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Sommario

I videogiochi, ambienti dinamici che richiedono di effettuare scelte in rapida suc-
cessione, rappresentano un ottimo banco di prova per la valutazione dei sistemi di
controllo autonomi. Particolarmente adatto in tale contesto & il Deep Reinforce-
ment Learning, variante dell’Apprendimento per Rinforzo basato su Reti Neurali
Profonde per la modellazione della conoscenza appresa. La capacita di adattamen-
to a sistemi ad alta dimensionalita propria delle Reti Neurali Profonde viene pero
pagata al prezzo di un elevato costo computazionale e della necessita di definire
numerosi parametri per la regolazione del processo di apprendimento. Si propone
quindi un approccio combinato per il controllo di agenti di gioco autonomi, basato
su Deep Reinforcement Learning per ’addestramento dei singoli individui e su un
Algoritmo Genetico per ottimizzare i parametri dell’algoritmo di apprendimen-
to. I due algoritmi sono poi direttamente integrati all’interno del mondo di gioco
in cui agiscono, con l'obiettivo di misurarne il costo computazionale e valutare
se possa essere fattibile integrare modelli analoghi all’interno di sistemi di gioco
commerciali. Sebbene non particolarmente efficace dal punto di vita del costo
computazionale—su un laptop da gioco di media fascia si misurano mediamente
circa 13.25 Frame al Secondo, producendo quindi un flusso di gioco “scattoso” e
poco piacevole—il modello combinato proposto si dimostra particolarmente effica-
ce nell’ottimizzazione dei valori dei parametri e, di conseguenza, delle prestazioni
dell’algoritmo di apprendimento, permettendo agli agenti di estendere il proprio
tempo di vita mediamente fino a circa il 237% rispetto all’aspettativa derivata
dall’analisi delle loro caratteristiche genetiche.
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Capitolo 1
Introduzione

Fin dalla nascita dei primi calcolatori elettronici i videogiochi hanno riscontrato
grande interesse, sia da parte degli sviluppatori che da parte degli utenti. Ad
attirare gli utenti ¢ sempre stata la possibilita di usare macchine primariamente
impiegate lavorativamente per il proprio intrattenimento, mentre dal punto di
vista degli sviluppatori i videogiochi hanno rappresentato, soprattutto nelle prime
fasi, un modo per esplorare nuove tecniche di sviluppo in grado di affrontare e
superare le limitazioni di memoria e capacita computazionale delle macchine a
loro disposizione.

E infatti tramite la realizzazione di sistemi di gioco che sono stati proposti
alcuni dei primi avanzamenti relativi alla grafica digitale—quindi ai processi di
rendering e modellazione, sia bidimensionale che tridimensionale—e all’'uso del-
I’audio per il coinvolgimento degli utenti, che hanno portato alla definizione delle
interfacce e delle modalita di interazione uomo-macchina su cui si basano i sistemi

moderni.

Machine Learning nei videogiochi. In tempi piu recenti invece—durante i
quali 'interesse degli utenti verso il mondo dei videogiochi non ¢ sicuramente
calato—1’attenzione degli sviluppatori si ¢ spostata verso temi di piu alto livello.

Se dal punto di vista strettamente tecnologico si possono infatti considerare
sostanzialmente superati i problemi legati alla memoria e alle capacita computa-
zionali dell’hardware che hanno spinto i primi avanzamenti in materia, la dina-

micita degli ambienti di gioco e la naturalezza con cui si prestano allo studio del
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comportamento e del coinvolgimento degli utenti hanno portato i videogiochi ad
avere un ruolo sempre piu centrale nella ricerca legata ai modelli comportamentali
e di interazione.

In tal senso la facilita di misurazione delle prestazioni dei personaggi di gioco—
spesso integrata nel motore di gioco stesso, qualora definisca un sistema di va-
lutazione tramite punteggi—ha portato a studiare ampiamente 1'uso del Machine
Learning (ML) per 'addestramento di agenti autonomi di controllo dei personaggi.
I mondi di gioco rappresentano infatti eccellenti spazi simulati—e di conseguenza
economici—per la valutazione di sistemi di comportamento e di apprendimento

autonomi.

Apprendimento per Rinforzo nei videogiochi. Particolarmente adatti a
contesti di gioco sono i sistemi di controllo guidati da Reinforcement Learning
o Apprendimento per Rinforzo (RL). Esso prevede infatti che gli agenti autonomi
apprendano le proprie strategie interagendo direttamente con ’ambiente, senza
richiedere dati di riferimento né la modellazione di una conoscenza pregressa del
problema.

L’indipendenza dai dati propria del RL, che dipende invece fortemente dalla
capacita del modello di valutare le proprie azioni, lo rende particolarmente adatto
al dominio applicativo dei videogiochi, in cui risulta complesso definire strategie
di riferimento—che spesso sono subottime o troppo poco generali anche se trat-
te da utenti esperti—ma estremamente semplice definire la qualita complessiva
delle strategie comportamentali degli agenti—sfruttando ad esempio, se definiti, i
concetti di punteggio o di vittoria previsti dalla maggior parte dei sistemi di gioco.

I recenti avanzamenti proposti nell’ambito delle Reti Neurali Profonde (DNNs)
hanno poi rinnovato 'interesse verso il campo del Deep Reinforcement Learning
(DRL), variante del RL che prevede appunto di sfruttare DNNs per la codifica
della conoscenza appresa dal sistema di controllo, portando al raggiungimento di
risultati notevoli come il superamento della prestazione di giocatori umani da parte
di agenti autonomi [MKS™15].

In particolare i pili recenti avanzamenti in ambito di visione artificiale hanno
reso possibile la creazione di agenti autonomi basati sulla sola osservazione delle

schermate di gioco [MKS™15, VDN26|. Raggiungere tale obiettivo ¢ il primo passo
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verso la creazione di agenti di gioco generali, ovvero indipendenti dal sistema in cui
sono applicati ma piuttosto abbastanza flessibili da apprendere strategie efficaci
idealmente per qualsiasi videogioco, basandosi solo sulle modalita di interazione

comunemente usate dai giocatori umani.

Parametrizzazione dell’apprendimento. Uno dei problemi principali dei mo-
delli di DRL ¢é pero l'elevata parametrizzazione del processo di apprendimento.
Oltre a definire tutti i parametri necessari all’applicazione dell’algoritmo di RL
applicato, si richiede infatti di definire i parametri regolatori dei passi di appren-
dimento e della struttura topologica della DNN usata per la modellazione della
conoscenza acquisita.

La valutazione della qualita delle configurazioni parametriche proposte richie-
de pero di svolgere interamente il processo di apprendimento, e successivamente
delle prove di valutazione sul modello addestrato. Applicare un metodo di ricerca
estensiva dei parametri richiederebbe quindi, dato ’elevato numero di parametri,
I’addestramento di numerosi modelli per la sola valutazione delle configurazioni
parametriche, con costi computazionali nella pratica insostenibili [MKS™15].

Risulta quindi fondamentale definire un metodo efficace ed efficiente per la
ricerca educata dei parametri di apprendimento. Cid permetterebbe infatti di
ottimizzare la configurazione dei parametri riducendo il numero di modelli da
addestrare, abbattendo il costo computazionale della ricerca senza intaccare pero

la qualita del modello.

Costo computazionale del Deep Reinforcement Learning. Un’ulteriore
possibile criticita dei modelli di DRL sono gli elevati costi computazionali del
processo decisionale e di apprendimento, causati dalla codifica della conoscenza
all’interno delle DNNs. Esse sono infatti in grado di ridurre notevolmente le ri-
chieste di memoria di alcuni algoritmi di RL tradizionale, al prezzo pero di un
elevato costo computazionale a tempo di esecuzione.

Per questo motivo molto spesso i modelli di DRL sono implementati come
controllori esterni all’ambiente con cui interagiscono, piuttosto che come agenti
integrati al suo interno. E anzi pratica comune regolare il ritmo di esecuzione del

motore di gioco per rispettare i tempi di esecuzione del modello di apprendimen-
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to: fissata una frequenza di aggiornamento desiderata per 'ambiente di gioco, ad
ogni passo decisionale del modello di DRL viene fatto corrispondere un passo di
avanzamento del mondo di gioco della durata prestabilita, indipendentemente dal

tempo realmente trascorso.

Obiettivo della ricerca. La ricerca proposta ha quindi come obiettivo quello di
affrontare alcuni dei problemi noti del DRL, proponendo delle possibili soluzioni
per l'addestramento efficace di agenti di gioco autonomi.

In primo luogo si vuole quindi affrontare il problema della parametrizzazione
degli algoritmi di apprendimento. Per farlo si propone un modello basato sulla
ricerca educata dei parametri dell’apprendimento, di cui saranno valutate efficacia
e rapidita di convergenza. L’obiettivo é infatti lo sviluppo di un sistema di ottimiz-
zazione in grado di esplorare rapidamente configurazioni parametriche vantaggiose,
riducendo quindi il numero di modelli da addestrare rispetto a quelli necessari agli
approcci basati su ricerca estensiva.

Dopodiché si vuole affrontare il tema della complessita computazionale dei mo-
delli di DRL, con I'obiettivo di proporre un sistema di ottimizzazione combinato—
ossia di ottimizzazione del DRL tramite ricerca educata, e di ottimizzazione delle
strategie dei singoli individui tramite DRL—integrabile all’interno di un semplice

motore di gioco senza deteriorare le prestazioni complessive del sistema.

Modalita di sviluppo. Per mantenere il massimo controllo sullo svolgimento
del gioco e dei processi di apprendimento, si € deciso di sviluppare un semplice
ambiente di gioco bidimensionale all’interno del quale svolgere le osservazioni.

I personaggi di gioco sono quindi degli agenti autonomi addestrati tramite
DRL, il cui obiettivo ¢ massimizzare il proprio tempo di sopravvivenza all’interno
del mondo di gioco. La struttura del sistema di controllo degli agenti modella poi
esplicitamente il concetto di attenzione: ogni agente ¢ infatti guidato da due DNNs
che lavorano in cascata, la prima per determinare I'oggetto verso cui ¢ rivolta I’at-
tenzione dell’agente e la seconda per determinare 1’azione ideale da intraprendere
dato il valore di attenzione. Cosi facendo si permette esplicitamente agli agenti
di determinare strategie variate a seconda dell’oggetto su cui sono concentrati,

aggiungendo quindi profondita ed espressivita alle strategie apprese.
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L’obiettivo di ridurre il costo computazionale dell’algoritmo di DRL impone
pero di usare DNNs semplici e a bassa dimensionalita per il controllo degli agenti.
Di conseguenza anche i dati di input, ovvero le osservazioni ambientali, devono
essere a bassa dimensionalitd. A tale fine vengono forniti agli agenti dei dati di
gioco pre-processati che ne rappresentino lo stato e la posizione, alleggerendo il
processo decisionale senza sacrificare espressivita del modello. Dall’altra parte
il modello di apprendimento proposto risulta essere fortemente dipendente dalle
caratteristiche del gioco, e quindi difficilmente adattabile alla soluzione di problemi
differenti.

Infine, si integra all’interno del motore di gioco un Algoritmo Genetico (GA)
per la ricerca educata dei parametri dell’apprendimento. Modellare tramite geno-
mi i valori dei parametri di ciascun agente ed evolvere la popolazione selezionando
gli individui piu prestanti permette infatti di ottenere il risultato di ottimizzazio-
ne desiderato e di scartare immediatamente le configurazioni di parametri poco

promettenti, riducendo quindi drasticamente la quantita di modelli da addestrare.

Risultati osservati. Il modello combinato si é dimostrato nel complesso efficace
per I'addestramento degli agenti e 'ottimizzazione dei parametri dell’algoritmo di
apprendimento.

I1 GA applicato si ¢ infatti dimostrato particolarmente robusto, garantendo
convergenza verso configurazioni ottimali indipendentemente dalla qualita dei ge-
nomi della popolazione iniziale e a discapito di una forte instabilitd osservata,
dovuta in parte alla politica di mutazione applicata e in parte alla definizione di
qualita su cui si basa il processo evolutivo.

Il modello di DRL ottimizzato tramite la ricerca educata dei parametri del GA
ha poi permesso agli agenti di estendere il proprio tempo di vita mediamente fino al
237% del tempo di vita atteso in caso di completa inattivita, sottolineando quindi
la qualita generale delle strategie apprese. I risultati ottenuti dall’applicazione del
modello combinato di ottimizzazione—se paragonati a quelli ottenuti applicando
il solo modello di DRL, che ha permesso agli agenti di estendere il proprio tempo
di vita solo del 152% —sottolineano quindi 'effetto positivo della ricerca educata
dei parametri svolta dal GA, in grado di ottimizzarne i valori nell’arco di poche

generazioni e quindi riducendo efficacemente il numero di modelli da addestrare.
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Al contrario, la valutazione dell’efficienza del modello ha sottolineato come
I’esecuzione proceda a un ritmo insufficiente per garantire un’esperienza utente
positiva anche su un laptop da gioco, dotato quindi di componenti di fascia medio-
alta. Una valutazione piu approfondita delle prestazioni del modello di gioco lascia
perd margine di miglioramento, in primo luogo tramite 'ottimizzazione del pro-
cesso di rendering e poi tramite eventuali migliorie introducibili nel processo di
aggiornamento del mondo di gioco.

I risultati osservati non rappresentano quindi un punto di arrivo della ricerca
negli ambiti affrontati, quanto piuttosto un promettente punto di partenza per

eventuali ricerche future.

Struttura della Tesi. Nel Capitolo [2|saranno introdotti i concetti alla base del
RL e dei GAs. Nel presentare i concetti di base di tali argomenti verranno presi
come riferimento diversi lavori—di cui saranno riportati i risultati ed eventuali
criticita—che hanno portato a delineare I'indirizzo di lavoro della Tesi stessa. Nel
Capitolo |3 sara descritto il progetto a supporto della Tesi, dettagliando in partico-
lare gli algoritmi usati e le modalita di implementazione. Dopodiché nel Capitolo
saranno valutati i risultati ottenuti, sottolineando eventuali criticita riscontrate.
Infine nel Capitolo [5] saranno presentate le conclusioni della Tesi e si proporran-
no in maniera pitt approfondita lavori futuri che possano estendere e migliorare i

risultati ottenuti.
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Capitolo 2

Motivazione e lavori correlati

2.1 Apprendimento per Rinforzo

Il RL ¢ un metodo di ML basato sull’apprendimento tramite interazioni successive
con un ambiente dinamico [KLM96|. Esso prevede quindi che un agente sia in grado
di sperimentare e valutare autonomamente azioni diverse con l’obiettivo di trovare
una strategia ottimale per la soluzione del problema che gli viene presentato; in
questo senso il modello del RL ¢ particolarmente interessante perché comparabile
al modello di apprendimento del comportamento animale.

Per applicare efficacemente il RL ¢ quindi fondamentale la definizione del con-
cetto di “ambiente”, ovvero il contesto di applicazione all’interno di cui 'agente
é immerso. La modellazione dell’ambiente é fondamentale per il processo di ap-
prendimento perché definisce le regole e i vincoli operativi dell’agente, e allo stesso
momento fissa le modalita di valutazione delle azioni su cui si basa I’addestramento.

Il modello del RL si basa su tre componenti fondamentali:

e un insieme di possibili stati S che I’agente puo assumere all’interno dell’am-

biente;
e un insieme di azioni A che I'agente puo compiere;

e un insieme di valori di ricompensa che 'agente puo ricevere, solitamente

identificato da un intervallo del tipo [m,n] € R.
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2.1. APPRENDIMENTO PER RINFORZO

Stato

—

Azione

Tempo
Prossimo stato

A

Agente

Ricompensa Ambiente

Figura 2.1: Schema rappresentativo del passo decisionale e di apprendimento del-
I’Apprendimento per Rinforzo. L’agente ricava una definizione del proprio stato
osservando ’ambiente e la sfrutta per decidere un’azione da svolgere. Al passo suc-
cessivo, dopo un certo tempo, ’ambiente restituisce una nuova rappresentazione
dello stato—solitamente mutato—dell’agente corredata dalla ricompensa associata
all’azione svolta, necessaria a raffinare le strategie future.

Il processo di apprendimento si basa quindi sull’interazione agente-ambiente.
In particolare, in un dato istante ¢ ’agente osserva l’ambiente e identifica il pro-
prio stato s;; dopodiché, tramite una strategia m dipendente dal suo algoritmo
di apprendimento, decide 1’azione a; da svolgere in quel determinato istante; dal-
I’azione svolta dipendera la ricompensa r; restituita dall’ambiente per 1’azione
svolta all’istante ¢. Il processo di apprendimento si basa sulla continua valutazione
delle ricompense ricevute dall’ambiente, che quantificano la qualita dell’azione a

all’istante t.

La qualita di una strategia 7 ¢ rappresentata dalla somma di tutte le ricom-
pense accumulate durante il periodo di interazione con ’ambiente, definito come
“episodio”. L’obiettivo del RL ¢ quindi quello di apprendere la strategia ottimale
7* che permetta all’agente di massimizzare le ricompense ottenute, risolvendo di
conseguenza al meglio il problema che gli viene posto. Nella valutazione di qua-
lita delle singole azioni ’agente deve quindi essere in grado di valutare 'impatto
delle stesse sulla qualita complessiva della strategia applicata, bilanciando la rac-
colta di ricompense istantanee e ’esecuzione di azioni lungimiranti che favoriscano

I’accumulo di ricompense a lungo termine.
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2.1. APPRENDIMENTO PER RINFORZO

Indipendenza dai dati. Dal momento che 'apprendimento avviene tramite
I'interazione con 'ambiente e che le ricompense ricevute per le proprie azioni sono
di per loro indicative della qualita delle stesse, emerge il punto di forza principale
del RL, ovvero che non richiede conoscenza strutturata del problema né dati di
riferimento per completare il processo di addestramento. Quest’ultimo avviene
infatti “a caldo”, durante 'interazione stessa con ’ambiente. Per questo motivo il
RL si adatta particolarmente bene alla soluzione di problemi in cui sia chiaramente
definito I'obiettivo ma complesso definire una strategia. Due dei campi in cui
viene maggiormente sfruttato il RL sono infatti la robotica [SLLNI9| e i giochi,
sia tradizionali [TT95, ISSST17| che elettronici [MKS™15].

La difficolta di fornire agli agenti delle strategie ottimali di riferimento, che in
altri modelli di ML comprometterebbe il processo di apprendimento, nel RL per-
mette invece agli agenti stessi di esplorare liberamente ’ambiente in cui sono calati
definendo autonomamente le proprie strategie comportamentali, talvolta sperimen-
tando azioni “anticonvenzionali” secondo gli standard di insegnamento umano ma
ugualmente efficaci. Tale comportamento é emerso ad esempio in uno studio che
ha proposto un modello per I'apprendimento del Go basato completamente su
RL senza nessuna forma di conoscenza pregressa [SSST17], che si ¢ dimostrato in
grado di battere un diverso modello—basato invece su Imitation Learning, il cui
processo di apprendimento richiede 1'osservazione e ’emulazione delle strategie di
giocatori esperti—gia vincitore contro i pitt noti agenti di gioco autonomo del Go
precedentemente proposti [SHMT16]. Durante il processo di apprendimento del
modello basato unicamente su RL ¢ infatti emerso che, oltre a tradizionali schemi
tattici, esso é stato in grado di esplorare nuove mosse ugualmente efficaci [SSS™17]

proprio perché svincolato da qualsiasi forma di conoscenza pregressa.

