
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

DIPARTIMENTO DI INFORMATICA – SCIENZA E INGEGNERIA
Corso di Laurea in Ingegneria e Scienze Informatiche

ANALISI, PROGETTAZIONE E
PROTOTIPAZIONE DI UN SISTEMA PER

LA MAPPATURA DI PUNTI DELLA
SALUTE PER AUSL ROMAGNA

Elaborato in

SISTEMI EMBEDDED E INTERNET OF THINGS

Relatore

Prof. ALESSANDRO RICCI

Correlatore

Dott. SAMUELE BURATTINI
Ing. ANGELO CROATTI

Presentata da

FILIPPO MASSARI

III Sessione di Laurea
Anno Accademico 2024 – 2025

A Nino, il primo a sognarmi qui

Indice

Introduzione vii

1 Contesto ed Analisi del Problema 1
1.1 Dominio Applicativo . 1
1.2 Identificazione del Problema . 2
1.3 Analisi delle Soluzioni in Uso 3
1.4 Obiettivi del Progetto . 4
1.5 Struttura della Tesi . 5

2 Metodi e Strumenti di Sviluppo 7
2.1 Il Paradigma di Sviluppo Agile 7

2.1.1 Limiti dei Modelli Sequenziali 7
2.1.2 Il Manifesto Agile . 8
2.1.3 L’Approccio Iterativo-Incrementale 8
2.1.4 Motivazioni dell’Adozione del Modello Agile 9

2.2 Il Domain-Driven Design . 10
2.2.1 Principi Fondamentali del DDD 10
2.2.2 Motivazioni dell’Adozione del DDD in Fase di Analisi . . 12

3 Analisi e Progettazione del Sistema 13
3.1 Analisi del Dominio Applicativo 13

3.1.1 Definizione del Linguaggio Ubiquo 14
3.1.2 Componenti Logici Principali del Dominio 15

3.2 Analisi dei Requisiti . 17
3.2.1 Requisiti Funzionali . 18
3.2.2 Requisiti Non Funzionali 19

3.3 Progettazione del Sistema . 20
3.3.1 Progettazione Architetturale 20
3.3.2 Progettazione del Database 21
3.3.3 Progettazione del Backend 29
3.3.4 Progettazione del Frontend 31

3.4 Selezione dello Stack Tecnologico 34

v

vi INDICE

3.4.1 Tecnologie per il Data Tier 34
3.4.2 Tecnologie per l’Application Tier 35
3.4.3 Tecnologie per il Presentation Tier 35

4 Sviluppo del Prototipo 37
4.1 Scopo della Prototipazione . 37
4.2 Implementazione dei Servizi Backend 38

4.2.1 Implementazione del Data Layer 38
4.2.2 Implementazione del Service Layer 41
4.2.3 Implementazione del Controller Layer 45

4.3 Implementazione dell’Interfaccia Frontend 47
4.3.1 Gestione del Flusso Dati 50
4.3.2 Il Componente Dashboard 55
4.3.3 Applicazioni del Componente Map 56

Conclusioni 61

Ringraziamenti 65

Introduzione

La spinta alla digitalizzazione dei servizi ha impattato profondamente, co-
me tanti settori, anche quello sanitario, evidenziando la necessità di strumenti
moderni per la gestione e la fruizione delle informazioni territoriali. Il presente
elaborato si inserisce in questo contesto e, in collaborazione con l’AUSL Roma-
gna, si pone l’obiettivo di analizzare, progettare e prototipare un’applicazione
web per rendere facilmente raccoglibili, fruibili e manutenibili le informazioni
relative ai ”Punti della Salute”, destinata a un pubblico eterogeneo di operato-
ri interni e cittadini. Per governare la complessità del dominio è stato adottato
un approccio metodologico Agile, affiancato ai principi del Domain-Driven De-
sign (DDD) per la modellazione del software. L’architettura implementata è
strutturata su tre livelli: un backend RESTful in Spring Boot per la gestio-
ne capillare della logica di business; un frontend a componenti in React per
garantire il riuso sistematico del codice; e un data tier su database Postgre-
SQL, potenziato dall’estensione PostGIS per l’esecuzione di query geospaziali.
Il risultato è un prototipo funzionante che valida la fattibilità tecnica dell’ar-
chitettura proposta e costituisce una solida base per lo sviluppo futuro di un
sistema informativo territoriale completo per l’AUSL Romagna.

vii

Capitolo 1

Contesto ed Analisi del
Problema

Il presente elaborato di tesi prende avvio in risposta a una concreta esigenza
emersa nel contesto operativo dell’Azienda Unità Sanitaria Locale (AUSL)
della Romagna. L’AUSL della Romagna è l’ente pubblico del Servizio Sanitario
Regionale che ha il compito di garantire la tutela della salute e l’erogazione
di servizi sanitari e sociosanitari per i cittadini delle province di Forl̀ı-Cesena,
Ravenna e Rimini. La finalità del progetto, discusso in questa tesi, è l’analisi,
l’ideazione e lo sviluppo di una piattaforma software per la mappatura e la
gestione strategica dei servizi sanitari territoriali.

1.1 Dominio Applicativo

Il dominio applicativo si focalizza sulle attività degli operatori sanitari di-
rettamente schierati sul territorio. Un virtuoso esempio di tali figure è rappre-
sentato dagli Infermieri di Famiglia e Comunità (IFEC), figure professionali
la cui missione consiste nell’erogare servizi di assistenza e prevenzione in modo
capillare attraverso interventi domiciliari. È proprio dall’operatività quoti-
diana di figure come queste che scaturisce la necessità di uno strumento in
grado di mappare e rendere accessibili, in modo strutturato e georeferenziato,
le informazioni relative ai Punti Territoriali della Salute (PTS).

Per la fase iniziale di prototipazione, il perimetro del progetto è stato circo-
scritto al distretto sanitario di Rimini. Tale scelta non è casuale, ma fortemente
motivata dal fatto che la provincia di Rimini rappresenta un esempio virtuoso
nel percorso di digitalizzazione dei processi sanitari, evoluzione all’interno della
quale l’Università di Bologna ha svolto un ruolo attivo in questi anni. Questo
scenario preesistente, caratterizzato da una spiccata sensibilità verso l’inno-

1

2 Contesto ed Analisi del Problema

vazione tecnologica, ha fornito un terreno fertile e un contesto collaborativo
ideale per la raccolta dei requisiti e la validazione di un prototipo.

1.2 Identificazione del Problema

Dall’analisi dello stato dell’arte emerge un quadro di frammentazione tec-
nologica e informativa. Fenomeno dovuto al fatto che, negli anni, ogni di-
partimento di suddivisione dell’azienda ha adottato strategie diverse per do-
cumentare e catalogare i dati. Si sono dunque immagazzinate, nel tempo,
informazioni non sempre concordi, condivisibili e spesso conservate su suppor-
ti eterogenei che disincentivano la messa in condivisione delle stesse. La diretta
conseguenza di ciò è una criticità strategica legata alla dispersione dei dati,
che ostacola l’accesso ai contenuti sia da parte degli operatori interni sia da
parte dei cittadini.

Sebbene i servizi erogati direttamente dall’ente siano documentati sul por-
tale istituzionale, un vasto ecosistema di prestazioni fornite da attori terzi,
come associazioni di volontariato, enti privati e terzo settore, rimane escluso
da tale mappatura. L’asimmetria informativa, che ne risulta, genera una serie
di inefficienze operative che impattano direttamente sulla qualità del servizio
in molteplici modi:

• Frammentazione dell’Accesso per il Cittadino: L’assenza di un ca-
nale informativo unificato e autorevole, comunemente detta single source
of truth, indirizza i cittadini verso una navigazione complessa tra mol-
teplici fonti non coordinate, con conseguente difficoltà nel reperimento
delle informazioni e sottoutilizzo dei servizi disponibili.

• Inefficienza Operativa per il Personale Sanitario: Per gli operatori
AUSL, l’assenza di un catalogo di servizi centralizzato trasforma il com-
pito di orientare l’utenza in un processo dispendioso in termini di tempo
e basato sulla conoscenza individuale piuttosto che su dati strutturati e
aggiornati.

• Rischio di Sovrapposizione e Inefficiente Allocazione delle Ri-
sorse: La mancanza di una visione d’insieme rende difficile identificare
aree territoriali scoperte o con un’eccessiva concentrazione di prestazioni
simili, portando a una potenziale allocazione inefficiente delle risorse.

• Obsolescenza e Mancata Governance dei Dati: La natura decen-
tralizzata degli strumenti attuali porta a una rapida obsolescenza delle

Contesto ed Analisi del Problema 3

informazioni. L’assenza di un processo di governance centralizzato gene-
ra un rischio concreto di disservizio, indirizzando gli utenti verso risorse
non più disponibili e minando la fiducia nell’ente stesso.

Oltre alla gestione delle informazioni pubbliche, emerge una seconda di-
mensione critica legata allo scambio di dati sensibili interni. Gli operatori
necessitano di canali di comunicazione sicuri e tracciabili per scambiare, con
altri professionisti, informazioni relative ai pazienti. L’assenza di una piatta-
forma dedicata rappresenta un ulteriore ostacolo all’efficienza e alla sicurezza
delle operazioni.

1.3 Analisi delle Soluzioni in Uso

Il primo passaggio intrapreso nell’approccio all’analisi del dominio è stato
quello di studiare con cura le soluzioni già in uso presso l’ente e le tecnologie a
supporto. Questa fase risulta di fondamentale importanza nel definire le pro-
prietà del sistema in elaborazione. Partendo infatti dalle criticità emerse nelle
soluzioni preesistenti, sarà possibile sviluppare accorgimenti volti a sopperire
a tali mancanze e a valorizzare le funzionalità cardine già esistenti.

Lo studio degli strumenti in uso ha messo in luce una moltitudine eteroge-
nea di tecnologie, spesso non interoperabili e prive di un modello di riferimen-
to. Tale mancanza impedisce l’acquisizione di dati in maniera: strutturata,
standardizzata e sistematica. Le soluzioni impiegate sono molteplici e la loro
differente complessità, talvolta rudimentale, evidenzia come le necessità di una
mappatura centralizzata rappresentino una sfida di lunga data per l’azienda
ed i suoi operatori.

Sono state catalogate, ai fini della nostra analisi, le seguenti tipologie di
strumenti:

• Documentazione Cartacea non Strutturata: Soluzione ormai quasi
obsoleta, che prevede la raccolta e la distribuzione di informazioni su
supporto cartaceo. Tale soluzione, sebbene di facile utilizzo iniziale, è
intrinsecamente statica, di difficile aggiornamento, non ricercabile e non
consente alcuna forma di collaborazione o condivisione centralizzata dei
dati.

• Documenti Digitali Statici: Rappresentano la digitalizzazione del
modello cartaceo. Documenti come PDF o presentazioni sono facilmente
condivisibili, ma ereditano molte delle criticità del cartaceo: i dati non
sono strutturati, l’aggiornamento richiede la ridistribuzione di una nuova
versione del file, generando problemi di versioning, e le funzionalità di
ricerca sono limitate al testo libero.

4 Contesto ed Analisi del Problema

• Fogli di Calcolo: Questa soluzione rappresenta un primo passo verso la
strutturazione dei dati. L’organizzazione tabellare permette di definire
attributi e di applicare filtri di base. Le criticità risiedono nella mancan-
za di garanzie sull’integrità dei dati, nella gestione problematica degli
accessi concorrenti e nella difficoltà di modellare relazioni complesse o
dati geospaziali in modo nativo.

• Mappe Basate su Piattaforme Web: Strumenti che offrono un no-
tevole vantaggio grazie al supporto nativo per la georeferenziazione. I
limiti emergono rapidamente in un contesto aziendale: opzioni di perso-
nalizzazione scarse, meccanismi di controllo degli accessi rudimentali e
dati che risiedono su piattaforme di terze parti, sollevando questioni di
governance, costi e conformità normativa. Ne è un esempio Google Maps,
attualmente utilizzato per tali scopi ma con limiti nella granularità dei
permessi che rendono lo strumento non fruibile dalla cittadinanza.

• Applicativo GeoNote: Sistema del Comune di Rimini costruito su un
Geographic Information System (GIS) per tracciare situazioni di disagio
sociale. Pur offrendo funzionalità simili a quelle desiderate, esso garan-
tisce accesso a dati privati non condivisibili con l’AUSL ed è limitato al
solo territorio comunale.

Appare evidente come nessuna delle soluzioni in uso riesca a soddisfare
simultaneamente tutti i requisiti critici emersi. I documenti testuali sono ina-
deguati per la loro staticità; i fogli di calcolo mancano di garanzie sull’integrità
dei dati e sulla gestione degli accessi; le piattaforme web di terze parti pre-
sentano limiti di governance e sicurezza; infine, l’applicativo GeoNote risulta
inapplicabile per la sua limitata interoperabilità e il perimetro circoscritto.

Il progetto sviluppato in questa tesi si propone di colmare questo divario,
sintetizzando i punti di forza delle diverse tecnologie: l’interattività di una
piattaforma cartografica, il rigore di un database strutturato e la sicurezza di
un sistema con controllo degli accessi basato sui ruoli. L’obiettivo è superare la
logica dello strumento tattico e frammentato per fornire una piattaforma stra-
tegica, centralizzata e sicura, la cui necessità è stata dimostrata dalle criticità
analizzate.

1.4 Obiettivi del Progetto

Alla luce delle criticità emerse, il presente progetto si prefigge di analizzare,
progettare e prototipare una piattaforma software per costituire un punto di
accesso unificato sia per gli operatori sanitari sia per i cittadini. Nello specifico,
i risultati attesi sono:

Contesto ed Analisi del Problema 5

• Analizzare, progettare e implementare un’applicazione carto-
grafica interattiva: Sviluppare un’interfaccia utente accessibile e intui-
tiva per la visualizzazione georeferenziata dei punti di servizio, integrando
strumenti di ricerca e filtraggio avanzato.

• Sviluppare un sistema di gestione e auditing dei dati: Fornire
strumenti per la gestione continua dei dati, garantendone l’integrità e la
coerenza al fine di trasformare l’applicativo nella single source of truth
per l’offerta sanitaria territoriale. Il sistema dovrà inoltre implementare
un meccanismo di auditing per tracciare ogni operazione significativa,
ponendo le basi per un sistema di notifiche proattive.

• Integrare una gestione sicura dei dati sensibili: Progettare un
modello di controllo degli accessi basato sui ruoli per gestire la visibilità
differenziata delle informazioni relative ai pazienti, unificando la gestione
di dati pubblici e sensibili all’interno di un’unica piattaforma sicura.

1.5 Struttura della Tesi

Il presente elaborato è organizzato per guidare il lettore attraverso tutte le
fasi del progetto, dall’analisi del contesto fino alla discussione dei risultati. I
capitoli successivi affronteranno:

• Metodi e Strumenti di Sviluppo: Descrive l’approccio metodologico
Agile e il paradigma di progettazione Domain-Driven Design (DDD).

• Analisi e Progettazione del Sistema: Dettaglia i requisiti funzionali
e non funzionali, i casi d’uso e i vincoli del sistema. Illustra inoltre
le decisioni architetturali, il modello dati, la progettazione delle API e
l’architettura del frontend.

• Sviluppo del Prototipo: Descrive le fasi salienti dello sviluppo pro-
totipale, focalizzandosi sulle soluzioni ideate per rispettare al meglio i
dettami progettuali, le sfide tecniche affrontate e le strategie messe in
campo per una scrittura intelligente del codice.

• Conclusioni: Valuta criticamente il lavoro svolto attraverso la sua
scomposizione nelle fasi principali. Tale passaggio permette di identi-
ficare punti di forza e di debolezza in relazione agli obiettivi discutendo
cos̀ı, in fine, i limiti e i possibili sviluppi futuri.

Capitolo 2

Metodi e Strumenti di Sviluppo

L’ideazione e lo sviluppo di un sistemi software complessi richiede l’utilizzo
di metodologie robuste, in grado di governare il progressivo aumento di com-
plessità dovuto alla incrementale maturazione del progetto. Questo capitolo
illustra le due principali metodologie che hanno guidato il presente lavoro.

In primo luogo, per affrontare l’incertezza dei requisiti iniziali e promuovere
una collaborazione efficace con gli stakeholder, è stato adottato il paradigma
di sviluppo Agile. Questo approccio si è rivelato fondamentale per gestire un
contesto dinamico e caratterizzato da grande incertezza funzionale.

Parallelamente alla gestione del processo, è stata affrontata la sfida del-
la complessità concettuale del dominio sanitario. A tal fine, il progetto ha
tratto ispirazione dai principi strategici del Domain-Driven Design (DDD),
utilizzandoli come bussola per la fase di analisi.

2.1 Il Paradigma di Sviluppo Agile

2.1.1 Limiti dei Modelli Sequenziali

I modelli tradizionali di gestione del ciclo di vita del software, come quelli
sequenziali, si basano su un approccio per fasi distinte e ordinate. Il più noto
tra questi paradigmi è il modello a cascata, il quale presuppone che il processo
di sviluppo possa essere scomposto in una sequenza lineare di stadi ciascuno
dei quali, debba essere completato prima dell’inizio del successivo.

