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Abstract

This study was conducted within the framework of the GALVANI project, which aims to

develop computational and experimental tools to optimize non-invasive brain stimulation

strategies for drug-resistant epilepsy (DRE). The work focused on integrating biologically

realistic neuroplasticity mechanisms into existing detailed computational models of hip-

pocampal and neocortical microcircuits to examine how synaptic plasticity contributes

to epileptiform dynamics and influences the effects of transcranial electrical stimulation

(tES). Two calcium-dependent plasticity models (Shouval and Brunel) were implemented

and combined into a novel Hybrid model that merges the continuous calcium dependence

of Shouval’s model with the stabilizing bistability of Brunel’s framework. Validation in

small networks reproduced canonical long-term potentiation (LTP), long-term depression

(LTD), and the triphasic spike-timing-dependent plasticity (STDP) profile, demonstrating

how parameter shifts can induce an epileptogenic bias toward potentiation. These models

were then applied to large-scale hippocampal CA1 and neocortical networks. To simulate

epileptiform activity, single-cell and network parameters were systematically adjusted to

induce a hyperexcitable state capable of generating interictal epileptiform spikes (IESs). In

the hippocampal model, Shouval’s plasticity model increased pyramidal firing rates (FRs)

and high-frequency activities, leading to excessive excitation, whereas the Hybrid model

produced a moderate FR increase and preserved IES morphology. In the neocortical model,

hybrid plasticity similarly enhanced excitability but preserved rhythmic organization. Pre-

liminary tES simulations revealed that cathodal tDCS stimulation produced mild poten-

tiation, while anodal tDCS led to slight synaptic depression. These findings demonstrate

that calcium-dependent plasticity critically shapes network excitability and may alter re-

sponses to tES. The implemented plasticity framework provides a mechanistic foundation

for studying synaptic adaptation and tES modulation, supporting the GALVANI project’s

overarching goal of developing personalized neuromodulation strategies for epilepsy.
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Introduction

Epilepsy is a chronic neurological disorder of the central nervous system (CNS) character-

ized by spontaneous recurrent seizures, often resulting from an imbalance between excita-

tory and inhibitory synaptic activity. This imbalance leads to hypersynchronous neuronal

discharges that may begin focally and spread to involve broader networks [1]. Despite major

advances in pharmacological treatments, about 30–40% of patients develop drug-resistant

epilepsy (DRE), for whom standard therapies fail and surgical options are often limited

[2]. In this context, non-invasive neuromodulation techniques, such as transcranial electri-

cal stimulation (tES), have emerged as promising alternatives. tES applies low-intensity,

controlled electrical currents (approximately 1 mA and < 2 mA) to the scalp to modulate

cortical excitability and reduce seizure frequency [3]. While early studies support its safety

and therapeutic potential, the mechanisms of action remain poorly understood, especially

with respect to long-term effects and interindividual variability[4]. To address these chal-

lenges, the GALVANI project (ERC Synergy Galvani, 2020–2027) was initiated to develop

computational models aimed at studying the effects of tES on epileptic brain activity.

The project seeks to optimize stimulation parameters and personalize treatment protocols

by understanding how low-level electric fields interact with individual brain anatomy and

physiology. Led by Inserm-LTSI, the project employs biophysically detailed microcircuit

models of the neocortex [5] and hippocampus [6] to study seizure dynamics and to inform

precision neuromodulation strategies. A critical feature still missing in these microscale

models is neuronal plasticity, the dynamic adaptation of synaptic strength based on neural

activity. Plasticity plays a dual role in epilepsy: it can contribute to both the develop-

ment of hyperexcitable networks and their potential recovery through neuromodulation[7].

Understanding how plasticity shapes network behavior is essential for predicting and op-

timizing long-term responses to interventions like tES. The objective of this thesis is to

address this gap by modeling neuroplasticity and integrating plasticity mechanisms into

existing single-neuron and network models. Specifically, this work focuses on implementing

biologically realistic plasticity models (Shouval[8] and Brunel[9]) within detailed simula-

tions of hippocampal and neocortical microcircuits. Through this integration, we aim to

explore how plasticity alters epileptogenic dynamics and how it might modulate the efficacy

of tES in suppressing seizure activity. Ultimately, this work contributes to the GALVANI

project’s goal of developing mechanistically grounded, patient-specific neuromodulation

strategies for epilepsy. This thesis is divided in 5 chapters:

Chapter 1 – State of the Art and Theoretical Principles: Provides background on
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epilepsy, including its classification, drug-resistant epilepsy (DRE), treatments such as

non-invasive brain stimulation, as well as the core principles of neuroplasticity and its

mechanisms (LTP, LTD, STDP). Moreover, foundational computational models, including

Hodgkin-Huxley (H-H), hippocampus, and neocortex, used in this study are introduced,

together with a detailed description of the two foundational calcium-dependent plastic-

ity models ( those proposed by Shouval and Brunel) that serve as the basis for the work

developed in later chapters.

Chapter 2– Modeling Neuroplasticity in Multicompartment Neuron Models: focuses on

the single-neuron implementation of the calcium-dependent plasticity mechanisms. It de-

scribes the adaptation of the Shouval[8] and the novel Hybrid plasticity models to the single

pyramidal cell (PC) models. The chapter also presents the validation of these mechanisms

in small networks, demonstrating their ability to reproduce classical plasticity phenomena

such as LTP, LTD, and STDP.

Chapter 3 – Investigating the Impact of Calcium-Dependent Plasticity Models on Epilep-

tiform Dynamics in the Hippocampal Network: extends these plasticity implementations

to a large-scale hippocampal CA1 network. It details the parameter adjustments used to

induce an epileptic state and analyzes the effects of the implemented plasticity models on

network behavior, including PC firing rates and analysis of local field potentials (LFPs)

under both baseline and plasticity conditions.

Chapter 4 – Modeling Neuroplasticity in the Neocortical Network (NeoCoMM): ad-

dresses the integration of the plasticity mechanisms into the neocortical computational

model (NeoCoMM). It examines how plasticity shapes cortical network activity and de-

scribes the preliminary simulations of tES, including tDCS and tACS, to investigate how

the presence of plasticity modulates the response of cortical circuits to external electric

fields.

Chapters 5 – Discussion and Conclusion: Summarize key findings, discuss their limi-

tations and significance, and propose directions for future research.

ix



Chapter 1

State of the Art and Theoretical Prin-

ciples

1.1 Introduction

This chapter provides the theoretical and scientific background relevant to the project,

laying the foundation for the modeling work described in subsequent chapters. It begins

with an overview of epilepsy, including its clinical classification, treatment challenges, and

surgical options. The next section introduces the concept of neuroplasticity, focusing on

synaptic mechanisms such as long-term potentiation (LTP) and depression (LTD) that are

particularly relevant to the development and progression of epilepsy. The chapter then

discusses computational approaches to modeling neural activity, including single-cell and

network-level models as well as synaptic plasticity. Finally, we articulate the problem this

thesis addresses and define the objectives pursued.

1.2 Epilepsy

1.2.1 Definition of Epilepsy

Epilepsy is a neurological disorder characterized by recurrent seizures and their signifi-

cant cognitive, psychological, and social impact on patients. It is considered one of the

most common brain conditions, affecting approximately 70 million people worldwide[10].

Epilepsy is characterised by a lasting predisposition to generate spontaneous epileptic

seizures and has numerous neurobiological, cognitive, and psychosocial consequences [11].

The global prevalence rate is estimated at 7.60 cases per 1,000 individuals, with an annual

cumulative incidence of 67.8 cases per 100,000 person-years, ranking it as the second most

burdensome neurologic disorder worldwide. [12]

According to the International League Against Epilepsy (ILAE), epilepsy is defined by

any of the following conditions:

• At least two unprovoked (or reflex) seizures occurring more than 24 hours apart.
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• One unprovoked (or reflex) seizure and a probability of further seizures (at least

60%) occurring over the next 10 years, similar to the general recurrence risk after

two unprovoked seizures.

• Diagnosis of an epilepsy syndrome[11].

Too often, people are categorised as simply having epilepsy whereas the diagnosis should

be as specific and as precise as possible. Classification is made at three levels: seizure

type, epilepsy type, and syndrome as shown in Figure 1.1. At each stage, cause and

comorbidities should be identified as these might have important therapeutic implications.

The causes are divided into six categories: genetic, structural, metabolic, infectious, im-

mune, and unknown.[13]

Figure 1.1: The International League Against Epilepsy framework for the classification of epilepsies [13].

1.2.1.1 Seizures: definition and types

An epileptic seizure is conceptually defined as “a transient occurrence of signs and/or

symptoms due to abnormal excessive or synchronous neuronal activity in the brain” [14].

This sudden, intense burst of brain activity is termed a *paroxysmal discharge*.

Seizures are classified based on their anatomical onset, level of awareness, and motor or

non-motor manifestations into three principal categories [13]. Focal seizures arise within

one cerebral hemisphere, may involve cortical or subcortical networks, and are frequently

described according to the lobe of origin (e.g., frontal or temporal) [15, 16]. They are further

divided into focal aware seizures, in which consciousness is preserved and symptoms may

include sensory phenomena or focal motor activity, and focal impaired awareness seizures,

which disrupt consciousness and are often followed by postictal amnesia [17] (Figure 1.2).

Generalized seizures, in contrast, result from aberrant neuronal activity engaging both

hemispheres at onset, leading to loss of consciousness and widespread motor manifestations;

2



Figure 1.2: Different types of focal seizures

the ILAE categorizes these into motor (e.g., tonic-clonic, myoclonic, atonic) and non-motor

(e.g., absence, atypical, eyelid myoclonia) subtypes [16, 18]. Seizures with insufficient

information for classification are designated as of unknown onset [15].

1.2.1.2 Types of Epilepsy

After classification of seizure type, the clinician identifies the patient’s epilepsy type which

is broader in scope than is the seizure classification, and considers the possibility of hav-

ing multiple seizure types, and incorporates information about the overall clinical picture,

imaging, genetics, laboratory tests, prognoses, and comorbidities[19]. It can be classi-

fied into four categories depending on the seizure type: focal, generalized, combined

generalized and focal, and unknown, as illustrated in Figure 1.1.

Generalized epilepsies consist of abnormal brain activity involving both hemispheres

at the onset. People with generalized epilepsy may experience tonic-clonic seizures, absence

seizures, myoclonic seizures, or atonic seizures.

Focal epilepsies involve seizures with a localized origin, which may then spread to

other brain regions. People with focal epilepsy may have focal aware seizures or focal

seizures with impaired awareness.

The combined generalized and focal category is used for individuals presenting

with both seizure types.

The unknown category is applied when a patient is diagnosed with epilepsy but, due

to insufficient data, the clinician is unable to classify the type of epilepsy [20, 21].

In this work, we will mainly focus on focal epilepsy.

1.2.2 Electroencephalography in Epilepsy Evaluation

Electroencephalography (EEG) is one of the most important and widely used ancillary tests

in the diagnosis of epilepsy. EEG signals are generated by cortical neuronal postsynaptic

potentials, providing real-time assessment of cerebral physiological function. Clinicians

rely heavily on EEG patterns to identify, classify, quantify, and localize seizures [22]. For

example, a focal interictal spike suggests focal epilepsy (such as temporal lobe epilepsy),

3



whereas a generalized spike-wave complex is more consistent with generalized epilepsy

syndromes (such as idiopathic generalized epilepsy) [23].

EEG abnormalities associated with epilepsy include focal spikes, generalized spikes,

spike-wave complexes, and seizures with focal onset, as illustrated in Figure 1.3.[22]

Figure 1.3: Common epileptiform EEG patterns: focal spikes, generalized spikes, spike-wave complexes,
and seizures with focal onset [11].

Epileptic EEG signals can be classified into four main temporal categories: preictal,

ictal (seizure), postictal, and interictal. The preictal phase corresponds to the period

before seizure onset (lasting approximately 50 minutes to one hour). The ictal phase

marks the occurrence of the seizure itself. The postictal phase immediately follows the

seizure, lasting around 5 to 30 minutes [24], and the interictal phase corresponds to the

time between seizures (Figure 1.4) [25].

Figure 1.4: Various phases of EEG activity in epileptic patients: preictal, ictal (seizure), postictal, and
interictal stages[25].

Interictal epileptiform discharges are sharply contoured waveforms that stand out from

background activity, with spikes and sharp waves being the most common forms[26]. In

both experimental and human focal epilepsies, these discharges appear as high-amplitude

(> 50 µV) fast EEG transients, called interictal spikes (ISs), usually followed by a slow

wave lasting several hundred milliseconds [27].

1.2.2.1 EEG Recording Modalities

EEG can be recorded using two main modalities:
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Scalp EEG (sEEG) Scalp EEG is noninvasive and uses electrodes placed on the

scalp (Figure 1.5a). It is relatively easy to perform, covers a larger cortical surface, and is

suitable for routine evaluations. However, sEEG has limitations such as lower spatial res-

olution, susceptibility to motion artifacts, and limited utility for long-term monitoring.[25].

Intracranial EEG (iEEG) Intracranial EEG uses invasive electrodes placed directly

on the brain (Figure 1.5b). Intracranial EEG recording mainly involves two techniques:

• Depth electrodes: implantation uses multiple electrodes stereotactically implanted

into the brain parenchyma via small screws fixed to the skull. This stereo-EEG

technique allows recording from both deep and superficial areas.

• Subdural electrodes (strips and grids): placed directly on the brain surface,

covering larger cortical areas. iEEG is typically reserved for presurgical evaluation

in patients with refractory epilepsy. Subdural strips can be placed through simple

burr holes, whereas grids require a craniotomy and can record from a larger area of

contiguous cortex[25, 28].

Figure 1.5: Placement of electrodes in EEG recording: (a) scalp EEG (sEEG) with electrodes on the
scalp, and (b) intracranial EEG (iEEG) with subdural or depth electrodes placed directly on the brain[25].

1.2.3 Drug-Resistant Epilepsy and Treatment

The treatment of epilepsy is primarily based on anti-seizure medications (ASMs), with

about two-thirds of patients achieving seizure freedom. The remaining third of patients are

considered to have drug-resistant epilepsy (DRE) and are eligible for alternative treatments,

such as epilepsy surgery (i.e., surgical resection, disconnection, and neurostimulation) and

non-pharmacological therapies (e.g., ketogenic diet) [29].
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To establish a common terminology, the ILAE in 2010 defined DRE as “failure of

adequate trials of two tolerated, appropriately chosen and used antiepileptic drug sched-

ules (whether as monotherapies or in combination) to achieve sustained seizure freedom”

[30]. This definition encompasses underlying pathogenic factors leading to structural and

neurobiochemical changes, often resulting in cognitive, psychiatric, and psychosocial dis-

turbances [30, 31].

1.2.3.1 Resective epilepsy surgery

Surgical treatment is the most cost-effective approach for patients with drug-resistant focal

epilepsy when a clearly defined epileptogenic zone can be resected or disconnected [32]. The

epileptogenic zone is a theoretical construct, defined as the minimum amount of cortex that

must be resected to give seizure freedom[28]. Despite sophisticated presurgical methods,

surgery is not always feasible or successful. Even when feasible, resection surgery carries

risks such as post-surgical complications, cognitive deficits, and psychosis, and does not

guarantee seizure freedom [32].

Consequently, alternative or complementary therapeutic strategies are increasingly uti-

lized. One promising treatment is neuromodulation, which is premised upon the electrical

circuit model of neural function and uses direct or induced electrical currents to modulate

network activity. Neuromodulation aims to restore the excitatory/inhibitory balance in

patients with DRE who are not eligible for surgery or whose epileptogenic zone cannot be

localized [29].

1.2.3.2 Neuromodulation

Neuromodulation can be devided into two main categories invasive and non-invasive.

Invasive Neuromodulation:

• Vagus Nerve Stimulation (VNS): Involves an implanted electrode around the left

vagus nerve and a sub-clavicular generator. VNS reduces seizure frequency and

improves long-term quality of life but carries surgical risks and side effects.

• Responsive Neurostimulation (RNS): Detects ongoing epileptiform activity with im-

planted electrodes and delivers stimulation in a closed-loop manner.

• Deep Brain Stimulation (DBS): Delivers chronic, intermittent pulse-trains via intrac-

erebral electrodes.
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Figure 1.6: Illustration of invasive neuromodulation therapies. A. The vagus nerve stimulation device
comprises an electrode with three helical contacts connected to a subclavicular implantable pulse generator.
B. The deep brain stimulation system comprises depth electrodes connected to a subclavicular implantable
pulse generator. C. The responsive neurostimulation device comprises depth electrodes, cortical strips, and
a cranial implantable pulse generator. figure adapted from[29].

