
stensione di PhysicalAdapter che richiede una configurazione generica nel
costruttore. Per queste due classi astratte di WLDT [9] sono stati riporta-

46 CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE

ti nel diagramma 4.1 specificamente solo i parametri e i metodi utilizzati o
sovrascritti nel progetto.

4.2.1 Procedura di avvio

override fun onAdapterStart() {
coroutineScope.launch {
var bound = false
while (!bound) {
try {
td = configuration.getThingDescription()
val pad = getPadFromThingDescription(td)
notifyPhysicalAdapterBound (pad)
bound = true
} catch (e: Exception) {
logger.warn("Error obtaining Thing Description: ${e.message}.
Retrying...")
delay (1000)
}
}
consumedThing = wot.consume (td)
startClients()
td.properties.forEach { (name, propertyAffordance) ->
if (propertyAffordance.const == null ||
propertyAffordance.const is NullSchema) {
launch { publishProperty(name, readProperty(name)) }
launch { startPropertyObservation(name, propertyAffordance) }
} else {
publishProperty(name, propertyAffordance.const!!)
}
}
td.events.forEach { (name, _) —>
launch { subscribeToEvent (name) }

Listato 4.1: Override del metodo astratto onAdapterStart()

Il loop di retry garantisce robustezza in scenari dove la Thing potrebbe non
essere immediatamente disponibile, ad esempio durante ’avvio simultaneo di
piu componenti del sistema. L'uso di delay() evita busy-waiting e riduce il
carico sulla rete. Una volta acquisita la TD e notificato lo stato Bound, I'adap-

CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE 47

ter procede con l'inizializzazione della consumed thing e ’avvio delle procedure
di sincronizzazione. Le proprieta con valore costante (campo const popolato)
vengono pubblicate immediatamente senza necessita di lettura remota, essen-
do il loro valore presente nella TD e non mutabile, mentre per le altre, si
procede con lettura iniziale e attivazione della sincronizzazione continua. In-
fine, ma sempre parallelamente, si richiedono le sottoscrioni alle notifiche di
eventi. Per 'invocazione di azioni invece, che provengono da DT, si ¢ imple-
mentato l'override del metodo astratto onIncomingPhysicalAction(action),
chiamando invocheAction dalla consumed thing, dopo controlli e traduzione
dell’input.

Dettagli generazione PAD

private fun getPadFromThingDescription(td: WoTThingDescription):
PhysicalAssetDescription {
return PhysicalAssetDescription().apply {
td.properties.forEach { (name, propertyAffordance) ->
val initialValue = getDefaultValue(propertyAffordance)
val isImmutable = propertyAffordance.const != null
val isWritable = !propertyAffordance.readOnly
properties.add(PhysicalAssetProperty(name, initialValue,
isImmutable, isWritable))

td.events.forEach { (name, eventAffordance) —>
events.add(PhysicalAssetEvent (name,
eventAffordance.objectType?.defaultType))

td.actions.forEach { (name, actionAffordance) ->
val type = actionAffordance.objectType?.defaultType 7:
"default"
val input = actionAffordance.input
val inputType = input?.objectType?.defaultType 7:
getDefaultType (input)
actions.add(PhysicalAssetAction(name, type, inputType))

}

Listato 4.2: Funzione per il mapping della TD in Physical Asset Description

48 CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE

La mappatura segue un approccio dichiarativo, dove per ciascuna catego-
ria di affordance viene applicata una trasformazione specifica che preserva la
semantica dell’elemento pur adattandola al modello WLDT. Per il calcolo del
valore iniziale delle proprieta si implementa una strategia a tre livelli di prio-
rita: valore costante (campo const), valore di default esplicito (campo default)
e, se entrambi sono vuoti, si inserisce un valore neutro coerente con lo schema.