Questa impostazione, sebbene rigorosa, presenta due criticità fondamentali
in contesti caratterizzati da elevata incertezza. In primo luogo, assume che i
requisiti del sistema siano completamente noti, stabili e immutabili fin dall’i-
nizio del progetto, un’ipotesi che si rivela spesso irrealistica. In secondo luogo,
il feedback da parte degli stakeholder e degli utenti finali viene posticipato
alla fine del ciclo di sviluppo, quando un prototipo funzionante è finalmente

7

8 Metodi e Strumenti di Sviluppo

disponibile. Questa dilatazione dei tempi di verifica introduce un alto rischio
che il prodotto finale non sia allineato con le reali esigenze del dominio, ormai
evolute.

2.1.2 Il Manifesto Agile

La risposta alle rigidità dei modelli sequenziali non è stata la creazione di
un singolo modello più dinamico, ma l’emergere di un nuovo paradigma filoso-
fico, formalizzato nel 2001 con la pubblicazione del Manifesto per lo Sviluppo
Agile del Software [1]. Questo documento, redatto da diciassette influenti svi-
luppatori e metodologi, non descrive un processo, ma definisce un insieme di
valori e principi fondamentali. Il cuore del Manifesto risiede nei suoi quattro
valori fondanti, che rappresentano una decisa inversione di priorità rispetto
all’approccio tradizionale:

• Gli individui e le interazioni più che i processi e gli strumenti.

• Il software funzionante più che la documentazione esaustiva.

• La collaborazione con il cliente più che la negoziazione dei contratti.

• Rispondere al cambiamento più che seguire un piano.

È importante prestare attenzione alla formulazione utilizzata. Il Manifesto
non nega il valore di aspetti consolidati come i processi e la documentazione,
ma afferma la priorità di quelli legati al dinamismo, alla collaborazione e al
pragmatismo. L’intento, quindi, non è eliminare la pianificazione, ma ridimen-
sionarne il ruolo: da prerequisiti rigidi e vincolanti a strumenti flessibili, posti
al servizio dell’obiettivo primario, ovvero la produzione di valore tangibile per
il cliente.

Il Manifesto enuncia inoltre dodici principi che forniscono una guida più
concreta. Tra questi, emergono concetti chiave come la consegna frequente
di software funzionante al termine di brevi cicli di sviluppo, l’accoglienza dei
cambiamenti anche a fasi avanzate del progetto, la stretta collaborazione quo-
tidiana tra referenti di dominio e sviluppatori, mantenendo sempre costante
attenzione all’eccellenza tecnica e alla buona progettazione.

2.1.3 L’Approccio Iterativo-Incrementale

I modelli agili traducono i principi del Manifesto in un processo di svi-
luppo iterativo e incrementale. Pensati per mettere al centro del lavoro la
collaborazione continua con il cliente, offrono la possibilità di rispondere tem-
pestivamente alle variazioni delle esigenze, con l’obiettivo operativo di fornire
software funzionante per raffinamenti e ampliamenti successivi.

Metodi e Strumenti di Sviluppo 9

Figura 2.1: Diagramma del ciclo di sviluppo iterativo-incrementale.

Questo cambio di prospettiva si traduce operativamente in un processo di
sviluppo suddiviso in cicli brevi a durata fissa, noti come iterazioni o sprint.
Come illustrato in Figura 2.1, ogni ciclo parte da una selezione di requisiti
prioritari, attraversa le fasi di progettazione, sviluppo e test, e si conclude
con la produzione di un incremento di software funzionante e potenzialmente
rilasciabile [2].

A conclusione di ogni ciclo interviene il meccanismo di feedback continuo,
integrato attraverso incontri di revisione con gli esperti del dominio. Questo
elemento, cardine del paradigma, permette di adattare e ridefinire le priorità
in corso d’opera, garantendo che il prodotto finale sia costantemente allineato
con le reali esigenze dell’utente.

2.1.4 Motivazioni dell’Adozione del Modello Agile

L’adozione del paradigma Agile per il presente progetto non è stata una
mera scelta metodologica, ma una necessità strategica emersa dalle comples-
se dinamiche del contesto operativo. Le fasi preliminari di interfacciamento
con gli esperti del dominio dell’AUSL hanno infatti rivelato un significativo
disallineamento su aspetti fondanti del sistema da sviluppare, tra cui la defini-
zione del pubblico di riferimento primario e l’identificazione delle funzionalità
prioritarie.

In uno scenario caratterizzato da visioni cos̀ı divergenti, un approccio tra-
dizionale basato su un’analisi dei requisiti iniziale ed esaustiva, tipico dei mo-

10 Metodi e Strumenti di Sviluppo

delli a cascata, si sarebbe rivelato inefficace e controproducente. Tale processo
avrebbe con ogni probabilità portato alla stesura di documenti contraddit-
tori e a una paralisi progettuale, con un’inevitabile dissipazione delle risorse
destinate al progetto.

È risultato pertanto imperativo adottare un modello iterativo che permet-
tesse lo sviluppo rapido di un Minimum Viable Product (MVP). Con questo
termine si intende la versione di un prodotto dotata del minimo insieme di
funzionalità sufficienti a renderla utilizzabile da un primo nucleo di utenti. In
questo contesto, l’MVP non è stato concepito solo come una prima versione del
software, ma primariamente come uno strumento tangibile per facilitare il dia-
logo e guidare gli esperti verso una visione condivisa. Il prototipo funzionante
ha agito come un catalizzatore, trasformando concetti astratti in funzionalità
concrete e consentendo al team di progetto di utilizzare il software stesso come
strumento di selezione e validazione dei requisiti. In sintesi, il modello Agile
è stato l’unico approccio in grado di gestire l’incertezza iniziale, promuoven-
do la convergenza delle idee attraverso cicli di feedback rapidi e basati su un
prodotto tangibile.

2.2 Il Domain-Driven Design

Parallelamente alla metodologia di gestione del progetto, per affrontare la
complessità del dominio applicativo si è tratto ispirazione da un approccio
noto come Domain-Driven Design (DDD). I suoi principi strategici sono stati
utilizzati primariamente nella fase di analisi per guidare la comprensione della
logica di business e delle regole specifiche del contesto. Il DDD non è una
tecnologia, ma una filosofia di sviluppo che pone al centro della progettazione
la complessità del dominio applicativo, ovvero la logica di business e le regole
specifiche del contesto in cui il software opera.

2.2.1 Principi Fondamentali del DDD

L’obiettivo primario del DDD è creare un modello software che sia un’a-
strazione fedele del suo dominio di riferimento. Per raggiungere tale scopo, il
DDD si fonda su due pilastri strategici [3]:

• Linguaggio Ubiquo (Ubiquitous Language): Si tratta della creazio-
ne di un linguaggio comune, condiviso e rigoroso, sviluppato in collabo-
razione tra gli esperti del dominio e il team di sviluppo. Tale linguaggio
viene utilizzato in tutte le forme di comunicazione: nel codice sorgente,
nei diagrammi e nella documentazione. L’adozione di un Linguaggio Ubi-

Metodi e Strumenti di Sviluppo 11

quo elimina le ambiguità e le traduzioni errate tra la logica di business e
la sua implementazione tecnica.

• Contesto Delimitato (Bounded Context): Il DDD riconosce che
un dominio complesso non può essere rappresentato da un unico modello
unificato. Un Contesto Delimitato definisce un confine esplicito all’in-
terno del quale un particolare modello di dominio è valido e consistente.
Ogni Contesto Delimitato ha il suo Linguaggio Ubiquo e la sua logica
specifica. Questo principio di separazione è fondamentale per gestire la
complessità, consentendo a diverse parti del sistema di evolvere in modo
indipendente.

All’interno di un Contesto Delimitato, il modello viene costruito utilizzando
una serie di componenti tattici, noti come building blocks. Questi componenti
sono gli strumenti con cui si dà forma alla logica di business in modo esplicito
e manutenibile. I principali sono:

• Entity: Un oggetto del dominio la cui caratteristica distintiva non ri-
siede nei suoi attributi, ma in un’identità unica e continua nel tempo.
L’identità di un’Entità persiste anche se i suoi attributi cambiano.

• Value Object: Un oggetto definito esclusivamente dal valore dei suoi
attributi, privo di un’identità propria. Due Value Object sono considerati
uguali se i loro attributi sono identici. Sono tipicamente immutabili,
ovvero per modificarne uno, se ne crea una nuova istanza.

• Aggregate: Un raggruppamento di Entità e Oggetti Valore correlati,
trattato come un’unica unità coesa ai fini delle modifiche dei dati. Ogni
Aggregato ha una radice, detta Aggregate Root, che è l’unica Entità ac-
cessibile dall’esterno e responsabile di garantire l’integrità e la coerenza
dell’intero gruppo. Qualsiasi modifica agli oggetti interni deve passare
attraverso la radice, che funge da confine transazionale.

• Repository: Un componente che astrae l’accesso ai dati, mediando tra
il modello di dominio e la tecnologia di persistenza. Fornisce l’illusio-
ne di una collezione di Aggregati in memoria, esponendo un’interfaccia
con metodi come findById o save. In questo modo, la logica di busi-
ness contenuta nei servizi rimane agnostica e non inquinata da dettagli
implementativi legati alla persistenza.

12 Metodi e Strumenti di Sviluppo

2.2.2 Motivazioni dell’Adozione del DDD in Fase di Ana-
lisi

La volontà di ispirarsi ai principi del Domain-Driven Design è nata dalla
necessità di gestire l’elevata complessità del dominio sanitario territoriale. Le
criticità da modellare non erano banali: gerarchie di categorie, un complesso
sistema di permessi e visibilità, e la distinzione tra dati pubblici e dati sensibili
richiedevano un approccio che andasse oltre la semplice mappatura dei dati su
un database.

Da questo approccio sono stati tratti benefici concreti, in particolare du-
rante la fase di analisi. L’elaborazione di un Linguaggio Ubiquo condiviso con
il personale AUSL si è rivelata cruciale per superare le ambiguità terminologi-
che, presenti non solo nella comunicazione tra il team tecnico e gli esperti, ma
anche tra i diversi dipartimenti interni all’azienda. La formalizzazione termi-
nologica ha garantito una modellazione puntuale e ha reso il modello software
concettualmente accessibile anche agli esperti del dominio privi di competenze
informatiche. Il DDD, dunque, ha fornito gli spunti metodologici per tradur-
re un dominio di business ricco e articolato in un modello software robusto,
manutenibile e fedele alle esigenze degli operatori.

Capitolo 3

Analisi e Progettazione del
Sistema

Il lavoro di creazione dell’applicativo ha preso avvio con una fase iniziale
di analisi, condotta attraverso una serie di incontri telematici con gli esperti
del dominio e alcuni responsabili tecnici esterni all’AUSL, coinvolti per fornire
assistenza riguardo ad alcuni dei sistemi preesistenti. Tale processo è iniziato
parallelamente al lavoro, interno all’azienda, volto a valutare la necessità dello
strumento stesso. Il contesto, data l’assenza di un’idea unificata tra gli sta-
keholder, non permetteva un’analisi capillare con gli operatori; ha richiesto,
al contrario, un lento lavoro di astrazione affiancando gli stessi operatori nei
colloqui interni per la valutazione del progetto.

Fin da subito è apparso evidente come la vastità del dominio e l’eteroge-
neità delle esigenze imponessero l’adozione di un modello Agile. Tale scelta si
è resa necessaria per mitigare le complesse dinamiche emerse. Prima tra tutte
l’impossibilità del cliente di fornire una visione unificata delle necessità a cui lo
strumento avrebbe dovuto far fronte. Data l’adozione del modello Agile, non
è stato necessario disporre di un’analisi organica e completamente strutturata
del dominio fin dal principio. Al contrario è stato possibile procedere per raf-
finamenti successivi, migliorando progressivamente la conoscenza del dominio
stesso.

3.1 Analisi del Dominio Applicativo

La fase iniziale di analisi del dominio è stata caratterizzata da un’elevata
complessità, dovuta principalmente alla diversità degli stakeholder coinvolti.
Il primo confronto, aperto a una moltitudine di referenti dei dipartimenti AU-
SL, ha rivelato visioni differenti e talvolta contraddittorie, rendendo difficile
l’estrapolazione di un modello unificato. Da questo primo incontro è emer-

13

14 Analisi e Progettazione del Sistema

sa un’unica esigenza condivisa: la necessità di una mappatura topografica di
elementi georeferenziati, dotati di attributi per il filtraggio.

Un secondo e fondamentale passaggio di analisi ha permesso di unificare la
visione e di delineare i pilastri del dominio. È emersa la necessità di un sistema
flessibile, capace di tracciare entità georeferenziate, gestire la loro cronologia di
modifica e consentire un filtraggio capillare sia su base semantica sia geografica.

Questa fase esplorativa ha evidenziato il valore di alcuni principi strategici
del Domain-Driven Design per governare la complessità. Si è quindi deciso di
adottarne lo strumento più efficace per la fase di analisi: la formalizzazione
della conoscenza del dominio attraverso la definizione di un Linguaggio Ubiquo.

3.1.1 Definizione del Linguaggio Ubiquo

Per superare le ambiguità emerse e creare un modello software fedele alla
realtà applicativa, è stato sviluppato un Linguaggio Ubiquo in collaborazione
con gli esperti del dominio. Questo vocabolario condiviso costituisce la base per
tutta la comunicazione, la documentazione e l’implementazione del software.
I termini chiave del dominio sono definiti nella Tabella 3.1.

Tabella 3.1: Definizione dei termini del Linguaggio Ubiquo.

Termine Definizione Sinonimi

Punto della Salute

L’entità centrale del sistema.
Rappresenta un qualsiasi luogo,
servizio o risorsa fisica di interes-
se per l’AUSL, caratterizzato da
una posizione geografica e da un
insieme di attributi descrittivi.

• HealthPoint
• Struttura
• Punto Sanitario
• Punto

Servizio

Un’offerta o prestazione specifi-
ca fornita presso un Punto del-
la Salute. Un singolo Punto può
erogare più Servizi.

• Service
• Prestazione
• Offerta

Categoria

Strumento di classificazione ge-
rarchica per Punti della Salute e
Servizi. Ogni categoria può avere
una categoria genitore.

• Category
• Classificazione
• Tipologia

Distretto Sanitario

Una suddivisione territoriale e
amministrativa dell’AUSL che
rappresenta un’area geografica
specifica di competenza.

• Department
• Zona

Analisi e Progettazione del Sistema 15

Tabella 3.1 – segue dalla pagina precedente
Termine Definizione Sinonimi

Paziente

Individuo destinatario di assisten-
za sanitaria, a cui sono associa-
te informazioni sensibili sogget-
te a stringenti normative sulla
privacy.

• Assistito
• Utente del SSN
• Caso

Permesso

Un’autorizzazione granulare per
eseguire una specifica azione su
una risorsa contenuta nel domi-
nio.

• Permission
• Autorizzazione
• Diritto
• Privilegio

Ruolo
Un insieme di permessi che defi-
nisce un profilo di autorizzazione.

• Role
• Gruppo

Utente

Rappresenta un operatore del si-
stema. Entità a cui sono associati
ruoli e permessi che ne determina-
no le capacità operative.

• Profile
• Account

Visibilità
Attributo che definisce il livello di
accesso a una risorsa. Può essere
Pubblico, Privato o Ristretto.

• Livello di accesso
• Scope

Modifica

Rappresenta un evento articola-
to in proposta ed accettazione o
rigetto di alterazione di un Pun-
to della Salute, garantendo la
storicità e la tracciabilità delle
informazioni.

• ModificationLog
• Aggiornamento
• Revisione

Evento di Dominio
Rappresenta un fatto significativo
che si è verificato all’interno del
dominio.

• Event
• Trigger

Notifica
Un messaggio generato dal siste-
ma per informare un Utente su un
Evento di Dominio rilevante.

• Notification
• Avviso
• Messaggio

3.1.2 Componenti Logici Principali del Dominio

L’analisi ha portato a identificare due principali aree concettuali, ispiran-
dosi all’enfasi che il Domain-Driven Design pone sui Bounded Context. Essi
non rappresentano sottodomini destinati a una separazione fisica come nei
microservizi, ma di componenti logici coesi, ciascuno con responsabilità ben
definite.

16 Analisi e Progettazione del Sistema

Questi due componenti nascono dalle entità centrali del dominio: il Punto
della Salute, che rappresenta il ”cosa”, e l’Utente, che rappresenta il ”chi”.
Tutto il resto del modello di dominio serve ad arricchire e a contestualizzare
queste due entità primarie. Data la loro centralità, è proprio l’interazione tra
questi due componenti a definire la natura delle funzionalità del sistema.

Il Punto della Salute

Il primo fulcro concettuale si sviluppa attorno all’entità del Punto della
Salute, che rappresenta l’oggetto centrale del dominio, il ”cosa”. L’analisi si è
concentrata non solo sulla singola entità, ma su tutto l’ecosistema di informa-
zioni che le conferisce significato. Un Punto, infatti, non è un dato isolato, ma
esiste in un ricco contesto definito da:

• Classificazione, attraverso l’associazione a una o più Categorie gerar-
chiche che ne definiscono la natura.

• Funzionalità, tramite i Servizi specifici che è in grado di erogare.

• Posizione, l’attributo geografico che lo colloca fisicamente sul territorio.

Questo insieme di concetti interconnessi costituisce il dominio statico dei dati.
L’obiettivo dell’analisi è stato quello di rispondere a domande fondamentali
come: ”Qual è la struttura minima di informazioni per descrivere un Punto
della Salute in modo efficace?” e ”Come modellare le relazioni gerarchiche e
funzionali che lo legano ad altre entità?”.