E quindi evidente come il superamento della richiesta di dati strutturati ca-
ratteristica di altri modelli di ML sia il principale punto di forza del RL, ma puo
rappresentare anche un importante punto di debolezza. Se la strategia iniziale m
non permettesse all’agente di esplorare in maniera efficace 'ambiente (ad esempio
non tutti gli stati s € S vengono visitati), essa potrebbe rendere impossibile I'ap-
prendimento della strategia ottimale 7*, in caso quest’ultima dipenda per esempio

da stati o azioni che 1’agente non ha sperimentato.
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2.1. APPRENDIMENTO PER RINFORZO

Exploration contro exploitation. Questo problema, non nuovo alla lettera-
tura in materia [KLM96], prevede che si trovi un compromesso tra exploration
ed exploitation. Exploration (o esplorazione) ¢ la tendenza dell’agente a scegliere
le proprie azioni con l'obiettivo di approfondire la propria conoscenza dell’am-
biente, indipendentemente dalla qualita prevista. L’obiettivo di un’azione a; di
esplorazione ¢ quindi la sperimentazione di una nuova strategia piuttosto che lo
sfruttamento delle conoscenze apprese. Al contrario Exploitation (o sfruttamen-
to) e la tendenza dell’agente a scegliere le proprie azioni sfruttando la conoscenza
pregressa. L’obiettivo di un’azione a; di sfruttamento delle conoscenze pregresse é
quindi quello di massimizzare la ricompensa istantanea r; indipendentemente dal
livello di conoscenza che si ha dell’ambiente.

Appare pero evidente che una strategia di solo sfruttamento delle conoscen-
ze pregresse rischierebbe di non raggiungere mai la strategia ottimale 7* perché
favorirebbe la ripetizione cieca di azioni gia note rispetto all’esplorazione dell’am-
biente, che permetterebbe invece al modello di svolgere valutazioni pit generali e
quindi efficaci. Dall’altra parte una strategia di sola esplorazione vanificherebbe
completamente il processo di apprendimento, perché prediligerebbe ad ogni pas-
so azioni di esplorazione senza mai sfruttare le conoscenze apprese osservando le
ricompense ricevute. La qualita degli algoritmi di RL dipende quindi in maniera
importante dalla capacita di esplorare ’ambiente pur garantendo a lungo termine

la scelta di azioni redditizie.

Politica e-greedy. Una soluzione nota al problema, proposta in diversi studi fra
cui anche [MKS™15|, & I'applicazione della politica di scelta delle azioni e-greedy.
Essa prevede di stabilire un parametro ¢ € [0, 1] che determina il bilanciamento
applicato nel compromesso fra esplorazione e sfruttamento delle conoscenze pre-
gresse. La politica prevede infatti che si scelga un’azione casuale di esplorazione
con probabilita €, e che altrimenti si scelga ’azione reputata pitu redditizia—da cui
il nome “greedy”—con probabilita 1 — €.

A seconda dell’implementazione dell’algoritmo, il valore di € puo essere fisso o
variabile nel tempo: un metodo solitamente utilizzato € quello di porre € tendente
a 1 nelle fasi iniziali per prediligere ’esplorazione, e farlo decadere fino a valori

tendenti a 0 nelle fasi finali dell’apprendimento per sfruttare la conoscenza appresa.
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Si rivela comunque efficace—specialmente in ambienti molto dinamici e variabili
come possono essere i videogiochi [MKS™15]—mantenere anche nelle fasi finali una
quota di azioni di esplorazione per spingere ’agente a sperimentare nuove strategie

potenzialmente pit adatte alle mutate condizioni dell’ambiente [KLM96].

Dipendenza stato-azione-ricompensa. Un altro problema da affrontare nel
processo di apprendimento del RL ¢ quello della dipendenza fra stati e azioni dell’a-
gente. Questo problema, ricorrente nella gran parte dei domini applicativi, emerge
in particolare negli ambienti dinamici in cui il RL ¢ prediletto rispetto ad altri
paradigmi di apprendimento. In primo luogo, ¢ evidente come una stessa azione
a possa avere risultati differenti a seconda dello stato s dell’agente al momento in
cui viene eseguita. Prendendo ad esempio come dominio il gioco Space Invaders,
studiato da [MKS™15], 'azione “sparare” & valutata positivamente se colpisce una
nave nemica, mentre risulta dannosa per il giocatore se colpisce una delle barriere
protettive, e la differenza di esito dipende primariamente dalla posizione del gio-
catore, ovvero una componente del suo stato. Per modellare questa dipendenza si

propone la seguente definizione modificata di ricompensa:

R:SxA—R (2.1)

Dipendenza stato-azione-stato. Nella direzione opposta, € vero anche che le
azioni svolte influenzano lo stato dell’agente. Dato uno stato istantaneo s;, I’azione
a; svolta dall’agente puo influenzare pitt o meno direttamente la transizione verso
lo stato s;y1, e tale influenza puo essere certa o probabilistica. Sempre riprendendo
I'esempio di Space Invaders studiato in [MKS™T15|, I'azione “sparare” non modifi-
chera sicuramente la posizione dell’agente, ma a seconda di altri elementi ambien-
tali potrebbe causare variazioni dello stato, come ad esempio la distruzione di una
nave nemica se il colpo va a segno: a seconda della definizione di stato (la sola
posizione del giocatore, o anche altri elementi dell’ambiente) e dell’azione intrapre-
sa la dipendenza diventa quindi certa o probabilistica. Un possibile modello per
questa dipendenza é offerto dai Processi Decisionali di Markov (MDPs) [KLM96],

che si basano su alcuni elementi fondamentali:

e un insieme degli stati S;
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e un insieme delle azioni A;
e una funzione ricompensa come definita dall’Equazione (2.1));

e una funzione 7' : S x A x S — [0,1] che stabilisce, dati uno stato di
partenza s;, un’azione a; e uno stato di arrivo s;,; la probabilita che ’azione

a; provochi la transizione di stato s; — S¢11.

La modellazione tramite MDPs richiede pero due assunzioni fondamentali. In
primo luogo si richiede che I'ambiente sia completamente osservabile, ovvero che
I’agente abbia piena cognizione dell’ambiente in cui agisce. Tale assunzione é
necessaria a garantire che osservazioni uguali coincidano alla rappresentazione dello
stesso stato, condizione non verificata se parti dell’ambiente sono oscurate alla
visione dell’agente—Ila stessa osservazione potrebbe infatti coincidere a stati diversi
a seconda della configurazione della zona di ambiente invisibile all’agente.

Inoltre si richiede che lo storico degli stati dell’agente non influenzi la funzione
di probabilita delle transizioni, rendendo i MDPs utili alla modellazione solo di
ambienti memory-less. Ad esempio i giochi da tavolo, a pari configurazione di
tabellone, offrono le stesse opportunita di azione all’agente indipendentemente
dallo storico delle azioni precedenti, e ciascuna azione determina in maniera diretta
lo stato successivo [TT95, ISSST17|. Anche i videogiochi, a parita di stato e azione
svolta, sono progettati per produrre sempre lo stesso effetto e sono quindi in tal
senso modellabili tramite MDPs [MKS™15].

Ricompense a lungo termine. Grazie alla modellazione della dipendenza fra
azioni e transizioni di stato che offrono i MDPs é possibile introdurre il concetto
di ricompensa a lungo termine [KLM96]. Quantificare efficacemente le ricompense
a lungo termine permette al modello di apprendimento di fare scelte piu lungimi-
ranti, talvolta sacrificando ricompense istantanee se necessario a massimizzare la
ricompensa complessiva. In questo modo, gli agenti prediligono I’applicazione di
una buona strategia 7 rispetto a una sequenza di azioni a; localmente greedy.

Per quantificare 'impatto delle ricompense a lungo termine si introduce quindi
la funzione ricorsiva di qualita V' : § x A — R. Essa introduce il parametro ~,
detto discount factor, e denota come a* I'azione prevista dalla strategia applicata
7 per lo stato §" [KLM96].
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V(s,a) = R(s,a) +7 Y _[T(s,a,s)V(s,a")] (2.2)

s'esS
Dal momento che ’equazione ¢ definita in maniera ricorsiva e pertanto espan-
dibile in una sommatoria infinita, si richiede che il valore di 7 sia minore di 1 per

garantire convergenza a un valore finito.

L’Equazione valuta contemporaneamente le probabilita di transizione ver-
so ciascuno stato successivo, la singola previsione di ricompensa e le scelte future
dettate dalla strategia corrente. In questo modo garantisce che la scelta greedy
dell’azione a; sia ottimale anche per la strategia a lungo termine, tenendo conto
delle conseguenze che la scelta istantanea ha sui comportamenti futuri dell’agente.
La natura ricorsiva della funzione di qualita, utile a garantirne la precisione e a
far coincidere le scelte localmente e complessivamente ottime, la rende pero incal-
colabile precisamente perché espandibile all’infinito. Una buona approssimazione
si puod comunque ottenere sostituendo all’interno dell’Equazione un singolo
valore finito al posto dell’espressione ricorsiva V (s, a*), ma per farlo sarebbe ne-
cessario mantenere in memoria i valori di qualita per tutte le coppie stato-azione

ammissibili.

Q-learning. Un algoritmo di RL basato sulla modellazione esplicita delle dipen-
denze fra stati e azioni ¢ il Q-learning. Esso si basa infatti sull’'uso di una tabella a
doppia entrata—su un asse gli stati, sull’altro le azioni—detta Q-table e denotata
come (), che modella esplicitamente la dipendenza introdotta dall’Equazione ([2.1]
associando ad ogni coppia stato-azione un valore di qualita. Il processo decisionale
del Q-learning prevede quindi, dato uno stato s;, di scegliere ’azione a giudicata

piu redditizia. La strategia m ¢ quindi definita come segue:

T = mCELlXQ(St,a) (2.3)

La definizione del passo decisionale del Q-learning fa pero emergere la prima cri-
ticita dell’algoritmo: la strategia applicata ¢ composta interamente da scelte local-

mente ottimali, approccio che potrebbe apparentemente limitare la lungimiranza
del modello.
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Questo problema viene pero affrontato e risolto dalla formulazione del passo di
apprendimento, che consiste in un aggiornamento dei valori della Q-table basato
su una valutazione di qualita delle azioni analoga a quella proposta dall’Equazio-
ne in cui si modellano esplicitamente la dipendenza fra 1’azione intrapresa e

la transizione di stato osservata e il concetto di ricompensa a lungo termine.

Il passo di apprendimento per l'istante ¢—che viene svolto all’istante ¢ + 1,
quando sono gia noti il valore di ricompensa r; = R(s;, a;) e il nuovo stato s;.1—

viene €Spresso coine:

Q(s¢,ar) + Q(s¢,a¢) + afry + Wméxx Q(St41,a) — Q(s¢, )] (2.4)

Tale formulazione prevede di introdurre due parametri regolatori dell’appren-
dimento: il learning rate «, che regola I'impatto che le singole osservazioni hanno
sulla conoscenza precedentemente acquisita, e il discount factor v, che regola il

peso che le ricompense future hanno rispetto a quella istantanea.

La formulazione ricorsiva proposta nell’Equazione ([2.4)—Q(s;, a) dipende di-
rettamente da QQ(s¢4+1, a), che a sua volta dipende da Q(St42,4) € cosl via—permette
quindi di superare il problema delle scelte localmente greedy introdotto dalla de-
finizione del passo decisionale, ma rende particolarmente importante la scelta del

valore del parametro v di bilanciamento delle ricompense a lungo e a breve termine.

La definizione del passo di apprendimento del Q-learning & quindi efficace nella
modellazione delle ricompense a lungo termine, ma fa emergere quello che forse é
il problema principale dell’algoritmo: ’aggiornamento dei valori di qualita avviene
solo per le coppie stato-azione effettivamente esplorate, mentre le restanti coppie
ammissibili restano ai valori iniziali, che sono solitamente posti a zero o generati
casualmente per evitare condizionamenti.

L’algoritmo richiede quindi di modellare esplicitamente il compromesso fra
esplorazione e sfruttamento delle conoscenze pregresse. Un metodo efficace puo es-
sere quello di adottare una politica e-greedy con tasso di esplorazione variabile nel
tempo e limitato all’estremo inferiore, al fine di mantenere una quota di azioni di
esplorazione anche nelle fasi avanzate dell’apprendimento. Si definiscono quindi il
tasso di esplorazione iniziale g, il tasso di decadimento A. € (0, 1) applicato come

coefficiente moltiplicativo a € ad ogni passo decisionale e il tasso di esplorazione
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minimo &,,;, e si riassume la definizione del Q-learning con politica di esplorazione

e-greedy nell’Algoritmo [I}

Algoritmo 1 Algoritmo Q-learning con politica e-greedy
for all s € S, a € Ado
Q(s,a) < 0
end for
€< €&y
St < Sy
Define ay, ry, St11
repeat
With probability €: a; + random a € A
With probability 1 — e: a; + max, Q(s;, a)
if € > ¢,,;, then
€4 A€
end if
Perform a;
Observe s, 1,1
Q(s¢,ar) < Q(s4, ar) + afry + v max, Q(Si41,a) — Q(54, ar)]
S < St41
until end

Abbattimento della dimensionalita. La formulazione del Q-learning propo-
sta, cosi come la gran parte degli algoritmi di RL, sebbene in grado di risolvere
i problemi legati alle dipendenze fra stati e azioni e alla modellazione di stra-
tegie lungimiranti lascia aperto un importante problema di dimensionalita. La
rappresentazione esaustiva della conoscenza modellata tramite Q-table richiede
infatti uno spazio di memoria direttamente proporzionale alla dimensione dello
spazio S x A delle coppie stato-azione ammissibili, rendendo tale approccio di
fatto insostenibile per la gran parte dei domini reali.

Un dominio reale in cui emergono forti problemi di dimensionalita ¢ ad esempio
quello del backgammon, che si stima abbia 10%° stati ammissibili distinti [TT95].
Data I'impossibilita di modellare direttamente una mole di stati cosi grande, e data
anche la difficolta di simulare I’andamento della partita in tempo reale per valutare
la qualita di una mossa—il lancio dei dadi rende il backgammon non deterministico,

aumentando notevolmente il numero di possibili scenari da considerare rispetto
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ad altri giochi deterministici come gli scacchi o la dama—si sono proposti degli
approcci alternativi per la previsione del valore di qualita delle azioni di gioco. Nel
1988, alle Computer Olympiad viene presentato Neurogammon [Tes90|, campione
imbattuto contro altri agenti autonomi nella categoria del backgammon. Esso ¢
basato su DNNs in grado di dedurre le probabilita di vittoria dati la configurazione
del tabellone e altri dati di input pre-processati estraibili in tempo reale. Il suo
addestramento ¢ basato su una raccolta di dati prodotti da esperti del gioco, e lo
ha portato ad essere il primo modello di ML a vincere una competizione per agenti
di gioco autonomi.

Pochi anni dopo venne invece proposto TD-Gammon [TT95], modello inte-
ramente basato su RL e addestrato unicamente tramite sessioni di gioco contro
se stesso, senza conoscenze pregresse. Quest’ultimo, anch’esso basato su DNNs
addestrate a dedurre la probabilita di vittoria prevista, fu in grado di raggiunge-
re risultati comparabili a quelli di Neurogammon sfruttando come input la sola
codifica della configurazione del tabellone. Una seconda versione, il cui input fu
esteso per supportare gli stessi dati pre-processati di Neurogammon (ma comunque
addestrata senza conoscenza pregressa) fu in grado di migliorare ulteriormente le
performance arrivando a un deficit di circa 0.2 punti a partita contro alcuni dei
migliori giocatori umani dell’epoca.

Analizzando il comportamento di TD-Gammon, analisti esperti e giocatori pro-
fessionisti notarono che aveva appreso, essendo “liberato” dalla conoscenza pregres-
sa, delle strategie anticonvenzionali che si sono rivelate migliori di quelle reputate
standard, portando alla rivisitazione di alcune tattiche di gioco consolidate [TT95].

Parte del successo di TD-Gammon, a detta dello stesso autore, é inoltre da
attribuire alla casualita intrinseca del backgammon, che richiede il lancio di dadi.
Grazie a cio0 il modello, pur giocando sempre contro se stesso, & stato obbligato ad
esplorare zone dello spazio degli stati che altrimenti non avrebbe probabilmente
esplorato: in altri giochi piti deterministici come gli scacchi il modello avrebbe
infatti verosimilmente appreso nelle prime fasi una strategia basilare e poco gene-
rica, e si sarebbe auto-alimentato replicandola nelle partite contro se stesso senza
riuscire a raggiungere la strategia ottimale [T'T95]. Questa osservazione ¢ in li-
nea con la necessita precedentemente introdotta di stabilire un compromesso tra

esplorazione e sfruttamento della conoscenza appresa, che in questo caso é stato
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Figura 2.2: Schema rappresentativo del funzionamento di una Rete Neurale Pro-
fonda per il Deep Reinforcement Learning. Lo stato s; viene riformulato in forma
vettoriale ed espresso come stimolo di input per i neuroni del primo strato della
rete. Ogni neurone propaga il proprio valore di attivazione a tutti i neuroni del
livello successivo, e le trasformazioni svolte dagli strati nascosti vengono recepite
dallo strato di output. Esso, composto da un neurone per ciascuna delle n azioni
possibili, produce stimoli di attivazione corrispondenti ai valori di qualita attesi.

imposto dal dominio applicativo ma che in altri contesti deve essere esplicitamente

modellato.

Deep Reinforcement Learning. Se quello di TD-Gammon ha rappresentato
un grande avanzamento per il RL ma non ¢ stato replicato in altri domini nel
breve termine [KLMO96], I'avanzamento della ricerca sulle DNNs ha recentemente
rinnovato l'interesse verso il campo del DRL [AHSBIS, WWL"24|, alimentato
dal raggiungimento di risultati notevoli come [MKST15|. Gli algoritmi di DRL
affrontano principalmente il problema della dimensionalita degli stati: sfruttando
le DNNs per I'approssimazione funzionale dei valori di qualita delle azioni o delle
strategie ¢ infatti possibile scalare teoricamente a problemi arbitrariamente grandi,
a patto di definire modelli di DNNs adeguati alla loro approssimazione.

Uno dei maggiori avanzamenti recentemente proposti in merito € stato la rea-
lizzazione di un modello di DRL in grado di battere dei tester umani nella gran
parte della libreria dei giochi Atari 2600 usando i soli pixel delle schermate di
gioco come dati di input e il punteggio come metrica di ricompensa [MKS™15].

L’algoritmo proposto nello studio viene chiamato Deep Q-Learning e si basa sul-
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I'uso di una DNN per 'approssimazione funzionale dei valori di qualita per ogni
coppia stato-azione come previsto dal Q-Learning. Il modello—che prende come
input le schermate di gioco, pre-processate solo applicando una riduzione della
dimensionalita—prevede che i primi strati convoluzionali della DNN estraggano
dalle immagini le informazioni rilevanti alla definizione dello stato dell’agente, poi
usato dagli ultimi strati per prevedere i valori di qualita attesi per ogni azione
possibile. L’algoritmo sfrutta poi la politica e-greedy per bilanciare esplorazio-
ne e sfruttamento delle conoscenze: posto un valore iniziale ¢g = 1 e stabilito
un numero fisso di azioni di pura esplorazione, si lascia decadere gradualmente
il valore di € durante I’apprendimento fino a raggiungere valori prossimi allo 0.
Viene comunque sempre mantenuto € > 0 per lasciare spazio a una quota di azioni
di esplorazione anche nelle fasi pit avanzate dell’apprendimento. Tramite questa
politica viene modellato esplicitamente il compromesso tra esplorazione e sfrut-
tamento delle conoscenze, superando i limiti sottolineati durante lo sviluppo del
modello TD-Gammon [TT95].