4.2.2 Gestione aggiornamento delle proprieta

private suspend fun startPropertyObservation(name: String,
propertyAffordance: PropertyAffordance<*>) {
val observationSuccessful = propertyAffordance.observable && try {
val subscription = consumedThing.observeProperty(
name,
listener = { output ->
publishProperty(name, jsonToJavaMapper (output.value()))
1,
errorListener = { error ->
//First Exception stops the observation
startPollingForProperty(name)
}s
)
propertySubscriptions[name] = subscription
subscription.active
} catch (e: Exception) {
false
}
if (!observationSuccessful) {
startPollingForProperty(name)
}
}

Listato 4.3: Procedura per attivare I'osservazione di una proprieta

Per le proprieta che espongono un’operazione observeproperty nelle loro
Forms, ’adapter tenta di stabilire una sottoscrizione diretta utilizzando il pat-
tern nativo WoT. La gestione della sottoscrizione include meccanismi di error
handling che, in caso di fallimento dell’osservazione, attivano automaticamente
un fallback al polling. Lo stesso approccio di subscribtion con listener e usato
per la cattura degli events, che vengono notificati al DT dopo un’opportuna
deserializzazione del Payload.

CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE 49

private fun startPollingForProperty(name: String) {
val options = adapterConfig.getPollingOptionsForProperty(name)
val interval = options.pollingInterval
if (interval < 0) {
return

coroutineScope.launch {
logger.info("Starting polling for property ’$name’")
pollingActives[name] = true
delay(interval)
if (options.onlyUpdatedValues) {
var lastValue : Any? = null
while (pollingActives[name] == true) {
val newValue = readProperty(name)
if (newValue != lastValue) {
lastValue = newValue
publishProperty(name, newValue)

}
delay(interval)
}
} else {
while (pollingActives[name] == true) {
publishProperty(name, readProperty(name))
delay(interval)

}
}
}
}

Listato 4.4: Procedura per avviare il polling di una proprieta

L’implementazione del polling sfrutta le coroutine per eseguire un ciclo di
letture periodiche in modo non bloccante . Ciascuna proprieta viene gesti-
ta da una coroutine dedicata che, utilizzando la funzione delay, si sospende
ciclicamente per l'intervallo di polling configurato. Un parametro booleano
della configurazione di polling permette inoltre di specificare se pubblicare
ogni valore letto o solo i valori che differiscono dal precedente, ottimizzazione
utile per ridurre il carico sul bus eventi WLDT quando le proprieta cambiano
raramente. Le guardie dei cicli controllano uno specifico elemento di un vet-
tore di booleani, campo della classe, in questo modo possono essere terminati
naturalmente dalla procedura di arresto dell’adapter.

50 CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE

4.3 WoT Digital Adapter

DigitalAdapter WoTPhysicalAdapterConfiguration

+ adapterld : String + servient : Servient
+ thingld : String = null

onAdapterStart() : void

onAdapterStop() : void - thingTitle : String = 'DT"

onDigitalTwinSync(state : DTstate) : void - descritption : String = null

onDigitalTwinUnSync(state : DTstate) : void - observableProperties : Set<String>
onStateUpdate(chages : List<dtStateChanges>) : void - allPropertiesObservable : Boolean

onEventRecived(event : DTstateEvent) : void

+ getTdInfo() : Map<String, String>
+ isPropertyObservable(key : String) :
Boolean

notifyDigitalAdapterBound(PAD)
notifyDigitalAdapterUnbound()
publishDigitalAction(key : String, body : Object) : void

WoTDigitalAdapter

- wot : Wot
- td : WoTThingDescription
- exposedThing : ExposedThing

- tdConstructionMap : Map<String, Object>

- propertyValues : List<String, Interactioninput>

- propertiesObserved : Set<String>

- relationships : Map<String, DTstateRelationship>
- synchronized : Boolean

- coroutineScope : CoroutineScope
- logger : Logger

onAdapterStart() : void

onAdapterStop() : void

onDigitalTwinSync(state : DTstate) : void

onDigitalTwinUnSync(state : DTstate) : void

onEventRecived(event : DTstateEvent) : void

onStateUpdate(chages : List<dtStateChanges>): void

- getTdConstructionMap(baseTD, dtState) : Map<String, Object>
- createExposedThing(td : ThingDescription) : ExposedThing

utils

TDmapBuilder

+ jsonNodeToValue(node: JsonNode) : Object

+ getRelationshiplnteractionlnput(+ getPropertyMap(p : DTstateProperty,

rel : DTstateRelationship) : Interactionlnput observable : Boolean) : Map<String, Object>
+ stringToWotType(type : String) : String + getEventMap(p : DTstateEvent) : Map<String, Object>
+ getinteractioninput(body : Object) : + getActionMap(a : DTstateAction) : Map<String, Object>