L’Utente

Il secondo fulcro concettuale è costruito attorno alla figura dell’Utente, che
rappresenta l’agente attivo del sistema, il ”chi”. L’analisi di questo aspetto non
si è focalizzata tanto sull’identità dell’operatore, quanto sulle sue capacità e
sulle conseguenze delle sue azioni. Il modello definisce l’interazione dell’Utente
con i dati attraverso:

• Ruoli, definiti da un insieme di Permessi granulari che specificano le
singole azioni consentite.

• Conseguenze, rappresentate dagli Eventi che vengono scatenati dalle
sue azioni e che possono dare origine a Notifiche per altri utenti.

Questo insieme di concetti costituisce il dominio dinamico delle azioni. Il focus
dell’analisi è stato quello di definire le regole di business che governano l’accesso
e la manipolazione delle informazioni, rispondendo a domande come: ”Chi può

Analisi e Progettazione del Sistema 17

fare cosa?”, ”Come garantire che ogni azione sia tracciata e autorizzata?” e
”Cosa deve accadere nel sistema in risposta a un’azione dell’utente?”.

Questi due fulcri del dominio, il ”cosa” e il ”chi”, pur essendo concet-
tualmente distinti, non sono isolati ma al contrario, la loro interdipendenza è
fondamentale per il corretto funzionamento del sistema. Il modello del Punto
della Salute definisce le risorse informative, mentre il modello dell’Utente sta-
bilisce le regole per interagire con esse. La relazione fondamentale tra i due
può essere descritta in questo modo: la capacità di un Utente di visualizza-
re o manipolare un Punto della Salute è direttamente governata dai Ruoli e
dai Permessi che gli sono stati assegnati. Questa interdipendenza logica è il
pilastro su cui si fondano i requisiti di sicurezza e di accesso differenziato, ga-
rantendo che ogni operatore agisca esclusivamente entro i confini delle proprie
autorizzazioni.

3.2 Analisi dei Requisiti

In linea con l’approccio Agile, la raccolta dei requisiti ha seguito un per-
corso evolutivo, specchio delle dinamiche del progetto. In una fase iniziale,
caratterizzata da un’elevata incertezza da parte dell’azienda committente, ci
è stato possibile partecipare come osservatori alle riunioni interne dell’azien-
da. Questo ha permesso di assorbire passivamente la conoscenza del dominio,
mentre gli stakeholder stessi definivano il perimetro delle necessità.

Il ruolo di osservatori passivi è stato poi abbandonato. Una volta acqui-
sita una sufficiente padronanza del dominio, è diventato fondamentale infatti
svolgere un ruolo di facilitazione tecnica, capace di intravedere le conversazio-
ni potenzialmente più proficue e di indirizzarle verso esiti concreti e attuabili.
Questo ruolo, seppur non decisionale, ha permesso di iniziare ad abbozzare i
primi requisiti, risolvendo le iniziali ambiguità e contraddizioni emerse.

Il contributo dell’Ing. Angelo Croatti, Responsabile per la Transizione
Digitale di AUSL Romagna, è stato cruciale per trasformare le discussioni ad
alto livello in specifiche più concrete. Grazie alla documentazione redatta in
tali occasioni è stato possibile delineare con chiarezza i requisiti estratti in
precedenza, studiarli e procedere alle prime fasi implementative.

A partire dal primo rilascio dell’MVP, il processo di raccolta dati è cambia-
to radicalmente, diventando più strutturato e pragmatico: il software stesso
è diventato lo strumento per l’elaborazione di feedback mirati, permetten-
do di affinare e incrementare le funzionalità sulla base di riscontri tangibili.
Gli stakeholder sono passati cos̀ı dal supporre funzionalità sulla base della lo-
ro immaginazione a proporre modifiche su componenti e aspetti tangibili ed
oggettivi. Questo passaggio è risultato fondamentale per molteplici ragioni:

18 Analisi e Progettazione del Sistema

anzitutto ha avvicinato i pensieri più divergenti all’interno del team di esperti,
fornendogli una base comune di ragionamento basata sull’esistenza di un pro-
dotto, ed ha reso i riscontri mirati alla modifica di qualcosa di tangibile e non
più alla produzione di qualcosa di inesistente.

Il volume e la specificità dei feedback emersi in questa fase hanno reso
necessaria la centralizzazione della raccolta dei dati per mezzo di un canale
univoco. Per formalizzare questo canale di comunicazione, sono state infine
introdotte interviste strutturate. La loro somministrazione agli esperti e la
successiva sintesi dei risultati è stata gestita dalla Dott.ssa Melissa Corradi,
Dirigente Medico di AUSL Romagna. Questo ha permesso di istituire un ca-
nale di comunicazione autorevole e unificato, garantendo che i requisiti raccolti
attraverso cicli iterativi fossero validati, coerenti e rappresentativi di una vi-
sione condivisa. Tutto ciò ha portato all’affinamento progressivo dei requisiti
di seguito descritti.

3.2.1 Requisiti Funzionali

I Requisiti Funzionali (RF) descrivono le funzionalità che il sistema deve
fornire per rispondere alle esigenze operative e informative degli esperti del
dominio.

RF-1 Gestione dei Punti della Salute: il sistema deve consentire
le operazioni CRUD (Create, Read, Update, Delete) sui punti di
interesse georeferenziati.

RF-2 Gestione dei Servizi: ogni punto può erogare uno o più servizi;
il sistema deve permetterne la definizione, modifica e associazione
ai punti.

RF-3 Classificazione gerarchica: i punti e i servizi devono poter es-
sere organizzati in categorie e sottocategorie, con strutture gerar-
chiche annidate.

RF-4 Gestione dei livelli di visibilità e persistenza: ciascun punto
deve essere contrassegnato come pubblico, privato o riservato, de-
terminando i limiti di accesso alle informazioni. Deve essere inoltre
possibile inserire punti con un arco temporale di vita predefinito.

RF-5 Gestione utenti e ruoli: gli utenti devono essere profilati con
ruoli che a loro volta possiedono permessi specifici, in modo da
regolare le azioni consentite.

Analisi e Progettazione del Sistema 19

RF-6 Ricerca e filtraggio: il sistema deve consentire ricerche testuali
e filtri avanzati per categoria, fascia d’età, area geografica, livello
di visibilità, ecc.

RF-7 Mappatura geografica interattiva: l’interfaccia deve fornire
una visualizzazione su mappa dei punti, con possibilità di selezio-
ne, zoom e filtraggio.

RF-8 Gestione multi-livello territoriale: il sistema deve supportare
la visualizzazione e l’analisi dei dati a livello di quartiere, comune.

RF-9 Integrazione con dati AUSL: il sistema deve poter recuperare
e aggiornare automaticamente le informazioni pubblicate sul sito
dell’AUSL.

RF-10 Caricamento dati da banche dati esistenti: devono poter es-
sere importati dataset preesistenti o esterni in formati strutturati.

RF-11 Tracciamento delle modifiche: ogni modifica a un punto o
servizio deve essere storicizzata, mantenendo traccia dell’autore,
del timestamp e dei campi modificati.

RF-12 Notifiche: il sistema deve inviare notifiche automatiche agli uten-
ti in caso di eventi rilevanti che essi siano sincroni o asincroni.

RF-13 Accesso pubblico: i dati non riservati devono essere consultabili
pubblicamente tramite un’interfaccia web accessibile.

RF-14 Espandibilità funzionale: il sistema deve prevedere l’aggiun-
ta di nuove categorie, servizi o tipi di punto senza necessità di
modifiche strutturali.

3.2.2 Requisiti Non Funzionali

I Requisiti Non Funzionali (RNF) definiscono le proprietà qualitative del
sistema, ovvero le caratteristiche che ne determinano la solidità, l’efficienza e
la sostenibilità nel tempo.

RNF-1 Scalabilità: il sistema deve poter gestire un progressivo incre-
mento di dati e utenti, garantendo prestazioni adeguate.

RNF-2 Flessibilità: l’architettura deve consentire modifiche e amplia-
menti senza impatti significativi sulle funzionalità esistenti.

20 Analisi e Progettazione del Sistema

RNF-3 Interoperabilità: il sistema deve rispettare standard di scambio
dati e protocolli di interoperabilità con piattaforme sanitarie.

RNF-4 Tracciabilità: ogni operazione significativa deve essere registrata,
garantendo la possibilità di audit e controllo successivo.

RNF-5 Sicurezza: devono essere implementati meccanismi di autentica-
zione, autorizzazione e cifratura dei dati, nel rispetto del GDPR.

RNF-6 Usabilità: l’interfaccia deve essere intuitiva, coerente con stan-
dard grafici noti e facilmente utilizzabile da personale non tecnico.

RNF-7 Manutenibilità: il codice deve essere documentato e struttu-
rato in modo da agevolare interventi futuri di manutenzione o
estensione.

3.3 Progettazione del Sistema

La fase di progettazione traduce i requisiti funzionali e non funzionali,
emersi dall’analisi, in una struttura architetturale concreta. Attraverso la mo-
dellazione del sistema a diversi stadi di astrazione, formalizzata da diagrammi
Entità-Relazione (E/R) e diagrammi UML, è possibile definire con capillarità
crescente la struttura della soluzione. L’obiettivo è definire un’architettura
robusta, scalabile e manutenibile, che risponda efficacemente alle complesse
esigenze del dominio. Le scelte progettuali sono state guidate da pattern con-
solidati per lo sviluppo di applicazioni web moderne, seguendo un approccio
top-down: dall’architettura generale fino al dettaglio dei singoli componenti.

3.3.1 Progettazione Architetturale

Lo studio dell’architettura è iniziato non appena i requisiti fondanti del
dominio sono stati sufficientemente chiari da permettere l’individuazione dei
componenti strutturali del progetto. Il sistema è stato progettato seguendo
un’architettura a tre livelli solitamente detto Three-Tier Architecture, un mo-
dello consolidato che garantisce una rigorosa separazione delle responsabilità
tra i componenti logici dell’applicazione.

Questa scelta strategica risponde direttamente ai requisiti non funzionali di
manutenibilità e flessibilità. Disaccoppiando i livelli, si ottiene la facoltà di far
evolvere, o persino sostituire, le tecnologie di un singolo livello senza impattare
sugli altri. Ciò garantisce non solo la possibilità di ampliamento futuro, ma
anche la migrazione verso scelte tecnologiche più innovative o versatili.

I tre livelli sono:

Analisi e Progettazione del Sistema 21

• Presentation Tier: Rappresenta il punto di contatto tra l’utente e il
sistema. La sua responsabilità primaria è quella di tradurre i dati e le
funzionalità del sistema in un’interfaccia utente interattiva e compren-
sibile. Questo livello si occupa di presentare le informazioni, acquisire
l’input dell’utente attraverso moduli e controlli, e fornire un feedback im-
mediato, eseguendo validazioni preliminari a livello client. Non contiene
logica di business, ma agisce come un interprete tra il mondo umano e
quello digitale.

• Application Tier: Costituisce il cuore logico del sistema, operando
come un cervello centrale. Questo livello è l’unico custode delle regole
di business e della logica di dominio. Le sue responsabilità includono
l’elaborazione delle richieste provenienti dal livello di presentazione, l’or-
chestrazione di processi complessi, la gestione della sicurezza attraverso
autenticazione ed autorizzazione e l’applicazione di tutte le policy che
garantiscono il corretto funzionamento del sistema. Espone le sue capa-
cità attraverso un’interfaccia di servizi ben definita, che funge da unico
punto di accesso controllato alla logica applicativa.

• Data Tier: Funge da memoria a lungo termine del sistema. La sua
responsabilità non si limita alla semplice memorizzazione dei dati, ma
si estende a garantirne l’integrità, la coerenza e la sicurezza nel tem-
po. Questo livello gestisce l’accesso fisico e logico ai dati, assicura che
le relazioni tra le entità siano mantenute e fornisce uno strumento di
interrogazione per la ricerca e la manipolazione dei dati. È inoltre re-
sponsabile della gestione delle transazioni per assicurare che le operazioni
sulle informazioni siano atomiche e affidabili.

3.3.2 Progettazione del Database

La progettazione del database ha preso avvio dalla traduzione del modello
concettuale del dominio in un modello logico relazionale, formalizzato attra-
verso un diagramma E/R. Tale sfida, per quanto fondamentale ai fini della
progettazione, ha rappresentato un passaggio tutt’altro che banale. La criti-
cità prima e fondante è stata l’assenza di un modello definito. Ciò ha reso
complessa sia l’estrapolazione dei dati utili a modellare le singole entità, sia le
relazioni tra le stesse. L’assenza, infatti, di limpidità a livello dei requisiti ha
reso arduo immaginare la struttura che dunque, inizialmente, ha assunto una
forma estremamente articolata. Ancora una volta il lavoro di raffinamento ca-
pillare svolto nel corso delle iterazioni agili ha fornito la possibilità di affinare il
modello attraverso l’eliminazione di ridondanze ed elementi con grado di com-
plessità eccedentemente elevato. Il lavoro si è svolto a partire dai due noccioli

22 Analisi e Progettazione del Sistema

semantici di interesse, quali Punti della Salute e Utenti. Successivamente, con
un lavoro ad anelli concentrici, è stato possibile allargarsi alla progettazione di
tutti quegli elementi capaci di arricchire semanticamente i due noccioli, assicu-
rando cos̀ı un uso parsimonioso delle risorse ed una conformità alle specifiche
richieste.

Punto della Salute

La progettazione dell’entità Punto della Salute ha rappresentato il ful-
cro della modellazione del database. La sua centralità è confermata dal fatto
che il suo schema è stato oggetto di continue revisioni durante tutto il processo
iterativo, evolvendo fino alle fasi finali dello sviluppo.

Una delle prime sfide è stata quella di catturare la natura duale di questa
entità. L’analisi esplorativa ha infatti rivelato che il termine Punto della Salute
poteva essere usato per descrivere due concetti distinti: da un lato, presidi fisici
che erogano servizi diretti al cittadino, come per esempio un punto prelievi;
dall’altro, strutture con funzioni puramente burocratiche o rappresentative,
come le sedi amministrative di un distretto.

Per gestire questo binomio, la prima ipotesi di lavoro prevedeva una model-
lazione gerarchica basata su una specializzazione. Si ipotizzò una superclasse
generica, che possiamo definire Luogo di Interesse Sanitario, specializza-
ta in due sottoclassi distinte: la Sede Amministrativa, per rappresentare le
entità con funzione organizzativa, e il Punto di Erogazione, per identificare
i luoghi in cui vengono effettivamente forniti servizi sanitari. La logica dietro
questa scomposizione era quella di semplificare l’esperienza per i due principali
profili di utente: gli operatori interni, spesso interessati a interagire con le sedi
amministrative, e i cittadini, la cui ricerca è focalizzata sui punti di eroga-
zione di servizi concreti. Dal punto di vista del modello E/R, questa ipotesi
si sarebbe tradotta in una gerarchia con specializzazione totale e disgiunta:
ogni Luogo di Interesse Sanitario sarebbe stato necessariamente o una
Sede Amministrativa o un Punto di Erogazione, ma mai entrambi. Inol-
tre, si prevedeva che una Sede Amministrativa potesse agire come entità
dirigenziale, gestendo uno o più Punti di Erogazione ad essa collegati.

I riscontri ottenuti successivamente hanno reso evidente che la modellazio-
ne cos̀ı ideata raggiungesse un grado di capillarità eccessivo e non attinente
alle necessità funzionali. Si è dunque proceduto a smantellare la gerarchia. La
modellazione del Punto della Salute è diventata monolitica e ci si è concen-
trati sull’arricchimento semantico per mezzo di attributi ed associazioni con
entità apposite, come ci sarà possibile vedere di seguito nel capitolo.

Il modello finale parte dunque da una struttura di base, illustrata in Fi-
gura 3.1, che si concentra sugli attributi intrinseci dell’entità. Le associazioni

Analisi e Progettazione del Sistema 23

Figura 3.1: Entità che modella nel diagramma E/R il Punto della Salute.

con le altre entità e gli attributi più specifici verranno descritte nei paragrafi
successivi.

Categoria

L’entità Categoria rappresenta un elemento fondante dell’architettura dei
dati, in quanto costituisce il meccanismo primario per le funzionalità di filtrag-
gio e classificazione. Lo studio di questo concetto ha portato alla modellazione
di un’unica entità in relazione sia con i Punti della Salute sia con i Servizi.

Questa scelta progettuale è stata dettata da un principio di efficienza e
coerenza. Poiché una moltitudine di categorie è applicabile in modo paritetico
sia alle strutture sia alle prestazioni, un modello unificato evita la duplicazione
di entità e garantisce un sistema di classificazione omogeneo in tutto il dominio.

Una funzionalità fondamentale da poter implementare è la capacità di crea-
re gerarchie di categorie, ovvero avere la possibilità di creare e visualizzare
categorie e sottocategorie ad esse annesse. A tale scopo è stata definita una
relazione ricorsiva sull’entità Categoria stessa, facendo uso del pattern no-
to come Adjacency List come mostrato in Figura 3.2. In questo schema, ogni
istanza di Categoria può avere un riferimento opzionale a un’altra istanza della
stessa entità, che funge da genitore. Questo realizza una relazione uno-a-molti
padre-figlio, permettendo di costruire alberi di classificazione di profondità ar-

24 Analisi e Progettazione del Sistema

Figura 3.2: Diagramma E/R della categorizzazione.

bitraria, modellando cos̀ı in modo efficace la struttura indentata tipica di un
sistema di categorizzazione complesso.