Parametri dell’apprendimento. Durante il processo di apprendimento—nel
caso del RL, e ancora di piu nel caso del DRL in cui entrano in gioco anche gli
iperparametri tipici delle DNNs—devono essere fissati i valori di alcuni parametri
fondamentali che possono influenzare l'efficacia dell’algoritmo. In particolare si

sottolineano:

e exploration rate ¢, che determina il bilanciamento tra esplorazione e sfrutta-
mento della conoscenza. In particolare, da esso derivano 3 parametri: explo-

ration rate iniziale ¢, exploration rate minimo &,,;, e tasso di decadimento

Aci

e discount factor v, che determina quanto peso viene dato alle azioni future
nel calcolo del valore di qualita della singola azione. Porre v = 0 significa
prediligere azioni localmente ottime senza lungimiranza, mentre al contrario

~v =~ 1 significa prediligere azioni lungimiranti a ricompense istantanee;

e learning rate «, proprio dei modelli di apprendimento “a step”™—quali alcuni
algoritmi di RL tradizionale, come il Q-Learning, e i metodi di addestra-

mento delle DNN—e fondamentale per garantire il raggiungimento di una
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soluzione ottima. Valori troppo piccoli di «, oltre a rallentare il processo di
apprendimento nel suo complesso, potrebbero portare a ignorare errori pic-
coli ma significativi, condizionando la convergenza verso soluzioni subottime.
Al contrario valori troppo elevati, seppur in grado di velocizzare il processo
di apprendimento, potrebbero impedire il mantenimento della soluzione ot-
tima o complicarne l'esplorazione, rendendo il modello pit suscettibile alle

singole valutazioni di errore;

e topologia della rete, iperparametro fondamentale di qualsiasi algoritmo basa-
to su DNNs che determina il livello di generalita del modello e di conseguenza

la sua adeguatezza ad esprimere la complessita del problema;

e altri parametri propri dell’algoritmo scelto e della sua implementazione: nel
caso del modello per i giochi Atari, che lavora con Deep Q-Learning, sono per
esempio la dimensione dei batch per il singolo passo di apprendimento della
DNN, la frequenza dei passi di apprendimento rispetto ai passi decisionali e

altri parametri strettamente legati alle modalita di aggiornamento dei pesi
della DNN [MKS™15].

Risulta quindi evidente come I’ottimizzazione dei parametri dell’algoritmo scel-
to ne possa migliorare o compromettere 'efficacia. Dall’altra parte pero, gli stessi
ricercatori che hanno implementato ’apprendimento per i giochi Atari si sono affi-
dati a una “ricerca informale” degli iperparametri effettuata su pochi giochi scelti a
priori—senza garanzie di efficacia di tale approccio—perché una ricerca estensiva
degli stessi sarebbe stata computazionalmente insostenibile [MKS™15|. Inoltre, lo
stesso set di iperparametri ottimizzato su quei pochi giochi scelti secondo criteri
qualitativi é stato applicato a tutti i modelli di apprendimento, indipendentemen-
te dal gioco affrontato: non sarebbe quindi impensabile provare a migliorare le
prestazioni del modello senza proporre un nuovo algoritmo, ma semplicemente

ottimizzando le scelte degli iperparametri per ogni singolo dominio applicativo.
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2.2 Algoritmi Genetici

Un problema aperto ¢ la definizione di modalita computazionalmente sostenibili
per la ricerca e 'ottimizzazione degli iperparametri dei modelli di apprendimento.
Una soluzione ¢é sicuramente offerta dai GA, che associati al DRL possono offrire
un metodo di ricerca educata dei parametri guidato dalla valutazione dei risultati
dei modelli di DRL stessi [SLLN19|. Uno dei punti di forza della ricerca trami-
te GAs rispetto a una tradizionale ricerca estensiva € che il numero di modelli
da addestrare contemporaneamente diminuisce notevolmente, dal momento che si
riescono a scartare immediatamente le configurazioni poco promettenti.

I GAs sono infatti una classe di algoritmi che, imitando il processo di tra-
smissione genetica della riproduzione biologica, mira ad evolvere una popolazione
mantenendo e ottimizzando i tratti degli individui piu prestanti. Si basano su

alcuni concetti fondamentali:

e l'insieme di individui di cui si vogliono ottimizzare le caratteristiche ¢ det-
to popolazione. Data una popolazione iniziale, da essa deriveranno nuove

generazioni di individui a cui verranno trasmessi solo i caratteri dominanti;

e ciascun individuo ha un genoma, ovvero una collezione di geni che possono
avere valori binari, discreti o continui, che codifica tutte le sue caratteristiche

rilevanti;

e si definisce una funzione fitness che associa a ogni individuo un valore nu-
merico che ne rappresenta la “qualita”. Gli individui con valore di fitness
piu elevato, secondo il modello evolutivo darwiniano, saranno piu propensi
a trasmettere il proprio genoma alle generazioni successive. Dalla definizio-
ne della funzione fitness (che deve essere in grado di modellare esattamente
le metriche di qualita desiderate) dipende quindi in larga parte la qualita
dell’algoritmo proposto, dal momento che ¢ essa a guidare la selezione dei

genomi ai fini evolutivi.

Il momento cardine in cui entra in gioco il GA ¢é la generazione di un nuovo
individuo, qualunque sia il motivo che I’ha innescata. Generalmente un GA pre-
vede un processo a tre fasi per determinare il genoma dell’individuo: selezione,

ricombinazione e mutazione.
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Popolazione iniziale Individui piu prestanti Popolazione evoluta

Merf=11 Tl

Figura 2.3: Schema generale di funzionamento degli Algoritmi Genetici. Data
una popolazione iniziale, solitamente generata con caratteristiche casuali o frut-
to di un’ottimizzazione preliminare, si applica una selezione basata sui valori di
fitness—mnel caso esemplificato la lunghezza dello stelo—che permette di generare
una popolazione evoluta che mantenga le sole caratteristiche degli individui pit
prestanti.

A

La selezione prevede di individuare all’interno della popolazione esistente i ge-
nitori per il nuovo individuo, e per farlo si affida in maniera pitt o meno diretta
al valore di fitness degli individui della popolazione: metodi che selezionano in
ogni caso gli individui pit prestanti convergono rapidamente ma sfavoriscono 1’e-
splorazione di nuove combinazioni potenzialmente vantaggiose, mentre al contrario
metodi che dipendano in maniera troppo blanda dai valori di fitness rischiano di
fallire nella selezione degli individui con genomi pit favorevoli, rallentando quindi

il processo evolutivo della popolazione.

La ricombinazione, come ’omonimo processo biologico, prevede di mescolare i
genomi dei genitori per generare una nuova combinazione di geni da assegnare al
figlio. Ai fini della ricombinazione si puo lavorare a livello di sequenze di geni—
applicando quindi uno o pit punti di taglio, e trasmettendo intere sezioni di genoma
in maniera unitaria al nuovo individuo—oppure di singolo gene—scegliendo quindi
puntualmente da quale genitore ereditare ogni gene, senza un numero di punti
di taglio prestabiliti—ma non si agisce mai al di sotto di tale granularita. In
questa fase si garantisce quindi che ogni gene del nuovo individuo sia identico al

corrispondente del genitore da cui € stato ereditato.

La mutazione poi, processo fondamentale per garantire ’esplorazione dello spa-
zio dei genomi ammissibili, prevede di modificare puntualmente singoli geni del
figlio per proporre un valore differente rispetto a quello ereditato dai genitori.

Si devono quindi definire il tasso di mutazione—ovvero la probabilita di colpi-
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Genomi dei genitori Genoma ereditato Genoma del figlio

e

Selezione Ricombinazione Mutazione

Figura 2.4: Schema di applicazione del singolo passo evolutivo dell’ Algoritmo Ge-
netico, necessario per determinare le caratteristiche del nuovo individuo. Tramite
selezione sono determinati i genitori del nuovo individuo, dalla ricombinazione dei
due genomi dei genitori ¢ determinato il genoma ereditato, che puo poi essere sog-
getto a mutazioni puntuali dei singoli geni per determinare le caratteristiche del
nuovo individuo.

re ciascun gene, parametro che ha una funzione simile al tasso di esplorazione &
per il RL—e un metodo per determinare, quando applicate, l'aggressivita delle

mutazioni.

Ottimizzazione dei parametri con GA. Recenti studi hanno esplorato la
possibilita di applicare GAs all’ottimizzazione dei parametri degli algoritmi di
DRL, dimostrando come la ricerca educata possa essere una soluzione sostenibile
a tale problema [SLLNT9, BPK25|. In particolare lo studio [BPK25| paragona
diversi metodi di selezione, ricombinazione e mutazione applicati allo stesso pro-
blema commentandone 1’efficacia e la rapidita di esecuzione su una popolazione di
dimensione prefissata, ponendo quindi I’accento anche sulla valutazione del costo

computazionale del processo evolutivo.
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2.3 Creatures: vita artificiale come videogioco

Nel 1996 CyberLife, compagnia inglese di sviluppo di videogiochi, rilascio sul mer-
cato Creatures, un simulatore di vita artificiale per PC, PlayStation e Game Boy
Advance. Integrati direttamente all’interno del gioco sono presenti agenti autonomi
di ML controllati da reti neurali, evoluti lungo le generazioni tramite 1’applicazio-
ne di un GA. Tale esempio, oltre a rappresentare un unicum mai piu replicato
in sistemi di gioco commerciali, risulta particolarmente rilevante perché in gra-
do di affrontare efficacemente i limiti di capacita computazionale degli hardware

dell’epoca.

Il gioco. La dinamica di gioco prevede che all’utente venga fornito un set iniziale
di uova di “Norns” (le creature del gioco) con un genoma unico dipendente dalla
copia fisica del gioco di cui si € in possesso. Gli individui nati da tali uova sono la
popolazione iniziale per il mondo dell’utente, e ’obiettivo ¢ quello di mantenere ed
estendere la popolazione facendo in modo che gli agenti interagiscano fra loro per
riprodursi. Vista la dinamica di riproduzione, il GA di Creatures non prevede un
sistema di selezione dei genitori, che vengono invece determinati direttamente dalla
loro strategia di comportamento—Ila capacita di apprendere le azioni necessarie
alla riproduzione fa quindi gia da metodo di selezione e valutazione dei genitori,
senza dover definire esplicitamente una funzione fitness. Sono invece normalmente
applicati un sistema di ricombinazione e mutazione dei genomi per determinare le
caratteristiche dei nuovi individui [GC98]. Il genoma delle creature non determina
poi soltanto i parametri del loro apprendimento—come invece solitamente avviene
in altri studi pit recenti [SLLN19|, che sfruttano gli agenti di DRL come sistemi di
controllo esterni—ma codificano anche le caratteristiche fisiologiche degli agenti,

che ne possono influenzare le modalita di interazione con ’ambiente.

Il cervello degli agenti. Le reti neurali di controllo proposte in Creatures non
sono DNNs completamente connesse—come proposto nella gran parte degli altri
studi, anche contemporanei al rilascio del gioco [MKS™15, [Tes90, [TT95|—ma piut-
tosto hanno una struttura a lobi, necessita dettata dai limiti di memoria e capacita

computazionale dei sistemi supportati. Ogni rete neurale ha infatti una topologia
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Figura 2.5: Modellino del mondo di gioco di Creatures, custodito al Centre for
Computing History di Cambridge, Regno Unito!. Durante lo sviluppo del gioco,
per superare i costi e le problematiche legate alla modellazione 3D digitale, i modelli
del mondo e dei personaggi vennero realizzati fisicamente, fotografati e digitalizzati
per essere usati come assets di gioco. Cio ha contribuito a determinare lo stile
caratteristico delle grafiche di Creatures.

predefinita, al cui interno sono attivate un numero limitato di connessioni [GC9S|:
la conoscenza appresa ¢ quindi codificata primariamente dalle connessioni atti-
ve piuttosto che dai pesi delle stesse, con un risultato di fatto analogo a quello

ottenuto con una DNN in cui la maggior parte dei pesi sia uguale a zero.

I lobi dei cervelli di Creatures sono quindi dei raggruppamenti di neuroni che
svolgono una funzione comune. Ci sono percio dei lobi dedicati alla lettura delle
osservazioni del mondo che traducono lo stato degli agenti in stimoli di attivazio-
ne, dei lobi di pensiero che permettono di stabilire delle connessioni mediate fra
neuroni di altri lobi, e dei lobi di output che traducono gli stimoli ricevuti dagli
altri neuroni in stimoli di attivazione con cui determinare le azioni da svolgere.
Riprendendo quindi il modello delle reti neurali di Creatures, e rapportandolo a
sistemi moderni in cui si puo supporre di poter implementare DNNs completamen-
te connesse senza particolari problemi computazionali, si possono reinterpretare i

lobi come singoli strati di un’unica DNN dove i lobi dedicati alla lettura degli sti-

"https://www.computinghistory.org.uk/det/42694/Creatures-Development-Model/
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Verbi

Varie Percezione Concetto Decision ———> Azione

Bisogni

Nomi

Stimoli Attention > Attenzione

by

Figura 2.6: Schema di funzionamento del cervello dei “Norns” [GC98|, in cui si
dettaglia la struttura e la collaborazione fra lobi. Sebbene il contributo di Atten-
tion non venga sfruttato direttamente dal lobo Decision, la modalita di attuazione
del comportamento degli agenti dipende dal binomio azione-attenzione, riflettuto
nella struttura dell’input basato sul binomio nome-verbo oltre che sugli stimoli
ambientali.

moli del mondo sarebbero lo strato di input e i lobi dedicati alla decisione delle

azioni da intraprendere sarebbero lo strato di output.

In tal senso ci si concentra particolarmente sui lobi Attention e Decision, ri-
spettivamente responsabili della determinazione del tipo di oggetto su cui l'agen-
te sofferma la propria attenzione e sull’azione da svolgere nei confronti di tale
oggetto |[GCI§|. Tale approccio permette ai “Norns” di stabilire un flusso di ra-
gionamento basato sul binomio soggetto-azione piuttosto che sul solo concetto di
azione, permettendogli quindi di apprendere strategie ulteriormente raffinate che
si basino su una pre-elaborazione dello stato per ’estrazione di informazioni com-
plesse (nel caso di Creatures un tipo di oggetto che attira I’attenzione dell’agente)
che possono essere usate per selezionare 1’azione da svolgere. Si cita in questo
senso anche uno studio contemporaneo alla realizzazione di questa Tesi che propo-
ne un modello di DRL basato su Attention per il gioco di Enduro—appartenente
alla libreria Atari 2600—in grado di superare le prestazioni del modello propo-
sto da [MKS™15| basandosi anch’esso sull’analisi delle schermate come unico dato
grezzo di input [VDN26].
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Il modello di apprendimento. Alla nascita di un “Norn”, all’interno del suo
cervello vengono formate delle connessioni con un valore di forza prestabilito. Ad
ogni passo decisionale viene poi applicato al valore di forza di tutte le connessio-
ni non attivate un coefficiente di decadimento, che puo a lungo termine portare
all’atrofia della connessione. Tale processo, che ricalca il processo di decadimento
delle connessioni dei cervelli biologici, prevede che al raggiungimento del livello di
atrofia la connessione venga eliminata e al suo posto ne venga creata una nuova in
maniera casuale. Le connessioni che vengono attivate ricevono invece un indebo-
limento o un rafforzamento che dipende dagli effetti che I'azione ha sui parametri
vitali dell’agente, modellando di fatto un sistema di ricompense analogo a quello
dei sistemi di RL tradizionali. Anche in questo caso le connessioni che raggiungono
il limite minimo per il valore di forza sono eliminate e al loro posto ne vengono

casualmente generate di nuove [GCI§].

2.4 Direzione di ricerca della Tesi

L’obiettivo della ricerca svolta in questa Tesi, riprendendo il risultato ottenuto
da Creatures e integrando tecnologie e contributi piu recenti, &€ quindi quello di
valutare 'efficacia e l'efficienza di un sistema di gioco che simuli un ambiente di
vita artificiale per agenti autonomi addestrati con DRL i cui parametri—vitali
e di apprendimento—sono ottimizzati tramite un GA. In particolare si pone

l’attenzione su alcuni temi fondamentali:

e la realizzazione di un sistema di controllo basato su DRL e sulla collabora-
zione di due DNNs: una prima rete con il ruolo di Attention, che processa lo
stato dell’agente per estrarre una rappresentazione semanticamente espres-
siva dell’oggetto su cui dirigere la propria attenzione, e una seconda rete che
in cascata sia in grado di determinare, basandosi sul prodotto della rete At-
tention e su una visione piu limitata del proprio stato, ’azione ottimale da

intraprendere;

e l'osservazione dell’impatto che ’evoluzione tramite GA ha sul rendimento

del modello di apprendimento, estendendo il processo evolutivo anche a ca-
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ratteristiche fisiologiche degli agenti per valutare I'impatto che anche tali

parametri hanno sulla qualita delle strategie apprese;

e l'integrazione del sistema di controllo degli agenti autonomi all’interno del
motore di gioco stesso e la valutazione dell’efficienza del modello di ottimiz-
zazione proposto, per valutare la possibilita di integrare sistemi analoghi in

videogiochi commerciali.
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Capitolo 3

Contributo

Il progetto proposto riprende la direzione esplorata da Creatures nel 1996 [GCM97|
e si basa sull’integrazione all’interno del motore di gioco di agenti autonomi adde-
strati tramite DRL basato su Attention, i cui parametri vitali e di apprendimento
sono ottimizzati grazie al contributo di un GA.

Si introduce quindi in primo luogo il funzionamento del sistema implementato,
dettagliando in particolare la struttura del mondo di gioco e le possibili moda-
lita di interazione fra utente e agenti autonomi. Dopodiché, si introducono le
caratteristiche principali degli agenti e dei parametri che ne regolano il ciclo di
vita.

L’attenzione si sposta poi sulla modellazione del sistema di controllo degli agen-
ti, e nella Sezione viene dettagliata I'implementazione dell’algoritmo di DRL
usato per ’addestramento, di cui sono introdotti i parametri coinvolti dal processo
di ottimizzazione del GA.

Nella Sezione sono poi dettagliati la struttura del genoma degli agenti, la
definizione della funzione fitness e il funzionamento generale del GA responsabile
dell’evoluzione della popolazione.

Infine, nella Sezione sono introdotte le modalita di implementazione del
progetto, soffermandosi sulle tecnologie usate e sulle scelte piu strettamente legate

allo sviluppo del sistema.

