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Sommario

La rapida diffusione di dispositivi intelligenti ha reso sempre più centrale la pro-
grammazione di sistemi distribuiti su larga scala. I paradigmi tradizionali, incen-
trati sul singolo dispositivo, evidenziano limiti in termini di modularità, scalabilità
e resilienza, rendendo complessa la progettazione di applicazioni collettive. La pro-
grammazione aggregata affronta queste criticità adottando una prospettiva globa-
le: il comportamento dell’intera rete viene descritto tramite un unico programma
aggregato, fondato su formalismi come Field Calculus e le sue estensioni.

Nel corso degli anni sono stati sviluppati diversi linguaggi e framework per
supportare questo paradigma, ciascuno con punti di forza e debolezze. MIT Pro-
to ha rappresentato una pietra miliare storica, ma soffre di limitazioni legate ad
ergonomia e portabilità. Collektive, un Domain-Specific Language interno a Ko-
tlin, si propone come soluzione moderna, offrendo una sintassi espressiva, gestione
trasparente dell’allineamento e supporto multipiattaforma.

Questo lavoro presenta la trasposizione di una selezione di programmi aggre-
gati, originariamente sviluppati in Proto, nell’ecosistema Collektive. L’obiettivo
è fornire una guida pratica alla migrazione di sistemi esistenti verso soluzioni più
moderne e robuste, facilitando l’adozione delle nuove tecnologie.
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Capitolo 1

Introduzione

1.1 Contesto

Le attuali tendenze tecnologiche, in particolare la rapida espansione dell’Internet of

Things (IoT), stanno favorendo una crescente integrazione dei dispositivi computa-

zionali nell’ambiente circostante, aprendo nuove prospettive per servizi e applica-

zioni innovative. Tra gli esempi più rilevanti si annoverano sistemi di monitoraggio

ambientale, reti di sensori intelligenti, infrastrutture urbane connesse e robotica

collaborativa.

I paradigmi di programmazione tradizionali, che individuano l’unità program-

mabile nel singolo dispositivo, risultano ormai inadatti allo sviluppo di applicazioni

distribuite su larga scala. Questa prospettiva individuale evidenzia le complessità

legate alla gestione della comunicazione, della sincronizzazione e del coordinamento

tra nodi, che diventano parti integranti del codice applicativo del sistema distri-

buito. Con l’aumentare della complessità, tali sistemi manifestano limiti di design,

come scarsa modularità e riusabilità, difficoltà nel deployment e nel testing. Di

conseguenza, la progettazione di sistemi distribuiti viene spesso percepita come

una sfida ardua e rischiosa, generando timore e resistenza invece che stimolare la

valorizzazione delle potenzialità offerte da un ecosistema di dispositivi cooperanti.
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1.1. CONTESTO

1.1.1 Aggregate Programming

Aggregate Programming (AP) [BPV15] è un paradigma di macroprogrammazione

[Cas22] ideato per lo sviluppo di Sistemi Collettivi Adattivi (CAS). A differenza

degli approcci tradizionali, in cui il comportamento globale di un sistema emerge

dall’interazione dei comportamenti locali dei singoli dispositivi (logica bottom-

up), AP adotta una prospettiva globale (top-down): il comportamento desiderato

dell’intera rete viene specificato attraverso un unico programma aggregato, in cui

l’unità programmabile non è più il singolo dispositivo, bens̀ı l’intero collettivo.

Saranno poi il linguaggio e gli strumenti sottostanti a derivare automaticamente i

comportamenti locali necessari affinché il sistema si auto-organizzi per soddisfare

le specifiche globali.

Dal punto di vista formale, AP si fonda su Field Calculus (FC) [BPV15] (Se-

zione 1.1.2), un linguaggio minimale progettato per specificare il comportamento

aggregato di un sistema distribuito. L’astrazione centrale è quella del campo com-

putazionale [BPV15] (Sezione 1.1.2): una mappa, potenzialmente dinamica, che

associa a ciascun dispositivo della rete un valore. Da una prospettiva globale, un

programma aggregato implementa una serie di trasformazioni su queste strutture

dati distribuite. L’approccio a campi consente di creare algoritmi distribuiti riusa-

bili tramite funzioni componibili — da campo a campo — organizzabili in librerie

di complessità crescente per costruire interi servizi applicativi.

Proprietà I sistemi sviluppati con AP possiedono intrinsecamente proprietà di

adattabilità e resilienza, che si manifestano in risposta a variazioni dell’ambiente

operativo, come cambiamenti nella topologia della rete, guasti dei dispositivi o

fluttuazioni delle risorse disponibili. Inoltre, tali sistemi sono in grado di gestire

efficientemente un numero crescente di dispositivi, mantenendo basso l’overhead

comunicativo e l’efficienza computazionale.

Architettura a livelli AP semplifica la complessità della coordinazione distri-

buita grazie a una struttura a più livelli di astrazione (Figura 1.1), costruita a

partire da FC [BPV15].

La scelta di basarsi su un calcolo minimale e matematico permette di dimo-

strare formalmente le proprietà dei costrutti fondamentali e di definire operatori
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1.1. CONTESTO

generali con caratteristiche verificabili. Questi operatori possono essere utilizzati

per realizzare librerie di alto livello, preservando nelle composizioni le proprietà

dimostrate a livello dei singoli componenti.

1.1.2 Field Calculus e Higher-Order Field Calculus

FC è un linguaggio funzionale minimale, progettato per offrire i costrutti fon-

damentali necessari alla manipolazione dei campi [AVD+19]. In questo formali-

smo, l’astrazione unificante è quella del campo computazionale, attorno al quale si

organizzano i costrutti del linguaggio che permettono di operare su tali strutture.

Campo computazionale Un campo computazionale è una struttura dati di-

stribuita nello spazio e nel tempo che associa ad ogni dispositivo un valore. A

titolo esemplificativo, si consideri una rete di sensori di temperatura distribuiti

su un’area geografica: tale configurazione può essere interpretata come un campo

computazionale discreto, in cui ogni sensore rappresenta un punto del campo e il

valore a esso associato corrisponde alla temperatura rilevata in quel istante.

Modello di Esecuzione Una computazione può essere osservata da due pro-

spettive diverse: locale e globale [AVD+19].

Dal punto di vista aggregato (globale), è possibile specificare il comportamento

collettivo del sistema attraverso una serie di trasformazioni su campi computazio-

nali. Ad esempio, l’input di una computazione può essere un campo di tem-

perature, in cui a ciascun dispositivo viene associato il valore rilevato dal proprio

sensore; l’output, invece, può essere un campo booleano che indica quali dispositivi

superano una determinata soglia di temperatura.

Dal punto di vista locale, la computazione è vista dal singolo dispositivo δi,

che esegue periodicamente un programma P in round di esecuzione asincroni. In

questa visione, il dispositivo δi non può percepire l’intero campo globale, ma solo

una proiezione limitata ai dispositivi entro il proprio raggio di comunicazione, de-

finita come campo di vicinato, ovvero una mappa ϕ : δ → v che associa a ciascun

vicino δj il valore vj più recente. In ogni round, il dispositivo: i) raccoglie i valori

dal proprio campo di vicinato ϕi; ii) ottiene le informazioni dall’ambiente (tramite

CAPITOLO 1. INTRODUZIONE 3



1.1. CONTESTO

Figura 1.1: Architettura a livelli della programmazione aggregata [BPV15]. Le
capacità del dispositivo sono sfruttate per implementare i costrutti di FC, che a
loro volta costituiscono la base per la creazione di un limitato numero di operatori
aggregati di cui si può provare la resilienza. Tali costrutti sono cos̀ı generali da
poter essere utilizzati per costruire librerie di alto livello per la programmazione
aggregata.
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1.1. CONTESTO

sensori); iii) recupera lo stato interno; iv) valuta il programma P utilizzando que-

ste informazioni; v) aggiorna il proprio stato e invia il valore risultante ai vicini;

vi) attende il successivo round di esecuzione [AVD+19].

Sintassi I costrutti fondamentali di FC [BPV15] sono:

• Chiamate a funzione: b(e1, . . . , en) applica la funzione b agli argomenti

e1, . . . , en, restituendo un nuovo campo computazionale.

• Dinamica Temporale: rep(e0) {(x) => e} è fondamentale per modellare

l’evoluzione nel tempo di un campo. Inizializza una variabile di stato locale

x con il valore iniziale e0 e, ad ogni round di esecuzione, aggiorna x con il

risultato dell’espressione e. L’espressione e può fare riferimento al valore

precedente di x, consentendo la definizione di processi iterativi.

• Interazione Spaziale: nbr{e} modella l’evoluzione spaziale del campo, con-

sentendo a un dispositivo di accedere ai valori calcolati dai vicini nell’ultimo

round di esecuzione. Restituisce un campo di vicinato (ϕ) che mappa l’i-

dentificatore di ogni vicino all’espressione e valutata in quel dispositivo. I

campi di vicinato cos̀ı ottenuti possono essere manipolati tramite funzioni di

aggregazione spaziale, come min-hood, max-hood, sum-hood e altre.

• Restrizione del dominio: if (e0) {e1} else {e2} partiziona la rete in due

sottoinsiemi Dtrue e Dfalse in base alla valutazione di e0. Se un dispositi-

vo δ appartiene a Dtrue, valuta esclusivamente l’espressione e1, ignorando

e2; viceversa, se appartiene a Dfalse, valuta solo e2. In entrambi i casi, le

informazioni di stato e i valori scambiati con i vicini non vengono condi-

visi tra i due rami: quando un dispositivo passa da un ramo all’altro, le

variabili di stato vengono reinizializzate e i valori precedenti vengono persi.

Se è necessario condividere informazioni tra i rami, si può utilizzare il co-

strutto mux(e0, e1, e2), che valuta entrambe le espressioni e1 ed e2, prima del

partizionamento, restituendo il valore corrispondente a e0.

• Share: la combinazione dei costrutti rep e nbr permette di modellare l’evolu-

zione sia spaziale che temporale di un campo. Tuttavia, come evidenziato in
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[ABDV18], la loro integrazione introduce un ritardo implicito nel sistema che

può causare la perdita di round. Per risolvere questo problema, l’approccio

presentato in [ABD+19] introduce il costrutto share:

share(e1) {(x) => e2}

Nonostante la sintassi sia identica a quella di rep, i due si distinguono ra-

dicalmente per l’interpretazione della variabile x ad ogni round. Nel caso di

share, x non rappresenta un valore locale (come in rep), bens̀ı un campo di

vicinato (ϕ) che contiene i valori condivisi dai vicini nel round precedente.

L’espressione e2 ha quindi il compito di elaborare questo campo di vicinato

per produrre un nuovo valore locale, che sarà poi utilizzato come e1 nel round

successivo e condiviso con i vicini.

Allineamento Ogni nodo deve comunicare esclusivamente con i dispositivi che

si trovano nello stesso contesto di esecuzione, ossia che hanno seguito lo stesso

percorso di valutazione del programma: hanno invocato le stesse funzioni e preso

le stesse decisioni. Tali dispositivi si definiscono allineati.

Si consideri l’esempio in listing 1.1, in cui sono definite due funzioni, f1 e f2,

entrambe contenenti il costrutto nbr applicato alla stessa espressione e1. Quando

un dispositivo esegue nbr {e1} all’interno di f1, deve recuperare esclusivamente

i valori dei vicini che hanno valutato l’espressione nel medesimo contesto. Di

conseguenza, i valori prodotti dai vicini per nbr {e1} all’interno di f2 risultano

irrilevanti.

Listing 1.1: Allineamento tra le esecuzioni di nbr in contesti diversi�
1 def f1() { nbr {e1} }

2 def f2() { nbr {e1} }

3

4 f1()

5 f2()
� �
Questo aspetto risulta particolarmente evidente nel costrutto if, che non si

limita a determinare quale ramo eseguire, bens̀ı suddivide il dominio in due gruppi

distinti, ciascuno con il proprio contesto di esecuzione. In questi casi, l’allineamen-
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to diventa fondamentale per garantire che la comunicazione avvenga solo tra nodi

che hanno scelto lo stesso ramo.

Poiché non esiste una memoria condivisa per tracciare lo stato computazionale,

è necessario introdurre meccanismi di allineamento capaci di monitorare ogni nodo

e determinare quali risultino effettivamente allineati. In un linguaggio di program-

mazione ideale, questi dettagli di basso livello dovrebbero rimanere trasparenti

all’utente finale.

Higher-Order Field Calculus FC è stato esteso in [AVD+19] con l’introdu-

zione di Higher-Order Field Calculus (HFC), che consente di trattare le funzioni

come valori. Questa estensione abilita capacità fondamentali quali: i) accettare

funzioni come argomenti e restituirle come risultati; ii) creare funzioni dinamica-

mente; iii) trasferirle tra dispositivi (tramite nbr) e memorizzarle o modificarle nel

tempo (tramite rep).

1.1.3 XC

eXchange Calculus (XC) è un calcolo formale che definisce una semantica operazio-

nale per la programmazione aggregata, generalizzando ed estendendo le capacità

di FC [ACD+24]. È progettato per supportare lo sviluppo di comportamenti col-

lettivi adattivi astraendo la gestione di aspetti di basso livello quali concorrenza,

esecuzione asincrona, comunicazione e gestione dei guasti.

Modello di Esecuzione Ogni dispositivo, indicato con δi, comunica con i propri

vicini tramite uno scambio di messaggi. Il funzionamento dei nodi si articola

in round di esecuzione asincroni. In ogni round, ciascun dispositivo esegue un

programma XC, elabora i messaggi ricevuti e produce nuovi messaggi da inviare

al vicinato (Figura 1.2).

Data la natura asincrona del sistema, può verificarsi che un dispositivo completi

più round prima che un vicino ne termini uno. In questi casi, il vicino considererà

solo l’ultimo messaggio ricevuto, sovrascrivendo i precedenti.

Tipi di dato Nel formalismo FC, si distinguono due categorie di valori: i valori

locali ℓ e i campi di vicinato ϕ. Quest’ultimi sono mappe che associano un valore

CAPITOLO 1. INTRODUZIONE 7
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Figura 1.2: Modello di esecuzione di XC: il dispositivo δi esegue il programma XC
nei round εn e invia i messaggi ai vicini al termine di ciascuno [ACD+24].
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locale a ciascun identificatore di dispositivo e vengono impiegati per rappresentare

i messaggi ricevuti dai vicini. Tuttavia, FC impone che solo i valori locali ℓ pos-

sano essere inviati. Ciò implica che ogni nodo trasmetta necessariamente lo stesso

messaggio a tutti i suoi vicini (comunicazione isotropica), limitando l’espressività

del linguaggio impedendo l’invio di messaggi differenziati.