Non-invasive Neuromodulation: Transcranial Electrical Stimulation (tES) is a non-

invasive neuromodulation technique designed to modulate brain activity by delivering low-

intensity electrical currents, typically between 1 and 2 mA, through electrodes placed on

the scalp as shown in Figure 1.7. Two main forms are[33]:

• Transcranial Direct Current Stimulation (tDCS): This technique uses a constant and

unidirectional electrical current flowing from an anodal electrode to a cathodal one.

• Transcranial Alternating Current Stimulation (tACS): involves an applied electrical

current that changes sinusoidally over time.

Figure 1.7: tDCS delivers continuous low current stimulation by applying a positive (anodal) or negative
(cathodal) current via paired electrodes over the scalp[34].

In the context of epilepsy, Clinical studies have demonstrated that tES is generally

safe and can induce clinically relevant improvements in seizure frequency and network

activity in epileptic patients. Recent evidence suggests that tDCS may act by modulating

functional brain networks rather than solely affecting the local cortical area, influencing

connectivity patterns and potentially reducing pathological hyperexcitability.[3]
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1.2.4 The GALVANI Project Approach to tDCS and Epilepsy

Despite its therapeutic potential, tES has several limitations. The precise mechanisms

underlying its effects on epileptic brain activity remain poorly understood [35]. Moreover,

clinical data, especially for tACS, are limited, with few trials involving sufficient patient

numbers to draw robust conclusions[3].

These challenges highlight the need for computational models in tES research. Com-

putational modeling can predict how electrical currents distribute across individual brains,

optimize stimulation parameters, and personalize protocols for maximum efficacy. In this

context, the GALVANI project (ERC Synergy, 2020–2027) was initiated to develop com-

putational models aimed at studying the effects of tES on epileptic brain activity. The

project seeks to optimize stimulation parameters and personalize treatment protocols by

understanding how low-level electric fields interact with individual brain anatomy and

physiology.

Computational modeling is crucial for predicting current distribution, guiding electrode

placement, and determining optimal session timing. Importantly, to make microscale mod-

els realistic and neuro-inspired, neuroplasticity mechanisms need to be incorporated, en-

suring that cellular and network responses to stimulation reflect the adaptive properties of

the epileptic brain.

1.3 Neuroplasticity

1.3.1 Neuronal and Synaptic Structure

1.3.1.1 Neurons

Neurons are the fundamental building blocks of the nervous system. They are highly

specialized cells capable of transmitting electrical and chemical signals to coordinate phys-

iological and cognitive functions [36]. Neurons communicate via a combination of electri-

cal impulses and chemical neurotransmitters. Electrical signals, called Action Potentials

(APs), travel along the axon of a neuron. When they reach the axon terminal, they trigger

the release of neurotransmitters into the synapse. These chemicals then interact with re-

ceptors on the postsynaptic neuron, converting the signal back into an electrical impulse.

Structurally, a neuron consists of three main parts as portrayed in Figure 1.8 [36]:

• Dendrites: These are branched projections that receive incoming signals from other

neurons. They integrate signals spatially (combining inputs from different synapses)
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and temporally (combining inputs in rapid succession at the same synapse). This

integration is essential for determining whether an AP is generated.

• Cell Body (Soma): The soma contains the nucleus and other organelles. It serves

as the metabolic hub of the neuron and integrates inputs from the dendrites.

• Axon: This is a long, cylindrical projection that transmits APs away from the soma.

The axon hillock, where the axon originates, is the site of AP initiation. Once an AP

is generated, it propagates along the axon without loss of strength due to its regenera-

tive nature. Microtubules within the axon facilitate intracellular transport, including

the delivery of neurotransmitters from the soma to the presynaptic terminal.

Figure 1.8: The figure illustrates the structural components of the neuron and the synapse adapted from
[37].

1.3.1.2 Synapses

Synapses are the junctions where neurons communicate with each other. The human brain

contains approximately 86 billion neurons, each forming thousands of synaptic connections[38].

Synapses can occur between different parts of neurons. A typical synapse consists of three

components as shown in Figure 1.8:

• Presynaptic Terminal: Located at the end of the axon, this structure contains

synaptic vesicles filled with neurotransmitters. When an AP arrives, voltage-gated

calcium channels open, triggering the release of neurotransmitters into the synaptic

cleft.

• Synaptic Cleft: This is a small gap between the presynaptic and postsynaptic

terminals. Neurotransmitters diffuse rapidly across this cleft, within microseconds.
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• Postsynaptic Terminal: This contains receptors that bind the neurotransmitters.

The activation of these receptors alters the postsynaptic membrane potential, lead-

ing to either excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic

potentials (IPSPs).

Synaptic structure is tightly regulated and highly plastic. The type and density of

receptors, the strength of neurotransmitter release, and the spatial arrangement of pre-

and postsynaptic membranes all contribute to synaptic efficacy and plasticity[36].

1.3.1.3 Synaptic Transmission

Synaptic transmission in the central nervous system (CNS) relies on the precise release

and detection of chemical messengers known as neurotransmitters. These molecules are

essential for neuron-to-neuron communication and for modulating the strength of synaptic

connections, a key mechanism in neuroplasticity [39]. Figure 1.9 illustrates the Sequence

of Events During Synaptic Transmission.

Figure 1.9: This picture illustrates the sequence of events During synaptic transmission[40].

The two most prominent neurotransmitters in the CNS are:

• Glutamate, the primary excitatory neurotransmitter, and

• Gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter.

A tightly regulated balance between excitation (via glutamate) and inhibition (via

GABA) is critical for maintaining normal brain function, preventing excessive neuronal

activity, and enabling plastic adaptations of neural circuits [41].
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Glutamate and Excitatory Transmission At excitatory synapses, L-glutamate is

released from the presynaptic terminal into the synaptic cleft, where it binds to glutamate

receptors on the postsynaptic membrane. These receptors include:

• α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid Receptors (AMPARs):

These mediate fast, short-lived excitatory synaptic responses. Upon glutamate bind-

ing, AMPARs rapidly open to allow Na+ influx, leading to brief excitatory postsy-

naptic potentials (EPSPs). This is the primary mechanism for baseline excitatory

transmission.

• N-methyl-D-aspartate (NMDA) Receptors (NMDARs): These receptors play

a central role in synaptic plasticity rather than in baseline synaptic transmission.

NMDARs are unique in that they are both ligand-gated and voltage-dependent. At

resting membrane potentials, the NMDAR channel pore is blocked by Mg2+ ions.

When AMPAR-mediated depolarization is sufficient, the Mg2+ block is removed,

enabling Ca2+ influx through the NMDA channel.

This dual requirement, ”glutamate binding and postsynaptic depolarization”, makes

NMDARs highly effective coincidence detectors, crucial for activity-dependent plasticity.

The calcium influx they mediate initiates intracellular signaling cascades that can lead to

LTP or LTD, depending on the timing and frequency of synaptic activity[42, 43].

GABA and Inhibitory Transmission In contrast, GABA mediates inhibition pri-

marily through GABA receptors, which are ligand-gated chloride channels. When GABA

binds to these receptors, Cl− ions enter the postsynaptic neuron, causing hyperpolariza-

tion of the membrane and generating inhibitory postsynaptic potentials (IPSPs). This

inhibitory mechanism counterbalances excitatory activity and is essential for controlling

neural excitability, preventing runaway excitation, and shaping synaptic plasticity [44].

1.3.2 Neuroplasticity: Definition and Principles

Neuroplasticity, also referred to as neural plasticity or brain plasticity, is the capacity of

the nervous system to change its structure and function in response to intrinsic or extrinsic

stimuli. It involves dynamic processes such as the formation of new synapses, the elim-

ination of old connections, and the modulation of existing synaptic strength. A widely

accepted definition is:

“The ability of the nervous system to change its activity in response to intrinsic or extrin-

sic stimuli by reorganizing its structure, functions, or connections” [45]. This biological

11



property is essential for learning, memory, adaptation to new experiences, recovery after

injury, and the maintenance of functional brain networks throughout life.

1.3.2.1 Long-Term Potentiation and Depression

LTP and LTD are activity-dependent, long-lasting changes in synaptic strength and are

considered cellular correlates of learning and memory. Both are primarily mediated by

NMDARs and the resulting postsynaptic calcium influx.

• LTP is triggered by strong NMDAR activation and large calcium influx, usually when

pre- and postsynaptic neurons fire together. This depolarization relieves the Mg2+

block of NMDARs. High-frequency stimulation or spike-timing, where presynaptic

spikes precede postsynaptic spikes, typically induces LTP.

• LTD arises from modest NMDAR activation and smaller calcium influx, often due

to low-frequency presynaptic stimulation or spike-timing where postsynaptic spikes

precede presynaptic spikes.

Figure 1.10: Schematic of the LTP and LTD processes based on calcium influx through NMDA receptors.
Adapted from[46]

These processes, portrayed by Figure 1.10 show that the magnitude and timing of post-

synaptic calcium signals determine whether synaptic strength increases (LTP) or decreases

(LTD), linking specific activity patterns to lasting synaptic modifications. LTP and LTD
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are fundamental for synaptic plasticity, learning, memory formation, and network adapta-

tion [47].

1.3.2.2 Spike timing dependent plasticity (STDP)

STDP is a fundamental form of synaptic plasticity where the precise temporal interval

and order between presynaptic and postsynaptic APs dictate the sign and magnitude of

long-term synaptic change. This concept traces back to Donald Hebb’s 1949 theory [48],

”cells that fire together, wire together,” and was experimentally quantified by studies like

Bi and Poo (1998) [49]. In its classical form, causal pairings (presynaptic spike shortly

before postsynaptic spike) lead to LTP, strengthening the synapse. Anticausal pairings

(postsynaptic spike before presynaptic spike) result in LTD, weakening the synapse, re-

flecting that the presynaptic input did not cause the postsynaptic activity. While spike

timing is central, other factors such as firing rate, synaptic cooperativity (the interaction

between multiple nearby synapses), and dendritic location can modulate STDP [50].

1.4 Computational Neuroscience and Modeling

Computational models provide a framework for exploring hypotheses that are difficult to

test experimentally. They enable simulation of neural dynamics at various scales:

• Single-cell models: such as Hodgkin-Huxley, describe ionic mechanisms underlying

APs.

• Network models: integrate multiple neurons and synapses to simulate emergent

properties.

Computational modeling helps in understanding how local mechanisms scale up to

system-level behavior, including seizure generation and propagation.

1.4.1 Hodgkin-Huxley Formalism

The Hodgkin-Huxley (HH) formalism [51], is a foundational framework for modeling the

electrical behavior of single neurons. Developed in 1952 by Alan Hodgkin and Andrew

Huxley through experiments on the squid giant axon, the model describes how APs are

generated and propagated via voltage-dependent ion conductances.
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Figure 1.11: Hodgkin-Huxley Model circuit representation of the neuronal membrane. The circuit
consists of a capacitor cell generating capacitive current and ion flow across the cell membrane, generating
the ionic current. Ion channels and ionic currents cause an acquisition of net charge in the extracellular
and a depletion of charge in the intracellular space. This leads to a potential difference, V, across the
neuronal membrane.[52]

In the HH model, the neuronal membrane is treated as an electrical circuit consisting of

a capacitor (representing the membrane capacitance) and variable conductances for sodium

(Na+), potassium (K+), and leak currents (Figure 1.11). These conductances are described

using differential equations that capture the gating dynamics of ion channels in response

to changes in membrane voltage.

The basic membrane equation is:

Cm
dV

dt
= −gNam

3h(V − ENa)− gKn
4(V − EK)− gL(V − EL) + Iext (1.1)

where V is the membrane potential, Cm is the membrane capacitance, gNa, gK , and gL

are the maximum conductances for Na+, K+, and leak channels, respectively,ENa, EK , and

EL are the respective reversal potentials, m, h, and n are the gating variables representing

channel activation and inactivation, and Iext is an external input current.

This formalism allows for a biophysically accurate simulation of APs and is widely

used as the basis for more complex single-neuron and network models in computational

neuroscience.

1.4.2 Neural Networks Modeling

In this section, we will present the two neuroinspired computational models used in this

work.

1.4.2.1 Microcircuit Model of the Hippocampus

This model is a neuroinspired microscale model of the hippocampus CA1 subfield [6, 53].

It is a biologically inspired neural network that can simulate realistic interictal events
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recorded via iEEG depth electrodes. This model provides the ability to explain underlying

mechanisms for the generation of epileptic events such as Interictal Epileptic Spikes (IES),

High frequency oscillations (HFOs),... .

Model Architecture and Neuron Types The model focuses on the CA1 subfield of

the hippocampus, a region frequently implicated in temporal lobe epilepsy (TLE) due to

its well-characterized anatomy and significant role in epileptic dynamics.

Figure 1.12: Neural Network Model Structure. (A) The simulated 3D volume is designed with the
essential elements needed to reproduce the behavior of CA1 subfield (hippocampus). It includes in addition
to pyramidal cells (PYR), oriens-lacunosum moleculare (OLM), Basket (BAS), and Bistratified (BIS)
interneurons. The PYR cells in pink are the hyperexcitable PYR cluster. (B) The extracellular field
potential (V) observed by the electrode is obtained by solving the forward problem using the dipole theory
and then integrating the result over the active electrode surface. (C) The synaptic interactions between
the different cells in the network and the reduced CA1 pyramidal neuron two compartments model. [53].

1. Network Composition and Connectivity: The network comprises approximately

3,000 interconnected neurons, designed to capture the essential features of the hippocampal

CA1 subfield. Of these, 80% are pyramidal cells (excitatory principal neurons), while the

remaining 20% are interneurons, equally divided between BAS, OLM and BIS cells. Neu-

ronal interactions are mediated through both glutamatergic synapses (AMPA and NMDA

receptors) and GABAergic inhibitory synapses. Connectivity patterns, as well as intercel-

lular distances, are constrained by experimental data from the literature. The probability

of connection follows a Gaussian distribution, such that neurons in closer proximity are

more likely to form synapses.

2. Cellular Models

• Pyramidal Cells (PCs): These are the main excitatory neurons, represented by

a reduced two-compartment model (soma and dendrites) [54]. Each compartment
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incorporates various ionic currents crucial in epilepsy, including voltage-dependent

sodium (INa), potassium delayed-rectifier (IKDR), calcium (ICaL, ICaT, ICaR),

calcium-dependent potassium (IAHP), fast inactivating potassium (IKA), hyperpolarization-

activated cationic (Ih), and muscarinic potassium (Im) currents. The membrane

voltage of each compartment follows the classical current balance equation of HH

formalism.

• Interneurons: The GABAergic interneurons (BAS, BIS and OLM cells) are repre-

sented by simpler single-compartment models.

External Stimulation and LFP Reconstruction The network is stimulated with an

afferent volley of quasi-synchronous APs with adjustable delay (jitter) and spatial distri-

bution. This input mimics the crucial drive from the CA3 area to the CA1 network via

Schaffer collaterals, a known initiator of interictal activity. Simulated LFPs usually ob-

served in iEEG, are obtained by solving the forward problem using dipole theory. PCs

are considered the primary contributors to the LFP due to their ”palisade” spatial ar-

rangement, and each is treated as a point source (current dipole). The potential at the

electrode is then obtained by summing the contributions from all PCs. the corresponding

mathematical formulation can be found in [6].

Model Validation and Key Findings Model validation was conducted in two stages:

first, the reduced pyramidal neuron model was tested against intracellular recordings from

rat hippocampal slices, and second, simulated LFPs were compared to actual human depth-

EEG signals from epileptic patients. The model successfully reproduced events closely

resembling actual epileptic spikes. It also provided key insights into the mechanisms un-

derlying the generation of different epileptic events.

Graphical User Interface (GUI): “Modele Micro 3D” The Hippocampus model is

implemented within a software application called “Modele Micro 3D Software” illustrated

in Figure 1.13, which provides a user-friendly graphical interface (GUI). This GUI allows

researchers to interact with the model without extensive programming, offering a main

control panel for configuring tissue and simulation parameters, a 3D environment for vi-

sualizing network structure, and dedicated panels for displaying temporal signals like LFP

and intracellular activity.
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Figure 1.13: The graphical user interface of the Hippocampus model. A: hippocampal network parame-
ter configuration panel. This panel includes tissue dimensions, cell density, cell distribution and placement,
external stimulation parameters, simulation duration, sampling rate. B: The intracellular activity represen-
tation panel which displays membrane potential traces of individual neurons. C: The local field potential
plot. D: The 3D cortical tissue representation with the corresponding connectivity matrix as well as the
stimulation signals plot panel.

This modeling framework achieves a compromise between biological realism and com-

putational tractability by using reduced neuron models while maintaining essential physio-

logical characteristics. It successfully links microscopic cell-level dynamics to macroscopic

LFP signals, supporting the interpretation of electrophysiological data.

1.4.2.2 Microcircuit model of the Neocortex: NeoCoMM Model

NeoCoMM (Neocortical Computational Microscale Model) [5], is an advanced software

platform designed for realistic microscale simulations of neocortical networks at the cellular

level. It balances physiological and biophysical accuracy with computational efficiency,

offering a user-friendly framework for studying microscopic mechanisms in both healthy

and pathological brains, particularly in epilepsy.