Interactioninput

- getSchemaMap(cls : Class, instance : Object):
Map<String, Object>

Figura 4.2: Architettura wot-digital-adapter

CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE o1

4.3.1 Avvio e sincronizzazione

Analogamente al WoTPhysicalAdapter, il WoTDigitalAdapter sovrascrive
1 metodi astratti della classe DigitalAdapter di WLDT, che estende. Simil-
mente a quanto visto per il PA (listato 4.1), nel metodo onAdapterStart () si
applica un ciclo di retry In questo caso pero, esso controlla lo stato di sincro-
nizzazione per assicurarsi che il campo exposedThing sia stato inizializzato,
procedendo cosi a esporre la Thing, grazie al Servient fornito in configurazione.
E quindi nella procedura onDigitalTwinSync () che si svologono le operazioni
chiave per produrre ’exposed thing, che costituisce la rappresentazione del DT
secondo il formato della Thing WoT.

override fun onDigitalTwinSync(digitalTwinState: DigitalTwinState?) {
try {
tdConstructionMap = getTdConstructionMap(
configuration.tdInfo,
digitalTwinState
)
val tempTD = ThingDescription.fromMap(tdConstructionMap)
exposedThing = createExposedThing(tempTD)
td = exposedThing.getThingDescription()

} catch (e: Exception) {
logger.error("Error creating Thing Description or Exposed Thing:
${e.message}", e)
+
synchronized = true

¥

Listato 4.5: override del metodo astratto onDigitalTwinSync()

Creazione della TD e dell’ Exposed thing

La documentazione di Kotlin-WoT suggerisce come approccio preferenzia-
le per la creazione di un’istanza ExposedThing l'utilizzo di classi annotate
che rappresentino il dispositivo da esporre, con metodi annotati per le spe-
cifiche interazioni. Questo pattern, tuttavia, presuppone che la struttura del
dispositivo sia nota a compile-time, condizione non soddisfatta nel contesto
di questo progetto. Una caratteristica fondamentale dell’adapter e infatti la
capacita di esporre qualsiasi Digital Twin WLDT senza conoscerne preven-
tivamente la struttura, derivando dinamicamente la Thing Description dallo
stato del Digital Twin a runtime. E quindi necessario implementare la ge-
nerazione di una TD temporanea di base mappando la struttura del primo

52 CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE

DigitalTwinState. Questa descrizione puo essere cosi fornita alla funzione
WoT standard produce(ThingDescription), per ottenere l’exposed Thing
(listato 4.7). Da essa infine, grazie alla libreria, si puo ricavare automatica-
mente la TD completa, comprendente i Forms inseriti sulla base dei protocol
server disopnibili nel servient (listato 4.5).

La generazione della TD temporanea si avvale della funzione fromMap,
che consente di tradurre una struttura di mappe innestate in un oggetto
WoTThingDescription valido. Questo approccio offre la garanzia di produr-
re una Thing Description conforme allo standard, poiché la validazione e la
costruzione dell’oggetto sono delegate alla funzione di libreria. La struttu-
ra a mappe viene costruita aggregando una mappa dedicata per ciascuno dei
quattro elementi dello stato del DT. Come discusso nel capitolo precedente,
le relationships vengono inserite nella mappa delle proprieta, e il loro schema
¢ ottenuto in maniera statica, essendo la struttura delle relazioni predetermi-
nata dal modello WLDT. Si mostra di seguito la funzione per tradurre una
proprieta nella rispettiva mappa dell’affordance.

internal fun getPropertyMap(p: DigitalTwinStateProperty<x*>,

observable : Boolean): Map<String, Any?> {

val map = mutableMapOf<String, Any?>(
"observable" to observable,
"readOnly" to (!p.isWritable && p.isReadable),
"writeOnly" to (!p.isReadable && p.isWritable),
"default" to p.value,

)

map.putAll (getSchemaMap(p.value.javaClass, p.value))

map["type"] = stringToWotType(p.type)

return map

Listato 4.6: Metodo per il mapping dell’affordance di una proprieta

Il valore corrente della proprieta viene incluso come default nella Thing
Description, fornendo ai consumer un’indicazione dello stato iniziale della
Thing. La mappa per lo schema del tipo invece, viene generata dalla funzione
getSchemaMap, di seguito analizzata.

CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE 23

Costruzione dello schema per tipi complessi

La generazione degli schemi per le affordances della Thing Description pre-
senta sfide implementative legate alle limitazioni dell’introspezione dei tipi a
runtime in Java. Sebbene lo stato del Digital Twin mantenga per ogni pro-
prieta un campo stringa type, questo non garantisce informazioni sufficienti
per ricostruire uno schema completo, in quanto potrebbe contenere sempli-
cemente il nome qualificato della classe senza dettagli sulla struttura interna.
Per questo motivo, 'implementazione si affida primariamente al valore corrente
della proprieta, utilizzando la reflection per ispezionarne la struttura effettiva.

La funzione getSchemaMap opera ricorsivamente sulla classe e sull’istanza
del valore per costruire lo schema appropriato. Per i tipi primitivi la conver-
sione ¢ diretta, mentre per i tipi complessi vengono ispezionate le proprieta
dell’oggetto attraverso la reflection di Kotlin e Java. Nel caso di mappe, lo
schema viene costruito iterando sulle coppie chiave-valore presenti nell’istanza.

Le limitazioni principali emergono nella gestione dei tipi generici. Per le
collezioni e gli array, I’erasure dei tipi in Java impedisce di determinare stati-
camente il tipo degli elementi contenuti. L’implementazione tenta di estrarre
il primo elemento della collezione per dedurne il tipo, ma quando la collezione
e vuota lo schema degli elementi non puo essere specificato in modo dettaglia-
to. Analogamente, per le azioni del Digital Twin non ¢ possibile ricostruire
con precisione il tipo dell’input, poiché non esiste un’istanza concreta da cui
derivare lo schema attraverso reflection.

Questi compromessi implementativi risultano accettabili nel contesto ope-
rativo dell’adapter: al momento della sincronizzazione del Digital Twin, le
proprieta contengono tipicamente valori rappresentativi dello stato corrente,
permettendo la generazione di schemi sufficientemente accurati per la maggior
parte degli scenari pratici.

Gestione delle operazioni sulla Thing

Una volta prodotta ’exposedThing, € necessario configurare gli handler per
ciascuna operazione esposta dalle affordances (listato 4.7). L’adapter mantiene
due strutture dati principali per coordinare l'interazione con i consumer: una
mappa propertiesValues che conserva i valori correnti di tutte le proprieta, e
un insieme propertiesObserved che traccia quali proprieta richiedono 'invo-
cazione di emitPropertyChange quando aggiornate. Per ogni proprieta viene
impostato un handler di lettura che restituisce il valore memorizzato nella
mappa. Le proprieta marcate come osservabili ricevono inoltre handler per
la gestione delle sottoscrizioni, che aggiungono o rimuovono la proprieta dal-
I'insieme delle osservate. Gli handler delle azioni traducono le invocazioni
ricevute dai consumer in eventi WLDT che vengono pubblicati sul bus inter-

54 CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE

no. Per la trasmissione degli eventi, invece, si sovrascrive il metodo astrat-
to onEventReceived, dove l’evento viene tradotto e segnalato ai consumer
attraverso la funzione dell’API WoT emitEvent ().

private fun createExposedThing(td: WoTThingDescription):
WoTExposedThing {
val exposedThing = wot.produce(td)
td.properties.forEach { (pKey, pAff) ->
exposedThing.setPropertyReadHandler (pKey) {_ ->
propertiesValues [pKey]
3
if (pAff.observable) {
exposedThing.setPropertyObserveHandler (pKey) { _ ->
propertiesObserved.add(pKey)
null
3
exposedThing.setPropertyUnobserveHandler (pKey) { _ ->
propertiesObserved.remove (pKey)
null
3
+

3
td.actions.keys.forEach { aKey ->

exposedThing.setActionHandler (aKey) { input, _ ->
publishDigitalActionWldtEvent (aKey,
jsonNodeToValue (input.value()))
getInteractionInput (input.value())
}
}
td.events.keys.forEach { eKey ->
exposedThing.setEventSubscribeHandler (eKey) { _ ->
observeDigitalTwinEventNotification(eKey)
}
exposedThing.setEventUnsubscribeHandler(eKey) { _ ->
unObserveDigitalTwinEventNotification(eKey)
}
}
return exposedThing