Georeferenziazione

La georeferenziazione dei Punto della Salute è stata modellata non come
un singolo attributo, ma come un sistema composito che integra diversi livelli
di informazione per rispondere a esigenze sia funzionali che di usabilità.

In primo luogo, è stata definita una gerarchia amministrativa territoriale
attraverso la creazione delle entità Provincia e Comune. Queste sono legate
da una relazione uno-a-molti: ogni Provincia è associata a una moltitudine di
Comuni, e ogni Punto della Salute è localizzato in un unico Comune. Questa
struttura offre due vantaggi strategici:

• Abilita filtri gerarchici: Permette agli utenti di effettuare ricerche e
aggregazioni di dati a livello comunale e provinciale in modo efficiente e
consistente.

• Garantisce scalabilità: Il modello può essere facilmente esteso per
includere livelli territoriali superiori permettendo al sistema di scalare a
livello regionale o nazionale secondo le necessità future.

In secondo luogo, per la localizzazione puntuale, l’entità Punto della

Salute è stata arricchita con gli attributi latitudine e longitudine. Que-
ste coordinate numeriche sono essenziali per il sistema, in quanto permettono
la visualizzazione precisa del punto su una mappa interattiva, il calcolo delle
distanze e l’esecuzione di interrogazioni spaziali complesse.

Infine, per garantire la comprensibilità da parte dell’utente finale, è sta-
to incluso un attributo testuale indirizzo. Questo fornisce una rappresen-
tazione della posizione in linguaggio naturale, familiare e immediatamente
interpretabile.

Analisi e Progettazione del Sistema 25

Questi tre elementi ovvero: la gerarchia amministrativa, le coordinate geo-
metriche e l’indirizzo testuale lavorano in sinergia per fornire una modellazione
della posizione completa, robusta e flessibile.

Gestione della Visibilità

Un requisito fondamentale, emerso durante i cicli di sviluppo agile, è stata
la necessità di gestire la visibilità dei dati a un livello granulare. L’introduzione
di questo concetto ha richiesto una parziale ristrutturazione del modello per
garantire un controllo degli accessi flessibile e sicuro.

La soluzione individuata si basa su un approccio a due livelli. In primo luo-
go, all’entità Punto della Salute è stato aggiunto un attributo visibilità,
che funge da regola di accesso generale e può assumere tre valori:

• Pubblico: Il punto è visibile a tutti gli utenti del sistema, inclusi quelli
non autenticati.

• Privato: Il punto è visibile unicamente al personale interno all’azienda.

• Ristretto: La visibilità è limitata a un elenco specifico di utenti auto-
rizzati esplicitamente dal proprietario dello stesso Punto.

Per gestire quest’ultimo caso, è stata introdotta unaspecifica entità as-
sociativa, ovvero Autorizzazione Accesso Punto. Questa tabella mette in
relazione un Punto della Salute con visibilità ristretta a uno o più Utenti,
specificando quali operatori sono autorizzati alla sua visualizzazione. In questo
modo, l’attributo visibilità agisce come un selettore di policy, mentre la ta-
bella Autorizzazione Accesso Punto implementa una vera e propria Access
Control List (ACL) a livello di singolo record, fornendo il massimo grado di
granularità nel controllo degli accessi.

Gestione del Ciclo di Vita del Dato

Oltre alla visibilità, è stato necessario modellare la validità temporale di
un Punto della Salute. Invece di prevedere un’eliminazione fisica dei dati,
che comporterebbe una perdita di informazioni storiche, si è optato per un
approccio di tipo soft-delete ovvero di eliminazione logica.

Per implementare questo pattern, è stato aggiunto all’entità un attributo
opzionale Data di Scadenza. Se all’attributo viene assegnata una data, il
punto rimane valido fino a tale data, dopodiché viene considerato scaduto e
filtrato dalle visualizzazioni operative standard. Qualora invece non fosse inse-
rita alcuna data il punto sarebbe considerato permanentemente attivo. Questo
meccanismo garantisce che nessun dato venga mai perso pur mantenendo pulita
e aggiornata l’interfaccia utente.

26 Analisi e Progettazione del Sistema

Utente

L’entità Utente costituisce il secondo fulcro concettuale del dominio, rap-
presentando l’agente attivo del sistema. Lo studio dedicato alla sua modella-
zione è stato capillare e ha portato a una soluzione che bilancia la semplicità
anagrafica con la complessità delle interazioni. La progettazione si è sviluppa-
ta su due livelli distinti: la definizione della sua identità e la modellazione del
suo ruolo operativo.

A livello di attributi intrinseci, la modellazione dell’entità Utente è vo-
lutamente lineare e pragmatica. La sua struttura è stata progettata per
raccogliere le informazioni strettamente necessarie all’identificazione univoca
dell’operatore e alla gestione dei suoi contatti, senza introdurre complessità
superflue.

La vera complessità progettuale, tuttavia, non risiede negli attributi, bens̀ı
nel modo in cui l’entità Utente si relaziona con il resto del dominio. Il suo
ruolo non è quello di un’entità statica, ma di un attore le cui capacità operative
sono definite dalle sue associazioni. Il focus dell’analisi si sposta quindi dalla
sua identità alle sue autorizzazioni, che vengono modellate attraverso le entità
Ruolo e Permesso, come verrà descritto di seguito.

Autorizzazione

Per tradurre la complessa struttura organizzativa aziendale in un sistema
di autorizzazioni sicuro e flessibile, è stato adottato il modello di controllo degli
accessi basato sui ruoli, noto come Role-Based Access Control (RBAC). Questo
pattern disaccoppia l’identità dell’utente dalle autorizzazioni specifiche, garan-
tendo una gestione centralizzata e scalabile dei permessi. La progettazione si
articola su tre livelli concettuali: il Permesso, il Ruolo e il Dipartimento.

Alla base del sistema si trova l’entità Permesso, che rappresenta il diritto
di eseguire una singola e specifica operazione all’interno del sistema. La model-
lazione di permessi cos̀ı granulari permette di definire con precisione assoluta
il perimetro operativo di ogni azione.

Il secondo livello è rappresentato dall’entità Ruolo. Un Ruolo non è altro
che un insieme di Permessi, raggruppati per definire una funzione lavorativa
o un profilo specifico. Questa astrazione è cruciale; invece di assegnare decine
di permessi individuali a ogni utente, si assegna un unico Ruolo, semplificando
drasticamente la gestione e garantendo coerenza. Un Utente può essere asso-
ciato a più Ruoli, ereditando l’unione di tutti i Permessi in essi contenuti,
permettendo cos̀ı di modellare profili con responsabilità trasversali.

Infine, l’entità Dipartimento introduce un ulteriore livello di contestualiz-
zazione. Ogni Utente è associato a un Dipartimento che rappresenta la sua
collocazione all’interno dell’organigramma aziendale. Sebbene non faccia par-

Analisi e Progettazione del Sistema 27

Figura 3.3: Diagramma E/R della gestione RBAC dei permessi di accesso.

te strettamente della gerarchia RBAC, il Dipartimento fornisce un contesto
essenziale per future policy di accesso ai dati. Permette, ad esempio, di imple-
mentare regole in cui un operatore può modificare solo i Punti della Salute

di competenza del proprio dipartimento, aggiungendo cos̀ı una dimensione di
controllo basata sulla proprietà e sulla pertinenza dei dati. Tutto c̀ıo prende
forma nel diagramma E/R rappresentato in Figura 3.3.

Notifica

Per trasformare l’applicazione da un semplice repository di dati a una piat-
taforma collaborativa e reattiva, è stata progettata un’architettura di notifica
basata sul concetto di Evento. Questo approccio garantisce che gli utenti
siano informati in tempo reale sulle modifiche e sugli avvenimenti rilevanti,
promuovendo la consapevolezza e la collaborazione.

La progettazione si fonda su una netta separazione di responsabilità tra
la registrazione di un fatto e la sua comunicazione. Ogni azione significativa
che avviene all’interno del sistema, l’approvazione di una modifica o la revoca
di un permesso genera un record immutabile: l’Evento. Questa entità non è
un semplice messaggio, ma una registrazione formale e strutturata di un fatto
avvenuto. L’approccio di creare un log immutabile di eventi si ispira a pattern

28 Analisi e Progettazione del Sistema

architetturali reattivi e garantisce un completo disaccoppiamento tra i produt-
tori di eventi ovvero i componenti che eseguono l’azione e i loro consumatori
che nel nostro caso è il sistema di notifiche. Il produttore, ovvero il componente
che genera l’evento, non arresta il proprio operato in attesa di una reazione, ma
delega al consumatore il compito di agire in modo asincrono. L’Evento, tutta-
via, rappresenta il fatto accaduto, non il messaggio da comunicare. Per questo,
è stata introdotta l’entità Notifica, la cui responsabilità è quella di tradurre
un evento grezzo in un messaggio significativo e contestualizzato per l’utente
finale. Un singolo Evento di Dominio può dare origine a zero, una o molteplici
Notifiche, a seconda delle regole di business. Ad esempio, la modifica di un
Punto della Salute potrebbe generare una Notifica per il proprietario del
Punto e una diversa Notifica per gli amministratori di sistema.

Infine, il sistema modella esplicitamente la relazione tra una Notifica e
i suoi destinatari. La progettazione prevede un meccanismo di distribuzio-
ne che associa una singola Notifica a uno o più Utenti. Per ogni coppia
Utente-Notifica, il sistema traccia l’avvenuta lettura, permettendo di co-
struire un’interfaccia utente funzionale simile a un centro notifiche o a una
casella di posta in arrivo.

Questa architettura disaccoppiata, che separa l’evento dalla notifica e dalla
sua consegna, garantisce non solo la tracciabilità completa delle azioni, ma
anche una notevole flessibilità. Permette di modificare le regole di notifica o
di introdurre nuovi canali di comunicazione in futuro, senza dover alterare la
logica di business che genera gli eventi fondamentali del dominio.

Modifica

La gestione del ciclo di vita dei dati non si esaurisce con la loro creazione
o cancellazione logica, ma deve includere un controllo rigoroso sul processo
di aggiornamento, un requisito fondamentale per garantire l’affidabilità delle
informazioni. Per rispondere a questa esigenza, si è adottato il Proposal Pat-
tern, che evita la manipolazione diretta dei dati attraverso un’entità dedicata,
Modifica, la quale agisce come strumento di storicizzazione per le alterazioni
non ancora validate.

L’implementazione di questo pattern prevede che, invece di alterare istan-
taneamente un record, ogni cambiamento venga incapsulato in un’istanza di
Modifica. Questa entità agisce come una proposta di modifica con un proprio
ciclo di vita. Essa viene generata in uno stato iniziale di attesa (PENDING) e non
altera il dato reale finché non riceve la supervisione di un utente autorizzato.
Quest’ultimo può esaminare la proposta e decidere se approvarla (APPROVED),
rendendo la modifica effettiva e persistente, o rifiutarla (REJECTED), scartando
l’operazione ma conservandone traccia.

Analisi e Progettazione del Sistema 29

Per ogni proposta, il sistema registra un insieme completo di metadati,
tra cui l’autore, l’eventuale revisore, i timestamp di ogni fase del processo e,
soprattutto, un dettaglio strutturato di tutti i campi oggetto dell’alterazio-
ne. Questo design garantisce non solo una cronologia completa e immutabile,
ma istituisce un workflow di approvazione formale, essenziale per mantenere
l’integrità e l’accuratezza dei dati in un contesto collaborativo.

E/R Completo

La sintesi delle scelte progettuali descritte nei paragrafi precedenti è for-
malizzata nel diagramma Entità-Relazione completo del database, illustrato
in Figura 3.4. Questo schema visualizza tutte le entità, i loro attributi chiave
e le relazioni che le legano, offrendo una visione d’insieme dell’architettura dei
dati che supporta l’intera applicazione.

3.3.3 Progettazione del Backend

La progettazione del backend traduce la struttura logica dell’Application
Tier in un’architettura software concreta. L’architettura interna segue rigoro-
samente il pattern Layered Architecture. Esso articola il componente in livelli
logici coesi e a basso accoppiamento, ognuno con un compito nettamente defi-
nito. I Layer tipicamente identificati sono: il Repository Layer, il Service Layer
e il Controller Layer.

Repository Layer

Il livello più interno è il Repository Layer, strutturato sulla base del Repo-
sitory Pattern. Questo strato ha la responsabilità esclusiva di comunicare con
il database, astraendo completamente la tecnologia di persistenza sottostante.
Ogni entità Java Persistence API (JPA) è associata a un repository specifico,
che espone un’interfaccia con metodi per la manipolazione dei dati.

Questa astrazione è una delle scelte più potenti dell’architettura poiché na-
sconde la complessità delle interrogazioni al database, permettendo al Service
Layer di interagire con la persistenza attraverso un vocabolario di alto livello.
Di conseguenza, la logica di business rimane pulita e completamente svinco-
lata rispetto alla tecnologia di memorizzazione, libera dunque di evolvere in
maniera totalmente indipendente.

Service Layer

Il componente cardine dell’applicazione risiede nel Service Layer, custode di
tutta la logica di business e delle regole di dominio. Questo livello orchestra le

30 Analisi e Progettazione del Sistema

Figura 3.4: Diagramma E/R del database.

Analisi e Progettazione del Sistema 31

operazioni sui dati senza mai interagire direttamente con la persistenza. Sfrut-
ta infatti le interfacce offerte dal Repository Layer per manipolare le entità.
L’interazione tra i livelli è governata dal principio di Inversione di Controllo
(IoC), attuato attraverso il pattern Dependency Injection (DI). Un servizio non
crea le proprie dipendenze, come possono risultare essere i repository, ma le ri-
ceve tramite iniezione esterna da parte del sistema. Questo disaccoppiamento
non è un mero dettaglio implementativo, ma una scelta architetturale che faci-
lita la testabilità unitaria dei servizi in isolamento e promuove un’architettura
estremamente modulare e manutenibile.

Controller Layer

Il livello più esterno del backend è il Controller Layer, che agisce come
facciata del sistema, esponendone le funzionalità attraverso un’interfaccia API
RESTful. La sua responsabilità è interpretare le richieste HTTP in arrivo, ese-
guire una prima e fondamentale validazione dell’input e orchestrare le chiamate
ai servizi sottostanti.

Una scelta progettuale cardine, a questo livello, è stata l’adozione sistema-
tica del pattern Data Transfer Object (DTO). Invece di esporre direttamente
le entità del dominio, che rappresentano la struttura interna e talvolta sensibile
del database, vengono utilizzati oggetti DTO. Questi definiscono un contratto
API stabile e sicuro. Tale disaccoppiamento è cruciale per due motivi:

• Sicurezza e Ottimizzazione: Protegge il modello di dominio interno
da esposizioni involontarie e permette di modellare risposte minimali, che
contengono solo i dati strettamente necessari a soddisfare la richiesta.
Questo riduce il payload di dati trasmessi e semplifica l’utilizzo dell’API
da parte del client.

• Flessibilità: Consente al contratto API di evolvere in modo indipen-
dente dalla struttura del database, garantendo che modifiche interne non
impattino i consumatori del servizio stesso.

L’interazione sinergica di questi tre livelli definisce un flusso di controllo
unidirezionale e robusto come rappresentato in Figura 3.5. Ogni richiesta pro-
veniente dal client attraversa ordinatamente questi strati, come visualizzato nel
diagramma seguente, garantendo che ogni componente agisca esclusivamente
entro i confini della propria responsabilità.

3.3.4 Progettazione del Frontend

La progettazione del frontend traduce il concetto astratto di Presentation
Tier in un’interfaccia utente interattiva, dinamica e manutenibile. Si è adot-

32 Analisi e Progettazione del Sistema

Figura 3.5: Diagramma UML di flusso di una richiesta attraverso l’Architettura
a Strati del Backend.

Analisi e Progettazione del Sistema 33

tato un approccio basato su elementi assemblabili detti componenti. Tale
tecnica, volta alla modularità e al riutilizzo del codice, è di uso comune per la
costruzione di interfacce complesse. L’architettura non si limita alla sola resa
visiva, ma si fonda su una rigorosa separazione delle responsabilità, articolata
su tre pilastri fondamentali: la gerarchia dei componenti, il livello di servizio
per la comunicazione API e una strategia definita per la gestione dello stato.

Architettura a Componenti

Il fondamento dell’architettura è la scomposizione dell’interfaccia utente in
Componenti isolati e riutilizzabili. È stata adottata una distinzione strategica
tra due tipologie di componenti, seguendo il pattern Container-Presentational :

• Componenti Presentazionali: La loro unica responsabilità è la resa
visiva e la coerenza stilistica. Ricevono dati e funzioni esclusivamente
tramite le loro proprietà, dai rispettivi componenti padri, e si limitano a
visualizzarli. Questa purezza li rende estremamente riutilizzabili.

• Componenti Contenitore: Agiscono come orchestratori. Il loro scopo
è recuperare e gestire i dati, contenere la logica di business frontend e
passarli ai componenti presentazionali figli. Essi rappresentano in nucleo
funzionale, separando la logica dalla sua rappresentazione.

Questa strategia permette di costruire interfacce complesse attraverso la com-
posizione di elementi semplici, garantendo che la logica applicativa sia disac-
coppiata dalla sua struttura visiva.