Motore di gioco. Il gioco si svolge in un mondo bidimensionale a vista dall’alto

all’interno di cui gli agenti si possono muovere liberamente. La partita viene ini-
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ziata a mappa vuota, e I'utente ha la possibilita di richiedere in qualsiasi momento
la generazione di un individuo con genoma casuale. La popolazione generata su
richiesta dell’'utente fa da popolazione base per 'applicazione del GA, che viene
innescato alla morte degli agenti per generarne di nuovi e tutelare la dimensione
minima richiesta della popolazione.

La dinamica di gioco standard prevede poi che gli agenti apprendano auto-
nomamente con l’obiettivo di sopravvivere il piu a lungo possibile. Sebbene non
sia strettamente necessario per lo svolgimento del gioco, I'utente pudé comunque
selezionare un agente per monitorarne lo stato e interagirvi. L’interazione si basa
sulla possibilita di inviare all’agente stringhe di testo fino a 8 caratteri e segnali di
ricompensa. In questo modo é possibile fornire una componente di input con cui
guidare il processo decisionale degli agenti, sfruttando poi il sistema di ricompen-
se per influenzarne il processo di apprendimento ed instaurare una forma molto

semplice e primitiva di comunicazione basata sul linguaggio naturale.

Agenti di gioco. Durante la propria vita ciascun agente di gioco va incontro
a un naturale processo di decadimento dei propri parametri vitali—fame, vita e
stanchezza—che devono essere mitigati per garantire la sopravvivenza dell’agente
stesso. La fame e la stanchezza, inizialmente poste a zero, aumentano a ritmo
costante fino al raggiungimento di una soglia critica; quando anche solo uno di tali
bisogni raggiunge il limite di sopportazione dell’agente, comincia a decadere il suo
valore di vita. Se tale valore decade fino a raggiungere lo zero, I’agente muore e
viene eliminato dal campo di gioco.

Per regolare i propri parametri vitali ’agente, che viene generato in un’area
centrale della mappa detta playground, deve raggiungere delle aree di ristoro poste
ai margini del mondo di gioco e interagirvi. In particolare, ai lati del playground
sono poste due aree di recupero per la vita, mentre ai quattro angoli sono poste
due aree per il recupero della fame e due per il recupero della stanchezza come
illustrato dalla Figura [3.1]

Sistema di controllo degli agenti. Gli agenti di gioco possono muoversi nelle
4 direzioni principali o interagire con ’ambiente. In caso di interazione, se I’agente

si trova all’interno di uno dei punti di ristoro l'effetto & quello di regolare comple-
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Figura 3.1: Cattura del mondo di gioco eseguita durante 1’esecuzione, selezionando
I’agente per attivare la dinamica di monitoraggio e interazione dell’'utente. Nella
parte inferiore dello schermo si vedono i valori dei parametri vitali dell’agente—
vita, fame e stanchezza—I1"oggetto dell’attenzione dell’agente e i comandi per 'in-
terazione: un campo per l'inserimento di testo e due bottoni per I'invio di ricom-
pense. Nella parte superiore si vede invece il bottone per la generazione di un
nuovo individuo. All’interno della mappa si notano il playground—Ia zona scura
in posizione centrale—e le aree di ristoro: in verde per il recupero della vita, in
blu per il recupero della stanchezza e in giallo per il recupero della fame.
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Figura 3.2: Schema di funzionamento del processo decisionale degli agenti di gioco,
che modella esplicitamente la collaborazione fra i due Percettroni Multistrato di
controllo.

tamente la funzione vitale corrispondente, mentre I’azione ¢ inefficace se I'agente

si trova in un qualsiasi altro punto della mappa.

Il comportamento degli agenti ¢ controllato da due Percettroni Multistrato
(MLPs)—ovvero DNNs senza connessioni all’indietro, in cui ogni neurone riceve
stimoli da tutti i neuroni dello strato precedente e invia i propri stimoli elaborati a
tutti i neuroni dello strato successivo—chiamati Attention e Reason, che lavorano
in cascata come illustrato dalla Figura [3.2] In particolare Attention lavora per
prima per determinare il tipo di punto di ristoro verso cui l'agente dirige la propria
attenzione e Reason sfrutta la decisione di Attention per determinare 1'azione piu

fruttuosa da svolgere.

La rete Attention basa il proprio processo decisionale sui valori dei parametri
vitali dell’agente, sulla distanza da ciascun tipo di punto di ristoro e sulla stringa
di input eventualmente indicata dall’'utente. In questo modo l'agente sfrutta la
completa visione che ha di sé e dell’ambiente circostante per dirigere la propria
attenzione, che puo essere pero influenzata anche dall’apporto di input fornito

dall’utente.

La rete Reason basa invece il proprio processo decisionale sull’oggetto dell’at-
tenzione determinato dalla rete Attention e sulla posizione dell’agente rispetto ai
punti di ristoro. In questo modo ¢ in grado di scegliere I'azione piu fruttuosa dal-

la propria posizione rispetto all’'oggetto della propria attenzione, che rappresenta
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una sintesi significativa della visione pitt ampia del proprio stato che ha la rete
Attention.

L’input testuale dell’'utente non ha influenza diretta sul processo decisionale
della rete Reason, e costituisce quindi una forma di comunicazione basata esclu-
sivamente sul nome e limitata al concetto di attenzione. Le ricompense sommini-
strate dall’utente vengono invece recepite anche dalla rete Reason, seppur in forma
mitigata, per permettere all’'utente di guidare il processo di apprendimento degli

agenti.

3.1 Algoritmo di apprendimento

Il processo di apprendimento di entrambe le reti avviene tramite DRL, con un
algoritmo basato su Q-learning simile a quello proposto per il dominio dei giochi
dell’Atari 2600 [MKST15].

Abbattimento della dimensionalita. Sebbene in grado di affrontare i pro-
blemi del bilanciamento tra scelte localmente ottime e lungimiranti e del com-
promesso fra esplorazione dell’ambiente e sfruttamento delle conoscenze apprese,
I'implementazione del Q-learning dettagliata nell’ Algoritmo [I| presenta infatti nella
sua formulazione tradizionale un problema importante di scalabilita: la dimensio-
ne della Q-table dipende direttamente dalla dimensione dello spazio S x A delle
coppie stato-azione. Nel dominio studiato, in cui sia la posizione degli agenti che
i valori dei parametri vitali sono valori continui, e in cui qualsiasi stringa di lun-
ghezza inferiore agli 8 caratteri & un possibile input, mantenere in memoria i valori
di qualita per ogni scelta in ogni stato diventerebbe insostenibile.

Si propone quindi un’implementazione modificata del Q-learning che sfrutti le
capacita di approssimazione funzionale delle DNNs per calcolare i valori di qua-
litd piuttosto che mantenerli in memoria. Si vuole quindi addestrare la DNN a
prevedere, dato uno stato s € .S, i valori di qualita previsti per ogni azione a € A.

Il processo decisionale del modello rimane sostanzialmente invariato. Denotan-
do con 6, i pesi della DNN all’istante ¢, dopo aver osservato lo stato s; si prevedono
i valori di qualita Q(s;,a,6;)Va € A e, con politica e-greedy, 'agente sceglie se

eseguire ’azione ottimale a* o un’azione di esplorazione a scelta casualmente.
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Addestramento della Rete Neurale Profonda. Al contrario, il passo di ap-
prendimento deve essere riformulato per conformarsi ai metodi di addestramento
delle DNNs. Ricalcando il passo di apprendimento dell’ Algoritmo [1|si definisce qui

il valore e di errore della singola previsione come

e = R(sy,a;) + 7 max Q(Si11,a,0;) — Q(s¢, ay, 0;) (3.1)

Al dato di errore si applica poi per il calcolo del valore di costo—fondamentale
per 'addestramento della DNN, che ha come obiettivo la minimizzazione di tale
risultato—la funzione Huber [Hub64]. Quest’ultima ¢ stata scelta perché combina
le formulazioni dell’Errore Assoluto Medio (MAE) e dell’Errore Quadratico Medio
(MSE) per ridurre I'impatto degli outliers—ovvero i valori molto lontani dalla me-
dia dei risultati osservati, che causano solitamente grandi errori di previsione—sul
processo di apprendimento senza pero ridurre ’espressivita degli errori meno pro-
nunciati. In questo modo permette di mitigare I'instabilita propria dell’algoritmo
Q-learning—sottolineata anche in altri studi, ma che con i dovuti accorgimenti puo
essere quasi completamente superata [MKST15]—senza pero ridurre lespressivita
delle osservazioni svolte.

L’ottimizzazione dei pesi delle DNNs, basata sui valori di errore prodotti dalla
funzione Huber, viene poi svolta con il metodo di discesa del gradiente Adaptive
Moment Estimation (Adam) [KB15]. Tale metodo risulta particolarmente efficace
perché sfrutta ’accumulo dei gradienti passati per determinare dei learning rate
differenziati per ciascun peso da ottimizzare. Inoltre introduce degli accorgimenti
per mitigare il condizionamento dovuto all’inizializzazione a zero dei valori dei

gradienti accumulati, velocizzando la convergenza e riducendone l'instabilita.

Apprendimento per batch. La definizione proposta per la singola iterazio-
ne del Q-learning, che prevede di aggiornare i valori della Q-table ad ogni passo
decisionale, rappresenta uno dei punti di forza dell’algoritmo nella sua formulazio-
ne tradizionale. Nel passaggio alla formulazione basata su DNN tale definizione
presenta pero due problemi fondamentali.

Il primo, legato al costo computazionale, risiede nell’impossibilita pratica di

applicare un passo di apprendimento ad ogni passo decisionale: il passo di adde-
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stramento di una DNN é infatti particolarmente oneroso perché richiede di ricavare
I’errore della previsione applicando la funzione costo, di calcolare i gradienti dell’er-
rore rispetto a tutti i pesi della rete e infine di applicare il passo di ottimizzazione

dei pesi aggiornando i valori degli stessi.

Il secondo € invece un problema di generalita: se nella formulazione tradizionale
del Q-learning aggiornare a ogni osservazione € fruttuoso perché la Q-table é una
rappresentazione esaustiva dello spazio dei valori di qualita, nella formulazione del
Q-learning basata su DNN i valori di qualita di ogni azione vengono derivati dallo
stato tramite una funzione approssimante espressa dai pesi della rete, che quindi

deve essere generale e il piti possibile indipendente dalle perturbazioni istantanee.

Si introduce quindi il concetto di apprendimento per batch. Definendo come
batch un insieme di osservazioni usato per il singolo passo di apprendimento, si
definiscono due momenti principali dell’algoritmo. Il primo, dedicato alla raccolta
dati, prevede che venga innescato il solo processo decisionale della DNN e che
si memorizzino le osservazioni che derivano dalle interazioni con l'ambiente. Il
secondo prevede poi di svolgere il singolo passo di apprendimento su un batch
di osservazioni, con l'obiettivo di raccogliere valutazioni di errore piu generali e
pertanto piu significative.

L’apprendimento per batch prevede quindi necessariamente—dovendo racco-
gliere un numero di osservazioni sufficiente alla creazione del singolo batch—che i
passi di addestramento siano meno frequenti dei passi decisionali. Cido permette
di stabilizzare, oltre al processo di apprendimento, anche il comportamento dell’a-
gente, che in questo modo ha la possibilita di svolgere diverse azioni con la stessa

configurazione di pesi della DNN.

Experience Replay Buffer. L’efficacia dell’apprendimento per batch si basa
pero sul presupposto che le osservazioni del batch siano fra loro indipendenti, con-
dizione non verificata nel caso del Q-learning. Dal momento che il valore di qualita
di una singola azione dipende anche dal valore previsto per le azioni successive,
apprendere su un batch di azioni processate nello stesso ordine in cui sono state
svolte potrebbe portare il modello ad auto-condizionarsi rendendo meno stabile il

processo di apprendimento.
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Per superare questo problema si introduce I’ Experience Replay Buffer, uno spa-
zio di memoria—idealmente illimitato, ma che nella pratica viene limitato a una
dimensione molto maggiore a quella del batch ottenendo un risultato equivalente—
in cui 'agente salva lo storico di tutte le proprie osservazioni dell’ambiente. Al
momento dell’apprendimento viene quindi estratto un campione casuale dell’Ex-
perience Replay Buffer per popolare il batch su cui addestrare la DNN. Grazie a
questo accorgimento le osservazioni contenute in ogni batch diventano realmente
indipendenti e si puo sfruttare la massima efficacia di tale metodo di apprendi-
mento.

L’introduzione del metodo di apprendimento per batch e dell’Experience Re-
play Buffer richiede di definire altri tre parametri dell’algoritmo di apprendimento:
la dimensione dell’Experience Replay Buffer, la dimensione del batch e il perio-
do di addestramento 7, ovvero il tempo che intercorre fra passi di addestramento

successivi.

Modello Target. La definizione di errore proposta nell’Equazione fa emer-
gere perd un ulteriore problema di auto-condizionamento: il calcolo delle ricom-
pense future—che a tutti gli effetti sono una componente del valore di qualita reale,
obiettivo del processo di apprendimento della DNN-—avviene sfruttando la stessa
configurazione di pesi #; usata per il calcolo del valore di qualita previsto. Cio,
sommato al fatto che lo stato s;;1 su cui viene svolta la previsione di qualita futura
¢ determinato almeno in parte dalla coppia stato-azione (s, a;), potrebbe influen-
zare in maniera sostanziale il processo di apprendimento impedendo all’agente di
raggiungere la strategia ottimale.

Per mitigare tale forma di condizionamento si introduce il modello Target, una
DNN di supporto usata esclusivamente per le previsioni di qualita delle scelte
future. L’obiettivo & quello di permettere il calcolo delle ricompense future con
una configurazione di pesi differente e indipendente da quella della DNN principale,
fortemente influenzata dallo stato istantaneo dell’apprendimento, rendendo i valori
ottenuti ulteriormente piu consistenti e regolari.

Volendo comunque evitare di innescare un secondo processo di addestramento
per la DNN Target—che richiederebbe ingenti risorse computazionali, e sarebbe

svolto sulle stesse osservazioni e con lo stesso obiettivo di quello svolto per la DNN
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principale—si possono aggiornare i suoi pesi effettuando una copia della configura-
zione del modello principale all’interno del modello Target. In questo modo, salvo
Iistante in cui effettivamente sono copiati i pesi, le due DNNs non hanno mai la
stessa configurazione e le previsioni svolte si possono reputare indipendenti, senza
azionare un secondo processo di apprendimento ma piuttosto riusando in maniera
efficace la conoscenza appresa dalla DNN principale.

Si propone quindi la seguente formula modificata per il calcolo del valore di
costo ¢, sempre basata sull’applicazione della funzione Huber, dove si denotano
con @ i pesi della DNN Target:

¢ = Huber(R(s, at) + 7 max Q(st11,a,0;) — Q(s¢, ar,6;)) (3.2)

Introdurre il modello Target richiede pero di stabilire un ulteriore parametro
dell’apprendimento: il periodo 7’ che regola la frequenza di aggiornamento dei pesi
della DNN Target stessa. Dal momento che i pesi da assegnare sono direttamente
copiati dalla configurazione della DNN principale si pone 7 > 7 per evitare di
sprecare risorse computazionali copiando pit volte la stessa configurazione nel

modello Target.

Parametri del Deep Q-learning. Si riassume quindi nell’Algoritmo [2| 'imple-
mentazione proposta di Deep Q-learning—ovvero Q-learning basato su DNN. Si

sottolineano in particolare tutti i parametri i cui valori non sono fissati:

e il tasso di esplorazione iniziale £q;

e il coefficiente di decadimento del tasso di esplorazione A.;
e il tasso di esplorazione minimo &,,;,;

e il discount factor v per le ricompense future;

e il learning rate « per il metodo di ottimizzazione Adam,;
e il periodo di aggiornamento della DNN principale 7;

e il periodo di aggiornamento della DNN Target 7'.
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Algoritmo 2 Deep Q-learning con politica e-greedy
Initialize 6, 6’
Initialize empty ERB > Experience Relay Buffer
€< &
St < Sp
Define ay, ry, Si11
repeat
With probability e: a; < random a € A
With probability 1 — e: a; + max, Q(s;, a,0)
if € > ¢,,,;, then
€ 4+ A&
end if
Perform ay
Observe 1y, St
Store (s, ag, 4, S¢+1) in ERB
if 7 since last Main Model update then
Pick a batch of random samples from FRB
for all random samples do
e =1y + ymax, Q(Siy1,a,0) — Q(s4, a4, 0)
Perform Adam optimization with rate a on Huber(e;)
end for
end if
if 7/ since last Target Model update then
0+ 0
end if
if FRB is full then
Clear ERB content
end if
until end
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L’ottimizzazione dei valori di tali parametri é responsabilita del GA, mentre al
contrario la topologia delle DNNs coinvolte, la dimensione dei batch e la dimensione

degli Experience Replay Buffer sono fissate a priori.

Sistema di ricompense. Ai fini dell’addestramento degli agenti il sistema di
gioco prevede due contributi di ricompensa principali: il primo € determinato
dall’utente e somministrato tramite il meccanismo di interazione con gli agenti di
gioco, mentre invece il secondo ¢ determinato dall’ambiente e viene recepito ad ogni
passo decisionale. Dal momento che il comportamento degli agenti é controllato
da due DNNs che implementano diverse funzioni del processo decisionale, 'inten-
sita della ricezione delle ricompense é differenziata fra le due reti per facilitare a
ciascuna l'apprendimento della propria funzione.

Il contributo di ricompensa somministrato dall’utente ¢ circoscritto alla dina-
mica di interazione attivabile selezionando un agente di gioco. Puo essere quindi
usato per guidare l'apprendimento in senso lato, ma la sua funzione primaria é
quella di influenzare la rete Attention per stabilire una forma di comunicazione
tra agente e utente. Tale contributo quindi, che di default vale zero a meno di
interazioni esplicite dell’'utente, viene recepito interamente dalla rete Attention e
solo in forma attenuata dalla rete Reason.

Il contributo di ricompensa determinato dall’ambiente tiene invece conto di due
componenti separate. La prima ¢ legata allo stato dei parametri vitali dell’agente:
in caso di perdita della vita o di aumento di fame e stanchezza esso riceve un
segnale negativo, mentre al contrario ne riceve uno positivo in caso di mitigazione
di un bisogno—a patto che comunque non si sia registrata una perdita di vita.
La seconda ¢ legata invece alla posizione dell’agente: in caso di allontanamento
dall’oggetto della propria attenzione viene ricevuto un segnale negativo, mentre al
contrario ne viene ricevuto uno positivo in caso di avvicinamento.

Dal momento che il contributo di ricompensa ambientale ¢ strettamente legato
alle azioni dell’agente, viene recepito interamente dalla rete Reason e solamente in
forma attenuata dalla rete Attention. La ricezione di questo contributo da parte
della rete Attention deve comunque essere garantita in primo luogo perché é 'unico
contributo di ricompensa che I’agente riceve nella dinamica di gioco standard—che

non richiede necessariamente l'intervento dell’'utente—e in secondo luogo perché il
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suo valore ¢ comunque in parte determinato dall’oggetto dell’attenzione dell’agen-
te. Il valore complessivo di ricompensa ambientale quantifica infatti la qualita della
collaborazione fra le due reti di controllo, essendo basato sulla valutazione delle
transizioni di stato causate dalle azioni scelte dalla rete Reason in combinazione

con gli oggetti dell’attenzione determinati dalla rete Attention.