}

Listato 4.7: Funzione per produrre 'Exposed Thing e settare gli handler

CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE 95

4.3.2 Gestione dell’aggiornamento di stato

Il metodo onStateUpdate viene invocato dal framework WLDT ogni vol-
ta che la Shadowing Function elabora un cambiamento nello stato del Digital
Twin. Come suggerito dalla documentazione WLDT, I'implementazione fa af-
fidamento sulla lista dei cambiamenti fornita dal framework, in modo da poter
rimappare selettivamente solo i valori variati. La procedura analizza ciascun
cambiamento classificandolo in base al tipo di risorsa coinvolta. L’aggiorna-
mento dei valori delle proprieta o delle istanze delle relazioni (che sono trattate
in maniera equivalente), comporta un semplice aggiornamento dei valori me-
morizzati nelle strutture dati dell’adapter. L’aggiunta, modifica o rimozione di
un elemento dello stato invece, costituisce una modifica strutturale che neces-
sita la rigenerazione della Thing Description. Dunque, per ogni aggiornamento
di questo tipo, si modifica la mappa per la costruzione della TD.

Come discusso nel capitolo precedente, lo standard WoT non prevede mec-
canismi per modificare dinamicamente una Thing Description gia pubblicata.
Coerentemente con questa limitazione, Kotlin-WoT non consente di alterare
la struttura di un’ExposedThing dopo la sua creazione. L’unica strategia di-
sponibile consiste nel distruggere completamente la Thing esistente e crearne
una nuova con la struttura aggiornata.

L’implementazione gestisce questa transizione attraverso una sequenza di
operazioni che prima rimuove I’ExposedThing dal Servient, poi genera una
nuova Thing Description dalla mappa di costruzione aggiornata, crea la cor-
rispondente ExposedThing e infine la espone nuovamente. Mantenendo inva-
riato I'identificatore della Thing, essa rimane accessibile allo stesso endpoint,
minimizzando I'impatto sui consumer esterni.

Una limitazione dell’architettura del Servient Kotlin-WoT impedisce la pro-
duzione di una Thing con lo stesso identificatore di una prodotta in precedenza,
rendendo necessario completare la rimozione della Thing obsoleta prima di po-
ter aggiungere quella nuova. Questa sequenzialita comporta inevitabilmente
un breve intervallo temporale durante il quale la Thing non risulta esposta e
accessibile ai consumer, aspetto che i sistemi integrati devono considerare nella
gestione della resilienza.

56 CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE

4.4 'Testing

La validazione degli adapter sviluppati richiede la predisposizione di am-
bienti di test che permettano di verificare sia la correttezza sintattica delle
rappresentazioni generate, sia il corretto funzionamento operativo dell’integra-
zione tra WLDT e il paradigma WoT. Considerata la natura distribuita e le
caratteristiche concorrenti dei due progetti, la strategia di testing adottata si
concentra sulla verifica end-to-end delle catene di integrazione, piuttosto che
su test unitari isolati.

4.4.1 Testing del WoT Digital Adapter

Per il Digital Adapter, la configurazione di test richiede un Digital Twin
WLDT con uno stato sufficientemente articolato da esercitare tutte le capacita
di mappatura dell’adapter: proprieta di tipi primitivi e complessi, azioni con
input strutturati, eventi con payload e relazioni tra Digital Twin. A questo
si aggiunge la necessita di un’applicazione consumer che permetta di verifi-
care la correttezza sintattica della Thing Description generata e di testare
operativamente le interazioni con la Thing esposta.

Scenario e componenti di test

L’ambiente di test e stato costruito utilizzando il DemoPhysicalAdapter
fornito dal framework WLDT, un componente fittizio che simula un sensore di
temperatura con proprieta, eventi, azioni e relazioni. Questo adapter e stato
modificato per estendende la copertura dei test oltre i casi base gia imple-
mentati, ad esempio aggiungendo una proprieta di tipo non primitivo. Una
DemoShadowingFunction triviale implementa la mappatura diretta tra ciascun
componente della Physical Asset Description e gli elementi corrispondenti nel-
lo stato del Digital Twin, eliminando complessita aggiuntive che potrebbe-
ro oscurare eventuali problemi nell’adapter stesso. La verifica della corretta
generazione della Thing Description e stata condotta attraverso l'ispezione
del documento JSON esposto dall’adapter, accessibile tramite browser all’end-
point configurato. Questa ispezione ha permesso di validare la presenza e la
correttezza di tutte le affordances.