XC risolve questa limitazione unificando le due categorie in una singola classe

di valori denominata nvalues (v), consentendo a ciascun dispositivo di inviare

messaggi diversi a vicini differenti (comunicazione anisotropica).

Un nvalue è una struttura dati che associa un valore locale ℓi a ciascun

identificatore di dispositivo δi specificato e include un valore di default ℓ:

v = ℓ[δ1 → ℓ1, . . . , δn → ℓn]

Tale notazione significa che v assume il valore di default ℓ per tutti i dispositivi,

ad eccezione di quelli esplicitamente specificati (δ1, . . . , δn), ai quali sono associati

i valori ℓ1, . . . , ℓn. Un valore locale ℓ può essere automaticamente convertito in un

nvalue con ℓ come valore di default e senza eccezioni (ℓ[]).

Questa unificazione semplifica notevolmente il sistema di tipi rispetto a FC

e, grazie alla flessibilità degli nvalues, XC risulta più espressivo e versatile nella

gestione della comunicazione eterogenea tra dispositivi.

exchange La comunicazione in XC è costruita attorno ad un’unica primitiva

chiamata exchange [ACD+24], che incapsula in unico costrutto computazione,

comunicazione e gestione dello stato.

La sintassi è la seguente:

exchange(ei, (n)) => return er send es

Dove:

• ei: È l’espressione che determina il valore locale iniziale. Tale valore funge

da default per l’nvalue dei messaggi nel primo round o quando non sono

ancora stati ricevuti messaggi dai vicini.

CAPITOLO 1. INTRODUZIONE 9
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• n: È una variabile che, ad ogni round di esecuzione, viene automaticamente

sostituita con l’nvalue che incapsula i messaggi ricevuti dai vicini.

• er: È l’espressione che definisce il valore locale di ritorno del costrutto, che

rappresenta il risultato del round corrente del dispositivo.

• es: È l’espressione che definisce l’nvalue dei messaggi che il dispositivo

invierà ai vicini al termine del round corrente.

Ogni costrutto di FC può essere espresso in termini di exchange, come illustrato

in [ACD+24]. Il fatto che ogni programma FC possa essere codificato in XC,

permette a quest’ultimo di ereditare tutte le proprietà di resilienza e universalità

dimostrate per FC [ABDV18].

10 CAPITOLO 1. INTRODUZIONE



1.2. MOTIVAZIONE

1.2 Motivazione

Il panorama della programmazione aggregata è caratterizzato da diversi linguaggi

e framework che implementano i concetti fondamentali di FC, ognuno con specifici

vantaggi e svantaggi. Tra le soluzioni più note e consolidate si annoverano MIT

Proto [BB06] (Sezione 1.2.1), Protelis [PVB15] (Sezione 1.2.2), ScaFi [CVAP22]

(Sezione 1.2.3) e FCPP [Aud20] (Sezione 1.2.4).

In questo scenario, l’ultima proposta è Collektive (Sezione 1.2.5), un Domain-

Specific Language (DSL) sviluppato in Kotlin. Collektive si pone l’obiettivo di

sintetizzare i punti di forza dei linguaggi esistenti, superandone al contempo le

limitazioni strutturali, rappresentando cos̀ı un passo in avanti nel contesto della

programmazione aggregata.

1.2.1 MIT Proto

Proto [BB06], riconosciuto come il precursore della programmazione aggregata,

fu concepito originariamente da Jonathan Bachrach e Jacob Beal e si basa su

Amorphous Computing [Bea04].

È un linguaggio puramente funzionale, con una sintassi ispirata a Lisp (Li-

sting 1.2).

Listing 1.2: Dimostrazione della sintassi di Proto�
1 (def distance-to (src)

2 (letfed ((n infinity (mux src 0 (min-hood (+ (nbr n) (nbr-range))))))

3 n))
� �
A supporto delle sue funzionalità, veniva fornito un simulatore integrato che

consentiva di eseguire e testare i programmi in ambienti simulati. Successivamente

fu sviluppato anche WebProto, un ambiente di prototipazione web che permetteva

di scrivere e testare codice aggregato direttamente dal browser.

Lo sviluppo del linguaggio è stato interrotto nel 2016 e Proto è stato ufficial-

mente dismesso in favore di Protelis [PVB15] (Sezione 1.2.2), che ne ha raccolto

l’eredità concettuale e operativa.

La sintassi e i costrutti del linguaggio verranno esaminati in dettaglio nel

capitolo 2.
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1.2.2 Protelis

Protelis [PVB15] è un linguaggio di programmazione funzionale che implementa

i concetti di HFC (Sezione 1.1.2). La sua sintassi è ispirata al linguaggio C, il

che lo rende più accessibile rispetto al suo predecessore. È inoltre caratterizzato

dall’essere debolmente tipizzato (Listing 1.3).

Protelis è un linguaggio stand-alone per la Java Virtual Machine (JVM), svi-

luppato utilizzando Xtext, un framework specializzato nella creazione di DSL.

L’esecuzione dei programmi avviene tramite un interprete che valuta periodica-

mente il codice aggregato. Questo gestisce in modo automatico la comunicazione

tra dispositivi e l’interazione con l’ambiente. Poiché l’interprete è stato scritto

da zero, i meccanismi di basso livello, come l’allineamento, sono gestiti in modo

trasparente per l’utente finale, senza richiedere interventi espliciti nel codice appli-

cativo. L’integrazione con la JVM garantisce portabilità tra sistemi e dispositivi,

oltre a facilitare l’importazione di numerose librerie e API tramite i meccanismi di

reflection di Java. Tuttavia, la necessità di una JVM rappresenta una limitazio-

ne per l’impiego in ambienti con risorse estremamente ristrette, come quelli tipici

dell’IoT, riducendo l’eterogeneità dei dispositivi utilizzabili.

Attualmente il linguaggio è attivamente mantenuto, ma lo sviluppo di nuove

funzionalità è stato congelato.

Listing 1.3: Dimostrazione della sintassi di Protelis�
1 def distanceTo(source) {

2 share (distance <- POSITIVE_INFINITY) {

3 mux (source) {

4 0

5 } else {

6 foldMin(POSITIVE_INFINITY , distance + self.nbrRange ())

7 }

8 }

9 }
� �
1.2.3 ScaFi

ScaFi [CVAP22] (Scala Fields) è un framework per la programmazione aggrega-

ta, realizzato come DSL interno al linguaggio Scala e basato su FC (1.1.2), in

particolare sulla variante FScaFi [CVAD20].
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Offre un ecosistema completo per lo sviluppo di programmi aggregati, compren-

dente librerie, strumenti di simulazione e la possibilità di prototipazione rapida via

browser grazie a ScaFi Web [ACM+21].

L’integrazione come DSL interno consente a ScaFi di beneficiare direttamente

della sintassi (Listing 1.4), del compilatore e degli strumenti di Scala, risultando

cos̀ı più semplice da mantenere, immediatamente familiare per chi già conosce il

linguaggio ospite e in grado di sfruttare appieno il potente sistema di tipi di Scala.

Questa scelta, tuttavia, comporta anche alcune limitazioni: la sintassi è vinco-

lata ai costrutti validi di Scala e, aspetto cruciale per la programmazione aggregata,

possono emergere involontariamente dettagli di basso livello che non dovrebbero es-

sere esposti all’utente, come la gestione dell’allineamento. Inoltre, essendo pensato

principalmente per l’esecuzione sulla JVM, ScaFi condivide le stesse limitazioni di

applicabilità già riscontrate per Protelis (1.2.2).

Listing 1.4: Dimostrazione della sintassi di ScaFi�
1 def distanceTo(source: Boolean): Double =

2 rep(Double.PositiveInfinity) (d => {

3 mux (source) { 0.0 } {

4 foldHoodPlus(Double.PositiveInfinity)(Math.min) {

5 nbr(d) + nbrRange

6 }

7 }

8 })
� �
1.2.4 FCPP

FCPP [Aud20] rappresenta la prima implementazione nativa di AP in C++.

L’utilizzo di C++ come linguaggio di base è un elemento chiave, poiché consen-

te l’esecuzione diretta del codice sui dispositivi, senza la necessità di una macchina

virtuale. Questo approccio offre due vantaggi principali: da un lato, risulta partico-

larmente adatto a dispositivi con risorse limitate, come sistemi di microcontrollori

e dispositivi embedded tipici dell’IoT, superando cos̀ı le restrizioni imposte dalla

dipendenza dalla JVM che caratterizzano soluzioni come Protelis e ScaFi; dall’al-

tro, permette di ottenere prestazioni elevate nell’implementazione del paradigma

aggregato.
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Tuttavia, la scelta di C++ comporta anche alcune criticità. La complessità del-

la sintassi (Listing 1.5) e la limitata ergonomia rispetto ad altre soluzioni rendono

difficile l’adozione da parte di un ampio pubblico di sviluppatori. Inoltre, la ge-

stione dell’allineamento non è trasparente, ma richiede interventi manuali tramite

macro. Sebbene FCPP sia pensato come una piattaforma flessibile ed estensibi-

le, il numero di funzionalità attualmente disponibili risulta inferiore rispetto alle

alternative.

Listing 1.5: Dimostrazione della sintassi di FCPP�
1 DEF() double distance_to(ARGS , bool source) { CODE

2 return nbr(CALL , INF , [&] (field <double > d) {

3 double v = source ? 0.0 : INF;

4 return min_hood(CALL , d + node.nbr_dist (), v);

5 });

6 }
� �

1.2.5 Collektive

Collektive1 nasce dall’esigenza di disporre di un linguaggio che i) garantisca una

gestione dell’allineamento robusta e completamente trasparente; ii) sia multipiat-

taforma e quindi adatto a operare su reti di dispositivi eterogenei; iii) offra una

sintassi moderna, espressiva ed ergonomica; iv) possa contare su un ecosistema

maturo e ricco di funzionalità grazie al linguaggio host.

I linguaggi analizzati in precedenza non riescono a soddisfare tutti questi requi-

siti contemporaneamente: Protelis offre una buona gestione dell’allineamento ma

dipende dalla JVM; ScaFi è anch’esso vincolato alla JVM e presenta un allinea-

mento debole; FCPP è nativo e performante ma manca di ergonomia, semplicità

d’uso e trasparenza.

Analogamente a ScaFi, Collektive è un DSL interno; tuttavia, si basa su Ko-

tlin, la cui natura multi-piattaforma, resa possibile dal progetto Kotlin Multiplat-

form (KMP)2, consente l’operatività su reti di dispositivi eterogenei, che spaziano

da server con elevate capacità di calcolo (tramite JVM), a dispositivi mobili (An-

1https://github.com/Collektive
2https://kotlinlang.org/docs/multiplatform.html

14 CAPITOLO 1. INTRODUZIONE

https://github.com/Collektive
https://kotlinlang.org/docs/multiplatform.html


1.2. MOTIVAZIONE

droid e iOS), offrendo inoltre la possibilità di eseguire nativamente applicazioni su

piattaforme quali Windows, MacOS e Linux, sia su architetture x86 che ARM.

A differenza di ScaFi, il compilatore di Kotlin è stato esteso tramite un apposito

plugin per gestire automaticamente l’allineamento del codice aggregato.

Se si volesse gestire manualmente l’allineamento, sarebbe sufficiente adottare

un semplice DSL; tuttavia, il codice risulterebbe esposto a meccanismi di basso

livello, rendendo la scrittura dei programmi aggregati più complessa e soggetta ad

errori (Listing 1.6).

Listing 1.6: Come apparirebbe un programma aggregato in Collektive se l’allinea-

mento fosse gestito manualmente dallo sviluppatore invece che automaticamente

dal compilatore.�
1 fun <ID: Any > Aggregate <ID >. distanceTo(source: Boolean , metric: Field <ID , Double >)

2 = alignedOn("Aggregate.distanceTo(Boolean)") { // Avoid clashing with other

functions with a similar structure

3 share(Double.POSITIVE_INFINITY) { distances ->

4 alignedOn("share(Boolean)") { // We need to manually align again on

share operator.

5 val actualMetrics = project(metric) // Fields need projection

6 val throughNeighbor = distances

7 .alignedMapValues(actualMetrics , Double ::plus)

8 when {

9 source -> alignedOn(true) { 0.0 } // Align on true

10 else -> alignedOn(false) { throughNeighbor } // Align on false

11 }

12 }

13 }

14 }
� �
Il plugin del compilatore si occupa di iniettare automaticamente il codice neces-

sario per gestire l’allineamento e la proiezione dei campi di vicinato, permettendo

agli sviluppatori di scrivere programmi aggregati in Kotlin in modo naturale.

Listing 1.7: Dimostrazione della sintassi di Collektive: il compilatore si occupa

automaticamente di gestire l’allineamento per conto dello sviluppatore.�
1 fun <ID: Any > Aggregate <ID >. distanceTo(source: Boolean , metric: Field <ID , Double >)

2 = share(Double.POSITIVE_INFINITY) { distances ->

3 val throughNeighbor = distances.alignedMapValues(metric , Double ::plus)

4 if (source) 0.0 else throughNeighbor

5 }
� �
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1.3 Obiettivo

Quando emerge un nuovo linguaggio o framework, è fondamentale che gli sviluppa-

tori possano sfruttare le conoscenze acquisite con le tecnologie precedenti. I sistemi

moderni, quindi, devono offrire una guida chiara su come realizzare soluzioni già

presenti. Senza questa guida e senza esempi pratici, l’adozione di nuove tecnologie

può essere rallentata dalla curva di apprendimento e dalla scarsa familiarità.

Fornire esempi concreti di trasposizione di sistemi legacy a nuove soluzioni

dimostra l’espressività del nuovo sistema rispetto ai precedenti, riduce significati-

vamente il tempo di apprendimento e accresce la fiducia nella nuova tecnologia.

Questo lavoro si propone di trasporre una serie di esempi di programma-

zione aggregata (Capitolo 4) realizzati originariamente in Proto (Capitolo 2) al

linguaggio Collektive (Capitolo 3).
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MIT-Proto

In questo capitolo viene presentata la sintassi e i costrutti principali di Proto, al

fine di fornire le basi necessarie per comprendere il capitolo 4.

Per ulteriori dettagli sul linguaggio, si rimanda alla documentazione ufficiale1,

da cui sono tratte le sezioni seguenti.

2.1 Introduzione alla sintassi

Valutazione delle espressioni Proto è un linguaggio puramente funzionale

caratterizzato dall’utilizzo di s-expression (sexp) (Listing 2.1), ovvero espressioni

in notazione polacca racchiuse tra parentesi, adottando una sintassi molto simile

a quella di Scheme2.