3.2 Algoritmo genetico

Il sistema di gioco prevede che alla morte di un agente, quando la dimensione della
popolazione scende al di sotto della soglia stabilita dall'utente, venga azionato un
GA in grado di generare un nuovo individuo che erediti ed evolva le caratteristiche

degli individui piu prestanti tra quelli in vita.

Il genoma. Il primo elemento necessario per la modellazione di un GA ¢ il geno-
ma degli individui, ovvero la codifica strutturata delle caratteristiche interessate
dal processo evolutivo, composto da 18 geni a valori continui limitati ciascuno
all'interno di un intervallo di valori ammissibili. I 18 geni contengono il valo-
re di tutti i parametri dell’apprendimento precedentemente elencati per ciascuna
delle due reti di controllo—quindi 7 geni per la rete Attention e altrettanti per
la rete Reason—e 4 geni addizionali che rappresentano la velocita di movimen-
to dell’agente, il tasso di decadimento della vita e i tassi di aumento di fame e
stanchezza.

La scelta di modellare all’interno del genoma anche alcuni parametri vitali non
direttamente legati al processo di apprendimento é coerente con l'integrazione de-
gli agenti all’interno del motore di gioco—che diventa quindi sostanzialmente un
motore di vita artificiale—e permette di studiare 'impatto che anche questi hanno
sul processo di apprendimento. Non ¢ infatti da escludere che un individuo di per
sé piu prestante, e quindi piu rapido o piu resistente, sia avvantaggiato indipen-
dentemente dai parametri dell’algoritmo di apprendimento perché maggiormente

in grado di esplorare I’ambiente di gioco.

La funzione fitness. Un ulteriore elemento da definire prima di modellare le

modalita di applicazione del GA é la funzione fitness, che dato un individuo della
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popolazione restituisce un valore numerico che ne rappresenta la qualita: maggiore
é il valore restituito dalla funzione, maggiore & la qualita dell’individuo preso in
considerazione. La definizione della fitness é quindi cruciale per l'efficacia del GA
in quanto stabilisce la metrica di valutazione delle prestazioni di ogni individuo, e

pertanto deve modellare correttamente gli obiettivi dell’evoluzione.

L’evoluzione guidata dal GA nel contesto di gioco ha come obiettivo la mas-
simizzazione dell’efficacia del modello di apprendimento. Essa si pud misurare
tramite due metriche fondamentali: il tempo di vita complessivo e il valore medio
dei parametri vitali dell’agente.

Il tempo di vita ¢ usato come metrica primaria perché si suppone che gli agenti
piu longevi—indipendentemente dalla maggiore resistenza determinata dai geni re-
golatori dei parametri vitali—lo siano in quanto capaci di apprendere una strategia
di sopravvivenza efficace.

Al contrario il valore medio dei parametri vitali degli agenti ¢ usato in modo
da garantire, a pari tempo di vita, la selezione di agenti mediamente pit sani, sup-
ponendo che cio sia frutto di una strategia appresa in grado di tutelare e mitigare
i valori dei parametri vitali prima del raggiungimento delle soglie critiche.

Si propone quindi la seguente definizione di fitness (denotata con f), dove si
indicano con [ il valore medio del parametro della vita, e con h e f i complementari
dei valori medi di fame e stanchezza rispettivamente. L’uso dei complementari per
fame e stanchezza é dovuto al fatto che tali bisogni sono soggetti a un processo di
decadimento ascendente—ovvero i valori ottimali sono prossimi allo zero, e i valori
pessimi sono elevati—ed € necessario per far coincidere le medie ottimali a valori
alti di fitness.

7 htt
I+

f =T

(3.3)

La formulazione proposta nell’Equazione per il calcolo del valore di fitness
si basa quindi sulla media pesata dei valori medi dei parametri vitali—in cui la
vita ha peso uguale ai restanti bisogni combinati—moltiplicata per il tempo di vita
complessivo. Il tempo di vita complessivo diventa quindi la metrica predominante
per la selezione, escludendo i “neonati™—che altrimenti avrebbero valori medi per

i bisogni vitali prossimi all’estremo ideale—e prediligendo la selezione di agenti
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longevi indipendentemente dallo stato di salute per premiare 'apprendimento di

strategie di sopravvivenza efficaci.

Selezione. 11 modello proposto per la selezione dei genitori ¢ un algoritmo di
selezione a roulette con accettazione stocastica del risultato [LLI2|. La classe di
algoritmi a roulette, che prende il nome dall’omonimo gioco francese, prevede di
rappresentare le possibili scelte per i genitori all’interno di un intervallo continuo,
suddiviso in un numero di sotto-intervalli associati ciascuno a un individuo se-
lezionabile, solitamente di ampiezza variabile e proporzionale al valore di fitness
dell’individuo rappresentato. Il processo di selezione consiste poi nell’estrazione di
un valore casuale all’interno dell’intervallo complessivo, che identifica con il proprio
sotto-intervallo di appartenenza il genitore scelto.

La definizione dei sotto-intervalli ad ampiezza variabile, che da un lato per-
mette di definire probabilita diverse di selezione per ciascun individuo, rende pero
computazionalmente oneroso risalire al sotto-intervallo di appartenenza del valore
estratto. Sipropone quindi un algoritmo modificato di selezione basato su intervalli
ad ampiezza fissa—che abbatte quindi a un O(1) la complessita della valutazione
del sotto-intervallo di appartenenza—con accettazione probabilistica del risulta-
to dell’estrazione |[LL12]. Esso permette quindi istantaneamente di individuare il
potenziale genitore, e di accettarlo finalizzando la selezione con una probabilita
proporzionale al suo valore di fitness.

Denotando con B l'insieme degli individui in vita e come b € B il singolo
individuo, si definisce la probabilita di accettazione del risultato come segue:

Py = 10 (3.4)

>yer [ (V)

La probabilita di accettazione proposta dallEquazione , basandosi sul pre-
supposto che f(b) > 0V b € B—sempre verificato, dal momento che i valori medi
per i parametri vitali sono inizializzati al massimo valore ammissibile e il tem-
po di vita ¢ sempre maggiore di zero a meno dell’istante in cui ’agente viene
generato—garantisce di non escludere né garantire la selezione di nessun genitore.

Cio permette, pur favorendo la selezione di individui con elevati valori di fitness,

I’esplorazione dello spazio dei genomi ammissibili alla ricerca di configurazioni
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potenzialmente efficaci che possono emergere ricombinando e mutando i genomi di

individui poco prestanti.

Ricombinazione. La ricombinazione applicata ai genomi dei genitori per deter-
minare quello ereditato € uniforme e bilanciata. Ricombinare in modo uniforme
significa che ogni gene viene ereditato singolarmente, senza individuare un numero
di punti di taglio prestabilito né sequenze di geni da ereditare in maniera unitaria.
Tale metodo di ricombinazione é quello che piu di tutti favorisce I’esplorazione dello
spazio dei genomi ammissibili, dal momento che non pone vincoli alle permutazioni
di geni ottenibili.

Ricombinare in modo bilanciato significa poi che, per ciascun gene, la probabili-
ta di eredita da ciascun genitore ¢ del 50%, diversamente dai metodi sbilanciati che
prevedono di assegnare probabilita diverse ai genitori, eventualmente dipendenti
dai valori di fitness. Tale metodo favorisce 1’esplorazione di nuove configurazioni
dal momento che non esclude né sfavorisce l’eredita dai genitori meno prestanti,

che comunque potrebbero custodire valori di singoli geni localmente ottimali.

Mutazione. Dopo aver selezionato e ricombinato i genomi, ogni gene del nuovo
individuo é comunque uguale a quello ereditato da uno dei genitori. Per esplora-
re efficacemente lo spazio dei genomi ammissibili e favorire la convergenza verso
configurazioni ottimali, si applica puntualmente a ciascun gene nua mutazione con
probabilita P = 0.1. Essendo il genoma composto da 18 geni distinti, ciascuno
soggetto alla stessa probabilita di mutazione in maniera indipendente, la probabi-
lita di avere un genoma completamente immutato é pari a circa 0.15. Cio significa
che mediamente circa un genoma su 7 risulta invariato, mentre gli altri 6 ricevono
un qualche tipo di mutazione.

Quando viene applicata una mutazione, il suo valore viene estratto casualmente
da una distribuzione normale centrata in zero con ampiezza pari a quella dell’in-
tervallo dei valori ammissibili per il gene coinvolto. In questo modo si prediligono
mutazioni lievi, con 1'obiettivo di compensare almeno parzialmente 1’aggressivita
della politica di mutazione applicata. Il valore di mutazione viene poi sommato al
valore ereditato, limitando comunque il valore ottenuto all’interno dell’intervallo

di ammissibilita per il gene coinvolto.
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3.3 Modalita di implementazione

Il codice del progetto & disponibile in un repository GitHuh? ed ¢ scritto in Python.

Per 'implementazione del sistema si & deciso di non affidarsi a un motore di gio-
co strutturato, reimplementando piuttosto le funzionalita centrali come la gestione
del main loop, del rendering e dell’input utente. Si ¢ deciso di re-implementare un
semplice motore di gioco, nonostante il costo legato allo sviluppo, per garantire
di avere il massimo controllo sull’andamento degli aggiornamenti dell’ambiente.
Inoltre, I'indipendenza da sistemi strutturati ha permesso di avere piu liberta
per 'implementazione delle singole entita di gioco, facilitando 'integrazione del
modello di apprendimento studiato.

La realizzazione di un motore di gioco personalizzato ha infatti permesso di
gestire alla granularita del singolo passo anche i processi di addestramento e pre-
visione delle DNNs di controllo degli agenti, condizione necessaria per lo studio

approfondito delle prestazioni del modello proposto.

2Repository pubblico disponibile al link https://github.com/kimiosti/ArtieLife
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Capitolo 4
Valutazione dei risultati

La valutazione dei risultati ottenuti si basa sull’analisi dell’efficacia dell’applicazio-
ne contemporanea di due sistemi di ottimizzazione: il GA che lavora fra generazioni
per creare individui sempre pitl prestanti, e il DRL che lavora a livello del singolo
individuo per raffinarne la strategia comportamentale e massimizzarne il tempo
di vita. Valutare quindi ciascun algoritmo in maniera indipendente permette di
fomulare un giudizio piu approfondito sull'impatto che entrambi hanno sul ren-
dimento complessivo del sistema, analisi che sarebbe impossibile osservando un
semplice dato unidimensionale di qualita per il modello combinato.

Infine si vuole valutare 'impatto che l'applicazione dei due algoritmi ha sul-
le prestazioni complessive del motore di gioco. In tal senso si pud considerare
predominante la componente di complessita del modello di DRL, assimilando al
contrario il costo computazionale del GA a quello richiesto dalle naturali dinami-
che di gioco e di rendering. Si rivela quindi sufficiente una valutazione assoluta

del sistema nel suo complesso senza paragoni di riferimento.

L’ambiente di valutazione. Per permettere di valutare separatamente il GA
e il modello di DRL é stato necessario modificare il progetto aggiungendo delle
opzioni per attivare o disattivare ciascun algoritmo in maniera indipendente. Per
rendere piu rapida la raccolta dati si € inoltre aggiunta la possibilita di avviare
il gioco senza interfaccia grafica ed eventualmente con pitt mondi in parallelo,

definendo all’avvio una dimensione fissa per la popolazione.
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Ottimizzazione FPS FE(T})) +4 Individui inefficaci

E(T)
Nessun algoritmo 29.73 110.39 1.22 171(81.43%)
Algoritmo Genetico 29.91 263.09 1.89 83(39.52%)
Deep Reinforcement Learning  9.23 107.05 1.52 89(42.38%)
Approccio combinato 9.60 176.29 2.37 18(8.57%)

Tabella 4.1: Tabella riassuntiva delle prestazioni del modello nelle configurazioni
studiate, attivando o disattivando i contributi di ottimizzazione del Deep Reinfor-
cement Learning e dell’Algoritmo Genetico. Si denota con FPS la media dei Frame
al Secondo—metrica di efficienza complessiva del sistema—con E(7}) il tempo di

vita atteso in caso di inattivita—metrica di valutazione dell’ottimizzazione dei pa-

rametri vitali—con % il rapporto fra il tempo di vita effettivo e il tempo di vita

atteso—metrica di valutazione dell’efficacia della strategia appresa—e sono indica-
ti come “inefficaci” quegli individui che hanno appreso una strategia che non gli ha
permesso di estendere il proprio tempo di vita oltre il 101% rispetto all’aspettativa
in caso di inattivita.

Per valutare 'efficacia del GA, esso viene paragonato a un algoritmo che asse-
gna a ogni agente un genoma casuale. L’obiettivo € quello di esplorare uniforme-
mente e in maniera esaustiva lo spazio dei genomi ammissibili per raccogliere un

dato di efficacia attesa il piu possibile rappresentativo di un individuo medio.

Per la valutazione dell’algoritmo di DRL si sfruttano invece agenti con com-
portamento completamente casuale, simulando di fatto una strategia e-greedy con
tasso di esplorazione fisso e uguale a 1. In questo modo si puo valutare 'impatto
che i soli passi decisionali di exploitation hanno sulla capacita di sopravvivenza
degli agenti. Ai fini della valutazione del modello di apprendimento, si sono fissate
la dimensione dell’Experience Replay Buffer a 1000 sia per la rete Attention che
per la rete Reason—cercando un equilibrio fra esigenze di memoria ed efficacia del
sistema implementato—e la dimensione dei batch a 32, anch’essa per entrambe le
DNNs di controllo.

Le simulazioni per tutte le configurazioni di attivazione degli algoritmi sono
state svolte su un singolo mondo, senza interfaccia utente e con una popolazione

base di 7 individui. L’esecuzione ¢ stata svolta su un laptop con CPU Intel Core

i3-1500G1, GPU integrata e 8GB di RAM.

La durata delle simulazioni non é stata fissata a priori, ma determinata in
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maniera adattiva per garantire la generazione di almeno 210 individui—ovvero 30

generazioni—su cui svolgere la valutazione.

4.1 Algoritmo genetico

Modalita di valutazione. La valutazione del GA richiede di quantificare la
capacita del modello evolutivo di convergere verso valori ottimali dei geni. Per
evitare possibili perturbazioni, in tutti i test relativi alla valutazione del solo GA il
contributo del DRL ¢ disattivato. Pertanto le ottimizzazioni studiate coinvolgono
solamente i geni regolatori dei parametri vitali degli agenti: il tasso di decadimento
della vita A, il tasso di aumento della fame Ay, il tasso di aumento della stanchezza

A e la velocita di movimento.

Metriche di valutazione. Una prima forma di valutazione qualitativa dell’ef-
ficacia del GA & l'osservazione dei grafici di andamento dei valori dei singoli geni
coinvolti nel processo di ottimizzazione. Si associa quindi a ciascun agente un ID
progressivo, che permette cosi di rappresentare in un grafico cartesiano ogni coppia
agente-valore del gene sottolineando eventuali tendenze evolutive.

Si prevede di non poter osservare tendenze evidenti in caso di mancata appli-
cazione del GA, dal momento che i genomi sono determinati in maniera casuale,
mentre al contrario si prevede che 'attivazione del processo evolutivo induca una
tendenza verso i valori ottimali per i geni coinvolti.

Una valutazione invece quantitativa della qualitd del GA—dal momento che
viene studiato solamente in relazione all’ottimizzazione dei geni che regolano i
parametri vitali degli agenti—si ottiene calcolando il tempo di vita atteso di ogni
agente. Tale valore, denotato con FE(T;), rappresenta il tempo di sopravvivenza
stimato per l'agente in caso di inattivita completa e dipende direttamente dal
genoma dello stesso. In particolare dipende dai geni A, e A; per il calcolo del
tempo minimo di raggiungimento dello stato di salute critico, e dal gene A; per il
calcolo del tempo necessario al decadimento completo della vita dell’agente.

Denotando quindi il valore iniziale della vita come [,,,, € i valori massimi di
sopportazione per fame e stanchezza come h,,,; € t,,., rispettivamente, si definisce

la seguente formula per il calcolo del tempo di vita atteso:
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. hmal‘ tma.’l: lmaw
E(T}) = min( N A )+ y (4.1)

Efficacia di base. La Figura rappresenta i grafici di andamento dei geni
regolatori delle funzioni vitali degli agenti in caso di mancata attivazione del GA.
Come previsto, gia da una prima analisi qualitativa risulta evidente che i valori
dei geni oscillano senza tendenze evidenti, dal momento che sono determinati in

maniera completamente casuale.

Diversamente, sembra essere osservabile una minore dispersione per i valori del
tempo di vita atteso. A fronte di un intervallo di ammissibilita teorico compreso fra
circa 58.33 secondi e 325 secondi—ricavato applicando I’Equazione ai valori
minimi e massimi ammissibili per i geni coinvolti—i valori effettivamente osservati
sono infatti contenuti fra un minimo di circa 60.10 secondi e un massimo di circa
247.96 secondi, con una media di circa 110.39 secondi.

Inoltre il 50% dei valori registrati per il tempo di vita atteso ¢ compreso nel-
I'intervallo [84.01, 132.53], centrato in 108.27 e ampio solamente un quarto rispetto
all’intervallo dei valori osservati. Nonostante sia centrato in un valore vicino alla
media complessiva dei valori osservati, I’ampiezza dell’intervallo lascia dedurre che
la distribuzione dei valori del tempo di vita atteso non sia uniforme. Cio accade
perché tale misura dipende da tre geni i cui valori sono generati casualmente in
maniera uniforme, e quindi per generare un valore di tempo di vita atteso prossi-
mo a uno degli estremi di ammissibilita & necessario che tutti i geni coinvolti siano
prossimi allo stesso estremo di ammissibilitd, mentre qualsiasi altra combinazio-
ne introduce delle compensazioni che riportano il valore derivato verso il centro
dell’intervallo di ammissibilita.

Infine si nota che il valore medio osservato per il tempo di vita atteso & di circa
110.39 secondi, mentre 'intervallo dei valori osservati é centrato in 154.03 secondi.
Tale condizionamento verso il basso deriva dalla definizione stessa del tempo di
vita atteso, che dipende dal tempo minimo di raggiungimento della soglia critica
per fame e stanchezza. Pertanto basta che uno solo fra i geni A\, e \; abbia
un valore elevato per abbattere il tempo di vita atteso, mentre entrambi devono

avere un valore contenuto per generare un individuo potenzialmente pit longevo,
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Ottimizzazione dei parametri vitali con nessun algoritmo
Tempo di vita atteso
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Figura 4.1: Grafici di valutazione dell’andamento dei geni regolatori dei parametri
vitali e del tempo di vita atteso lungo le generazioni in assenza del contributo
di ottimizzazione dell’Algoritmo Genetico. Sull’asse x sono rappresentati gli ID
degli agenti—rappresentando quindi le generazioni in ordine cronologico—a cui
viene fatto corrispondere sull’asse y il valore registrato dall’agente per la misura
osservata.
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aumentando quindi la probabilita di generare individui con genoma sfavorevole.

Efficacia dell’algoritmo. La Figura rappresenta 'andamento dei geni re-
golatori delle funzioni vitali degli agenti in caso di applicazione del solo GA. Os-
servando qualitativamente i grafici si possono notare, a meno di instabilita anche
abbastanza evidenti, delle tendenze generali: per il gene regolatore della velocita
di movimento sono prediletti valori medio-alti, mentre i geni Ay, A\; e \; tendono
a valori bassi creando di conseguenza una tendenza crescente nel tempo di vita

atteso.

