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Sommario

I raggi cosmici sono particelle ad alta energia scoperte un centinaio di
anni fa, e tutt’ora si e incerti sulla loro origine esatta. Lo studio di queste
particelle tramite le sole osservazioni astronomiche ¢ complicato, in quanto
la loro sorgente non puo essere tracciata in modo diretto, e i dati a nostra
disposizione non hanno ancora una qualita sufficiente per dare una conferma
definitiva ai modelli teorici che descrivono la loro formazione. Per questo
motivo, in parallelo ad osservazioni astronomiche sempre piu accurate, re-
centemente si e affermata la disciplina dell’astrofisica computazionale, il cui
obiettivo e utilizzare gli strumenti e le tecnologie offerte dall’informatica per
ricreare i fenomeni astronomici mediante simulazioni di vario tipo. Nello
specifico, per lo studio dei raggi cosmici si utilizzano simulazioni idrodina-
miche che riproducono il comportamento dei cluster di galassie, consentendo
di osservare la loro evoluzione nel tempo. A partire da queste simulazioni e
possibile ricavare dei dati che possono essere direttamente confrontati con le
osservazioni astronomiche reali, in modo da verificare la validita dei modelli
teorici elaborati. Spesso, le simulazioni di questo tipo comportano tempi di
calcolo molto elevati, dovuti al gran numero di computazioni effettuate al
loro interno, e cio rende piu complicato attuare gli approcci sperimentali che
ne prevedono 1'utilizzo. Per far fronte a questo problema, si ricorre a tecniche
di high performance computing, che consentono di sfruttare il parallelismo
offerto dalle architetture hardware moderne per migliorare le prestazioni dei

programmi utilizzati, riducendo notevolmente i tempi di esecuzione.

In tale contesto, all’interno di questa tesi si considera un programma che



consente di generare delle osservazioni sui raggi cosmici a partire dai risul-
tati di una simulazione idrodinamica svolta in precedenza. In particolare,
il programma considerato implementa il metodo di Chang-Cooper che con-
sente di risolvere computazionalmente ’equazione di Fokker-Planck per il
calcolo dello spettro di emissione delle particelle della simulazione. In que-
sto programma e gia presente un tipo di parallelismo che utilizza le risorse
hardware della CPU (Central Processing Unit) per ridurre il tempo di cal-
colo. L’obiettivo della tesi e valutare 'efficienza del parallelismo CPU gia
implementato nel codice, misurando le prestazioni attuali, per poi realizzare
una versione del programma che sfrutta l'elevata capacita computazionale
delle GPU (Graphics Processing Unit). Quest’ultima versione ¢ realizzata
facendo uso della libreria OpenMP, che utilizza un approccio ad alto livello
basato sulle direttive e consente di produrre codice portabile su piu architet-
ture differenti. Si intende dunque valutare 'efficacia e la facilita di utilizzo
di OpenMP nell’ottimizzare sulla GPU un codice di grandi dimensioni. Il
lavoro presentato in questa tesi prevede quindi una prima fase di analisi del-
le caratteristiche del codice di riferimento, seguita da una valutazione delle
prestazioni allo stato attuale, e infine una fase di implementazione del codi-
ce GPU basata sull’approccio a direttive offerto da OpenMP. Le ultime due
fasi sono state svolte sfruttando ’architettura ad alte prestazioni del super-
computer Leonardo, messo a disposizione dal CINECA. Al termine di questa
tesi, si considerano vantaggi e svantaggi dell’utilizzo di OpenMP rispetto a
tecnologie piu consolidate per il calcolo parallelo sulla GPU, quali CUDA,
OpenCL, ROCm e OpenACC, e si illustrano i possibili sviluppi futuri legati

alla versione GPU realizzata.
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Capitolo 1
Introduzione

I raggi cosmici sono particelle che si muovono nello spazio interstellare a
velocita molto elevate, prossime a quella della luce. Queste particelle rico-
prono un ruolo fondamentale nell’evoluzione delle galassie, in quanto, lungo
il loro percorso, interagiscono continuamente con i vari corpi celesti che le
compongono. Il loro studio ci consente quindi di far luce su diversi inter-
rogativi riguardo i fenomeni che accadono nell’Universo e gli oggetti in essi
coinvolti. Negli anni, sono state proposte diverse teorie riguardo gli oggetti
astronomici che possono essere in grado di produrre i raggi cosmici: dal no-
stro Sole, ai resti di supernova, o “supernova remnants”, fino ai buchi neri
supermassivi che si trovano al centro delle galassie. Per cercare di verificare
queste teorie e studiare i fenomeni ad esse correlati, sono stati realizzati di-
versi tipi di strumenti di osservazione, come telescopi e satelliti, che hanno
consentito di osservare i raggi cosmici sia direttamente, grazie alla rivelazione
delle particelle che li compongono, sia indirettamente attraverso le particelle
secondarie e le radiazioni da essi prodotte. Le sole osservazioni, tuttavia, non
consentono ancora di ottenere una quantita di dati sufficiente ad analizzare
tali fenomeni in modo esaustivo. Inoltre, la verifica sperimentale dei modelli
che descrivono la formazione dei raggi cosmici non puo essere effettuata in
laboratorio, in quanto i processi analizzati coinvolgono oggetti astronomici

di grandi dimensioni, come i cluster di galassie, il cui comportamento non
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e replicabile su scale ridotte. Questo e il motivo per cui, oltre a cercare di
ottenere osservazioni di qualita sempre piu elevata, si ricorre a simulazioni
che consentono di ricreare i fenomeni ritenuti responsabili della formazione

dei raggi cosmici.

1.1 I raggi cosmici e la loro origine

Le particelle che compongono i raggi cosmici sono di varia natura. La
maggior parte dei raggi cosmici ¢ formata da nuclei di atomi altamente io-
nizzati e carichi positivamente. Molti di questi sono semplici protoni prove-
nienti da atomi di idrogeno, ma in percentuali minori si hanno anche nuclei
piu pesanti, dall’elio fino al piombo. Meno comunemente, tra i raggi cosmi-
ci si osservano anche altri tipi di particelle subatomiche, come gli elettroni,
aventi carica negativa, e i positroni. L’energia di queste particelle, espres-
sa in elettronvolt (eV), & generalmente molto elevata, ma puo variare in un
intervallo molto ampio, che va da decine di MeV fino a quasi un ZeV [6].

Sin dalla loro scoperta, si e cercato di identificare le possibili origini dei
raggi cosmici. Gia da tempo, il nostro Sole ¢ stato identificato come fonte di
raggi cosmici ad energia relativamente ridotta, pari ad un centinaio di MeV.
Queste particelle sono denominate SAP (Solar Energetic Particles), e vengo-
no rilasciate nel corso delle tempeste solari. Non & ancora del tutto chiaro,
invece, come vengano prodotti i raggi cosmici con livelli di energia piu eleva-
ti, dell’ordine dei GeV o PeV, che si originano al di fuori del nostro sistema
solare e prendono il nome di “raggi cosmici galattici”. Una volta rilasciati
dalla loro fonte, i raggi cosmici galattici viaggiano nello spazio interstellare,
che ha una densita di materia molto bassa, ed essendo carichi vengono de-
viati dai campi magnetici al suo interno. L’influenza del campo magnetico
sulla loro traiettoria rende difficile risalire in modo diretto all’origine di que-
ste particelle, ed € uno dei motivi per cui tutt’ora si € incerti sui fenomeni
responsabili della loro formazione. Le teorie piu accreditate fanno risalire

I'origine dei raggi cosmici a due tipi di oggetti che si trovano nell’Universo:
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i resti di supernova, o “supernova remnants” [1], e i buchi neri supermassi-
vi che si trovano al centro delle galassie, detti anche AGN (Active Galactic
Nuclei) [4]. Entrambi, infatti, soddisfano i requisiti di energia necessari per
la produzione dei raggi cosmici, ma mentre i supernova remnants riescono a
produrre particelle con energia pari al massimo ad un PeV, gli AGN sono in
grado di emettere protoni ed elettroni aventi un’energia ancora piu elevata.

Il comportamento di questi oggetti astronomici puo essere modellato con

tre processi principali:
e Collasso Gravitazionale.
e Shock Acceleration.
e Emissione di radiazione di sincrotrone.

11 Collasso Gravitazionale € un processo che converte 1’energia gravitazionale
in energia termica e cinetica, provocando l'aggregazione di oggetti di pic-
cole dimensioni in strutture aventi una massa e un’energia piu elevata. In
particolare, durante questo processo, la forza gravitazionale che agisce su un
oggetto astronomico di grandi dimensioni ne provoca la compressione verso il
proprio centro di gravita. Il collasso gravitazionale e fondamentale nell’evo-
luzione dell’Universo, ed e responsabile, tra le altre cose, della formazione di
supernovae e buchi neri. Inoltre, puo portare all’emissione di grandi quantita
di energia sotto forma di “shock”, delle “onde d’urto” che si muovono nello
spazio interstellare, e si osservano anche in corrispondenza di supernovae e
AGN.

La Shock Acceleration e il processo che porta all’accelerazione di ioni ed
elettroni, a partire dall’energia generata durante uno shock. In particolare,
durante lo spostamento di uno shock nello spazio interstellare, le particelle
che si trovano al suo interno attraversano ripetutamente i campi magnetici
che si formano in corrispondenza del piano dello shock, subendo un’accele-
razione. Queste particelle si muovono da una parte all’altra del piano dello

shock con oscillazioni sempre piu consistenti, e quando la quantita di energia
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in esse contenute e sufficiente, vengono espulse dalla regione di accelerazione

e diventano raggi cosmici.

L’emissione di radiazione di sincrotrone, infine, descrive il fenomeno per
cui una particella carica con energia relativistica che si trova in un campo
magnetico emette una certa quantita di radiazioni. Queste radiazioni possono
essere emesse in una varieta di lunghezze d’onda, tra cui quelle di onde radio,
raggi X e raggi gamma. L’insieme di frequenze in cui vengono emesse tali

radiazioni costituisce lo spettro di emissione della particella.

Per quanto riguarda le supernovae, esse si formano quando stelle di massa
molto elevata raggiungono la fine del loro ciclo vitale. Solitamente, cio accade
una volta che la stella e arrivata a produrre, all’interno del suo nucleo, degli
atomi di ferro. Il ferro, infatti, & uno degli elementi piu stabili nell'universo,
e la sua fusione richiede una quantita di energia piu elevata di quella che
sprigiona. Dunque, una volta che il nucleo della stella contiene una quantita
elevata di ferro, la reazione termonucleare si ferma, e la stella subisce un col-
lasso gravitazionale, in cui tutto il materiale di cui € composta viene attirato
verso il nucleo. Questo evento da origine alla supernova, un’esplosione che
provoca la formazione di shock nella regione che circonda la stella. Gli shock
generati costituiscono i supernova remnants, che continuano a muoversi nello

spazio interstellare.

I buchi neri supermassivi che costituiscono gli AGN si formano in un
processo simile a quello delle supernovae, in cui il collasso gravitazionale
provoca la concentrazione di una massa enorme in un volume molto piccolo.
La forte attrazione gravitazionale di questi buchi neri fa si che essi siano
circondati da un’elevata quantita di materiale, che si dispone in strutture
dette dischi di accrescimento. Parte del materiale viene, inoltre, espulso
dagli AGN in getti che si muovono lungo gli assi di rotazione dei dischi.
E in corrispondenza di questi dischi e getti che si ritiene che le particelle
vengano accelerate a velocita estremamente elevate, fino a raggiungere livelli

di energia superiori ad un PeV.
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1.2 Osservazioni astronomiche

La scoperta dei raggi cosmici risale al 1912, quando Victor Hess osservo,
tramite una serie di esperimenti condotti con dei palloni aerostatici, che il
livello di radiazioni ionizzanti rilevate nell’atmosfera aumenta man mano che
si sale di altitudine, e non diminuisce né durante la notte, né durante un’eclissi
solare. Tale risultato dimostrava che il livello di radiazioni nell’atmosfera
terrestre ¢ dovuto non solo alla radioattivita della Terra o all’attivita del
Sole, ma anche ad una sorgente che si trova al di fuori del nostro Sistema
Solare. Da allora, sono state condotte numerose osservazioni con 1’obiettivo
di analizzare le caratteristiche dei raggi cosmici e risalire alla loro origine.
Lo scopo delle osservazioni ¢ ricavare una serie di dati utili per lo studio di

queste particelle, tra cui:
e La loro composizione.
e Lo spettro di energia.
e La direzione di provenienza.

Lo spettro di energia descrive, per ogni livello energetico, il flusso di raggi
cosmici, cioe il numero di particelle che transitano in una certa area nell’unita
di tempo. Questa misura ci consente di capire la quantita di raggi cosmici
che si possono rilevare in un arco di tempo, a seconda della loro energia.

La maggior parte delle osservazioni che si effettuano per lo studio dei raggi
cosmici e basata sulla rilevazione delle radiazioni emesse da queste particelle
quando si trovano all’interno di un campo magnetico. Le osservazioni di que-
sto tipo consentono di osservare gli oggetti astronomici su diverse lunghezze
d’onda, in particolare quelle della luce visibile e quelle di onde radio, raggi
X e raggi gamma, e pur non concentrandosi direttamente sui raggi cosmici,
sono fondamentali per studiare i fenomeni che li producono. Queste osser-
vazioni sono inoltre complementate da tecniche che consentono di rilevare i
raggi cosmici nel momento in cui interagiscono con la Terra. Le tecniche di

rilevazione dei raggi cosmici sono distinte in due classi:
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o (Osservazioni dirette.

e (Osservazioni indirette.

1.2.1 Osservazioni dirette

Le osservazioni dirette sfruttano le interazioni dei raggi cosmici all’inter-
no dei rivelatori di particelle, come gli spettrometri e i calorimetri. Questi
strumenti hanno la necessita di interagire con i raggi cosmici prima che essi
entrino in contatto con ’atmosfera, e per questo motivo le osservazioni dirette
sono solitamente condotte tramite esperimenti posti su satelliti, stazioni spa-
ziali orbitanti come la ISS (International Space Station), o palloni aerostatici
che raggiungono altitudini molto elevate. Gli esperimenti di questo tipo sono
soggetti a diversi vincoli tecnici, legati al fatto che gli oggetti inviati in orbita
o caricati su palloni aerostatici non possono avere un volume e una massa
troppo eccessivi. Cio limita la superficie di rivelazione a disposizione degli
strumenti utilizzati, impedendo di rilevare i raggi cosmici con flusso ridotto.
Infatti, minore ¢ il flusso dei raggi cosmici ad una certa energia, maggiore e la
superficie di rivelazione necessaria per individuarli. In generale, il flusso dei
raggi cosmici diminuisce all’aumentare della loro energia, e di conseguenza le
osservazioni dirette consentono di osservare solo le particelle con un’energia
minore di 100 TeV, che giungono sulla Terra in maggiori quantita. I raggi
cosmici osservati al di sotto di questo livello energetico provengono dalla Via

Lattea, e quindi sono detti di origine galattica.