Listing 2.1: Le espressioni in Proto sono scritte in notazione polacca, specificando

l’operatore seguito dagli operandi.�
1 (+ (* 1 2) 2) ; => 1 * 2 + 2
� �

La valutazione di un’espressione Proto produce un programma rappresentato

sotto forma di dataflow graph.

1https://github.com/jakebeal/MIT-Proto/blob/master/proto/man/

proto-language-reference.pdf
2https://www.scheme.org/
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Figura 2.1: Gerarchia dei tipi di dato in Proto.

Tale grafo, quando valutato rispetto a uno spazio di dispositivi, genera un

campo computazionale in evoluzione, associando a ogni punto nello spazio una

serie di valori che si modificano nel tempo.

Questa architettura consente di esprimere il comportamento collettivo del siste-

ma attraverso trasformazioni funzionali composte, in cui il risultato di un’espres-

sione rappresenta un campo che può essere utilizzato come input per successive

trasformazioni.

Tipi di dato Tutte le espressioni producono campi, categorizzati nel sistema di

tipi in fig. 2.1:
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• Any: Radice della gerarchia dei tipi.

• Field: Rappresenta un campo di vicinato ϕ, associando a ogni dispositivo

un valore locale (Local).

• Local: Rappresenta qualsiasi valore che non sia un Field. I sottotipi di

Local includono:

– Tuple: Insieme ordinato di valori locali (Local).

– Scalar: Numero a virgola mobile, inclusi i valori speciali nan, inf e

-inf.

– Vector: Tupla (Tuple) di valori scalari (Scalar).

– Number: Valore scalare (Scalar) o vettoriale (Vector).

– Boolean: Valore booleano true (#t) o false (#f).

– Lambda: Funzione anonima.

Nel seguito, i tipi di dato saranno indicati con la prima lettera maiuscola: ad

esempio, una variabile x di tipo Local sarà denotata come x|L, mentre y di tipo

Field come y|F.

Dichiarazione di funzioni e variabili Le funzioni vengono dichiarate utiliz-

zando la forma (def nome (parametri) (corpo)), dove nome è il nome della

funzione, parametri è una lista di parametri formali e corpo è l’espressione che de-

finisce il comportamento della funzione. Il tipo di ritorno della funzione è dedotto

automaticamente in base al tipo dell’espressione corpo.

Le variabili vengono dichiarate tramite la parola chiave let, seguendo la sin-

tassi (let (nome (valore))), dove nome è il nome della variabile, valore è

l’espressione che ne determina il valore.

Se si desidera dichiarare più variabili contemporaneamente, si possono racchiu-

dere più coppie (nome (valore)) dentro il corpo di let. Se per definire le variabili

successive si fa riferimento a quelle precedentemente dichiarate, dando importanza

all’ordine di dichiarazione, si utilizza la parola chiave let*.
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2.2 Operatori

Proto fornisce un insieme di operatori che corrispondono ai costrutti fondamentali

di FC (sezione 1.1.2).

Dinamica temporale Per modellare lo stato di un dispositivo si sfrutta l’ope-

ratore rep, che segue la sintassi:

Listing 2.2: Sintassi dell’operatore rep in Proto.�
1 (rep .var ,init|L ,evolve|L) -> L

2 ; example

3 (rep t 0 (+ t (1))) ; incrementing t each round.
� �
• .var è il nome della variabile di stato locale.

• init è l’espressione che inizializza il valore della variabile di stato.

• evolve è l’espressione che definisce come il valore della variabile di stato

evolve nel tempo.

• Il tipo di ritorno dell’operatore è lo stesso tipo dell’espressione init ed

evolve.

L’esempio in listing 2.2 illustra l’uso di rep per creare un contatore che incrementa

il proprio valore ad ogni round di esecuzione.

Interazione Spaziale L’operatore nbr consente a un dispositivo di accedere ai

valori calcolati dai vicini nell’ultimo round di esecuzione. La sintassi è la seguente:

Listing 2.3: Sintassi dell’operatore nbr in Proto.�
1 (nbr ,expr|L) -> F

2 ;example

3 nbr 1 ; map each neighboor to 1
� �
• expr è l’espressione il cui valore locale viene raccolto dai vicini.

• Il tipo di ritorno dell’operatore è un Field che mappa l’identificatore di ogni

vicino al valore locale risultante dalla valutazione di expr in quel dispositivo.
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In listing 2.3 viene mostrato un esempio di utilizzo di nbr nel quale si costruice

un campo di vicinato che associa 1 ad ogni vicino.

Proto fornisce varianti dell’operatore nbr che permettono di raccogliere specifici

valori dai vicini come nbr-range, per ottenere la distanza fisica tra il dispositivo

corrente e ciascun vicino, e nbr-vec, per ottenere un vettore che indica la direzione

verso ciascun vicino rispetto al dispositivo corrente.

Vengono fornite delle funzioni di aggregazione che permettono di ridurre un

Field a un singolo valore locale (Local) (Listing 2.4).

Listing 2.4: Esempi di funzioni di aggregazione spaziale in Proto.�
1 ; returns the lower limit of values in the range of expr.

2 (min-hood ,expr|F_n) -> N

3 ; returns the upper limit of values in the range of expr.

4 (max-hood ,expr|F_n) -> N

5 ; returns false if the range of expr includes false; otherwise returns true.

6 (all-hood ,expr|F_b) -> B

7 ; returns true if the range of expr includes true; otherwise returns false.

8 (any-hood ,expr|F_b) -> B

9 ; returns the sum of expr over all devices in the neighborhood.

10 (sum-hood ,expr|F_n) -> N

11 ; returns the integral of expr over the neighborhood.

12 (int-hood ,expr|F_n) -> N
� �
Queste funzioni si basano su fold-hood (Listing 2.5), un operatore più generale

che consente di specificare una funzione di combinazione personalizzata.

Listing 2.5: Sintassi dell’operatore fold-hood in Proto.�
1 (fold-hood ,fold|Lambda ,base|L ,value|L) -> L

2 ; example

3 (fold-hood + 0 1) ;counts the number of neighbors. Equals to (sum-hood (nbr 1))
� �
Si noti che fold-hood non richiede in ingresso un Field, bens̀ı value è un valo-

re locale (Local). Internamente, fold-hood utilizza l’operatore nbr per raccogliere

i valori dai vicini in modo trasparente al programmatore e applica la funzione di

combinazione specificata per aggregarli.

Restrizione del dominio L’operatore if partiziona la rete dei dispositivi in due

sottoinsiemi in base alla valutazione di una condizione. La sintassi è la seguente

(Listing 2.6):

CAPITOLO 2. MIT-PROTO 21



2.3. FUNZIONI DI LIBRERIA

Listing 2.6: Sintassi dell’operatore if in Proto.�
1 (if ,test|B ,true ,false) -> A

2 ; example

3 ; counts the neighbhors which have followed the same path.

4 (if (mod mid 2) (sum-hood (nbr 1)) (sum-hood (nbr 1)))
� �
• test è l’espressione booleana che determina la partizione dello spazio.

• true è l’espressione che viene valutata nei dispositivi per cui test è vera.

• false è l’espressione che viene valutata nei dispositivi per cui test è falsa.

• Il tipo di ritorno dell’operatore è lo stesso di true e false.

Anche se true e false dovessero risultare la stessa espressione, il loro valore

potrebbe differire, in accordo a quanto detto in sezione 1.1.2.

È possibile utilizzare l’operatore mux come alternativa a if quando si desidera

che le due espressioni true e false vengano valutate prima del partizionamento,

garantendo la partecipazione di tutti i dispositivi alla computazione (Sezione 1.1.2).

2.3 Funzioni di libreria

Proto è equipaggiato con una libreria che fornisce diverse funzioni comuni durante

lo sviluppo di programmi aggregati.

• (distance-to ,source|B) -> S: calcola la distanza minima dalla sorgente

per ogni dispositivo. I nodi in cui source è #t fungono da origine, mentre

gli altri ricevono la distanza dalla sorgente più vicina. gradient è un alias

di questa funzione.

• (broadcast ,source|B ,value|L) -> L: propaga il valore locale value dai

dispositivi sorgente verso l’intera rete. Ogni dispositivo riceve il valore dalla

sorgente più vicina.

• (dilate ,source|B ,d|S) -> B: Verifica quali dispositivi si trovano entro

una distanza d dalla sorgente più vicina.
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• (distance ,r1|B ,r2|B) -> S: calcola la distanza tra le due regioni r1 e

r2 e la propaga in tutta la rete.

• (timer) -> S: restituisce il tempo trascorso durante la valutazione dell’e-

spressione nel dispositivo corrente.

Inoltre sono fornite funzioni per operare con i tipi di dato elencati in fig. 2.1,

come operazioni aritmetiche, logiche, di confronto, manipolazione di tuple e di

vettori, nonché funzioni per la generazione di numeri casuali.

Listing 2.7: Funzioni di built-in in Proto.�
1 ; Arithmetic Operations

2 (+ ,x|N ,y|N ++) -> N ; Adds two or more numbers

3 (- ,x|N ,y|N) -> N ; Subtracts y from x

4 (* ,x|S ++ ,y|N) -> N ; Multiplies numbers together

5 (/ ,x|S ,y|S) -> S ; Divides x by y

6 (mod ,num|S ,divisor|S) -> S ; Returns remainder

7 (max ,x|N ,y|N) -> N ; Returns maximum value

8 (min ,x|N ,y|N) -> N ; Returns minimum value

9 (sqrt ,n|S) -> S ; Returns square root

10 (abs ,n|S) -> S ; Returns absolute value

11

12 ; Random Operations

13 (rnd ,min|S ,max|S) -> S ; Random number between min and max

14

15 ; Vector Operations

16 (vdot ,a|V ,b|V) -> S ; Dot product of vectors

17 (vlen ,v|V) -> S ; Length of vector

18 (normalize ,v|V) -> V ; Normalizes vector to length 1

19

20 ; Tuple Operations

21 (tuple ,v|L ++) -> T ; Creates tuple from arguments , tup is an alias

22 (1st ,tuple|T) -> L ; Returns first element

23 (2nd ,tuple|T) -> L ; Returns second element

24 (3rd ,tuple|T) -> L ; Returns third element
� �
Nel simulatore di Proto, ciascun nodo è dotato di sensori e sonde per interagire

con l’ambiente. Le istruzioni sense e probe permettono rispettivamente la lettura

dai sensori e la scrittura sulle sonde. In particolare, (probe (e1) idx) invia il

valore di e1 alla sonda idx e lo restituisce come risultato.
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Capitolo 3

Collektive

Collektive si articola in tre componenti indipendenti: il DSL (Sezione 3.2), che

definisce sintassi e semantica del linguaggio; una libreria standard (Sezione 3.3),

che fornisce funzionalità comuni per la programmazione aggregata; un plugin per

il compilatore, che gestisce automaticamente l’allineamento e la comunicazione.

Progettato per essere multipiattaforma grazie al supporto del progetto KMP, il

linguaggio consente di eseguire il codice su diverse piattaforme (JVM, JavaScript e

nativo) con modifiche minime. L’intero processo di build è gestito tramite Gradle1.

Collektive è inoltre integrato con Alchemist [PMV13], un simulatore che per-

mette di sviluppare, testare e validare programmi aggregati in ambienti controllati,

prima del loro deployment sui dispositivi reali.

Il linguaggio supporta XC (Sezione 1.1.3), consentendo agli sviluppatori di

sfruttare l’operatore exchange per modellare comunicazioni anisotropiche tra di-

spositivi.

1https://gradle.com/
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3.1 Field

In Collektive, un Field è una struttura dati che associa a ciascun dispositivo del

vicinato un valore. A differenza del campo di vicinato (sezione 1.1.2), tiene traccia

anche del dispositivo locale.

Ad esempio, per un dispositivo con identificativo 0 e vicini 1, 2 e 3, che assegna

il valore 1 a ciascuno (Listing 3.1), la rappresentazione è:

ϕ(localId=0, localValue=1, neighbors={1=1, 2=1, 3=1})

dove localId è l’identificatore del dispositivo locale; localValue è il valore asso-

ciato al dispositivo corrente; neighbors è una mappa che associa gli identificatori

dei vicini ai loro rispettivi valori.

Listing 3.1: Creazione di un campo di vicinato che associa il valore 1 a ogni

dispositivo.�
1 // phi(localId=0, localValue =1, neighbors ={1=1 , 2=1, 3=1})

2 val f: Field <Int , Int > = mapNeighborhood { 1 }

3 // A collapsing view over the field entries

4 // that includes only neighbors.

5 val onlyNeighbors = f.neighbors

6 // A collapsing view over the field entries

7 // that includes the local entry and all neighbors.

8 val all = f.all
� �
Le proprietà all e neighbors (Listing 3.1) permettono di ottenere una vista

sulle entry del Field: la prima include il dispositivo locale, mentre la seconda

restituisce solo i vicini. Forniscono inoltre metodi per convertire la vista in diverse

strutture dati native di Kotlin, come list, set, sequence e map (3.1).�
1 with(mapNeighborhood { 1 }.all) {

2 val l = list // to a Kotlin ’s list of field entries (deviceId , value)

3 val s = set // to a Kotlin ’ set of field entries (deviceId , value)

4 val seq = sequence // to a Kotlin ’s sequence of field entries (deviceId , value)

5 val map = toMap() // to a Kotlin ’s map , where each entry is (deviceId -> value)

6 }
� �
I Field possono essere manipolati sfruttando map/mapValues e combinati tra-

mite alignedMap/alignedMapValues (Listing 3.2).
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Listing 3.2: Esempi di manipolazione e combinazione di Field in Collektive.�
1 val f = mapNeighborhood { 1 }

2 val f1 = mapNeighborhood { 2 }

3 val f2 = mapNeighborhood { 3 }

4

5 /* Manipulation */

6 // phi(localId=0, localValue =10, neighbors ={1=2 , 2=10, 3=2})

7 f.map { (id, value) -> if (id % 2 == 0) value * 10 else value + 1 }

8 // phi(localId=0, localValue =2, neighbors ={1=2 , 2=2, 3=2})

9 f.mapValues { value -> value + 1 }

10

11 /* Combination */

12 // phi(localId=0, localValue =5, neighbors ={1=6 , 2=5, 3=6})

13 f2.alignedMap(f3) { (id, v1), (_, v2) -> if (id % 2 == 0) v1 + v2 else v1 * v2 }

14 // phi(localId=0, localValue =5, neighbors ={1=5 , 2=5, 3=5})

15 f2.alignedMapValues(f3) { v1, v2 -> v1 + v2 }
� �
Data la verbosità di queste operazioni, Collektive fornisce operatori più concisi

per la loro combinazione (Listing 3.3).