Model Architecture and Neuron Types

NeoCoMM simulates a single neocortical column across all six layers, with species-

specific adaptations for humans, rats, and mice, including layer thickness, column volume,

neuronal density, distribution, and morphology [5].
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Figure 1.14: Left: Pyramidal neuron computational model with three compartments: Soma, Dendrites,
and Axon initial segment (AIS). Right: Anatomy of a cortical patch. (A) The different cell types included
in the model. (B) A 3D rendering of the cortical patch with all the cell types for 13760 cells. (C) The
synaptic connectivity affinity diagram between the different cell types. (D) an example of the connectivity
matrix[5].

1. Neuron Models:

• Pyramidal Cells (PCs): PCs are excitatory neurons represented by a three-

compartment model (soma, dendrites, axon initial segment(AIS)) as illustrated in

Figure 1.14-left. This design allows rich electrophysiological dynamics across layers

II/III/IV and V/VI. Membrane potential of each compartment evolves according to

HH-based differential equations, accounting for ionic currents (e.g., INa, IKDR, ICaL)

and inter-compartmental coupling (gSD, gSA). PC subtypes include Tufted (TTPCs),

Untufted (UTPCs), Inverted (IPCs), Bipolar (BPCs), and Spiny Stellate cells (SSs).

• Interneurons (INs): Single-compartment cells modeling a diverse set of inhibitory

neurons, including PV+, SST+, VIP+, and RLN+ types, further categorized into

Basket (BC), Chandelier (ChC), Martinotti (MC), Bipolar (BiC), and Neurogliaform

cells (NGF).

2. Network Structure and Connectivity: The neocortical patch comprising approx-

imately 13,760 interconnected neurons, is modeled as a cylindrical volume, with species-

dependent dimensions (e.g., 2622 µm height for humans). Neurons are spatially distributed

using an optimized packing algorithm, with PCs comprising 70–80% of the population.

Synaptic connectivity is determined by neurite overlap (Peter’s rule) and literature-based

afference matrices. Glutamatergic (AMPA/NMDA) and GABAergic synapses follow bio-
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logically constrained rules, e.g., PV+ cells inhibit within their layer, and VIP+ interneurons

target SST+ cells, illustrated in Figure 1.14right.

External Stimulation and LFP Reconstruction

External Stimulation: NeoCoMM incorporates thalamic and distant cortical inputs,

adjustable in intensity, duration, and jitter, with optional noise. Distal cortical pyrami-

dal neurons in layers II/III and V/VI contribute ∼7% of PCs to evoke network activity.

Conductance and firing profiles are adapted from experimental data [5].

Local Field Potential (LFP) Reconstruction: LFPs are computed using volume

conductor theory, considering PCs as the primary transmembrane current sources. A real-

istic Electrode-Tissue Interface (ETI) model incorporates electrode characteristics (shape,

position, diameter, orientation, material). The extracellular potential at each electrode

contact is obtained by summing contributions from all transmembrane currents, and the

total LFP is calculated accordingly. The detailed mathematical formulation can be found

in [5].

Model Validation and Key Findings

NeoCoMM reproduces a variety of interictal epileptiform events (IEEs), including interic-

tal epileptic spikes (IESs), spike-and-waves (SWs), double spikes-and-waves (DSWs), and

high-frequency oscillations (HFOs, ripples, and fast ripples). It can be rendered epileptic

through synchronous external input combined with hyperexcitable network of cells obtained

through adjustment of cellular and network parameters. This model allows simultaneous

intracellular and extracellular representations, which facilitate mechanistic understanding

of epileptic activity

Graphical User Interface (GUI)

NeoCoMM features a user-friendly GUI represented in Figure 1.15, enabling researchers to

configure and analyze simulations without programming expertise.
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Figure 1.15: The graphical user interface of NeoCoMM. A: The cortical column parameter configuration
panel. This panel includes the type of tissue, tissue information, cell distribution percentage, connectivity
afference matrix, cell placement type, PC subtypes distribution, external input stimulation parameters,
simulation parameters, and the recording electrode characteristics parameters. B: The intracellular activity
representation panel which displays membrane potential traces of individual neurons. C: The local field
potential plot. D: The 3D cortical tissue representation with the corresponding connectivity matrix as well
as the stimulation signals plot panel.

NeoCoMM is a powerful tool for studying neocortical microcircuits, understanding

epileptic phenomena, and testing neuromodulation strategies. Integration of neuroplas-

ticity mechanisms, described in later chapters, further enhances its utility for exploring

epileptogenic activity and interventions like tDCS.

1.4.3 Computational Modeling of Neural Plasticity

Neural plasticity, “the brain’s capacity to modify its structure and function in response to

experience”, has long inspired computational models aimed at understanding learning and

adaptation. [55]

Early models centered on Hebbian learning [48], where synaptic strength increases

with coincident activity. To prevent instability from unbounded weight growth, home-

ostatic mechanisms such as synaptic scaling and meta-plasticity (the modulation of synap-

tic plasticity by previous activity of the same neuron/cell or cellular network [56]) were

introduced[57]. Self-organizing networks demonstrated how activity-dependent synaptic

changes could generate feature-selective responses and topographic maps [58, 59], while

anti-Hebbian learning, Oja’s rule, and BCM theory provided mathematically regulated
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frameworks for competitive and stable synaptic modifications[60].

Modern Models integrate precise spike timing and biological mechanisms:

• STDP adjusts synaptic weights based on the relative timing of pre- and post-synaptic

spikes, with extensions including bi-phasic, tri-phasic, and reward-modulated STDP.

• Voltage-Dependent Plasticity [61] updates synapses based on membrane poten-

tial rather than spikes alone.

• Calcium-Controlled Plasticity [8, 9] links synaptic changes to calcium dynamics

at the synapse, providing a more biologically grounded framework compatible with

STDP observations.

This thesis specifically implements calcium-based synaptic plasticity models proposed

by Shouval [8] and Brunel [9], which provide a biologically grounded framework linking

synaptic weight changes to the dynamics of intracellular calcium concentration, which

is essential for exploring how plasticity alters epileptogenic dynamics and modulates the

efficacy of interventions like tDCS.

1.4.3.1 Shouval Model of Calcium-Dependent Plasticity

The model proposed by Shouval, Bear, and Cooper [8], “A unified model of NMDA

receptor-dependent bidirectional synaptic plasticity,” provides a theoretical framework for

describing LTP, LTD, and STDP under a single mechanistic principle.

Core Hypotheses The Shouval model is based on two main assumptions:

• Different calcium concentrations lead to distinct forms of synaptic plasticity: mod-

erate levels induce LTD, while higher levels produce LTP.

• NMDA receptors (NMDARs) are the primary source of postsynaptic calcium influx.

The Calcium Control Hypothesis At the heart of the model lies the calcium control

hypothesis, which states that the direction and magnitude of synaptic weight change

are determined by postsynaptic calcium concentration. Moderate increases in calcium

drive LTD, whereas large increases drive LTP. This hypothesis unifies different induction

protocols under a common calcium-dependent mechanism.
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Mathematical Formulation The evolution of the synaptic weight Wj at synapse j

depends on local calcium concentration [Ca]j according to:

dWj

dt
= η([Ca]j)

(

Ω([Ca]j)− λWj

)

(1.2)

where η is the learning rate, Ω encodes the plasticity outcome, and λ is a decay constant

(λ = 1).

Figure 1.16: The calcium control hypothesis: (A) The Ω function: Synaptic weight change depends
on the postsynaptic calcium concentration [Ca]i. Calcium below the depression threshold θd yields no
modification, intermediate levels induce LTD, and high levels above θp produce LTP. (B) The learning
rate η([Ca]i) as a function of intracellular calcium[8].

Learning Rate Function η: The calcium-dependent learning rate is inversely related

to the learning time constant, the functional form of η and τ is as follows :

η =
1

τ
, τ =

P1

P2 + [Ca]P3

+ P4. (1.3)

Omega Function Ω: The function Ω is sigmoidal and defines three calcium regimes:

Ω = Ω0 + A sig([Ca]− θp, β2)− B sig([Ca]− θd, β1), (1.4)

with

sig(x, β) =
eβx

1 + eβx
. (1.5)

Where θp > θd represent depression and potentiation thresholds, respectively, such that:

• [Ca] < θd: no synaptic modification,

• θd < [Ca] < θp: LTD,

• [Ca] > θp: LTP.

Here, A > B are the potentiation and depression rates, and β1,2 are the slopes at the

potentiation and depression thresholds (Figure 1.16 left).
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Calcium Dynamics: The intracellular calcium concentration evolves as:

d[Ca](t)

dt
= INMDA(t)−

[Ca](t)

τCa

, (1.6)

where τCa is the calcium decay constant and INMDA is the calcium current through NM-

DARs.

NMDA Current: The NMDAR calcium current is modeled as:

INMDA = P0GNMDA

[

If θ(ti)e
−t/τf + Is θ(ti)e

−t/τs
]

H(V ), (1.7)

where P0 is the fraction of NMDARs that move from closed to open state after each presy-

naptic action potential, GNMDA the NMDA receptor conductance, If and Is the relative

contributions of fast and slow components of the NMDA receptor current, τf and τs their

time constants, and H(V ) a voltage-dependent function capturing relief of magnesium

block.

1.4.3.2 Brunel Model of Spike-Timing Dependent Plasticity (STDP)

The calcium-based plasticity model introduced by Graupner and Brunel [9] is a biophys-

ically inspired framework of synaptic plasticity that explains how changes in synaptic

strength, namely LTP and LTD, arise from the dynamics of postsynaptic calcium con-

centration. The motivation behind this model stems from the observation that both the

timing and frequency of spikes between pre- and postsynaptic neurons significantly in-

fluence synaptic efficacy, and that calcium entry into the postsynaptic spine, primarily

through NMDA receptors and voltage-dependent calcium channels (VDCCs), plays a cen-

tral role in triggering the biochemical pathways responsible for synaptic plasticity.

Synaptic Efficacy Dynamics In this model, the state of a synapse is represented by a

synaptic efficacy variable, ρ(t). This variable’s temporal evolution is described by a first-

order differential equation, which evolves over time based on the calcium transients elicited

by pre- and postsynaptic action potentials (APs). The dynamics of the synaptic efficacy ρ

follows a stochastic differential equation that includes a bistable term (allowing for stable

UP and DOWN states), plasticity induction terms based on the calcium thresholds, and a

noise term representing biological variability:

τ
dρ

dt
= −ρ(1− ρ)(ρ∗ − ρ) + γp(1− ρ)Θ[c(t)− θp]− γdρΘ[θd − c(t)] + Noise(t) (1.8)
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where τ is the time constant for synaptic efficacy changes, ρ∗ = 0.5 is the unstable fixed

point separating the UP and DOWN basins of attraction, γp and γd are the potentiation

and depression rates, respectively, and Θ[x] is the Heaviside step function:

Θ[x] =







0, x < 0

1, x ≥ 0
(1.9)

The first term, −ρ(1− ρ)(ρ∗ − ρ), introduces bistability into the system, ensuring that

the synapse tends to remain in either the UP or DOWN state in the absence of stimu-

lation. The second and third terms model synaptic changes due to calcium crossing the

potentiation or depression thresholds, respectively. The final term, Noise(t), represents

activity-dependent stochastic fluctuations arising from biological variability, such as prob-

abilistic neurotransmitter release or channel dynamics.

Thresholds and Plasticity Induction The model posits two calcium thresholds: a

lower threshold θd for LTD and a higher threshold θp for LTP. If calcium remains between

these values, the synaptic strength is stable; crossing either threshold triggers depression

or potentiation, respectively. The rate and duration of calcium crossing the thresholds,

modulated by spike timing, firing rate, and the temporal overlap of calcium transients,

determine the net direction of plasticity.

Model Predictions The model successfully reproduces a wide range of experimentally

observed synaptic plasticity phenomena, including at least ten distinct forms of spike-

timing-dependent plasticity (STDP) curves. Furthermore, the model captures the fre-

quency dependence of plasticity, predicting little or no change at low frequencies, LTD at

intermediate frequencies, and LTP at high frequencies due to cumulative calcium dynamics.

These predictions align with experimental findings.

1.5 Problem Statement and Objectives

1.5.1 Research Gap and Motivation

Despite significant advancements in noninvasive neuromodulation techniques, there is still

a lack of understanding of the effects of both tDCS and tACS on network dynamics at the

cellular level in general and in epilepsy in particular. This is critical especially in the case

of patient-specific stimulation protocols. This is where computational models offer the

advantage allowing systematic exploration of underlying mechanisms and individualized
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optimization of stimulation strategies.

The realistic biophysically detailed microcircuit models of the hippocampus and neo-

cortex that are considered in the Galvani project suffer from a major limitation: the ab-

sence of dynamic synaptic plasticity mechanisms. This gap is profound, as neuroplasticity

plays a pivotal, dual role in both the pathological development of hyperexcitable networks

and their potential therapeutic modulation[7]. To bridge this critical knowledge deficit

and enhance the utility of computational modeling for informing precision neuromodula-

tion strategies, this thesis systematically integrates, calcium-dependent synaptic plasticity

models, including the Shouval[8] and Brunel[9] frameworks, along with a novel Hybrid

model, into these foundational neural circuit simulations. This work thus lays the essential

groundwork for mechanistically exploring how plasticity alters epileptogenic dynamics and,

how it modulates the impact of tES (tACS and tDCS) on epileptic network activity and

events.

1.5.2 Specific Thesis Objectives

1. Develop Activity-Dependent Synaptic Plasticity Models

• Integrate and implement biologically realistic calcium-dependent plasticity models

(Shouval and Hybrid) into detailed models of CA1 and neocortical pyramidal neurons.

• Qualitatively validate all plasticity models in small-scale networks (2–3 cells), ensur-

ing accurate LTP/LTD induction and physiologically plausible STDP curves.

2. Investigate the Influence of Plasticity on Epileptogenic Dynamics in the

Hippocampal Network

• Integrate validated neuroplasticity models into a large-scale computational model of

the hippocampal CA1 subfield.

• Induce epileptiform activity via systematic modulation of biophysical and synaptic

parameters (e.g., GABA reversal potential, glutamatergic conductances) to mimic

excitation-inhibition imbalances.

• Assess how plasticity mechanisms affect emergent epileptiform activity, including

LFP characteristics, firing rates, and action potential amplitudes across PCs and INs

populations.

3. Explore Plasticity’s Role in Neocortical Epileptogenesis and tDCS Mod-

ulation
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• Integrate validated neuroplasticity models into the NeoCoMM neocortical microcir-

cuit, adapted for human cortical column dimensions and cell type distributions.

• Analyze how plasticity-driven dynamics influence the generation and propagation of

epileptiform activities in the neocortex.

• Investigate how tES modulate these plasticity-driven dynamics.

Through this work, we aim to provide a more physiologically realistic and comprehen-

sive computational framework to inform the development of personalized neuromodulation

strategies for drug-resistant epilepsy, aligning with the objectives of the GALVANI project.
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Chapter 2

Modeling neuroplasticity in multicom-

partment neuron models

2.1 Introduction

This chapter details the methodological approaches and materials employed to model and

integrate neuroplasticity mechanisms into existing computational models of single neurons.

We will describe the modifications made to a biologically inspired PC model and present the

implementation of the well-established neuroplasticity model by Shouval, alongside a novel

Hybrid model developed in this work that combines key features of both the Shouval and

Brunel frameworks. Furthermore, this chapter outlines the systematic testing framework

used to validate these integrated plasticity models in different network settings and under

epileptic conditions.