1.2.2 Osservazioni indirette

Quando i raggi cosmici entrano nell’atmosfera terrestre, collidono con
i nuclei di aria al suo interno, generando sciami di particelle secondarie che
prendono il nome di Extensive Air Showers (EAS). Le EAS sono costituite da
milioni o miliardi di particelle che si muovono “a cascata” nell’atmosfera e si
formano a partire da una singola particella primaria. In particolare, quando

un raggio cosmico collide con un nucleo di aria, l'interazione genera fino a
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diverse centinaia di particelle secondarie. Ognuna di queste puo poi decadere
in un altro tipo di particella oppure continuare ad interagire, dando origine ad
ulteriori particelle che contribuiscono a loro volta alla crescita esponenziale
dell’EAS. Tra i tipi di particelle che si formano in questo processo si hanno
pioni, muoni, adroni e neutrini. In Figura 1.1 ¢ mostrato uno schema che

illustra questo processo.

Primary Cosmic Rays

Electromagnetic
Shower

Figura 1.1: Schema che mostra la formazione di un EAS a partire da una
particella primaria. Fonte: [5].

Le osservazioni indirette si basano sulla rilevazione di queste particelle
secondarie mediante strumenti come i rivelatori di Cherenkov e gli scintillato-
ri. Queste osservazioni sono condotte in esperimenti effettuati sulla superficie
terrestre oppure in laboratori sotterranei, e consentono di rilevare anche i rag-
gi cosmici a piu alta energia, come gli UHECRs (Ultra-High Energy Cosmic
Rays), aventi un’energia superiore ad un EeV. Infatti, in questi esperimenti
il flusso ridotto dei raggi cosmici piu energetici ¢ compensato dall’utilizzo

di array di rivelatori di particelle che agiscono su un’area molto ampia. Le
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osservazioni indirette consentono quindi di osservare anche i raggi cosmici di
origine extragalattica.

Da decenni, i raggi cosmici ad alta energia vengono rilevati regolarmente
grazie a queste tecniche, ma il loro studio rimane complicato, soprattutto
per quanto riguarda la direzione di provenienza. Infatti, essendo che i rag-
gi cosmici di origine extragalattica vengono rilevati tramite le EAS, le loro
proprieta possono essere ricavate solo indirettamente a partire dalle carat-
teristiche delle particelle secondarie da essi originate. Inoltre, a causa delle
deviazioni dovute ai campi magnetici, la loro direzione di arrivo non puo

essere determinata in modo certo.

1.3 Simulare i raggi cosmici

Nell’astrofisica moderna, i metodi di osservazione appena illustrati sono
affiancati da simulazioni che riproducono il verificarsi di fenomeni astrono-
mici su larga scala, altrimenti impossibili da replicare in un laboratorio. Cio
facilita I'applicazione di un’approccio sperimentale allo studio dei raggi co-
smici, consentendo un’analisi piu approfondita dei processi che coinvolgono
queste particelle.

Le simulazioni utilizzate in tale ambito hanno lo scopo di modellare il
comportamento dei cluster di galassie: oggetti di grandi dimensioni aventi
una massa pari a 10 o 10'® volte quella del Sole e costituiti da un insie-
me di galassie legate tra loro dall’attrazione gravitazionale. L’evoluzione nel
tempo dei cluster di galassie viene modellata sfruttando i processi di collasso
gravitazionale, shock acceleration ed emissione di radiazione di sincrotrone
descritti in precedenza. L’utilizzo delle simulazioni consente quindi di ri-
creare computazionalmente le condizioni che determinano la produzione e
I’emissione di raggi cosmici all’interno di questi enormi oggetti astronomici.
A partire dai cluster simulati, & poi possibile generare osservazioni ottiche,
radio, a raggi X o a raggi gamma, che possono essere confrontate con le os-

servazioni astronomiche reali per verificare la correttezza dei modelli teorici
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e quantificare i parametri in essi utilizzati. La Figura 1.2 mostra i risultati

che si possono ottenere da una di queste simulazioni.
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Figura 1.2: Risultati di una simulazione idrodinamica di cluster di galassie. A
sinistra, 6 proiezioni che mostrano la densita dei gas all'interno delle galassie
simulate. A destra, le corrispondenti osservazioni radio. Fonte: Nishiwaki et

al. (in prep.).

La modellazione dei cluster di galassie si basa su diversi tipi di schemi nu-
merici, a seconda del tipo di interazioni considerate. In particolare, si hanno
due tipi di modelli: quelli che si concentrano sulla forza gravitazionale e quelli
che considerano le forze idrodinamiche. Per quanto riguarda le simulazioni

idrodinamiche, esse si distinguono a loro volta in due tipi di approcci [2]:

e [ metodi senza griglia, o Lagrangiani, che modellano i cluster sfrut-
tando il movimento nello spazio di particelle Lagrangiane, dette anche

traccianti.

e [ metodi a griglia, o Euleriani, che suddividono lo spazio in celle all’in-

terno delle quali viene calcolata 1’evoluzione degli elementi del cluster.

I metodi Lagrangiani hanno il vantaggio di non essere legati ad una rappre-
sentazione a griglia, e quindi consentono di ottenere una risoluzione spaziale
molto pil elevata rispetto ai metodi Euleriani. Inoltre, a differenza, dei me-
todi a griglia, i metodi Lagrangiani consentono di tracciare il movimento
di ogni singola particella nella simulazione. D’altra parte, in genere questi
metodi comportano una qualita pit bassa dal punto di vista dei fenomeni

fisici simulati, mentre quelli Euleriani risultano piu accurati. Solitamente,

radio intensity [u)y/arcsec?]
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quindi, i metodi Euleriani sono utilizzati in simulazioni su scala pit ampia
che richiedono un minor livello di dettaglio, ma una maggiore accuratezza a
livello fisico, mentre quelli Lagrangiani sono utilizzati nelle situazioni in cui
e richiesta una risoluzione spaziale elevata, e vengono applicati a casi piu ri-
stretti come cluster di piccole dimensioni o porzioni di essi. Piu recentemente
¢ stata introdotta la tecnologia dell’Adaptive Mesh Refinement (AMR), che
consente di aumentare il livello di dettaglio dei metodi Euleriani senza com-
portare un maggior costo computazionale. L’AMR si basa infatti su celle a
dimensione variabile, che consentono di avere una griglia a grana pit fine nelle
aree della simulazione con maggiore densita, in cui ¢ richiesta una risoluzione
piu alta, e a grana piu grossa nelle aree a minore densita. Questa tecnica
consente quindi di risparmiare risorse computazionali, in quanto effettua un
campionamento dettagliato solo delle parti piu “interessanti” della simulazio-
ne. Tuttavia, ’AMR presenta alcuni svantaggi legati al fatto che la gestione
della griglia adattiva ¢ complessa, e le simulazioni presentano delle inaccura-
tezze nelle interfacce tra porzioni di griglia a diversa risoluzione. Inoltre, le
simulazioni AMR sono difficili da parallelizzare, e di conseguenza soffrono di
una scarsa scalabilita. Nonostante abbia portato diversi vantaggi all’approc-
cio a griglia, quindi, I'introduzione del’ AMR non ha sostituito 'utilizzo dei
metodi Lagrangiani, che in determinati casi sono preferibili rispetto a quelli
Euleriani.

Per consentire lo studio dei raggi cosmici, nei metodi di simulazione illu-
strati e necessario integrare dei modelli che riproducono ’emissione di queste
particelle da parte dei cluster di galassie. Rappresentare 1’evoluzione dei clu-
ster e I’emissione di raggi cosmici in un unico modello, tuttavia, ¢ complesso,
e molte simulazioni non lo supportano. In questi casi, quindi, si divide il

processo di simulazione in due fasi, che per i metodi Lagrangiani sono:

1. Una prima simulazione che calcola I’evoluzione dei cluster nel tempo,

in base alle caratteristiche fisiche di ogni tracciante.

2. Un’operazione di post-processing che, per ogni istante di tempo del-

la simulazione, calcola la quantita di raggi cosmici emessi da ogni
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tracciante, generando un’osservazione simulata.

In questa tesi, ci si focalizza sulla seconda fase, implementata dal codice di

riferimento considerato.

1.3.1 L’equazione di Fokker-Planck per il calcolo dello
spettro

L’emissione di raggi cosmici e radiazioni di sincrotrone da parte delle
particelle traccianti puo essere descritto come un processo di diffusione at-
traverso I’equazione di Fokker-Planck [7]. La risoluzione di questa equazione
ci consente di calcolare lo spettro di emissione delle particelle traccianti della
simulazione, generando dei dati osservabili che, se confrontati con le effet-
tive osservazioni astronomiche, consentono di stimare con piu accuratezza i
parametri legati al fenomeno diffusivo. In questo modo, e possibile ottenere
una maggior comprensione della natura dei processi di accelerazione dei raggi
cosmici.

Per evitare ambiguita, nel resto di questa tesi verra usato il termine “rag-
gio cosmico” per fare riferimento ad una particella emessa durante il proces-
so di diffusione e il termine “particella” per riferirsi ad un tracciante nella
simulazione idrodinamica.

L’equazione ¢ espressa in funzione di due variabili: il tempo t e la variabile
x, che puo rappresentare l’energia oppure la quantita di moto. L’equazione

per il calcolo dello spettro delle particelle e la seguente:
du 1 d du u
— = —+B - = 1.1
dt  A(x)dx (C(x>dx * (m)u) T(z) QL) (1.1)

dove u corrisponde alla funzione wu(z,t), e u(z,t)A(x) dx descrive il numero
di raggi cosmici emessi nell'intervallo [z, x+dz] al tempo ¢. A(z) rappresenta
il fattore di fase, e il suo valore dipende dal significato della variabile x. In

particolare, A(x) ¢ pari a 1 se x rappresenta l'energia, e 4wx? se x rappre-
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senta la quantita di moto. B(x), C(z), T'(z) e Q(x), invece, sono coefficienti

determinati dalle condizioni fisiche di ciascuna particella. In particolare:
e (C(z) ¢ il coefficiente di diffusione.

e B(x) e il coefficiente di avvezione, che esprime la tendenza dei raggi

cosmici a subire una deriva verso 'alto o verso il basso.

e T'(x) ¢il tasso di fuga dei raggi cosmici, che descrive il tempo necessario
affinché un raggio cosmico con una certa energia venga rilasciato dalla

sorgente.

e Q(x) ¢ il tasso di iniezione dei raggi cosmici, che descrive il tempo
impiegato da ioni ed elettroni per raggiungere un’energia sufficiente a

diventare raggi cosmici e partecipare nel processo di diffusione.

Nella formulazione di Fokker-Planck mostrata nell’equazione 1.1, questi coef-
ficienti non dipendono da ¢, ma solo da x, in quanto si assume che il tempo
in cui variano sia maggiore dell’intervallo di tempo considerato dal modello.
Inoltre, con z nell'intervallo [0, 00, si assume che i coefficienti abbiano le

seguenti caratteristiche:
e A(x) e C(x) devono essere > 0.
e T(x) e Q(x) devono essere > 0.
e B(x) puo avere un valore qualsiasi nellintervallo | — 0o, 0o.

Il termine:

d_u
dx

rappresenta il flusso di raggi cosmici, e si indica con F(z,t).

C(x)— + B(z)u (1.2)

L’equazione 1.1 presenta delle singolarita per x = 0 e x = 00, e cio rende
problematico valutarla numericamente su tali valori di . Per questo mo-
tivo, la soluzione dell’equazione viene svolta in un intervallo [xg, 2], dove

0 < g < xpr < 00, e sugli estremi z¢ e x, si impongono delle opportune
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condizioni. In particolare, una condizione che fornisce una buona approssi-
mazione dei fenomeni fisici descritti dall’equazione e quella per cui il flusso

dev’essere nullo in questi due valori, cioe:
F(xg,t) = F(xp,t) =0 (1.3)

Il vantaggio di questa condizione e il fatto che, rispetto alla rappresentazione
che considera l'intervallo [0, co[, mantiene inalterato il numero complessivo

di raggi cosmici emessi al tempo ¢, espresso come:

N(t) = /000 A(z)dx u(z,t) (1.4)

1.3.2 Il metodo di Chang-Cooper

Il metodo di Chang-Cooper ¢ un metodo numerico di risoluzione dell’e-
quazione di Fokker-Planck che appartiene alla classe degli schemi a differenze
finite [3]. Per poter risolvere numericamente ’equazione di Fokker-Planck, i
metodi di questa classe operano una discretizzazione dei valori di t e . In
particolare, 'intervallo di tempo e diviso in vari timestep, dove il timestep
con indice n ¢ indicato come t,,, mentre l'intervallo [xg, xp] € diviso in M + 1
punti indicati come x,,, dove 'indice m va da 0 a M. A ciascun punto x,,
corrisponde un intervallo di energia o quantita di moto, che prende il nome
di “bin”. Questa classe di metodi prevede di risolvere I’equazione per ogni
singolo timestep, calcolando la soluzione al timestep ¢, 1 a partire da quella
calcolata per t,. La risoluzione ad un certo timestep consiste nel calcolare il

numero di raggi cosmici emessi per ogni bin.

L’intervallo di tempo tra due timestep e indicato come:
At =ty — ty (1.5)

e non e costante al variare di n, quindi dev’essere calcolato per ogni coppia

di timestep.
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Il punto medio tra due punti su x e individuato dalla semplice media
aritmetica:

Tmi1/2 = (Tmi1 + Tm) /2 (1.6)

La definizione del punto medio ci consente di definire 'ampiezza del bin

corrispondente ad ogni punto x,,. Tale ampiezza ¢ espressa come:
Az = (Tmi1 — Tm1)/2 (1.7)

Per i coefficienti che dipendono solo da x, si utilizza la notazione:

mentre per i termini che dipendono sia da x che da ¢, si scrive:

Upy, = U( Ty, Ty (1.9)

m

In base a questa notazione, ’equazione di Fokker-Planck puo essere di-

scretizzata nel modo seguente:

1 7’L+1 _ 7’7,+1 1
umtt — Fm+1/2 Fm—1/2 _ ut

+ Qm (1.10)

=

per ogni m =0,..., M, dove FZE/Q = (Frtl + Bl 2.