Listing 3.3: Operatori per la combinazione di Field in Collektive.�
1 val f2 = mapNeighborhood { 2 }

2 val f3 = mapNeighborhood { 3 }

3 // phi(localId=0, localValue =5, neighbors ={1=5 , 2=5, 3=5})

4 f2 + f3

5 // phi(localId=0, localValue=-1, neighbors ={1=-1, 2=-1, 3=-1})

6 f2 - f3

7 // phi(localId=0, localValue =6, neighbors ={1=6 , 2=6, 3=6})

8 f2 * f3
� �
I Field supportano anche operazioni di riduzione, come fold, e possono ac-

cedere alle funzioni di aggregazione standard di Kotlin una volta convertiti in

strutture dati native (Listing 3.4).

Listing 3.4: Esempi di riduzione di Field in Collektive.�
1 val f = mapNeighborhood { 1 }

2 // Counting the number of devices in the neighboorhood (including self)

3 val count = f

4 .all

5 .fold (0) { acc , _ -> acc + 1 }
� �
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3.2 Operatori

Collektive mette a disposizione l’interfaccia Aggregate, che definisce il set minimo

di operazioni fondamentali per la programmazione aggregata. Tali operazioni sono

accessibili sia come metodi dell’interfaccia sia tramite extension functions. L’inter-

faccia mantiene inoltre l’identificativo locale (localId) del dispositivo che esegue

il programma aggregato. Per utilizzare i costrutti di programmazione aggregata, i

programmi devono estendere Aggregate.

I nomi degli operatori sono stati scelti privilegiando una sintassi più adatta

a Kotlin, piuttosto che i termini usati in letteratura. In particolare, rep è stato

rinominato in evolve e nbr in neighboring.

Exchange L’operatore exchange (Listing 3.5) è il cuore del DSL: consente a

ciascun dispositivo di inviare valori differenti ai propri vicini, permettendo cos̀ı

interazioni personalizzate e modellando l’evoluzione spazio-temporale del sistema

tramite una comunicazione anisotropica.

Listing 3.5: Firma dell’operatore exchange in Collektive.�
1 inline fun <ID : Any , reified Shared > Aggregate <ID >. exchange(

2 initial: Shared ,

3 noinline body: (Field <ID, Shared >) -> Field <ID, Shared >,

4 ): Field <ID , Shared >
� �
A partire da un valore iniziale (initial), che funge da default quando non sono

ancora stati ricevuti messaggi dai vicini, exchange costruisce un campo contenente

i messaggi ricevuti nell’ultimo round. Su questo viene applicata una funzione

(body) che restituisce un nuovo campo, i cui valori vengono inviati come messaggi

personalizzati ai rispettivi vicini al termine del round corrente. Questo costrutto,

derivato da XC (Sezione 1.1.3), permette di esprimere tutti gli altri operatori di

FC. Tuttavia, non tutti i costrutti ne richiedono l’utilizzo: ad esempio, evolve si

occupa esclusivamente dell’evoluzione temporale locale, senza comunicazione con i

vicini, e per questo non viene implementato tramite exchange, poiché risulterebbe

inefficiente.

Un esempio di utilizzo dell’operatore exchange è riportato in listing 3.6: par-

tendo dal valore 1, ogni dispositivo riceve i valori dai vicini e, in base al loro
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identificativo, invia a ciascuno il valore ricevuto incrementato di 1 oppure il suo

doppio. Il valore locale viene aggiornato secondo la stessa logica, tenendo presente

che il dispositivo corrente è incluso in field.

Listing 3.6: Esempio di utilizzo dell’operatore exchange in Collektive.�
1 // when the device ID is even , send value + 1; when odd , send value * 2

2 exchange (1) { field ->

3 field.map { id, value ->

4 if (id % 2 == 0) value + 1 else value * 2

5 }

6 }
� �
Share L’operatore share (Listing 3.7) modella l’evoluzione spazio-temporale del

dispositivo, consentendogli di condividere la stessa informazione con tutti i vicini.

Listing 3.7: Firma dell’operatore share in Collektive.�
1 inline fun <ID : Any , reified Shared > Aggregate <ID >. share(

2 initial: Shared ,

3 noinline body: (Field <ID, Shared >) -> Shared ,

4 ): Shared
� �
A partire da un valore iniziale (initial), share costruisce un Field di valori

condivisi che viene elaborato dalla funzione body. Il risultato viene memorizzato

internamente e inviato a tutti i vicini; ad ogni round, l’operatore restituisce lo stato

aggiornato in base ai messaggi ricevuti. Internamente, è implementato tramite

exchange (Sezione 3.2).

Un esempio di utilizzo di share è riportato in listing 4.8, dove ogni dispositivo

calcola la propria temperatura in base a quella dei vicini e, una volta ottenuto il

risultato, lo condivide con tutti i nodi adiacenti.

Neighboring l’operatore neighboring (Listing 3.8), corrispondente al costrutto

nbr di FC (Sezione 1.1.2), consente a un dispositivo di accedere ai valori calcolati

dai vicini nell’ultimo round di esecuzione.

Listing 3.8: Firma dell’operatore neighboring in Collektive.�
1 inline fun <ID : Any , reified Shared > Aggregate <ID >. neighboring(local: Shared):

Field <ID, Shared >
� �
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Restituisce un Field che mappa ogni vicino al valore locale local.

Per minimizzare la comunicazione, si usano le varianti neighborhood e

mapNeighborhood. La prima restituisce un Field con i soli identificatori dei vicini,

mentre la seconda consente di mappare ciascun vicino ad un valore calcolato dal

dispositivo corrente.

In listing 3.9 si illustra la differenza tra i tre operatori, considerando un di-

spositivo con tre vicini identificati da 1, 2 e 3. L’operatore neighboring crea

un Field in cui a ciascun nodo δi è associato il proprio valore locale xi. Con

neighborhood si ottiene, invece, un Field che associa a ogni vicino il valore 0,

utile per identificare i dispositivi adiacenti senza scambiare informazioni aggiunti-

ve. Infine, mapNeighborhood produce un Field che associa a ciascun vicino δi il

valore x0, cioè il valore locale del dispositivo corrente.

Listing 3.9: Varianti dell’operatore neighboring in Collektive.�
1 val x = localComputation ()

2 // phi(localId=0, localValue=x_0 , neighbors ={1=x_1 , 2=x_2 , 3=x_3})

3 val f = neighboring(x);

4 // phi(localId=0, localValue =0, neighbors ={1=0 , 2=0, 3=0})

5 val f1 = neighborhood ();

6 // phi(localId=0, localValue=x_0 , neighbors ={1=x_0 , 2=x_0 , 3=x_0})

7 val f2 = mapNeighborhood { x };
� �
Evolve L’operatore evolve (Listing 3.10) corrisponde al costrutto rep di FC

(Sezione 1.1.2) e consente di modellare l’evoluzione temporale dello stato di un

dispositivo.

Listing 3.10: Firma dell’operatore evolve in Collektive.�
1 fun <Stored > evolve(initial: Stored , transform: (Stored) -> Stored): Stored
� �

A partire da un valore iniziale (initial), a ogni round di esecuzione ciascun

dispositivo applica la funzione transform al valore corrente per determinare il

valore del round successivo.

In listing 3.11 si mostra come utilizzare l’operatore evolve per creare un campo

che associa ad ogni dispositivo un contatore che incrementa ad ogni round.

Listing 3.11: Esempio di utilizzo dell’operatore evolve in Collektive.�
1 val round = evolve (0) { it + 1 }
� �
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3.3 Standard Library

Collektive dispone di una libreria standard, sviluppata a partire dai costrutti

del DSL, che mette a disposizione funzionalità comuni utili alla realizzazione di

programmi aggregati.

In questa sezione verranno presentate solamente le funzionalità utilizzate nel

capitolo 4; per un elenco completo si rimanda alla documentazione ufficiale2.

Spreading Questo package offre funzioni per la propagazione di informazioni

all’interno della rete di dispositivi.

Tra le principali, troviamo gradientCast, multiGradientCast e distanceTo.

La funzione gradientCast (Listing 3.12) permette di diffondere un valore locale

da una sorgente a tutta la rete, assegnando a ciascun dispositivo il valore prove-

niente dalla sorgente più vicina. multiGradientCast (Listing 3.13) amplia questa

funzionalità, consentendo a ogni dispositivo di ottenere una mappa dei valori pro-

pagati da tutte le sorgenti. Infine, distanceTo (Listing 3.14) calcola la distanza

minima dalla sorgente più vicina.

Listing 3.12: Firma della funzione gradientCast dalla libreria standard di

Collektive�
1 /**

2 * Computes a fast , self -healing gradient broadcast of local values

3 * from all source nodes , always retaining the

4 * data from the nearest source.

5 */

6 inline fun <reified ID : Any , reified Type > Aggregate <ID >. gradientCast(

7 source: Boolean ,

8 local: Type ,

9 metric: Field <ID , Double >,

10 maxDiameter: Int = Int.MAX_VALUE ,

11 noinline accumulateData: (fromSource: Double , toNeighbor: Double , data: Type)

-> Type = { _, _, data -> data },

12 crossinline accumulateDistance: Reducer <Double > = Double ::plus ,

13 ): Type
� �

2https://javadoc.io/doc/it.unibo.collektive/collektive-stdlib/latest/index.html
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Listing 3.13: Firma della funzione multiGradientCast dalla libreria standard di

Collektive�
1 /**

2 * For each ID in sources , propagates data from that source using

3 * a fast -repair integer gradient , and collects the results in a map

4 * from source ID to propagated value.

5 */

6 inline fun <reified ID : Any , reified Value > Aggregate <ID >. multiGradientCast(

7 sources: Iterable <ID >,

8 local: Value ,

9 metric: Field <ID , Double >,

10 maxDiameter: Int = Int.MAX_VALUE ,

11 noinline accumulateData: (fromSource: Double , toNeighbor: Double , data: Value)

-> Value = { _, _, data -> data },

12 ): Map <ID, Value >
� �
Listing 3.14: Firma della funzione distanceTo dalla libreria standard di Collektive�

1 /**

2 * For each ID in sources , propagates data from that source using

3 * a fast -repair integer gradient , and collects the results in a map

4 * from source ID to propagated value.

5 */

6 inline fun <reified ID : Any , reified Value > Aggregate <ID >. multiGradientCast(

7 sources: Iterable <ID >,

8 local: Value ,

9 metric: Field <ID , Double >,

10 maxDiameter: Int = Int.MAX_VALUE ,

11 noinline accumulateData: (fromSource: Double , toNeighbor: Double , data: Value)

-> Value = { _, _, data -> data },

12 ): Map <ID, Value >
� �
Accumulation Questo package offre funzioni per l’accumulo di valori su specifici

nodi della rete.

La funzione convergeCast (Listing 3.15) permette di aggregare un campo com-

putazionale verso una destinazione, seguendo la discesa del gradiente di un campo

potenziale fornito e applicando una funzione di accumulo a ciascun nodo attra-

versato. La funzione countDevices (Listing 3.16), basata su convergeCast, con-

ta il numero di dispositivi presenti nella rete, aggregando i valori verso il nodo

destinazione (sink).
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Listing 3.15: Firma della funzione convergeCast dalla libreria standard di

Collektive�
1 /**

2 * Aggregates a field of local values along a spanning tree built by descending

the provided potential field.

3 * The parent of the current node is selected by picking the minimum as provided

by the [selectParent] comparator ,

4 * which by default selects the parent with the lowest potential. Data is

accumulated using the [accumulateData] function.

5 */

6 inline fun <reified ID : Any , reified Data , reified Potential : Comparable <

Potential >> Aggregate <ID >. convergeCast(

7 local: Data ,

8 potential: Potential ,

9 selectParent: Comparator <FieldEntry <ID, Potential >> = defaultComparator (),

10 crossinline accumulateData: (Data , Data) -> Data ,

11 ): Data

12

13 /**

14 * Aggregate a field of local into the closest sink

15 * along a spanning tree built using hopDistanceTo.

16 * Data is accumulated using the accumulateData function.

17 */

18 inline fun <ID : Any , Data > Aggregate <ID >. convergeCast(

19 local: Data ,

20 sink: Boolean ,

21 crossinline accumulateData: (Data , Data) -> Data

22 ): Data
� �
Listing 3.16: Firma della funzione countDevices dalla libreria standard di

Collektive�
1 /**

2 * Counts the number of devices in the network

3 * by aggregating ‘1‘ from each device towards the sink.

4 */

5 inline fun <ID : Any > Aggregate <ID >. countDevices(sink: Boolean): Int
� �
Collapse Questo package mette a disposizione funzioni di riduzione per ottenere

un singolo valore a partire da un Field.

all, any e countMatching (Listing 3.17) valutano un predicato su tutti i valori

del Field: all restituisce true se tutti i valori lo soddisfano, any restituisce true

se almeno uno lo soddisfa, mentre countMatching restituisce il numero di valori

che soddisfano il predicato.
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fold e reduce (Listing 3.18) riducono un Field a un singolo valore sfruttando

una funzione di accumulo; la differenza è che fold consente di specificare un valore

iniziale, mentre reduce utilizza il primo elemento come punto di partenza e non

considera il dispositivo locale.

Infine, sono disponibili un insieme di varianti delle funzioni min e max per

ottenere rispettivamente il valore minimo e massimo all’interno di un Field.

Listing 3.17: Firme delle funzioni all, any e countMatching dalla libreria standard

di Collektive�
1 /**

2 * Returns true if all elements in the collapsed field

3 * satisfy the given predicate.

4 */

5 inline fun <T> Collapse <T>.all(

6 crossinline predicate: Predicate <T>

7 ): Boolean

8

9 /**

10 * Returns true if any element in the collapsed field

11 * satisfies the given predicate.

12 */

13 inline fun <T> Collapse <T>.any(

14 crossinline predicate: Predicate <T>

15 ): Boolean

16

17 /**

18 * Counts how many elements in the collapsed field

19 * satisfy the given predicate.

20 */

21 inline fun <T> Collapse <T>. countMatching(

22 crossinline predicate: Predicate <T>

23 ): Int
� �
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Listing 3.18: Firme delle funzioni fold e reduce dalla libreria standard di

Collektive�
1 /**

2 * Folds the collapsed field into a single value ,

3 * starting from initial and combining elements

4 * with the provided accumulator.