2.2 PC Model

The computational models in this thesis are built upon a foundation of biophysically

detailed single-neuron models developed within the GALVANI project by the Cynetics

team, representing hippocampal CA1[6] and neocortical[5] PCs. As mentioned in sec-

tion 1.4.2.1 and section 1.4.2.1, for the hippocampal model, pyramidal neurons are de-

scribed using a two-compartment structure, consisting of a soma and a dendritic com-

partment (Figure 2.1A). In contrast, the neocortical model extends this approach to a

three-compartment structure by including an additional axon initial segment (AIS)

compartment alongside the soma and dendrite (Figure 2.1B). These compartments are

coupled via an axial conductance, allowing current exchange and enabling interactions

between dendritic integration and somatic spike initiation.
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Figure 2.1: A: the two-compartment hippocampal CA1 Pc model, B: the three-compartment neocortical
Pc model

Each compartment had a different set of channels. The key active ionic currents chosen

for the soma and dendrites accounted for seven and ten different voltage-gated channels

respectively (Figure 2.1A), [6]. The AIS compartment had only two voltage-gated chan-

nels(Figure 2.1B), the sodium INa and the potassium delayed rectifier IKDR, [5]. All

compartments had a leak current that portrayed the resting membrane potential variation

with a Gaussian noise. The CA1 PCs membrane potential variation (V ) for each compart-

ment was computed following the electric charge conservation equation described in the

following differential equations:

−Cm
dVs

dt
= INa(Vs) + IKDR(Vs) + ICaL(Vs) + IAHP (Vs) + Im(Vs) + gSD pSD(Vs − Vd)

+ gSA pSA(Vs − Va) + Ileak(Vs) + Isyn + Istim (2.1)

−Cmd

dVd

dt
= INa(Vd) + IKDR(Vd) + ICaT (Vd) + ICaR(Vd) + IAHP (Vd) + Im(Vs) + Ih(Vs)

+ gSD(1− pSD)(Vd − Vs) + Ileak(Vd) + Isyn + Istim (2.2)

For the neocortical three-compartment PC, the membrane potential of the AIS com-

partment Va is governed by:

−Cm
dVa

dt
= INa(Vd) + IKDR(Vd) + gSA(1− pSA)(Va − Vs) + Ileak(Va) + Isyn + Istim (2.3)
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where Vs, Vd and Va are the membrane potentials of the three compartments (soma,

dendrites and AIS), Cm is the membrane capacitance of the Soma and AIs and Cmd is

that of the dendrite , gSD and gSA are the conductances between soma/dendrites and

soma/AIS respectively, pSD and pSA are the proportions of the soma area to the sum of

soma/dendrites and soma/AIS respectively, Istim is the external stimulation and Isyn is the

sum of the synaptic currents.

All ionic currents (Iion) follow the general Hodgkin–Huxley formulation:

Iion = gionm
xhy(V − Eion) (2.4)

Here, gion denotes the maximum conductance for the specific ion, while m and h are the

gating variables representing channel activation and inactivation, respectively. The term

Eion corresponds to the reversal potential for that ion.

This model has been validated against experimental data, successfully reproducing key

neuronal behaviors and pharmacological effects. All parameter values, including all channel

conductances and reversal potentials for the hippocampal two-compartment PC model were

taken from [6], and those for the neocortical three-compartment PC model from [5].

2.2.1 Calcium Dynamics

Intracellular Ca is modeled explicitly due to its key role in regulating dendritic excitability

and activating Ca-dependent potassium channels. The dynamics of Ca are described by

the following equation according to [6] in the base model:

dCa

dt
= dc−

0.0001− Cain
τCa

(2.5)

dc represents the contribution of Ca influx and removal through pumps, expressed as:

dc =
−10

∑

ICa

0.2F
(2.6)

where F is Faraday’s constant, ICa is the total current through voltage-gated Ca channels,

and τCa is the Ca decay constant, here defined as τCa = 100ms.

2.2.2 Synaptic Dynamics and NMDA Current

Synaptic inputs are modeled through AMPA, NMDA, and GABA receptors, with NMDARs

playing a particularly important role due to their voltage-dependent and Ca-permeable

properties. INMDA is the current specifically through NMDARs, which are a major source
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of postsynaptic Ca influx. The original INMDA expression was:

INMDA = GNMDARB(V − ENMDA) (2.7)

Where R is the fraction of NMDARs transitioning from closed to open after neurotransmit-

ter release, B represents the voltage-dependent magnesium block of the channel, GNMDA

is the maximum NMDA conductance, and ENMDA is the NMDA reversal potential. All

the parameter values were directly adopted from [6].

2.2.3 Numerical Integration and Extensions

The complete set of coupled nonlinear differential equations describing membrane voltage,

gating variables, ion concentrations, and synaptic currents is solved numerically using a

fourth-order Runge–Kutta method. This base PC model provides a physiologically real-

istic foundation, which was systematically extended in the present work to incorporate

dynamic mechanisms of synaptic plasticity. While the original formulation allowed for

NMDA-dependent Ca entry, synaptic efficacy itself was static and did not change with

activity. In order to study how synaptic strength evolves under different conditions, a new

dynamic state variable was introduced to represent the synaptic weight (W). This variable

modulates the strength of excitatory synaptic currents, particularly NMDA conductance,

and is updated according to Ca-dependent plasticity rules. The modifications introduced in

later sections extend this model by allowing dynamic changes in synaptic efficacy, enabling

the study of LTP and LTD in healthy and epileptic conditions. These NMDA currents

modification are explicitly described in the following sections.

2.3 Implemented Neuroplasticity Models: Modifica-

tions to the PC Model

This section presents the implementation of two neuroplasticity models used in this study:

the Shouval model and a novel Hybrid model that integrates features from the two plasticity

models described in Section 1.4.3.

To incorporate synaptic plasticity, several modifications were introduced to the two and

three compartments PC models. The most important changes involved (i) the integration

of a synaptic efficacy variable (W ), (ii) an extended formulation of Ca dynamics, and

(iii) the modification of the NMDA receptor current to include synaptic efficacy. These

modifications are common across implemented plasticity frameworks (Shouval and Hybrid

models).
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2.3.1 Main modification to the PC models

2.3.1.1 Modified Ca Dynamics

In the extended model, the INMDA was explicitly included as an additional source of Ca

influx. The Ca-concentration now evolves according to:

dCa

dt
= dc−

Ca

τCa

+
0.0001

τCa

+
INMDA

2F
(2.8)

Here, F is Faraday’s constant (C/mol), ensuring unit consistency to express intracellu-

lar Ca-concentration in mM. Since INMDA is expressed in µA/cm2, the additional term

provides the correct scaling to convert ionic current into concentration changes. This

modification fundamentally links synaptic activity, specifically through NMDARs, to the

intracellular Ca transients that drive plasticity.

2.3.1.2 Modified NMDA Current

The INMDA was also adapted to incorporate the dynamically evolving synaptic weight (W ).

The new formulation is:

INMDA new = W · INMDA (2.9)

This modification thus establishes a direct mechanistic link: stronger synapses (higher

W ) produce larger NMDA-mediated Ca transients, which in turn influence the likelihood

of subsequent potentiation or depression according to the selected plasticity rule.

2.3.1.3 Synaptic Efficacy Variable (W )

The synaptic efficacy, W , was introduced as a new dynamic state variable absent in the base

model. Its temporal evolution is governed by equations directly adopted from established

plasticity models. In the Shouval model, W evolves as a Ca-threshold dependent process,

while in the Hybrid formulation, W exhibits bistability. In both cases, W is constrained

between biologically plausible limits (0 and Wmax), preventing runaway potentiation or

depression. Overall, these common modifications establish the foundation upon which

specific plasticity rules are implemented. By embedding W into both Ca dynamics and

NMDA currents, the model ensures a closed feedback loop between synaptic activity, Ca

signaling, and long-term changes in synaptic strength.
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2.3.2 Shouval Neuroplasticity Model

Implementation of η and Ω-functions

The Shouval model, as introduced in Section 1.4.3.1, employs two central intermediate func-

tions: the learning rate η-function (equation 1.3) and the calcium-dependent Ω-function

(equation 1.4). Figure 2.2 represents the implemented Ω and η functions in this internship.

The parameters were adapted directly from the Shouval model [8]:

Ω-function parameters: Ω0 = 0.25, A = 1, B = 0.25, θd = 0.3, θp = 0.55, β1 = 80,

β2 = 80.

η-function parameters: P1 = 0.1 s, P2 = P1/10− 4, P3 = 3, P4 = 1 s.

Figure 2.2: The implemented Eta η(Ca2+) and Ω(Ca2+) functions in this thesis

Shouval Synaptic Efficacy Dynamics

The synaptic weight (Wj) for synapse j evolves over time according to the equation 1.2,

which reflects the interplay between Ca-concentration and the Ω and η functions:

dWj

dt
= η([Ca]j)

(

Ω([Ca]j)− λWj

)

where [Ca]j is the Ca-concentration at synapse j and λ = 1 is a decay constant. This

formula directly governs how the synaptic efficiency changes based on the local Ca levels.

2.3.3 Hybrid Neuroplasticity Model

In this work, we propose a new hybrid model of plasticity that combines the bistable

synaptic efficacy of the Brunel model with the sigmoidal Ca dependence derived from the

Shouval model’s Ω-function. While similar concepts have been explored in neural mass

models [62], our work applies this principle at the cellular level to capture neuron-specific

plasticity processes.
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Hybrid Model Synaptic Efficacy Dynamics

The synaptic efficacy dynamics in the Hybrid model was adapted from Brunel’s formula-

tion according to equation 1.8. However, instead of the original Heaviside functions for

potentiation and depression, Shouval’s continuous Ω-function is used:

τw
dW

dt
= −W (1−W )(W ∗ −W ) + (1−W ) Ωp([Ca])−W Ωd([Ca]) + Noise(t) (2.10)

where the potentiation (Ωp) and depression (Ωd) components are given by:

Ωp([Ca]) = A · sig([Ca]− θp, β2

)

, Ωd([Ca]) = B · sig([Ca]− θd, β1

)

, (2.11)

The model parameters are the ones introduced in the original Brunel and Shouval mod-

els: W ∗ = 0.5, τ the time constant of synaptic efficacy changes happening on the order of

seconds to minutes, A = 1 the potentiation rate, B = 0.25 the depression rate, θd = 0.3 the

lower threshold, θp = 0.55 the upper threshold, and β1 = β2 = 80. This formulation allows

for the characteristic bistable behavior of Brunel’s model, while the continuous output of

the Ω-function provides a smoother plasticity dynamic.

To enable a comparison between the implemented plasticity models (Shouval and Hy-

brid) and for compatibility reasons, the Ca and INMDA dynamics were implemented con-

sistently with the Shouval model (according to Sections 2.3.1.1 and 2.3.1.2).

2.3.4 Epileptogenic Plasticity Parameterization

We introduced a pathological form of synaptic plasticity to represent epileptogenic condi-

tions, hypothesizing that LTP becomes enhanced while LTD is diminished, reflecting the

LTP/LTD imbalance reported in epilepsy [63]. The Ω-function used in both the Shouval

and Hybrid models provides a direct means to simulate this pathological form of synaptic

plasticity, where potentiation dominates over depression. To investigate both physiolog-

ical and pathological forms of synaptic plasticity, the parameters of the Ω-function were

systematically modified to represent conditions characteristic of epileptic networks.
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Figure 2.3: Ω-function for physiological (blue), semi-epileptogenic (yellow), and epileptogenic (green)
conditions. The depression threshold was fixed at θd = 0.3 for all three cases. The parameters were set
as follows: physiological : θp = 0.55, β1 = β2 = 80; semi-epileptogenic : θp = 0.45, β1 = 20, β2 = 50;
epileptogenic : θp = 0.4, β1 = 40, β2 = 50.

By adjusting its parameters, it was possible to reproduce a pathological form of the Ω-

curve in which potentiation dominates and depression is suppressed. Specifically, altering

the slope parameters β1 and β2 around the thresholds allowed us to prevent the function

from dropping below baseline, thereby eliminating LTD induction. At the same time,

reducing the potentiation threshold θp enabled the generation of LTP even at relatively

low calcium concentrations. As illustrated in Figure 2.3, the epileptogenic condition was

obtained by decreasing both θp and the slope parameters β1 and β2. This modification

increases the sensitivity of the system to calcium influx, facilitating LTP at lower calcium

levels. Consequently, LTD is strongly suppressed, and the model exhibits a bias toward

synaptic strengthening, reflecting the E/I imbalance and hyperexcitability observed in

epileptic networks.

2.4 Testing Framework

To validate and analyze the behavior of the implemented plasticity models, a standardized

testing framework was employed. This involved simulations in small, controlled neural

networks.
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2.4.1 Network of Three Cells

Aminiature neural network consisting of three PCs was constructed to test the fundamental

Ca-dependent plasticity mechanisms. In this setup, one neuron (Cell 1) serves as the

presynaptic source for the other two. A sufficiently high-intensity current I1(t) was injected

into the soma of this source cell to generate an AP, which was then transmitted to the two

postsynaptic neurons.

Figure 2.4: Overview of the simulated system to establish potential differences between the base and
new model.

The postsynaptic Cell 2 simulated the ”base” model (without plasticity), and Cell 3

simulated the ”new” model (with the integrated Shouval or Hybrid plasticity). To ensure

the postsynaptic cells were sufficiently depolarized to respond to synaptic input and enable

plasticity induction studies, current I2(t) was also injected into their somas. Figure 2.4

illustrates the scheme adopted for our simulations, with the injected currents. Periodic

stimulations were used, with a stimulation period (P ) of 100 ms, and the Ca time constant

(τCa) was set to 100 ms. The synaptic weight was initialized at a baseline value of W0 =

0.25, for the Shouval model, and W0 = 0.5, for the Hybrid model with a maximum of 1.

The depression and potentiation thresholds were set at θd = 0.3µM and θp = 0.55µM,

following Shouval’s parameters for both the Shouval and Hybrid plasticity models.
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2.4.2 Results

In this section, we present the results of stimulations across different plasticity models.

2.4.2.1 Simulating LTD and LTP: Shouval Model

As previously mentioned, according to the Shouval model: No plastic changes: occur

if the Ca-concentration remains below the depression threshold (θd), i.e., the synaptic

efficacy and the output of the Ω-function would remain unchanged. LTD Induction:

Induced when there is a moderate increase the Ca-concentration, while remaining within

the depression and potentiation thresholds (θd and θp). This results in a decrease of synaptic

efficacy, driven by a decrease in the output of the Ω-function. LTP Induction: If the Ca-

concentration exceeded the upper threshold (θp), particularly due to accumulation from

high-frequency stimulation (where new APs arrived before Ca levels dropped), the Ω-

function increased, leading to LTP induction and an increase in synaptic efficacy towards

its maximum value of 1.

LTP and LTD were generally induced using higher or lower stimulation frequencies,

respectively. The stimulation parameters were set as follows: for LTP induction, the

stimulation period was P = 100 ms (f = 10 Hz), while for LTD induction, it was P =

200 ms (f = 5 Hz). The amplitude of the injected current was I = 40 mA, with an

inter-stimulus interval of ∆t = 20 ms between injections into cell 2 and cell 3. The calcium

decay time constant was τCa = 100 ms.

As shown in Figure 2.5, our implementation of the Shouval model successfully re-

produced intracellular Ca-dependent plasticity, accurately inducing both LTP and LTD

induction. In the plots, the Shouval plasticity model is represented by variations in

synaptic weight, intracellular Ca concentration (blue), and the membrane potential of cell

3 (green).
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(a) LTP-Induction

(b) LTD-Induction

Figure 2.5: This figure illustrates a graphical display with four boxes, which allows better visualization
of the direct link between the variables. The top box represents the variation in synaptic weight associated
with the new model. The second box shows the intracellular Ca-concentration related to cell 2: base model
(blue) and cell 3: Shouval plasticity model (orange). The third box shows the INMDA current in cell 3,
and the fourth shows membrane potentials of all three cells, with APs of the base model in orange, and
the Shouval plasticity model in green. (a): LTP-Induction, (b): LTD-Induction.

The two figures above compare the behavior of the base model (Cell 2), and the Shouval-

plasticity model (Cell 3). Initially, since the system was at rest, there was no stimulation

and the Ca-concentration remained below the depression and potentiation thresholds. In

accordance with the properties described by [8], the synaptic weight W remained constant
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because the Ω-function is also constant.

Synaptic efficacy began to rise when the Ca-concentration exceeds the depression thresh-

old θd = 0.3 µM. The first postsynaptic AP in cells 2 and 3 occured around t = 150 ms,

leading to a Ca-concentration increase between 0.3 and 0.55 µM. Within this range, the

function Ω decreased, corresponding to a reduction in synaptic weight. As long as Ca

remains between these thresholds, the synapse undergoes long-term depression (LTD).

In the LTP protocol (Figure 2.5-a), the stimulation frequency is higher (f = 10 Hz).

Here, Ca does not have time to return to its pre-stimulation baseline between spikes, leading

to progressive accumulation. Eventually, the Ca-concentration crosses the potentiation

threshold, causing Ω to rapidly approach its maximum, and synaptic weight to converge

toward its upper bound (Wmax = 1), INMDA starts to increase as well.

In contrast, in the LTD protocol (Figure 2.5-b), the stimulation frequency is lower

(f = 5 Hz), allowing Ca levels to decay towards baseline before the next AP. This explains

why Ca level stays within the threshold range and never exceeds the potentiation threshold,

there is insufficient Ca accumulation. As a result we have a decrease in Synaptic efficacy

W and consequently INMDA decrease.

2.4.2.2 Simulating LTP and LTD: Hybrid Model

The implemented Hybrid model was also validated in the three-cell network, successfully

producing both LTP and LTD based on Ca levels relative to its thresholds. Its mechanism,

relying on the bistable equation (2.10) and the Ω-function equation (2.11), ensures that

synaptic efficacy transitions between discrete states (UP or DOWN), once the Ca signal

crosses the specific potentiation (θp) or depression (θd) thresholds. When Ca levels are

sustained above θp, potentiation terms dominate, pushing the synapse towards the UP

state. Conversely, when Ca levels are predominantly between θd and θp, depression terms

lead to the DOWN state. Below θd, the influence of the plasticity terms diminishes, and

the bistable term guides the synapse towards its stable fixed points.