I diversi schemi a differenze finite si distinguono in base al modo in cui
definiscono il flusso al timestep successivo, cioe F"*1. In ognuno di essi,
sostituendo il flusso nell’equazione di Fokker-Planck discretizzata, si ottiene

un sistema tridiagonale di equazioni lineari, che puo essere scritto come:

(1.11)

1 1
— A 4 bty + 1 — cmu%trl =7,
ag = Cpy = 0

dove r,,, € una funzione di u,. Questo sistema puo essere risolto tramite un

algoritmo di eliminazione Gaussiana con sostituzione all’indietro, che per i
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sistemi tridiagonali presenta una variante efficiente avente una complessita
di O(M) invece che O(M?3) [8].

In particolare, il metodo di Chang-Cooper definisce una discretizzazione
del flusso che considera per il termine C(z) una differenza centrata tra uj;"
e u™! e per il termine B(x) una differenza pesata in base ad un termine 4,,.

L’equazione del flusso ¢ quindi la seguente:

1 1 1 unJ-ri-ll —up!
an@iyz = Bm+1/2[(1 - 6m+1/2)u2;;1 + 5m+1/2u21+ ] + Cm+1/2u
A$m+1/2
(1.12)
dove AZp,11/2 = Timg1 — T, € Omp1/2 © definito come:
1 1
Om = — 1.13
T Wy eap(Winigz) — 1 (1.13)
con: 5
m+1/2

Questa formulazione, con qualche aggiustamento per adattarla all’aritmetica
a virgola mobile, fornisce un metodo accurato e numericamente stabile per
il calcolo dello spettro, consentendone 'utilizzo in applicazioni pratiche che
richiedono un’elevata precisione nella risoluzione di Fokker-Planck su molti

ordini di grandezza di x [7].






Capitolo 2
Codice di riferimento

Il codice considerato in questa tesi si inserisce nel contesto di una simula-
zione idrodinamica di cluster di galassie basata su un metodo Lagrangiano.
In particolare, l'obiettivo del codice ¢ implementare 'operazione di post-
processing che consente di calcolare la quantita di raggi cosmici e radiazioni
emesse da ogni particella della simulazione. Questa operazione e necessaria
in quanto la simulazione idrodinamica non supporta le computazioni con i
raggi cosmici. Tale simulazione calcola ’evoluzione delle galassie su diversi
timestep, e per ciascuno di essi restituisce in output le caratteristiche fisiche
di ogni particella. Per ciascuna particella, il codice di riferimento calcola lo
spettro di emissione risolvendo 'equazione di Fokker-Planck su tutti i time-
step della simulazione. La risoluzione di Fokker-Planck e svolta sfruttando il
metodo di Chang-Cooper, e considerando x come la quantita di moto. Per

questo motivo, i bin su x prendono il nome di “momentum bin”.

2.1 Caratteristiche

Il codice ¢ scritto in linguaggio C, e si compone di diversi moduli che
implementano le funzioni matematiche per il calcolo dello spettro delle par-

ticelle.

17
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2.1.1 Input

I dati di input derivati dalla simulazione iniziale si trovano in formato
HDF5, che prevede un’organizzazione gerarchica dei dati ed ¢ particolar-
mente adatto per memorizzare dataset di grandi dimensioni. Ogni file di
input contiene le informazioni sullo stato della simulazione in uno specifico
istante di tempo. In particolare, in ogni file sono memorizzati una serie di
array monodimensionali, ognuno dei quali contiene i valori di una determi-
nata grandezza fisica per tutte le particelle della simulazione. Alcune delle
grandezze fisiche considerate sono temperatura, densita di massa e velocita.
Oltre ai file contenenti i dati da elaborare, 'input del programma si com-
pone di un file di configurazione in formato testuale, che consente di gestire
diversi aspetti legati all’esecuzione del codice. I parametri presenti in tale

file comprendono:

e Il percorso in cui si trovano i file di input.

Il percorso in cui memorizzare i file di output.

Il numero di particelle nella simulazione.

Gli istanti di tempo (o timestep) iniziali e finali della simulazione.

Una serie di parametri che configurano il modello matematico.

Una serie di parametri legati al parallelismo, tra cui il numero di thread
OpenMP.

2.1.2 Output

L’output del programma e costituito da tre array tridimensionali che con-
tengono i dati relativi agli spettri di emissione delle particelle per quanto ri-
guarda elettroni, protoni e radiazione di sincrotrone. Le tre dimensioni degli

array sono:

e Indice della particella.
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e [stante di tempo.

e Momentum bin.

Quindi, in ogni elemento di uno di questi array ¢ memorizzata la quantita di
raggi cosmici o radiazioni emesse da una data particella, in un dato istante
di tempo e ad un certo momentum bin. Il numero di bin, corrispondente al
parametro M del metodo di Chang-Cooper, ¢ costante, e pari a 128, mentre
il numero di particelle e istanti di tempo varia a seconda della simulazione. I
dati contenuti nei tre array di output vengono salvati in altrettanti file in for-
mato binario. Per ottimizzare i tempi di elaborazione e scrittura, gli array di
output vengono in realta gestiti come array bidimensionali, ricavati unendo
due degli assi originali in uno solo. In questa rappresentazione, ’asse delle
righe corrisponde all’indice della particella, mentre 1’asse delle colonne ¢ in-
dicizzato moltiplicando I'istante di tempo per il bin. Di conseguenza, I'array
finale contiene una riga per ogni particella, e in ogni riga sono memorizzati
gruppi di 128 valori, ognuno contenente le informazioni su tutti i bin in un
dato istante di tempo. Quindi, le prime 128 celle corrispondono allo spettro
nell’istante iniziale, le seguenti 128 contengono lo spettro nell’istante succes-
sivo, e cosi via. In Figura 2.1 ¢ mostrata una rappresentazione schematica

della struttura degli array di output.

Timestep X Momentum bin

128 bin del timestep 1 128 bin del timestep 2

ID particella

Figura 2.1: Struttura degli array di output.
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2.1.3 Algoritmo e complessita

Per agevolare le spiegazioni riportate nei paragrafi seguenti, introduciamo

la seguente notazione:

N numero di particelle nella simulazione.

t; istante di tempo iniziale della simulazione.
te istante di tempo finale della simulazione.

N; numero di timestep nella simulazione. I timestep considerati sono una

discretizzazione dell’intervallo [t;,¢].

In fase di lettura, i dati presenti nei file di input vengono memorizzati in
una serie di array bidimensionali, uno per ogni grandezza fisica. Ogni array
contiene un numero di righe pari al numero di timestep nella simulazione
e un numero di colonne pari al numero di particelle. Di conseguenza, la
computazione effettuata dal programma viene svolta su una serie di matrici
bidimensionali, la cui dimensione ¢ pari a N; X N. La Figura 2.2 mostra la

struttura degli array appena descritti.

ID particella

Timestep

Figura 2.2: Struttura degli array bidimensionali utilizzati durante le compu-
tazioni.
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La struttura generale dell’algoritmo per il calcolo dello spettro di emis-
sione delle particelle ¢ la seguente:
for::=0to N —1do
Inizializza lo spettro iniziale per la particella @
Normalizza lo spettro iniziale per ¢
for j:=0to N, —1do
L Imposta i coefficienti di Chang-Cooper per particella ¢ e timestep j

Applica Chang-Cooper per i e j

Il ciclo esterno itera su tutte le particelle, mentre il ciclo interno calcola lo
spettro di emissione di una specifica particella per ogni timestep. Il codice
deve quindi risolvere un’equazione di Fokker-Planck per ogni iterazione del
ciclo interno. Le computazioni svolte nel corpo di tale ciclo, che applicano
il metodo di Chang-Cooper risolvendo il relativo sistema tridiagonale me-
diante eliminazione Gaussiana, sono quelle pit1 onerose per quanto riguarda
il carico di lavoro. Tuttavia, sia le fasi di inizializzazione e normalizzazione
dello spettro iniziale che quelle di risoluzione dell’equazione di Fokker-Planck
hanno una complessita espressa in funzione di M, che essendo costante non
dipende dalla dimensione del problema. La complessita asintotica dell’algo-
ritmo corrisponde quindi a O(N x N;). Cio e dovuto al fatto che per ognuna
delle N particelle e necessario eseguire N, volte il calcolo dello spettro in uno
specifico timestep. Le operazioni svolte all’interno dei cicli non pesano sulla

complessita asintotica perché la loro complessita e costante.
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2.1.4 Parallelismo

Nel codice di riferimento sono implementati due tipi di parallelismo CPU,
grazie all'utilizzo di apposite librerie per il calcolo parallelo. Infatti, il codice
sfrutta sia il parallelismo a memoria condivisa offerta da OpenMP, sia il
parallelismo a memoria distribuita di MPI.

Il parallelismo di OpenMP prevede che le unita di esecuzione siano co-
stituite da thread che fanno parte di un unico processo e che condividono
un unico spazio di memoria in cui immagazzinare i dati. La condivisione
della memoria consente ai vari thread di comunicare tra loro sfruttando delle
variabili globali, e quindi lo scambio di informazioni avviene in modo rapido
e relativamente semplice.

MPI, invece, e utilizzato su architetture a memoria distribuita, in cui le
unita di esecuzione sono spesso costituite da dispositivi connessi per mezzo
di una rete. In MPI, I'esecuzione del codice avviene su piu processi diver-
si, ognuno avente un proprio spazio di memoria separato rispetto agli altri.
L’assenza di uno spazio di memoria condiviso impedisce 1'utilizzo di varia-
bili globali, e comporta la necessita di gestire la comunicazione tra processi
mediante lo scambio esplicito di messaggi. Cio rende le operazioni di co-
municazione piu costose in termini di prestazioni, ma consente di sfruttare
contemporaneamente la potenza di calcolo di piu dispositivi.

Attraverso i parametri del file di configurazione, ¢ possibile specificare
quale tipo di parallelismo utilizzare, e si ha anche la possibilita di usarli in
combinazione per ottenere un ulteriore speedup.

La strategia di suddivisione del carico di lavoro utilizzata dai due tipi
di parallelismo & molto simile: sia nel caso MPI che nel caso OpenMP, le
particelle da elaborare sono equamente distribuite tra le varie unita di esecu-
zione disponibili. Ogni unita di esecuzione, dunque, svolge le computazioni
sul proprio sottoinsieme di particelle. Questa suddivisione e resa possibile
dal fatto che il calcolo dello spettro sulle diverse particelle & embarassingly
parallel, e cio vuol dire che ogni particella puo essere elaborata in modo in-

dipendente rispetto alle altre. La differenza tra i due tipi di parallelismo
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implementati nel codice di riferimento risiede, quindi, unicamente nel para-
digma di programmagzione parallela adottato. Applicando in combinazione
OpenMP ed MPI, le particelle vengono suddivise dapprima tra i vari nodi

MPI, e successivamente tra i vari thread all’interno di ogni nodo.

2.2 Test iniziali

Per verificarne il corretto funzionamento, il codice di riferimento e stato
testato su due architetture differenti. In particolare, i test e la successiva
valutazione delle prestazioni sono stati effettuati sia su un PC convenzionale,
sia sul supercomputer Leonardo, messo a disposizione dal CINECA. In Ta-
bella 2.1 sono riportate le caratteristiche hardware di entrambe le macchine.
Le specifiche di Leonardo sono relative ad un singolo nodo della partizione
Booster, dotata di GPU. Le GPU usate da Leonardo utilizzano un chip ba-
sato sull’architettura Ampere A100 di Nvidia e leggermente modificato per

ottenere prestazioni migliori rispetto ad un A100 convenzionale [9].

PC Leonardo
Processore AMD Ryzen 7 3700X Intel Ice Lake Xeon
Platinum 8358
Frequenza di clock CPU 3.59 GHz 2.60 GHz
Numero di core fisici 8 32
GPU Nvidia GTX 1660 Super 4 x Nvidia Ampere
A100 custom

Tabella 2.1: Caratteristiche dell’hardware utilizzato

Per verificare la correttezza dei risultati sia in questa fase che in fase di
test del codice GPU, ¢ stato realizzato un codice in linguaggio C che confron-
ta 'output di riferimento con 'output restituito dal programma. Il confronto
viene effettuato prendendo in considerazione una certa soglia di tolleranza:
se la differenza tra due valori ¢ maggiore della tolleranza specificata, il codi-

ce segnala 'errore in un file di log. L’utilizzo di questa soglia di tolleranza
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consente di limitare il numero di falsi positivi dovuti agli errori di approssima-
zione dell’aritmetica discreta, che si possono verificare se si modifica 1’ordine
delle operazioni oppure si effettuano test su architetture diverse. Per visua-
lizzare i risultati, e stato inoltre realizzato un codice in linguaggio Python
con l'obiettivo di mostrare in un grafico lo spettro di emissione di una o piu
particelle in un determinato istante di tempo. I grafici sono stati realizzati
sfruttando il modulo matplotlib.pyplot. Il dataset di test, su cui sono state
anche valutate le prestazioni del programma CPU, comprende 5233 particel-
le, t; = 13 e ty = 113. Di conseguenza, la computazione viene svolta su IV
= 100 timestep. Sebbene questo dataset abbia dimensioni ridotte rispetto ai
casi reali, il tempo di esecuzione del codice seriale su tutti i timestep risulta
piuttosto elevato (da 3 a 10 ore, a seconda dell’architettura). Per questo
motivo, i primi test di verifica sono stati effettuati limitando il numero di
timestep, in modo che su ogni particella venissero svolte poche iterazioni. Il
codice e stato testato prima sul PC, e successivamente su Leonardo. Do-
po aver verificato la correttezza sul caso ridotto, si e passati all’esecuzione
del codice sull’intero dataset, quindi impostando il timestep finale a 113.
Eseguendo il codice di visualizzazione dati sull’output, si ottengono i grafici
riportati in Figura 2.3, nei quali € mostrato lo spettro di emissione relativo
agli elettroni. I grafici sono rappresentati in scala logaritmica, e mostrano
come lo spettro descriva una legge di potenza, cioe¢ una linea retta, che va
poi a decadere nei bin piu alti. Questo e il risultato che ci aspettiamo di

osservare da questo tipo di simulazione.
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Figura 2.3: Grafici dello spettro di emissione di elettroni per tutte le particelle
del dataset in diversi istanti di tempo ¢ (14, 50, 100 e 113). Nel grafico, n &
il numero di elettroni emessi, mentre p/m.c rappresenta il momentum bin.
Ogni linea sul grafico descrive lo spettro di una singola particella.
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2.3 Valutazione delle prestazioni del codice
CPU

La valutazione delle prestazioni del codice di riferimento ha due obiettivi

principali:

e Valutare le prestazioni del parallelismo OpenMP, in modo da poterlo

successivamente confrontare con il parallelismo GPU.

e Confrontare l'efficienza dei due tipi di parallelismo gia implementati

nel codice.