5 */

6 inline fun <Destination , T> Collapse <T>.fold(

7 initial: Destination ,

8 crossinline accumulator: Accumulator <Destination , T>

9 ): Destination

10

11 /**

12 * Reduces the elements in this collapse

13 * (which excludes the local element , i.e., only peers)

14 * into a single value by repeatedly applying reducer.

15 */

16 inline fun <T : Any > CollapseNeighbors <T>. reduce(

17 crossinline reducer: Reducer <T>

18 ): T?
� �
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Capitolo 4

Esempi Trasposti in Collektive

In questo capitolo si presenta la trasposizione di una selezione di programmi ag-

gregati, originariamente sviluppati in Proto (Capitolo 2), nel linguaggio Collekti-

ve (Capitolo 3). Per ciascun esempio viene illustrato il codice sorgente origina-

le, una descrizione dettagliata del funzionamento, la relativa implementazione in

Collektive e le immagini delle simulazioni realizzate.

Gli esempi selezionati comprendono: calcolo della media locale (Sezione 4.1),

verifica dell’appartenenza a una regione circolare (Sezione 4.2), identificazione dei

dispositivi lungo un anello (Sezione 4.3), diffusione della temperatura (Sezione 4.4),

navigazione lungo la discesa del gradiente (Sezione 4.5), partizionamento di Vo-

ronoi (Sezione 4.6), connessione lungo l’albero dei cammini minimi (Sezione 4.7),

tracciamento di un dispositivo (Sezione 4.8) e dinamica di uno stormo (Sezione 4.9).

Il codice sviluppato per questo lavoro è reso disponibile pubblicamente nel

repository ufficiale degli esempi di Collektive1.

1https://github.com/Collektive/collektive-examples
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4.1 Media Locale

Obiettivo Calcolare la media dei vettori nel vicinato.

Codice originale La funzione local-average (Listing 4.1) accetta come para-

metro il vettore locale v del dispositivo, con v ∈ R3.

Listing 4.1: Codice della funzione local-average in Proto.�
1 (def local-average (v)

2 (* (/ 1 (sum-hood 1)) (fold-hood + (tup 0 0 0) v)))
� �
L’espressione complessiva è definita come il prodotto (*) di due termini distinti. Il

termine di destra, (fold-hood + (tup 0 0 0) v), calcola la somma dei vettori

locali presenti nel vicinato. Il termine di sinistra, (/ 1 (sum-hood 1)), si occupa

invece del conteggio dei vicini, incluso se stesso, e del calcolo del suo inverso. Il

risultato del programma è quindi formalizzato come

local-average(v) =
1∑
d∈N 1

·
∑
d∈N

v(d)

, dove N rappresenta l’insieme dei dispositivi nel vicinato.

Trasposizione in Collektive (Listing 4.2) La raccolta dei vettori nel vicinato

avviene tramite il costrutto neighboring (3.8); la loro somma viene calcolata con

la funzione fold (3.18) e, infine, la media si ottiene dividendo tale somma per il

numero di dispositivi, determinato tramite la proprietà size.

Listing 4.2: Trasposizione di local-average in Collektive.�
1 /**

2 * Computes the local average of vectors in the neighborhood of the current device

3 */

4 fun Aggregate <Int >. localAverage(v: Point3D): Point3D = with(neighboring(v).all) {

5 fold(vectorZero) { acc , nbr -> acc + nbr.value } / size.toDouble ()

6 }
� �
In fig. 4.1 si illustra la simulazione dell’esperimento, dove ogni nodo è etichet-

tato con la norma euclidea del vettore risultante.
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Figura 4.1: Simulazione dell’esperimento in listing 4.2. I dispositivi inizializzano v

casualmente e convergono verso il valore medio locale. Il colore dei nodi dipende
dalla norma euclidea del vettore calcolato, la cui intensità è indicata a fianco.
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4.2 Nel Cerchio

Obiettivo Determinare se un dispositivo appartiene a una regione circolare, dati

il centro e il raggio del cerchio.

Codice originale La funzione in-circle (Listing 4.3) richiede in ingresso le

coordinate del centro (o) e il raggio (r) del cerchio.

Listing 4.3: Codice della funzione in-circle in Proto.�
1 (def in-circle (o r)

2 (let ((dv (- (probe (coord) 1) o)))

3 (< (probe (vdot dv dv) 0) (* r r))))
� �
L’istruzione let ((dv (- (probe (coord) 1) o))) calcola la differenza tra le

coordinate del dispositivo corrente e quelle del nodo centrale, depositando il risul-

tato nella variabile dv. Successivamente, l’espressione (< (probe (vdot dv dv)

0) (* r r)) verifica che il prodotto scalare di dv con sè stesso sia inferiore al

quadrato del raggio r, restituendo un valore booleano che indica l’appartenenza al

cerchio.

Trasposizione in Collektive (Listing 4.4) La propagazione delle coordinate

del nodo centrale è realizzata tramite la funzione gradientCast (Listing 3.12).

In seguito, si verifica che il quadrato della distanza tra il dispositivo corrente e il

centro sia inferiore al quadrato del raggio.

In fig. 4.2 è mostrata la simulazione dell’esperimento: il centro o è evidenziato in

verde, i dispositivi all’interno del cerchio sono colorati in rosso, mentre i dispositivi

esterni al cerchio sono rappresentati in nero.

Listing 4.4: Trasposizione della funzione in-circle in Collektive.�
1 /**

2 * Determines if the current device (located in [location ])

3 * is within a circle of a specified radius from a [center] point.

4 */

5 fun Aggregate <Int >. inCircle(center: Boolean , location: Point2D , metric: () ->

Field <Int , Double >): Boolean = with(location) {

6 val centerPos = gradientCast(center , this , metric ())

7 distanceToSquared(centerPos) <= RADIUS.pow(2)

8 }
� �
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Figura 4.2: Simulazione dell’esperimento in listing 4.4. Il centro o è evidenziato in
verde, i dispositivi all’interno del cerchio sono colorati in rosso, mentre i dispositivi
esterni al cerchio sono rappresentati in nero.
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4.3 Anello

Obiettivo Identificare i dispositivi disposti lungo un anello di raggio variabile

nel tempo.

Codice originale La funzione ring (Listing 4.5) non prevede argomenti in in-

gresso, ma si avvale della funzione sense per individuare i dispositivi che fungono

da sorgente del segnale.

Listing 4.5: Codice della funzione ring in Proto.�
1 (def ring ()

2 (let ((t (probe (broadcast (sense 1) (if (sense 1) (timer) 0)) 0))

3 (d (probe (gradient (sense 1)) 1)))

4 (if (< (abs (- (* 5 t) d)) 4)

5 (green 1)

6 (blue 1))))
� �
L’espressione (let (...)) si articola in due componenti principali. La prima,

((t (probe (broadcast (sense 1) (if (sense 1) (timer) 0)) 0)))

, propaga il valore del timer dalle sorgenti del segnale: ogni dispositivo riceve

il valore dalla sorgente più vicina e lo memorizza nella variabile t. La seconda

componente, (d (probe (gradient (sense 1)) 1)), calcola la distanza dalla

sorgente più prossima, assegnandola alla variabile d. Infine, l’espressione (if (<

(abs (- (* 5 t) d)) 4) (green 1) (blue 1)) verifica se la distanza d si di-

scosta di meno di 4 unità dalla posizione dell’anello, che avanza con una velocità

di 5 unità al secondo. Se la condizione è soddisfatta, il dispositivo viene colorato

di verde; altrimenti, di blu.

Trasposizione in Collektive (Listing 4.6) La propagazione del valore del timer

dalle sorgenti avviene tramite la funzione gradientCast (Listing 3.12), mentre la

funzione distanceTo (Listing 3.14) permette a ciascun dispositivo di calcolare la

distanza dalla sorgente più vicina.

Come illustrato in fig. 4.3, l’anello si propaga come un’onda, originata dalla

sorgente. Per evitare che la simulazione si concluda subito dopo la prima propaga-
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zione, è stata introdotta una dinamica periodica che permette all’anello di formarsi

e dissolversi ciclicamente nel tempo.

Listing 4.6: Trasposizione della funzione ring in Collektive.�
1 /**

2 * Create a ring wave pattern originating from the [center] node.

3 * The wave propagates outward from the center ,

4 * with a speed defined by [WAVE_SPEED],

5 * a thickness defined by [WAVE_THICKNESS],

6 * and a period defined by [WAVE_PERIOD ].

7 * It returns a boolean field indicating whether the ring

8 * is active at each node.

9 */

10 private fun Aggregate <Int >.ring(center: Boolean , currentTime: () -> Double , metric

: () -> Field <Int , Double >): Boolean =

11 run {

12 val waveTime = broadcastTime(center , currentTime , metric)

13 val distance = distanceTo(center , metric = metric ())

14 isRingActive(waveTime , distance)

15 }

16

17 /**

18 * Broadcast the current time from the [center] to all

19 * other nodes in the network ,

20 * based on the given [metric ].

21 */

22 private fun Aggregate <Int >. broadcastTime(

23 center: Boolean ,

24 currentTime: () -> Double ,

25 metric: () -> Field <Int , Double >,

26 ): Double = gradientCast(

27 source = center ,

28 local = currentTime (),

29 metric = metric (),

30 )

31

32 /**

33 * Check if the ring is active at the given [waveTime] and [distance]

34 * from the center.

35 * A ring is active if the distance from the center

36 * is within the wave thickness.

37 */

38 private fun isRingActive(waveTime: Double , distance: Double): Boolean =

39 abs(WAVE_SPEED * (waveTime % WAVE_PERIOD) - distance) < WAVE_THICKNESS
� �
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Figura 4.3: Simulazione dell’esperimento in listing 4.6. I dispositivi lungo l’anello
sono colorati in verde, mentre gli altri sono colorati in blu. La simulazione è mo-
strata in quattro istanti temporali distinti, evidenziando il movimento dell’anello
nel tempo.
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4.4 Temperature

Obiettivo Simulare la diffusione del calore in un’area, considerando la presenza

simultanea di sorgenti di calore e di freddo.

Codice originale La funzione temperature (Listing 4.7) non accetta argomenti.

Un dispositivo è una sorgente di calore se il suo identificatore mid è minore di 6

ed è pari, mentre è una sorgente di freddo se mid è minore di 6 ma dispari.

Listing 4.7: Codice della funzione temperature in Proto.�
1 (def temperature ()

2 (let ((hot (and (< (mid) 6) (mod (mid) 2)))

3 (cold (and (< (mid) 6) (not (mod (mid) 2)))))

4 (rep temp 25 (mux hot 30 (mux cold 20 (/ (sum-hood (nbr temp)) (sum-hood 1))))

)))
� �
L’istruzione ( rep temp 25 ( mux hot 30 ( mux cold 20 (/ (sum-hood(nbr

temp))(sum-hood 1))))) modella l’evoluzione del campo di temperatura nello

spazio e nel tempo. Inizialmente, ogni dispositivo imposta la propria temperatura

a 25 gradi (rep temp 25 ...). Tale valore viene aggiornato ad ogni round in base

al ruolo del dispositivo: se il nodo agisce come sorgente di calore, viene impostato

a 30 gradi (mux hot 30 ...); se invece funge da sorgente di freddo, viene fissa-

to a 20 gradi (mux cold 20 ...); in tutti gli altri casi, si assume la media delle

temperature rilevate nel vicinato ((/ (sum-hood(nbr temp))(sum-hood 1))).

Trasposizione in Collektive (Listing 4.8) L’evoluzione spazio-temporale della

temperatura è modellata tramite l’operatore share (Sezione 3.2).

In fig. 4.4 è riportata una simulazione dell’esperimento, in cui i dispositivi che

agiscono come sorgenti di calore sono evidenziati da un rettangolo rosso, mentre

quelli che fungono da sorgenti di freddo sono evidenziati da un rettangolo blu. Il

colore di ciascun dispositivo rappresenta la temperatura locale, secondo una scala

cromatica che va dal nero (freddo) al rosso (caldo).
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Listing 4.8: Trasposizione della funzione temperature in Collektive.�
1 /**

2 * Represents an evolving pseudo -temperature field where

3 * each device updates its temperature over time.

4 * Some devices act as fixed heat sources ([ heatSource ])

5 * at [HEAT_SOURCE_TEMPERATURE], others as fixed cold sources

6 * ([ coldSource ]) at [COLD_SOURCE_TEMPERATURE ].

7 * All other devices calculate their temperature dynamically as

8 * the average temperature of their neighboring devices.

9 */

10 fun Aggregate <Int >. temperature(heatSource: Boolean , coldSource: Boolean): Double =

11 share(INITIAL_TEMPERATURE) { previousTemperatures ->

12 val averageTemperature = previousTemperatures.all

13 .values

14 .sequence

15 .average ().takeIf { it.isFinite () } ?: INITIAL_TEMPERATURE

16 when {

17 heatSource -> HEAT_SOURCE_TEMPERATURE

18 coldSource -> COLD_SOURCE_TEMPERATURE

19 else -> averageTemperature

20 }

21 }
� �
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Figura 4.4: Simulazione dell’esperimento in listing 4.8. I dispositivi che agiscono
come sorgenti di calore sono evidenziati da un rettangolo rosso, mentre quelli che
agiscono come sorgenti di freddo sono evidenziati da un rettangolo blu. Il colore
dei dispositivi rappresenta la propria temperatura, con una scala che va dal nero
(freddo) al rosso (caldo).
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4.5 Navigazione del Gradiente

Obiettivo Guidare i nodi mobili verso una fonte di interesse all’interno della

rete, muovendosi lungo la discesa del gradiente del campo delle distanze.

Codice originale Il programma (Listing 4.9) è composto da tre funzioni: grad,

share-distance-to e nav-grad.