In the following simulations, the stimulation parameters are as follows: for the

LTP induction, the stimulation period is P = 100 ms (f = 10 Hz), whereas for the

LTD induction, it is P = 200 ms (f = 5 Hz). The amplitude of the injected current is

I = 60 mA, with an inter-stimulus interval of ∆t = 20ms. The Ca decay time constant is

set to τCa = 100 ms.
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(a) LTP-Induction

(b) LTD-Induction

Figure 2.6: Visualization of LTP and LTD Induction in the Hybrid plasticity model, using the same
four-box plot as Figure 2.5 to depict synaptic weight, intracellular calcium concentration, NMDA current,
and membrane potentials. (a): LTP-Induction, (b): LTD-Induction.

As illustrated in Figures 2.6, the Hybrid model exhibits Ca-dependent synaptic plas-

ticity consistent with theoretical predictions. Initially, in the absence of APs, the system

remains at rest, and the intracellular Ca-concentration stays below both the depression

and potentiation thresholds. Consequently, there is no change in synaptic efficacy or in

the NMDA-mediated current, INMDA. Upon the arrival of the first AP at approximately

150ms, the Ca-concentration begins to rise. During the LTP protocol (Figures 2.6-a),
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the high-frequency stimulation (f = 10Hz) leads to a cumulative increase in intracellular

Ca, surpassing the potentiation threshold and resulting in an increase of synaptic efficacy.

Conversely, during the LTD protocol (Figures 2.6-b), the lower-frequency stimulation (

f = 5Hz) allows Ca to decay between successive APs, keeping its concentration primarily

within the depression range and inducing a decrease in synaptic strength.

These results demonstrate that the novel Hybrid model effectively captures Ca-dependent

synaptic plasticity, reproducing both LTD and LTP induction in a frequency-dependent

manner, in agreement with the theoretical framework of both Brunel and Shouval plasticity

models.

2.4.3 STDP Testing in Two-Cell Networks

As discussed in Section 1.3.2.2, STDP is a fundamental form of synaptic plasticity where

the precise temporal interval and order between presynaptic and postsynaptic APs dictate

the sign and magnitude of long-term synaptic change. To investigate STDP, a simplified

two-neuron setup was employed: one presynaptic and one postsynaptic cell. Controlled

stimulations, denoted as I1(t) for the presynaptic neuron and I2(t) for the postsynaptic

neuron, were delivered to their somas to elicit single spikes per trial (Figure 2.7). A

parameter ∆tstim = t1 − t0 defined the timing difference between stimulation injections.

Figure 2.7: Configuration used for STDP verification.

A Delta-t spike detection function was used to calculate the exact time difference

(∆tspike = tpost − tpre) between the actual presynaptic and postsynaptic APs, allowing

for precise measurement of synaptic weight changes. The initial synaptic weight was set

to 0.25 in the case of Shouval and 0.5 in the case of Hybrid model.
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2.4.3.1 Shouval Model

The Shouval model successfully reproduced a physiological STDP curve characterized by

distinct phases. At a stimulation frequency of 3 Hz (Figure 2.8, Orange curve), the curve ex-

hibited three distinct regions across the interval ∆tspike ∈ [−50, 50]. Initial Depression:

For negative spike-timing differences (−50 ≤ ∆tspike ≤ −7 ms) where the postsynaptic

action potential preceded the presynaptic action potential, the model produced LTD. Po-

tentiation Phase: This was followed by a potentiation phase for spike-timing differences

close to zero (about −7 ≤ ∆tspike ≤ +7 ms), corresponding to LTP. Late Depression

Phase: Finally, for positive spike-timing differences (about +7 ≤ ∆tspike ≤ +50 ms), a

second depression phase was observed. As demonstrated, the larger the absolute value of

∆tspike, the smaller the amplitude of depression, with the synaptic weight tending towards

its baseline or initial value. This pattern reflects the principle that neurons firing with

closely aligned spike times undergo potentiation, while neurons with firing times that are

further apart, undergo synaptic depression.

Figure 2.8: This figure illustrate the triphasic profile of STDP under shouval plasticity. The impact of
frequency on Shouval-based STDP is also demonstrated under 1,3 and 5 HZ

The impact of stimulation frequency on STDP

The impact of stimulation frequency on STDP was also investigated (e.g., at 1, 3, 5, and 20

Hz). As we can see in Figure 2.8, higher frequencies generally resulted in greater amplitudes

of both potentiation and depression phases. For excessively high frequencies, such as 20

Hz (red line in the figure), the STDP curve tended to level off at its maximum synaptic
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weight across all ∆tspike values, indicating a dominant potentiation.mThese results are in

line with [8], suggesting that higher stimulation frequencies intensify synaptic plasticity by

enhancing both the potentiation and depression components of STDP.

Epileptogenic Plasticity

As discussed in Section 2.3.4, pathological plasticity is modeled by adjusting the Ω-function

parameters, including a decrease in the potentiation threshold θp and modifications to the

slope parameters β1 and β2, while keeping the depression threshold θd constant (Figure 2.3).

These combined adjustments lower the Ca-level required for LTP induction and effectively

suppress LTD induction, thereby enhancing potentiation sensitivity and suppressing LTD

expression.

Figure 2.9: Shouval STDP profile across physiologic, semi-epileptogenic, and epileptogenic plasticity
conditions.

As illustrated in Figure 2.9, under physiological condition (θp = 0.55), the STDP

curve exhibits a clear triphasic profile: an initial depression phase for negative spike-

timing differences(∆t), followed by a central potentiation peak within a narrower temporal

window, and finally a late-phase depression lobe at larger positive ∆t. This balance between

depression and potentiation is crucial for stabilizing synaptic weights.

In the semi-epileptogenic case (θp = 0.45), the reduction of θp broadens the central

LTP window, allowing potentiation to occur at lower Ca levels and over a wider range

of spike-timing differences. Consequently, the first depression lobe is weakened, and the

late-phase depression is shifted, resulting in an overall bias toward potentiation.
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In the epileptogenic case (θp = 0.4), the effect is even more pronounced: both depression

lobes are strongly diminished, and the potentiation component dominates a large part of

∆t domain. Thus, instead of the triphasic depression-potentiation-depression(DPD) profile

observed physiologically, the epileptogenic plasticity curve collapses into a predominantly

potentiation-driven shape. In practice, this means that even for large spike-timing differ-

ences, where physiological plasticity would normally induce LTD, the epileptogenic profile

still produces LTP.

This transformation of the triphasic STDP curve into a predominantly LTP regime

reflects a pathological destabilization of synaptic dynamics.

2.4.3.2 Hybrid Model

The Hybrid model also reproduced triphasic STDP curves in the two-cell setup (Fig-

ure 2.10). Importantly, its results closely matched those of Shouval model, confirming that

the Hybrid formulation is capable of expressing the same canonical STDP features.

Figure 2.10: STDP curve generated by the Hybrid plasticity model.

The impact of stimulation frequency on STDP

The frequency dependence of STDP was systematically investigated in the Hybrid model

at stimulation frequencies of 1, 3, 5, and 20 Hz. As demonstrated in Figure 2.10 Similar to

the Shouval plasticity model, higher frequencies generally resulted in greater amplitudes of

both potentiation and depression phases. The results demonstrate a clear modulation of

the STDP profile by frequency. At low frequencies (e.g., 1–3 Hz), the Ca-concentration has
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sufficient time to decay between spikes, leading to weaker potentiation. At intermediate

frequencies (5 Hz), potentiation becomes more pronounced due to temporal summation of

Ca transients. At excessively high frequencies (20 Hz), the Ca-concentration accumulates

and remains consistently above the potentiation threshold. As a result, the STDP curve

saturates at its maximal potentiation value across the full range of spike-timing differences

∆tspike, effectively suppressing depression. This frequency dependence highlights how the

Hybrid model captures key physiological features of Ca-dependent plasticity.

Epileptogenic Plasticity

Beyond frequency modulation, the Hybrid model was also evaluated under physiological

and epileptogenic conditions by adjusting the parameters of the Ω-function, as described

in Section 2.3.4. Specifically, the potentiation threshold θp was decreased and the slope

parameters β1 and β2 were modified to suppress LTD, while the depression threshold

θd remained constant. These adjustments increased the model’s sensitivity to calcium

transients, allowing LTP to be induced at lower calcium levels while effectively suppressing

LTD.

Figure 2.11: Hybrid STDP curve across physiological, semi-epileptogenic, and epileptogenic plasticity
conditions.

As shown in Figure 2.11, only the physiological case exhibited a clear DPD profile. In

contrast, for the semi-epileptogenic and epileptogenic conditions, the potentiation window

broadened substantially, extending to larger spike-timing differences ∆tspike. This behavior

demonstrates how epileptogenic plasticity diminishes LTD expression and biases synaptic
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modifications toward potentiation, consistent with the enhanced excitability observed in

epileptic networks.

Overall, these results confirm that the Hybrid model not only captures physiological

Ca-dependent STDP but also successfully reproduces epileptogenic alterations in synaptic

plasticity by parameter shifts in the Ω-function. The loss of LTD and the expansion of the

LTP domain provide a mechanistic explanation for how epileptogenic synaptic plasticity

may contribute to hyperexcitability in epileptic circuits.

2.5 Discussion

In this chapter, we detailed the foundational methodological steps employed to integrate

activity-dependent neuroplasticity into a two-compartment CA1 PC computational model.

This process involved systematically modifying the biophysical framework of the PC model,

including the integration of a new dynamic synaptic efficacy variable (W ) and the extension

of calcium dynamics to explicitly account for calcium influx through the NMDA receptor

current (INMDA). This setup established a closed feedback loop: synaptic activity generates

INMDA, which modulates dendritic calcium signaling, and this calcium signal, in turn,

governs the dynamic adaptation of the synaptic efficacy W .

A novelty introduced in this work was the development of a new neuroplasticity model,

which was called Hybrid plasticity model. This model integrates features of two es-

tablished frameworks introduced in this thesis. Specifically, it combines the continuous,

graded calcium dependence of the Shouval model’s Ω-function with the bistable synap-

tic dynamics derived from the Brunel framework. The inclusion of bistability is critical

for maintaining long-term stability of synaptic states, preventing unbounded potentiation

(runaway LTP) or excessive depression (runaway LTD), and thereby offering a potentially

more physiologically plausible mechanism for sustained synaptic weight changes relevant

to epilepsy modeling.

Initial validation confirmed the basic functionality and physiological relevance of both

implemented models in small-scale networks. Both the Shouval and Hybrid models success-

fully reproduced canonical calcium-dependent plasticity features, including the induction of

LTP and LTD in a frequency-dependent manner. Importantly, both frameworks captured

the triphasic STDP profile observed physiologically. Additionally, by adjusting plasticity

parameters through the modifications to the Ω-function, it was possible to simulate and

characterize pathological plasticity. For instance, decreasing β1, β2 (reducing depression) or

decreasing θp (enhancing potentiation) shifted the STDP curve excessively toward LTP and

suppressed LTD, providing a mechanistic explanation for the hyperexcitability observed in
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epileptic circuits.

Based on the performed validation and the theoretical advantages of the Hybrid for-

mulation, both the Shouval and Hybrid models were selected for large-scale computational

studies. Extending from single-cell and small-network analyses to full-scale circuit simu-

lations represents a critical next step. By incorporating these plasticity mechanisms into

large-scale computational networks of the hippocampus and neocortex, this work aims to

investigate how neuroplasticity shapes emergent epileptogenic activity and eventually how

it influences the effectiveness of therapeutic interventions, such as tCS in epilepsy, in line

with the objectives of the GALVANI project.
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Chapter 3

Investigating the Impact of Calcium-

Dependent Plasticity Models on Epilep-

tiform Dynamics in the Hippocampal

Network

3.1 Introduction

The hippocampus is one of the most critical brain regions implicated in the generation and

propagation of epileptic seizures [64]. Computational models of hippocampal networks are

a useful tool to systematically investigate the mechanisms underlying hyperexcitability and

epileptiform activity. In this chapter, we extend previously developed plasticity models to

a biologically inspired model of hippocampal CA1 network described in Section 1.4.2.1,

with the dual objectives of:

• Inducing epileptiform dynamics by parameter modification, and

• Studying the influence of different neuroplasticity models for pathological states.

To achieve this, we first modify key synaptic and cellular parameters to simulate an

epileptogenic hippocampal network. These modifications represent the altered excita-

tion–inhibition imbalance and hyperexcitability that is characteristic of epileptic tissue.

Once the epileptic network was established, we incorporated the two calcium-based synap-

tic plasticity models (Shouval- and Hybrid-model), one-at-a-time, into the network. The

comparison of these models outcomes allows us to evaluate the influence of the plasticity

model in simulating epileptiform discharges within the hippocampus.

3.2 Network Construction and Parameter Modula-

tion Toward Epileptic States

The simulated hippocampal network consisted of 600 neurons, including 492 PCs and 108

interneurons, which were further divided into 36 basket (BAS), 36 bistratified (BIS), and
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36 somatostatin-expressing (SST) interneurons. The cell placement and their connectivity

patterns were directly adopted from [6]

3.2.1 Methods to Induce Epileptic Activity: Establishing Exci-

tation/Inhibition Imbalance

The hippocampal network model used here reproduces the main physiological features of

the CA1 subfield, comprising excitatory PCs and inhibitory interneurons (INs). To in-

troduce epileptic activity capable of generating interictal epileptiform spikes (IESs), we

followed the approach described in [6] by altering specific biophysical and synaptic param-

eters associated with both excitatory and inhibitory populations as well as external inputs.

These modifications were implemented through the model’s GUI, which allows system-

atic tuning of single-cell and synaptic properties. The general strategy was to increase

pyramidal cell excitability while reducing inhibitory control from INs, thereby creating a

hyperexcitable network state capable of generating interictal epileptiform events (IEEs)

driven by a highly or quasi-synchronous external input. This shift mimics the E/I im-

balance that is well established as a hallmark of epileptic networks. The impact of these

modifications was evaluated by analyzing the firing rate (FR) of PCs and INs, and the

morphological features of local field potentials (LFPs) and epileptic spikes.

3.2.1.1 Modification of Cellular and Synaptic Parameters

Pyramidal Cells: Based on [54, 5], the synaptic parameters of PCs were adjusted as

follow:

• Increased Glutamatergic Excitability. Excitatory conductances gAMPA were in-

creased from 8 to 13 mS/cm2) and gNMDA from 0.15 to 0.65.

• Reduced GABAergic Efficacy. EGABA was shifted from its baseline value of

−75 mV to −60 mV and the conductance of GABAergic synapses gGABA was de-

creased from 25 mS/cm2 to 20 mS/cm2.

Interneurons: the INs excitability was reduced by decreasing their AMPA conductance

from 6 mS/cm2 to 2 mS/cm2. This modification weakens excitatory drive onto interneu-

rons, thereby reducing their inhibitory output to PCs.

The combination of these parameter changes constitutes a systematic approach to mod-

eling the transition from physiological to epileptogenic states within a biologically inspired

hippocampal CA1 network.
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3.2.1.2 External Stimulation Protocol

As mentioned earlier, a second requirement for simulating an epileptic network is providing

a highly synchronous or quasi-synchronous input from the CA3.

• Stimulation Input: The model allows control over both the stimulation intensity

and the number of stimulations delivered to each cell of the CA3 PCs. In this study,

we used an injection intensity of 70µA/cm2 with 10 stimulations per cell.

• Jitter: In the model’s GUI (Figure 1.13-panel A), the jitter parameter controls

the temporal variability in the arrival times of external input spikes, effectively de-

termining the level of synchrony in the stimulation. A jitter value of 8 was chosen to

deliver stimulations nearly simultaneously to all cells. Literature reports that lower

jitter values (< 4 ms) yield higher synchrony and spike amplitude [5]; however, when

combined with the modified parameters of the PCs and INs introduced in this work,

such low values would produce unrealistically sharp epileptic spikes. To avoid this, a

higher jitter value was selected, resulting in more physiologically realistic epileptiform

discharges.

• Addition of Noise: To add variability to the stimulation pattern, a noise parameter

with a fixed seed ensured reproducibility and physiological realism. The percent

parameter in the GUI was set to 1 to introduce controlled noise across stimulations.