Come gia detto, il parallelismo OpenMP e quello MPI operano la stessa
suddivisione del carico di lavoro, e cio consente un confronto accurato tra
due diversi approcci di programmagzione parallela. Le prestazioni del codice
sono state misurate in termini di speedup, strong scaling efficiency e weak
scaling efficiency.

Lo speedup ¢ una misura che fornisce un criterio di confronto tra un’imple-
mentazione seriale e una parallela. In particolare, lo speedup con p processori,

indicato come S(p), si definisce nel modo seguente:

S(p) = 775 (2.1)

dove p ¢é il numero di processori, T'(1) ¢ il tempo di esecuzione del program-
ma parallelo eseguito con un processore e T'(p) ¢ il tempo di esecuzione del
programma parallelo eseguito con p processori.

La strong scaling efficiency misura 'efficienza dell’implementazione paral-
lela all’aumentare del numero di processori utilizzati per risolvere lo stesso
problema. Il calcolo della strong scaling efficiency richiede quindi di mantene-
re fissa la dimensione del problema e aumentare progressivamente il numero
di unita di esecuzione. Il valore dell’efficienza per ogni misura effettuata

viene calcolato come: S)
p
E(p) = ' (2.2)
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La weak scaling efficiency, invece, misura l’efficienza del programma pa-
rallelo mantenendo costante il carico di lavoro svolto da ciascuna unita di
esecuzione. Per misurarla, dunque, ¢ necessario definire un’unita di lavoro,
cioe la quantita di lavoro che dev’essere assegnata ad ogni processore, ed
effettuare le misure aumentando la dimensione del problema in modo pro-
porzionale al numero di unita di esecuzione. Il valore della weak scaling

efficiency viene poi ricavato nel modo seguente:

Wip) = (2.3)

T
1,
Dove T} ¢ il tempo impiegato da un processore per eseguire una singola unita
di lavoro, e T}, ¢ il tempo impiegato da p processori per eseguire p unita di
lavoro. I tempi di esecuzione sono stati misurati sul dataset di test gia citato

in precedenza.

2.3.1 Speedup e strong scaling efficiency

Il calcolo di speedup e strong scaling efficiency e stato effettuato su due
diversi casi di test: il primo avente timestep finale pari a 14, quindi N; = 1,
e il secondo con timestep finale pari a 113, che dunque considera il dataset

completo. Entrambi i casi di test sono stati eseguiti su tutte le 5233 particelle.

Per il primo caso di test, su entrambe le macchine riportate in Tabella 2.1,
sono state valutate sia le prestazioni di OpenMP, sia quelle di MPI. Per
poter svolgere la valutazione di MPI, 'output del codice ¢ stato leggermente
modificato in modo da stampare il tempo di esecuzione medio tra i vari
nodi. Su Leonardo, le prestazioni di MPI sono state misurate aumentando
il numero di nodi fisici del cluster e allocando su ognuno di essi un solo core
fisico (quindi mantenendo OMP_NUM_THREADS = 1). Sul PC, invece, si
dispone di una sola CPU, quindi i nodi MPI corrispondono ai diversi core fisici
al suo interno. La Figura 2.4 riporta 'andamento di tempo di esecuzione,

speedup e strong scaling efficiency nel primo caso di test.
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Figura 2.4: Tempo di esecuzione, speedup e strong scaling efficiency con
t; = 14. Nei grafici, p fa riferimento al numero di unita di esecuzione (core
per OpenMP, nodi per MPI), mentre T'(p), S(p) e E(p) fanno riferimento
rispettivamente a tempo di esecuzione, speedup e strong scaling efficiency
con p unita. Il tempo di esecuzione ¢ espresso in secondi (s).

Per il secondo caso di test, che costituisce il dataset completo, le presta-
zioni sono state valutate unicamente su Leonardo. In questo modo, e stato
possibile effettuare i test in un tempo ragionevole, sfruttando un grado di
parallelismo piu elevato rispetto a quello offerto dalla CPU del PC. Anche in
questo caso sono state misurate sia le prestazioni di OpenMP che quelle di
MPI. Anche in questo caso sono state misurate sia le prestazioni di OpenMP
che quelle di MPI. Dato il numero relativamente elevato di core disponibili in

un nodo di Leonardo, si e scelto di aumentare le unita di esecuzione in modo
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esponenziale, via via raddoppiando il valore di p, fino ad un massimo di 32.
Per la valutazione con MPI, i test con 16 e 32 nodi sono stati effettuati su 8
nodi fisici lanciando pitu processi su ogni nodo. La scelta di limitare il numero
di nodi fisici a 8 e stata fatta per evitare di allocare una quantita eccessiva
di risorse del cluster. La Figura 2.5 mostra i risultati dei test eseguiti sul

dataset completo.
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Figura 2.5: Tempo di esecuzione, speedup e strong scaling efficiency del
codice eseguito sul dataset completo su Leonardo. In questo caso, il tempo
di esecuzione e espresso in minuti (min).



30

2. Codice di riferimento

2.3.2 Weak scaling efficiency

Il calcolo della weak scaling efficiency richiede di aumentare il carico di
lavoro dell’algoritmo in modo proporzionale al numero di unita di esecuzione.
Come gia spiegato in precedenza, il costo computazionale dell’algoritmo puo
essere definito come (N x N,;); dunque, il carico di lavoro puo essere mo-
dificato sia aumentando il numero di particelle considerate, sia aumentando
il numero di timestep su cui vengono svolte le computazioni. A causa delle
caratteristiche del codice, I'approccio pitt immediato e quello di mantenere
invariato il numero di particelle e aumentare il numero di timestep in modo
proporzionale. L’unita di lavoro scelta per effettuare i test corrisponde a tre
timestep per unita di esecuzione. Quindi, ad ogni unita di esecuzione & asse-
gnato un carico di lavoro costante pari a N x 3. La valutazione della weak
scaling efficiency e stata effettuata su Leonardo, confrontando le prestazioni
di OpenMP ed MPI. Inoltre, come nel caso precedente, le misure con 16 e
32 nodi MPI sono state effettuate allocando 8 nodi fisici con piu processi per
ogni nodo. La Figura 2.6 mostra I’andamento della weak scaling efficiency

per entrambi i tipi di parallelismo.

Weak Scaling Efficieny

1.2 = \ T

0.2 —5-OpenMP | |
—-=— MPI

Figura 2.6: Weak scaling efficiency del programma eseguito con OpenMP ed
MPI. Nel grafico, W (p) fa riferimento alla weak scaling efficiency con p unita
di esecuzione.
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2.3.3 Considerazioni

Dai risultati ottenuti nella fase di valutazione delle prestazioni, si evin-
ce che i due tipi di parallelismo implementati nel codice sono molto simili
per quanto riguarda l'efficienza. I test sul dataset completo, con N, = 100,
mostrano in entrambi casi valori massimi di speedup superiori a 20. Inoltre,
osservando il grafico della strong scaling efficiency, si nota che 'andamento
dell’efficienza per i due tipi di parallelismo e quasi analogo, e I'unica differenza
significativa si riscontra nel caso con 32 unita di esecuzione, in cui il paral-
lelismo OpenMP risulta piu efficiente rispetto a quello MPI. Questa perdita
di efficienza del parallelismo MPI nel caso con 32 nodi e legata all’overhead
causato dall’elevato numero di operazioni di comunicazione e sincronizzazione
necessarie per implementare il parallelismo a memoria distribuita. Per quan-
to riguarda la weak scaling efficiency, notiamo che I’andamento dell’efficienza
del parallelismo OpenMP risulta piu lineare rispetto all’efficienza della ver-
sione MPI, soprattutto per valori intermedi di p (4 e 8). Tuttavia, nei test con
p = 32, possiamo notare come la weak scaling efficiency della versione MPI
sia leggermente superiore rispetto a quella della versione OpenMP. Quindi,
se si mantiene costante il carico di lavoro su ogni nodo, il parallelismo MPI
riesce a scalare leggermente meglio rispetto al parallelismo OpenMP. Osser-
vando i grafici di strong scaling e weak scaling efficiency nel caso N; = 100, si
nota, inoltre, che per p = 2 I'efficienza e superiore a 1, indicando uno speedup
superlineare. Molto probabilmente, cio ¢ dovuto al fatto che, nel caso con
p = 2, la quantita di cache totale a disposizione raddoppia rispetto al caso
seriale, riducendo il numero di accessi in memoria centrale e quindi miglio-
rando D'efficienza. Questo effetto non e presente, tuttavia, per valori di p piu
alti, in quanto l'overhead causato dalle operazioni di comunicazione e sin-
cronizzazione supera i benefici apportati da una maggior quantita di cache.
Un’ulteriore considerazione che si puo fare confrontando i dati della strong
scaling efficiency tra i due casi di test considerati (N; = 1 e N; = 100) ¢ il
fatto che, soprattutto nel caso di MPI, il codice ha un’efficienza piu elevata

per dataset di dimensioni maggiori. Questo e un risultato che ci si aspetta,
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ed e dovuto all’overhead legato alla gestione del parallelismo. Su dataset di
piccole dimensioni, infatti, le operazioni di allocazione e sincronizzazione dei
thread o dei nodi occupano una percentuale piu alta del tempo di esecuzione

rispetto ai casi con molti dati, riducendo 'efficienza del programma.



Capitolo 3

Versione GPU

Effettuata 1’analisi del codice di riferimento, si ¢ passati all’implementa-
zione di una versione in grado di sfruttare il parallelismo massivo delle GPU.
La realizzazione di tale versione ¢ stata svolta facendo uso di una tecnologia
relativamente recente: le funzionalita OpenMP per la programmazione GPU.
Dunque, I'obiettivo di questa fase e stato valutare 'efficacia di OpenMP nel
parallelizzare tramite GPU un codice di produzione complesso e di grandi

dimensioni, come quello che si considera in questa tesi.

3.1 Architettura di una GPU

Una GPU (Graphics Processing Unit) ¢ un dispositivo di calcolo spe-
cializzato per l'esecuzione di applicazioni grafiche e per il calcolo parallelo
ad alte prestazioni. Nello specifico, le GPU moderne prendono il nome di
GPGPU (General-Purpose GPU), in quanto sono dotate di un’architettura
che consente di sfruttare la loro capacita computazionale per scopi che van-
no oltre il solo rendering grafico. L’elevata capacita computazionale delle
GPU & dovuta all’elevato grado di parallelismo in esse implementato, che le
rende ideali per eseguire computazioni embarassingly parallel su una grande

quantita di dati. L’architettura generale di una GPU si compone di:

33
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e Un numero elevato di Streaming Multiprocessor (SM), unita di calcolo

dotate di numerosi core e in grado di eseguire in parallelo.
e Una cache L2 condivisa tra i vari SM.

e Una memoria globale di grandi dimensioni utilizzata per immagazzinare

tutti i dati necessari per svolgere le computazioni.

Ciascuno Streaming Multiprocessor dispone di un numero elevato di core,
ognuno in grado di eseguire operazioni elementari su un insieme ridotto di

dati. Oltre ai core, I'architettura di uno SM comprende:

e Un numero elevato di registri, utilizzati dai vari core per svolgere le

computazioni.

e Una cache L1 condivisa tra i vari core, detta anche Shared Memory.

La presenza della shared memory consente di ottimizzare le operazioni di let-
tura e scrittura sui dati, limitando il numero di accessi alla memoria centrale,
piu lenta. Infatti, i core di uno stesso SM possono lavorare su dati condivisi
in shared memory e trasferirli in memoria centrale solo quando necessario.

La Figura 3.1 mostra uno schema semplificato dell’architettura descritta.

GPU

Streaming Multiprocessor

tiprocessors

Streaming My

\\ Registri Cores

Cache L2 |

" he L1(Sh M
Memoria Globale Cache L1 (Shared Memory)

Figura 3.1: Schema semplificato dell’architettura di una GPU.
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La presenza di numerosi core su ogni SM consente di ottenere un pa-
rallelismo a grana fine, basato sull’esecuzione simultanea di molte operazioni
semplici. Questa caratteristica distingue il parallelismo GPU da quello CPU,
basato invece su un numero ridotto di unita di esecuzione che svolgono in
parallelo operazioni piu complesse. Inoltre, a differenza di quello CPU, il
parallelismo GPU e gerarchico, in quanto puo essere gestito sia a livello degli
SM, sia a livello dei singoli core all’interno di ciascun SM.

Nelle sezioni seguenti, verra usato il termine “host” per fare riferimento

alla CPU e alla sua memoria, e il termine “device” per indicare la GPU.

3.2 Programmazione GPU con OpenMP

Come accennato in Sottosezione 2.1.4, OpenMP ¢ una libreria di C, C++
e Fortran per il calcolo parallelo ad alte prestazioni nata per consentire il pa-
rallelismo CPU secondo un paradigma a memoria condivisa. A partire dalla
versione 4.0, OpenMP supporta anche il parallelismo su sistemi eterogenei,
in particolare sulle GPU, e quindi ha recentemente affiancato tecnologie piu

consolidate quali:
e CUDA, la libreria proprietaria di Nvidia.
e ROCm, che consente di programmare su GPU AMD.
e OpenCL, un’alternativa portabile e open source.

e OpenACC, una libreria che offre un maggior livello di astrazione rispet-

to alle precedenti.