Separazione della Logica dalla Vista

Una delle scelte architetturali più comuni è l’estrazione sistematica della
logica di business e della gestione dello stato dai componenti visivi. Il mec-
canismo adottato per questa separazione è l’uso dei Custom Hooks. Questi
elementi agiscono come contenitori di logica riutilizzabile. Provvedono infatti
all’incapsulazione delle chiamate API o delle sottoscrizioni a eventi e manipo-
lano lo stato come conseguenza diretta degli stessi avvenimenti. Cos̀ı facendo,
i componenti diventano puramente dichiarativi, ovvero si occupano di espri-
mere cosa visualizzare in base allo stato corrente, senza preoccuparsi di come
tale stato viene ottenuto o modificato. Questo pattern non solo aumenta la
leggibilità e la testabilità del codice, ma favorisce anche la riusabilità della
logica di business in diverse parti dell’applicazione.

34 Analisi e Progettazione del Sistema

Gestione dei Dati

Il flusso dei dati è governato da due meccanismi complementari. In primo
luogo, in modo analogo al backend, tutta la comunicazione con l’API RESTful
è stata centralizzata in un Service Layer dedicato. Questa astrazione funge da
barriera protettiva tra il frontend e le specificità del backend, centralizzando
la logica di chiamata e la gestione degli errori in un unico punto.

In secondo luogo, la gestione dello stato interno all’applicazione segue un
flusso di dati unidirezionale. Si distingue tra:

• Stato Locale, confinato a un singolo componente e utilizzato per dati
effimeri della UI.

• Stato Condiviso, accessibile da diverse parti dell’albero dei componen-
ti, gestito attraverso meccanismi come la Context API di React.

Questa strategia garantisce che lo stato dell’applicazione sia prevedibile e facile
da tracciare, evitando la complessità di flussi di dati incontrollati.

3.4 Selezione dello Stack Tecnologico

Il workflow operativo delle prime fasi di progettazione si è concluso con la
selezione dello stack tecnologico che meglio si adattasse all’architettura ideata.
Le specifiche emerse hanno reso necessario l’utilizzo di framework e tecnologie
moderne, capaci di soddisfare le proprietà architetturali definite. Di conseguen-
za, per ognuno dei livelli individuati ovvero: Data, Application e Presentation;
è stata selezionata una o più tecnologie atte a supportarne al meglio i requisiti
specifici.

3.4.1 Tecnologie per il Data Tier

Per la selezione della tecnologia più opportuna nell’ambito del database, è
stato necessario considerare non solo i risultati della progettazione dello stesso,
ma anche la totalità dei requisiti funzionali e non funzionali. Il sistema, in-
fatti, richiedeva una notevole flessibilità nella modellazione di alcuni attributi,
una proprietà non sempre garantita dai sistemi puramente relazionali data la
loro rigidità strutturale. D’altra parte, l’integrità dei dati, la loro tracciabilità
e la coerenza relazionale dovevano rimanere una priorità, come richiesto da-
gli stakeholder, allontanando l’ipotesi di un database documentale di natura
NoSQL.

Ci si è dunque interrogati su quale potesse essere il compromesso tecnologi-
co in grado di assecondare queste esigenze ibride e che, al contempo, facilitasse

Analisi e Progettazione del Sistema 35

operazioni complesse come query geospaziali. La soluzione è stata individuata
in PostgreSQL con la sua estensione PostGIS. Questa scelta rappresenta una
sintesi ideale per molteplici ragioni:

• Offre la robustezza, l’affidabilità e la coerenza transazionale di un data-
base relazionale, tutelando l’integrità dei dati.

• Supporta nativamente tipi di dato complessi come JSON/JSONB, garan-
tendo la flessibilità necessaria per modellare attributi non strutturati.

• L’estensione PostGIS lo trasforma in un potente database geospaziale,
fornendo un supporto nativo ed efficiente per l’archiviazione e l’interro-
gazione di dati geografici, requisito fondamentale del progetto.

3.4.2 Tecnologie per l’Application Tier

La valutazione delle tecnologie da adottare per l’Application Tier è stata
articolata e ha seguito l’evoluzione del progetto. Le prime fasi esplorative,
basate su prototipi in Java senza l’ausilio di un framework, hanno rapidamente
rivelato che tale approccio era troppo semplicistico per gestire la complessità
del modello e l’architettura a strati che si stava delineando.

L’attenzione si è dunque spostata su Spring Boot, identificato come il
framework ottimale per l’implementazione dell’architettura a livelli ideata. La
sua adozione si è rivelata una scelta virtuosa, in quanto ha fornito un supporto
nativo e robusto per:

• L’implementazione rigorosa dei pattern discussi in precedenza, come la
Dependency Injection (DI) per disaccoppiare i layer e i Data Transfer
Objects (DTO).

• La creazione rapida e standardizzata di API RESTful.

• La gestione integrata e dichiarativa delle transazioni, essenziale per la
logica del Service Layer.

Il lavoro è stato coadiuvato da librerie di supporto come Lombok, che ha permes-
so di snellire la stesura del codice boilerplate delle classi di dominio, riducendo
la verbosità, minimizzando la possibilità di errori e liberando risorse temporali
da dedicare allo sviluppo dei componenti più complessi.

3.4.3 Tecnologie per il Presentation Tier

L’architettura a componenti ideata per il livello di presentazione ha reso
imperativo l’utilizzo di uno strumento che la supportasse nativamente. La

36 Analisi e Progettazione del Sistema

scelta è ricaduta su React, libreria ampiamente consolidata e supportata da
una vasta comunità, ideale per la creazione di Single-Page Application mo-
derne. React ha permesso di tradurre fedelmente il design architetturale in
una base di codice modulare, dove la distinzione tra componenti di logica e di
presentazione è un principio fondante.

A sostegno dello sviluppo dell’interfaccia, sono state utilizzate tecnologie
specifiche per la gestione della componente cartografica, che rappresenta il
cuore dell’applicazione. Per garantire un’esperienza fluida e ad alte prestazioni,
è stato scelto un moderno stack di mappatura vettoriale basato su MapLibre

GL, un potente motore di rendering open-source per mappe vettoriali, utilizzato
in questo progetto per visualizzare dati cartografici basati su OpenStreetMap.
Per integrare questa tecnologia in modo armonico nell’ecosistema React, è
stata utilizzata la libreria React Map GL, che espone un set di componenti
dichiarativi per il controllo della mappa.

A tale scopo, si è fatto ricorso a fonti dati esterne in formato GeoJSON, uno
standard aperto per la rappresentazione di dati geografici. La scelta è ricadu-
ta su dataset autorevoli curati dalla fondazione Openpolis, disponibili tramite
repository GitHub pubblico [4]. Questi file non sono semplici immagini, ma
contengono dati vettoriali strutturati che descrivono con precisione la geome-
tria poligonale dei confini di tutte le province e i comuni italiani. Questa scelta
metodologica garantisce l’utilizzo di dati aperti, affidabili e standardizzati, as-
sicurando la qualità e la trasparenza dell’informazione geografica presentata
all’utente.

Capitolo 4

Sviluppo del Prototipo

Questo capitolo documenta la fase di sviluppo del prototipo, illustrando
come il processo implementativo sia stato non solo un’esecuzione tecnica, ma
una componente strategica integrante del dialogo con gli esperti di dominio e
della progressiva definizione dei requisiti.

4.1 Scopo della Prototipazione

A seguito della fase di progettazione iniziale, è stata avviata la prototipa-
zione. Coerentemente con il paradigma Agile, questa è stata articolata in cicli
iterativi, durante i quali le funzionalità sono state progressivamente affinate.
L’obiettivo primario non era la produzione di un sistema finale, ma lo sviluppo
di un artefatto strategico, un prototipo funzionale utile a guidare gli esperti del
dominio nel processo di acquisizione dei dati e a validare le ipotesi progettuali.
Si è scelto deliberatamente di non mirare a uno strumento direttamente frui-
bile dal cliente, poiché i rigorosi standard di privacy e sicurezza, imposti dalla
sensibilità dei dati, sarebbero stati inconciliabili con l’approccio di sviluppo
rapido richiesto in questa fase esplorativa.

L’adozione di questo approccio ha innescato un virtuoso processo di co-
progettazione. Le demo periodiche del prototipo hanno agito da catalizzatore
per il confronto, trasformando gli incontri con gli stakeholder in sessioni di
lavoro interattive. Questo ha permesso uno scambio bilaterale di competenze.
Gli esperti del dominio infatti hanno affinato la loro pragmaticità tecnica,
imparando a formulare requisiti in modo più strutturato, mentre il team di
sviluppo ha consolidato la propria comprensione del dominio applicativo. Tale
sinergia ha reso la comunicazione progressivamente più efficiente e l’analisi
stessa più profonda.

Il processo implementativo si è articolato in cicli iterativi ben definiti. Ogni
iterazione è iniziata con il testing di tecnologie e componenti specifiche per la

37

38 Sviluppo del Prototipo

funzionalità da realizzare. Seguiva la creazione minimale del modello di dati
necessario. Il parallelo lavoro di implementazione frontend che ne derivava
si prefiggeva il duplice scopo di rendere la feature disponibile all’utente e di
sopperire temporaneamente a eventuali mancanze dell’application tier, la cui
complessità era talvolta inconciliabile con le scadenze. Ogni ciclo si è concluso
con una sessione di revisione, durante la quale il team riportava i progres-
si agli stakeholder, raccogliendo feedback cruciali per pianificare l’iterazione
successiva.

4.2 Implementazione dei Servizi Backend

Il lavoro implementativo, volto alla creazione dei servizi backend, prende
avvio dalla documentazione prodotta e raffinata nelle fasi di progettazione,
con lo scopo di dare forma concreta all’architettura a strati precedentemente
descritta. Per il raggiungimento di tale obiettivo, sono stati sfruttati i molte-
plici strumenti che Spring Boot mette a disposizione per la realizzazione di
architetture di questo tipo.

La traduzione del modello progettuale in codice ha seguito un percorso
metodico, partendo dal livello più vicino ai dati per poi salire progressivamente
fino a quello di esposizione delle API. Questa scelta strategica non è stata
casuale, ma ha permesso di strutturare il lavoro seguendo livelli di astrazione
crescenti. In questo modo è stato possibile isolare con cura i singoli strati,
garantendone la testabilità in maniera autonoma e assicurando che la logica
dei livelli superiori poggiasse su fondamenta già verificate e stabili.

4.2.1 Implementazione del Data Layer

Il lavoro cardine svolto dal Data Layer è quello di astrazione dei dati prove-
nienti dal database e delle operazioni su di essi attuate. La criticità di questa
operazione è legata al rischio di accoppiare strettamente la tecnologia su cui si
basa la persistenza dei dati e quella del backend stesso. Per ovviare a questa
criticità, la persistenza viene gestita per mezzo dello standard Java Persistence
API (JPA).

Esso, in quanto standard e non implementazione, non si occupa direttamen-
te di come risolvere il problema di disaccoppiamento, ma definisce un’interfac-
cia e un approccio convenzionale per farlo. L’attuazione pratica dello standard
proposto è Hibernate ovvero l’implementazione di JPA integrata in Spring

Boot, che risolve il problema attuando una Mappatura Oggetto-Relazionale
(ORM). Ciò significa che esiste una relazione paritetica tra le entità del layer
applicativo e le tabelle della base di dati.

Sviluppo del Prototipo 39

Tale approccio permette al sistema di eseguire operazioni sulla persistenza
dei dati attraverso semplici chiamate a metodi su specifiche classi, apposi-
tamente segnalate con l’annotazione @Entity, svincolandosi dalla specificità
delle query SQL. Questo sistema è inoltre messo in sinergia con Spring Data

JPA, un modulo dell’ecosistema Spring che semplifica ulteriormente l’imple-
mentazione del livello di accesso ai dati. La combinazione dei due permette di
definire interfacce di Repository capaci di generare automaticamente le query
a partire dalla firma dei metodi.

Entity

Le classi Entity sono componenti del modello di dominio la cui struttura
è mappata direttamente su una tabella della base di dati. Ciascuna istanza
di una classe Entity rappresenta una singola tupla all’interno della tabella
corrispondente. Hanno di conseguenza campi identici agli attributi delle entità
del database e non si occupano di null’altro se non di esporre metodi per
l’accesso e la gestione di questi ultimi come setter e getter. Per facilitare la
produzione di queste classi, spesso ripetitive, si è sfruttato Lombok, una libreria
che interviene in fase di compilazione per generare automaticamente codice
boilerplate. Essa ha permesso di semplificare la scrittura, creando costruttori,
setter e getter in maniera automatizzata per mezzo di apposite annotazioni.

Un esempio emblematico di questa implementazione è la classe HealthPoint.
Questa classe rappresenta un punto della salute all’interno del Data Layer : i
suoi campi modellano gli attributi della tabella corrispondente e, tramite le
annotazioni di Lombok, vengono forniti i metodi per la loro gestione.

Un aspetto critico nell’ORM è la gestione delle relazioni, in particolare quel-
le multiple come la relazione molti a molti, annotata con il tag @ManyToMany,
tra HealthPoint e Category. Per garantire la coerenza dei dati su entrambi i
lati della relazione, è buona norma implementare appositi helper methods che
incapsulino la logica di associazione e dissociazione. Questa gestione deve es-
sere simmetrica: quando una categoria viene aggiunta a un punto della salute,
anche il riferimento inverso nel grafo degli oggetti deve essere aggiornato.

Per tale ragione entrambe le entità coinvolte adottano questo pattern. La
classe Category, che rappresenta il lato proprietario della relazione tramite
l’annotazione @JoinTable, è colei che gestisce in maniera prioritaria la rela-
zione attraverso il campo healthPoints che rappresenta la relazione stessa.
Per far ciò espone i metodi addHealthPoint e removeHealthPoint come ci è
possibile osservare nel Codice 4.1).

In modo speculare, la classe HealthPoint, che definisce il lato inverso della
relazione tramite l’attributo mappedBy, implementa i metodi addCategory e
removeCategory come mostrato dal Codice 4.2.

40 Sviluppo del Prototipo

1 @ManyToMany(fetch = FetchType.LAZY)

2 @JoinTable(

3 name = "hp_category",

4 joinColumns = @JoinColumn(name = "category_id"),

5 inverseJoinColumns = @JoinColumn(name = "health_point_id")

6)

7 private Set<HealthPoint> healthPoints = new HashSet<>();

8

9 public void addHealthPoint(HealthPoint healthPoint) {

10 this.healthPoints.add(healthPoint);

11 healthPoint.getCategories().add(this);

12 }

Codice 4.1: Helper methods lato proprietario in Category.java.

1 @ManyToMany(mappedBy = "healthPoints", fetch = FetchType.LAZY)

2 private Set<Category> categories = new HashSet<>();

3

4 public void addCategory(Category category) {

5 this.categories.add(category);

6 category.getHealthPoints().add(this);

7 }

Codice 4.2: Helper methods lato inverso in HealthPoint.java.

L’adozione di questa strategia su entrambe le entità garantisce che lo stato
del modello a oggetti rimanga sempre consistente, indipendentemente da quale
lato della relazione venga utilizzato per avviare l’operazione di associazione.

Repository

Una volta definite le Entity, il passo successivo consiste nel creare un mec-
canismo per la loro interrogazione. Questo ruolo è affidato alle interfacce Re-
pository, realizzazioni pratiche dell’omonimo design pattern atto a mediare tra
il dominio dell’applicazione e la logica di accesso ai dati. Per realizzare questo
strato, si è utilizzato il modulo Spring Data JPA. Questo componente sem-
plifica drasticamente il processo, fornendo diversi meccanismi per definire le
operazioni di accesso ai dati, dalla convenzione sulla configurazione fino alla
scrittura di query complesse.

La base per la creazione di un repository è l’estensione dell’interfaccia ge-
nerica JpaRepository<T, ID> fornita da Spring, come mostrato all’interno
della classe HealthPointRepository.java in corrispondenza di riga 2 del

Sviluppo del Prototipo 41

Codice 4.3. In questo modo, le operazioni CRUD di base vengono eredita-
te automaticamente, senza la necessità di scrivere alcuna implementazione
concreta.

Per query semplici, Spring Data JPA permette di definire interrogazioni
semplicemente dichiarando la firma di un metodo nell’interfaccia. Seguendo
una specifica convenzione, infatti, il framework astrae il nome del metodo e
genera la query corrispondente. Come illustrato alle righe 4-6 del Codice 4.3,
questo approccio, noto come Query Methods, riduce il codice e aumenta la
leggibilità per le operazioni standard.

Per esigenze più complesse, non esprimibili tramite i Query Methods, è pos-
sibile definire query personalizzate utilizzando l’annotazione @Query. Questo
approccio offre due alternative:

• Java Persistence Query Language(JPQL): Una sintassi simile a
SQL ma che opera sulle entità e i loro attributi. È una scelta ottimale
in termini di disaccoppiamento e portabilità. Un esempio è visibile alla
riga 8, dove viene definita una ricerca testuale case-insensitive.

• SQL Nativo: Utile per sfruttare funzionalità specifiche del dialetto
SQL del database. Un caso emblematico per questo progetto è l’interro-
gazione di dati geospaziali tramite PostGIS, ecosistema di funzioni non
accessibile via JPQL. La query implementata a partire dalla riga 11 è un
esempio di questa necessità, utilizzando una Common Table Expression
(CTE) ricorsiva per interrogare le categorie gerarchiche.