Le instabilita osservate possono dipendere da diversi fattori. Il primo é sicura-
mente 'aggressivita della politica di mutazione implementata dal GA, che prevede
che circa 1'85% dei genomi prodotti sia soggetto a mutazioni di qualche natura. Se
da un lato cio favorisce I'esplorazione dello spazio dei genomi ammissibili, dall’al-
tro rende sicuramente piu instabile il processo di convergenza, dal momento che le

mutazioni possono colpire anche geni gia ottimizzati o prossimi al valore ottimale.

A contribuire ulteriormente all’instabilita del processo di convergenza ¢ la defi-
nizione della funzione fitness, che premia gli individui a seconda del loro tempo di
vita effettivo, indipendentemente dal tempo di vita atteso. Se da un lato, in assen-
za del contributo del DRL, gli agenti con tempo di vita atteso maggiore hanno pit
possibilita di esplorare casualmente ’ambiente e di conseguenza hanno maggiore
probabilita di attuare una strategia che gli permetta di estendere ulteriormente il
proprio tempo di vita, possono esserci degli individui particolarmente longevi anche
a discapito di un genoma sfavorevole. In tal senso le instabilita nella convergenza
dei valori del tempo di vita atteso sono giustificate dal fatto che 1'ottimizzazione
dei geni regolatori dei parametri vitali sia una conseguenza dell’applicazione del

solo GA senza contributo del DRL piuttosto che il suo obiettivo primario.

Per quantificare 'efficacia del processo evolutivo & perd necessario analizzare i
valori osservati per il tempo di vita atteso paragonandoli a quelli raccolti nell’analisi
dell’efficacia di base. Il valore minimo osservato € di circa 60.39 secondi—quindi
sostanzialmente invariato rispetto al dato senza ottimizzazione—mentre il valore
massimo osservato cresce fino a 325 secondi. L’intervallo dei tempi di vita attesi

osservati ¢ quindi centrato attorno a un valore di circa 192.70 secondi, a fronte
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Ottimizzazione dei parametri vitali con GA
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Figura 4.2: Grafici di valutazione dell’andamento dei geni regolatori dei parametri
vitali e del tempo di vita atteso lungo le generazioni applicando il contributo
di ottimizzazione dell’Algoritmo Genetico. Sull’asse x sono rappresentati gli ID
degli agenti—rappresentando quindi le generazioni in ordine cronologico—a cui
viene fatto corrispondere sull’asse y il valore registrato dall’agente per la misura
osservata.
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di una media pari a circa 263.09 secondi e quindi di circa 2.38 volte pitt grande
rispetto a quella osservata nello scenario non ottimizzato.

Il primo risultato del GA, che emerge in maniera immediata osservando il valore
medio rispetto al centro dell’intervallo dei valori osservati, ¢ quindi I’annullamento
del condizionamento verso il basso del tempo di vita atteso osservato in preceden-
za. La selezione educata dei genomi da trasmettere—contrapposta all’estrazione
casuale dei valori dei geni—permette infatti di selezionare individui con configu-
razioni genetiche tali da annullare I'effetto negativo che la definizione stessa del
tempo di vita atteso ha sul valore osservato, producendo anzi una forma di condi-
zionamento verso l'alto per cui la media dei valori osservati ¢ maggiore rispetto al
centro dell’intervallo di distribuzione degli stessi.

Analizzando invece il valore massimo osservato si nota che I'ottimizzazione evo-
lutiva ha raggiunto I’estremo superiore di ammissibilita per il tempo di vita atteso,
mai raggiunto nell’osservazione non ottimizzata. In particolare il primo individuo
con genoma ottimale ¢ stato ’agente 134, appartenente alla ventesima generazione,
e da quel momento sono stati generati un totale di 52 individui con lo stesso tempo
di vita atteso. Cio significa che, indipendentemente dai genomi della popolazio-
ne iniziale, il processo evolutivo guidato dal GA ¢é stato in grado di selezionare,
trasmettere e mutare i genomi in maniera efficace fino al raggiungimento, nelle
fasi avanzate dell’evoluzione, della configurazione genetica ottimale. Il fatto che
poi 52 degli ultimi 77 individui generati—quindi circa il 67.53% delle ultime 11
generazioni—abbia mantenuto il genoma ottimale nonostante 1’aggressivita della
politica di mutazione ¢é ulteriore indice dell’efficacia del GA per quanto riguarda il
mantenimento delle caratteristiche dominanti.

Per valutare I’andamento del processo evolutivo, si possono poi paragonare le
medie del tempo di vita atteso per la prima e 'ultima generazione osservate. La
media per la prima generazione ¢ di circa 107.82 secondi, paragonabile a quella
complessivamente ottenuta nell’osservazione non ottimizzata, e deriva dalla gene-
razione casuale dei genomi per la popolazione di base. Diversamente la media del
tempo di vita atteso per la trentesima generazione ¢ di circa 244.40 secondi, pros-
sima al valore massimo osservato in assenza di ottimizzazione. Cio significa che il
processo evolutivo é riuscito a superare ampiamente i risultati del modello casua-

le, dimostrando che 'ottimizzazione dei genomi lungo le generazioni é garantita
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indipendentemente dalle caratteristiche della popolazione iniziale.

Criticita dell’algoritmo. Seppure il GA si sia dimostrato nel complesso effi-
cace, emergono alcune evidenti criticita prevalentemente legate alla stabilita dello
stesso. In primo luogo si riprende I'ultima analisi svolta sull’andamento dei valori
medi del tempo di vita atteso fra generazioni e si nota che il valore osservato per
la trentesima generazione (244.40 secondi), seppur indicativo di un processo evo-
lutivo generalmente efficace, & lievemente inferiore alla media complessiva (263.09
secondi). Tale risultato potrebbe essere indice di inefficacia del processo evoluti-
vo, dal momento che la regressione delle ultime generazioni potrebbe indicare che
I’algoritmo non ¢ in grado di preservare i risultati di ottimizzazione raggiunti. Un
ulteriore indicatore in tal senso ¢ che I'individuo peggiore per tempo di vita atteso

¢ stato l'agente 116, appartenente alla diciassettesima generazione.

La causa di tali problemi risiede probabilmente nella politica di mutazione del
GA, che colpisce la gran parte dei genomi. In tal senso il processo di ottimiz-
zazione continua a cui € sottoposta la popolazione—il processo evolutivo guidato
dal GA non é infatti mai interrotto, indipendentemente dalla qualita dei genomi
ottenuti—e naturalmente soggetto a periodiche flessioni di qualita dovute alla con-
tinua esplorazione casuale dello spazio dei genomi ammissibili che agisce parallela-
mente alla selezione degli individui pit prestanti. La valutazione dell’efficacia del
GA deve quindi prendere atto delle naturali oscillazioni della qualita e soffermarsi
sulla valutazione della capacita del GA stesso di superare i passi di esplorazione
dannosi per la qualita della popolazione. In particolare si sottolinea che il valore
minimo osservato per il tempo di vita atteso non € mai stato replicato dopo I’agente
116—indice del fatto che il genoma sfavorevole € stato scartato appena dopo la sua
esplorazione—e che il valore medio per il tempo di vita atteso delle 5 generazioni
prima dell’ultima ¢ di circa 303.61 secondi—quindi ampiamente superiore al va-
lore medio complessivo, confermando la tendenza positiva del processo evolutivo
indipendentemente dalla valutazione di qualita dei genomi della sola trentesima

generazione.
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4.2 Algoritmo di apprendimento

Modalita di valutazione. La valutazione dell’algoritmo di apprendimento ri-
chiede di quantificare I'impatto che I'attivazione del modello di DRL ha sulla ca-
pacita degli agenti di sopravvivere all'interno dell’ambiente di gioco. Per valutare
il solo apporto del modello di apprendimento le osservazioni vengono svolte disat-
tivando il contributo di ottimizzazione del GA, e quindi determinando in maniera
casuale il genoma di ciascun agente.

Per questo motivo 'efficacia ottenuta in questa fase di analisi ¢ da intender-
si come una valutazione media della qualita dell’algoritmo di DRL all’interno
degli intervalli di ammissibilita dei geni regolatori dei parametri dell’apprendi-
mento, piuttosto che come una misura assoluta della qualita ideale dell’algorit-
mo. Per ottenere una misura di questo tipo sarebbe infatti necessario svolgere
una ricerca—quantomeno approssimativa—dei parametri dell’apprendimento per

fissarne il valore.

Metriche di valutazione. L’obiettivo principale del modello di apprendimento
é quello di permettere a ogni singolo agente di sviluppare una strategia di so-
pravvivenza il piu possibile efficace all’interno del mondo di gioco. La misura piu
direttamente influenzata dalla strategia di comportamento degli agenti é quindi il
tempo di vita effettivo, che risulta essere direttamente proporzionale alla qualita
della strategia di comportamento appresa.

La metrica del tempo di vita effettivo, usata dalla funzione fitness per valutare
la qualita assoluta del singolo individuo, & perd poco adatta alla valutazione del
solo modello di DRL. Cio perché il valore del tempo di vita effettivo dipende
strettamente dal valore del tempo di vita atteso, che a sua volta dipende dai
geni regolatori delle funzioni vitali dell’agente. Se dal punto di vista evolutivo
tenere conto, seppur indirettamente, del tempo di vita atteso dell’individuo puo
essere funzionale alla progressione della popolazione, la valutazione dell’algoritmo
di apprendimento richiede di definire una metrica differente in grado di superare
tale dipendenza.

Si introduce quindi il rapporto vita-aspettativa, che riassume in un valore adi-

mensionale la durata effettiva della vita dell’agente rispetto al suo tempo di vita
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B T ok
Media 110.39  137.88 1.22
Minimo 60.10 60.12 1.00
Primo quartile  84.01 85.39 1.00
Mediana 98.76  107.23 1.00
Terzo quartile 132.53  147.04 1.00
Massimo 24796 1089.89 6.39

Tabella 4.2: Riassunto dei valori medio, minimo e dei 4 quartili per il tempo
di vita atteso, il tempo di vita effettivo e il rapporto vita-aspettativa ottenuti
dall’analisi delle osservazioni svolte senza i contributi né dell’Algoritmo Genetico
né del modello di Deep Reinforcement Learning.

atteso come definito dall’Equazione . In questo modo, paragonando il tempo
di vita effettivo al tempo di vita atteso in caso di inattivita, si pud quantificare di-
rettamente 'impatto che la strategia comportamentale applicata ha sulle capacita
di sopravvivenza dell’agente all’interno del mondo di gioco. Si definisce quindi il

rappporto vita-aspettativa come segue:

BT (4.2)

Efficacia di base. La Tabella contiene una rappresentazione schematica
della media e della distribuzione dei valori osservati per il tempo di vita atteso,
il tempo di vita effettivo e il rapporto vita-aspettativa nel caso sia disattivato il
contributo di ottimizzazione del DRL.

Il primo dato da analizzare per quantificare la qualita delle strategie messe in
atto dagli agenti ¢ il valore medio per il rapporto vita-aspettativa. Esso, pur non
essendo di per sé esaustivo, rappresenta infatti una valutazione media dell’efficacia
delle strategie sperimentate da tutti gli agenti, e si prevede che rifletta pitt o meno
direttamente la qualita dell’algoritmo di controllo proposto. Il valore di efficacia
medio osservato per il modello di comportamento casuale ¢ di circa 1.22.

L’apparente efficacia della strategia di controllo casuale viene perd immedia-
tamente ridimensionata se si analizza la distribuzione dei valori osservati per il

rapporto vita-aspettativa. Dei 210 agenti osservati infatti solo 39—corrispondenti
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BT T g
Media 107.05 169.37 1.52
Minimo 59.34  59.45 1.00
Primo quartile 77.42 85.68 1.00
Mediana 94.57 119.56 1.09
Terzo quartile 126.79 199.24 1.75
Massimo 238.90 916.61 5.33

Tabella 4.3: Riassunto dei valori medio, minimo e dei 4 quartili per il tempo di vita
atteso, il tempo di vita effettivo e il rapporto vita-aspettativa ottenuti dall’analisi
delle osservazioni svolte con il solo contributo del modello di Deep Reinforcement
Learning.

quindi a circa il 18.57% del totale—hanno registrato un rapporto vita-aspettativa
superiore a 1.01. Cio significa che mediamente meno di un agente su 5 € riuscito
a estendere il proprio tempo di vita anche solo dell’1% rispetto alle previsioni in
caso di completa inattivita.

Dall’altra parte la media del rapporto vita-aspettativa € pesantemente impat-
tata dalla presenza di outliers pronunciati come il valore massimo, pari a circa 6.39.
La presenza di individui cosi longevi ¢ da attribuire a diversi fattori, in cui sicu-
ramente giocano un ruolo fondamentale la semplicita del mondo e della dinamica
di gioco. La struttura della mappa, bidimensionale e senza ostacoli intermedi a
meno di collisioni con altri agenti, la rende facilmente esplorabile specialmente agli
individui geneticamente piu veloci, rendendo relativamente probabile il raggiungi-
mento delle aree di ristoro anche ad agenti guidati da un modello di comportamento
casuale. Allo stesso modo l'interazione permette all’agente, quando si trova all’in-
terno di un punto di ristoro, di mitigare i propri bisogni, e la limitatezza del set
di azioni possibili sommata alla facilitd di esplorazione del mondo di gioco ren-
de relativamente probabile 'attuazione di una strategia complessivamente efficace

anche da parte di un modello di controllo casuale.

Efficacia dell’algoritmo. La Tabella contiene invece una rappresentazione
schematica della media e della distribuzione dei valori osservati per il tempo di
vita atteso, il tempo di vita effettivo e il rapporto vita-aspettativa in caso di

applicazione del solo modello di DRL.
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Il primo dato analizzato é il valore medio per il rapporto vita-aspettativa, che
in caso di applicazione del DRL misura circa 1.52. Cio significa che il tempo di
vita effettivo viene esteso mediamente del 52% rispetto al tempo di vita atteso,
incremento pitt che doppio rispetto a quello osservato con il modello di comporta-
mento casuale, che estendeva mediamente il tempo di vita di ciascun agente solo
del 22%.

La distribuzione dei dati per il rapporto vita-aspettativa osservata applicando
il DRL conferma la migliore efficacia del modello di apprendimento rispetto al
modello di controllo casuale. Il numero di agenti in grado di estendere la durata
della propria vita per pit dell’l1% cresce infatti fino a 121, pia che triplicando il
risultato precedente.

Tale miglioramento era deducibile anche dall’osservazione dei quartili della di-
stribuzione per il valore del rapporto vita-aspettativa: la mediana—uguale a circa
1.09—indica gia un netto miglioramento rispetto ai risultati ottenuti dal modello
casuale, dal momento che indica come la meta degli agenti sia riuscita ad estendere
il proprio tempo di vita di almeno il 9% rispetto al tempo di vita atteso. Il terzo
quartile poi é quello in cui emerge la differenza pitt marcata: mentre nel caso del
modello di controllo casuale vale 1—indicando quindi che il 75% degli agenti non é&
stato in grado di estendere il proprio tempo di vita—il contributo di ottimizzazione
del DRL porta lo stesso valore a crescere fino a 1.75, escludendo quindi di fatto

che la media ottenuta sia falsata dalla presenza di outliers.

Criticita dell’algoritmo. Sebbene i risultati ottenuti dal modello di DRL siano
nettamente migliori di quelli ottenuti dal modello casuale, la quantita di agenti
che non sono stati in grado di apprendere una strategia in alcun modo efficace—in
totale 89 individui per cui il rapporto vita-aspettativa € minore di 1.01—solleva
inevitabilmente delle perplessita relativamente all’effettiva efficacia del modello di
apprendimento.

In questo senso ¢ pero fondamentale sottolineare che le valutazioni sono state
svolte in assenza del contributo di ottimizzazione del GA, e che l'efficacia dell’al-
goritmo di DRL proposto dipende direttamente dalla capacita che I’agente ha di
esplorare I’ambiente in cui si trova. Pertanto é credibile pensare che l'estrazione

casuale dei valori dei geni possa aver reso meno efficace il processo di apprendi-
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mento per quegli agenti a cui siano stati assegnati genomi sfavorevoli. Per trovare
riscontro di questa possibilita si analizza il valore che piu di tutti influenza la ca-
pacita dell’agente di esplorare lo spazio circostante, ovvero il tempo di vita atteso.
Un agente con un lungo tempo di vita atteso ha infatti la possibilita di sperimen-
tare azioni per un lasso di tempo pit lungo prima di incorrere in condizioni critiche
di salute ed eventualmente poi nella morte, rendendo inevitabilmente piu agevole
I’esplorazione dell’ambiente.

Analizzando gli 89 agenti che non sono riusciti ad apprendere una strategia
efficace, il valore medio per il tempo di vita atteso vale circa 98.79 secondi, am-
piamente sotto la media del campione osservato. Al contrario il valore medio per
il tempo di vita atteso dei 5 agenti pitu performanti—che registrano un rappor-
to vita-aspettativa medio di circa 4.65—misura circa 149.76 secondi, superando
ancora pitt abbondantemente il valore medio complessivo.

Tale analisi sembra confermare che ci possa essere una correlazione, seppur
indiretta, fra i valori dei geni regolatori dei parametri vitali e la qualita della
strategia appresa, e lascia intendere che la valutazione del modello di DRL con
genomi casuali sia condizionata da una forte instabilita dei valori dei parametri—
sia di apprendimento che di regolazione delle interazioni ambientali—che porta a

un degrado dell’efficacia generale.

4.3 Approccio combinato

Modalita di valutazione. La valutazione dei risultati ottenuti applicando con-
temporaneamente le ottimizzazioni del GA e del DRL ha come obiettivo quello di
quantificare l'efficacia complessiva del modello proposto. Per farlo perd si pren-
dono, come dati di efficacia di base con cui paragonare i valori osservati, i risul-
tati ottenuti dall’applicazione dei due algoritmi studiati in maniera indipendente
piuttosto che i risultati ottenuti dal modello completamente casuale.

Tale scelta é stata fatta con I'obiettivo di formulare giudizi pit approfonditi e
significativi sul funzionamento del modello integrato, individuando da una parte
possibili problemi introdotti dall’integrazione dei due metodi di ottimizzazione,

e sottolineando dall’altra come I’applicazione contemporanea dei due algoritmi
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permetta di superare i principali problemi emersi negli scenari di applicazione

indipendente precedentemente analizzati.

Metriche di valutazione. La valutazione ha come obiettivo principale la mi-
sura dell’impatto che 'ottimizzazione tramite GA ha sulle prestazioni del model-
lo di DRL. La metrica principale usata per la valutazione del modello ¢ quindi,
riprendendo la definizione presentata nella Sezione 4.2 il rapporto vita-aspettativa.

Parallelamente si sfruttano, per facilitare la valutazione degli effetti del GA
sul sistema, dei grafici di andamento di alcuni valori fondamentali riprendendo
I’approccio usato nella Sezione Al contrario pero dell’analisi precedente non é
possibile sfruttare il tempo di vita atteso come metrica quantitativa della qualita
del GA, dal momento che il processo evolutivo coinvolge l'intero genoma e non

soltanto la regolazione dei parametri vitali.