Risultati del mapping dello stato in TD

I listati seguenti illustrano il processo di mappatura da una proprieta del
Digital Twin State alla corrispondente affordance nella Thing Description ge-
nerata. Il primo (4.8) mostra un’istanza di DigitalTwinStateProperty che
rappresenta la temperatura misurata dal sensore simulato, con un valore di

CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE o7

tipo complesso contenente la temperatura effettiva, I'ora della misurazione e
una lista di allarmi booleani. Il secondo (4.9) presenta la corrispondente Pro-
perty WoT generata automaticamente dall’adapter. La mappatura preserva la
semantica della proprieta originale, traducendo il tipo complesso in uno sche-
ma JSON articolato che descrive ricorsivamente la struttura dell’oggetto con i
suoi campi. Le Forms generate dal Servient riflettono i protocolli configurati,
in questo caso MQTT, con endpoint distinti per le operazioni di lettura/scrit-
tura e per la gestione dell’osservabilita. Il valore corrente viene inserito nel
campo default, fornendo ai consumer un’indicazione dello stato iniziale della
Thing. Questa mappatura dimostra la capacita dell’adapter di gestire auto-
maticamente tipi complessi, generando schemi conformi allo standard WoT
senza richiedere configurazioni aggiuntive o annotazioni esplicite nel codice del
Digital Twin.

DigitalTwinStateProperty(

key = ’temperature-property-key’,

value = TemperaturePropertyObject(23.5, 14, listOf(false, false,
false)),

type=’physical.TemperaturePropertylbject’,

readable=true,

writable=true,

exposed=true

Listato 4.8: Istanza di una proprieta nello stato del DT

28 CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE

{
"properties": {
"temperature-property-key": {
"type": "object",
"forms": [
{
"href": "mqtt://localhost:61890/temperature-sensor-0/
properties/temperature-property-key",
"contentType": "application/json",
"op": ["readproperty", "writeproperty"]
1,
{
"href": "mqtt://localhost:61890/temperature-sensor-0/
properties/temperature-property-key/observable",
"contentType": "application/json",
"op": ["observeproperty", "unobserveproperty"]
}
1,
"observable": true,
"properties": {
"temperature": {
"type": "number"
1,
"hour": {
"type": "integer"
+,
"alarms": {
"type": "array",
"items": {
"type": "boolean"
b
}
1,
"default": {
"temperature": 0.0,
"hour": O,
"alarms": [false, false, false]
}
}
3
}

Listato 4.9: Affordance della property mappata nella TD

CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE 29

4.4.2 Testing del WoT Physical Adapter

La verifica del corretto funzionamento del Physical Adapter necessita di
tre componenti principali

e una Thing WoT esposta che implementi la varieta di affordances previste
dallo standard: proprieta sia osservabili che non osservabili, con schemi
che spaziano dai tipi primitivi a strutture complesse, azioni che accettino
input tipizzati ed eventi che trasportino payload significativi.

e un Digital Twin WLDT configurato con una Shadowing Function iso-
morfa.

e un Digital Adapter che permetta di osservare se gli aggiornamenti di stato
nel Digital Twin riflettano correttamente le variazioni della Thing sor-
gente e che consenta l'invocazione di azioni per verificare la propagazione
bidirezionale.

Evoluzione della strategia di test

Nelle fasi iniziali dello sviluppo, 'adapter e stato validato collegandolo a
una Thing esposta da un progetto Kotlin dedicato, implementata attraverso il
pattern delle classi annotate supportato da Kotlin-WoT'. Questa configurazione
ha permesso di verificare isolatamente il comportamento del Physical Adapter
rispetto a una Thing con struttura nota e controllabile.