3.2.1.3 Inclusion of Neuroplasticity Parameters

For this work, the plasticity parameters were added directly to the parameter panel in the

GUI, as shown in supplementary Figure 5.1, including:

• Type of plasticity. (0: No plasticity, 1: Shouval plasticity, 2: Hybrid plasticity)

• Initial value of synaptic efficacy.(W0-Hybrid=0.5,W0-Shouval=0.25,W0-Noplasticity=0.5)

• Ω-function parameters.(θd, θp, A, B, β1, β2, Ω0)

• Synaptic efficacy time constant.(τW )

This implementation provides users with direct access to plasticity parameters, enabling

real-time testing of different scenarios and facilitating systematic exploration of how var-

ious plasticity rules influence epileptic dynamics. The combination of a hyperexcitable

neuronal network with high-intensity, quasi-synchronous external stimulation allows for

the generation of realistic epileptic discharges as observed in the LFP.
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3.2.2 Simulation Protocols

In our stimulations, each pyramidal cell received 10 current injections of 4 ms duration with

an amplitude of 70 µA/cm2. A random seed of 5 ensured reproducibility of stimulation

patterns across trials. The temporal jitter was set to 8 ms. Simulations lasted 5 s with a

stimulation period of 100 ms and a sampling frequency of 25 kHz. All conditions, No plas-

ticity, Shouval plasticity, and Hybrid plasticity were simulated using the same stimulation

protocol. This ensured that observed differences in network activity could be attributed

exclusively to plasticity rules rather than differences in external input.

3.3 Results

In this section, we present the impact of Plasticity Models on Neuronal and Network

Dynamics.

3.3.1 Network Firing Patterns

The following figures present the overlapping firing traces of all 492 PCs under three

conditions: No plasticity (Figure 3.1) served as a baseline, showing synchronous firing in a

hyperexcitable network. Shouval plasticity (Figure 3.2) produced distinct changes in spike

timing and synchrony, increasing pyramidal cells activity, and Hybrid plasticity (Figure 3.3)

showed intermediate effects, with firing patterns more physiologically regulated than under

Shouval plasticity. This qualitative comparison illustrates how plasticity mechanisms can

amplify or regulate epileptiform dynamics.

Figure 3.1: PCs AP
spike detection No plas-
ticity: This plot serves
as a baseline to observe
the firing patterns of PCs
without dynamic synap-
tic weight changes, show-
ing their synchronous fir-
ing activity in the induced
hyperexcitable state.
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Figure 3.2: PCs AP
spike detection Shou-
val plasticity: This fig-
ure presents a spike de-
tection plot for PCs under
the Shouval plasticity con-
dition. As observed, Shou-
val plasticity results in ex-
cessively elevated firing ac-
tivity of PCs, leading to
reduced synchrony but in-
creased overall spiking ac-
tivity.

Figure 3.3: PC AP Spike
Detection Hybrid Plas-
ticity: This figure shows
the spike detection results
for PCs under Hybrid plas-
ticity model. An increase
in PCs firing is observed,
but to a lesser extent than
under the Shouval model,
resulting in more realistic
and physiologically plausi-
ble activity patterns.

By comparing these figures, one can observe how the implementation of Shouval and

Hybrid plasticity models influences the firing pattern, synchrony, and overall activity of

the PCs, particularly in the context of epileptic activity within the hippocampal network.

3.3.2 Analysis of Cellular and Population Activity

To complement visual inspection of spike rasters and firing patterns, we performed a quan-

titative analysis of network activity across different plasticity conditions. Specifically, we

examined (i) FRs and spike amplitudes of PCs and INs, and (ii) LFP signals as a measure

of population-level dynamics.

3.3.2.1 Pyramidal Cell Activity

The activity of PCs was first illustrated at the single-cell level. As shown in Figure 3.4,

the representative trace from a single PC highlights the membrane potential fluctuations
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and the detected APs. This provides a view of the firing dynamics of epileptic PCs and

validates the spike detection method applied throughout the analysis.

Figure 3.4: This figure displays the membrane potential of a single PC (Pyr 110) over time, with clear
indications of detected individual spikes.

Firing Rate Analysis To quantitatively assess how plasticity influences neuronal ac-

tivity, the FRs of PCs were compared across the three conditions (No plasticity, Shouval

plasticity, and Hybrid plasticity). As summarized in Figure 3.5, the FR distributions show

notable differences between groups.

Figure 3.5: Comparison of PC firing rates across three plasticity conditions: ”No plasticity,” ”Shouval
plasticity,” and ”Hybrid plasticity,” showing a very highly significant difference between the groups (***)
Asterisks indicate statistically significant differences between conditions: ∗ for p < 0.05, ∗∗ for p < 0.01,
and ∗ ∗ ∗ for p < 0.001.

52



The baseline mean FR of PCs (4.95 Hz) shows a pronounced increase under Shouval

plasticity (13.40 Hz) and a more moderate elevation with the hybrid model (8.10 Hz). The

higher spiking frequency observed with Shouval plasticity suggests that this rule strongly

enhances excitability, but the effect appears exaggerated. In contrast, the hybrid plasticity

condition produces a moderate increase in FR, reflecting a more balanced adjustment of

activity. There were notable and statistically significant differences between the groups,

as confirmed by the Mann–Whitney U test and indicated by the high significance levels

(∗∗∗), confirming that the underlying plasticity mechanisms can directly modulate spiking

frequency in an epileptic context.

Amplitude Analysis In addition to the FR analysis, the amplitudes of PCs’ APs were

examined (refer to Figure 5.3 in supplementary). Analysis revealed that the mean ampli-

tudes remained almost unchanged (No plasticity: 95.95 mV; Shouval plasticity: 95.67 mV;

Hybrid plasticity: 96.23 mV). This indicates that while the implemented plasticity models

strongly affect firing frequency, their impact on the amplitude of APs is negligible. Thus,

the primary influence of plasticity in these simulations lies in modulating the firing rate

rather than altering the intrinsic magnitude of neuronal responses.

3.3.2.2 Interneuron Activity

Since INs play a critical role in regulating network excitability and maintaining the balance

between excitation and inhibition, examining their firing patterns under the different plas-

ticity conditions provides important complementary insight into the overall dynamics of

the epileptic network. In the simulated hippocampal network, the plasticity is integrated

only into PCs, and the excitatory connections exist from PCs to BAS and SOM INs, while

BIS cells are not directly connected to PCs. This structural difference plays a key role in

shaping how plasticity influences IN firing. As BAS and SOM INs are directly driven by PC

activity, their firing patterns are expected to closely reflect changes in PC excitability. In

contrast, BIS INs receive identical inputs (External Stimulation (CA3)) across conditions,

and therefore display a more stable firing dynamics regardless of the plasticity mechanism.

BAS interneurons

Similar to PCs, the activity of BAS cells as a representative of INs was first assessed at the

neuron level (Supplementary Figure 5.4), showing a spike trace for a single BAS neuron,

highlighting its individual firing pattern and validating spike detection in this inhibitory

population.
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Firing rate analysis: As shown in Figure 3.6, BAS FRs increase most under Shouval

plasticity, reflecting the strong excitatory drive from PCs, which are themselves hyperac-

tive in this condition. The hybrid plasticity rule leads to a moderate and more regulated

increase. This demonstrates that interneuron excitability in the model is largely a down-

stream effect of pyramidal cell firing patterns. For comparison, the mean FRs of BIS

cells across conditions are as follows: No plasticity: 8.99 Hz; Shouval plasticity: 21.84 Hz;

Hybrid plasticity: 13.23 Hz.

Figure 3.6: Firing rate distribution of BAS interneurons across conditions. BAS cells show the highest
firing rate under Shouval plasticity, due to higher excitatory drive from PCs, whereas the hybrid model
preserves a more physiological activity level.

SOM interneurons

Similar to BAS cells, SOM interneurons receive excitatory input from PCs.

Firing rate analysis: Figure 3.7 shows that SOM interneurons fire significantly more

under Shouval plasticity. This is a direct consequence of PC hyperexcitability. The hybrid

model also produced significantly higher FRs than baseline but lower than in the case

of Shouval palsticity. This demonstrates that the effect of plasticity on SOM activity is

indirect, mediated by changes in PC output. BIS cells’ mean FRs for each condition are as

follows: No plasticity: 16.56 Hz; Shouval plasticity: 28.44 Hz; Hybrid plasticity: 22.43 Hz.
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Figure 3.7: Boxplot of SOM firing rates under the three plasticity conditions. Shouval plasticity drives the
highest increase, reflecting the excitatory influence of hyperactive PCs, while hybrid plasticity maintains
a more balanced firing pattern.

BIS interneurons

As mentioned earlier, BIS interneurons do not receive excitatory input from PCs in CA1,

but instead are driven directly by CA3. Because plasticity mechanisms were implemented

only at excitatory PC synapses, BIS firing remains largely unaffected by changes in PC

excitability. In contrast to BAS and SOM interneurons, which indirectly reflect plasticity

through their excitatory drive from PCs, BIS activity is stable across all conditions. This

is evident in Figure 3.8: the firing rate distribution (Figure 3.8) shows nearly identical

values across all three plasticity conditions. This stability reflects the network connectivity

of BIS interneurons and their independence from plasticity-induced changes in pyramidal

cell activity.
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Figure 3.8: Firing rate distribution of BIS interneurons. No significant differences are observed, consistent
with their lack of pyramidal cell input and the absence of plasticity in their model.

Summary of interneuron activity: Overall, the interneuron analysis highlights the

role of network connectivity in shaping the impact of plasticity. BAS and SOM interneu-

rons, which receive excitatory input from PCs, closely mirror PC dynamics and their FRs

are significantly higher in the case of plasticity, reflecting PC hyperactivity. By contrast,

BIS interneurons, which do not receive direct PC input, show nearly identical firing rates

and amplitudes across all conditions. This confirms that plasticity exerts its primary in-

fluence on inhibitory populations indirectly, through its modulation of PC excitability.

Statistical analysis further supports these observations. For BAS and SOM INs, changes

in FRs across plasticity conditions are generally more pronounced and statistically sig-

nificant. BIS interneurons show no significant differences in their FR across conditions,

consistent with their stable input and the absence of plasticity in their synaptic model.

Together, these results highlight that plasticity indirectly exerts a stronger influence on

interneuron firing dynamics than on spike amplitude, and that this effect depends on the

connectivity of each interneuron type within the network.

3.3.2.3 Local Field Potential (LFP) Analysis

LFP Traces LFP represents the summed transmembrane and synaptic currents within

a neuronal population and serves as a mesoscopic indicator of collective network dynamics.

It is widely used in both experimental and computational neuroscience to assess neural

synchronisation and detect pathological activity, including epileptiform discharges.

In our experimental conditions, the network was configured to exhibit epileptiform ac-

tivity capable of generating interictal epileptic spikes (IESs). This was achieved by making
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the network hyperexcitable and providing a strong and quasi-synchronous external input,

which promoted the emergence of IESs. In our simulated hippocampal network, the LFP

traces revealed clear differences across plasticity conditions (Figure 3.9). In the baseline

(no plasticity), the network exhibited clear, high-amplitude IESs in the simulated LFP,

reflecting strong synchrony among PCs and enhanced excitatory activity consistent with

epileptiform dynamics. Over a stimulation duration of 5 seconds, a total of 38 IESs were

detected

Figure 3.9: LFP recordings from the simulated epileptic hippocampal network under three different
conditions: “No plasticity,” “Shouval plasticity,” and “Hybrid plasticity.” Interictal-like spikes (IESs) and
voltage fluctuations are shown over time, enabling a qualitative comparison of spike morphology, frequency,
and network synchrony across the plasticity models.

However, upon introducing Shouval plasticity, the network dynamics changed markedly

over time. During the initial seconds, the discharges resembled the baseline pattern, but

as synaptic potentiation accumulated, the network became progressively more excitable

(particularly evident in the final seconds of the simulation). This led to more frequent

but fragmented discharges, marked by enhanced high-frequency activity. In this regime,

the firing rate of pyramidal cells increased, yet global synchrony decreased—the neurons

were so active that they tended to fire independently, no longer waiting for external in-

put to trigger collective discharges. Consequently, the LFP spikes became smaller and

less distinct, reflecting a desynchronized yet hyperexcitable network state. The number

of IESs decreased to 28 under Shouval plasticity model. In contrast, the Hybrid plas-

ticity model produced an intermediate dynamic profile. While overall excitability and

firing rates increased compared to the baseline, the network continued to generate dis-
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tinct, high-amplitude interictal-like spikes, indicating that population synchrony among

PCs was largely preserved. Occasional bursts of higher-frequency activity reflected the

elevated excitability of individual neurons, yet this did not disrupt the global synchrony

required for collective discharges. These results suggest that the hybrid rule moderated

the excessive synaptic potentiation seen with Shouval plasticity, maintaining a balanced

regime that preserves both network stability and physiologically realistic spike generation.

Hybrid plasticity preserved the same number of IESs as observed in the baseline condition.

Total LFP Energy: To quantify these effects, we computed the total LFP energy

as the integral of the squared signal amplitude over time, representing the total power

of the activity within the signal. Higher LFP energy values indicate more widespread

or sustained population activity, which is often associated with pathological states. As

shown in Figure 3.10, both Shouval and Hybrid plasticity led to increased LFP energy

compared to the no-plasticity condition. Importantly, Shouval plasticity produced the

highest energy values, consistent with the qualitative observation of increased PC and

high-frequency activities. The Hybrid model also enhanced LFP energy relative to baseline

but to a lesser extent, suggesting that while plasticity promotes pathological sate, its effect

depends strongly on the underlying plasticity rule.

Figure 3.10: Total energy contained within the LFP signal across plasticity conditions. LFP energy
provides a global measure of the magnitude and persistence of synchronized population activity.

Taken together, these results show that the inclusion of synaptic plasticity substan-

tially reshapes network dynamics. While Shouval plasticity induces excessive hyperex-
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citability and loss of coordinated synchrony, the Hybrid model preserves a more organised

and physiologically realistic pattern of activity, representing a more balanced—though still

pathological—network state.

3.4 Discussion

This chapter explored how two calcium-based plasticity models, Shouval and Hybrid, influ-

ence the dynamics of a hippocampal CA1 network in an epileptiform state. By enhancing

PCs’ excitability, reducing inhibitory drive, and applying strong external stimulation, the

network was shifted into a hyperexcitable regime that produced biologically relevant epilep-

tiform discharges. The resulting activity provided a suitable framework for assessing how

plasticity rules alter cellular behaviour and network-level synchronisation.

At the level of PCs, both plasticity models increased excitability relative to the baseline,

but in different ways. Shouval plasticity strongly amplified FRs, which were accompanied

by more asynchronous spiking and reduced LFP amplitudes. In contrast, the Hybrid model

produced a moderate increase in FRs while maintaining amplitudes closer to baseline,

suggesting a more coherent adjustment of activity.

The effects on interneurons followed the same logic, as their firing depended on exci-

tatory input from PCs. BAS and SOM cells mirrored pyramidal dynamics: they showed

the highest FRs under Shouval plasticity and more moderate increases under the Hybrid

model, with spike amplitudes declining most in the Shouval condition. BIS interneurons,

which do not receive direct pyramidal input in the model, remained stable across all con-

ditions. This pattern confirmed that the observed changes in inhibition were secondary to

the modulation of pyramidal output.

LFP showed that plasticity markedly reshaped network dynamics. Without plastic-

ity, the network produced sharp, periodic epileptiform spikes, whereas Shouval plasticity

gradually led to premature discharges, reduced synchrony, and a noisier signal with fewer

large-amplitude events. The Hybrid model showed reduced synchrony but preserved spike

features that are closer to physiological patterns. This suggests that the Hybrid rule par-

tially constrained the excessive potentiation observed with Shouval plasticity, producing a

more realistic regime that balances excitability and stability. Energy analysis confirmed

that both rules enhanced global network activity compared to baseline, with Shouval driv-

ing the strongest, and the Hybrid model supporting a more balanced amplification.

Together, these results demonstrate that the form of plasticity embedded in the net-

work strongly determines how hyperexcitability evolves. These insights validate the Hybrid

model as a more physiologically consistent framework for studying synaptic plasticity in
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epileptic networks. Building on this foundation, the next chapter applies these plasticity

mechanisms to neocortical circuits, enabling broader exploration of how plasticity influ-

ences epileptiform activity and how it may interact with interventions such as transcranial

direct current stimulation (tDCS) within the GALVANI project.
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Chapter 4

Modeling of Neuroplasticity in the Neo-

cortical Network

4.1 Introduction

Building upon the analysis of plasticity’s impact within the hippocampal CA1 network,

this chapter shifts focus to the neocortical microcircuit, utilizing the NeoCoMM platform.

We do the same procedure as in Hippocampus with the primary objective of integrating

the validated Hybrid plasticity model into the neocortical microcircuit. The new version

of NeoCOMM will be used to investigate how plasticity influences epileptogenic dynam-

ics in cortical column models adapted from human, rat, or mouse data. Moreover, this

work directly addresses the GALVANI project’s aim to explore how tACS and tDCS mod-

ulate these plasticity-driven dynamics, with the goal of predicting and optimizing their

suppressive effects on pathological activity.