Efficacia di base. La valutazione dell’efficacia di base deve quindi tenere conto
di due componenti distinte. La prima, piti complessa da rapportare alla valutazione
congiunta, consiste nei risultati ottenuti dall’applicazione indipendente del GA.
La seconda, piu direttamente rapportabile alle prestazioni del modello completo,
é quella che invece deriva dall’osservazione delle prestazioni del solo modello di
DRL.

La Figura riprende la stessa visualizzazione dell’andamento del tempo di
vita atteso della Figura|4.2] e la affianca alla visualizzazione dell’andamento lungo
le generazioni dei valori del tempo di vita effettivo e del rapporto vita-aspettativa.
Mentre € osservabile una tendenza verso valori elevati per il tempo di vita atteso,
gia motivata nella Sezione gli altri due grafici di andamento non presentano
tendenze evidenti. Cio accade perché gli agenti sono controllati da un modello di
comportamento casuale, che non é quindi in grado di sfruttare le condizioni favo-
revoli offerte dall’ottimizzazione del genoma per aumentare le proprie probabilita
di sopravvivenza.

La Tabella presenta invece una sintesi dei dati analoga a quella proposta
nella Sezione [4.2] stavolta applicata ai dati di efficacia delle strategie comporta-
mentali raccolti applicando la sola ottimizzazione tramite GA. E particolarmente

interessante in questo senso notare che il valore medio osservato per il rapporto
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Andamento degli indicatori vitali con GA
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Figura 4.3: Grafici di valutazione dell’andamento del tempo di vita atteso, del
tempo di vita effettivo e del rapporto vita-aspettativa lungo le generazioni ap-
plicando il solo contributo di ottimizzazione dell’Algoritmo Genetico. Sull’asse
x sono rappresentati gli ID degli agenti—rappresentando quindi le generazioni in
ordine cronologico—a cui viene fatto corrispondere sull’asse y il valore registrato
dall’agente per la misura osservata.
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BT T g
Media 263.09  510.79 1.89
Minimo 60.39 60.43 1.00
Primo quartile 227.74  282.86 1.00
Mediana 282.84  396.07 1.41
Terzo quartile 289.39  664.52 2.30
Massimo 325.00 1814.45 6.42

Tabella 4.4: Riassunto dei valori medio, minimo e dei 4 quartili per il tempo di
vita atteso, il tempo di vita effettivo e il rapporto vita-aspettativa ottenuti dal-
I’analisi delle osservazioni svolte con il contributo di ottimizzazione dell’ Algoritmo
Genetico.

vita-aspettativa ¢ maggiore rispetto a quello osservato in caso di applicazione del
solo DRL, e anche i dati di distribuzione sembrano confermare la maggiore efficacia
del modello.

Analizzando i quartili dei valori di efficacia del modello ottimizzato tramite
GA e confrontandoli con quelli riportati nella Tabella [£.3] ottenuti dal modello di
DRL si vede infatti come in ogni fascia della distribuzione il modello basato su GA
registri una prestazione migliore rispetto a quello basato su DRL. La differenza
pitt marcata fra i dati raccolti dai due modelli risiede perd nei valori del tempo
di vita atteso: gia dal primo quartile il modello ottimizzato tramite GA riporta
infatti dei dati di tempo di vita atteso prossimi al valore massimo osservato dal
modello basato su DRL.

Cio sembrerebbe rafforzare le deduzioni gia introdotte nella Sezione [4.2] se-
condo cui all’aumentare del tempo di vita atteso degli individui aumenta anche il
loro rendimento comportamentale indipendentemente dal modello di controllo at-
tivato. Estendere infatti il tempo di vita atteso significa permettere all’agente una
maggiore esplorazione dell’ambiente che lo porta, in caso di ottimizzazione tramite
DRL, a raffinare le strategie apprese oppure, in caso di applicazione della strateiga
casuale, a incontrare sequenze di azioni ottimali, specialmente in un mondo con
una struttura cosi semplice.

Come valore di efficacia del sistema basato su DRL si riprende invece soltanto
il contenuto della Tabella [£.3] Sarebbe infatti poco signficativo rappresentare

grafici di tendenza dei valori osservati indipendentemente dalla metrica analizzata,
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E(T) T 5

E(T))
Media 176.29  442.94 2.37
Minimo 64.92 66.20 1.00
Primo quartile 88.28  173.78 1.53
Mediana 225.00 382.36 2.27
Terzo quartile 238.39  659.01 3.05
Massimo 325.00 1402.64 6.23

Tabella 4.5: Riassunto dei valori medio, minimo e dei 4 quartili per il tempo di vita
atteso, il tempo di vita effettivo e il rapporto vita-aspettativa ottenuti dall’analisi
delle osservazioni svolte con il contributo sia del Deep Reinforcement Learning che
dell’Algoritmo Genetico.

dal momento che il contributo di ottimizzazione del GA ¢ disattivato e quindi i

parametri di ogni agente sono determinati in modo casuale.

Efficacia del modello di apprendimento. La Tabella riassume i dati di
efficacia delle strategie comportamentali prodotte dal modello di DRL con otti-
mizzazione evolutiva dei parametri tramite GA. Per quantificare la qualita del
modello combinato di apprendimento si osservano principalmente il valore medio
e la distribuzione per il dato del rapporto vita-aspettativa.

Il valore medio per il rapporto vita-aspettativa, pari a circa 2.37, indica che gli
agenti guidati da DRL ottimizzato tramite GA sono stati mediamente in grado di
estendere il proprio tempo di vita del 137% rispetto alle previsioni di aspettativa
ottenute studiando il genoma. Tale risultato indica un livello di efficacia di circa
2.63 volte superiore rispetto a quello ottenuto dal solo modello di DRL, grazie a
cui gli agenti sono stati in grado di estendere mediamente il proprio tempo di vita
solo del 52%.

Analizzando poi i dati di distribuzione per il rapporto vita-aspettativa, ’effica-
cia del modello combinato risulta ancora piti evidente. Se nella Sezione [4.2[si era in-
fatti citata come possibile criticita dell’algoritmo la presenza di 89 agenti—che rap-
presentano circa il 42.38% della popolazione osservata di 210 individui—incapaci
di apprendere una strategia in grado di estendere il tempo di vita effettivo oltre al
101% rispetto al tempo di vita atteso, tale problema viene quasi completamente

superato dal modello combinato di applicazione del DRL e del GA, grazie a cui
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solo 18 agenti—circa 1'8.57% della popolazione osservata di 210 individui—hanno
registrato un valore inferiore a 1.01 per il rapporto vita-aspettativa.
L’osservazione dei quartili della distribuzione per il rapporto vita-aspettativa
conferma poi ulteriormente la qualita del modello combinato rispetto al solo mo-
dello di DRL. Il primo quartile ottenuto applicando ’approccio combinato di
ottimizzazione ¢ infatti pari a circa 1.53, valore gia superiore alla media complessi-
va ottenuta dal solo modello di DRL. Cio significa che il 75% degli agenti guidati
da DRL ottimizzato tramite GA ha ottenuto un valore di efficacia superiore alla

media degli agenti guidati da DRL con genoma casuale.

Efficacia dell’ottimizzazione dei parametri vitali. Tali risultati permettono
di affermare che 'ottimizzazione guidata dal GA ha un impatto positivo sull’effi-
cacia del modello di apprendimento. Si vogliono quindi analizzare le tendenze di
alcuni valori fondamentali per giustificare il risultato osservato. In primo luogo si
studiano i valori ottenuti per il tempo di vita atteso al fine di analizzare I'effetto
che l'ottimizzazione dei parametri vitali degli agenti ha sul loro processo di appren-
dimento. A fronte di un valore medio per il tempo di vita atteso di circa 176.29
secondi—maggiore del terzo quartile di distribuzione osservato dal modello basato
solo su DRL, pari a circa 126.79 secondi—e basandosi sulle osservazioni gia svolte
nella Sezione [4.2] ¢ infatti naturale indagare una possibile forma di correlazione
fra il tempo di vita atteso e l'efficacia della strategia appresa.

Nella Figura vengono quindi presentati i valori del tempo di vita atteso, del
tempo di vita effettivo e del rapporto vita-aspettativa per ogni agente della popo-
lazione studiata. Osservando ’andamento della misura del tempo di vita atteso
si nota una tendenza abbastanza chiara verso valori medio-alti—fino a raggiunge-
re un massimo di 325, pari all’estremo superiore di ammissibilita—nonostante la
scarsa qualita dei genomi della popolazione iniziale, sottolineando ulteriormente
la robustezza del GA proposto. E interessante perd notare come il valore ottimale
del tempo di vita, dopo essere stato raggiunto, venga in realta rapidamente abban-
donato per convergere nuovamente verso valori lievemente inferiori. Osservando
pero il grafico di tendenza del rapporto vita-aspettativa si nota, in corrispondenza
dell’aumento del tempo di vita atteso fino all’estremo superiore, una flessione del

rendimento del modello di apprendimento. E quindi verosimile concludere che il
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Andamento degli indicatori vitali con GA e DRL
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Figura 4.4: Grafici di valutazione dell’andamento del tempo di vita atteso, del tem-
po di vita effettivo e del rapporto vita-aspettativa lungo le generazioni applicando
i contributi di ottimizzazione sia del Deep Reinforcement Learning che dell’ Algo-
ritmo Genetico. Sull’asse x sono rappresentati gli ID degli agenti—rappresentando
quindi le generazioni in ordine cronologico—a cui viene fatto corrispondere sull’as-
se y il valore registrato dall’agente per la misura osservata.
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valore ottimale dei geni regolatori dei parametri vitali sia in realta stato scartato
per prediligere genomi pit favorevoli al processo di apprendimento, dimostrando
come i due processi di ottimizzazione si possano influenzare reciprocamente.

Studiando invece ’'andamento del rapporto vita-aspettativa, metrica di valuta-
zione del processo di apprendimento, non si notano tendenze evidenti. Dall’altra
parte pero si nota una correlazione con i valori del tempo di vita atteso. Attorno
alla dodicesima generazione—composta dagli agenti numerati fra il 78 e 1’'84—si
nota infatti un repentino aumento del tempo di vita atteso, che da valori attorno
al 100 passa a valori attorno al 250. In corrispondenza di questo aumento, pro-
babilmente causato da una mutazione favorevole, si osserva un cambiamento nella
distribuzione dei valori del rapporto vita-aspettativa: i picchi negativi diminuisco-
no per frequenza, mentre al contrario i picchi positivi crescono sia per frequenza che
per valore. Si analizzano quindi i valori del rapporto vita-aspettativa e del tempo
di vita atteso delle prime 11 generazioni e successivamente delle generazioni dalla
tredicesima in poi con 'obiettivo di verificare la correlazione.

Le prime 11 generazioni, composte da 77 individui, registrano un tempo di
vita atteso medio di circa 83.92 secondi, di poco inferiore alla meta del valore
medio complessivo. Considerando poi il rapporto vita-aspettativa, si osservano
un massimo di circa 4.06 e un valore medio di circa 1.91, abbondantemente al di
sotto della media dell’intero campione—ma comunque meglio rispetto alla media
complessiva ottenuta applicando il solo modello di DRL, presumibilmente a causa
dell’ottimizzazione dei parametri di apprendimento svolta dal GA. Fra le prime 11
generazioni si osservano inoltre, riprendendo le valutazioni svolte in precedenza,
12 individui con rapporto vita-aspettativa minore di 1.01, corrispondenti a circa il
15.58% della popolazione osservata.

Le generazioni che vanno dalla tredicesima alla trentesima, composte da 126
individui, registrano invece un tempo di vita atteso medio di circa 236.50 secondi,
pari a circa 1.34 volte il valore medio complessivo. Considerando poi anche in
questo caso il rapporto vita-aspettativa, si osservano un massimo—corrispondente
al massimo complessivo per il campione—di circa 6.23 e un valore medio di cir-
ca 2.66. Si osservano in queste generazioni invece soltanto 4 agenti con rappor-
to vita-aspettativa minore di 1.01—pari quindi a circa il 3.17% della popolazione

osservata—e dall’altra parte 15 agenti—corrispondenti a circa 1'11.90% della popo-
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lazione studiata—con rapporto vita-aspettativa maggiore di 4.06, valore massimo
osservato nelle prime 11 generazioni. I dati confermano quindi la correlazione fra il
tempo di vita atteso e il rapporto vita-aspettativa, sottolineando come 1'ottimizza-
zione tramite GA dei geni regolatori dei parametri vitali sia in grado di aumentare
Iefficacia del modello di apprendimento pur non influenzando direttamente i suoi

parametri, ma agendo piuttosto sulle modalita di interazione fra agente e ambiente.

Efficacia dell’ottimizzazione dei parametri di apprendimento. La Figu-
ra contiene i grafici di andamento dei principali geni regolatori dei parametri
della rete Attention, e la Figura contiene le rappresentazioni corrispondenti per
la rete Reason di controllo delle azioni degli agenti. Gia dalla sola osservazione
qualitativa dei grafici si notano forti instabilita che impediscono di individuare
tendenze evidenti. Cio puo essere dovuto alla formulazione proposta per il GA,
caratterizzato da una politica di mutazione particolarmente aggressiva, e dal fatto
che l'ottimizzazione agisce parallelamente anche sui geni regolatori dei parametri
vitali degli agenti. Evolvere primariamente i geni regolatori dei parametri vitali
degli individui significa infatti sostanzialmente estenderne il tempo di vita, metri-
ca predominante per la valutazione del valore di fitness. Tale effetto é rafforzato
poi dalla correlazione osservata fra tempo di vita atteso ed efficacia del processo
di apprendimento, che rende quindi ulteriormente conveniente ’ottimizzazione dei
geni regolatori dei parametri vitali.

A contribuire ulteriormente all’instabilita del processo di ottimizzazione dei
parametri dell’apprendimento pud essere anche la definizione degli intervalli di
ammissibilita degli stessi. Si sono infatti proposti intervalli relativamente ristretti
e centrati attorno a valori reputati ottimali in altri studi basati su modelli di DRL
analoghi. Tale approccio, che da un lato aumenta certamente ’efficacia comples-
siva del sistema, potrebbe impedire perd una convergenza marcata nel caso in cui
tutte—o quasi—Ie configurazioni di valori ammissibili per i parametri dell’appren-
dimento avessero prestazioni di fatto equivalenti. In tal caso infatti, indipendente-
mente dai valori dei geni regolatori dei parametri di apprendimento, le prestazioni
degli agenti resterebbero sostanzialmente invariate e I'unico contributo di ottimiz-
zazione efficace—a maggior ragione alla luce della correlazione fra tempo di vita

atteso ed efficacia dell’apprendimento sottolineata in precedenza—diventerebbe
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Figura 4.5: Grafici di tendenza per i geni regolatori del discount factor v, del lear-
ning rate «a, del tasso di esplorazione iniziale €, del tasso di esplorazione minimo
Emin, € dei periodi di aggiornamento 7 della rete principale e 7/ della rete Target
ottimizzati tramite Algoritmo Genetico per il lobo Attention. Sull’asse x sono
rappresentati gli ID degli agenti—rappresentando quindi le generazioni in ordine
cronologico—a cui viene fatto corrispondere sull’asse y il valore registrato dall’a-
gente per la misura osservata.
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Figura 4.6: Grafici di tendenza per i geni regolatori del discount factor ~, del lear-
ning rate «, del tasso di esplorazione iniziale €, del tasso di esplorazione minimo
Emin, € dei periodi di aggiornamento 7 della rete principale e 7 della rete Tar-
get ottimizzati tramite Algoritmo Genetico per il lobo Reason. Sull’asse x sono
rappresentati gli ID degli agenti—rappresentando quindi le generazioni in ordine
cronologico—a cui viene fatto corrispondere sull’asse y il valore registrato dall’a-
gente per la misura osservata.
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quello applicato ai geni regolatori dei parametri vitali.

4.4 Prestazioni e giocabilita

Modalita di valutazione. L’obiettivo primario della valutazione delle presta-
zioni del sistema ¢ analizzare il funzionamento del motore di gioco per valutar-
ne la fruibilita da parte degli utenti. E quindi necessario replicare, ai fini della
valutazione, le stesse condizioni di esecuzione previste per I'utente finale.

I dati sono stati quindi raccolti su un solo mondo attivando i contributi di
ottimizzazione sia del DRL che del GA. La dimensione di base della popolazione,
per questioni di consistenza con le simulazioni precedenti, € stata fissata anche in
questo caso a 7 individui. Le differenze principali sono I'attivazione dell’interfaccia
grafica—precedentemente disattivata per questioni appunto di efficienza, in questo
caso deve essere considerata perché parte fondamentale della fruizione del gioco—
e la durata, fissata in questo caso a un’ora senza vincoli sulla dimensione del
campione di popolazione osservato. L’esecuzione é stata svolta anche in questo
caso su un laptop equipaggiato con CPU Intel Core i3-1500G1, GPU integrata e
8GB di RAM.

Metriche di valutazione. La metrica scelta per quantificare la prestazione del
sistema ¢ il framerate, ovvero il numero di aggiornamenti del mondo di gioco
presentati all’'utente ogni secondo. Si & scelto di misurare l'efficienza con tale
metrica perché comunemente usata per misurare le prestazioni delle macchine in
ambienti di gioco, rendendo quindi facile la valutazione della giocabilita del sistema
proposto confrontando il framerate ottenuto con quello osservato in altri giochi.
In fase di valutazione delle prestazioni del sistema si deve considerare che il
framerate, che in senso stretto rappresenterebbe il numero di schermate (o frame)
mostrate all’'utente indipendentemente dai passi di aggiornamento del motore di
gioco, viene invece nella valutazione qui proposta inteso come il numero di ag-
giornamenti del mondo di gioco effettuati ogni secondo, che nell’implementazione
proposta corrisponde al numero di schermate mostrate all’'utente. Si sottolinea

inoltre che il ritmo di aggiornamento del motore di gioco € limitato a 30 Frame al

Secondo (FPS).
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Framerate
Media 4.18
Minimo 0.49
Primo quartile 2.01
Mediana 2.58
Terzo quartile 4.29
Massimo 14.93

Tabella 4.6: Media, minimo e quartili della distribuzione dei valori di framerate
osservati attivando il contributo del Deep Reinforcement Learning ottimizzato tra-
mite Algoritmo Genetico.

Il sistema di valutazione prevede infine di calcolare un valore di framerate atteso
ad ogni aggiornamento del mondo, basandosi sul reciproco del tempo richiesto per

il singolo passo di aggiornamento.

Prestazioni complessive. La Tabella [4.6| contiene una rappresentazione sin-
tetica della distribuzione dei valori di framerate osservati in fase di analisi delle
prestazioni. Il primo dato da osservare ¢ il framerate medio, corrispondente a circa
4.18 FPS. Tale misura lascia intuire in maniera abbastanza palese il fallimento
dell’integrazione del modello di DRL all’interno del motore di gioco, dal momento
che un framerate cosi basso porta all’osservazione di un comportamento “scattoso”
che risulta poco gradevole agli occhi dell’utente e rischia di complicare le dinami-
che di interazione e di inserimento dell’input, riducendo ulteriormente la fruibilita
del prodotto.

Anche i valori di distribuzione osservati sembrano confermare 'ipotesi avanzata
leggendo il valore medio: il 75% dei frame ha infatti avuto una durata tale da
produrre un framerate di circa 4.29 FPS, rendendo di fatto inutilizzabile il gioco
per la gran parte del tempo di esecuzione. Il valore massimo osservato ¢ poi di
circa 14.93 FPS, valore indicativo del fatto che nemmeno nei frame di minima

attivita si e raggiunto il livello massimo di efficienza permesso dal motore di gioco.