Listing 4.9: Codice Proto per l’esperimento di navigazione del gradiente,

comprendente le funzioni grad, share-distance-to e nav-grad.�
1 (def grad (v)

2 (* (/ 1 (int-hood 1)) ; normalize over neighborhood

3 (int-hood (if (or (= (nbr-range) 0) (not (< (abs (- v (nbr v))) (inf))))

4 (tup 0 0 0) ; ignore singularity

5 (* (/ (- v (nbr v)) (nbr-range))

6 (normalize (nbr-vec)))))))

7

8 (def share-distance-to (is-calculating source)

9 (let ((base (if is-calculating (distance-to source) (inf))))

10 (green (< base (inf)))

11 (mux is-calculating base (min-hood (+ (nbr-range) (nbr base))))))

12

13 (def nav-grad (is-mover source)

14 (let ((g (grad (share-distance-to (not is-mover) source))))

15 (mux (and is-mover (> (len g) 0)) (normalize g) (tup 0 0))))
� �
grad calcola il gradiente di un campo di valori scalari v, restituendo un vet-

tore che indica la direzione del massimo decremento di quel campo. L’espressione

più esterna consiste in una moltiplicazione (*) tra un fattore di normalizzazione e

l’integrale che aggrega i contributi dei vicini al gradiente. Il fattore di normalizza-

zione, definito come (/ 1 (int-hood 1)), calcola il reciproco del numero di vicini

(pesati) considerati nell’integrale. Il contributo di ciascun nodo viene determinato

mediante l’espressione int-hood (if ...). Per ogni membro del vicinato, viene

valutata la condizione (or (= (nbr-range) 0) (not (< (abs (- v (nbr v)))

(inf)))). Se la distanza è nulla (indicando il dispositivo stesso) oppure se la diffe-

renza tra il valore locale v e quello del vicino è indefinita, il contributo viene azze-

rato per evitare singolarità.Altrimenti, si calcola mediante l’espressione (* (/ (-

v (nbr v)) (nbr-range)) (normalize (nbr-vec)))), che corrisponde al pro-
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dotto tra la differenza dei valori del campo, normalizzata rispetto alla distanza tra

i due dispositivi, e il vettore normalizzato direzionato verso il vicino.

share-distance-to calcola e condivide una stima della distanza dalla sorgen-

te all’interno della rete. Essa richiede due argomenti booleani: is-calculating,

che indica se il dispositivo è abilitato al calcolo della distanza, e source, che iden-

tifica i dispositivi di cui si vuole conoscere la distanza. I nodi abilitati al calcolo

sfruttano la funzione distance-to per stimare la distanza dalla sorgente, memo-

rizzando il risultato nella variabile base. I dispositivi per cui base risulta finito

vengono illuminati di verde. La funzione restituisce il risultato dell’espressione

(mux is-calculating base (min-hood (+ (nbr-range) (nbr base)))).

Se is-calculating è vero, la funzione restituisce base; altrimenti, restituisce il

minimo tra le somme delle distanze dai vicini e le rispettive stime di distanza dalla

sorgente.

La funzione nav-grad combina le funzionalità di share-distance-to e grad

per calcolare il vettore di navigazione verso la sorgente. Richiede in ingresso

is-mover, il quale indica la mobilità del dispositivo, e source, che identifica i

dispositivi sorgente del campo di distanza. Il gradiente del campo viene calcolato

tramite l’espressione (grad (share-distance-to (not is-mover) source)) e

il risultato viene memorizzato nella variabile g. Si restituisce il risultato di (mux

(and is-mover (> (len g) 0)) (normalize g) (tup 0 0). Se il dispositivo è

mobile e g ha lunghezza positiva, l’esito è il vettore normalizzato g; altrimenti, si

ottiene il vettore nullo.

Trasposizione in Collektive La funzione grad (Listing 4.10) è stata tradotta

come segue : si calcolano le differenze (differences) tra il valore locale e quelli

dei vicini tramite l’espressione mapNeighborhood { v } - neighboring(v) (Li-

sting 3.9), quindi si determinano distanze e direzioni rispetto ai vicini e si combi-

nano questi campi di vicinato (alignedMapValues) per ottenere il gradiente.

La funzione shareDistanceTo (Listing 4.11) utilizza la funzione distanceTo

(Listing 3.14) per calcolare le distanze dalla sorgente; i dispositivi incapaci di cal-

colarla determinano il minimo tra la somma delle distanze dai vicini e le rispetti-

ve stime (neighborDistances() + neighboring(myDist)), grazie all’espressione

potentialDist.all.valueOfMinBy(...).
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In Listing 4.12 si mostra la trasposizione della funzione nav-grad che, come

l’originale, combina le funzionalità delle due funzioni precedenti per calcolare il

vettore di navigazione verso la sorgente.

Listing 4.10: Trasposizione della funzione grad in Collektive.�
1 /**

2 * Compute the gradient of a scalar field [v].

3 */

4 fun Aggregate <Int >.grad(

5 v: Double ,

6 neighborDistances: () -> Field <Int , Double >,

7 neighborDirectionVectors: () -> Field <Int , Vector2D >,

8 ): Vector2D {

9 val differences = mapNeighborhood { v } - neighboring(v)

10 val directions = neighborDirectionVectors ()

11 val distances = neighborDistances ()

12 return distances.alignedMapValues(

13 differences ,

14 directions ,

15 { dist , diff , dir ->

16 when {

17 dist == 0.0 || !(abs(diff) < Double.POSITIVE_INFINITY) ->

vectorZero

18 else -> dir.normalize () * (diff / dist)

19 }

20 }).all.run {

21 fold(vectorZero) { acc , (_, value) -> acc + value } / size.toDouble ()

22 }

23 }
� �
Listing 4.11: Trasposizione della funzione share-distance-to in Collektive.�

1 /**

2 * Share the distance from the [isCalculating] or [source]

3 * to all non [isCalculating] nodes.

4 */

5 fun Aggregate <Int >. shareDistanceTo(

6 isCalculating: Boolean ,

7 source: Boolean ,

8 neighborDistances: () -> Field <Int , Double >,

9 ): Double {

10 val toSource = distanceTo(source , neighborDistances ())

11 val myDist = if (isCalculating) toSource else Double.POSITIVE_INFINITY

12 val potentialDist = neighborDistances () + neighboring(myDist)

13 val minDistance = potentialDist.all.valueOfMinBy { (_, value) -> value }

14 return if (isCalculating) myDist else minDistance

15 }
� �
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Listing 4.12: Trasposizione della funzione nav-grad (4.9) in Collektive.�
1 /**

2 * Computes the navigation gradient vector for a node ,

3 * determining its direction of movement.

4 */

5 fun Aggregate <Int >. navGrad(

6 mover: Boolean ,

7 source: Boolean ,

8 neighborDistances: () -> Field <Int , Double >,

9 neighborDirectionVectors: () -> Field <Int , Vector2D >,

10 ): Vector2D = shareDistanceTo (!mover , source , neighborDistances).let { distance ->

11 val g = grad(distance , neighborDistances , neighborDirectionVectors)

12 when {

13 mover && g.magnitude () > 0.0 -> g.normalize ()

14 else -> vectorZero

15 }

16 }
� �
In fig. 4.5 è riportata la simulazione dell’esperimento, in cui ogni nodo è colorato

in base alla distanza dalla sorgente (evidenziata in rosso), mentre i dispositivi

mobili sono evidenziati in blu. La figura mostra come i nodi mobili seguano la

discesa del gradiente del campo delle distanze per raggiungere la sorgente.
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Figura 4.5: Simulazione dell’esperimento in listing 4.12. Ogni nodo è colorato
rispetto alla distanza dalla sorgente (nodo evidenziato in rosso). I dispositivi
mobili sono evidenziati da un cerchio blu.
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4.6 Partizionamento di Voronoi

Obiettivo Suddividere lo spazio della rete tramite partizionamento di Voronoi.

Un insieme di dispositivi è designato come sorgenti. Ogni altro nodo determina a

quale sorgente è più vicino, suddividendo di fatto lo spazio della rete in celle. Il

dispositivo è classificato in base alla sua posizione: in una cella, su un bordo (tra

due celle) o come vertice (all’intersezione di almeno tre celle). La colorazione dei

nodi riflette questa classificazione.

Codice originale Il programma (Listing 4.13) richiede in ingresso due valo-

ri booleani: src, che definisce l’insieme dei dispositivi generatori delle celle, e

showedge, un flag che abilita la visualizzazione dei bordi.

Listing 4.13: Codice della funzione voronoi in Proto.�
1 (def voronoi (src showedge)

2 (let* (( closest-src (broadcast src (mid)))

3 (edge (any-hood (not (= (nbr closest-src) closest-src))))

4 (vertex

5 (and edge

6 (let (( max-nbr (max-hood (if (not (= closest-src (nbr closest-src)))

7 (nbr closest-src)

8 -1)))

9 (min-nbr (min-hood (if (not (= closest-src (nbr closest-src)))

10 (nbr closest-src)

11 (inf)))))

12 (not (= max-nbr min-nbr))))))

13 (if (and edge showedge)

14 (if vertex

15 (rgb (tup 1 0 0))

16 (rgb (tup 0 0 0.5)))

17 (uid2rgb closest-src 10))

18 (tup closest-src edge)))
� �
Tramite il costrutto let*, si definiscono tre variabili in modo sequenziale:

• closest-src: identificatore del dispositivo sorgente più vicino, sfruttando

la funzione broardcast src (mid).

• edge: indica se il dispositivo corrente si trovi su un bordo tra due celle, ossia

se esista almeno un vicino (any-hood) la cui sorgente più prossima (nbr

closest-src) sia diversa dalla propria (closest-src).
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• vertex: indica se il dispositivo corrente sia un vertice, ossia se si trovi su

un bordo (and edge) e, tra i vicini appartenenti a celle diverse (max-nbr,

min-nbr), vi siano almeno due identificativi di sorgente distinti ((not (=

max-nbr min-nbr))).

Se il flag showedge è attivo, i dispositivi vengono colorati in base alla loro clas-

sificazione: i vertici assumono il colore rgb (tup 1 0 0), i bordi rgb (tup 0 0

0.5), mentre gli altri dispositivi adottano il colore associato alla propria cella di

appartenenza (uid2rgb closest-src 10). La funzione restituisce la coppia (tup

closest-src edge).

Trasposizione in Collektive (Listing 4.14) L’identificatore della sorgente più

vicina è determinato dalla funzione gradientCast (Listing 3.12), la cui natura

assicura che ogni dispositivo ottenga il valore da quella più prossima.

I vicini condividono il valore calcolato tramite neighboring (Listing 3.8), per-

mettendo a ogni nodo di contare il numero di sorgenti diverse nel vicinato, deter-

minando cos̀ı la propria classificazione. Se distinctSources >= 3, il dispositivo

è un vertice; se distinctSources == 2, è su un bordo.

In questa traduzione, il programma non restituisce la coppia (closest-src

edge), bens̀ı si limita a restituire il colore (Figura 4.6) associato al dispositivo.
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Listing 4.14: Trasposizione della funzione voronoi in Collektive.�
1 /**

2 * Computes the Voronoi tessellation (https ://en.wikipedia.org/wiki/

Voronoi_diagram)

3 * based on a set of [source]s, producing a field of integers which identify

4 * the region each device belongs to.

5 * A device can take one of the following roles:

6 * - ** Vertex **: it is at the junction of three or more Voronoi cells.

7 * Its color will be [VERTEX_COLOR ].

8 * - ** Border **: it is at the junction of two Voronoi cells.

9 * Its color will be [BORDER_COLOR ].

10 * - **Cell Member **: it is neither a vertex nor a border. Its color

11 * is calculated based on the ID of the closest source.

12 */

13 fun Aggregate <Int >. voronoi(source: Boolean , metric: () -> Field <Int , Double >): Int

{

14 val closestSource = closestSource(source , metric)

15 val neighborClosestSources = neighboring(closestSource)

16 val distinctSources = neighborClosestSources.all

17 .sequence

18 .map { it.value }

19 .toSet()

20 .count()

21 val isVertex = distinctSources >= 3

22 val isBorder = distinctSources == 2

23 return when {

24 isVertex -> VERTEX_COLOR

25 isBorder -> BORDER_COLOR

26 else -> closestSource.toColor () // toColor () maps an ID to a color value

27 }

28 }

29

30 /**

31 * Find the closest source by computing a multi -gradient from all sources.

32 * If there are no sources , return 0.

33 */

34 private fun Aggregate <Int >. closestSource(source: Boolean , metric: () -> Field <Int ,

Double >): Int = gradientCast(

35 source = source ,

36 local = localId ,

37 metric = metric (),

38 )
� �
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Figura 4.6: Simulazione dell’esperimento in listing 4.14. I dispositivi sono colorati
in base alla cella di appartenenza: i dispositivi sui bordi sono colorati in rosso,
mentre i vertici sono colorati in magenta. Le sorgenti sono evidenziate da un
rettangolo nero.
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4.7 Connessione lungo l’albero dei cammini mi-

nimi

Obiettivo Stabilire un collegamento tra due dispositivi, identificando e attra-

versando i nodi che compongono l’albero dei cammini minimi che li collega.

Codice originale Il programma è costituito da tre funzioni: spath, connect e

wire.

La funzione spath (Listing 4.15) determina l’albero dei cammini minimi tra

sorgente (src) e destinazione (dest), sfruttando la distanza d di ciascun dispositivo

rispetto alla destinazione.

In fase iniziale, viene definita la variabile min-id, la quale memorizza l’iden-

tificatore del vicino che presenta la distanza minima d, come espresso da (2nd

(min-hood (tup (nbr d) (nbr (mid))))).

Successivamente, l’espressione (rep ispath ...) tiene traccia dei dispositivi

che appartengono all’albero. La variabile ispath è inizializzata a 0 (false) e viene

aggiornata a ogni round mediante l’espressione:

(mux src 1 (any-hood (muxand (= (mid) (nbr min-id) (nbr ispath)))))

Questa logica opera come segue:

• Se il dispositivo corrente è la sorgente (src), ispath è impostato a 1 (true).

• Altrimenti, il dispositivo verifica se almeno un vicino (any-hood) soddisfa

congiuntamente due condizioni: che il proprio identificatore ((mid)) sia il

min-id del vicino (= (mid) (nbr min-id)), e che tale vicino faccia già parte

dell’albero ((nbr ispath)).

La funzione restituisce ispath.
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Listing 4.15: Codice della funzione spath in Proto.�
1 (def spath (src dest d)

2 (let* (( min-id (2nd (min-hood (tup (nbr d) (nbr (mid)))))))

3 (rep ispath

4 0

5 (mux src 1 (any-hood (muxand (= (mid) (nbr min-id)) (nbr ispath)))))))
� �
connect (Listing 4.16) stabilisce il collegamento logico tra sorgente (src) e

destinazione (dest), computando un vettore di connessione che indica il prossimo

dispositivo lungo l’albero.

Ogni dispositivo calcola innanzitutto la propria distanza d dalla destinazione

mediante la funzione distance-to. Successivamente, tutti i dispositivi verificano

la propria appartenenza all’albero, invocando spath.

Attraverso l’espressione if thepath ..., i dispositivi che risultano parte del-

l’albero collaborano per calcolare il vettore di connessione. Questo calcolo è ba-

sato sulla ricerca della distanza minima rispetto alla destinazione tra i nodi vicini

((min-hood (nbr d))). Vengono poi sommati i contributi di quei vicini per cui

la distanza (nbr d) coincida con tale distanza (= (nbr d) min-d).