4.2 Network Model and Epileptic State Induction

4.2.1 Network Model

As outlined in Section 1.4.2.2, the NeoCoMM platform provides a framework for realistic

microscale simulations of neocortical networks at the cellular level. In this study, it is

adapted to match human cortical column dimensions and cell type distributions. The

model represents a single neocortical column spanning all six layers, including 1,895 cells

in total, comprising 1,454 pyramidal cells and 441 interneurons, with cell distributions

across layers and synaptic connectivity implemented as described in [5].

4.2.2 Epileptic State Induction

Similar to the methodology employed in the hippocampal network in Chapter 3, epilep-

tiform activity in the neocortical network is generated through a combination of network

parameter modulation and synchronous external stimulation. To induce a hyperexcitable
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state, characteristic of an epileptogenic tissue, an imbalance between excitation and inhi-

bition needs to be present. Here, we focused exclusively on parameter adjustment of the

PCs, which was sufficient, given that their structure and connectivity differ substantially

from the hippocampal network. An epileptic tissue, characterised by a pathophysiological

hyperexcitable network, and a synchronous input of afferent volleys of APs from the distant

cortex (DC) are required for the simulation of IEEs. This was achieved through systematic

adjustment of parameters according to [5], as described below.

Modifications to the PCs

• Synaptic Conductances: Increasing glutamatergic conductances (AMPA/NMDA).

In this work, gAMPA was increased from 8.0mS/cm2 to 13.0mS/cm2 and gNMDA from

0.15mS/cm2 to 0.35mS/cm2.

• Inhibition Modulation: Altering the GABA reversal potential (EGABA) to reduce

the hyperpolarizing drive. Specifically, EGABA was shifted from −75mV to −70mV,

making GABAergic inhibition less effective and thereby increasing the excitability of

the PCs.

External stimulation In order to generate epileptic spikes, both the intensity and the

synchrony of the external input to the cortical column were increased. In our simulations,

each cell received 10 stimulations at an intensity of 60µA/cm2. To further enforce syn-

chrony, a jitter of 4,ms was applied to the external stimulation. By minimizing temporal

variability between inputs, this approach more effectively coordinates network activity,

facilitating the generation of IESs.

4.2.2.1 Inclusion of Hybrid plasticity model’s Parameters

The same set of parameters introduced in Section 3.2.1.3 is used here, with the only differ-

ence being that Shouval plasticity and its related parameters are not included. Moreover,

the PCs in NeoCoMM are represented by a three-compartment model instead of two (Sec-

tion 1.4.2.2). This setup provides users with direct access to the plasticity parameters,

allowing real-time testing of different scenarios and enabling systematic exploration of how

various plasticity rules influence epileptic dynamics. In the remainder of this chapter we

will refer to the ”hybrid plasticity model” as plasticity to avoid repetition.
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4.3 Analysis of Network Dynamics and Plasticity In-

fluence

Using the previously described stimulation protocol, a random seed of 4 ensured repro-

ducibility. Simulations ran for 1 s, with a stimulation period of 100 ms and a sampling

frequency of 25 kHz. Stimulation protocol remained identical across plasticity and no-

plasticity simulations to ensure that observed differences in network activity could be at-

tributed exclusively to plasticity rules rather than differences in external input.

4.3.1 Cellular and Population Activity Analysis:

4.3.1.1 Synaptic efficacy evolution

Figure 4.1 illustrates the evolution of synaptic efficacy (W ) in the excitatory connections

within the network over a stimulation period of 1 sec. For these simulations, the time

constant τW was set to a relatively low value of 300 ms, enabling W to respond rapidly

over the short stimulation period. As expected, the figure shows a gradual increase in

synaptic efficacy over time.

Figure 4.1: This figure illustrates the Evolution of the Synaptic efficacy variable under the hybrid
plasticity condition within the network.

Within the bistable dynamics of the hybrid model as introduced in Section 2.3.3,

W ∗ = 0.5 represents the unstable equilibrium point: depending on the postsynaptic cal-

cium concentration, synaptic efficacy either decreases toward depression (LTD) or increases
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toward potentiation (LTP). In the epileptic, hyperexcitable network considered here, most

synaptic connections evolve toward the UP state, reflecting potentiation, while only a sub-

set undergo LTD (falling below W ∗). This predominance of potentiation is a hallmark

of hyperexcitable networks. An additional observation is that some connections initially

exhibit depression but later transition toward potentiation. This suggests that, at the be-

ginning of the simulation, these synapses receive insufficient input from the distant cortex

or other pyramidal cells; however, as the network activity strengthens and recurrent inputs

accumulate, they gradually cross the threshold required for LTP.

4.3.1.2 Cellular Activity Analysis:

The firing patterns of both principal cells (PCs) and inhibitory interneurons (INs) are

quantitatively analyzed:

Figure 4.2: Firing rates of PCs under plasticity and no-plasticity conditions. The difference between the
two groups is statistically significant, with stars indicating the p-value levels (* p < 0.05, ** p < 0.01, ***
p < 0.001), demonstrating that the inclusion of plasticity substantially increases PC activity.

Pyramidal Cell (PC) Activity As illustrated in Figure 4.2, the FR of PCs is higher

in the case of plasticity. Quantitative analysis confirms this effect: the maximum FR of

PCs without plasticity was 20.50 Hz, with a mean FR of 9.40 Hz. Following the inclusion

of plasticity, the maximum firing rate rose to 42 Hz, and the mean FR increased to about

12.92 Hz. This significant increase demonstrates that incorporating plasticity strongly

enhances PC activity, highlighting its impact on network dynamics.

Figure 4.3 provides a more detailed view by separating PCs according to cortical layers

within the model. Specifically, layer 2/3 contains 667 PCs, layer 3 contains 348 PCs, layer

4 contains 298 PCs, and layer 6 contains 205 PCs. The top row shows the FRs of PCs
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in each layer without plasticity, while the second row displays the FRs with plasticity.

As demonstrated, the FR of PCs is significantly higher across all layers when plasticity

is included. This layer-specific representation allows a direct visual comparison of PC

activity before and after plasticity, highlighting both the overall increase in firing and the

differences in activity range within individual layers.

Figure 4.3: Barplot showing the firing rates of PCs across different cortical layers under plasticity and
no-plasticity conditions. The layer-specific comparison highlights the increase in PC activity due to the
inclusion of plasticity.

Interneurons Activity

PV interneurons The FR of PV INs is shown in Figure 4.4. The FR of PV+ expressing

INs is higher with plasticity, primarily due to the excitatory drive from PCs connected to

these interneurons. Under the no-plasticity condition, PV INs exhibited a mean firing rate

of 41.87 Hz and a maximum of 64.50 Hz. After introducing hybrid plasticity, the mean

firing rate increased to 52.56 Hz, with a maximum reaching 86 Hz. This increase highlights

the effect of strengthened excitatory input from PCs on PV interneuron activity.
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Figure 4.4: Boxplot of PV interneuron firing rates under plasticity and no-plasticity conditions, showing
a highly significant increase in activity with plasticity.

Similar to PCs, the layer-specific activity of PV interneurons is illustrated in Figure 4.5.

This representation allows a clear comparison of PV firing rates across different cortical

layers before and after the inclusion of plasticity, highlighting the impact of increased

excitatory drive on PV interneuron activity across layers.

Figure 4.5: Layer-specific firing rates of PV interneurons under plasticity and no-plasticity conditions.

SST and VIP interneurons The following figure illustrates the FRs of SST and VIP

interneurons. Consistent with expectations, the activity of both interneuron types increases

in case of plasticity, reflecting the enhanced excitatory drive received from the network.
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Specifically, the mean FR of SST+ expressing INs rises from 28.49 Hz to 35.34 Hz with

plasticity, while VIP interneurons exhibit an increase from 47.40 Hz to 60.07 Hz. These

results confirm that the inclusion of plasticity substantially amplifies interneuron activity,

highlighting the network-wide effect of strengthened excitatory input.

Figure 4.6: Boxplots of interneuron firing rates under no-plasticity and Hybrid plasticity conditions. (A)
Firing activity of SST interneurons. (B) Firing activity of VIP interneurons. The asterisks indicate a
statistically significant increase in firing rates following the inclusion of plasticity, demonstrating enhanced
excitatory input to these interneurons.

4.3.1.3 Local Field Potential Analysis

In Figure 4.7, the LFP of the network is shown under two different conditions. The

network was first configured to be epileptic, capable of generating interictal epileptic spikes

(IESs) through a combination of hyperexcitability and high-intensity, synchronous input

(as introduced in Section 4.2.2). This epileptic baseline serves as the reference state for

assessing how synaptic plasticity influences ongoing epileptiform dynamics. The figure

highlights a subtle increase in high-frequency components of the LFP, most evident around

the fifth spike (approximately 500 ms). At the same time, the mean amplitude of the

IESs shows a slight reduction, decreasing from 0.295 V to 0.275 V. This reduction can be

attributed to the enhanced firing activity of PCs accompanied by reduced synchrony in

their discharges. The combination of higher firing rates with lower temporal synchrony

results in an increase in high-frequency activity but smaller LFP spike amplitudes.
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Figure 4.7: LFP of the network under plasticity and no-plasticity conditions.

4.4 Modeling of tES in the NeoCoMM Framework

The last part of this chapter was the investigation of transcranial electrical stimulation

(tES) impact on healthy and epileptic activity. The NeoCoMM framework allows for the

simulation of electrical stimulation effects, predicting the impact of weak electric fields

produced by current flow through the mathematical finite-element modeling of individual

brain anatomy. The contribution of tES was modeled based on a recent single-cell study

[65] using detailed single-cell models within the NEURON environment [66]. The analysis

focuses on analysing the entrainment impact of tACS on healthy alpha rhythms and the

effect of tDCS on epileptic activity.

4.4.1 Computation of Single-Cell Polarization Lengths

In this section, we used the detailed NEURON models [66] to simulate extracellular stimu-

lation via transcranial alternating current stimulation (tACS). The simulation was imple-

mented using the extracellular mechanism provided by the NEURON simulator [67]. The

quasi-uniform approximation [68] was used to model electric field stimulation, assuming

a uniform electric field aligned along the y-axis for all neuronal populations, including

inhibitory neurons. This alignment corresponded to the somato-dendritic axis of pyrami-

dal (PYR) cells. The extracellular potential at compartment i was then calculated using

Equation 4.1
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Eextra
i (t) = E0 · A(t) · yi (4.1)

where Where Eextra
i (t) is the extracellular potential at the ith compartment at time t, yi

its coordinate, E0 the unit electric field vector, and A(t) the stimulation waveform at time

t. The stimulation waveform was defined by A(t) = a sin(2πft), with a the electric field

amplitude and f its frequency.

Figure 4.8: Frequency dependence of polarization length for all cell types. (A) Variation of the polariza-
tion length with tACS frequency for the soma (left panel) and the dendrites (right panel) of Principal Cells
(PCs) of Layers L23, L4, L5, and L6. For L6 we investigated three subtypes of pyramidal cells: Tufted
(TPC), Inverted (IPC), and Bipolar (BPC). (B) Variation of the polarization length with tACS frequency
for the interneurons of the model (PV+, SST+, VIP+, and RLN+) at each layer (L23, L4, L5, and L6).
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After initialization at the steady state without external inputs, simulations (2–4 s) were

run for stimulation frequencies ranging from 0 to 140Hz (0.25Hz step). The polariza-

tion length λ for each stimulation profile was defined as half the difference between the

last maximum and minimum membrane potentials. These frequency-dependent values are

illustrated in Figure 4.8.

4.4.2 Implementation of tES in NeoCoMM

In the NeoCoMM model, the “lambda-E” formalism was used [69], which proposes that

under weak and uniform electric fields, the membrane polarization across all compartments

varies linearly with stimulation current amplitude. Consequently, the membrane polariza-

tion induced by the electric field at each compartment is represented as the dot product

of the electric field vector and a length vector (polarization length) that characterizes the

coupling constant, as shown in Eq 4.2. In the remainder of the manuscript, we will be

referring to polarization length as λ.

δv(x) = λ(x, f) · E (4.2)

For each cell type and layer, the corresponding polarization value was incorporated into

the membrane potential, expressed as V ′(x) = V (x)+ δV (x) with x the compartment type

and cell layer.

4.4.3 Entrainment Analysis

Neural entrainment was quantified using the phase-locking value (PLV) [70], which quan-

tifies the synchronization of spike timing relative to an ongoing signal. PLV is determined

using Eq 4.3:

PLV = |
1

N

N
∑

k=1

ejθk | (4.3)

Here, N represents the total number of APs and θk denotes the phase of the tACS

waveform at which the k-th spike occurs. Under the tACS condition, the PLV was com-

puted relative to the tACS waveform. A PLV of 0 indicates a uniform distribution of spike

timings across all phases (0 to 2π), while a value of 1 signifies complete synchronization to

a specific phase of the tACS.

The Rayleigh test [71] was chosen to evaluate deviations from a circular uniform distri-

bution. Polar plots were used to visually represent these quantitative values, as a preferred

phase direction corresponds to higher bin counts in a specific angular direction.

70



To ensure that the tACS impact portrayed by the PLV was significant compared to

baseline, especially in the case of alpha rhythm where the network is already entrained to

the 10 Hz frequency, We conducted a permutation test. Spike phases from stimulation and

baseline were pooled and randomly reassigned into surrogate groups for 10,000 permuta-

tions to generate a null distribution of PLV difference between stimulation and baseline.

PLV variation was considered as statistically significant for p ¡ 0.05.

4.4.4 Integration with the Plasticity-Enabled NeoCoMM

By incorporating the plasticity model into the NeoCoMM framework already including tES

effects, we can now examine how externally applied electric fields interact with a network

in which synaptic plasticity is active. This setup enables the investigation of tES-induced

modulation in epileptic network dynamics, providing a more physiologically realistic model

of the cortical column that combines acute electrical stimulation with activity-dependent

synaptic adaptation, providing a framework to explore how tES may reshape the E/I

balance and contribute to seizure suppression through synaptic plasticity modification.

4.4.5 Results

The computational analysis of tES was performed using the NeoCoMM framework, which

was configured to simulate a physiological alpha rhythm and epileptic activity by inducing

a hyperexcitable state. The λ–E formalism was included for tES modeling integrated with

the Hybrid plasticity model in the PCs.

4.4.5.1 tACS Impact on Physiological Cortical Oscillations

We first quantified neural entrainment of PCs and interneurons (INs) to tACS across

stimulation frequencies (5 to 120 Hz), and electric field intensities (0.3 to 3 mV/mm). For

PCs, we grouped together those with similar electrophysiological properties: specifically,

layer 2/3 and layer 4 PCs (PC23 and PC4), as well as layer 5 and layer 6 tufted PCs (PC5

and TPC6). For clarity, we present results for only one representative from each group.

However, for layer 6, we additionally report results for inverted (IPC) and bipolar (BPC)

pyramidal cells, as their morphologies differ in directionality from the other PC types.

Figure 4.9-A shows the variation of the PLV across stimulation frequencies and inten-

sities for PCs. Even in the absence of stimulation (baseline), the network simulating a 10

Hz alpha rhythm exhibited a strong endogenous PLV at 10 Hz, even without stimulation.

Under tACS, entrainment of LFP was consistent at 10 Hz, starting at the lowest tested
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intensity of 0.3 mV/mm. Weaker entrainment was also observed at 20 Hz and 30 Hz,

consistently across all PC layers.

Figure 4.9: This figure illustrates the impact of transcranial alternating current stimulation (tACS) on
the network activity of PCs in layer 2/3 (PC23) and layer 5 (PC5), during the 10 Hz alpha rhythm.
(A) Entrainment maps of PCs to tACS with varying intensity and frequency. Red rectangles indicate
conditions in which the phase-locking value (PLV) during tACS was significantly greater than baseline
(permutation test, p < 0.05). (B) Preferred Phase (PPh) variation with tACS parameters. (C) Example
of PC action potential entrainment under 1 mV/mm, 10 Hz tACS.

A key finding concerning the plasticity-enabled network was the layer-specific sensitivity

to tACS: Permutation testing demonstrated that PCs in Layers 2/3 exhibited significant

PLV increases relative to baseline, even at low intensity of 0.4 mV/mm across all stimu-

lation frequencies tested, whereas PCs in Layers 5 only showed significantly elevated PLV

values relative to baseline when the applied tACS amplitude exceeded 1 mV/mm. The

corresponding preferred phase (PPh) distributions are shown in Figure 4.9. B. In L2/3

Pcs, PPh values varied but tended to converge toward a consistent phase with increasing

stimulation intensity, indicating phase alignment driven by tACS in these populations.

For L5 Pcs, this happened only when the stimulation frequencies were above 40 Hz. Polar

plots in Figure 4.9.C further illustrate strong neural entrainment at 10 Hz under 1 mV/mm

stimulation.