Ottimizzazione dell’interfaccia. A gravare pero sulle prestazioni del sistema
non ¢ in questo caso il solo modello di DRL, ma anche il motore di rendering. L’im-

plementazione proposta per il sistema di gioco non prevede infatti la separazione
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Framerate
Media 9.60
Minimo 0.31
Primo quartile 2.54
Mediana 5.35
Terzo quartile 20.41
Massimo 30.30

Tabella 4.7: Media, minimo e quartili della distribuzione dei valori di framerate
osservati attivando il contributo del Deep Reinforcement Learning ottimizzato tra-
mite Algoritmo Genetico senza renderizzare U'interfaccia grafica.

dei flussi di esecuzione responsabili dell’aggiornamento del mondo e delle scher-
mate, rallentando inevitabilmente I’esecuzione del gioco stesso. Nella Tabella
sono sintetizzati i dati di distribuzione per il framerate ottenuti nella simulazione
analizzata nella Sezione [4.3] che non prevedeva alcuna resa grafica.

Gia solo rimuovendo il peso computazionale del processo di rendering del mondo
di gioco il valore medio del framerate cresce fino a circa 9.60, pitt che raddoppian-
do il ritmo di esecuzione rispetto alla simulazione con interfaccia grafica. Anche i
valori di distribuzione ricavati dallo studio dei quartili indicano un netto migliora-
mento rispetto al risultato precedente: sebbene la mediana del framerate sia pari a
solo 5.35 FPS—gia comunque maggiore rispetto al valore medio complessivamen-
te osservato in caso di attivazione dell’interfaccia grafica—il terzo quartile misura
20.41 FPS, valore in corrispondenza di cui il ritmo di scorrimento del gioco puo
essere reputato accettabile. Un primo avvicinamento al livello di efficienza desi-
derato si potrebbe quindi ottenere separando i passi di aggiornamento del mondo
e dell’interfaccia grafica e assegnando tali compiti a flussi di controllo separati
da eseguire parallelamente, come accade nella maggior parte dei sistemi di gioco

moderni.

Ottimizzazione dell’apprendimento. Infine si sottolinea che le librerie usate
per I'implementazione delle DNNs di controllo supportano pienamente il paralleli-
smo su GPU, che renderebbe notevolmente piii rapidi i passi decisionali e di appren-
dimento del DRL. Eseguire il motore di gioco su una macchina equipaggiata con

una GPU adatta all’esecuzione dei calcoli richiesti dai modelli di apprendimento—
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Framerate
Media 13.25
Minimo 1.08
Primo quartile 6.99
Mediana 10.53
Terzo quartile 20.00
Massimo 22.22

Tabella 4.8: Media, minimo e quartili della distribuzione dei valori di framerate
osservati attivando il contributo del Deep Reinforcement Learning ottimizzato tra-
mite Algoritmo Genetico, eseguendo il test su laptop da gioco con GPU esterna.

requisito spesso soddisfatto, se si considerano i sistemi da gioco attualmente dispo-
nibili sul mercato—potrebbe quindi essere 1'ultimo passo verso 'ottenimento di un
livello di efficienza accettabile per considerare fattibile 'integrazione del modello

di DRL all’interno del motore di gioco.

Valutazione su laptop da gioco. Per valutare effettivamente l'efficacia del
sistema di gioco proposto sfruttando al meglio le ottimizzazioni offerte dalle tec-
nologie implementative scelte, si ripete la valutazione su un laptop da gioco con
CPU Intel Core i5-12500H, 16GB di RAM e GPU esterna Nvidia GeForce RTX
3050 Laptop con 4GB di memoria dedicata. I parametri della simulazione su cui si
raccolgono i dati di efficienza restano gli stessi: un’ora di esecuzione su un singolo
mondo con 7 individui, attivando i contributi di ottimizzazione sia del DRL che
del GA e mantenendo attiva I'interfaccia grafica.

La Tabella contiene quindi una sintesi della media e della distribuzione
osservata in tale scenario per il valore del framerate. Gia osservando il solo va-
lore medio del framerate, paragonandolo a quello osservato sul laptop con GPU
integrata, si nota un netto miglioramento: rispetto ai 4.18 FPS precedentemente
osservati si passa ora a una media di circa 13.25, piu che triplicando la prestazione
ottenuta.

I dati dei quartili della distribuzione confermano il risultato osservato. Nono-
stante il dato massimo non raggiunga il limite per il ritmo di esecuzione posto al
motore di gioco—che veniva invece raggiunto anche su laptop con GPU integrata

disattivando il rendering, che si puo quindi considerare almeno in parte respon-
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sabile del risultato—gia il valore del primo quartile (circa 6.99 FPS) ¢ quasi 1.63
volte pitt grande rispetto al valore del terzo quartile osservato in precedenza con
GPU integrata. Cio significa che un frame considerato in questa osservazione lento,
appartenente al peggiore quartile con GPU esterna, sarebbe stato invece reputato
rapido e sarebbe potuto appartenere al migliore quartile con GPU integrata.

Inoltre si sottolinea che circa il 44.36% di tutti i frame osservati con GPU ester-
na € stato eseguito piu rapidamente rispetto al migliore frame osservato con GPU
integrata. Cio significa che quasi nella meta dei frame eseguiti il laptop da gioco
é riuscito a superare la massima velocita di esecuzione ottenuta nell’osservazione
precedente.

Sebbene quindi non sia ancora un risultato ottimale—la mediana a 10.53 FPS
denuncia comunque una lentezza generale del sistema per la maggior parte del
tempo di esecuzione—il valore di framerate osservato eseguendo il sistema su un
laptop da gioco é rassicurante nei confronti delle prestazioni dello stesso. Non &
infatti da escludere che, semplicemente separando il flusso di esecuzione del proces-
so di rendering dell’interfaccia o introducendo delle ottimizzazioni ulteriori nella
gestione dei passi di aggiornamento del mondo di gioco, si possa ulteriormente in-
crementare il valore osservato fino a raggiungere un ritmo di esecuzione accettabile

per ritenere il sistema integrabile in un motore di gioco completo.
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Capitolo 5
Conclusione e lavori futuri

La ricerca svolta ha quindi come obiettivo quello di affrontare diversi problemi
legati all’efficacia dei modelli di DRL per il controllo di agenti di gioco autonomi

e all’efficienza del processo di apprendimento.

Ottimizzazione dei parametri di apprendimento. In primo luogo si propo-
ne un metodo computazionalmente sostenibile per la ricerca educata dei parametri
degli algoritmi di DRL. Risolvere questo problema—mnoto in letteratura ma spesso
non affrontato, ricorrendo piuttosto a valori determinati empiricamente tramite
esplorazioni parziali e valutazioni qualitative [MKS™15|—permetterebbe infatti di
ottimizzare i modelli di DRL tramite iterazioni successive del processo di appren-
dimento, senza dover determinare a priori un set di parametri reputati ottimali
ma piuttosto sfruttando la convergenza verso valori ideali garantita dalla ricerca
educata.

L’uso di un GA permette in tal senso di abbattere sensibilmente il costo della
ricerca—che per essere affidabile dovrebbe altrimenti essere estensiva e considerare
tutte le configurazioni possibili—guidando I’esplorazione di nuove combinazioni di
parametri o il mantenimento di quelle osservate tramite I'analisi e la valutazione

continua dei risultati ottenuti.

Modello di comportamento attenzione-azione. Si realizza inoltre un siste-
ma di controllo basato sul binomio attenzione-azione piuttosto che sul solo concet-

to di azione. Modellare esplicitamente la pre-processazione delle letture dell’am-
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biente svolte dagli agenti per produrre un valore di attenzione semanticamente
significativo—mnel caso dello studio svolto il tipo di oggetto fra le varie entita di
gioco con cui € possibile interagire—permette infatti di articolare strategie pit
complesse e redditizie.

Rappresentare separatamente i concetti di attenzione e azione rende infatti
possibile la modellazione di un “pensiero” bidimensionale basato su verbo e og-
getto, che determina le azioni dell’agente a seconda dell’oggetto verso cui sono
rivolte. Al contrario i modelli basati sul solo valore di azione appiattiscono il pro-
cesso decisionale a una valutazione unidimensionale, rendendo quindi impossibile

la modellazione di strategie altrettanto complesse.

Efficienza del sistema integrato. Infine si affronta esplicitamente il problema
dell’efficienza dei modelli di apprendimento e di evoluzione. Spesso infatti gli agenti
autonomi basati su DRL sono implementati come sistemi di controllo indipendenti
dall’ambiente con cui interagiscono, e sono talvolta eseguiti su macchine dedicate
che permettano 'allocazione delle risorse necessarie per affrontare gli elevati costi
computazionali richiesti.

Al contrario lo studio svolto propone di integrare il modello di DRL e il GA re-
sponsabile dell’evoluzione della popolazione direttamente all’interno del motore di
gioco in cui agiscono, con l'obiettivo di realizzare un sistema eseguibile localmen-
te su una macchina da gioco mantenendo una prestazione sufficiente a garantire
un’esperienza utente positiva. A tale fine é fondamentale trovare un equilibrio fra
I’alleggerimento del modello di DRL—che ¢ sicuramente la componente piu gravo-
sa del sistema dal punto di vista computazionale—e l'inevitabile deterioramento

di efficacia che ne consegue.

Risultati ottenuti. L’analisi svolta si € quindi concentrata su 4 metriche prin-
cipali: V'efficacia del solo GA, 'efficacia del solo modello di DRL, 'efficacia del mo-
dello integrato di ottimizzazione e addestramento e infine I'efficienza del sistema
di gioco nel suo complesso.

Dall’analisi dei risultati ottenuti applicando il solo GA é apparsa da subito
evidente la robustezza complessiva dell’algoritmo proposto, che nonostante le in-

stabilita ha dimostrato convergenza verso valori ottimali. I dati osservati per il
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tempo di vita atteso durante lo studio del modello combinato di ottimizzazione
confermano tale osservazione: nonostante una popolazione iniziale con un geno-
ma particolarmente sfavorevole in tal senso, ’evoluzione ha portato a generare
individui con un tempo di vita atteso pari al valore massimo ammissibile—poi ra-
pidamente scartato per prediligere una configurazione di parametri piu favorevole
al processo di apprendimento, dimostrando la capacita dell’algoritmo di mediare
fra le due diverse direzioni di ottimizzazione.

La valutazione del rendimento del DRL ha poi fatto emergere I'importanza
dell’ottimizzazione dei parametri degli agenti, sia vitali che di apprendimento. La
differenza di rendimento osservata tra il modello di ottimizzazione combinato e
il modello di solo DRL con generazione casuale dei genomi ha infatti reso palese
I'impatto che i genomi sfavorevoli possono avere sulla qualita del processo di ap-
prendimento, in primo luogo limitando le capacita di esplorazione del mondo di
gioco e in secondo luogo rendendo piu complessa la convergenza del modello di
DRL verso la strategia ottimale. Cio ¢ dimostrato dal fatto che numerosi agenti—
quasi la meta—mnon sono riusciti ad apprendere una strategia efficace in caso di
applicazione del solo DRL, problema quasi completamente superato nello scenario

di applicazione del modello di ottimizzazione combinato.

Criticita osservate. Dall’altra parte in fase di analisi sono emerse anche alcu-
ne criticita, soprattutto in merito all’efficienza del modello proposto. Si & infatti
visto come in assenza di ottimizzazioni mirate—quali possono essere l’esecuzione
del rendering in un flusso di controllo dedicato, o una modifica delle modalita di
gestione degli aggiornamenti del mondo di gioco—Ile prestazioni ottenute dall’e-
secuzione del motore di gioco completo di modello combinato di ottimizzazione
siano deludenti. Anche su un laptop da gioco con GPU dedicata, in grado quindi
di sfruttare le ottimizzazioni offerte dalle librerie usate in fase di implementazione,
le prestazioni registrate in termini di framerate non sono sufficienti a poter offrire
un’esperienza piacevole all’utente, risultando invece in un flusso di gioco “scattoso”
e poco fruibile.

Per quanto riguarda l'efficacia del modello combinato, invece, si vedono supe-
rate le principali criticita degli algoritmi emerse dalle analisi indipendenti degli

stessi. L’instabilita del GA é infatti tollerabile se si considera l'effetto comples-
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sivamente positivo che l'ottimizzazione dei genomi ha sulla qualita dei risultati
ottenuti dal modello di DRL, che dimostra come il processo evolutivo sia nel com-
plesso efficace indipendentemente dalle perturbazioni istantanee. Dall’altra parte
il numero di agenti che non sono stati in grado di apprendere una strategia efficace
cala sensibilmente in caso di attivazione del processo evolutivo, dimostrando come
la presenza di tali individui sia probabilmente da imputare alla generazione casuale

di genomi sfavorevoli piuttosto che all’inefficacia del processo di apprendimento.

5.1 Lavori futuri

La ricerca proposta non ¢ comunque da considerarsi esaustiva rispetto agli ambiti
esplorati, ma piuttosto puo rappresentare un promettente punto di partenza da

cui prendere spunto per approfondire varie possibili direzioni di ricerca.

Parametrizzazione delle interazioni. La valutazione del rendimento del mo-
dello di ottimizzazione combinato ha dimostrato in primo luogo 'efficacia del pro-
cesso evolutivo di ottimizzazione dei parametri guidato da un GA. Con una popo-
lazione base di 7 individui si sono infatti raggiunte nell’arco di poche generazioni
configurazioni genetiche ottimali, facendo emergere quindi inequivocabilmente an-
che la convenienza computazionale del modello di ricerca educata dei parametri se
paragonato ad altri metodi basati su ricerca estensiva degli stessi.

Da un’analisi pitu approfondita dei dati osservati € poi emersa una correlazione
fra il tempo di vita atteso e la qualita delle strategie apprese. Tale osservazione
suggerisce quindi come la parametrizzazione e I'ottimizzazione delle modalita di
interazione fra agente e ambiente—oltre alla piti comune ottimizzazione dei pa-
rametri dell’algoritmo di apprendimento [SLLNT9, BPK25]—possa rappresentare

una direzione di ricerca verso l'incremento delle prestazioni dei modelli di DRL.

Approccio neuroevolutivo. Una diversa modalita di estensione dell’ambito di
applicazione dei GAs al problema di ottimizzazione delle prestazioni del DRL ¢
poi I'implementazione di un processo neuroevolutivo [RT17]. La neuroevoluzio-

ne é infatti un metodo di ottimizzazione che prevede di evolvere—eventualmente
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tramite ’applicazione di un GA, anche se esistono approcci differenti—i pesi e le
topologie delle reti neurali di controllo per guidare il processo di apprendimento.

Riprendendo quindi lo studio svolto, volendo mantenere il processo di ottimiz-
zazione dei pesi delle DNNs tramite DRL, sarebbe possibile integrare un approccio
neuroevolutivo per la modifica delle topologie delle DNNs coinvolte piuttosto che
dei loro pesi, di fatto estendendo la modellazione genetica degli individui alla strut-
tura dell’organo di controllo del loro comportamento. Cosi facendo, si solleverebbe
lo sviluppatore dalla responsabilita di definizione della topologia delle DNNs, in
gran parte determinante per la prestazione delle stesse.

Sebbene rappresenti una possibilita di ulteriore raffinamento della qualita del
modello di apprendimento, ’approccio neuroevolutivo potrebbe sollevare proble-
mi se applicato ciecamente in combinazione con il metodo evolutivo di ottimiz-
zazione dei parametri. L’efficacia della parametrizzazione proposta per ’algorit-
mo di apprendimento dipende infatti strettamente dalla formulazione dello stes-
so e dalla topologia della DNN di controllo, di cui regola il processo di adde-
stramento. Risulta percio particolarmente interessante lo studio dell’integrazione
di un approccio neuroevolutivo al sistema proposto per indagare le modalita di

interazione—costruttiva o distruttiva—dei due processi evolutivi di ottimizzazione.

Estensione delle Reti Neurali Profonde. La formulazione proposta per il
modello di DRL poi, sebbene generalmente efficace, si basa su DNNs con una to-
pologia estremamente semplice e sulla processazione dei soli dati di input rilevanti
alla determinazione delle azioni da svolgere nel contesto di gioco affrontato. Tale
approccio, intrapreso principalmente con l'obiettivo di limitare il costo computa-
zionale richiesto per il processo decisionale, esclude pero la possibilita di adattare
il modello proposto ad altri ambienti di gioco.

Superare i vincoli imposti dal tentativo di riduzione del costo computazionale
complessivo permetterebbe quindi di estendere la topologia delle DNNs di control-
lo ad architetture arbitrariamente complesse, avvicinandosi all’obiettivo ideale di
creare agenti di gioco generalmente in grado di affrontare qualsiasi sfida basandosi
su un input comparabile a quello fornito ai giocatori umani [RT17].

In particolare 'implementazione di modelli di DRL basati su meccanismi di

visione artificiale, e quindi sull’uso delle schermate come unico valore grezzo di in-
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put, sembra essere la direzione per il raggiungimento di tale obiettivo [MKST15].
Realizzare quindi DNNs piti complesse rappresenta una possibile direzione di esten-
sione del lavoro proposto, con l'obiettivo di studiare la possibilita di adattamento
del modello di apprendimento cosi addestrato al controllo di agenti di gioco in

ambienti diversi.

Studio delle interazioni utente. L’estensione in tal senso del modello di DRL,
con l'obiettivo di permettere l'interazione agente-ambiente tramite osservazioni
comparabili a quelle dei giocatori umani, potrebbe poi se implementata efficace-
mente aprire direzioni di ricerca pitl strettamente legate allo studio delle interazioni
uomo-macchina nell’ambito dei videogiochi.

La modellazione esplicita del concetto di Attention come valore pre-processato e
semanticamente significativo dell’osservazione dell’ambiente ricopre in tal senso un
ruolo fondamentale. Rappresentare il valore intermedio prodotto da Attention in
maniera rapportabile alle comuni metriche di valutazione delle interazioni umane
con i mondi di gioco permetterebbe infatti di approfondire la comprensione del
processo decisionale che guida gli agenti di DRL paragonandolo—per differenze e
analogie—al processo decisionale dei giocatori umani.

Ricalcando quindi la direzione principale di sviluppo della visione artificiale,
fortemente basata sulle conoscenze neuroscientifiche del processo di visione umana,
si potrebbero poi proporre modelli di apprendimento e valutazione degli stimoli
basati su processi computazionali quanto piu simili a quelli che guidano il pensiero
umano, di fatto simulando il funzionamento di un cervello biologico. Tale approc-
cio, primariamente legato quindi al campo delle neuroscienze, pud essere adottato
per introdurre negli agenti autonomi disturbi della percezione, quali possono essere
daltonismo, deficit dell’attenzione o iperfissazioni.

L’obiettivo della ricerca in tale direzione diventerebbe quindi quello di sfruttare
il meccanismo di Attention per misurare con metriche note i risultati ottenuti dalla
popolazione di agenti autonomi con disturbi indotti, con I'obiettivo finale di valu-
tare l'accessibilita dei mondi di gioco studiati e proporre metodi di modellazione

in grado di garantire la produzione di ambienti e dinamiche di gioco accessibili.
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