Allo stesso modo di OpenACC, OpenMP offre funzionalita pit ad alto livello,
che consentono di eseguire codice sulla GPU in modo indipendente dall’ar-
chitettura dell’hardware utilizzato. L’obiettivo di OpenMP e quindi quello
di fornire un maggior grado di portabilita e una maggior facilita di utilizzo

rispetto a tecnologie piti convenzionali.
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OpenMP, come OpenACC, sfrutta un approccio basato sulle direttive.
Questo vuol dire che il suo utilizzo non prevede di scrivere codice in modo
esplicito, bensi di inserire nel codice esistente delle opportune direttive che
comunicano al compilatore quali porzioni del programma devono essere pa-
rallelizzate. Sulla base delle direttive inserite, il compilatore si occupa poi
di svolgere le opportune modifiche e ottimizzazioni per ottenere il risultato

richiesto.

3.2.1 Gerarchia di parallelismo

OpenMP fornisce un parallelismo basato su diversi livelli di astrazione,
che riflettono 'organizzazione gerarchica dell’architettura di una GPU. L’u-
nita di esecuzione di base ¢ rappresentata dal thread. Ogni thread ese-
gue autonomamente una data sezione di codice, e puo condividere dei dati
con altri thread, attraverso l'utilizzo della shared memory. Ciascun thread
OpenMP corrisponde ad uno o piu core sulla GPU. I thread sono poi rag-
gruppati in team, delle unita di esecuzione di livello piu alto che operano
in modo indipendente. Quindi, mentre i thread di uno stesso team possono
sincronizzarsi e condividere gli stessi dati, piu team diversi sono completa-
mente indipendenti tra loro. Di conseguenza, non esistono meccanismi nativi
di condivisione dati e sincronizzazione tra team. Questa separazione tra th-
read e team presenta diversi vantaggi, in quanto fornisce al programmatore
un maggior controllo sul grado di parallelismo adottato, e consente anche
di ottimizzare gli accessi in memoria, migliorando le prestazioni. Infatti, se
piu thread di uno stesso team leggono i dati dalla shared memory, si limita
molto il numero di accessi alla memoria centrale, i quali rappresentano un’o-
perazione molto onerosa in termini di prestazioni. Nel paradigma OpenMP,
la gestione della shared memory a disposizione dei thread ¢ completamente
trasparente al programmatore, in quanto ¢ svolta dal compilatore in modo
automatico. Un altro vantaggio dei team ¢ la possibilita di far eseguire piu
team diversi sullo stesso SM, in modo che condividano le risorse hardware.

In questo modo, quando un team ¢ in attesa di operazioni di input/output,
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gli altri possono sfruttare la potenza di calcolo dei core, riducendo la latenza
nelle operazioni di accesso in memoria. Oltre a team e thread, OpenMP offre
un livello di parallelismo ancora piu fine, rappresentato dalle istruzioni SI-
MD, che forniscono un parallelismo di tipo vettoriale. Questo meccanismo
consente di eseguire la stessa istruzione su piu dati contemporaneamente, au-
mentando ulteriormente 'efficienza. Mediante opportune direttive, Open MP
da la possibilita di scegliere il livello di parallelismo da utilizzare in ciascun

punto del codice.

3.2.2 DMapping dei dati

Un altro aspetto fondamentale da considerare quando si scrive codice per
la GPU e il trasferimento dei dati dal dispositivo host al device e viceversa.
Quando l'esecuzione giunge in corrispondenza di una regione parallela sulla
GPU, cioe una porzione di codice che deve eseguire in parallelo, OpenMP si
occupa di trasferire sul device tutti i dati necessari per la corretta esecuzione
del codice. In particolare, i dati considerati da OpenMP sono quelli relativi
a variabili dichiarate fuori dalla regione parallela e richiamate al suo interno.

Su questi dati, OpenMP opera una distinzione in tre tipi:
Scalar: Semplici valori numerici interi o in virgola mobile.
Pointer: Puntatori ad una determinata locazione di memoria.
Aggregate: Dati pit complessi, come array statici o strutture.

Il comportamento di default di OpenMP prevede che ogni dato venga copia-
to dall’host alla GPU all’inizio della regione parallela e poi trasferito nuova-
mente sull’host una volta che ’esecuzione del codice GPU ¢ terminata. Se la
quantita di dati da trasferire e elevata, questa gestione puo comportare pro-
blemi di efficienza dovuti a trasferimenti superflui di dati tra host e device,
specialmente se il collegamento tra i due dispositivi avviene per mezzo di un
bus di comunicazione con banda limitata. In generale, infatti, non tutti i dati

che vengono passati in input alla GPU necessitano di essere copiati sull’host
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al termine delle computazioni. Un altro aspetto problematico del compor-
tamento di default e legato alla gestione dei puntatori ad aree di memoria
allocate dinamicamente. Infatti, mentre i dati di tipo “aggregate” vengono
copiati nella loro interezza, per i puntatori viene copiato solo l'indirizzo di
memoria a cui fanno riferimento. Di conseguenza, il contenuto degli array
dinamici non viene copiato automaticamente sulla GPU.

Per far fronte a questi problemi, OpenMP mette a disposizione delle ap-
posite direttive di mapping, che consentono di specificare il modo con cui
i dati devono essere mappati sulla GPU. Il mapping esplicito dei dati vie-
ne effettuato mediante il costrutto map, che consente di specificare i dati da
mappare sulla GPU e il tipo di mapping da utilizzare. I principali tipi di

mapping disponibili sono:
to: Copia i dati dall’host al device.
from: Copia i dati dal device all’host.

tofrom: Copia i dati dall’host al device all’inizio della regione parallela e
poi dal device all’host al termine. Questa e 'impostazione di default
di OpenMP.

alloc: Alloca semplicemente la memoria sul device, senza trasferire dati.

L’utilizzo opportuno di queste politiche di mapping consente di limitare il
numero di trasferimenti effettuati, aumentando 1'efficienza del programma.
Inoltre, le direttive di mapping consentono di specificare al compilatore la di-
mensione delle aree di memoria che devono essere copiate, rendendo possibile

I'utilizzo di array dinamici.

3.3 Strategia di parallelismo adottata

Come mostrato nel Capitolo 2, i dati di input hanno una struttura bidi-
mensionale, e il codice di riferimento organizza le computazioni in due cicli

annidati. Apparentemente, la suddivisione del carico di lavoro tra i thread
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della GPU potrebbe essere svolta su qualsiasi delle due dimensioni del pro-
blema. Tuttavia, la natura stessa del metodo di Chang-Cooper mostra che
mentre le computazioni sulle singole particelle possono essere svolte in modo
indipendente, lo stesso non si puo dire delle computazioni sui diversi timestep.
Infatti, 'algoritmo che implementa tale metodo presenta delle loop-carried
dependencies, per le quali il calcolo dello spettro ad uno specifico timestep
dipende dallo spettro calcolato per il timestep precedente. Di conseguenza,
se per ogni particella si suddividessero i diversi timestep tra le unita di esecu-
zione disponibili, il risultato finale presenterebbe delle incongruenze dovute
alla violazione delle dipendenze descritte: senza la garanzia che le iterazioni
sui timestep vengano eseguite in ordine, si avrebbero delle situazioni in cui
un thread cercherebbe di leggere i dati dello spettro al timestep preceden-
te prima che questi siano stati scritti dal thread corrispondente. Inoltre, in
generale si ha che N; ¢ molto minore di N, e quindi la suddivisione del ca-
rico di lavoro basata sui timestep non consentirebbe di sfruttare appieno le

potenzialita del parallelismo GPU.

Per questo motivo, si e scelto di parallelizzare il codice di riferimento
secondo un approccio simile a quello utilizzato nel parallelismo CPU gia
implementato: le particelle da elaborare vengono suddivise tra i vari thread
a disposizione, in modo che ogni thread si occupi di svolgere le computazioni
su tutti i timestep di su una singola particella. In questo modo, ¢ possibile

sfruttare in modo efficace l'elevata granularita del parallelismo offerto dalla
GPU.

Una possibile limitazione di questo approccio ¢ il fatto che l'elevata com-
plessita delle computazioni effettuate da ciascun thread sulla propria parti-
cella puo comportare problemi di prestazioni. Infatti, ’hardware della GPU e
progettato per eseguire in parallelo una quantita elevata di istruzioni sempli-
ci; di conseguenza, se le operazioni eseguite dai thread sono troppo complesse,

I'efficienza del parallelismo GPU potrebbe risentirne.
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3.4 Implementazione

L’implementazione della versione GPU e stata svolta interamente nell’am-
biente di Leonardo, il quale dispone gia dei moduli necessari per lo sviluppo
di codice GPU con OpenMP. Nello specifico, durante la fase di sviluppo
e stato utilizzato il modulo nvhpc, che fornisce vari strumenti utili per la
compilazione e il debugging di programmi destinati a GPU Nvidia. Tra gli
strumenti inclusi in tale modulo vi e il compilatore NVC, che consente di
compilare codice che fa uso di librerie directive-based per la programmazione
GPU, in particolare OpenACC e OpenMP. A causa dell’elevata complessita
del codice, ci si e focalizzati su una versione ridotta del programma, nella
quale sono state selezionate solo alcune delle funzioni necessarie per il calcolo
dello spettro. Cio ha consentito di facilitare lo sviluppo e il debugging di una
prima versione di base, che puo poi rappresentare un punto di partenza per

una versione completa del codice.

3.4.1 Caratteristiche della versione ridotta

La versione ridotta ¢ stata ricavata a partire dal codice originale com-
mentando diverse funzioni di calcolo presenti nel ciclo principale, che itera
su tutte le particelle della simulazione. Sono state quindi mantenute solo le
funzioni indispensabili per la corretta esecuzione del codice. In particolare,

le principali funzioni richiamate nella versione ridotta sono le seguenti:

e CRe_Norm() e CRp_Norm(): Implementano l'operazione di normalizza-

zione dello spettro iniziale per elettroni e protoni rispettivamente.

e CC1D_Coef (): Imposta i coefficienti necessari per lo svolgimento del

metodo di Chang-Cooper.

e CC_1D(): Applica il metodo di Chang-Cooper in base ai coefficienti
precedentemente calcolati, risolvendo il relativo sistema tridiagonale

secondo il metodo di eliminazione Gaussiana.
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La funzione CC1D_Coef () e stata inoltre modificata in modo che utilizzi dei
parametri fittizi, cosi da semplificare la verifica dei risultati. Tali parametri
fanno si che nel risultato della versione ridotta, lo spettro a qualsiasi time-
step sia uguale allo spettro iniziale della particella. Le operazioni di calcolo
vengono comungque svolte, ma risolvono ad ogni iterazione un’equazione che
costituisce un’identita. Oltre a quelle riportate, che implementano le opera-
zioni principali, si hanno anche una serie di funzioni utilizzate per il calcolo

dei parametri fisici del problema:
e c_sound()
e v_Alfven()
e B_dynamo ()
e dv_limit()

Dalla versione ridotta sono state quindi escluse, tra le altre cose, tutte le
funzioni per il calcolo dello spettro delle radiazioni di sincrotrone.

Nella versione originale del codice e inoltre presente un’invocazione al-
la funzione rand() avente lo scopo di inizializzare con un valore casuale
la variabile on_start_index, utilizzata per determinare quante iterazioni
devono essere effettuate all’interno dei seguenti cicli, eseguiti nel corso di

un’iterazione su un singolo timestep:

// off //
for (nsblp = 0; nsblp < on_start_index; nsblp++){
// proton //
CC_1D(1, np, dt_sb, CCp_off, Qpi, CRp);
// electron //
CC_1D(-1, npe, dt_sb, CCe_off, Inje, CRe);
}
// on //
for (nsblp = on_start_index; nsblp < on_end_index; nsblp++){

// proton //
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CC_1D(1, np, dt_sb, CCp, Qpi, CRp);
// electron //
CC_1D(-1, npe, dt_sb, CCe, Inje, CRe);
}
// off //
for (nsblp = on_end_index; nsblp < N_subloop; nsblp++){
// proton //
CC_1D(1, np, dt_sb, CCp_off, Qpi, CRp);
// electron //
CC_1D(-1, npe, dt_sb, CCe_off, Inje, CRe);

In questi cicli viene invocata la funzione CC_1D() per il calcolo dello spettro
di protoni ed elettroni. Anche il valore della variabile on_end_index ¢ deter-
minato in modo casuale, in quanto corrisponde a: on_start_index + N_on,
dove N_on ha un valore intero e non nullo. La funzione rand (), tuttavia, non
e thread-safe, e cio vuol dire che il suo utilizzo all’interno di una regione paral-
lela non e sicuro. Per questo motivo, tale funzione e stata momentaneamente
esclusa dal codice, in modo che la variabile on_start_index venga inizializ-
zata sempre al valore 0. La conseguenza di questa modifica ¢ il fatto che il
numero di iterazioni dei cicli che invocano CC_1D() diventa deterministico,

ma cio non causa problemi dal punto di vista dei risultati ottenuti.

3.4.2 Inserimento delle direttive

Lo sviluppo della versione GPU ha richiesto I'inserimento nel codice delle
opportune direttive OpenMP per il calcolo GPU. Nel codice originale erano
gia incluse delle direttive OpenMP, necessarie per implementare il paralleli-
smo CPU a memoria condivisa. In questa fase, quindi, le direttive gia presenti
nel codice sono state sostituite con quelle necessarie per la programmazione

GPU.
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Suddivisione del carico di lavoro

Per far si che le computazioni sulle particelle vengano svolte sulla GPU, il
ciclo principale e stato racchiuso all’'interno della direttiva #pragma omp target {...},
che consente di trasferire ’esecuzione sulla GPU. La strategia di parallelismo
scelta prevede che le iterazioni del ciclo principale vengano distribuite tra i
vari thread della GPU, in modo che ogni thread svolga le computazioni di
una singola iterazione. A questo scopo, in corrispondenza del costrutto for

del ciclo principale, e stata inserita la direttiva:
#pragma omp teams distribute parallel for private(i, j)

Tale direttiva si compone di diversi costrutti utili a specificare il tipo di

parallelismo che si vuole ottenere. In particolare:

e teams mette in esecuzione piu team indipendenti, e all’interno di ogni

team alloca un certo numero di thread.
e distribute suddivide le iterazioni del ciclo tra i vari team.

e parallel for specifica che i team allocati devono eseguire le varie

iterazioni in parallelo e in qualsiasi ordine.

e private(i, j) specifica che le variabilii e j dichiarate fuori dalla regio-
ne parallela devono essere private, e quindi ciascun thread deve averne

una copia locale.