4.4.5.2 tDCS Impact on Epileptic Events

We next analyzed the effects of tDCS on epileptic network activity, considering both catho-

dal (ctDCS) and anodal (atDCS) stimulation. In our plasticity-enabled network, the ob-
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served effects of stimulation polarity were reversed, driven by changes in synaptic efficacy

(W). As shown in Figures 4.10, cathodal stimulation increased mean synaptic efficacy (W)

in PCs as the stimulation intensity increased, while anodal stimulation led to a gradual

synaptic depression.

Figure 4.10: Temporal evolution of the mean synaptic weight of PCs across different cortical layers under
varying intensities of cathodal and anodal tDCS.

This relationship is illustrated in more detail in Figure 4.11, where the synaptic effi-

cacy increases proportionally with ctDCS intensity. In the figure, the baseline (blue trace)

represents the mean synaptic efficacy of the network without stimulation. As the catho-

dal stimulation intensity increases from –0.3 mV/mm to –5 mV/mm, the corresponding

synaptic efficacy traces (orange and brown, respectively) show a clear upward trend, with

stronger stimulation producing greater synaptic potentiation. Intermediate intensities of

–0.5 mV/mm (green), –1 mV/mm (red), and –3 mV/mm (purple) exhibit a consistent

increase in synaptic efficacy, confirming a direct relationship between stimulation intensity

and synaptic strengthening under cathodal tDCS.
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Figure 4.11: Magnified view illustrating the effect of ctDCS on the temporal variation of mean synaptic
efficacy in PCs under different stimulation intensities.

These results demonstrated divergence from some works in which Cathodal tDCS (ct-

DCS) is commonly reported to exert anti-epileptic effects, typically reducing hyperexcitable

activity, whereas anodal tDCS (atDCS) is thought to increase excitability [72, 4]. Other

publications such as kronberg et al. [73] showed that ctDCs increases LTP and overall

synaptic strength. Functionally, these changes translated into modest shifts in epilepti-

form activity that were qualitatively observed: ctDCS slightly reduced the amplitude of

IESs, whereas atDCS increased them (Figure 4.12).

Figure 4.12: Variation of the amplitude of IESs under cathodal, anodal, and baseline conditions.

These preliminary simulations suggest that the inclusion of plasticity in PCs may alter
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the commonly reported polarity-based effects of tDCS on synaptic weight. In our net-

work, cathodal stimulation tended to increase mean synaptic efficacy and slightly reduce

interictal spike amplitude, whereas anodal stimulation produced the opposite trend. While

these results indicate that synaptic plasticity can modulate the network response to tDCS,

the effects observed here are modest and layer-specific. Further simulations and detailed

analysis will be required to systematically characterize how plasticity shapes tDCS-induced

modulation of epileptiform activity.

4.5 Discussion

This chapter presented a critical extension of the NeoCortical Computational Microscale

Model (NeoCoMM) by integrating the Hybrid plasticity model into the PCs. This work

aimed to establish a dynamic, physiologically more realistic model of an epileptogenic

state within the neocortical column and subsequently investigate how this plastic state

modulates the effects of transcranial electrical stimulation (tES). The initial phase success-

fully characterized the epileptogenic state. By adjusting network parameters, specifically

increasing glutamatergic conductances (gAMPA and gNMDA) and reducing GABAergic inhi-

bition by shifting EGABA, a hyperexcitable network capable of generating IESs was gener-

ated. The inclusion of the Hybrid plasticity model in the PCs confirmed the hypothesis

that the chronic environment strongly biases synaptic dynamics toward LTP. This synaptic

strengthening drove a significant amplification of activity across the entire network, raising

the mean PC firing rate from 9.40 Hz to 12.92 Hz. This highlights that chronic plasticity is

responsible for sustaining and amplifying the pathological activity through synaptic adap-

tation. The latter part of the chapter investigated neuromodulation, implementing tES via

the λ-E formalism, which incorporates polarization lengths derived from detailed single-cell

models. While tACS analysis showed interesting layer-specific sensitivities (e.g., L2/3 PCs

being more sensitive to low intensity than L5 PCs), the most surprising results came from

tDCS. Normally, cathodal tDCS is expected to reduce activity, but in our plastic network,

it actually increased synaptic strength. On the other hand, anodal tDCS decreased synap-

tic strength. This suggests that the chronic, highly potentiated synaptic state created by

plasticity can change the usual response to tDCS. These findings are still preliminary, and

further work is needed to fully understand how plasticity shapes the network response

to tDCS. For example, plasticity was only included in PCs here, so including inhibitory

interneurons, testing different stimulation intensities, and looking at long-term dynamics

could reveal more about how tDCS affects epileptiform activity in chronic networks.

75



Chapter 5

Discussion and Conclusion

5.1 Discussion

The focus of this thesis was to analyze how neuroplasticity influences neuronal and net-

work excitability, particularly in the context of epileptic activity. Within the GALVANI

project, the Cinetyks team at LTSI developed neuroinspired computational models of the

hippocampus and the neocortex. However, these models lacked a fundamental property of

the brain: neuroplasticity. This work addressed that limitation by implementing calcium-

dependent plasticity mechanisms in a detailed multi-compartment pyramidal cell model

and integrating them into large-scale network simulations. The implemented mechanisms,

derived from the Shouval and Brunel frameworks, allowed the exploration of synaptic plas-

ticity based on postsynaptic calcium dynamics and ultimately enhanced the physiological

realism of the models for future studies on epilepsy and personalized neuromodulation

treatments.

A key contribution of this thesis is the introduction of a new Hybrid plasticity model,

inspired by the works of the team at the neural mass level [62], here implemented at

the cellular scale. The rationale stems from the observation that Shouval’s calcium-based

synaptic rule, as discussed by the authors [8], can become unstable under sustained or high

activity, leading to unbounded potentiation. To overcome this, the Hybrid model incor-

porated the bistable synaptic efficacy term from Brunel’s model −W (1 − W )(W ∗ − W ),

introducing two stable synaptic states (low and high efficacy). This bistability acts as a

self-regulating mechanism that prevents runaway potentiation or depression and constrains

the system within physiological limits. Consequently, the Hybrid model provides a more

stable and realistic representation of long-term synaptic dynamics, enabling simulations of

chronic or pathological conditions such as epilepsy. Evidence of Shouval model instability

was reflected in the simulated LFP signals as shown in Figure 3.9. In this case, through-

out the simulation and more precisely the second half, high-frequency activity intensified

while interictal spikes diminished and transitioned into high-frequency oscillations. For

a simulation period of five seconds, the Shouval model produced an unrealistically high

level of network excitation, indicating limited stability under conditions of sustained and

elevated activity. These results motivated the subsequent choice of the Hybrid model alone

76



in the neocortical simulations. This further suggests that purely calcium-driven plasticity

models, although biologically grounded, require additional stabilizing mechanisms such as

bistability to maintain realistic long-term behavior.

During STDP validation, a secondary observation was the occurrence of multiple local

maxima in the LTP phase of the STDP curve (Figure 2.8 and Figure 2.10). As detailed in

Section 2.4.3, in the configured network Figure 2.7, both neurons were forced to fire through

brief current injections, and the relative spike timing (∆t) between pre- and postsynaptic

cells was measured. Occasionally, the overlap between externally applied currents and

spontaneous depolarization led to double firing of the postsynaptic neuron within a single

stimulation cycle. This resulted in two effective ∆t intervals per cycle and generated small

local peaks in the potentiation region. These fluctuations were artifacts of the stimulation

protocol rather than biological irregularities. Overall, the resulting STDP profile closely

matched theoretical and experimental expectations, showing three canonical regions: an

initial depression phase followed by a potentiation window and a final depression phase for

larger positive ∆t values. Moreover, increasing stimulation frequency amplified both LTP

and LTD amplitudes and broadened their respective windows, consistent with [8].

In our analysis, the focus was on modeling epileptic networks capable of generating in-

terictal epileptic events mainly IES. To achieve this, hippocampal and neocortical networks

were constructed following the approaches described in previous studies, where epilepti-

form activity was reproduced by modifying synaptic parameters such as glutamatergic

and GABAergic conductances and the external input parameters. After these modifi-

cations, both networks exhibited increased excitability and produced interictal-like dis-

charges. However, in the hippocampal network, despite the enhanced activity of pyramidal

cells, their firing remained insufficient to induce the calcium levels required for synaptic

efficacy to evolve through plasticity. This was due to the strong inhibitory input from

BIS interneurons, which limited pyramidal cell depolarization. To address this, the AMPA

conductance of BIS cells was reduced from 6 to 2 mS/cm², decreasing their inhibitory

impact and allowing pyramidal neurons to fire more frequently, thereby enabling calcium-

dependent plasticity to develop naturally. In contrast, no such modification was necessary

in the neocortical network, as its connectivity and dynamics already supported sufficient

pyramidal cell activation for plasticity expression.

Another important consideration concerns the choice of synaptic efficacy parameters in

the Hybrid model within the NeoCoMM simulations. The NeoCoMM framework represents

a realistic cortical microcircuit composed of nearly 1,900 neurons across multiple excitatory

and inhibitory layers, introducing substantial computational complexity. After adjusting

the model to simulate epileptic activity, synaptic efficacy evolution was examined under
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the Hybrid plasticity rule. Due to the model’s scale, each one-second simulation generated

large datasets, making long-duration runs impractical. To observe plasticity within this

short simulation window, the synaptic efficacy time constant (τW ) was reduced to 300 ms.

Although this timescale is shorter than physiologically realistic values (typically on the

order of seconds to minutes[9]), it allowed detectable weight changes within a manageable

runtime. This choice represents a practical compromise between biological realism and

computational feasibility.

Finally, it is generally accepted that tDCS produces shifts in cortical excitability, with

anodal stimulation increasing excitability and cathodal stimulation decreasing it [74]. This

excitability hypothesis is supported by physiological evidence showing that direct current

stimulation modulates neuronal membrane potentials, thereby altering firing rates and

spike timing [75, 76]. Based on these findings, anodal and cathodal tDCS are often as-

sumed to induce LTP- and LTD-like effects, respectively. However, our preliminary tES

simulations revealed a reversal of this expected polarity effect: cathodal stimulation in-

creased synaptic efficacy, whereas anodal stimulation led to depression. This result aligns

with the findings of [73], who showed that tDCS facilitates LTP and diminishes LTD in

hippocampal slices. They suggested that these effects can be polarity independent, as

both anodal and cathodal tDCS can produce similar effects. The outcomes depended on

dendritic location and endogenous synaptic activity, demonstrating that tDCS can directly

modulate synaptic plasticity by influencing calcium-dependent signaling pathways involved

in LTP and LTD. Depending on the network’s ongoing activity and baseline excitability,

such calcium-driven mechanisms can alter the direction of synaptic modification, explaining

why, in hyperexcitable tissue, the typical polarity effects of tDCS may reverse.

Despite these findings, this study faced some limitations that should be acknowledged.

The first concerns computational constraints: simulating large-scale, detailed neuroinspired

networks such as NeoCoMM (around 1,900 neurons) required substantial processing time,

which limited the feasible duration of simulations. Because synaptic plasticity evolves

over minutes in biological systems, this constraint prevented us from capturing the slower,

cumulative changes that would occur under realistic timescales. For instance, simulating

20 seconds of tES stimulation under realistic conditions, would require several days of

computation. Although some synaptic changes began to appear within this time frame,

longer simulation durations would be necessary to fully capture and analyze the evolution

of synaptic plasticity over biologically relevant timescales. The second limitation relates

to the lack of experimental literature describing the precise mechanisms of neuroplasticity

in epilepsy. Although plasticity is known to play a key role in both the development and

potential recovery of hyperexcitable networks, the exact processes remain insufficiently
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characterized. This gap in current knowledge restricted our ability to directly compare or

validate the simulated results with experimental data.

5.2 Implications and Future Work

This work successfully modeled calcium-dependent synaptic plasticity within microscale

models of the hippocampus and neocortex, moving closer to a physiologically grounded

representation of epileptic microcircuits. The new models provide a powerful platform for

exploring personalized stimulation strategies in the context of epilepsy. Ultimately, this

study advances the GALVANI project’s mission by providing a computational tool capable

of linking cellular plasticity processes with neuromodulation effects. This can contribute

toward the rational design and optimization of personalized therapeutic interventions in

drug-resistant epilepsy. Building on this foundation, future research can focus on ad-

dressing remaining biological complexities and exploring long-term dynamics. Moreover,

in this work, synaptic plasticity was implemented only in the excitatory PCs. A future

direction could focus on extending the model to include plasticity in interneurons, allow-

ing a more complete representation of the excitation–inhibition balance that characterizes

chronic epilepsy.

In this study, the focus was placed on physiological plasticity within an epileptic net-

work. However, by modifying the Ω-function parameters, we were able to simulate a

pathological form of plasticity, which provides a useful framework to explore how biased

plasticity might contribute to epileptogenesis. Future work could explore the effect of such

pathological plasticity on a physiological network to investigate whether it can drive the

transition toward epileptogenesis.

Finally, although some preliminary studies have examined the impact of tES on epilep-

tic networks, our initial findings are only a first step, and more extensive research and

longer-duration stimulation are needed to obtain reliable and comprehensive insights. The

new version of NeoCoMM, which includes the implementation of transcranial electrical

stimulation (tES) and synaptic plasticity, provides a powerful platform for systematic in-

vestigations of how tES influences the epileptic brain. In particular, it enables exploration

of the bidirectional interactions between stimulation and plasticity mechanisms, helping

to reveal how tES can modulate hyperexcitability in pathological conditions. This version

will be further used by Dr. Al Harrach and her team within the GALVANI project to

investigate tES–epilepsy interactions toward the goal of personalized treatment strategies.
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5.3 Conclusion

This thesis has advanced the Physiological realism of hippocampal and neocortical compu-

tational models by integrating calcium-dependent neuroplasticity mechanisms into detailed

multicompartment neuron frameworks. The simulations demonstrated that synaptic plas-

ticity, while essential for adaptive neural processes, can also contribute to the emergence

and worsening of epileptiform activity by reinforcing hyperexcitable network states. The

enhanced models now provide a solid and flexible foundation for investigating how long-

term synaptic adaptation influences network behavior and its modulation by transcranial

electrical stimulation. Overall, this work represents a significant step toward developing

computational tools that better reflect real brain behavior and directly contribute to the

GALVANI project’s objectives of creating mechanistically grounded and personalized neu-

romodulation strategies for drug-resistant epilepsy.
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Supplementary Materials

This supplementary section provides additional figures supporting the main results pre-

sented in the thesis. It includes visualizations of the implemented plasticity parameters in

the model’s GUI, neuronal firing behaviors under different conditions, and the effects of

pathological plasticity on network excitability and epileptiform activity.

Figure 5.1: Inclusion of plasticity parameters in the simulation GUI. The left panel allows the selection
and adjustment of Shouval and Hybrid plasticity parameters.

Figure 5.2: Distribution of pyramidal cell (PC) firing patterns under “No plasticity,” “Shouval plasticity,”
and “Hybrid plasticity” conditions.
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Figure 5.3: Distribution of action potential (AP) amplitudes for PCs across the three plasticity conditions.

Figure 5.4: Spike activity of a single basket (BAS) interneuron, illustrating the firing dynamics of
inhibitory neurons within the network.

Pathological Plasticity and Epileptiform Activity

The following figures present the impact of the pathological Hybrid plasticity model (intro-

duced in Section 2.3.4) on the epileptic network. Pathological plasticity was implemented

by modifying Ω-function parameters to exaggerate synaptic potentiation. As shown in the

results, this led to a pronounced increase in excitatory synaptic strength, heightened firing

activity of pyramidal cells, and an overall escalation of network hyperexcitability. The

excessive long-term potentiation resulted in desynchronization of population activity and
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increased high-frequency components in the local field potential (LFP), consistent with

enhanced epileptogenic behavior.

Figure 5.5: Temporal evolution of synaptic strength under physiological (healthy) and pathological
Hybrid plasticity conditions. In the pathological case, all synapses exhibit rapid and excessive long-term
potentiation (LTP), reaching saturation much faster than in the physiological case, where potentiation
develops more gradually.
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Figure 5.6: Comparison of pyramidal cell firing rates under physiological and pathological Hybrid plas-
ticity models. A substantial increase in firing rate is observed under pathological conditions, indicating
elevated network excitability.

Figure 5.7: Overall firing behavior of pyramidal cells under healthy and pathological Hybrid plasticity.
Under pathological conditions, several neurons reach firing rates up to 100 Hz, reflecting severe hyperex-
citability.
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Figure 5.8: Simulated local field potential (LFP) signals under pathological and physiological plasticity
compared to baseline. The pathological condition shows increased high-frequency activity and reduced
synchrony, resulting in lower interictal event amplitude despite higher firing activity.

Figure 5.9: Signal energy analysis across conditions. The total energy, computed as the integral of
squared signal power, is highest under pathological plasticity, confirming increased hyperactivity and
enhanced epileptogenic potential.
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