4.2.2 Implementazione del Service Layer

Salendo di livello dal Data Layer, si incontra il Service Layer. Esso funge
da collante tra la persistenza dei dati e la loro esposizione all’esterno, ren-
dendolo anzitutto una componente fondamentale per il disaccoppiamento tra
queste due realtà. Mette infatti in relazione le classi Controller, tipiche del
Presentation Layer, con i Repository già visti nel Data Layer. Questo com-
pito è affidato a classi denominate Service e segnalate con l’omonima anno-
tazione @Service, utile a qualificarle come componenti gestiti dal framework
Spring. Il loro ciclo di vita e le loro dipendenze sono governate dal contai-
ner Inversion of Control (IoC). Tramite il pattern Dependency Injection (DI),
il framework provvede a iniettare automaticamente le istanze necessarie, co-
me un HealthPointRepository all’interno di un HealthPointService. Que-
sto approccio promuove un basso accoppiamento e un’elevata testabilità dei
componenti.

42 Sviluppo del Prototipo

1 @Repository

2 public interface HealthPointRepository extends

JpaRepository<HealthPoint, Integer> {

3

4 List<HealthPoint> findByActiveTrue();

5

6 List<HealthPoint> findByActiveTrueOrderByNameAsc();

7

8 @Query("SELECT h FROM HealthPoint h WHERE h.active = true AND

h.name ILIKE %:searchTerm%")

9 List<HealthPoint> findActiveByNameContaining(String

searchTerm);

10

11 @Query(value = """

12 WITH RECURSIVE category_tree AS (

13 SELECT id FROM category WHERE id IN (:categoryIds)

14 UNION ALL

15 SELECT c.id FROM category c JOIN category_tree ct ON

c.parent_id = ct.id

16)

17 SELECT DISTINCT hp.* FROM health_point hp

18 JOIN hp_category pc ON hp.id = pc.health_point_id

19 WHERE hp.active = true AND pc.category_id IN (SELECT id

FROM category_tree)

20 """, nativeQuery = true)

21 List<HealthPoint>

findActiveByCategoriesAndChildren(@Param("categoryIds")

Set<Integer> categoryIds);

22

23 //... restanti query methods ...

24 }

Codice 4.3: Esempio di implementazione di HealthPointRepository con
diverse strategie di query.

Sviluppo del Prototipo 43

I service hanno un compito primario di importanza fondamentale. Essi,
rappresentando la logica di business nella sua interezza, hanno la responsa-
bilità di orchestrare le operazioni sui dati, affinché questi risultino coerenti e
attendibili nel tempo. Spesso un service si occupa della gestione di una molti-
tudine di repository e, affinché tale compito venga svolto in maniera sicura, è
richiesto l’uso dell’annotazione @Transactional. Grazie ad essa si specificano
le operazioni che richiedono atomicità nell’essere svolte. Se, per esempio, fos-
se necessario eliminare un utente e di conseguenza modificare i riferimenti ai
punti di sua proprietà, è cruciale che l’intera sequenza avvenga come un’unica
operazione. Se si dovesse incorrere in un errore, l’intera transazione verrebbe
annullata per mantenere la persistenza, l’affidabilità e la coerenza dei dati.

Un aspetto architetturale cruciale implementato in questo strato è l’uso del
pattern Data Transfer Object. Per disaccoppiare il modello di dominio interno,
composto da Entity JPA, dal contratto pubblico esposto dalle API, il Service
Layer non opera direttamente con le entità verso l’esterno. Esso riceve i dati
dai Controller sotto forma di DTO e, analogamente, restituisce DTO come
risultato delle sue operazioni. Questo approccio offre molteplici vantaggi:

• Stabilità dell’API: La struttura delle API non risulta legata rigidamen-
te a quella del database, permettendo a quest’ultima di evolvere senza
impattare i client.

• Sicurezza: Si evita di esporre accidentalmente dati sensibili presenti
nelle Entity ma non necessari all’esterno.

• Performance: Si trasferiscono solo i dati strettamente necessari, ot-
timizzando il payload e prevenendo problemi legati al caricamento lazy
delle relazioni JPA.

Data Transfer Object (DTO)

Componenti fondamentali per garantire la separazione tra i layer sono i
DTO. Si tratta di un pattern architetturale che prevede l’uso di classi il cui
unico scopo è trasportare dati tra i confini del sistema, tipicamente tra il
Service e il Presentation Layer. Per loro natura, devono essere strutture dati
semplici e immutabili. In questo progetto, tale requisito è stato soddisfatto
attraverso l’adozione dei record Java, un costrutto del linguaggio che permette
di definire classi in modo conciso e sicuro, riducendo drasticamente il codice
boilerplate.

Il loro utilizzo permette di disaccoppiare il modello di dominio interno,
composto da Entity JPA, dal contratto pubblico esposto dalle API. Ciò of-
fre molteplici vantaggi, tra cui la stabilità dell’API, una maggiore sicurezza,

44 Sviluppo del Prototipo

e un miglior controllo sulle performance, prevenendo problemi di caricamento
massivo dei dati. Inoltre, una singola entità può essere rappresentata da più
DTO, ciascuno modellato su uno specifico caso d’uso. Questa strategia con-
sente di progettare API precise e performanti, modellate sulle reali esigenze
dell’interfaccia utente. Per esempio, l’entità HealthPoint è servita da due
DTO distinti:

• HealthPointDto: una rappresentazione completa e dettagliata, utiliz-
zata quando il client richiede tutte le informazioni di un singolo punto
della salute come mostrato nel Codice 4.4.

• HealthPointSimpleDto: una versione minimale contenente solo ID e
nome, ottimizzata per popolare liste o menu a tendina in cui mostrare
l’intera anagrafica sarebbe inefficiente come mostrato nel Codice 4.5.

1 public record HealthPointDto(

2 Integer id,

3 String name,

4 JsonNode address,

5 Integer municipalityId,

6 // ... altri campi dettagliati ...

7 Boolean active,

8 List<CategorySimpleDto> categories

9) {

10 public static HealthPointDto from(HealthPoint entity) {

11 // ... logica di mappatura da Entity a DTO ...

12 }

13 }

Codice 4.4: DTO dettagliato per l’entità HealthPoint.

1 public record HealthPointSimpleDto(

2 Integer id,

3 String name

4) {

5 public static HealthPointSimpleDto from(HealthPoint entity) {

6 return new HealthPointSimpleDto(entity.getId(), entity.getName());

7 }

8 }

Codice 4.5: DTO semplificato per l’entità HealthPoint.

Service

Per illustrare come il Service Layer orchestri le interazioni tra i componenti
del dominio, si analizza il caso d’uso della creazione di un nuovo Punto della

Sviluppo del Prototipo 45

Salute. Questa operazione, sebbene comune, incarna perfettamente il ruolo del
service nel farsi mediatore e garante della coerenza dei dati, come illustrato
nel frammento di Codice 4.6 estratto dalla classe HealthPointServiceImpl.

L’intero processo è racchiuso in un metodo annotato con @Transactional,
che assicura l’atomicità dell’operazione tale per cui o tutti i passaggi hanno
successo, o l’intera transazione viene annullata. Il flusso logico ha inizio quan-
do il Service riceve un DTO dal Controller, contenente i dati grezzi del nuovo
punto. Da questo momento, il Service avvia la sua attività di orchestrazio-
ne. Per prima cosa, interroga il MunicipalityRepository per recuperare e
validare l’entità del Comune a cui il punto appartiene. Successivamente, si
rivolge al CategoryRepository per ottenere le istanze delle entità Categoria

basandosi sugli identificativi forniti. Una volta che il Service si trova con l’og-
getto HealthPoint completamente assemblato e arricchito delle sue relazioni
invoca l’HealthPointRepository per persistere il nuovo grafo di oggetti nel
database. Infine, l’entità salvata viene riconvertita in un DTO e restituita al
chiamante, completando il ciclo e mantenendo il modello di dominio interno
disaccoppiato dalle API.

4.2.3 Implementazione del Controller Layer

Ultimando la nostra scalata all’interno dell’architettura backend, giungia-
mo al layer di controllo, lo strato responsabile dell’esposizione delle funzionalità
di sistema con l’esterno. Esso si occupa di raccogliere le richieste HTTP pro-
venienti dal frontend e di rigirarle agli appositi Service. Tale compito viene
assolto attraverso l’esposizione di API RESTful, gestendo il protocollo HTTP
e delegando la logica di business al Service Layer.

Controller

Le classi che danno il nome al livello stesso, i Controller, costituisco-
no i componenti cardine di questo strato. Sono identificati dall’annotazione
@RestController, che li qualifica come componenti del modulo Spring MVC,
responsabile della gestione delle richieste web, e indica che i valori di ritor-
no dei metodi devono essere serializzati direttamente nel corpo della risposta.
Per adempiere a tale scopo risulta fondamentale, ancora una volta, l’utilizzo
della ormai nota Dependency Injection: questo pattern ci permette di istan-
ziare specifici service all’interno dei controller, assicurando che la logica di
business rimanga completamente disaccoppiata dai dettagli del protocollo di
comunicazione.

I controller fungono dunque da ”postini”, mappano il tipo, il verbo e
l’URI delle richieste HTTP pervenute e, seguendo path preventivamente de-

46 Sviluppo del Prototipo

1 @Service

2 @Transactional(readOnly = true)

3 public class HealthPointServiceImpl implements HealthPointService {

4

5 private final HealthPointRepository healthPointRepository;

6 private final CategoryRepository categoryRepository;

7 private final MunicipalityRepository municipalityRepository;

8

9 // ... costruttore per la Dependency Injection ...

10

11 @Override

12 @Transactional

13 public HealthPointDto create(HealthPointDto dto) {

14 HealthPoint newHealthPoint = new HealthPoint();

15

16 // ... mappatura dei campi semplici dal DTO all’entit (name,

address, etc.) ...

17

18 Municipality municipality =

municipalityRepository.findById(dto.municipalityId())

19 .orElseThrow(() -> new EntityNotFoundException("Municipality

not found"));

20 newHealthPoint.setMunicipality(municipality);

21

22 if (dto.categories() != null && !dto.categories().isEmpty()) {

23 Set<Integer> categoryIds = // ... estrazione ID dal DTO ...

24 List<Category> categories =

categoryRepository.findAllById(categoryIds);

25 for (Category category : categories) {

26 newHealthPoint.addCategory(category);

27 }

28 }

29

30 HealthPoint savedEntity =

healthPointRepository.save(newHealthPoint);

31

32 return HealthPointDto.from(savedEntity);

33 }

34 }

Codice 4.6: Orchestrazione di tre repository nel metodo create di
HealthPointServiceImpl.java.

Sviluppo del Prototipo 47

finite, le associano univocamente a un metodo che si interfaccia con il ser-
vice layer, perché possa provvedere al compito impartitogli. L’annotazione
@RequestMapping definisce l’URI di base per una risorsa, come per esempio
/api/health-points, che fa riferimento ai Punti della Salute. Mentre anno-
tazioni come @GetMapping e @PostMapping specificano il verbo HTTP a cui
un metodo risponde, associando dunque GET e POST agli specifici endpoint e
definendo di fatto le operazioni consentite su quella risorsa.

Il Controller è dunque un layer volutamente agnostico rispetto alla logica
di business. Il suo compito è orchestrare il ciclo di vita della richiesta HTTP.
A tale scopo, utilizza annotazioni come @RequestBody per convertire i payload
JSON in DTO e @RequestParam per leggere i parametri dalle query URL, at-
tivando meccanismi di validazione con @Valid. Avviene poi la fase di delega,
in cui invoca i metodi del service appropriato, passando i dati validati e disac-
coppiati dalla richiesta HTTP. Una volta pervenutegli le risposte dal service,
passa alla costruzione della risposta: utilizza la classe ResponseEntity per co-
struire una risposta HTTP completa, definendo con precisione lo status code,
gli header e il corpo della risposta, che viene automaticamente serializzato in
JSON. Il Codice 4.7 mostra un’implementazione concreta di questo flusso nel
HealthPointController.

Il percorso implementativo descritto, che si muove dal Data Layer fino al
Controller Layer, delinea un’architettura backend robusta e scalabile. Ogni
strato possiede responsabilità precise e confini netti. Il Data Layer gestisce
la persistenza astraendo il database, il Service Layer incapsula la logica di
business orchestrando le operazioni ed infine, il Controller Layer espone queste
funzionalità in modo sicuro e standardizzato attraverso un’API RESTful.

Questa rigorosa separazione delle responsabilità, resa possibile dagli stru-
menti offerti da Spring come la Dependency Injection e la gestione delle tran-
sazioni, non è un mero esercizio stilistico. Essa si traduce in vantaggi concreti.
Ogni componente può essere testato in isolamento, le modifiche a uno strato
non impattano gli altri, e il sistema nel suo complesso risulta più facile da
comprendere, manutenere ed estendere. Avendo cos̀ı definito l’interfaccia dati
del sistema, il passo successivo è analizzare l’implementazione del fruitore di
questa parte del sistema ovvero il Frontend.

4.3 Implementazione dell’Interfaccia Frontend

Come discusso nella sezione iniziale di questo capitolo, il prototipo ha svolto
un ruolo strategico nel processo di coprogettazione con gli esperti di dominio.
Sebbene il sistema sia un’unione coesa di più componenti, l’interfaccia fron-
tend si è distinta come il principale catalizzatore di feedback. Il frontend,

48 Sviluppo del Prototipo

1 @RestController

2 @RequestMapping("/api/health-points")

3 public class HealthPointController {

4

5 private final HealthPointService healthPointService;

6

7 ... costruttore per la Dependency Injection ...

8

9 @GetMapping

10 public ResponseEntity<List<HealthPointDto>> getAllHealthPoints(

11 @RequestParam(required = false) String search,

12 @RequestParam(required = false) Set<Integer> categoryIds){

13 // ... logica per delegare la ricerca al service in base ai

parametri ...

14 }

15

16 @PostMapping

17 public ResponseEntity<HealthPointDto> addHealthPoint(@Valid

@RequestBody HealthPointDto dto) {

18 HealthPointDto created = healthPointService.create(dto);

19

20 URI location = ServletUriComponentsBuilder

21 .fromCurrentRequest().path("/{id}")

22 .buildAndExpand(created.id()).toUri();

23

24 return ResponseEntity.created(location).body(created);

25 }

26 }

Codice 4.7: Esempio di Controller REST per la gestione della risorsa
HealthPoint.

Sviluppo del Prototipo 49

infatti, dando una forma grafica e interattiva a concetti altrimenti astratti, ha
permesso di ottenere riscontri pragmatici e mirati.

La sua capacità di evolvere in modo relativamente indipendente dallo sta-
to di avanzamento del Backend si è rivelata un vantaggio cruciale. Seguendo
un approccio Agile, i requisiti sono mutati significativamente nel corso delle
iterazioni. Una modifica che appariva semplice a livello di interfaccia avrebbe
potuto richiedere un intervento complesso e trasversale sull’intero stack im-
plementativo. Grazie al disaccoppiamento, è stato possibile implementare tali
modifiche prima solo a livello grafico, verificandone l’utilità, la correttezza e la
reale volontà degli stakeholder di adottare l’accorgimento proposto. Solo dopo
una validazione chiara e definitiva, si è potuto procedere con l’implementazio-
ne completa su backend e database, minimizzando cos̀ı il rischio di sviluppare
funzionalità superflue o errate.

L’implementazione del Frontend è stata dunque lo strumento principe per
l’acquisizione di feedback e la validazione dei requisiti. Lo sviluppo si è basato
su un nucleo di componenti fondamentali realizzati in React, utilizzati come
mattoni per costruire progressivamente interfacce più complesse. Il processo ha
seguito un andamento a spirale, volto ad arricchire il sistema con funzionalità
sempre più capillari, partendo da solide fondamenta.

La traduzione dei principi dettati dalla progettazione in una base di codice
manutenibile ha richiesto l’adozione di una struttura rigorosa e convenzionale
per la gestione dei file. L’organizzazione del codice sorgente non è un dettaglio
secondario, ma un pilastro che garantisce la leggibilità, la scalabilità e la facilità
di navigazione del progetto.

La struttura adottata suddivide il codice per responsabilità funzionale,
raggruppando i file in cartelle distinte sulla base della loro attinenza semantica:

• /pages: Contiene i componenti di primo livello, ognuno dei quali rappre-
senta una pagina o una rotta principale dell’applicazione. Nell’implemen-
tazione attuale, vi si trovano HomePage e DashboardPage, pagine fonda-
mentali per la rappresentazione grafica delle funzionalità principali del
sistema. Questi componenti agiscono come contenitori, che orchestrano
i dati e gli elementi UI specifici per la vista di appartenenza.

• /components: È la libreria di elementi UI riutilizzabili. Contiene tutti
i componenti presentazionali, da quelli più atomici, come i pulsanti, a
quelli più complessi, come le card dei punti ed i pulsanti. Gli elementi di
questa cartella sono accomunati dal loro scopo: visualizzare dati ricevuti
tramite props, rimanendo completamente agnostici alla logica di business.

• /hooks: Incapsula la logica di business e la gestione dello stato riutilizza-
bile. I Custom Hooks sono il meccanismo primario per estrarre la logica

50 Sviluppo del Prototipo

di data-fetching e di interazione dai componenti, rendendoli più snelli e
dichiarativi.