Queste direttive fanno si che OpenMP generi un’apposita funzione, detta
funzione kernel, che implementa sulla GPU le operazioni effettuate nella re-
gione parallela, secondo il parallelismo specificato. Il solo inserimento di tali

direttive, tuttavia, non e sufficiente per il corretto funzionamento del codice.

Mapping dei dati

Oltre a comunicare ad OpenMP quali porzioni di codice devono essere

parallelizzate, e necessario specificare come dev’essere svolto il mapping di
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tutte le strutture dati utilizzate in fase di calcolo. Le strutture dati che

devono essere mappate includono:
e Gli array di input.
e Gli array di output.
e Gli array e le strutture dati di supporto.

Per gestire il mapping, in corrispondenza del costrutto target sono state
inserite delle clausole map, che descrivono le politiche di mapping da utilizzare
per ciascuna variabile richiamata nella regione parallela. L’inserimento delle
clausole map proprio in questo punto del codice fa si che il mapping rimanga
valido durante tutta I’esecuzione della regione parallela, limitando il numero
di trasferimenti da host a device e viceversa.

Come gia spiegato, la politica di mapping di default ¢ tofrom. Per evi-
tarlo, insieme alle clausole map ¢ stata aggiunta la clausola defaultmap nel

modo seguente:
defaultmap(none:aggregate) defaultmap(none:pointer)

Questa clausola consente di sovrascrivere la politica di default utilizzata per
uno specifico tipo di dato. In questo caso, ai tipi aggregati e ai puntatori
e stato assegnato il valore none, che forza il programmatore a specificare
esplicitamente la politica di mapping per ogni variabile di un dato tipo,
generando un errore in fase di compilazione se una variabile non ¢ stata
mappata.

Agli array di input e stato applicato un mapping di tipo to, cosi che i dati
al loro interno vengano trasferiti solo all’inizio della regione parallela. Gli ar-
ray di output, invece, vengono inizializzati all’esterno della regione parallela,
e quindi fanno uso della politica tofrom, in modo che sulla GPU vengano
copiati i dati inizializzati. Spostando l'inizializzazione all’interno della re-
gione parallela, tuttavia, si potrebbe utilizzare la politica from, migliorando
I'efficienza del mapping. Per gestire correttamente il mapping degli array

dinamici e stata utilizzata la sintassi:



3.4 Implementazione

45

map(to: temp_node[0:INPUT_SIZE])

che consente di specificare esplicitamente la dimensione dell’area di memoria
allocata. Nell’esempio mostrato, temp_node ¢ il puntatore all’array di input
contenente la temperatura delle particelle, e INPUT_SIZE ¢ il numero di ele-
menti da mappare. Il primo valore presente tra parentesi quadre (in questo
caso 0) specifica l'offset della porzione di array da mappare rispetto al primo
elemento dell’array. Un offset di 0 specifica che I'area di memoria mappata
deve partire esattamente dall’elemento con indice 0.

Per quanto riguarda i dati di appoggio, essi sono gestiti attraverso struct

di diversi tipi:

e CRspectrum: Contiene due scalari double e 6 array statici di double

di lunghezza pari a M, e quindi 128.

e ChangCooper: Contiene tre variabili di tipo puntatore a double, utiliz-

zate nel codice per l'indirizzamento di altrettanti array di 128 elementi.

e FPloss: Contiene due scalari double e tre puntatori a double, anch’es-

si utilizzati per gestire degli array di 128 elementi.

Oltre a questi struct, il codice si avvale dei seguenti array di double, aventi

una lunghezza di 128:
e (pi

e (epri

Qe_buff

e Inje

epsSyn

e epsgamma
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Questi sono solo gli array di appoggio utilizzati nella versione ridotta: il co-
dice completo utilizza altri 9 array con le stesse caratteristiche, insieme a 4
array bidimensionali gestiti mediante delle variabili di tipo doublex*, cioe
doppi puntatori a double, e un array tridimensionale gestito con un triplo
puntatore a double. Nel codice originale, le strutture dati elencate vengono
dichiarate ed inizializzate subito prima del ciclo principale, e sono incluse
all’interno della regione parallela CPU. Cio vuol dire che, nel codice di rife-
rimento, ogni thread OpenMP possiede la propria copia di tutte le strutture
dati ausiliarie. Essendo che tali strutture dati vengono riscritte ad ogni ite-
razione del ciclo principale, questa gestione locale € necessaria per evitare
race condition. Per questo motivo, nella versione GPU, le dichiarazioni delle
strutture ausiliarie sono state spostate nel corpo del ciclo principale, in modo
che ogni thread inizializzi le proprie strutture dati direttamente sulla GPU.
Cosi facendo, non si ha la necessita di mappare i dati ausiliari sul device
all’inizio della regione parallela. Nel corso di questa modifica, tutti gli array
dinamici utilizzati sono stati convertiti in array statici, in quanto, sulla GPU,
I’allocazione di memoria tramite calloc() non ¢ ammessa, mentre l'utilizzo
di malloc() puo essere problematico in termini di prestazioni. Le uniche
strutture ausiliarie la cui dichiarazione non e stata spostata sulla GPU so-
no CRproton e CRelectron, di tipo CRspectrum. Queste strutture, infatti,
vengono inizializzate tramite l'invocazione di tre funzioni apposite, presenti
prima del ciclo principale. Per evitare di richiamare tali funzioni all’interno
del kernel GPU, si e scelto di lasciarle all’esterno della regione parallela e
mappare in modo esplicito le due strutture dati, aggiungendole alla clausola
map (to:). Inoltre, vista la necessita di mantenere private tali strutture, nella
direttiva con teams e stata aggiunta la clausola firstprivate(CRproton,
CRelectron). Tale clausola fa si che ogni thread erediti una copia locale e

gia inizializzata delle due strutture.
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Funzioni invocate sulla GPU

Il calcolo dello spettro all’interno del ciclo principale fa uso di diverse
funzioni definite negli altri moduli dell’applicazione, ed elencate in Sottose-
zione 3.4.1. Per far si che tali funzioni possano essere invocate all’interno del
codice GPU, & necessario comunicare ad OpenMP la necessita di generare
anche per esse una versione kernel. Cio viene fatto inserendo delle specifi-
che direttive in corrispondenza delle dichiarazioni delle funzioni interessate.
In particolare, le dichiarazioni devono essere racchiuse tra la coppia di co-
strutti declare target e end declare target. Nel codice di riferimento,
tali direttive sono state inserite all’interno dei file di intestazione dei moduli

utilizzati.

3.4.3 Refactoring del codice

L’inserimento delle direttive OpenMP descritte non e sufficiente per il
corretto funzionamento della versione GPU, in quanto il codice originale pre-
senta alcune caratteristiche problematiche per I'esecuzione sul device. Oltre
all’aggiunta delle direttive, quindi, lo sviluppo della versione GPU ha richie-
sto una fase di refactoring del codice di riferimento. Di seguito, sono illustrate

tutte le modifiche apportate in questa fase.

Non contiguita degli array

Nel codice originale, gli array utilizzati per input e output sono array
dinamici bidimensionali, il cui indirizzamento in memoria e basato su variabili
di tipo doublex**. L’allocazione di questi array con malloc() e calloc()

viene quindi effettuata in due passaggi:

1. Allocazione di un array di puntatori a double contenente un numero

di elementi pari al numero di righe dell’array bidimensionale.
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2. Per ogni puntatore nel primo array allocato, allocazione di un ar-
ray di double avente lunghezza pari al numero di colonne nell’array

bidimensionale.

Sebbene questo metodo di allocazione risulti comodo dal punto di vista del-
I'utilizzo degli array, esso risulta problematico se tali array devono essere
elaborati da una GPU, in quanto non assicura che lo spazio di memoria al-
locato sia contiguo. Infatti, la memoria allocata con una singola chiamata a
malloc() o calloc() ¢ contigua, ma non si puo dire lo stesso per la memoria
allocata tramite piu chiamate successive. Quando si opera su una GPU, lavo-
rare su aree di memoria contigue ¢ fondamentale sia per rendere pit efficienti
gli accessi in memoria, sia per effettuare correttamente il mapping dei dati
con OpenMP. Durante il mapping di un array dinamico con la clausola map,
infatti, OpenMP assume che la memoria da mappare sia contigua. In caso
contrario, il mapping viene effettuato su aree di memoria non inizializzate,
generando problemi di accesso durante 1’esecuzione. Inoltre, ’architettura
della. GPU gestisce gli accessi in memoria leggendo blocchi di dati conti-
gui, quindi il fatto che la memoria sia frammentata peggiora notevolmente
efficienza del codice.

Per questo motivo, il codice ¢ stato modificato in modo che ogni array
venga gestito mediante un solo puntatore a double, e la memoria necessaria
venga allocata in modo contiguo con una sola chiamata a malloc(). Que-
sto approccio comporta anche una diversa modalita di accesso agli array:
se si vuole accedere all’elemento a riga i e colonna j di un array conti-
guo A, essendo A monodimensionale la sintassi da utilizzare non e A[i] [j],
bensi A[i * NUM_COLS + j], dove NUM_COLS e il numero di colonne dell’ar-
ray. Tutti gli accessi effettuati ad array di input o output nel codice sono

stati quindi modificati per rispettare tale sintassi.

Utilizzo di VLA

Un altro aspetto problematico del codice di riferimento e 'utilizzo, al-

Iinterno di alcune funzioni di calcolo, di array di appoggio aventi lunghezza
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variabile, cioe la cui dimensione ¢ determinata a runtime in base al valore di
una variabile di input. Questi array prendono il nome di Variable Length Ar-
ray (VLA), e sono ammessi in alcuni standard del linguaggio C, tra cui il C17
con estensioni GNU, utilizzato per la compilazione del codice di riferimento.
Quando si scrive codice per la GPU, tuttavia, il loro utilizzo non & consenti-
to, in quanto la generazione delle funzioni kernel richiede che la dimensione
degli array locali a ciascun thread sia specificata a tempo di compilazione.
Questo vincolo consente al compilatore di conoscere a priori la quantita di
memoria che dovra essere riservata a ciascun thread. Nel codice di riferi-
mento, i VLA vengono utilizzati all'interno delle funzioni Chang_Cooper () e
Coef_CC(), invocate rispettivamente all’interno di CC_1D() e CC1D_Coef ().
Entrambe le funzioni determinano la dimensione dei VLA utilizzati in base al
valore di un parametro di input che specifica il numero di bin su cui svolgere
le computazioni. Nella versione GPU, questi VLA sono stati sostituiti con
array aventi una dimensione fissa. Tale conversione non altera il risultato del
codice, in quanto, nel main, il numero di bin che si utilizza e determinato con
la costante np definita tramite macro, il cui valore ¢ noto gia in fase di pre-
processing. Per eliminare i VLA & stato, quindi, sufficiente modificare la loro
dichiarazione, sostituendo il parametro di input con il valore definito nella
macro. Questa modifica ¢ necessaria per il funzionamento del codice sulla
GPU, ma introduce una limitazione legata al fatto che il numero di bin su
cui lavorano Chang_Cooper () e Coef_CC() non puo piu essere determinato

a tempo di esecuzione, ma solo a tempo di compilazione.

Utilizzo di variabili e costanti esterne

Come gia descritto in Sottosezione 2.1.1, il codice legge i parametri fisici
del problema da un file di configurazione passato in input. Durante la fase
di lettura, tali parametri vengono memorizzati in variabili definite in un
modulo apposito, le quali vengono poi utilizzate dagli altri moduli sotto
forma di variabili di tipo extern. In modo analogo vengono gestite anche

le costanti fisiche utilizzate. Questo approccio € problematico dal punto
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di vista dell’implementazione GPU, in quanto non consente ad OpenMP di
capire quali tra quelle variabili vengono utilizzate all'interno della regione
parallela. Come risultato, il compilatore non riconosce tali variabili nelle
sezioni di codice GPU in cui sono richiamate, e quindi genera una serie
di errori. Per sistemare questo problema, le funzioni invocate sulla GPU
sono state modificate in modo che tutte le variabili o costanti esterne in
esse utilizzate vengano specificate nella loro signature. In questo modo, ogni
invocazione di una di queste funzioni specifica in modo esplicito tutte le
variabili o le costanti che verranno utilizzate al suo interno, consentendo ad

OpenMP di mapparle correttamente sulla GPU.

3.4.4 Compilazione

Nel corso dello sviluppo, la compilazione del codice GPU ¢ stata svolta
con due compilatori diversi: NVC e GCC. Entrambi i compilatori, infatti,
supportano le direttive OpenMP per la programmagzione sulla GPU, ma han-
no caratteristiche diverse. GCC gode di una maggiore portabilita, in quanto
consente di generare codice sia per GPU AMD che per GPU Nvidia. NVC e
invece limitato alle schede Nvidia, ma ha un output piu informativo rispet-
to a GCC, e per questo risulta piu utile in fase di sviluppo. Se si lavora
in ambiente Nvidia, entrambi i compilatori convertono le direttive OpenMP
in codice CUDA. Le modalita di compilazione sono leggermente diverse a

seconda del compilatore che si utilizza.

Compilazione con GCC

La compilazione con GCC della versione GPU avviene in modo simi-
le alla versione CPU. Innanzitutto, € necessario caricare i moduli necessari

nell’ambiente di Leonardo, in particolare:

e openmpi: contiene le librerie di MPI e il compilatore MPICC, un
wrapper di GCC che supporta la compilazione per MPI.
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e hdf5: contiene i moduli necessari per il funzionamento della libreria
HDF5.

e gsl: contiene GSL, una libreria per il calcolo scientifico utilizzata nel

codice di riferimento.

Caricati i moduli, la compilazione avviene attraverso il comando mpicc. Per
far si che il codice compili correttamente sulla GPU, e necessario aggiunge-
re 'opzione -foffload=-1m, che seleziona la versione kernel delle funzioni

matematiche contenute nella libreria cmath.

Compilazione con NVC

Come gia descritto, NVC fa parte del modulo nvhpc di Nvidia. Per
questo motivo, il suo utilizzo nell’ambiente di Leonardo richiede di caricare
le versioni compatibili con tale pacchetto dei moduli elencati in precedenza.
Per compilare con NVC e necessario utilizzare il relativo comando nve. La
riga di comando di NVC non differisce molto rispetto a GCC, ma necessita
di alcune opzioni aggiuntive che specificano il tipo di target su cui si vuole

compilare:
-mp=gpu -target=gpu -Minfo=mp

In particolare, -mp=gpu e -target=gpu comunicano al compilatore la presen-
za nel codice di direttive OpenMP per la GPU, e -Minfo=mp fa si che nell’out-
put di compilazione vengano mostrate le informazioni sulla parallelizzazione

effettuata tramite OpenMP.