Successivamente alla realizzazione del WoT Digital Adapter, la strategia di
testing e stata aggiornata sfruttando la composabilita degli adapter. La Thing
prodotta dal test del Digital Adapter e stata utilizzata come sorgente per il te-
st del Physical Adapter, creando di fatto un Digital Twin di un Digital Twin.
Il secondo gemello digitale e stato collegato a un DemoDigitalAdapter per
I'osservazione dello stato risultante. Questa configurazione ha offerto vantaggi
significativi nella validazione: non solo ha permesso di verificare I’aggiornamen-
to consequenziale dello stato attraverso la catena di sincronizzazione tra i due
Digital Twin, ma ha anche consentito di testare efficacemente le operazioni di
invocazione delle azioni e di sottoscrizione all’osservabilita delle proprieta dal
lato del Digital Adapter, aspetti operativi difficilmente verificabili attraverso
semplici interazioni tramite browser o client HT'TP generici.

Questa configurazione composita ha inoltre dimostrato concretamente 'in-
teroperabilita completa tra i due adapter sviluppati, validando che una Thing
esposta da un Digital Twin puo essere consumata da un altro Digital Twin.
L’analisi comparativa degli stati dei due Digital Twin ha rivelato che la dif-
ferenza piu significativa tra il primo e il secondo gemello riguarda le relation-
ships: queste, mappate come proprieta nella Thing Description dal Digital

60 CAPITOLO 4. SVILUPPO E SOLUZIONI IMPLEMENTATIVE

Adapter per le limitazioni del modello WoT discusse nel capitolo preceden-
te, vengono ricostruite come semplici proprieta nel secondo Digital Twin dal
Physical Adapter. Nonostante questa trasformazione, I'informazione semanti-
ca contenuta nelle relazioni viene preservata e rimane accessibile attraverso le
operazioni standard sulle proprieta.

Conclusioni

Il lavoro presentato in questa tesi dimostra la validita concettuale e la fatti-
bilita tecnica dell’integrazione tra il paradigma dei Digital Twin e lo standard
Web of Things del W3C. La realizzazione degli adapter ha confermato che le
Thing Description WoT possono fungere efficacemente da Physical Asset De-
scription per Digital Twin, permettendo di consumare dispositivi IoT conformi
allo standard W3C come asset fisici nel framework WLDT. Simmetricamente, i
Digital Twin possono essere esposti come Thing WoT, rendendoli accessibili ai
consumer esterni attraverso protocolli standardizzati. Questa bidirezionalita
stabilisce un ponte operativo tra ecosistemi separati, aprendo possibilita ap-
plicative concrete in domini quali smart city, Industry 4.0 e sistemi cyber-fisici
complessi.

Il processo di sviluppo ha tuttavia evidenziato alcune differenze architet-
turali tra i due paradigmi che richiedono compromessi implementativi. La
piu rilevante riguarda il modello delle relationships dei Digital Twin, che non
trovano una corrispondenza diretta nello standard WoT. Sebbene la mappatu-
ra in proprieta preservi I'informazione funzionale, comporta una perdita della
semantica relazionale esplicita, limitando la capacita di ricostruire automati-
camente ecosistemi complessi di Digital Twin interconnessi a partire dalle sole
Thing Description. Analogamente, le differenze nella gestione degli output
delle azioni e nei meccanismi di modifica dinamica delle descrizioni richiedono
strategie specifiche che, pur funzionali, introducono complessita aggiuntiva.

L’architettura modulare del framework WLDT, che separa nettamente le
responsabilita di interfacciamento fisico, logica di shadowing ed esposizione
digitale, si e rivelata particolarmente adatta all’integrazione con lo standard
WoT. L’inserimento avviene naturalmente nell’architettura attraverso I'imple-
mentazione degli adapter astratti, confermando la validita delle scelte proget-
tuali alla base del framework. Questa modularita suggerisce che pattern simili
potrebbero essere applicati per integrare altri standard o protocolli emergenti
nell’ambito dei Digital Twin.

61

62 CONCLUSIONI

Sviluppi futuri

Una direzione di ricerca promettente potrebbe riguardare la gestione au-
tomatica degli ecosistemi di Digital Twin interconnessi. Un’estensione riguar-
derebbe l'introduzione nella configurazione del WoT Physical Adapter della
capacita di specificare relationships tra Digital Twin. Questa funzionalita abi-
literebbe la costruzione di un componente orchestratore capace di processare
Thing Description che rappresentino sistemi composti da multiple Thing in-
terconnesse, istanziando automaticamente un ecosistema di Digital Twin con
le appropriate relazioni. Tale componente analizzerebbe la topologia descritta
dalle interconnessioni tra le Thing, creerebbe un WoT Physical Adapter per
ciascuna Thing identificata, e configurerebbe le relationships nel framework
WLDT per riflettere la struttura del sistema originale. Questo meccanismo
permetterebbe di tradurre automaticamente architetture IoT complesse, de-
scritte secondo lo standard WoT, in ecosistemi di Digital Twin interconnessi
e operativi, facilitando significativamente il deployment di sistemi cyber-fisici
articolati e la loro gestione attraverso il paradigma dei gemelli digitali.