Se tale condizione è verificata, l’espressione mux ... restituisce il vettore che

punta verso il vicino in questione ((nbr-vec)); in caso contrario, restituisce il

vettore nullo.

Listing 4.16: Codice della funzione connect in Proto.�
1 (def connect (src dest)

2 (let* ((d (distance-to dest))

3 (thepath (spath src dest d)))

4 (probe d 0)

5 (if thepath

6 (let ((min-d (min-hood (nbr d))))

7 (sum-hood

8 (mux (= (nbr d) min-d)

9 (nbr-vec)

10 (tup 0 0 0))))

11 (tup 0 0 0)))

12 )
� �
La funzione wire (listing 4.17) invoca connect solo per i nodi che non hanno un

ostacolo vicino (near-obst) oppure che siano la sorgente o la destinazione ((and

(not src) (not dest))).
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Listing 4.17: Codice della funzione wire in Proto.�
1 (def wire (src dest near-obst)

2 (if (and near-obst (and (not src)(not dest)))

3 (tup 0 0 0)

4 (connect src dest))

5 )
� �
Trasposizione in Collektive In Listing 4.18 è mostrata la trasposizione della

funzione spath. Si utilizza il costrutto share (Listing 3.7) per mantenere lo stato

di appartenenza all’albero, condividendolo allo stesso tempo con i nodi adiacenti

e ottenendo cos̀ı una vista sul loro stato (nbrIsPath). L’identificatore del vicino

con distanza minima dalla destinazione si ottiene costruendo un Field che associa

a ciascun nodo del vicinato la sua distanza (neighboring(toDestination) (Li-

sting 3.8)), e selezionando l’identificatore corrispondente al valore minimo tramite

.minBy { ( , value) -> value }.id. Successivamente, si costruisce un Field

di minId, che viene trasformato in un campo di valori booleani: il valore è true

per i nodi il cui minId coincide con il proprio identificatore. Questo campo viene

quindi combinato con nbrIsPath tramite un’operazione logica and; se almeno un

nodo adiacente restituisce true, il dispositivo viene considerato parte dell’albero.

La corrispondente implementazione di connect è riportata in Listing 4.19.

Ogni nodo calcola la distanza dalla destinazione tramite distanceTo (Listing 3.14)

e verifica la propria appartenenza all’albero di percorso minimo invocando la fun-

zione shortestPath. Per calcolare il vettore di connessione, si combinano le di-

stanze dei nodi adiacenti dalla destinazione (neighborDistances) con i rispettivi

vettori direzionali (neighborVectors), considerando esclusivamente il contributo

del nodo la cui distanza corrisponde al valore minimo rilevato nel vicinato.

La trasposizione della funzione wire è mostrata in Listing 4.20. La presen-

za di ostacoli nei dintorni viene rilevata costruendo un Field booleano tramite

neighboring(obstacle) (Listing 3.8) e verificando, con la funzione any(...), se

almeno uno dei nodi adiacenti rappresenta un ostacolo.

In fig. 4.7 è mostrata la simulazione dell’esperimento.
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Listing 4.18: Trasposizione della funzione spath (4.15) in Collektive.�
1 /**

2 * Check whenever the current node is on the path from [source] to destination.

3 * [toDestination] is the distance to the destination.

4 */

5 fun Aggregate <Int >. shortestPath(source: Boolean , toDestination: Double): Boolean =

share(false) { nbrIsPath ->

6 val minId = neighboring(toDestination).all.minBy { (_, value) -> value }.id

7 val isOnShortestPath = neighboring(minId)

8 .mapValues { it == localId }.and(nbrIsPath)

9 .all

10 .any { (_, value) -> value }

11 when {

12 source -> true

13 else -> isOnShortestPath

14 }

15 }
� �
Listing 4.19: Trasposizione della funzione connect (4.16) in Collektive.�

1 /**

2 * Connect [source] to [destination] using the given [metric] to measure distances

3 * and [neighborDirectionVectors] to get the direction to each neighbor.

4 */

5 fun Aggregate <Int >. connect(

6 source: Boolean ,

7 destination: Boolean ,

8 metric: () -> Field <Int , Double >,

9 neighborDirectionVectors: () -> Field <Int , Vector2D >,

10 ): Vector2D {

11 val toDestination = distanceTo(destination , metric ())

12 val isOnShortestPath = shortestPath(source , toDestination)

13 return when {

14 isOnShortestPath -> {

15 val neighborDistances = neighboring(toDestination)

16 val minNeighborhoodDistance = neighborDistances.all.valueOfMinBy { (_,

dist) -> dist }

17 neighborDirectionVectors ()

18 .alignedMapValues(neighborDistances) { dir , dist ->

19 if (dist == minNeighborhoodDistance) dir else vectorZero

20 }

21 .all

22 .fold(vectorZero) { acc , (_, v) -> acc + v }

23 }

24 else -> vectorZero

25 }

26 }
� �
60 CAPITOLO 4. ESEMPI TRASPOSTI IN COLLEKTIVE



4.7. CONNESSIONE LUNGO L’ALBERO DEI CAMMINI MINIMI

Listing 4.20: Trasposizione della funzione wire (4.17) in Collektive.�
1 /**

2 * Wire the source and the destination with connections to the next hop on the

shortest path , avoiding obstacles.

3 */

4 fun Aggregate <Int >.wire(collektiveDevice: CollektiveDevice <*>, env:

EnvironmentVariables): Unit =

5 with(collektiveDevice) {

6 val source: Boolean = env["src"]

7 val destination: Boolean = env["dest"]

8 val obstacle: Boolean = env["obstacle"]

9 val hasObstacleInNeighborhood = neighboring(obstacle).all.any { it.value }

10 val position = coordinates ()

11 val connectionDir = when {

12 hasObstacleInNeighborhood && (! source && !destination) -> vectorZero

13 else -> connect(

14 source = source ,

15 destination = destination ,

16 metric = { distances () },

17 neighborDirectionVectors = {

18 neighboring(position).alignedMapValues(mapNeighborhood {

position }) { p, newO -> p - newO }

19 },

20 )

21 }

22 pointTo(connectionDir)

23 }
� �
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Figura 4.7: Simulazione dell’esperimento in listing 4.20. La sorgente è evidenziata
in rosso mentre la destinazione in verde. Gli ostacoli sono rappresentati attraverso
quadrati blu. I dispositivi che appartengono all’albero puntano verso il prossimo
nodo del cammino, formando un collegamento che unisce sorgente e destinazione.
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4.8 Tracciamento

Obiettivo Progettare un sistema di tracciamento in cui un dispositivo (de-

stinazione) ne segua un altro (target), sfruttando un canale di comunicazione

dedicato.

Codice originale Il programma (Listing 4.21) si compone di due funzioni:

channel e track.

La funzione channel ha lo scopo di creare un ”canale” di dispositivi che collega

la sorgente (src) alla destinazione (dest), restituendo true per tutti i nodi che

fanno parte di questo percorso e false per gli altri. In particolare, la funzione

calcola la distanza tra sorgente e destinazione ((distance src dst)) e conside-

ra appartenenti al canale tutti i dispositivi per cui la somma delle distanze dalla

sorgente e dalla destinazione risulta minore o uguale alla distanza tra le due, incre-

mentata di un margine di tolleranza ((<= (+ (gradient src) (gradient dst))

(+ d 1))). Infine, la funzione restituisce true solo per i dispositivi effettivamente

raggiungibili sia dalla sorgente sia dalla destinazione e che rientrino nella larghezza

specificata dal canale, ampliata tramite la funzione dilate.

La funzione track consente alla destinazione di seguire il target sfruttando il

canale creato da channel: la posizione del target viene propagata lungo il canale

e, una volta ricevuta, la destinazione ne calcola la differenza rispetto alle pro-

prie coordinate, determinando cos̀ı la direzione verso cui puntare ((- (broadcast

target coord) coord)).

Listing 4.21: Codice Proto per l’esperimento di navigazione del gradiente,

comprendente le funzioni channel e track.�
1 (def channel (src dst width)

2 (let* ((d (distance src dst))

3 (trail (<= (+ (gradient src) (gradient dst)) (+ d 1)))) ;; slop

4 (and (< d (inf)) (dilate trail width))))

5

6 (def track (target dst coord)

7 (if (channel target dst 10)

8 (all (blue 1)

9 (mux dst (- (broadcast target coord) coord) (tup 0 0 0)))

10 (tup 0 0 0)))
� �
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Trasposizione in Collektive Per l’implementazione di channel è stata adotta-

ta la versione già utilizzata nella simulazione ChannelWithObstacle2 (Listing 4.23).

La propagazione delle coordinate del nodo target nella funzione track (Li-

sting 4.22) avviene tramite la funzione gradientCast (Listing 3.12), che dif-

fonde le informazioni esclusivamente tra i nodi appartenenti al canale, grazie al

partizionamento derivato dal costrutto when.

2https://github.com/Collektive/collektive-examples/blob/

fc511935fa0cce9116cd6bb8e00088443c2cd506/simulation/src/main/kotlin/it/unibo/

collektive/examples/channel/ChannelWithObstacles.kt#L28C1-L44
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Listing 4.22: Trasposizione della funzione track (4.21) in Collektive.�
1 /**

2 * Computes the direction to the [target], relative to [destination ].

3 * If the device is not in the [channel], it returns a zero vector.

4 * If the device is in the [channel] but not [destination], it returns a zero

vector.

5 * If the device is [destination], it returns the vector pointing to the [target ].

6 */

7 fun Aggregate <Int >.track(

8 target: Boolean ,

9 destination: Boolean ,

10 channel: Boolean ,

11 coordinates: Point2D ,

12 metric: () -> Field <Int , Double >,

13 ): Vector2D = when {

14 channel -> {

15 // Broadcast the target ’s coordinates through the channel

16 val targetCoordinates = gradientCast(

17 source = target ,

18 local = coordinates ,

19 metric = metric (),

20 )

21 if (destination) targetCoordinates - coordinates else vectorZero

22 }

23 else -> vectorZero

24 }
� �
Listing 4.23: Funzione channel tratta dall’esperimento ChannelWithObstacles.�

1 /**

2 * Compute the channel between the [source] and the [destination]

3 * with a specific [channelWidth ].

4 */

5 fun Aggregate <Int >. channel(

6 collektiveDevice: CollektiveDevice <*>,

7 source: Boolean ,

8 destination: Boolean ,

9 channelWidth: Double ,

10 ): Boolean = with(collektiveDevice) {

11 require(channelWidth.isFinite () && channelWidth > 0)

12 val distances = distances ()

13 val toSource = distanceTo(source , metric = distances)

14 val toDestination = distanceTo(destination , metric = distances)

15 val sourceToDestination = broadcast(distances = distances , from = source ,

payload = toDestination)

16 val channel = toSource + toDestination - sourceToDestination

17 return if (channel.isFinite ()) channel <= channelWidth else false

18 }
� �
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Figura 4.8: Simulazione dell’esperimento in listing 4.22. Il dispositivo target è
evidenziato in rosso, mentre la destinazione in verde. I nodi che compongono
il canale di comunicazione sono colorati in blu. La destinazione segue il target
sfruttando le informazioni propagate lungo il canale.
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4.9 Dinamica di uno stormo

Obiettivo Simulare la dinamica di uno stormo.

Ciascun dispositivo calcola la propria velocità in funzione della direzione ini-

ziale, della distanza dai nodi vicini e delle loro rispettive direzioni di movimento.

La direzione iniziale è determinata dal ruolo del nodo: se il dispositivo è un ”lea-

der”, viene orientato verso l’origine del sistema di coordinate; in caso contrario,

la direzione iniziale è nulla. La velocità, che evolve dinamicamente nel tempo,

viene aggiornata secondo logiche di repulsione, coesione e allineamento, in base

alla distanza dai vicini. La direzione risultante è data dalla somma ponderata dei

contributi di ciascun vicino, insieme alla direzione iniziale.

Codice originale La funzione flock (Listing 4.24) richiede in ingresso la dire-

zione di partenza (dir) del dispositivo.

Listing 4.24: Codice della funzione flock in Proto.�
1 (def flock (dir)

2 (rep v

3 (tup 0 0 0)

4 (let ((d

5 (normalize

6 (int-hood

7 (if (< (nbr-range) 5)

8 (* -1 (normalize (nbr-vec)))

9 (if (> (nbr-range) 10)

10 (* 0.2 (normalize (nbr-vec)))

11 (normalize (nbr v))))))))

12 (normalize

13 (+ dir (mux (> (vdot d d) 0) d v))))))
� �
L’evoluzione temporale della velocità dei nodi è gestita dall’istruzione (rep v

(tup 0 0 0) ...). Ad ogni round, viene determinato il vettore risultante d come

somma dei contributi di repulsione, coesione e allineamento, provenienti dai dispo-

sitivi nel vicinato. I contributi dei vicini vengono calcolati e aggregati tramite la

funzione int-hood ..., seguendo queste regole:

• Se la distanza da un vicino è inferiore a 5 unità ((if (< (nbr-range)

5) ...)), il contributo è un vettore che allontana dall’entità vicina. Si
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calcola come il versore diretto verso il vicino, moltiplicato per −1 ((* -1

(normalize (nbr-vec)))).

• Se la distanza è superiore a 10 unità ((if (> (nbr-range) 10) ...)), si

esercita un’attrazione. Il contributo è il versore orientato verso il vicino,

scalato di 0.2 (* 0.2 (normalize (nbr-vec))).

• Se la distanza è compresa tra 5 e 10 unità, l’entità si allinea alla direzio-

ne attuale del vicino. Il contributo è dato dalla velocità attuale del vicino

normalizzata (normalize (nbr v)).

Infine, la nuova velocità è determinata tramite l’espressione (+ dir (mux (> (vdot

d d) 0) d v)): questa istruzione somma la direzione iniziale dir al vettore risul-

tante d se la sua norma è positiva; in caso contrario, mantiene la velocità precedente

v.

Trasposizione in Collektive La traduzione in Collektive è riportata in li-

sting 4.25.

L’evoluzione della velocità dei nodi è gestita tramite l’operatore share (Li-

sting 3.7), poiché la dinamica dipende sia dallo stato dei vicini sia dallo stato

calcolato nel round precedente.

La necessità di una migliore approssimazione contigua del campo ha portato

all’introduzione delle funzioni ausiliarie sumWeightedNeighbors e spatialWeight

(Listing 4.26), che calcolano rispettivamente la somma pesata dei contributi dei

vicini e il peso attribuito a ciascun nodo adiacente. Il peso assegnato si ottiene

dividendo l’area del cerchio, il cui raggio è pari a quello di comunicazione, per il

numero di dispositivi presenti nel vicinato.