3.5 Esecuzione del codice e debugging

Per effettuare i test di esecuzione, il codice e stato compilato con entrambi
i compilatori precedentemente descritti. Tuttavia, a causa di un problema
con la gestione del modulo HDF5 da parte di NVC, i test sono stati effettuati

esclusivamente sulla versione compilata con GCC. Nel corso dei test, € emerso
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un problema durante I’esecuzione per il quale il codice GPU terminava con i

seguenti messaggi di errore:

libgomp: cuCtxSynchronize error: an illegal memory access

was encountered

libgomp: cuMemFree_v2 error: an illegal memory access

was encountered

Per investigare la causa di questo errore e stato utilizzato il comando

compute-sanitizer, incluso nel pacchetto nvhpc, che, se usato per lancia-
re un eseguibile, consente di visualizzare in modo dettagliato tutti gli errori
generati durante I'esecuzione del codice CUDA presente al suo interno. Ese-
guendo compute-sanitizer sulla versione GPU, 'output mostrava un errore
di stack overflow per ciascun thread allocato da OpenMP. Di conseguenza,

sono state effettuate diverse ipotesi sulla possibile causa di tale errore:

e Presenza di un errore di accesso in memoria in uno degli array utilizzati

nella regione parallela.
e Presenza di un errore nel mapping dei dati sulla GPU.

e FEccessiva complessita del codice, per cui la quantita elevata di variabi-
li locali e invocazioni di funzione comporterebbe un utilizzo eccessivo

dello stack di ciascun thread.

La prima ipotesi ¢ stata esclusa attraverso un test che ha previsto la rimo-
zione dal codice di tutte le direttive di programmazione GPU, in modo da
verificare se le modifiche apportate in fase di refactoring avessero introdotto
un errore di gestione della memoria. Questo test non ha evidenziato errori, in
quanto i risultati ottenuti sono coerenti con quelli del codice di riferimento.
Anche eseguendo il codice con valgrind, un comando per il monitoraggio
dell’utilizzo della memoria da parte di un eseguibile, non sono stati trovati

memory leak o problemi di accesso in memoria.
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Esclusa l'ipotesi di un errore nel refactoring, si e cercato di capire se il
problema fosse dovuto all’eccessiva complessita del codice GPU. A questo
scopo, il programma e stato testato commentando parti di codice della re-
gione parallela, in modo da escluderle dalla computazione. Da questi test,
e emerso che se si commenta una parte consistente del ciclo principale, 1’e-
secuzione riesce a terminare correttamente. QQuesto risultato sembra quindi
avvalorare l'ipotesi di un codice troppo complesso. Si e deciso quindi di
controllare l'effettivo utilizzo dello stack mediante una specifica opzione di
compilazione disponibile in NVC: -gpu=ptxinfo, che consente di visualizza-
re la quantita di memoria occupata sullo stack da ciascuna funzione kernel
generata. Analizzando I'output di compilazione, si e visto che 'utilizzo dello
stack da parte di diverse funzioni, incluso il kernel del main, risultava piutto-
sto elevato. Uno dei fattori che contribuiva ad aumentare 1’occupazione dello
stack e la grande quantita di array statici utilizzati come array di supporto
all’interno della regione parallela. La memoria occupata da tali array, infatti,
viene allocata interamente sullo stack locale di ciascun thread, e non viene
liberata fino alla fine della regione parallela. Per cercare di ridurre 1'utilizzo
dello stack sono state quindi apportate delle modifiche al codice, in modo
da sostituire gli array statici locali con array globali dichiarati sulla CPU e
poi mappati sulla GPU. Per ognuno degli array statici di appoggio (aventi
una lunghezza di 128) ¢ stato quindi definito un array globale dinamico con
lunghezza pari a 128 x N. In questo modo, ogni thread ha a disposizione
dei sottoarray di 128 elementi che puo utilizzare liberamente per svolgere le
computazioni sulla propria particella. Per quanto riguarda il mapping, gli
array globali cosi definiti sono stati mappati secondo la politica alloc, in
modo da allocare la memoria necessaria sulla GPU senza effettuare trasferi-
menti superflui di dati. Verificando l'output di NVC, si ¢ notato che queste
modifiche hanno contribuito a ridurre notevolmente 1'utilizzo dello stack da
parte del kernel del main. Infatti, la quantita di stack allocata per il main su
ogni thread ¢ passata da piu di 35.000 byte a poco meno di 400. Nonostante

cio, tale soluzione non e stata sufficiente per eliminare il problema di stack
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overflow.

Un ulteriore tentativo effettuato in questa fase ha previsto la rimozione
dalla clausola map delle strutture dati CRproton e CRelectron, allo scopo
di capire se il problema sia dovuto ad un mapping errato di questi struct
da parte di OpenMP. In questo test, le due strutture dati sono state decom-
poste negli array in esse contenuti, che sono stati mappati singolarmente.
All’interno della regione parallela sono poi state inserite delle istruzioni per
ricostruire le due strutture dati, a partire dai valori degli array mappati. An-
che in questo caso, le modifiche effettuate non hanno consentito di risalire
alla causa principale del problema. Tuttavia, questo risultato non consente
di escludere del tutto ’assenza di errori nel mapping degli struct da parte di
OpenMP. Per approfondire questo aspetto, sarebbero quindi necessari degli
ulteriori test.

Nel corso dei test effettuati non e stato possibile escludere I'ipotesi secon-
do cui I'errore sarebbe causato da un problema nel mapping dei dati. Infatti,
la verifica di tale ipotesi richiederebbe un’analisi pitu approfondita e di basso
livello della gestione del mapping da parte di OpenMP. Tutto cio, tuttavia,

va oltre gli obiettivi di questa tesi.



Capitolo 4
Conclusioni

Il lavoro presentato in questa tesi ha consentito di raggiungere con suc-
cesso gli obiettivi prefissati. E stato, infatti, possibile analizzare su diversi
casi di test le prestazioni di entrambi i tipi di parallelismo CPU implementa-
ti nel codice considerato. E stata poi realizzata una versione GPU secondo
I’approccio a direttive di OpenMP, consentendo di valutare pregi e difetti del-
I'utilizzo di questa libreria all’interno di un codice di produzione complesso

e non facilmente ottimizzabile con metodi convenzionali.

4.1 Considerazioni sui risultati ottenuti

La valutazione delle prestazioni effettuata sul codice di riferimento ha
mostrato che 'utilizzo di OpenMP ed MPI per I'ottimizzazione sulla CPU
offre gia un buon grado di parallelismo. I test hanno inoltre mostrato che
i due approcci risultano molto simili tra loro in termini di prestazioni, e le
principali differenze sono causate dalle caratteristiche intrinseche dei due di-
versi paradigmi di parallelizzazione adottati. Nonostante questa somiglianza
nell’efficienza dei due approcci, e stato comunque possibile determinare quale
risulta piu vantaggioso in specifici casi. In particolare, si € osservato che 'ap-
proccio di OpenMP ha una maggiore efficacia in termini di strong scaling,

mentre 'approccio MPI, con un numero di nodi elevato, offre prestazioni

95
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migliori nei casi in cui il numero di unita di esecuzione viene incrementato

proporzionalmente alla dimensione del problema.

Per quanto riguarda la versione GPU, si & osservato che, nonostante le pre-
messe, I’approccio a direttive offerto da OpenMP non & immediato, e richiede
potenzialmente molto lavoro per adattare il codice esistente all’esecuzione sul
device. Infatti, il solo inserimento delle direttive fornite dalla libreria non e
sufficiente ad ottenere un codice in grado di eseguire o persino di compilare
correttamente, e dev’essere quindi accompagnato da una serie di modifiche
al codice di partenza. Tutto il lavoro svolto nella fase di refactoring illustrata
in precedenza ha quindi I'obiettivo di supportare I'approccio a direttive nel
modo migliore possibile, ma non e stato sufficiente a consentire il corretto
funzionamento della versione GPU. Uno degli aspetti piu problematici del-
'utilizzo di OpenMP ¢ il fatto che I'elevato livello di astrazione su cui si basa
rende difficile determinare 'effettiva modalita di ottimizzazione utilizzata.
Infatti, se confrontata con librerie piu di basso livello, come CUDA, ROCm e
OpenCL, OpenMP offre al programmatore un minor controllo sulle operazio-
ni che vengono effettuate sulla GPU, complicando notevolmente la diagnosi
e la risoluzione di eventuali problemi riscontrati. D’altra parte, in molti ca-
si OpenMP consente di ottenere un parallelismo GPU attraverso 'aggiunta
di molte meno righe di codice rispetto alle librerie sopra citate. Inoltre, a
differenza di queste librerie, piu legate all’hardware utilizzato, OpenMP van-
ta un’elevata portabilita, grazie all’approccio piu ad alto livello. OpenACC
presenta caratteristiche simili ad OpenMP, ma ha il vantaggio di essere una
tecnologia piu consolidata, e di conseguenza piu ottimizzata in determinati
contesti. Tuttavia, attualmente OpenMP sta subendo un forte sviluppo, e in
futuro potrebbe riuscire a raggiungere o anche superare OpenACC in termini
di efficienza. Possiamo quindi concludere che OpenMP & un paradigma di
programmazione in grado di facilitare notevolmente la realizzazione di co-
dice GPU portabile, ma il suo utilizzo puo essere problematico, e per nulla

semplice, se il programma da ottimizzare ha un elevato grado di complessita.
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4.2 Sviluppi futuri

4.2.1 Valutazione delle prestazioni del codice CPU

Sebbene la valutazione delle prestazioni effettuata in questa tesi abbia gia
consentito di ricavare molte informazioni sullo stato del parallelismo CPU,
esistono ulteriori test che si possono svolgere per migliorare 1’accuratezza di
tali informazioni. Uno dei test che si possono effettuare e la misurazione delle
prestazioni che si ottengono combinando i due tipi di parallelismo implemen-
tati, quindi allocando diversi nodi MPI, ognuno su un nodo fisico del cluster,
con piu core OpenMP su ogni nodo. In questo modo, sarebbe possibile va-
lutare 'efficienza del programma quando il parallelismo al suo interno viene
sfruttato al massimo delle potenzialita. Per migliorare la comprensione della
weak scaling efficiency del codice, si potrebbe inoltre effettuare un ulteriore
test di scalabilita in cui il carico di lavoro viene modificato incrementando

progressivamente il numero di particelle, invece che il numero di timestep.

4.2.2 Versione GPU

Un primo sviluppo possibile della versione GPU realizzata e rappresentato
dalla risoluzione del problema di stack overflow riscontrato. Cio richiedereb-
be un’analisi piu approfondita delle funzionalita di OpenMP, soprattutto per
quanto riguarda l’allocazione di memoria su ciascun thread. A tal scopo, ci
si potrebbe servire di strumenti di debugging pit avanzati rispetto a quelli
utilizzati nel corso del lavoro presentato, in modo da monitorare con maggior
precisione le modalita di gestione della memoria utilizzate da OpenMP. Uno
di questi ¢ CUDA-GDB, un’applicazione offerta da Nvidia che consente di
effettuare il debug di codice CUDA, compreso quello generato da OpenMP.
Tale strumento e gia presente nell’ambiente di Leonardo, all'interno del mo-
dulo nvhpc. Oltre ad utilizzare debugger come questo, si potrebbe tentare di
eseguire il codice nella sua versione compilata con NVC. Quest’ultimo com-

pilatore, infatti, ¢ piu ottimizzato rispetto a GCC per quanto riguarda la
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compilazione su GPU Nvidia. L’utilizzo di NVC potrebbe quindi agevolare
le operazioni di debug o anche rimuovere del tutto il problema, nel caso in
cui questo sia dovuto ad un bug di GCC. Inoltre, tra i test che si possono

effettuare per identificare la causa del problema, si hanno:

e L’esecuzione del codice su dati fittizi di piccole dimensioni, in modo da

ridurre al minimo la quantita di memoria richiesta.

e La realizzazione di una versione minimale del codice GPU, nella quale
si limita il piu possibile la quantita di dati mappati sul device. In tale
versione, si potrebbe ad esempio utilizzare un solo array di input e
uno di output, in modo da ridurre il numero di trasferimenti di dati.
Naturalmente, il risultato di tale versione non sarebbe corretto, ma
la sua esecuzione consentirebbe di capire se il problema sia legato al

mapping dei dati.

e La realizzazione di un codice di prova con lo scopo di verificare che
OpenMP effettui in modo corretto il mapping delle strutture dati spe-
cificate nella clausola map. In tale codice, si potrebbero creare delle
struct contenenti degli array statici, inizializzati con un certo valore.
Tali struct possono essere poi mappate sul device, in modo da ve-
rificare se i dati immagazzinati nei loro array vengono correttamente

copiati sulla GPU in fase di mapping.

E, infine, necessario tenere presente che il codice del ciclo parallelizzato ¢ par-
ticolarmente complesso, e quindi il problema potrebbe essere legato proprio
all’eccessiva complessita delle operazioni al suo interno. In tal caso, la sua
risoluzione richiederebbe di modificare la strategia di parallelizzazione adot-
tata oppure la struttura stessa del codice, in modo che ogni thread possa
svolgere operazioni pitt semplici.

Un altro possibile sviluppo ¢ la progressiva estensione dell’implementa-
zione GPU all’intero codice, includendo tutte le funzioni del ciclo principale
che non sono state prese in considerazione nella versione ridotta. L’esten-

sione prevede di effettuare sul resto del codice una fase di refactoring simile
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a quella riportata in Sottosezione 3.4.3, per poi aggiungere le direttive ag-
giuntive necessarie per il corretto funzionamento del programma sulla GPU.
Un dettaglio importante da considerare in questa fase € l'inclusione nel ciclo
parallelizzato della funzione rand, richiamata in ogni thread per generare
numeri casuali. Tale funzione, infatti, non e thread-safe, e per questo mo-
tivo, nell'implementazione GPU completa, va sostituita con un metodo di
generazione di numeri casuali compatibile con 1’esecuzione sul device. Un
approccio possibile potrebbe essere ’adozione di cuRAND, una libreria di
CUDA che consente di generare sequenze casuali sulla GPU. Tuttavia, es-
sendo cuRAND legata ad Nvidia, il suo utilizzo limiterebbe la portabilita
del codice realizzato, impedendo di sfruttare alcuni dei vantaggi offerti dal
paradigma di OpenMP.