• /services: Contiene il Service Layer del Frontend, un’astrazione re-
sponsabile esclusivamente della comunicazione con le API REST del
Backend.

• /styles: Centralizza gli stili globali e le variabili CSS, garantendo coe-
renza visiva in tutta l’applicazione.

Questa suddivisione è l’espressione concreta del principio cardine dell’ar-
chitettura: la separazione tra i componenti contenitore conservati in /pages

e presentazionali contenuti in /components. Tale separazione garantisce il
disaccoppiamento tra la logica di business e la sua rappresentazione visiva,
rendendo il sistema più modulare e facile da manutenere.

4.3.1 Gestione del Flusso Dati

Per evitare la dispersione della logica e garantire un flusso di dati prevedi-
bile, è stato implementato un pattern architetturale a tre stadi che disaccoppia
nettamente l’interfaccia utente dalla gestione dello stato e dalla comunicazione
di rete. Cos̀ı facendo si assicura che ogni parte del sistema abbia una singola e
ben definita responsabilità. Il ciclo ha inizio quando un componente necessita
di dati. Esso invoca un Custom Hook dedicato, il quale a sua volta orchestra
la chiamata al Service API appropriato, gestendo l’intero ciclo di vita della
richiesta.

Custom Hooks

Il cuore della logica applicativa del Frontend risiede nei Custom Hooks.
Si tratta di un meccanismo fondamentale di React che consiste in funzioni
JavaScript riutilizzabili, il cui nome, per convenzione, inizia sempre con il
prefisso use. La loro caratteristica principale è la capacità di chiamare al loro
interno altri hooks, permettendo di incapsulare e condividere logica stateful tra
più componenti.

Il nocciolo della loro funzionalità risiede proprio nella composizione degli
hooks nativi di React:

• useState viene utilizzato per dichiarare e gestire le variabili di stato
interne all’hook.

• useEffect viene impiegato per gestire i side effects, come le chiamate ad
API in risposta a specifici cambiamenti o al montaggio del componente.

Sviluppo del Prototipo 51

Questa architettura permette una divisione capillare della logica di business e
promuove un elevato riutilizzo del codice, evitando ridondanze.

Il principio sul quale si basano i custom hooks è quello di evitare il sovrac-
carico di componenti visivi con la gestione dello stato di caricamento, degli
errori e del recupero dati. Tale logica viene estratta in funzioni riutilizzabili,
contenute negli hooks stessi. Un componente che necessita dei dati descritti
non deve far altro che invocare l’hook, ottenendo in cambio un’interfaccia com-
pleta per accedere non solo ai dati specifici dell’interrogazione, ma anche allo
stato della richiesta e a funzioni per manipolarla. Di conseguenza, il compo-
nente rimane puramente dichiarativo. Il suo unico compito, dunque, è quello
di renderizzare la UI in base allo stato fornito dall’hook, senza conoscere i
dettagli di come i dati vengono recuperati o di come gli errori vengano gestiti.

Un esempio emblematico di questo approccio è l’hook useHealthPoints,
responsabile di fornire l’elenco filtrato dei punti della salute. L’implementazio-
ne di tale hook, contenuta nel Codice 4.8, va oltre un semplice recupero dati
e mette in luce tre concetti chiave, primo tra tutti l’incapsulamento dello sta-
to. L’hook gestisce internamente tutte le variabili di stato necessarie tramite
useState, ovvero: points, selectedPoint, loading e error, nascondendo
questa complessità al componente. Risulta fondamentale anche nella gestione
reattiva degli effetti. Nel caso presentato l’hook è infatti reattivo ai cambiamen-
ti dei filtri. Grazie a useCallback con l’array di dipendenze [searchQuery,

selectedCategoryIds], la funzione fetchPoints viene memoizzata e ricreata
solo quando i parametri di ricerca cambiano. A sua volta, useEffect si attiva
in base alla modifica di fetchPoints, implementando una logica di debounce
di 500ms. Questa tecnica è fondamentale per le performance, in quanto evita
di inondare il Backend di richieste API a ogni singolo tasto premuto dall’u-
tente, avviando la ricerca solo dopo una breve pausa. Infine, l’hook espone
un’interfaccia pubblica. Il valore di ritorno dell’hook non è solo un dato, ma
un oggetto che costituisce un’API completa per il componente: i dati, lo sta-
to associato a un suo gestore e un’azione esplicita di reload, che permette al
componente di forzare un nuovo caricamento dei dati quando necessario.

Il Service Layer del Frontend

In modo del tutto speculare all’architettura Backend, anche il Frontend
implementa un Service Layer, il cui unico scopo è agire da intermediario con
le API REST. I Custom Hooks, pur orchestrando la logica di business, non
eseguono direttamente le chiamate HTTP. Essi delegano questo compito a
moduli specifici, come il file services/api/healthPointsAPI.js, che funge
da unico punto di contatto tra l’applicazione e l’endpoint dei Punti della Salute.

52 Sviluppo del Prototipo

1 import { useState, useEffect, useCallback } from ’react’;

2 import healthPointsAPI from ’../../services/api/healthPointsAPI.js’;

3

4 export const useHealthPoints = (searchQuery, selectedCategoryIds)

=> {

5 const [points, setPoints] = useState([]);

6 const [selectedPoint, setSelectedPoint] = useState(null);

7 const [loading, setLoading] = useState(true);

8 // ... altri stati ...

9

10

11 const fetchPoints = useCallback(async () => {

12 try {

13 setLoading(true);

14 const data = await healthPointsAPI.getFilteredHealthPoints({

15 searchQuery,

16 categoryIds: selectedCategoryIds

17 });

18 setPoints(data);

19 } catch (err) {

20 setError(err.message);

21 } finally {

22 setLoading(false);

23 }

24 }, [searchQuery, selectedCategoryIds]); // Dipendenze del callback

25

26 useEffect(() => {

27 const debounceTimer = setTimeout(() => {

28 fetchPoints();

29 }, 500);

30

31 return () => clearTimeout(debounceTimer);

32 }, [fetchPoints]);

33

34 return { points, selectedPoint, setSelectedPoint, loading, error,

reload: fetchPoints };

35 };

Codice 4.8: Implementazione dell’hook useHealthPoints con logica di
debounce e memoizzazione.

Sviluppo del Prototipo 53

Questa astrazione è un punto di snodo critico dell’architettura per diverse
ragioni:

• Centralizzazione: Tutta la logica relativa alla comunicazione di rete
per una specifica risorsa è confinata in un unico modulo. Se l’URL di
un’API dovesse cambiare o se fosse necessario aggiungere un header di
autenticazione a tutte le richieste, la modifica sarebbe localizzata in un
singolo file.

• Astrazione della tecnologia: Il resto dell’applicazione non conosce i
dettagli implementativi delle chiamate di rete. Che si utilizzi la fetch
API nativa del browser o una libreria di terze parti l’interfaccia esposta
dal service non cambia.

• Separazione delle Responsabilità: I Custom Hooks si occupano del-
la gestione dello stato, mentre il Service Layer si occupa esclusivamen-
te della meccanica della comunicazione HTTP: nello specifico attua la
costruzione della richiesta, l’invio e la basilare gestione della risposta.

L’implementazione del service HealthPointsAPI, che possiamo vedere nel
Codice 4.9, adotta diverse best practice moderne di JavaScript. L’utilizzo
della sintassi async/await permette di gestire le operazioni asincrone in modo
leggibile e sequenziale. Ogni metodo del service è una funzione async, che
restituisce implicitamente una Promise. Nel metodo getByCategories, ad
esempio, si osserva l’uso dell’interfaccia nativa URLSearchParams per costrui-
re in modo robusto e sicuro la query string da allegare all’URL, evitando i
rischi legati alla concatenazione manuale di stringhe. Al contrario, il meto-
do createHealthPoint mostra la configurazione necessaria per una richiesta
POST. L’oggetto options passato a fetch specifica il metodo, ovvero POST, gli
header, atti ad informare il server del formato dei dati inviati, e il body, che
contiene i dati del nuovo punto della salute, serializzati in una stringa JSON
tramite JSON.stringify.

Infine, una gestione, seppur basilare, degli errori è implementata in ogni
metodo. Essa ha svolto un ruolo di fondamentale importanza in un’ottica
di implementazione agile, permettendo un’analisi dell’errore capillare senza
introdurre un livello di complessità implementativa articolato.

Inoltre risulta imperativa la presenza del controllo if (!response.ok)

quando si usa fetch, poiché, a differenza di altre librerie, essa non rigetta la
Promise in caso di risposte con status HTTP di errore. Questa verifica esplicita
assicura che tali risposte vengano gestite come eccezioni, propagando l’errore
al Custom Hook chiamante, che potrà cos̀ı aggiornare lo stato dell’applicazione
e informare l’utente.

54 Sviluppo del Prototipo

1

2 class HealthPointsAPI {

3

4 async getFilteredHealthPoints(filters = {}) {

5 // ... logica di smistamento in base ai filtri ...

6 }

7

8 async getAllHealthPoints() {

9 try {

10 const response = await fetch(/* ... URL ... */);

11 if (!response.ok) {

12 throw new Error(‘HTTP error! status: ${response.status}‘);
13 }

14 return await response.json();

15 } catch (error) {

16 // ... gestione errore ...

17 }

18 }

19

20 async getByCategories(categoryIds = []) {

21 try {

22 const params = new URLSearchParams({ categoryIds:

categoryIds.join(’,’) });

23 const url = /*... costruttore dinamico di URL per endpoint API ...*/ ;

24 const response = await fetch(url);

25

26 if (!response.ok) {

27 // ... gestione errore ...

28 }

29 return await response.json();

30 } catch (error) {

31 // ... gestione errore ...

32 }

33 }

34

35 async createHealthPoint(healthPointData) {

36 try {

37 const response = await fetch(

38 ‘${API_CONFIG.BASE_URL}${API_CONFIG.ENDPOINTS.HEALTH_POINTS}‘,
39 {

40 method: ’POST’,

41 headers: {

42 ’Content-Type’: ’application/json’,

43 },

44 body: JSON.stringify(healthPointData),

45 }

46);

47 if (!response.ok) {

48 // ... gestione errore ...

Sviluppo del Prototipo 55

49 }

50 return await response.json();

51 } catch (error) {

52 // ... gestione errore ...

53 }

54 }

55 }

56

57 export default new HealthPointsAPI();

Codice 4.9: Implementazione del Service Layer per la risorsa HealthPoint.

4.3.2 Il Componente Dashboard

L’analisi della pagina Dashboard offre un’interessante spaccato della filo-
sofia incrementale che ha guidato l’intero progetto. Questa sezione dell’ap-
plicazione, infatti, funge da microcosmo del processo di co-progettazione. Le
diverse viste che la compongono non sono nate da un elenco di requisiti statici
e predefiniti, ma sono state implementate strategicamente per dare una for-
ma tangibile a quelle funzionalità che, durante il dialogo con gli stakeholder,
rimanevano più ambigue o complesse da definire a parole.

Attraverso l’implementazione di queste interfacce, è stato possibile trasfor-
mare concetti astratti, come la gestione strategica delle modifiche o il flusso
delle notifiche, in artefatti visivi e interattivi. Questo ha permesso di racco-
gliere feedback precisi e di validare le logiche di business prima ancora che il
loro supporto nel Backend fosse completo, incarnando pienamente il principio
della prototipazione come strumento di scoperta e dialogo.

La pagina è strutturata come un contenitore principale che agisce da orche-
stratore. Tramite lo stato interno, gestito dall’hook useState, e una semplice
logica di rendering condizionale, esso si occupa di visualizzare la vista attiva
selezionata dall’utente attraverso il componente DashboardSidebar. Questa
architettura a singolo contenitore permette di simulare una navigazione multi-
pagina pur rimanendo all’interno di un’unica rotta, una tecnica comune nelle
Single Page Application (SPA) che garantisce una transizione fluida e imme-
diata tra le diverse sezioni funzionali. Le viste renderizzate da questo compo-
nente possono essere classificate in due categorie, che riflettono il loro stadio
di maturità nel ciclo di prototipazione:

• Viste di Prototipazione Rapida con Uso di Mock Data : I com-
ponenti HealthPointsView, ModificationsView e NotificationsView
sono stati inizialmente implementati utilizzando dati fittizi detti mock
data. Questo approccio ha permesso di definire e validare rapidamente

56 Sviluppo del Prototipo

la struttura dell’interfaccia utente e l’esperienza utente con gli stakehol-
der. In particolare, la ModificationsView, in Figura 4.1, ha fornito una
rappresentazione visiva e immediata del Proposal Pattern, volto a rendere
rigorose e storicizzabili le modifiche. Esso, discusso in fase di progetta-
zione, mostra all’utente lo stato delle proprie proposte permettendo, in
maniera intuitiva, di valutarne lo stato di avanzamento. Analogamente,
la NotificationsView ha materializzato il sistema di notifiche, aiutando
a definirne il contenuto e l’aspetto prima di implementare l’infrastruttura
Event-Driven nel Backend.

• Viste Funzionali Complete: La vista AddHealthPointView rappre-
senta il caso di studio più completo all’interno della Dashboard, essen-
do un’implementazione matura e funzionante. Questo componente è un
esempio emblematico dell’architettura Component/Custom Hook descrit-
ta in precedenza. La vista ignora quasi totalmente la logica. Si occupa
di renderizzare gli elementi del form e di collegare gli eventi dell’utente
come onChange ed onSubmit alle funzioni fornite dall’esterno. Tutta la
complessità logica ovvero la gestione dello stato del form, è interamente
incapsulata e gestita dall’hook useAddHealthPoint. Questa separazio-
ne netta delle responsabilità rende il componente di vista estremamente
leggibile e focalizzato sulla presentazione, mentre la logica di business
rimane riutilizzabile e testabile in modo isolato.

La Dashboard dunque non è solo un pannello di controllo per l’utente, ma
anche un potente strumento del processo di sviluppo. Essa dimostra come,
attraverso di prototipazione rapida, sia stato possibile navigare la comples-
sità dei requisiti, promuovendo una collaborazione efficace e garantendo che il
prodotto finale fosse allineato con le reali necessità degli esperti di dominio.

4.3.3 Applicazioni del Componente Map

Il componente Mappa rappresenta senza dubbio l’elemento più emblematico
dell’intero progetto. La sua centralità non è solo di natura funzionale, ma
anche implementativa, dato che è stato declinato in due contesti distinti per
soddisfare esigenze specifiche dell’applicazione. Sfruttando i dati geografici
forniti da OpenStreetMap (OSM) e la potente libreria di rendering MapLibre

GL, il componente è stato integrato nel prototipo per realizzare due funzionalità
chiave:

• Mappa principale nella HomePage: qui la mappa viene utilizzata per
l’esplorazione interattiva e la visualizzazione georeferenziata dei punti
sanitari, costituendo il cuore dell’esperienza utente.

Sviluppo del Prototipo 57

Figura 4.1: Vista dello Stato delle modifiche nella DashBoardPage.

• Mappa nel form di inserimento: in questo contesto, la mappa funge
da strumento di precisione per consentire all’utente di definire le coor-
dinate geografiche, ovvero latitudine e longitudine, di un nuovo punto
sanitario in modo intuitivo e privo di errori.

Applicazione nella HomePage

Nella sua applicazione principale, il componente Map agisce come un’inter-
faccia di visualizzazione dinamica per l’intero dataset di punti sanitari come è
rappresentato dalla Figura 4.2. La sua implementazione è stata studiata per
garantire sia un’ottima performance che un’elevata usabilità, anche in presenza
di un gran numero di dati.

Essa implementa infatti un sistema di clustering dinamico. Per evitare la
sovrapposizione di indicatori e mantenere la mappa leggibile a bassi livelli di
zoom, i punti vicini vengono raggruppati in cluster. Ogni cluster mostra il
numero di punti che aggrega e adotta una colorazione differente in base alla
sua densità, fornendo un’immediata percezione visiva della distribuzione dei
servizi sul territorio.

Una seconda importante prerogativa che viene rispettata è l’intuitiva inte-
rattività e utilizzabilità del prodotto. L’utente può interagire con la mappa

58 Sviluppo del Prototipo

Figura 4.2: Mappatura presente nella HomePage con visualizzazione a cluster
dei punti sanitari.

in modo fluido. Un clic su un cluster provoca uno zoom progressivo verso
l’area di interesse, rivelando i punti individuali o cluster più piccoli. Un clic
su un singolo punto sanitario lo seleziona, facendo apparire, sulla sidebar, le
informazioni di riepilogo e centrandolo nella finestra. Infine gli strumenti di
layering geografico permettono a livelli appropriati di zoom sul componente di
visualizzare i confini provinciali e comunali fornendo uno strumento che aiuta
ulteriormente l’orientamento e la leggibilità della carta.

La mappa è inoltre sincronizzata con lo stato applicativo e dunque reattiva
ai cambiamenti esterni. Ad esempio, quando un utente seleziona un punto da
una lista testuale presente nella sidebar, la mappa si sposta e zooma automati-
camente su di esso, garantendo una perfetta coerenza tra i diversi componenti
dell’interfaccia.

Applicazione nel Form di Inserimento di un Nuovo Punto Sanitario

Nel contesto del form di creazione di un nuovo punto, la mappa abbandona
la sua funzione di visualizzazione dati per trasformarsi in uno strumento di
input, denominato Location Picker e riportato in Figura 4.3. L’obiettivo è
semplificare e rendere più accurato il processo di acquisizione delle coordinate
geografiche, un’operazione che sarebbe altrimenti complessa e soggetta a errori
se demandata all’inserimento manuale.