La simulazione dell’esperimento (Figura 4.9) mostra i nodi coordinatori evi-

denziati in rosso. Si osserva come i dispositivi si organizzino spontaneamente in

tre stormi, ciascuno dei quali si dirige verso l’origine grazie alla presenza di un

numero sufficiente di leader che guidano il movimento collettivo.
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Listing 4.25: Trasposizione della funzione flock (4.24) in Collektive.�
1 /**

2 * Implements flocking behavior.

3 * The behavior is defined as follows:

4 * - If a neighbor is closer than [CLOSE_NEIGHBOR_THRESHOLD] units , steer away

from it.

5 * - If a neighbor is farther than [FAR_NEIGHBOR_THRESHOLD] units , steer slightly

towards it.

6 * - Otherwise , align with the neighbor.

7 * The resulting direction is normalized and combined with the current direction.

8 */

9 fun Aggregate <Int >.flock(

10 initialDirection: Vector2D ,

11 neighborDistances: () -> Field <Int , Double >,

12 neighborDirectionVectors: () -> Field <Int , Vector2D >,

13 ): Vector2D = share(vectorZero) { neighborVelocities ->

14 val weights = neighboring(spatialWeight(CONNECTIVITY_RADIUS))

15 val direction = neighborVelocities.alignedMapValues(

16 neighborDistances (),

17 neighborDirectionVectors (),

18 ) { vel , dist , dir ->

19 when {

20 // steer away if too close

21 dist > 0.0 && dist <= CLOSE_NEIGHBOR_THRESHOLD -> dir.normalize () *

-1.0

22 // steer slightly towards if too far

23 dist > FAR_NEIGHBOR_THRESHOLD -> dir.normalize () *

FAR_NEIGHBOR_ATTRACTION_WEIGHT

24 // align if at a good distance

25 else -> vel.normalize ()

26 }

27 }. sumWeightedNeighbors(weights).normalize ()

28 (initialDirection + if (direction vdot direction > 0) direction else

neighborVelocities.local.value).normalize ()

29 }
� �
Listing 4.26: Supporto per la simulazione di int-hood in Collektive.�

1 /**

2 * Computes integral (weighted sum) of neighbor vectors in the field.

3 * This function combines the directions from all neighbors by applying their

respective [weights] and summing the resulting vectors.

4 */

5 fun Field <Int , Vector2D >. sumWeightedNeighbors(weights: Field <Int , Double >):

Vector2D =

6 alignedMapValues(weights) { point , weight -> point * weight }.all

7 .fold(Vector2D (0.0 to 0.0)) { acc , entry -> acc + entry.value }

8

9

CAPITOLO 4. ESEMPI TRASPOSTI IN COLLEKTIVE 69



4.9. DINAMICA DI UNO STORMO

10 /**

11 * Computes the spatial weight of a device given a [radius ].

12 */

13 fun Aggregate <Int >. spatialWeight(radius: Double): Double {

14 val neighborsSize = neighborhood ().all.size

15 val totalArea = PI * radius * radius

16 return totalArea / neighborsSize

17 }
� �
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Figura 4.9: Simulazione dell’esperimento in listing 4.25. I dispositivi leader sono
colorati in rosso, mentre gli altri sono colorati in blu. Si osserva come i nodi si
organizzino spontaneamente in tre stormi, ciascuno dei quali si dirige verso l’origine
grazie alla presenza di un numero sufficiente di leader che guidano il movimento
collettivo.
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Conclusioni

L’obiettivo di questa tesi è stato trasporre una selezione di programmi aggregati,

originariamente sviluppati in Proto, nel linguaggio Collektive, con l’intento di offri-

re una guida pratica alla migrazione di sistemi legacy verso soluzioni più moderne

e accessibili.

Il percorso intrapreso per raggiungere questo obiettivo ha richiesto un’analisi

approfondita di AP e della sua evoluzione storica. Partendo dai concetti fonda-

mentali (Capitolo 1), sono state esaminate le basi teoriche di FC e XC, per poi

tracciare l’evoluzione dei linguaggi che hanno implementato questi principi. Parti-

colare attenzione è stata dedicata a Proto (Capitolo 2), linguaggio pionieristico che

ha posto le fondamenta di AP, analizzandone sintassi e costrutti. L’analisi di Col-

lektive (Capitolo 3) ha poi rivelato come questo linguaggio non solo erediti i principi

teorici di FC e XC, ma li integri in un contesto moderno e multipiattaforma.

Attraverso la trasposizione di una serie di programmi rappresentativi (Capito-

lo 4), si è dimostrato che Collektive è in grado di rappresentare efficacemente le

logiche dei programmi originali, migliorandone la leggibilità e semplificandone lo

sviluppo grazie a una libreria standard ricca e versatile. Tale libreria fornisce fun-

zioni auto-stabilizzanti che consentono di sviluppare programmi con caratteristiche

di resilienza e adattabilità. Un ulteriore vantaggio significativo è la presenza nativa

dell’operatore share, che consente di modellare elegantemente l’evoluzione spazio-

temporale dei campi computazionali in un unico costrutto, evitando la perdita

di round di esecuzione presente nell’approccio di Proto basato sulla combinazione
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Questo lavoro apre diverse possibilità per rafforzare ulteriormente il ruolo di

Collektive nell’ecosistema della programmazione aggregata. Innanzitutto, un con-

fronto sistematico tra Collektive ed altri linguaggi come Protelis, ScaFi e FCPP for-

nirebbe agli sviluppatori una valutazione oggettiva riguardo a prestazioni, espressi-

vità ed ergonomia. Trasponendo gli stessi esempi in tutti questi linguaggi, sarebbe

possibile offrire una guida preziosa per la scelta dello strumento più adatto. Inol-

tre, lo sviluppo di un playground web, sul modello di WebProto e ScaFi Web,

permetterebbe agli sviluppatori di sperimentare il codice aggregato direttamente

nel browser, accelerando l’adozione del framework e facilitandone l’apprendimento.

In conclusione, l’obiettivo è stato raggiunto, dimostrando che Collektive rappre-

senta un’evoluzione matura nel campo della programmazione aggregata. Fornendo

un riferimento pratico per la traduzione da Proto, non solo si valida l’espressività

del nuovo linguaggio, ma si offre anche una risorsa concreta alla comunità, abbas-

sando le barriere d’ingresso e promuovendo la fiducia verso questa tecnologia. Il

codice prodotto è stato integrato nel repository ufficiale degli esempi di Collekti-

ve, contribuendo direttamente all’ecosistema del progetto e rendendo disponibili i

risultati a futuri sviluppatori.
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evidenziato in rosso, mentre la destinazione in verde. I nodi che

compongono il canale di comunicazione sono colorati in blu. La

destinazione segue il target sfruttando le informazioni propagate

lungo il canale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.9 Simulazione dell’esperimento in listing 4.25. I dispositivi leader sono

colorati in rosso, mentre gli altri sono colorati in blu. Si osserva

come i nodi si organizzino spontaneamente in tre stormi, ciascuno

dei quali si dirige verso l’origine grazie alla presenza di un numero

sufficiente di leader che guidano il movimento collettivo. . . . . . . 71

76 ELENCO DELLE FIGURE



List of Listings

1.1 Allineamento tra le esecuzioni di nbr in contesti diversi . . . . . . . 6

1.2 Dimostrazione della sintassi di Proto . . . . . . . . . . . . . . . . . 11

1.3 Dimostrazione della sintassi di Protelis . . . . . . . . . . . . . . . . 12

1.4 Dimostrazione della sintassi di ScaFi . . . . . . . . . . . . . . . . . 13

1.5 Dimostrazione della sintassi di FCPP . . . . . . . . . . . . . . . . . 14

1.6 Come apparirebbe un programma aggregato in Collektive se l’alli-

neamento fosse gestito manualmente dallo sviluppatore invece che

automaticamente dal compilatore. . . . . . . . . . . . . . . . . . . . 15

1.7 Dimostrazione della sintassi di Collektive: il compilatore si occupa

automaticamente di gestire l’allineamento per conto dello sviluppa-

tore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Le espressioni in Proto sono scritte in notazione polacca, specifican-

do l’operatore seguito dagli operandi. . . . . . . . . . . . . . . . . . 17

2.2 Sintassi dell’operatore rep in Proto. . . . . . . . . . . . . . . . . . . 20

2.3 Sintassi dell’operatore nbr in Proto. . . . . . . . . . . . . . . . . . . 20

2.4 Esempi di funzioni di aggregazione spaziale in Proto. . . . . . . . . 21

2.5 Sintassi dell’operatore fold-hood in Proto. . . . . . . . . . . . . . . 21

2.6 Sintassi dell’operatore if in Proto. . . . . . . . . . . . . . . . . . . 22

2.7 Funzioni di built-in in Proto. . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Creazione di un campo di vicinato che associa il valore 1 a ogni

dispositivo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

listings/collektive/FieldToKotlin.kt . . . . . . . . . . . . . . . . . . . . . 26

3.2 Esempi di manipolazione e combinazione di Field in Collektive. . . 27

3.3 Operatori per la combinazione di Field in Collektive. . . . . . . . . 27

3.4 Esempi di riduzione di Field in Collektive. . . . . . . . . . . . . . . 27

LIST OF LISTINGS 77



LIST OF LISTINGS

3.5 Firma dell’operatore exchange in Collektive. . . . . . . . . . . . . . 28

3.6 Esempio di utilizzo dell’operatore exchange in Collektive. . . . . . . 29

3.7 Firma dell’operatore share in Collektive. . . . . . . . . . . . . . . . 29

3.8 Firma dell’operatore neighboring in Collektive. . . . . . . . . . . . 29

3.9 Varianti dell’operatore neighboring in Collektive. . . . . . . . . . . 30

3.10 Firma dell’operatore evolve in Collektive. . . . . . . . . . . . . . . 30

3.11 Esempio di utilizzo dell’operatore evolve in Collektive. . . . . . . . 30

3.12 Firma della funzione gradientCast dalla libreria standard di Col-

lektive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.13 Firma della funzione multiGradientCast dalla libreria standard di

Collektive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.14 Firma della funzione distanceTo dalla libreria standard di Collektive 32

3.15 Firma della funzione convergeCast dalla libreria standard di Col-

lektive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.16 Firma della funzione countDevices dalla libreria standard di Col-

lektive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.17 Firme delle funzioni all, any e countMatching dalla libreria stan-

dard di Collektive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.18 Firme delle funzioni fold e reduce dalla libreria standard di Col-

lektive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Codice della funzione local-average in Proto. . . . . . . . . . . . 38

4.2 Trasposizione di local-average in Collektive. . . . . . . . . . . . . 38

4.3 Codice della funzione in-circle in Proto. . . . . . . . . . . . . . . 40

4.4 Trasposizione della funzione in-circle in Collektive. . . . . . . . . 40

4.5 Codice della funzione ring in Proto. . . . . . . . . . . . . . . . . . 42

4.6 Trasposizione della funzione ring in Collektive. . . . . . . . . . . . 43

4.7 Codice della funzione temperature in Proto. . . . . . . . . . . . . . 45

4.8 Trasposizione della funzione temperature in Collektive. . . . . . . . 46

4.9 Codice Proto per l’esperimento di navigazione del gradiente, com-

prendente le funzioni grad, share-distance-to e nav-grad. . . . . 48

4.10 Trasposizione della funzione grad in Collektive. . . . . . . . . . . . 50

4.11 Trasposizione della funzione share-distance-to in Collektive. . . . 50

4.12 Trasposizione della funzione nav-grad (4.9) in Collektive. . . . . . . 51

78 LIST OF LISTINGS



LIST OF LISTINGS

4.13 Codice della funzione voronoi in Proto. . . . . . . . . . . . . . . . 53

4.14 Trasposizione della funzione voronoi in Collektive. . . . . . . . . . 55

4.15 Codice della funzione spath in Proto. . . . . . . . . . . . . . . . . . 58

4.16 Codice della funzione connect in Proto. . . . . . . . . . . . . . . . 58

4.17 Codice della funzione wire in Proto. . . . . . . . . . . . . . . . . . 59

4.18 Trasposizione della funzione spath (4.15) in Collektive. . . . . . . . 60

4.19 Trasposizione della funzione connect (4.16) in Collektive. . . . . . . 60

4.20 Trasposizione della funzione wire (4.17) in Collektive. . . . . . . . . 61

4.21 Codice Proto per l’esperimento di navigazione del gradiente, com-

prendente le funzioni channel e track. . . . . . . . . . . . . . . . . 63

4.22 Trasposizione della funzione track (4.21) in Collektive. . . . . . . . 65

4.23 Funzione channel tratta dall’esperimento ChannelWithObstacles. . 65

4.24 Codice della funzione flock in Proto. . . . . . . . . . . . . . . . . . 67

4.25 Trasposizione della funzione flock (4.24) in Collektive. . . . . . . . 69

4.26 Supporto per la simulazione di int-hood in Collektive. . . . . . . . 69

LIST OF LISTINGS 79



LIST OF LISTINGS

80 LIST OF LISTINGS



Bibliografia

[ABD+19] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, Danilo Pianini, and

Mirko Viroli. The share operator for field-based coordination. In Han-

ne Riis Nielson and Emilio Tuosto, editors, Coordination Models and

Languages - 21st IFIP WG 6.1 International Conference, COORDI-

NATION 2019, Held as Part of the 14th International Federated Confe-

rence on Distributed Computing Techniques, DisCoTec 2019, Kongens

Lyngby, Denmark, June 17-21, 2019, Proceedings, volume 11533 of

Lecture Notes in Computer Science, pages 54–71. Springer, 2019.

[ABDV18] Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Viroli.

Space-time universality of field calculus. In Giovanna Di Marzo Se-

rugendo and Michele Loreti, editors, Coordination Models and Lan-

guages - 20th IFIP WG 6.1 International Conference, COORDINA-

TION 2018, Held as Part of the 13th International Federated Confe-

rence on Distributed Computing Techniques, DisCoTec 2018, Madrid,

Spain, June 18-21, 2018. Proceedings, volume 10852 of Lecture Notes

in Computer Science, pages 1–20. Springer, 2018.

[ACD+24] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Guido Salvane-

schi, and Mirko Viroli. The exchange calculus (xc): A functional pro-

gramming language design for distributed collective systems. Journal

of Systems and Software, 210:111976, 2024.

[ACM+21] Gianluca Aguzzi, Roberto Casadei, Niccolò Maltoni, Danilo Pianini,
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