Simmetricamente, un’estensione significativa all’integrazione consisterebbe
nello sviluppo di meccanismi che, a livello di Digital Interface, interpretino le
relationships di diversi DT per costruire automaticamente strutture gerarchi-
che di Thing multiple. Questo permetterebbe di esporre un sistema complesso
di Digital Twin interconnessi come un grafo di Thing correlate, ciascuna con
la propria Thing Description e le proprie affordances, collegate attraverso link
espliciti. Tale rappresentazione distribuita migliorerebbe significativamente la
scalabilita e la componibilita dei sistemi basati su Digital Twin, permetten-
do ai consumer di navigare la topologia e di interagire selettivamente con i
componenti rilevanti.

In conclusione, gli adapter sviluppati costituiscono una base solida per
ulteriori evoluzioni che ne migliorino I'usabilita e I’adozione, contribuendo al-
la visione di ecosistemi cyber-fisici aperti e interoperabili basati su standard
consolidati.

Bibliografia

1]

2]

John Barton and Tim Kindberg. The cooltown user experience. Technical
Report HPL-2001-22, HP Labs, 2001.

Aidan Fuller, Zhong Fan, Charles Day, and Chris Barlow. Digital
twin: Enabling technologies, challenges and open research. IEEE Access,
8:108952-108971, 2020.

E. H Glaessgen and D. Stargel. The digital twin paradigm for future nasa
and us air force vehicles. AAIA 53rd Structures, Structural Dynamics,
and Materials Conference, 2012.

Michael Grieves. Digital twin: Manufacturing excellence through virtual
factory replication. 03 2015.

Michael Grieves. Origins of the digital twin concept, 08 2016.

Dominique Guinard. A Web of Things Application Architecture: In-
tegrating the Real-World into the Web. Ph.d. thesis, ETH Zurich,
2011.

Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik Spiess,
and Domnic Savio. Web thing model. W3C Member Submission, 2015.
Accessed: 2025-10-17.

Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde.
From the internet of things to the web of things: Resource oriented archi-

tecture and best practices. In Architecting the Internet of Things, pages
97-129. Springer, 2011.

Marco Picone, Marco Mamei, and Franco Zambonelli. Wldt: A general
purpose library to build iot digital twins. SoftwareX, 13:100661, 2021.

Marco Picone, Matteo Martinelli, Samuele Burattini, Andrea Giulianelli,
and Alessandro Ricci. The two faces of interoperability: Bridging cyber

63

64

BIBLIOGRAFIA

[11]

[12]

and physical spaces with digital twins. In 2025 21st International Con-
ference on Distributed Computing in Smart Systems and the Internet of

Things (DCOSS-10T), pages 1-8, 2025.

Alessandro Ricci, Angelo Croatti, Stefano Mariani, Sara Montagna, and
Marco Picone. Web of digital twins. ACM Trans. Internet Technol., 22(4),
November 2022.

Fei Tao, Meng Zhang, Yushan Liu, and A.Y.C. Nee. Digital twin dri-
ven prognostics and health management for complex equipment. CIRP
Annals, 67(1):169-172, 2018.

Vlad Trifa. Building Blocks for a Participatory Web of Things: Deuvices,
Infrastructures, and Programming Frameworks. Ph.d. thesis, ETH Zurich,
2011.

W3C. Launching the web of things interest group. W3C Blog, 2015.
Accessed: 2025-10-17.

W3C Web of Things Working Group. Web of things (wot) architecture.
W3c recommendation, World Wide Web Consortium (W3C), April 2020.
Version 1.0.

W3C Web of Things Working Group. Web of things (wot) thing descrip-
tion. W3c recommendation, World Wide Web Consortium (W3C), April
2020. Version 1.0.