Le caratteristiche di questa implementazione sono:

• Acquisizione delle Coordinate tramite Clic: L’utente può navigare
la mappa e fare clic nel punto esatto in cui desidera posizionare la nuova

Sviluppo del Prototipo 59

Figura 4.3: Il componente Mappa utilizzato come selettore di posizione nel
form di inserimento.

struttura. L’interfaccia cattura immediatamente le coordinate di latitu-
dine e longitudine, popolando automaticamente i campi corrispondenti
nel form.

• Marker di Posizione: Un indicatore visivo detto marker viene posi-
zionato sulla mappa nel punto selezionato, fornendo un feedback chia-
ro e immediato all’utente. Questo marker si sposta a ogni nuovo clic,
permettendo di rifinire la posizione con facilità.

• Interfaccia Semplificata: L’interfaccia è minimale per focalizzare l’u-
tente sull’unico compito richiesto: la selezione di una posizione geografi-
ca. In tal senso il cursore a forma di croce rinforza ulteriormente l’idea
di uno strumento di puntamento.

• Livelli Geografici di Contesto: Per aiutare l’orientamento, la map-
pa mostra strati informativi con i confini delle province e dei comuni,
che appaiono e scompaiono dinamicamente in base al livello di zoom,
fornendo riferimenti geografici utili durante la selezione.

Conclusioni

Il presente elaborato di tesi si è posto l’obiettivo di analizzare, progettare
e prototipare un sistema per la mappatura Punti eoreferenzati per l’AUSL
Romagna. Il percorso, si è articolato attraverso un approccio metodologico
Agile e grazie ai principi del Domain-Driven Design ha permesso di tradurre
un insieme di requisiti inizialmente incerti in un artefatto software funzionante,
capace di validare le ipotesi architetturali e di fungere da catalizzatore per il
dialogo con gli esperti di dominio.

Questo capitolo finale si propone di tracciare un bilancio critico dell’intero
progetto. Verranno analizzate e validate, in modo distinto, le tre fasi cruciali
del workflow evidenziandone i punti di forza, le debolezze intrinseche e le scel-
te strategiche. Infine, partendo dalle lacune evidenziate nel prototipo, verrà
delineata una roadmap pragmatica per i futuri sviluppi, trasformando il lavoro
svolto nella solida base per un’evoluzione industriale del sistema.

Validazione della Fase di Analisi

La fase di analisi ha rappresentato il fondamento su cui si è costruito l’intero
progetto, navigando un contesto caratterizzato da forte incertezza e requisiti
non consolidati. La sua validazione rivela sia la robustezza delle metodologie
adottate sia i limiti intrinseci di un’analisi puramente teorica in un ambiente
dinamico.

Il successo principale di questa fase risiede nella scelta e nell’applicazione ri-
gorosa delle metodologie. L’adozione del paradigma Agile si è rivelata non una
semplice preferenza, ma una necessità strategica che ha permesso al progetto
di avviarsi e progredire nonostante l’assenza di una visione unificata da parte
degli stakeholder. Parallelamente, l’approccio DDD ha fornito gli strumen-
ti per gestire la complessità intrinseca del dominio sanitario. L’elaborazione
di un Linguaggio Ubiquo condiviso, si è dimostrata cruciale per superare le
ambiguità terminologiche, agendo da catalizzatore non solo per il team di svi-
luppo, ma anche per gli stessi esperti del dominio nel formalizzare la propria
conoscenza.

61

62 CONCLUSIONI

La principale debolezza del processo di analisi è stata la sua dipendenza
dalla disponibilità e dall’allineamento degli stakeholder, aggravata da risorse
temporali limitate. Gli incontri con gli esperti del dominio, infatti, sono stati
dilazionati ampiamente nel tempo, generando lassi temporali durante i quali
il progetto era a rischio. In queste fasi di attesa, la volontà di procedere ha
introdotto il pericolo di svolgere lavoro speculativo, ovvero basato su assunzioni
non ancora validate, con il conseguente rischio di disallineamento rispetto alle
specifiche in evoluzione. Proprio questa criticità, tuttavia, funge da parametro
di validazione della metodologia scelta. Dimostra infatti, inequivocabilmente
come, in contesti organizzativi complessi, l’analisi puramente teorica raggiunga
presto i propri limiti e come la produzione rapida di un artefatto tangibile sia
indispensabile per accorciare i cicli di feedback e mitigare i rischi.

Validazione della Fase di Progettazione

La fase di progettazione ha tradotto le esigenze astratte emerse dall’analisi
in un’architettura software robusta e scalabile.

La scelta di un’architettura a tre livelli si è confermata vincente, garantendo
un disaccoppiamento netto tra presentazione, logica di business e accesso ai
dati, in piena sinergia ai requisiti non funzionali di manutenibilità e flessibilità.
Un altro punto di forza è la progettazione del database. Il modello Entità-
Relazione non si è limitato a supportare le funzionalità del prototipo, ma
ha incluso entità chiave per la realizzazione dei requisiti funzionali proposti,
anticipando le esigenze future e garantendo che il sistema potesse evolvere
senza richiedere una profonda ristrutturazione dello schema. Infine, l’adozione
di pattern consolidati come DTO ha assicurato la definizione di un contratto
API stabile e sicuro.

Il principale limite della progettazione risiede nella sua stessa ambizione.
L’architettura ideata, in particolare per la gestione della sicurezza attraverso i
pattern RBAC e ACL e delle notifiche, è complessa e la sua implementazione
completa rappresenta una sfida significativa, che va oltre gli scopi di una singola
prototipazione. Se da un lato questo garantisce la scalabilità futura, dall’altro
ha creato un divario tra la completezza del disegno architetturale e la sua
parziale realizzazione pratica.

Validazione dell’Implementazione Prototipale

Il prototipo sviluppato rappresenta la sintesi concreta delle scelte di analisi
e progettazione. La sua validazione evidenzia sia i successi funzionali sia le
lacune implementative deliberate.

CONCLUSIONI 63

A livello di persistenza, il prototipo presenta una fondazione solida. Il mo-
dello Entità-Relazione è stato tradotto fedelmente in uno schema PostgreSQL,
sfruttando appieno le sue capacità relazionali e l’estensione PostGIS. Le en-
tità centrali del dominio: Punto della Salute, Servizio e Categoria; sono
pienamente operative. La principale lacuna risiede nell’utilizzo parziale dello
schema: le tabelle progettate per supportare le funzionalità avanzate esistono
ma sono in gran parte dormienti, agendo come placeholder architetturali in
attesa di essere attivate dalla logica applicativa.

L’architettura a strati del Backend rappresenta uno dei successi più si-
gnificativi, con un’implementazione robusta del pattern Controller-Service-
Repository che valida le scelte tecnologiche basate su Spring Boot. Le man-
canze sono una diretta conseguenza della strategia di prototipazione e si con-
centrano sulla logica di business non implementata:

• Assenza di un Layer di Sicurezza: Il backend è attualmente privo
di qualsiasi meccanismo di protezione. Gli endpoint API sono pubblici
e non implementano i controlli di autenticazione né di autorizzazione
previsti dal modello RBAC e ACL progettato. Manca l’integrazione con
framework dedicati come Spring Security per proteggere le risorse e
gestire il contesto utente.

• Logica di Dominio Avanzata non implementata: I Service si limi-
tano a orchestrare le operazioni CRUD di base. La logica di dominio più
complessa, pur essendo stata progettata, non è stata tradotta in codice.
Nello specifico, mancano i meccanismi per la gestione del ciclo di vita
di un’entità Modifica e la logica Event-Driven per la pubblicazione di
eventi di dominio e la conseguente creazione di Notifiche.

• Mancanza dei Moduli di Interoperabilità: Non sono stati sviluppa-
ti i moduli applicativi necessari per dialogare con sistemi esterni. Que-
sto include sia le funzionalità di importazione e sincronizzazione dati,
sia l’esposizione di endpoint API conformi allo standard sanitario HL7
FHIR, lasciando il sistema, allo stato attuale, come un silo informativo
autonomo.

Il frontend è la componente dove il successo del prototipo come strumento
di dialogo è più evidente. L’interfaccia, costruita su React, è reattiva e imple-
menta eccellentemente il nucleo funzionale di visualizzazione e interazione con
la mappa. Le lacune riflettono le mancanze del backend, con un’interfaccia che
agisce spesso come una facciata per validare l’esperienza utente:

• Simulazione di Funzionalità Collaborative: Le viste per la gestione
di modifiche e notifiche sono state implementate usando mock data per
raccogliere feedback prima dello sviluppo della logica sottostante.

64 CONCLUSIONI

• Assenza di un Contesto Utente: L’applicazione è priva di un flus-
so di login e non ha cognizione di un utente autenticato, presentando
un’esperienza utente unica e priva di personalizzazioni basate sui ruoli.

Sviluppi Futuri

Le lacune implementative identificate nella fase di validazione non rap-
presentano fallimenti, ma delineano una chiara e pragmatica roadmap per
l’evoluzione futura del sistema. Gli sviluppi si articolano come il naturale
completamento della visione progettuale:

• Implementazione del Modello di Sicurezza Completo: Il passo
successivo più critico è l’attivazione del sistema di autorizzazioni proget-
tato. Questo include l’implementazione del backend per la gestione di
Utenti, Ruoli e Permessi, l’integrazione con i sistemi di autenticazione
aziendali e l’applicazione delle policy di visibilità a livello di dato.

• Attivazione dei Workflow Collaborativi: Completare l’implemen-
tazione del Proposal Pattern per la gestione delle modifiche, sviluppando
le interfacce per la revisione e l’approvazione. Contestualmente, attivare
l’architettura Event-Driven per generare Notifiche in risposta agli eventi
di dominio.

• Realizzazione dell’Interoperabilità: Sviluppare i moduli per l’inte-
grazione con fonti dati esterne per trasformare il sistema nella single sour-
ce of truth aziendale. Parallelamente, avviare l’implementazione di end-
point API conformi allo standard HL7 FHIR per garantire l’integrazione
con l’ecosistema sanitario.

• Consolidamento della Strategia di Testing: Affiancare allo sviluppo
una solida pipeline di test, includendo unit test per i service, test di
integrazione per il database e test end-to-end per i flussi utente critici.

Ringraziamenti

Il percorso che oggi si sta concludendo ha coinvolto molti più ambiti della
mia persona di quanto mai avrei potuto immaginare. È stata una sfida che
mi ha portato a conoscere e scoprire molto più su me stesso che sull’ambito di
studi intrapreso. Non fraintendetemi, mi è capitato anche di imparare qualcosa
sull’informatica, ma la bellezza di questo viaggio l’ho colta pienamente in altri
momenti. Primo tra tutti è stato lo spingersi ben oltre i miei limiti dimostrando
a me stesso quanto sia facile cadere ed al contempo quanto sia gratificante
sapersi rialzare per guardare in faccia le difficoltà. Quella capacità di rialzarsi
è il frutto di un lavoro di presa di consapevolezza, lungo ed articolato, che
fortunatamente ho potuto condividere con tutti voi. Sono proprio le persone
meravigliose che oggi mi circondano a rendere eccezionalmente sorprendente
questa giornata di festa: non un titolo, non una cerimonia, né tantomeno una
corona, ma voi tutti qui riuniti.

Per primi voglio ringraziare la Nati ed Andre, i miei genitori. Siete da
sempre i miei fari, primi punti di riferimento e modelli. Maestri indiscussi di
umiltà, mi avete insegnato che nella vita non serve a nulla primeggiare, spe-
cialmente se ciò va a discapito di chi si ama. Seguendo il vostro esempio ho
scoperto che è l’avere la possibilità di condividere le difficoltà con le persone
a noi care a profumare la vita della stessa fragranza della primavera. Vi rin-
grazio per non aver mai smesso di credere in me. Anche quando il buio mi
ha circondato e non sentivo di poter dare qualcosa al mondo siete rimasti l̀ı a
sostenermi. Lo avete fatto quel tanto che è bastato a non farmi sprofondare
ed al contempo lo stretto indispensabile per darmi la possibilità di sbagliare e
capire come vivere la vita senza lasciarsi trasportare caoticamente da essa.

Un secondo grazie va ai miei fratelli Linda ed Alessandro, i piccolini di casa
ormai tutt’altro che piccoli, tanto nel corpo quanto nella mente. Siete persone
splendide alle quali è toccato subire un fratellone spesso stanco e provato. Ciò
nonostante mai una volta mi avete fatto mancare quella parola, quella battuta
o quella spinta che sono valse più di mille gesti. Grazie per la dinamicità che
contribuite a portare in casa, per gli stimoli e le emozioni con cui giorno dopo
giorno avete riempito la mia vita.

Alle nonne Norma e Gabriella rivolgo un ringraziamento sincero come l’a-

65

66 Ringraziamenti

more che mi avete sempre dimostrato. Siete due donne diverse, accumunate
dall’affetto che sempre avete conservato per i vostri nipoti. Un affetto profon-
do fatto di cura e di dolcezza. Fatto di storie che raccontano il vissuto della
nostra famiglia e di gesti che ne dimostrano l’unità. Siete persone splendide
che mi hanno insegnato il rispetto e la dedizione sotto le forme più disparate.
A voi rivolgo il mio grazie perché siete da sempre e per sempre testimoni di
quanto sia bello e potente portare la gentilezza nel rapporto con l’altro senza
aspettarsi nulla in cambio, se non un sorriso.

A Giuseppe, lo zio che in questi anni si è fatto un po’ nonno, rivolgo la mia
gratitudine. Ti sei preso tante responsabilità e, cos̀ı facendo, hai contribuito
in maniera essenziale al farmi essere qui oggi. A quell’uomo capace sempre di
portare un sorriso a tavola e di vedere il bello anche quando si nasconde in
fondo alla fatica ed alla difficoltà, grazie per i sacrifici che giorno dopo giorno
dedichi alla tua famiglia.

Un caloroso abbraccio di riconoscenza lo dedico agli amici di sempre, quelle
persone tanto pazze da aver deciso un giorno di volermi stare accanto. Se sono
qui è perché ho sempre trovato una spalla su cui appoggiarmi, un sorriso su cui
contare e un abbraccio più potente di mille belle parole. Siete tra le persone
più importanti della mia vita e queste poche frasi non bastano a raccontare
quanto significativo sia il vostro essereci al di là delle avversità. Alla Sofi,
al Dire, all’Alo, a Frency, a Babe, alla Mati, ad Eli e a Pie rivolgo la mia
riconoscenza, oggi e sempre, con un affetto sincero ed indissolubile costruito
nel tempo e destinato a durare, solido come la passione che mi avete donato
in questi anni.

Mi rivolgo ora alla massa informe e straordinaria di persone che ho cono-
sciuto qui dentro. Quando ho detto che questo posto mi ha formato più come
persona che come informatico non erano parole al vento, e ciò è tutto merito
vostro. Avrei voluto ringraziarvi uno ad uno ma, nello scrivere queste paro-
le, mi sono reso conto di essermi un po’ troppo abbandonato alle chiacchiere
in questi anni. Ho sottratto molti di voi allo studio un numero di volte che
oramai è fin troppo complesso calcolare, il che mi rende pressoché impossibile
ringraziarvi uno ad uno. Ricordo con emozione il primo giorno qui, quando
con timore abbiamo chiesto dove mangiare in pausa pranzo e ci è stata men-
zionata la polivalente. Non sapevo ancora quanto quell’ambiente di studio a
tutto sarebbe servito meno che a studiare. Ci abbiamo giocato, ci abbiamo
discusso, ci abbiamo sognato ma soprattutto ci siamo incontrati. Devo a voi
tutti la malinconia di lasciare un posto che mi fa stare bene, mi fa sentire
accolto e spronato, ma anche l’orgoglio di uscire da qui carico di rapporti con
persone meravigliosamente uniche.

Un ultimo pensiero va alla donna che ha sistemato questo completo per
oggi. Da piccolino mi chiedevo come una persona cos̀ı piena di meraviglia,

Ringraziamenti 67

forza e generosità potesse non gestire un asilo. Al tempo lo vedevo come il
mestiere per antonomasia delle persone buone nello spirito. Negli anni non hai
mai aperto quell’asilo ma continuo a considerarti sempre la mia maestra. Inse-
gnante di forza e coerenza, dimostri giorno dopo giorno come giocare al gioco
della vita, osservando tutto con gli occhi meravigliati del bambino. Grazie
Aldina.

Oggi non si conclude semplicemente una narrazione, ma si celebra ogni
avventura vissuta assieme a voi. Questa tesi porta il mio nome, ma la sua
vera forza risiede nelle fondamenta che, giorno dopo giorno, avete costruito
per me: la vostra fiducia, il vostro affetto e la vostra infinita pazienza. Con
questo zaino di lezioni e di amore, sono pronto a iniziare a camminare verso
una nuova meta, sapendo di non essere mai solo.

A tutti voi, dal profondo del cuore, il mio grazie.

Bibliografia

[1] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mel-
lor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for agile
software development, 2001.

[2] Giulio Destri. Sviluppo software agile. Technical report, apr 2007.

[3] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2003.

[4] Fondazione openpolis. geojson-italy: Confini amministrativi italiani geo-
referenziati, 2023. Repository GitHub. Dati originali ISTAT rilasciati con
licenza CC-BY.

69