Realizzata la versione completa dell’implementazione GPU, sara poi pos-
sibile svolgere la valutazione delle sue prestazioni ed effettuare un confronto
con il precedente parallelismo CPU, in modo da determinare l'efficienza del-
I’approccio offerto da OpenMP. Nel caso in cui la strategia di parallelizzazione
illustrata in Sezione 3.3 risulti poco efficiente, a causa dell’elevata complessita
del ciclo principale, in futuro si potra tentare di ottimizzare il codice secondo
un parallelismo a granularita piu fine, in cui ogni thread esegue operazioni
piu semplici, per meglio assecondare le caratteristiche dell’architettura hard-
ware della GPU. A tal proposito, puo essere utile una fase preliminare di
misurazione del tempo di esecuzione di ognuna delle funzioni di calcolo ri-
chiamate nel ciclo principale, con lo scopo di identificare quali sezioni del

codice devono essere ottimizzate con maggiore priorita.






Appendice A

Lavorare nell’ambiente di

Leonardo

In questa appendice sono illustrate informazioni utili per lavorare all’in-
terno dell’ambiente di esecuzione del supercomputer Leonardo. Le infor-
magzioni riportate sono tratte dalla documentazione sull’utilizzo dei sistemi
HPC messa a disposizione dal CINECA, e alcune di esse possono essere sog-
gette a modifiche nel tempo. Si rimanda quindi a tale documentazione per

indicazioni piu precise riguardo gli argomenti qui trattati.

A.1 Cenni sull’architettura di Leonardo

Leonardo ¢ un Cluster di Processori, e in quanto tale ¢ composto da un
numero elevato di nodi indipendenti interconnessi tra loro mediante una rete
ad alte prestazioni. I nodi di Leonardo sono divisi in due partizioni aventi

caratteristiche diverse:

Partizione Booster: Partizione dotata di GPU basate sull’architettura Am-
pere A100 di Nvidia. Le specifiche di un nodo in questa partizione sono

indicate in Tabella 2.1.
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Partizione DCGP (Data Centric General Purpose): Partizione priva
di GPU, ma in cui ogni nodo ¢ dotato di due processori Intel Sapphire

Rapids che offrono complessivamente 112 core per nodo.

La partizione utilizzata nel corso del lavoro svolto in questa tesi e la Booster,
e per questo motivo le sue specifiche sono riportate in modo piu dettagliato.

L’accesso ai nodi di calcolo delle due partizioni e gestito da degli appositi
nodi di login, ai quali ci si connette da terminale mediante il protocollo SSH.
Attraverso questi nodi, e possibile accedere al file system del cluster ed inviare
comandi ai nodi di calcolo. Un altro tipo di nodi ¢ costituito dai Datamovers,
che hanno il compito di gestire il trasferimento di grandi quantita di dati tra

il cluster e ’esterno.

A.2 Utilizzo del file system

La gestione dello spazio di archiviazione di Leonardo si basa su un file
system distribuito che permette ai diversi nodi del cluster di condividere gli
stessi dati. Cio consente di mantenere la struttura logica del file system
consistente su tutti i nodi. Lo spazio di archiviazione ¢ diviso in diverse aree,
che possono essere classificate in vari modi. In particolare, le aree possono

essere:

temporanee: I dati al loro interno sono accessibili solo per un certo periodo

di tempo, dopo il quale vengono cancellati.

permanenti: [ dati immagazzinati sono accessibili per tutta la durata del

progetto, e fino a sei mesi dopo la sua fine.

Inoltre, le aree possono essere classificate in base alla visibilita dei dati al

loro interno:
user specific: I dati sono accessibili solo ad un utente specifico.

shared: I dati sono condivisi tra tutti gli utenti di uno stesso progetto.
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open: I dati sono accessibili a tutti gli utenti del cluster.
Tra le aree presenti nel file system di Leonardo si hanno:

$HOME La home directory dell’'utente, un’area permanente e user specific

di dimensioni ridotte e soggetta a backup giornalieri.
$WORK Un’area permanente e shared con 1TB di memoria a disposizione.

$FAST Come $WORK, ma utilizza dischi piu veloci, che consentono mi-

gliori prestazioni nelle operazioni di input/output.

$SCRATCH Un’area temporanea e user specific, concepita per i file tem-

poranei usati dalle applicazioni.

Ogni area puo essere acceduta attraverso la corrispondente variabile di am-
biente nella shell di lavoro, che contiene il suo percorso assoluto. Cio consen-
te di spostarsi in una specifica area passando al comando cd il valore della

variabile corrispondente, ad esempio:
cd $FAST

La modalita di utilizzo raccomandata per queste aree prevede di salvare su
$HOME i file importanti di piccole dimensioni, come script, codice o esegui-
bili, e mantenere su $WORK i file di grandi dimensioni, ad esempio quelli
contenenti i dati da elaborare o i risultati di un’esecuzione che si intende
conservare. Inoltre, SWORK ¢ shared, e quindi puo anche essere utilizzata
per immagazzinare i file che si vuole condividere con gli altri collaboratori del
progetto. Essendo piu lenta, tuttavia, quest’area non ¢ consigliata per 'uti-
lizzo in lettura/scrittura da parte dei programmi in esecuzione. Per questo
motivo, durante 'esecuzione si raccomanda di utilizzare $FAST per imma-
gazzinare i dati necessari e i risultati prodotti, in modo che le applicazioni

possano accedervi in modo efficiente.
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A.3 Scheduler e creazione di job

L’esecuzione di codice sui nodi di Leonardo avviene secondo modalita
diverse da quelle convenzionali: il cluster ¢ utilizzato contemporaneamente
da un gran numero di utenti, e per questo motivo si serve di un sistema di job
scheduling per gestire 1’allocazione delle risorse hardware necessarie a ciascun
programma. Per eseguire un programma su Leonardo e quindi necessario
definire un opportuno job, che specifica i comandi da eseguire sul cluster e
le risorse necessarie per l'esecuzione. Una volta creato, il job viene inserito
dallo scheduler in una coda di attesa, e successivamente messo in esecuzione
non appena le risorse richieste diventano disponibili. Lo scheduler utilizzato
dal cluster & Slurm (Simple Linux Utility for Resource Management), un
sistema open-source con un’elevata scalabilita. L’allocazione di job tramite

Slurm puo avvenire secondo due modalita:

Modalita batch: Alloca un job definendo I'insieme di comandi che devono
essere eseguiti e le risorse necessarie per eseguirli. Una volta avviato
il job, I'insieme dei comandi specificati al suo interno non puo essere
modificato. Questa modalita e usata per le esecuzioni di produzione e

per test che comportano tempi di esecuzione elevati.

Modalita interattiva: Alloca le risorse richieste e fornisce all’'utente una
console interattiva dalla quale e possibile inviare comandi al cluster.

Questa modalita ¢ solitamente utilizzata per test veloci e debugging.

Per utilizzare la modalita batch e necessario scrivere un apposito script che
specifica sia i comandi da eseguire, sia i parametri di allocazione del job.
Questi ultimi sono specificati mediante una serie di direttive #SBATCH, e

comunicano allo scheduler una serie di informazioni tra cui:
e Le risorse necessarie.

e [ file in cui ridirezionare standard output e standard error del program-

ma.
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e [l tempo massimo di allocazione.

Mediante le direttive si ha anche la possibilita di specificare la mail dell’u-
tente, in modo che il sistema invii automaticamente le notifiche sullo stato
del job.

La modalita interattiva prevede, invece, di richiedere 1’allocazione delle
risorse del cluster mediante il comando salloc. Questo comando ha una serie
di opzioni che corrispondono alle direttive della modalita batch. In entrambe
le modalita, per far si che un comando venga effettivamente eseguito sui nodi
del cluster, € necessario lanciarlo attraverso il comando srun, che accetta i

seguenti parametri:
e [l nome del comando o dell’eseguibile da lanciare sul cluster.
e [ parametri di input del comando o dell’eseguibile.

Tutti i comandi che non sono eseguiti con srun vengono eseguiti sul login
node in cui si trova 1'utente, invece che sul cluster.

Di seguito, € mostrato un esempio di script sbatch utilizzato per eseguire
il codice di riferimento su 32 nodi MPI sfruttando 8 nodi della partizione

Booster e 4 core fisici per nodo:

#!/bin/bash
#SBATCH --output=output.log
#SBATCH --error=error.log

#SBATCH --job-name=tracer_CPU_test_32_nodes # Descriptive job name
#SBATCH --time=12:00:00 # Maximum wall time (hh:mm:ss)

#SBATCH --ntasks=32

#SBATCH -—nodes=8 # Number of nodes to use

#SBATCH --ntasks-per-node=4

#SBATCH --cpus-per-task=1 # Number of CPU cores per task
#SBATCH --partition=boost_usr_prod # GPU-enabled partition
#SBATCH --qos=normal # Quality of Service

#SBATCH --mem=4G
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#SBATCH --account=account_number # Project account number
#SBATCH --mail-user=your@mail.com

#SBATCH --mail-type=ALL

module load hdfb
module load gsl

module load openmpi

srun ./tracer_mpi_eval.out params.txt O

Nello script, -—-ntasks specifica il numero di nodi MPI che si vogliono alloca-
re, ——nodes indica il numero di nodi fisici del cluster e ~-ntasks-per-node
specifica che su ogni nodo fisico devono essere eseguiti 4 nodi MPI, sotto
forma di processi logicamente separati.

Il seguente, invece, ¢ un esempio di comando salloc che consente di
richiedere 'allocazione di un job interattivo su un singolo nodo, utilizzando

una delle GPU al suo interno:

salloc -n 1 --mem-per-cpu=4G --gres=gpu:1l -A account_number \

-p boost_usr_prod -q boost_qos_dbg -t 00:10:00

Questo comando imposta un tempo massimo di allocazione di 10 minuti, dopo
il quale la console del job viene chiusa automaticamente. La limitata quantita
di risorse e tempo di utilizzo richiesti fa si che il job venga allocato in tempi
brevi, consentendo di svolgere in modo rapido test di piccole dimensioni.

Il comando squeue consente di controllare in ogni momento lo stato della
coda di scheduling, e 'opzione -u fa si che vengano visualizzati solo i job
richiesti dall’utente. I job gia allocati possono inoltre essere gestiti mediante
i comandi scontrol e scancel. scontrol, oltre a fornire informazioni piu
dettagliate su uno specifico job, da anche la possibilita, mediante il sottoco-
mando hold, di impedirne momentaneamente 1’esecuzione. Un job in hold
puo poi essere rilasciato mediante il sottocomando release, in modo che

possa essere messo in esecuzione. Il comando scancel consente invece di
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cancellare uno o piu job nella coda. Sia scontrol che scancel accettano

come parametro aggiuntivo I'ID del job da gestire.

A.4 Gestione dei moduli

Nell’ambiente di Leonardo, i pacchetti software di terze parti sono instal-
lati secondo un meccanismo a moduli. Per poter utilizzare un determinato
comando, eseguibile o libreria nel sistema, ¢ quindi necessario caricare nel
proprio ambiente di lavoro il modulo software corrispondente. La gestione
dei moduli caricati avviene mediante il comando module, le cui funzioni sono

accessibili mediante specifici sottocomandi. I principali sottocomandi sono:

module avail stampa una lista di tutti i moduli disponibili nell’ambiente

di Leonardo.
module load <nome modulo> carica il modulo con il nome specificato.

module list consente di vedere tutti 1 moduli attualmente caricati nella

sessione corrente.

module unload <nome modulo> rimuove il modulo specificato dalla sessione

corrente.
module purge rimuove tutti i moduli caricati nella sessione corrente.

[ moduli restano caricati nell’ambiente di lavoro dell’utente fino alla fine del-
la sessione. Quindi, ad ogni nuovo accesso al sistema e necessario caricare
nuovamente tutti i moduli necessari. Inoltre, quando si richiede 1’esecuzione
di un job sul cluster, ¢ necessario caricare in modo esplicito tutti i moduli in
esso utilizzati. Per la modalita batch, cio viene fatto inserendo nello script i
comandi module load prima dell'invocazione del comando principale, men-
tre nella modalita interattiva basta invocare tali comandi direttamente sul
terminale. Il comando modmap € molto utile per cercare un determinato soft-

ware all’interno dell’ambiente di Leonardo. Infatti, se invocato con 1’opzione
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-m seguita dal nome di un eseguibile, un comando o una libreria, stampa una

lista di tutti i moduli in cui e installato il software specificato.

A.5 Consumo delle risorse

Le risorse che il cluster mette a disposizione degli utenti non sono illimita-
te: ogni progetto dispone di un budget espresso in numero massimo di ore di
esecuzione consentite e condiviso tra tutti gli utenti che ne fanno parte. Ogni
mese, gli utenti associati ad un progetto hanno a disposizione una quota di
ore pari al budget totale, diviso la durata complessiva in mesi del progetto.
Le risorse di cui puo usufruire ciascun utente dipendono quindi dai progetti
in cui partecipa. Le ore del budget sono espresse in ore CPU effettive, e
non in tempo di orologio; di conseguenza, il consumo del budget da parte di
ogni job e calcolato in base al numero di risorse in esso allocate, secondo la
seguente formula:
By =TxNxRxC (A.1)

dove:

T e il tempo di esecuzione in ore
N ¢ il numero di nodi allocati
R e un fattore che determina la frazione di risorse allocate per ogni nodo

C e il numero di core allocati su ogni nodo

Il fattore R, in particolare, & calcolato considerando il massimo tasso di uti-
lizzo tra tutte le risorse a disposizione del nodo, tra cui numero di core, GPU,
memoria. Ad esempio, se un job alloca tutti i core di un nodo, allora il tasso
di utilizzo della CPU e pari ad 1, e quindi il nodo conta come completamente
occupato anche se le altre risorse (GPU, memoria) non sono utilizzate del
tutto.

La quantita di ore rimanenti nella quota mensile determina anche la prio-

rita associata ai job all’interno della coda. In particolare, la priorita dei job
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decresce linearmente con la percentuale di ore rimanenti, ed ¢ massima all’i-
nizio di ogni mese, quando si dispone dell’intera quota. Se la quota mensile
e esaurita, i job creati vengono comunque presi in considerazione, ma la loro

priorita € molto piu bassa rispetto ai job degli utenti con quota rimanente.
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